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Abstract

Finding the values of µ for which there exists a maximal set of µ edge-disjoint Hamilton

cycles in the complete multipartite graph Kp
n has been considered in papers for over 20 years.

This paper finally settles the problem by finding such a set in the last remaining open case,

namely where µ is as small as possible (so its existence was still in doubt) when n = 3 and the

number of parts, p, is 3 (mod 4).
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Chapter 1

History

A cycle containing every vertex of a graph G is called a Hamilton cycle of G. Let S be a set

of edge-disjoint Hamilton cycles of graph G, and let E(S) be the set of edges which form the

cycles in S. S is called maximal if G − E(S) contains no Hamilton cycle. Let Kp
n denote

the complete p-partite graph with n vertices in each part. Decades of effort have been put

into determining the spectrum for maximal sets of Hamilton cycles in Kp
n, namely finding the

integers µ for which there exists a maximal set of µ of edge-disjoint Hamilton cycles in Kp
n.

The point of this paper is to solve the final case, thereby completely settling this problem. An

underlying motivation for finding the sizes of maximal sets in this and other settings is the

algorithmic issue of how badly one might fail when using a greedy approach to find a Hamilton

decomposition of G.

This spectrum problem originated in a paper of Hoffman, Rodger, and Rosa [7] who

showed that there exists a maximal set of µ edge-disjoint Hamilton cycles in Kn = Kn
1 if

and only if b(n+ 3)/4c ≤ µ ≤ b(n− 1)/2c . Bryant, El-Zanati, and Rodger [4] showed such a

set exists in the complete bipartite graph Kn,n = K2
n if and only if n/4 < µ ≤ n/2. This result

was extended by Daven, MacDougall and Rodger [6], when they showed that a maximal set of

µ edge-disjoint Hamilton cycles exists in Kp
n if and only if

• dn(p− 1)/4e ≤ µ ≤ bn(p− 1)/2c, and

• µ > n(p− 1)/4 if either n is odd and p ≡ 1 (mod 4) or p = 2 or n = 1,

except possibly for the undecided case:
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• n ≥ 3 is odd, p is odd and µ ≤ ((n+ 1)(p− 1)− 2)/4.

The open cases in [6] were greatly reduced when Jarrell and Rodger [9] solved the problem

for n ≥ 5 and for all but the smallest possible values when n = 3, showing that a max-

imal set of Hamilton cycles of size µ exists when n = 3 and dn(p− 1)/4e + 1 ≤ µ ≤

b((n+ 1)(p− 1)− 2)/4c if p ∼= 3 (mod 4), and dn(p− 1)/4e+1 < µ ≤ b((n+ 1)(p− 1)− 2)/4c

when p ∼= 1 (mod 4). Following this the only cases that remained in doubt were when

µ = dn(p− 1)/4e + 1 with n = 3, p ≡ 1 (mod 4), and when µ = dn(p− 1)/4e with n = 3

and p ≡ 3 (mod 4). Noble and Rodger [12] solved the case when n = 3, p ≡ 1 (mod 4), and

µ = dn(p− 1)/4e + 1. In her dissertation, Noble [11] also found solutions for the smallest

values of µ when n = 3 and p = 7 or p = 11 or p ≡ 7 (mod 8) for p ≥ 31. Thus the only

unsettled cases are when µ = dn(p− 1)/4e, n = 3, and p is either 3 (mod 8) or is in {15, 23}.

This paper will complete the spectrum problem by providing a solution to the entire p ≡

3 (mod 4) case, specifically by showing that when n = 3 and p = 4m − 1 for any m ≥

2, a maximal set of Hamilton cycles of Kp
n exists of size µ = dn(p− 1)/4e = 3m − 1.

The construction of Noble provided in [11] when p ≡ 7 (mod 8) relied on the existence of

constructions of smaller cases of p, and the maximality of the set of Hamilton cycles was shown

by proving that the removal of the Hamilton cycles resulted in a graph with cut vertex. In this

paper a direct construction for p ≡ 3 (mod 4) will be given, and maximality will be ensured by

obtaining a disconnected graph upon the removal of the edges in the Hamilton cycles.

The culmination of these results combined with Theorem 2.0.2 results in the following

theorem stating the complete spectrum of sizes for maximal sets of Hamilton cycles of Kp
n.

(Note the case when n = 1 from [6], in the second bullet point above, is unneeded in Theorem

1.0.1 as it is implied by (i) in Theorem 1.0.1.)

Theorem 1.0.1. There exists a maximal set of edge-disjoint Hamilton cycles of size µ of Kp
n if

and only if dn(p− 1)/4e ≤ µ ≤ bn(p− 1)/2c and n(p− 1)/4 < µ when

(i) n is odd and p ≡ 1 (mod 4), or

(ii) p = 2.
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1.1 Preliminary Results and Definitions

An H-decomposition of a graph G is a partition of E(G), each element of which induces a

copy of H . G is said to be decomposed into H if there exists an H-decomposition of G. Of

particular interest in this paper are Hamilton Cycle decompositions (i.e. H-decompositions

where H is a Hamilton cycle).

The following pair of lemmas are variants of well known results due to Laskar [2]. How-

ever, since particular 1-factors are of interest later, proofs are presented here.

Throughout this paper, let F1 = {{(0, p), (1, p)} | 0 ≤ p ≤ 2m − 1} and F2 = {{(0, p +

1), (1, p)} | 0 ≤ p ≤ 2m − 1}, reducing the sum (mod 2m). The following result will be

of use in Section 3, where F2 will play a pivotal role in ensuring that some color classes are

connected. For any graph G let λG denote the multigraph formed from G by replacing each

edge with λ edges.

Lemma 1.1.1. 2K2m,2m − 2F1 − 2F2 on the vertex set Z2m × Z2m can be decomposed into

2m− 2 Hamilton cycles.

Proof. Observe that the graph induced by F1∪F2 is a Hamilton cycle. Also, K2m,2m can easily

be decomposed intomHamilton cycles. So the result follows by naming the vertices so that the

first Hamilton cycle has edge set F1 ∪ F2, then taking two copies of each Hamilton cycle.

Throughout this paper, let F3 = {{(0, p), (1, p)} | 2m ≤ p ≤ 4m − 2}. The next result

will also be used in Section 3.

Lemma 1.1.2. 2K2m−1,2m−1 − 2F3 with vertex set (Z4m−1 \ Z2m) × (Z4m−1 \ Z2m) can be

decomposed into 2m− 2 Hamilton cycles.

Proof. K2m−1,2m−1 can easily be decomposed into m − 1 Hamilton cycles and a 1-factor, so

K2m−1,2m−1−F3 can be decomposed into m− 1 Hamilton cycles. Therefore the result follows

by taking two copies of each Hamilton cycle.

Given a path P , with |E(P )| ≥ 2, the two edges incident with a vertex of degree one are

called end edges, and all other edges of P are called interior edges. The vertices of a path P of

degree one will be called endpoints of P .
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Let B = K2m,2m with bi-partition of the vertex set being {U,L}, where U = {(0, j) | 0 ≤

j ≤ 2m− 1} and L = {(1, k) | 0 ≤ k ≤ 2m− 1}. Let P = {Pi | 0 ≤ i ≤ m− 1} where Pi is

the Hamilton cycle inB defined as follows: for 0 ≤ i ≤ m−1, E(Pi) = {{(0, j), (1, k)} | k ≡

j + 2i (mod 2m), or k ≡ j + 2i+ 1 (mod 2m), 0 ≤ j ≤ 2m− 1}. P is a well known Hamilton

cycle decomposition of K2m,2m. Let B = K2m−1,2m be formed from B by deleting vertex

(0, 2m− 1), let Pi be the path formed by Pi− (0, 2m− 1), and let P = {Pi | 0 ≤ i ≤ m− 1}.

Lemma 1.1.3. P is a Hamilton path decomposition of K2m−1,2m, Furthermore:

1. Each vertex in L is an endpoint of exactly one path in P , and

2. The end edges of Pi are {(0, 0), (1, 2i)} and {(0, 2m− 2), (1, 2i− 1)}.

Proof. Since P is formed by deleting (0, 2m − 1) from each cycle of the Hamilton cycle de-

composition P , it is a Hamilton path decomposition of B. Clearly, each vertex, w, in the larger

part of B, namely L, is in a Hamilton cycle Pi containing the edge {w, (0, 2m − 2)}; so w is

an endpoint of Pi.

By construction of Pi, in Pi the neighbor set of (0, 2m − 1) is {(1, 2i), (1, 2i − 1)}, so

(1, 2i) and (1, 2i− 1) are the endpoints of Pi. In Pi the neighbors of (1, 2i) and (1, 2i− 1) are

(0, 0) and (0, 2m−2) respectively. Therefore in Pi {(0, 0), (1, 2i)} and {(0, 2m−2), (1, 2i−1)}

are end edges.

The following is an array with a variety of properties, each of which will be used in the

proof of Theorem 2.0.2. Assuming m ≥ 3, form the (2m − 1) × 2m array A(P), with rows

and columns indexed by U \ (0, 2m− 2) and L respectively, by defining cell ((0, j), (1, k)) to

contain symbol i if and only if {(0, j), (1, k)} ∈ E(Pi). The following result provides useful

properties of A(P).

Lemma 1.1.4. Let m ≥ 3. There exists a set, D, of 2m cells in A(P) with the following

properties.

1. Each symbol i, 0 ≤ i ≤ m− 1 appears in exactly two cells of D.

2. Each column of A(P) contains exactly one cell of D.
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3. Regarding the rows of A(P):

(a) Exactly one row of A(P) contains no cells of D, specifically row 0

(b) Exactly two rows of A(P) contain exactly two cells of D, the two cells containing

different symbols in each such row, specifically rows 1 and 2m− 2 and

(c) Each of the remaining 2m− 4 6= 0 rows contains exactly one cell of D.

4. If {e1, e2} ⊂ Pi ∩D then in Pi there are an odd number of edges between e1 and e2.

5. Each edge corresponding to an element of D is an internal edge in a path in P .

6. For each symbol i, the rows containing a cell of D containing i are not consecutive.

Proof. Let D = D1 ∪ D2 with D1 = {((0, 2m − 2 − k), (1, k)) | 0 ≤ k ≤ 2m − 3} and

D2 = {((0, 2m − 2), (1, 2m − 2)), ((0, 1), (1, 2m − 1))}. So |D| = 2m as required. Each

property will be considered in turn.

By the construction of Pi, cell ((0, 2m−2−k), (1, k)) ofD1 contains symbol i if and only

if k ≡ 2m−2−k+2i (mod 2m), or k ≡ 2m−2−k+2i+1 (mod 2m). The latter case implies

2k + 2 ≡ 2i + 1 (mod 2m) which cannot happen. In the former case, k ≡ 2m − 2 − k + 2i

(mod 2m) must be satisfied, implying that k + 1 ≡ i (mod m). So, since 0 ≤ k ≤ 2m − 3,

every symbol i appears twice in D1 except i = 0 and i = m− 1 which each appear once. From

D2, cell ((0, 2m − 2), (1, 2m − 2)) contains symbol 0, and cell ((0, 1), (1, 2m − 1)) contains

symbol m− 1. Note these two cells also satisfy k ≡ j + 2i (mod 2m); this fact will be useful

for showing Property (4). Therefore each symbol i, 0 ≤ i ≤ m − 1, appears in exactly two

cells of D. So the first property is satisfied.

For 0 ≤ k ≤ 2m − 3 D1 contains a cell in column k, and D2 contains a cell in each of

column 2m− 2 and 2m− 1. So the second property is satisfied.

No element ofD is contained in row 0. Two elements ofD are contained in each of rows 1

and 2m−2, once inD1, and once inD2.Note, cell ((0, 2m−2), (1, 2m−2)) contains symbol 0

and cell ((0, 2m−2), (1, 0)) contains symbol 1, while cell ((0, 1), (1, 2m−1)) contains symbol

m− 1 and cell ((0, 1), (1, 2m− 3)) contains symbol m− 2. So if a row of A(P) contains two
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cells of D, then those cells contain different symbols. The remaining nonempty set of rows

each contain exactly one element of D. So the third property is satisfied.

By (1), let e1, e2 ∈ E(Pi) ∩D. By the argument for the first property, all cells (j, k) ∈ D

satisfy k ≡ j + 2i (mod 2m). Since edges {(1, k), (0, j)} of Pi alternate satisfying k ≡ j + 2i

(mod 2m), and k ≡ j+2i+1 (mod 2m), e1 and e2 must have an odd number of edges between

them. So the fourth property is satisfied.

By Lemma 1.1.3 (2), end edges of Pi correspond to cells ((0, 0), (1, x)) and ((0, 2m −

2), (1, y)) where x is even, and y is odd. Since row (0, 0) of A(P) contains no cells of D

and since the two elements of D contained in row (0, 2m − 2) are ((0, 2m − 2), (1, 0)) and

((0, 2m − 2), (1, 2m − 2)), all cells of D represent internal edges of a path in P . So the fifth

property is satisfied.

Consider cells of D1 which are in consecutive rows of A(P), namely ((0, 2m − 2 −

k), (1, k)) and ((0, 2m − 2 − (k + 1)), (1, k + 1)) for some k, 0 ≤ k ≤ 2m − 3. If sym-

bol i1 appears in ((0, 2m − 2 − k), (1, k)) then i1 satisfies k + 1 ≡ i1 (mod m). If symbol i2

appears in ((0, 2m−2−(k+1)), (1, k+1)) then i2 satisfies k+2 ≡ i2 (modm). Sincem ≥ 3,

i1 6= i2. So for two cells of D1 in consecutive rows of A(P), the symbols contained in those

cells are different. Now we consider cells in D2, and the cell of D1 in the adjacent row. Cell

((0, 2m − 2), (1, 2m − 2)) contains symbol 0, and cell ((0, 2m − 3), (1, 1)) contains symbol

2. Cell ((0, 1), (1, 2m− 1)) contains the symbol m− 1, and cell ((0, 2), (1, 2m− 4)) contains

symbol m − 3. Therefore, for 0 ≤ i ≤ m − 1, the two cells of D containing symbol i are not

in consecutive rows of A(P). So the sixth property is satisfied.

The following notation will be used throughout the paper. If G is an edge-colored graph

then let Gi denote the ith color class of G (i.e. the subgraph of G induced by the edges colored

i.) At times, dGi
(v) will be denoted by di(v) if it is clear which graph is being considered. An

amalgamation of a graph G with associated amalgamation function ψ : V (G) → V (A) is the

graph A with vertex set V (A) and edge multi-set E(A) = {{ψ(a), ψ(b)} | {a, b} ∈ E(G)},

where {ψ(a), ψ(b)} is a loop if ψ(a) = ψ(b); so |E(A)| = |E(G)|. For any amalgamation

function there is an associated amalgamation number function ηψ defined by ηψ(c) = |ψ−1(c)|,
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for c ∈ V (A). When ψ is clear, ηψ will be denoted η, and G may be referred to as an η-

detachment of A. The terms detachment and disentangling of an amalgamated graph will be

used interchangeably, typically in line with whichever term was prevalent in relevant literature.

The number of components in a graph G will be denoted by ω(G). The number of loops

adjacent to vertex w ∈ V (G) will be denoted `G(w), each contributing 2 to the degree of w.

For vertices u, v ∈ V (G), the multiplicity of edge {u, v} will be denoted by mG(u, v).

Lemma 1.1.5. Given an amalgamated graph A with amalgamation function ψ and edge cut

set E , then the disentangled edge of E are a cut set of edges in any detachment of A.

Proof. Towards a contradiction suppose there is a detachmentG ofA in which the disentangled

edges of E do not form a cut set of edges in G. Let A− be the disconnected amalgamated graph

formed by removing all edges in E from E(A). Let u′, v′ ∈ V (A) such that u′ and v′ are in

separate components of A−. By assumption for u ∈ ψ−1(u′) and v ∈ ψ−1(v′) there exists

a path P connecting u and v which contains no edge of the disentangled E . Without loss of

generality it may be assumed this path has length 1. If it is longer than 1 say it has length n

where P = (u = u0, u1, . . . , un−1, un = v). Now if ψ(u) and ψ(u1) are in separate components

of A− replace v with u1 and proceed with this path of length 1, else replace u with u1 and a

shorter path in G is obtained continue this process until a path of length 1 is found. Let this

path of length one be called e. Note e /∈ E , yet in A e = {u′, v′} ⇒⇐ to E being a cut set.

Therefore the disentangled edges of E are a cut set of edges of any detachment of A.

The following result will be crucial in showing that the edge-colorings defined for an

amalgamation of Kp
n can be disentangled to an edge-coloring of Kp

n in which the color classes

represent a maximal set of Hamilton cycles.

Previous results on maximal sets of Hamilton cycles used early, less general results like

Theorem 1.1.6 in their proofs. But in all cases, the main stumbling block has been to find

suitable edge-colorings of the relevant amalgamated graph to which a version of Corollary 2.6

can be applied, and indeed that is the focus of the proof of the main result in this paper. But

also an issue in the cases settled here was to carefully choose the relevant amalgamated graph
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together with then choosing the appropriate edge-cut; neither of these choices was immediately

evident.

In the following x ≈ y means that byc ≤ x ≤ dye .

Theorem 1.1.6. [3] Let H be a k-edge-colored graph and let η be a function from V (H) into

N such that for each w ∈ V (H), η(w) = 1 implies `H(w) = 0. Then there exists a loopless

η-detachment G of H with amalgamation function ψ : V (G) → V (H), such that G satisfies

the following conditions:

1. dG(j)(u) ≈ dH(j)(w)/η(w) for each w ∈ V (H), each u ∈ ψ−1(w), and each j ∈ Zk;

2. mG(u, v) ≈ mH(w, z)/(η(w)η(z)) for every pair of distinct vertices w, z ∈ V (H), each

u ∈ ψ−1(w), each v ∈ ψ−1(z); and

3. If for some j ∈ Zk, dH(j)(w)/η(w) is an even integer for each w ∈ V (H), then ω(Gj) =

ω(Hj).

In the following corollary, note that since the amalgamationA of Γ is loopless only vertices

in the same part of Γ are amalgamated.

Corollary 1.1.7. Let Γ be a complete multipartite graph and A a loopless amalgamation of Γ

with amalgamation function ψ, and associated amalgamation number function η. Let E be a

cut set of edges of A. Suppose an edge-coloring of a spanning subgraph H of A exists using

colors in {1, 2, . . . c}, where for 1 ≤ i ≤ c:

1. di(v) = 2η(v), for each v ∈ A,

2. Color class i is connected, and

3. Every edge of E is in E(H).

Then there exists a maximal set of c Hamilton cycles in Γ.

Proof. Since an edge-coloring of A is required in order to apply Theorem 1.1.6, color the

edges of A − E(H) color 0. Since A is loopless, apply Theorem 1.1.6 to A to produce an

η-detachment, G. Let u, v ∈ V (G) so that u ∈ ψ−1(w) and v ∈ ψ−1(z). Since A is a loopless
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amalgamation of a complete multipartite graph, if w and z each contain a vertex from the same

part of Γ then mA(w, z) = 0, so by Theorem 1.1.6 (2)mG(u, v) = 0. Similarly, if w and z each

contain a vertex from different parts of Γ, then mA(w, z) = η(w)η(z), so by Theorem 1.1.6 (2)

mG(u, v) = mA(w, z)/(η(w)η(z)) = 1. Therefore G ∼= Γ.

Now suppose 1 ≤ i ≤ c. Since di(v) = 2η(v) for each v ∈ A, by Theorem 1.1.6 (1)

dG(i)(v) = 2 for each v ∈ G. Since each color class i is connected in A and since di(v)/η(v) =

2 for each i and each v ∈ V (A), by Theorem 1.1.6 (3) each color class is connected in G.

Therefore each color class is a Hamilton cycle of G after the detachment. Since E is a cut set

of edges of A, when disentangled these edges will also be a cut set of edges of G. Since every

edge of E is colored, the removal of all colored edges from G results in a disconnected graph.

Therefore the set of Hamilton cycles which have been colored is maximal.
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Chapter 2

Main Result

Using Corollary 1.1.7, Theorem 2.0.2 provides a construction for a maximal set S of 3m −

1 of Hamilton cycles of K4m−1
3 when m ≥ 3 in which the complement K4m−1

3 − E(S) is

disconnected. While Noble [11] provided a solution for the case when m = 2, the complement

in her example contained a cut vertex. The general proof of Theorem 2.0.2 does not quite work

in the case p = 7, so it is handled separately here. Although it could be proved by explicitly

defining 5 Hamilton cycles, the proof here uses Corollary 1.1.7 as a way of introducing readers

to the proof technique used in Theorem 2.0.2 Throughout the remainder of the paper the vertex

set of Kp
n will be defined as V (Kp

n) = {(u, v) | 0 ≤ u ≤ n, 0 ≤ v ≤ p}.

Lemma 2.0.1. There exists a maximal set S of five edge-disjoint Hamilton cycles in K7
3 for

which the complement K7
3 − E(S) is disconnected.

Proof. Let A be the amalgamation of K7
3 formed by the amalgamation function f defined as

follows: for 0 ≤ p ≤ 3, f(0, p) = f(1, p) = (0, p) and f(2, p) = (1, p); for 4 ≤ p ≤ 6,

f(0, p) = (0, p) and f(1, p) = f(2, p) = (1, p). So, for 0 ≤ p ≤ 3, η(0, p) = 2 and η(1, p) = 1,

and for 4 ≤ p ≤ 6, η(0, p) = 1 and η(1, p) = 2. Each of the five color classes will be defined

by a union of walks as follows:

1. ((0, 0), (1, 1), (0, 3), (1, 0), (0, 2), (1, 3), (0, 1), (1, 2), (0, 0))∪

((0, 0), (1, 4), (0, 1), (1, 5), (0, 2), (1, 6), (0, 3), (0, 0))∪

((0, 4), (1, 5), (0, 6), (1, 4), (0, 5), (1, 6), (0, 4))
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2. ((0, 0), (1, 1), (0, 3), (1, 0), (0, 2), (1, 3), (0, 1), (1, 2), (0, 0))∪

((0, 1), (1, 6), (0, 0), (1, 5), (0, 3), (1, 4), (0, 2), (0, 1))∪

((0, 4), (1, 5), (0, 6), (1, 4), (0, 5), (1, 6), (0, 4))

3. ((0, 0), (1, 4), (0, 1), (1, 5), (0, 2), (1, 6), (0, 3))∪

((0, 1), (1, 6), (0, 0), (1, 5), (0, 3), (1, 4), (0, 2))∪

((0, 0), (1, 3), (0, 6), (0, 5), (1, 2), (0, 3))∪

((0, 1), (1, 0), (0, 4), (1, 1), (0, 2))

4. ((0, 0), (1, 4), (0, 1), (1, 5), (0, 2), (1, 6), (0, 3))∪

((0, 1), (1, 6), (0, 0), (1, 5), (0, 3), (1, 4), (0, 2))∪

((0, 0), (1, 3), (0, 5), (0, 4), (1, 2), (0, 3))∪

((0, 1), (1, 0), (0, 6), (1, 1), (0, 2))

5. ((0, 0), (1, 4), (0, 1), (1, 5), (0, 2), (1, 6), (0, 3), (0, 1), (1, 6), (0, 0), (1, 5), (0, 3), (1, 4), (0, 2))∪

((0, 0), (0, 4), (1, 3), (1, 0), (0, 5), (1, 1), (1, 2), (0, 6), (0, 2))

Each of the three properties of Corollary 1.1.7 is now considered in turn.

It is readily checked for 1 ≤ i ≤ 5 and each v ∈ V (A) that di(v) = 2η(v).

In the first color class, since (0, 0) is in the first and second walks, and (1, 4) is in the

second and third walks, the first color class is connected. Similarly, to see that each other color

class is connected, consider the vertices: (0, 0) and (1, 4) in the 2nd color class; (0, 0) and (0, 1)

in the 3rd and 4th color classes; and (0, 0) in the 5th color class.

The set of edges of A of the set E = {(0, p), (1, q)} 0 ≤ p, q ≤ 6 are a cut set of edges in

A. It is also readily checked that all edges of E are colored.

Therefore, by Corollary 1.1.7, there exists a maximal set S of five Hamilton cycles of K7
3

for which the complement, K7
3 − E(S) is disconnected.

The approach which has been used in previous papers to find a maximal setH of Hamilton

cycles in Γ is to ensure maximality by forcing the complement of H to be disconnected or to

contain a cut vertex. A similar approach will be used here. K4m−1
3 will be amalgamated to

form A. A cut set of edges E in A will be identified; G will be used denote A[E ]. An edge in A
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is said to be a pure edge if it is not contained in E . A subgraph H of A will be defined, induced

by edges of G together with some carefully chosen pure edges in E(A) − E . Then 3m − 1

colors will be used to color edges ofH . More precisely, for 1 ≤ i ≤ 3m−1, exactly 3(4m−1)

edges in A will be colored i so that:

1. Color classes are edge-disjoint,

2. All of the edges of the cut set E are colored,

3. dAi
(v) = 2η(v) for all v ∈ V (A), and

4. Each color class is connected.

Note that not every edge of A is colored. Using Corollary 1.1.7 it will be shown that A can be

disentangled to form K4m−1
3 so that each color class is a Hamilton cycle of K4m−1

3 , and since

a cut set of edges is contained within them, this will be a maximal set of Hamilton cycles in

K4m−1
3 .

In the following proof, spanning cycles/paths of various graphs are discussed. To help

avoid confusion, the term Hamilton cycle/path will be used to describe cycles/paths of K4m−1
3

and its amalgamation A, whereas they will be referred to as spanning cycles/paths in smaller

subgraphs of A.

Theorem 2.0.2. Letm ≥ 2. There exists a maximal set S of 3m−1 Hamilton Cycles ofK4m−1
3

for which K4m−1
3 − E(S) is disconnected.

Proof. By Lemma 2.0.1 assume that m ≥ 3. Let Γ = K4m−1
3 . Let A be the amalgamation

of Γ formed by f defined as follows: for 0 ≤ p ≤ 2m − 1, f(0, p) = f(1, p) = (0, p) and

f(2, p) = (1, p); for 2m ≤ p ≤ 4m − 2, f(0, p) = (0, p) and f(1, p) = f(2, p) = (1, p).

The amalgamation conveniently partitions the vertices into four sets, defined as follows: S1 =

{(0, p) | 0 ≤ p ≤ 2m−1}, S2 = {(1, p) | 0 ≤ p ≤ 2m−1}, S3 = {(0, p) | 2m ≤ p ≤ 4m−2},

and S4 = {(1, p) | 2m ≤ p ≤ 4m−2}. So η(v) = 2 if v ∈ S1∪S4 and η(v) = 1 if v ∈ S2∪S3.

Let E = {{(0, p), (1, q)} | 0 ≤ p, q ≤ 4m − 2, p 6= q}; E is the set of all edges for which

one endpoint is in S1∪S3 and the other endpoint is in S2∪S4. Therefore E is a cut set of edges

in A. Let G = A[E ].

12



In what follows, a spanning subgraph H of A containing all the edges E will be colored to

satisfy the conditions of Corollary 1.1.7, thus proving the theorem.

Since 3m − 1 Hamilton cycles are required in the desired maximal set of K4m−1
3 , H will

be given a (3m − 1)-edge-coloring. Then from Corollary 1.1.7, it is necessary that for all

v ∈ V (A), exactly 2(3m − 1)η(v) edges incident with v are colored (namely 2η(v) for each

color i for 1 ≤ i ≤ 3m− 1). However, in G, the degree of each vertex in S1∪S3, S2, and S4, is

2(3m− 1)η(v)− 2, 2(3m− 1)η(v)− 1, and 2(3m− 1)η(v) respectively. Therefore G will be

supplemented with pure edges to formH so that for all v inA, v is incident with 2(3m−1)η(v)

colored edges. To be precise, for all v in S1 ∪ S3, S2, and S4 v must be incident with 2, 1, and

0 colored pure edges respectively, to be able to apply Corollary 1.1.7 to the resulting spanning

subgraph of A.

The edges of E will be partitioned into color classes and pure edges will be determined

using three steps.

Step 1 In this step, 2m− 2 color classes are defined, each of which will contain:

1. A spanning cycle of G[S1 ∪ S2],

2. A spanning cycle of G[S3 ∪ S4],

3. A spanning path of G[S1 ∪ S4], and

4. A pure edge contained in A[S1].

Note that G[S1 ∪S2] ∼= 2K2m,2m− 2F1. By Lemma 1.1.1, G[S1 ∪S2] can be decomposed

into 2m− 2 spanning cycles and 2F2. Let T1, T2, . . . , T2m−2 be these cycles and edge-color Ti

with color i for 1 ≤ i ≤ 2m− 2. The 4m edges of 2F2 will be colored in Step 2.

Note that G[S3 ∪ S4] ∼= 2K2m−1,2m−1− 2F3. By Lemma 1.1.2, G[S3 ∪ S4] can be decom-

posed into 2m − 2 spanning cycles. Let S1, S2, . . . , S2m−2 be these cycles and edge-color Si

with color i for 1 ≤ i ≤ 2m− 2.

Note that G[S1 ∪S4] ∼= 4K2m,2m−1. By Lemma 1.1.3, K2m,2m−1, can be decomposed into

m spanning paths. So 2K2m,2m−1 on the vertex set with bipartition {S1, S4} can be decomposed

into the 2m spanning paths P1, P2, . . . , P2m where P2i−1 = P2i for 1 ≤ i ≤ m. Let (0, p(i))
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and (0, q(i)) be the two distinct endpoints of Pi for 0 ≤ i ≤ 2m. Edge-color Pi with color i for

1 ≤ i ≤ 2m− 2. P2m and P2m−1 will be edge-colored in Step 3, and the remaining 2K2m,2m−1

will be edge-colored in Step 2.

For 1 ≤ i ≤ 2m− 2 color the pure edge {(0, p(i)), (0, q(i))} in A with color i.

Consider color class Hi for 1 ≤ i ≤ 2m − 2. Since Hi contains a spanning path on

each of G[S1 ∪ S2], G[S3 ∪ S4] and G[S1 ∪ S4], it is connected. For each v ∈ S3 ∪ S2, v

is in a cycle colored i; therefore di(v) = 2 = 2η(v). For each v ∈ S1 ∪ S4, v is in a cycle

colored i, and is an internal vertex of a path colored i unless v is one of the two endpoints of Pi,

namely (0, p(i)) and (0, q(i)). These endpoints are joined by a pure edge colored i. Therefore

di(v) = 4 = 2η(v) for each v ∈ S1 ∪ S4. Therefore for 1 ≤ i ≤ 2m− 2, Hi is connected and

for all v ∈ A di(v) = 2η(v).

Step 2 In this step, m color classes are defined, each of which contains:

1. Four edges of 2F2,

2. Two spanning paths of G[S1 ∪ S4], and

3. A modified spanning path of G[S2 ∪ S3], modified by replacing two carefully chosen

edges with by a pure edge in A[S3].

Note thatG[S2∪S3] ∼= K2m,2m−1. Apply Lemma 1.1.3 toK2m,2m−1 with L = S2 and U =

S3 to decompose it into the set P of m spanning paths, where P = {ρ2m−1, ρ2m, . . . , ρ3m−2}.

Let (1, p(i)) and (1, q(i)) be the endpoints of ρi for 2m − 1 ≤ i ≤ 3m − 2 (necessarily these

endpoints are in S2). Create the array A(P), with columns indexed by S2 and rows indexed by

S3. Let D be the set of cells in A(P) as described in Lemma 1.1.4. For 2m− 1 ≤ i ≤ 3m− 2,

except for the two edges in ρi (using Lemma 1.1.4 (1)) which correspond to elements of D,

color all other edges of ρi with color i. By Lemma 1.1.4 (1), let ((0, j1(i)), (1, k1(i))) and

((0, j2(i)), (1, k2(i))) be the two cells of D containing entry i. By Lemma 1.1.4 (6) j1(i) 6=

j2(i) and by Lemma 1.1.4 (2) k1(i) 6= k2(i). Color the pure edge {(0, j1(i)), (0, j2(i))} with i;

doing so ensures that di(v) = 2 = 2η(v) for 2m−1 ≤ i ≤ 3m−2 and all v ∈ S3. As described

before Step 1, vertices of S3 need to be incident with exactly two pure edges in the final edge-

coloring. Lemma 1.1.4 (3) guarantees that no vertex of S3 has more than two incident pure
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edges colored in this step. Specifically (0, 2m) has no incident pure edges colored, (0, 2m+ 1)

and (0, 4m − 2) have two incident pure edges colored, and the remaining elements of S3 all

have one incident pure edge colored in this step. If G is a graph with vertex set Za × Zb, then

two vertices (x, y) and (x, z) are said to be consecutive if |y− z| = 1. It will be important later

to note that by Lemma 1.1.4 (6):

vertices (0, j1(i)) and, (0, j2(i)) are not consecutive. (*)

Since ρi is a spanning path of G[S2 ∪ S3], and since by Lemma 1.1.4 (5), edges e1(i) =

{(0, j1(i)), (1, k1(i))} and e2(i) = {(0, j2(i)), (1, k2(i))} are both internal edges of ρi, by

Lemma 1.1.4 (6), φ(i) = ρi − e1(i) − e2(i) consists of three vertex-disjoint paths which

together span V (G[S2 ∪ S3]). By Lemma 1.1.4 (4), (0, j1(i)) and (0, j2(i)) are in separate

components of φi, so the addition of the pure edge e3(i) = {(0, j1(i)), (0, j2(i))} to φ(i) will

not create a cycle. So φ′(i) = ρi − e1(i) − e2(i) + e3(i) consists of two vertex disjoint-

paths, the union of their vertex sets being S2 ∪ S3, whose four endpoints are the vertices in

{(1, p(i)), (1, q(i)), (1, k1(i)), (1, k2(i))}.

By Lemma 1.1.4 (2,5), vertices (1, p(i)), (1, q(i)), (1, k1(i)) and (1, k2(i)) are independent

of each other. Also since, each v ∈ S2 is an endpoint of some ρ exactly once, and by Lemma

1.1.4 (2), each v ∈ S2 is an endpoint of an edge represented by a cell of D exactly once.

Therefore the edges of 2F2 are colored as follows: for 2m − 1 ≤ i ≤ 3m − 2 use color i

to color the edges {(1, p(i)), (0, p(i) + 1)} {(1, q(i)), (0, q(i) + 1)} {(1, k1(i)), (0, k1(i) + 1)}

{(1, k2(i)), (0, k2(i) + 1)}, where addition is done (mod 2m). Note F2 = {{(1, p(i)), (0, p(i) +

1)}, {(1, q(i)), (0, q(i)+1)} | 2m−1 ≤ i ≤ 3m−2} = {{(1, k1(i)), (0, k1(i)+1)}, {(1, k2(i)), (0, k2(i)+

1)} | 2m− 1 ≤ i ≤ 3m− 2}.

As previously noted G[S1 ∪ S4] ∼= 4K2m,2m−1. At this juncture, the uncolored por-

tion of G[S1 ∪ S4] is isomorphic to 2K2m,2m−1. These edges are colored as follows. Let

σ2m−1, σ2m, . . . , σ3m−2 be a decomposition ofK2m,2m−1 into spanning paths (renaming vertices

as needed) so that the endpoints of σi are (0, p(i)+1) and (0, q(i)+1). Let τ2m−1, τ2m, . . . , τ3m−2

be a decomposition of K2m,2m−1 into spanning paths (again renaming vertices as needed) so
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that the endpoints of τi are (0, k1(i) + 1) and (0, k2(i) + 1), again with addition (mod 2m).

Edge-color σi, and τi with color i for 2m− 1 ≤ i ≤ 3m− 2.

Consider color class Hi for 2m − 1 ≤ i ≤ 3m − 2. Hi is connected since, contains a

spanning path of G[S1 ∪ S4], and since φ′(i) spans the vertices of S2 ∪ S3 and must be in the

same component of Hi as S1 due to the 4 edges of 2F2 colored i. For each v ∈ S1, v is either

an internal vertex of both σi and τi, or is an endpoint of one and an internal vertex of the other

the endpoint being incident to an edge of 2F2 colored i; in both cases di(v) = 4 = 2η(v). For,

each v ∈ S2, v is either an internal vertex of a path in φ′(i), or is an endpoint of a path in φ′(i),

and adjacent to an edge of 2F2 colored i; again in both cases di(v) = 2 = 2η(v). For each

v ∈ S3, v is an internal vertex of a path in φ′(i), so di(v) = 2 = 2η(v). For each v ∈ S4, v is

an internal vertex of σi and of τi, so di(v) = 4 = 2η(v). Therefore, for 2m− 1 ≤ i ≤ 3m− 2,

Hi is connected and di(v) = 2η(v) for all v ∈ A.

Step 3 In this step, the final color class H3m−1 is defined and contains:

1. E(P2m−1) and E(P2m), each of which is a spanning path of G[S1 ∪ S4],

2. Edges corresponding to elements of D, and

3. 2m+ 1 carefully chosen pure edges.

Let Υ be the bipartite subgraph of G[S2 ∪S3] with edge set corresponding to the elements

of D. By Lemma 1.1.4 (3), the 2m − 1 components of Υ are: two paths of length 2, 2m − 4

paths of length 1, and the isolated vertex (0, 2m). 2m − 2 pure edges are required to connect

these 2m − 1 components. Since rows 2m + 2 through 4m − 2 of A(P) only contain one

element of D, {(0, i) | 2m + 2 ≤ i ≤ 4m − 2} is the set of vertices which are the endpoints

in S3 of the paths of length one. Also, it means that these vertices are incident with a single

colored pure edge from Step 2, and therefore each such vertex, v, must be incident with an

additional colored pure edge in order that dH(v) = 2η(v). So, add the m − 3 pure edges in

{{(0, 2m + 3 + 2i), (0, 2m + 4 + 2i)} | 0 ≤ i ≤ m− 4} to Υ to form Υ1 (this set of edges is

empty when m = 3.) Since each of these m− 3 pure edges was chosen to connect two paths of

length 1, they form paths of length 3. Add the pure edge {(0, 2m), (0, 2m+ 2)} to Υ1, to form
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Υ2; this edge joins the previously isolated vertex to a path of length 1. It will be important to

note the pure edges with both endpoints in S3 colored in this step satisfy:

all edges join consecutive vertices, except for one edge which is incident to (0, 2m). (†)

Each of the m + 1 components of Υ2 is a path. All endpoints of these paths are in S2,

except for the two exceptional components each of which contains exactly one endpoint in S2

(the other endpoint is in S3.) Name the two exceptional components C1 and Cm+1, and let their

endpoints in S2 be ω1 and υm+1 respectively. Name the rest of the components C2, C3, . . . Cm

arbitrarily, with the endpoints of path Ci being, say, ωi and υi for 2 ≤ i ≤ m. Now add the

m pure edges in {{ωi, υi+1} | 1 ≤ i ≤ m} to Υ2, to form Υ3. Since the endpoints of these

m pure edges are in different components of Υ2, Υ3 is connected, so Υ3 is a spanning path of

A[S2 ∪ S3] whose endpoints are (0, 2m) and (0, 4m− 3).

To ensure Υ3 and P2m−1 are in the same component, color the edges {(0, p(2m−1)), (0, 2m)}

and {(0, q(2m − 1)), (0, 4m − 3)} with 3m − 1. Finally, color with 3m − 1 an edge joining

the endpoints of P2m, namely the edge {(0, p(2m)), (0, q(2m))}. This ensures that d3m−1(v) =

2η(v) for all v ∈ V (A).

In order to apply Corollary 1.1.7, H must be a subgraph of A; that is, between each pair of

vertices, the number of edges inH must be at most the number of edges inA. For v, w ∈ V (A),

mA(v, w) = η(v)η(w). Since all edges in E have been colored mH(v, w) = mA(v, w) for all

v ∈ S1∪S3 and all w ∈ S2∪S4. So, it remains to show that the pure edges defined to be part of

H are also in E(A). This is easy to establish for v ∈ S1∪S2∪S4 since dH−E(v) ≤ η(v), so for

all v ∈ V (A), mH(v, w) ≤ η(v) ≤ η(v)η(w) = mA(v, w). For v, w ∈ S3, η(v)η(w) = 1 so it

needs to be shown that no pair of vertices in S3 is joined by more than one colored edge. By (*),

all pure edges with both endpoints in S3 colored in Step 2 are non-consecutive. By (†), each

pure edge with both endpoints in S3 colored in Step 3 either joins consecutive vertices, or is
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{(0, 2m), (0, 2m+2)}. Therefore,H[S3] is a simple graph. So it is the case thatE(H) ⊂ E(A).

Since:

1. H is a subgraph of A,

2. Hi is connected for 0 ≤ i ≤ 3m− 2, and

3. di(v) = 2η(v) for 0 ≤ i ≤ 3m− 2 and v ∈ V (H),

by Corollary 1.1.7 there exists a maximal set of 3m− 1 Hamilton cycles of K4n−1
3 .

18



Chapter 3

An Attempt Which Generated More Questions Than Answers

This chapter details an initial attempt to complete the spectrum of sizes for maximal sets of

Hamilton cycles by following the steps Noble used in [11]. In order to gain familiarity with

the problem and the technique of amalgamations, some of Noble’s results were independently

redone. Let G be the complete multipartite graph K8m−1
3 . Let Ā be the amalgamated graph

of G formed by amalgamation function f defined as follows: for i < m, f(0, i) = f(1, i) =

f(2, i) = (0, i); for m ≤ i < 4m − 1, f(0, i) = f(1, i) = (0, i) and f(2, i) = (1, i); for

0 ≤ j ≤ 2, i = 4m−1, f(j, 4m−1) = (j, 4m−1); for 4m ≤ i < 7m−1, f(0, i) = (0, i) and

f(1, i) = f(2, i) = (1, i); for i ≥ 7m− 1, f(0, i) = f(1, i) = f(2, i) = (1, i). Note for i < m,

η(0, i) = 3; for m ≤ i < 4m− 1, η(0, i) = 2 and η(1, i) = 1; for i = 4m− 1 η(j, i) = 1; for

4m ≤ i < 7m− 1, η(0, i) = 1 and η(1, i) = 2; and for i ≥ 7m− 1, η(1, i) = 3.

Let A be the subgraph of Ā induced by the union of three sets of edges namely, A = Ā[E]

where E = E1∪E2∪E3. Firstly, for 0 ≤ i ≤ 8m−2, 0 ≤ j ≤ 8m−2, E1 = {{(0, i), (1, j)} |

i 6= j}, secondly E2 = {{(2, 4m−1), (j, i)} | η(j, i) = 2}∪{{(2, 4m−1), (m, 1)}, {(2, 4m−

1), (7m − 2, 0)}}, and lastly the pure edges E3 = {{(0, i), (0, i + 1)} | 4m − 1 ≤ i <

7m− 1} ∪ {{(1, i), (1, i+ 1)} | m ≤ i ≤ 4m− 1}. Figure 3.1 shows the amalgamated graph

A in the case m = 1, not including the edges of E1 which are all the edges from a top vertex to

bottom vertex as long as said vertices are in different parts.

Now an edge-coloring of A using 6m − 1 colors is required so that for each vertex v

and each color i, di(v) = 2η(v)(6m − 1), and each color class is connected. Then applying

Theorem 1.1.6 when the color classes are disentangled they form a maximal set of Hamilton
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Figure 3.1: A \ E1

cycles of G. Since G \ E1 will contain (2, 4m − 1) as a cut vertex. The following theorem

simplifies the task of finding such an edge coloring.

Theorem 3.0.1. If there exist 6m− 1 edge-disjoint Hamilton cycles in A in which all edges of

E2 and E3 are colored, then there exists a maximal set of 6m−1 edge-disjoint Hamilton cycles

in G.

Proof. Let H be a set of 6m − 1 edge-disjoint Hamilton cycles in A, in which all edges of

E2 and E3 are colored. Now certainly every color class is connected as it contains a Hamilton

cycle. Note in A each vertex has degree 2η(v)(6m − 1). Since H colors 2(6m − 1) edges

incident with each v, the only vertices which have uncolored edges are those vertices v such

that η(v) > 1. The only uncolored edges are those in E1. Since the number of uncolored edges

at a vertex is 2(η(v) − 1)(6m − 1), any evenly equitable coloring of the uncolored edges will

result di(v) = 2η(v)(6m− 1) for each v. Since A[E1] is a bipartite graph, the uncolored edges

can be evenly equitably colored. Therefore by Theorem 1.1.6 there exists a maximal set of

6m− 1 Hamilton cycles of G.

Theorem 3.0.1 simplifies the process of finding the coloring of A since the only edges

which explicitly need to be colored are those in the Hamilton cycles ofA, and the remainder can

be colored with any evenly equitable coloring. For K7
3 and K15

3 there are 6m− 1 edge-disjoint

Hamilton cycles which contain all edges of E2 and E3 for their corresponding amalgamation

A, these cycles are contained in Appendix A. It is worth noting that prior to Theorem 2 this

solved the open case regarding K15
3 .

At this point the strategy was to use the now known smaller cases to construct Hamilton

cycles of the amalgamated larger cases. However, every attempt to do so resulted in requiring
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each color to appear at least twice on a specific set of edges, of the unamalgamated graph.

When using Theorem 3.0.1 the color on many of the edges is not explicitly stated, combined

with the fact that Theorem 1.1.6 simply states such a disentangling exists and makes no claim

as to exactly what color an edge of the disentangled graph is, Theorem 3.0.1 could not be used

to ensure specific edges received certain colors. After one look at the forty-five vertices and

nine-hundred forty-five edges of K15
3 , practicality dictated this line of reasoning be abandoned

in favor of the methods used in Chapter 2.

During this process many interesting questions were raised about how a Hamilton decom-

position of a smaller graph can be used to create a Hamilton decomposition of a larger graph.

Some of these questions are addressed in the following chapter. The most pertinent in regards

to this method is what, if anything, can be said about the edges of each decomposition?
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Chapter 4

Preserving Hamilton Cycles

Stemming from the idea in Chapter 3 of using known Hamilton decompositions to construct

Hamilton decompositions of larger graphs, the question arises of when can a Hamilton decom-

position be found in which many edges are partitioned in accordance with a smaller decompo-

sition.

LetH be a proper subgraph ofG. Let P be an edge-coloring ofH with colors in {1, . . . , p}

where Pj is the jth color class, and Q be an edge-coloring of G with colors in {1, . . . q}, p < q.

P is said to be preserved in Q if for each color there exists e ∈ E(H) so that P (e) = Q(e). So,

the color of edge e in the smaller graph is preserved in the larger graph.

P is said to be well-preserved in Q if

1. P is preserved in Q, and

2. for each edge coloring F of G,

p∑
j=1

|Pj ∩ Fj| ≤
p∑
j=1

|Pj ∩Qj|.

For the purposes of this chapter, a Hamilton decomposition is thought of as an edge-

coloring, P , in which the jth color class, Pj , is a Hamilton cycle for each color j. It is clear

that a Hamilton decomposition of Kn cannot be embedded in a Hamilton decomposition of

Kn+2i, where i ∈ N, n is odd. So instead, the question to ask is: can an arbitrary Hamilton

decomposition of Kn be well-preserved in a Hamilton decomposition of Kn+2i? The following
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result from Hilton [8] will be crucial in showing that it is possible to well-preserve Hamilton

decompositions.

Theorem 4.0.1. Let 1 ≤ r < 2m+ 1. An edge-coloring of Kr with m colors c1, . . . , cm can be

extended to a Hamilton decomposition of K2m+1 in which each color class of the edge coloring

of Kr is incorporated into a Hamilton cycle of K2m+1 if and only if each color class of the

edge-coloring of Kr consists of at most 2m + 1 − r disjoint paths, considering a vertex of Kr

with no incident edges colored cj as a path of length zero.

Since Hamilton cycles are of interest here the following corollary to Theorem 4.0.1 will

be of use.

Corollary 4.0.2. An edge-coloring ofK2m+1 usingm+i colors can be embedded in a Hamilton

cycle decomposition of K2m+1+2i if each color class is a linear forest containing at least 2m+

1− 2i edges.

Proof. By Theorem 4.0.1 each color class must consist of at most (2m+1+2i)−(2m+1) = 2i

disjoint paths. This is equivalent to saying each color class is a linear forest with at most 2i

components. Since there are 2m + 1 vertices, and every edge of the linear forest reduces the

number of components by one, 2m+ 1− 2i edges are needed for each color.

Theorem 4.0.3. It is possible to preserve a Hamilton decomposition of K2m+1 in a Hamilton

decomposition of K2m+1+2i, for i ≥ 1.

Proof. Let P be a Hamilton decomposition of K2m+1, using colors in {1, . . . ,m}. Consider

an edge-colored subgraph H induced by any set of min(m + i, 2m) vertices. Since min(m +

i, 2m) > (2m + 1)/2 each of the original m colors appear on at least one edge of H . To

complete the proof Theorem 4.0.1 is used to show this coloring can be embedded in K2m+1+2i.

Since H only contains m + i vertices, and each original color appears on at least one edge of

H , each color class consists of at most m + i disjoint paths. Therefore by Theorem 4.0.1 this

coloring can be incorporated in a Hamilton decomposition Q of K2m+1+2i. Since each color

in {1, . . . ,m} appeared on H , at least one edge of each color is preserved from K2m+1 in a

Hamilton cycle of K2m+1+2i.
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Corollary 4.0.4. It is possible to well-preserve a Hamilton decomposition ofK2m+1 in a Hamil-

ton decomposition of K2m+1+2i, for i ≥ 1.

Proof. Since only finite graphs are considered here a maximum for
∑m

j=1 |Pj ∩Qj| must exist.

When dealing with preserving Hamilton decompositions it is clear that some edges of the

smaller cycles must change color in order to preserve them in larger cycles, this suggests the

following definitions. Let H be a Hamilton cycle decomposition of K2m+1, then wp(m, i,H)

will denote the minimum number of edges of K2m+1 which must be recolored in order to well-

preserveH inK2m+1+2i. Letwp(m, i) = min{wp(m, i,H) | H is a Hamilton decomposition of K2m+1}.

By the previous Corollary wp(m, i) exists. Now the question looms, what is wm(p, i) numeri-

cally?

Lemma 4.0.5. wp(m, i) ≥ max{m, i(2m+ 1− 2i)}.

Proof. Theorem 4.0.1 states that to extend an edge-coloring each component of each color class

must be a path. Since the m original color classes on K2m+1 are all cycles, each original color

class must have at least one edge change color. Therefore wp(m, i) ≥ m. By Corollary 4.0.2

each of the i new colors (those which will appear in the Hamilton decomposition of K2m+1+2i

and did not appear in the Hamilton decomposition of Km) must appear on at least 2m+ 1− 2i

edges of K2m+1. Therefore wp(m, i) ≥ i(2m+ 1− 2i).

Theorem 4.0.6. Let n = 2m+ 1. For each i ≥ n/4, wp(m, i) = max{m, i(2m+ 1− 2i)}.

Proof. Let H = {hk | 1 ≤ k < m} be a Hamilton decomposition of Kn, of size m. The aim is

to recolor edges of K2m+1 in order to apply Theorem 4.0.1. Since each color class requires at

least n − 2i edges, the original color classes can never have more than 2i edges change color.

Thus for i ≥ n/4 we have 2i ≥ n− 2i. For n/4 ≤ i ≤ m, let j = m− i. Edges of Kn will be

colored with the i new colors in three steps:

1. For 1 ≤ k ≤ m− 2j, color n− 2i edges of hk with color cm+k.

2. For m− 2j + 1 ≤ k ≤ m− j, color n− 2i− 1 edges of hk with color cm+k.
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3. m− j + 1 ≤ k ≤ m, color a single edge of hk with color cm+k−j .

Note that Steps 2 and 3 use the same new colors. Since i ≥ n/4,

n− 2i− 1 ≤ n− n

2
− 1 ≤

⌊n
2

⌋
,

thus in Step 2 the n−2i−1 edges may be obtained by choosing every other edge of hk, and thus

are independent edges. Since the edges in Step 2 were chosen independently, the union of them

with the correspondingly colored edge from Step 3 will result in a union of paths. Therefore

each color class has n−2i edges and since i ≥ n/4 none of the original color classes lost more

than 2i edges.

Since i new colors were added by Lemma 4.0.5 at least i(n− 2i) edges from the original

coloring must change color. Since the total number of edges changed was

(m− 2j)(n− 2i) + j(n− 2i− 1) + j = mn− 2mi− jn+ 2ji.

Substituting j = m− i,

mn− 2mi−mn+ in+ 2mi− 2i2 = i(n− 2i) = i(2m+ 1− 2i).

So it is true that the number of edges which received a new color is equal to the minimum

number of edges required to change color.

For i ≥ m, since max{m, i(2m + 1 − 2i)} = m, recolor a single edge of each of the m

elements of H with a new color, never repeating a new color. Then each of the original m color

classes have lost an edge, and each of the new i color classes have gained at least n− 2i edges.

(Note: for i > m, 2m+ 1− 2i < 0 and for i = m, 2m+ 1− 2i = 1.)

Therefore, for i ≥ n/4, wp(m, i) = max{m, i(2m+ 1− 2i)}.

Since Theorem 4.0.6 is true for every Hamilton decomposition of K2m+1, the following

conjecture is reasonable to make.

Conjecture 4.0.7. For every Hamilton decomposition H of K2m+1, wp(m, i) = wp(m, i,H).
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However, in the cases when i < n/4, Conjecture 4.0.7 is not proved as easily. So, it will

be shown that wp(m, i) = max{m, i(2m + 1 − 2i)}. Consider the lower extreme of well-

preserving a Hamilton decomposition of Kn in Kn+2; that is find wp(m, 1). Then there is only

one new color class. Since all of the original color classes originally contained 2m + 1 edges,

to apply Corollary 4.0.2 each of these original color classes must contain 2m − 1 edges after

recoloring some edges with color m+ 1, so no more than 2 edges from each color class maybe

recolored. The new color class will need

n− 2 = 2m− 1

edges. Since there are m original color classes, the new color class will contain two edges

from each of the original color classes, with the exception of a single color class which would

have only a single edge changed to the new color. The necessity of changing (nearly) the same

number of edges from each color class motivates the following useful definition. A path in an

edge-colored graph is said to be a double-rainbow path if every color appears on exactly two

edges of the path.

Lemma 4.0.8. If a Hamilton decomposition of K2m+1 contains a double-rainbow path P , then

wp(m, 1) = max{m, 1(2m+ 1− 2(1))} = 2m− 1.

Proof. Since there are m colors, P is of length 2m and is therefore a Hamilton Path. By

recoloring all but one of the edges of P with the new color, the new color will have attained

the required 2m− 1 edges, and since these edges were chosen from a path the new color class

will be the union of paths. Since every original color appeared twice in P and all but one edge

was recolored we have that each of the original m Hamilton cycles has had at least one edge

recolored. So each of the original colors is a linear forest of size at least 2m− 1. So the result

follows by Corollary 4.0.2 and Lemma 4.0.5.

Conjecture 4.0.9. Every Hamilton decomposition of Kn, for n odd contains a double rainbow

path.
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Let [v1, v2, ....vn] denote a path of length n − 1, and let (v1, v2, ....vn) denote the Hamil-

ton cycle of Kn, (v1, v2, ....vn), in which vi is adjacent to vi−1 and vi+1, and v1 and vn are

adjacent. For evidence supporting the preceding conjecture, consider the following. The

Hamilton decomposition ofK5 {(0, 1, 2, 3, 4), (0, 2, 4, 1, 3, )} contains the double-rainbow path

P = [0, 1, 3, 4, 2] where edges in {{0, 1}, {3, 4}} and {{1, 3}, {4, 2}} are colored 1 and 2 re-

spectively as they are in the first and second Hamilton cycles respectively. More succinctly,

P is denoted by 01, 34/24, 13. The two non-isomorphic Hamilton decompositions of K7 each

contain a double-rainbow path: (0, 1, 2, 3, 4, 5, 6), (0, 2, 4, 6, 1, 3, 5), (0, 3, 6, 2, 5, 1, 4) contains

01, 23/46, 50/25, 36

(0, 1, 2, 3, 4, 5, 6), (0, 2, 4, 1, 6, 3, 5), (0, 3, 1, 5, 2, 6, 4) contains 01, 23/41, 50/25, 46.

The attached copies in Appendix B of all 122 non-isomorphic Hamilton decompositions of

K9 originally stated by Colbourn in [5] each contain double-rainbow path. (For brevity, in

Appendix B the Hamilton cycles are indicated without the parenthesis or commas.)

The following Hamilton decomposition ofK2m+1, due to Walecki and restated by Alspach

in [1], is of interest and so will be stated explicitly here. Let G = K2m+1, and V (G) =

{∞} ∪ {i | 0 ≤ i ≤ 2m− 1}. Let W = ∪Wi where for 0 ≤ i ≤ m− 1, Wi = (∞, i, i+ 1, i−

1, i+ 2, i− 2, . . . , i+ (m+ 1), i− (m− 1),m+ i) where all arithmetic is done (mod 2m). The

Walecki decomposition is W .

Given edge e = {i, j} of Kn, if |d| ≤ n/2 such that i− j + d ∼= 0(mod n), then e is said

to have edge difference d.

Lemma 4.0.10. For each m ≥ 1 there exists at least one Hamilton decomposition of K2m+1

containing a double-rainbow path.

Proof. Consider the Walecki Hamilton decomposition W . So, V (K2m+1) = {ui | 0 ≤ i ≤

2m − 1, } ∪ {v∞}. Let D be the set of edges with edge difference 1. D is a cycle of length

2m not including v∞. Note that each color class contains exactly two edges in D, and note the

edges {v∞, v0} and {v0, v1} are both contained in W1. Therefore D \ {v0, v1} ∪ {v∞, v0} is a

double-rainbow path.
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After Theorem 4.0.6, the exact size wp(m, i) only remains in doubt when 1 ≤ i ≤ m/2.

The following result is true for 1 ≤ i ≤ m. However, at this stage consideration towards

settling uncompleted cases is prioritized.

Lemma 4.0.11. If a Hamilton decomposition of K2m+1 contains 1 ≤ i ≤ m/2 edge-disjoint

double-rainbow paths p1, p2, . . . , pi then for 1 ≤ i ≤ m/2, wp(m, i) = max{m, i(2m + 1 −

2i)}.

Proof. Let D be a Hamilton decomposition of K2m+1, with i edge-disjoint double rainbow

paths p1, p2, . . . , pi. For 1 ≤ j ≤ i, recolor 2m+ 1− 2i edges of the edges of pj in K2m+1 with

color m+ j, ensuring that in pj at least one edge of each color is recolored with the new color.

This is possible since pj has length 2m, and at least m + 1 edges of pj are being recolored.

Since the edges now colored m + j were contained in a path, after recoloring each of the new

colors is a linear forest of size 2m + 1 − 2i. The original m color classes were Hamilton

cycles containing 2m + 1 edges. Each original color has had at least one edge recolored with

a new color so the original color classes are linear forests after the recoloring. For each double

rainbow path at most 2 edges of a given color have been recolored, so after recoloring each

original color contains at least 2m + 1− 2i edges. After recoloring K2m+1 with m + i colors,

every color class is a linear forest containing at least 2m+1−2i edges. By Corollary 4.0.2 this

recoloring of D can be embedded in K2m+1+2i. Since i(2m+ 1−2i) edges were recolored and

since i ≤ m/2 it is the case that wp(m, i) = max{m, i(2m+ 1− 2i)} = i(2m+ 1− 2i).

The following was brought about after Parik Chalise noticed that for prime p = 2m+1, the

well known Hamilton decomposition ofKp with cyclesRi given byRi = {ei | ei has edge difference i}

for 1 ≤ i ≤ m, will always contain a double-rainbow path. In fact it will be shown this decom-

position contains m edge-disjoint double-rainbow paths.

Lemma 4.0.12. For p = 2m + 1 a prime, the Hamilton decomposition of Kp given by R =

{Ri | 1 ≤ i ≤ m} contains m edge-disjoint double-rainbow paths.

Proof. Let R be the given Hamilton decomposition of Kp. Let V (Kp) = {vi | 0 ≤ i ≤

2m}. Note all edges of difference i are colored i, so if 2 edges of each difference are in-

cluded in the path then it will be a double-rainbow path. For 0 ≤ i ≤ m − 1 let DRi =
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{{vi−j, vi+j+1}, {vi+j+1, vi−j−1} | 0 ≤ j ≤ m − 1}. Note DRi consists of pairs of incident

edges, that is paths of length 2. Since vi−j−1 is an end of such a path for j and j+1, the union of

these paths form a path, therefore DRi is a path. For a given j edge {vi−j+1, vi+j+1} and edge

{vi−j, vi+j+1} both have difference j, so DRi contains 2 edges of each difference. Therefore

DRi is a double-rainbow path. Since each DRi consists of a pairs of edges of fixed differ-

ences, and each DRi begins at a unique vertex vi the double-rainbow paths are edge-disjoint.

Therefore the decomposition given by R contains m edge-disjoint double-rainbow paths.

Corollary 4.0.13. For p prime and any i > 0, wp(m, i) = max{m, i(2m+ 1− 2i)}.

Proof. The result follows from Theorem 4.0.6, Lemma 4.0.11, and Lemma 4.0.12.

While the double-rainbow paths are effective as shown by Lemma 4.0.11, and give a cer-

tain aesthetically pleasing visual image, they are a bit of overkill as the following lemma shows.

Lemma 4.0.14. Let H be a Hamilton cycle decomposition of K2m+1 using m colors. Let

1 ≤ i ≤ m. If H contains i edge-disjoint linear forests of size 2m + 1 − 2i, in which each

color appears in at least one forest, and at most twice in each forest. Then wp(m, i) =

max{m, i(2m+ 1− 2i)}.

Proof. Let F1, F2, . . . , Fi be the postulated edge-disjoint linear forests. Recolor the edges of

Fi with color m + i. Since each forest is of size 2m + 1 − 2i, each of the new colors appears

on a linear forest of size 2m + 1 − 2i. Since each of the original colors was a Hamilton

cycle which has had at least one edge recolored, each of the original colors are now linear

forests. Since each original color appeared at most twice in a given forest no original color

has lost more than 2i edges, so the linear forests of the original colors are now of size at

least 2m + 1 − 2i. Note i(2m + 1 − 2i) edges have been recolored. Since 1 ≤ i ≤ m,

max{m, i(2m+1−2i)} = i(2m+1−2i). Therefore, wp(m, i) = max{m, i(2m+1−2i)}.

Again, the following result is true if m/2 is replaced by m. However, at this stage consid-

ering just the unfinished cases it will be shown for m/2.
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Lemma 4.0.15. For i ≤ m/2, the edge-coloring of K2m+1 produced by the Walecki decompo-

sition contains i edge-disjoint linear forests each of size 2m+ 1− 2i where each color appears

in at least one forest, and at most twice in each forest.

Proof. Edge-color K2m+1 according to the Walecki decomposition. For j < m let Uj be the

subgraph induced by the set of edges of difference j; note each color appears exactly twice in

Uj . Each Uj is a vertex cover of K2m+1 \ {∞}, so |E(Uj)| = 2m. By Corollary 10.3.4 in

[10], the components of Uj are cycles, and there are no more than j components in Uj . The

Uj’s will be used to construct the linear forests with the properties required in Lemma 4.0.14.

For i ≤ m/2, m + 1 ≤ 2m + 1 − 2i ≤ 2m − 1. Consider {Uj | j ≤ i}. Let F1 be any

2m+ 1− 2i edges of U1, F1 will contain every color at least once since 2m+ 1− 2i ≥ m+ 1,

and E(U1) was of size 2m containing every color exactly twice. Since 2m + 1 − 2i < 2m

not all edges of U1 are in F1; therefore F1 is a linear forest. For j > 1 let Fj be 2m + 1 − 2i

edges of Uj so that Fj does not contain all edges of any component of Uj . This is possible

since |E(Uj)| − (2m+ 1− 2i) = 2i− 1 ≥ i, and since i is less than or equal to the number of

components of Uj , at least one edge from each component of Uj can be omitted from Fj . Thus,

Fj is a linear forest. Therefore {Fj | 1 ≤ j ≤ i} is a set of i linear forests of size 2m + 1− 2i

so that no color appears more than twice on any forest, and every color appears in the union.

Theorem 4.0.16. For m, i > 0, wp(m, i) = max{m, i(2m+ 1− 2i)}.

Proof. The result follows from Theorem 4.0.6, Lemma 4.0.14, Lemma 4.0.15.
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Chapter 5

Questions Needing Answers

Though the spectrum for the size of maximal sets of Hamilton cycles of multipartite graphs

is now settled, there are yet interesting questions along this vein. Similarly to how Noble

proceeded in the case when p ≡ 1(mod 4), is it possible to find a recursive construction when

p ≡ 3(mod 8), where the removal of the edges of the maximal set of Hamilton cycles results in a

graph with a cut vertex? Specifically, can Theorem 3.0.1 be used to aid in finding Maximal sets

of Hamilton cycles? Can Theorem 2.0.2 be modified to work in the case when p ≡ 1(mod 4)?

A required modification would be the number of pure edges necessary, vertices of S1, S2, S3, S4

would need to be incident with 4, 2, 3, 2 pure edges respectively.

There are classes of graphs besides complete graphs which are known to contain Hamilton

cycles, for a given class is it possible to determine the spectrum of µ? For instance µ = 1 if

the graph is a cycle, but there are certainly more interesting graphs than cycles to consider.

What if multi-graphs are allowed? Particularly multi-edges since loops are insignificant when

searching for Hamilton cycles. If λKp
n is the complete multipartite graph where each edge

appears λ times, are the bounds for µ simply multiplied by λ?

Cycles are not as intuitive in hypergraphs however there are defined (in multiple ways).

Can maximal sets of Hamilton Berge cycles or Hamilton γ-cycles be found in a d-regular k-

uniform hypergraph?

Conjecture 4.0.9 is an easily understood conjecture, but one which is seemingly difficult

to prove or disprove. Does any decomposition of K2m+1 contain (2m + 1)/4 edge-disjoint

double-rainbow paths? If so, Conjecture 4.0.7 would be true for such a decomposition.
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What more can be said about Conjecture 4.0.7, and can the lower bound of where it is true

be moved beneath n/4?

32



References

[1] Alspach, Brian. The wonderful Walecki construction. Bulletin of the Institute of Combi-

natorics and its Applications, 52 (2008), 7–20.

[2] B. Auerbach and R. Laskar, On the decomposition of r-partite graphs into edge-disjoint

hamilton circuits, Discrete Math., 14 (1976), 146–155.

[3] M.A.Bahmanian and C.A. Rodger, Multiply Balanced Edge Colorings of Multigraphs, J.

Graph Theory, 70 (2012), 297–317.

[4] D.E. Bryant, S. El-Zanati and C.A. Rodger, Maximal Sets of Hamilton Cycles in Kn,n, J.

Graph Theory, 33 (2000), 25–31.

[5] Charles J. Colbourn, Hamiltonian decompositions of complete graphs, Ars Combin., 14

(1982), 261–269.

[6] M.D. Daven, J.A. McDougall and C.A. Rodger, Maximal Sets of Hamilton Cycles in

Complete Multipartite Graphs, J. Graph Theory, 43 (2003), 49–66.

[7] D.G. Hoffman, C.A.Rodger and A. Rosa, Maximal Sets of 2-Factors and Hamiltonian

Cycles, J. Combin. Theory Series B, 57 (1993), 69–76.

[8] A.J.W. Hilton, Hamilton Decompositions of Complete Graphs, J. Combin. Theory Series

B, 36 (1984), 125–134.

[9] S.L. Jarrell and C.A. Rodger, Maximal Sets of Hamilton Cycles in Complete Multipartite

Graphs II, Aust. J. Combinatorics, 39 (2007), 207–217.

[10] C.C.Lindner and C.A. Rodger, Design Theory, CRC Press, 2009, 220–228.

33



[11] A.A. Noble, Maximal Sets of Hamilton Cycles in Complete Multipartite Graphs, Disser-

tation, Auburn University, https://etd.auburn.edu/handle/10415/3310, (2012).

[12] A.A. Noble and C.A. Rodger, Maximal Sets of Hamilton Cycles in Complete Multipartite

Graphs III, JCMCC, 82(2012), 241–247.

34



Appendices

35



Appendix A

Pictures of amalgamated grpahs.

C1 C2

c

C3 C4

C5

Five Hamilton cycles of amalgamated K7
3 .
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Eleven Hamilton cycles of amalgamated K15
3 .
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C1 C2

C3 C4

C5

Entangled color classes K7
3 , using the Chapter 2 construction.
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Appendix B

Double rainbow path in all 122 non-isomorphic copies of K9

’

012345678, 024136857, 035172846, 047381625 01,23/ 68,57/ 46,82/ 73,50

012345678, 024136857, 035174826, 046183725 01,23/ 68,57/ 48,17/ 04,25

012345678, 024136857, 035182746, 048371625 01,23/ 68,57/ 46,82/ 04,37

012345678, 024136857, 035184726, 046173825 01,23/ 68,57/ 51,74/ 46,82

012345678, 024136857, 035274816, 046283715 01,23/ 68,57/ 48,61/ 50,73

012345678, 024136857, 035281746, 048372615 01,23/ 68,57/ 47,52/ 48,61

012345678, 024136857, 035284716, 046273815 01,23/ 68,57/ 47,52/ 40,18

012345678, 024136857, 037184625, 047283516 01,23/ 68,57/ 48,52/ 47,61

012345678, 024136857, 037284615, 047183526 01,23/ 68,57/ 48,61/ 47,52

012345678, 024136857, 037462815, 048352716 01,23/ 68,57/ 46,82/ 04,71

012345678, 024136857, 037481526, 046172835 01,23/ 68,57/ 48,26/ 04,17

012345678, 024136857, 037482516, 046271835 01,23/ 68,57/ 48,25/ 04,71

012345678, 024136857, 038174625, 048273516 01,23/ 68,57/ 47,25/ 04,16

012345678, 024136857, 038472516, 046281735 01,23/ 68,57/ 47,25/ 04,81

012345678, 024137586, 035162847, 046381725 01,23/ 68,57/ 47,26/ 04,81

012345678, 024137586, 035164827, 047183625 01,23/ 68,57/ 46,28/ 04,71

012345678, 024137586, 035182647, 048361725 01,23/ 68,57/ 46,28/ 04,71

012345678, 024137586, 035184627, 047163825 01,23/ 68,57/ 46,27/ 50,83

012345678, 024137586, 035261847, 046382715 01,23/ 68,57/ 48,26/ 04,15

012345678, 024137586, 035264817, 047283615 01,23/ 68,57/ 48,26/ 04,15
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012345678, 024137586, 035281647, 048362715 01,23/ 68,57/ 46,28/ 04,71

012345678, 024137586, 035284617, 047263815 01,23/ 68,57/ 46,28/ 04,15

012345678, 024137586, 036284715, 046183527 01,23/ 68,57/ 47,26/ 04,81

012345678, 024137586, 036471825, 048351627 01,23/ 68,57/ 47,25/ 04,16

012345678, 024137586, 038164725, 048263517 01,23/ 68,57/ 47,16/ 28,04

012345678, 024157386, 031648527, 047182635 01,23/ 68,57/ 48,25/ 04,71

012345678, 024157386, 031746285, 048163527 01,23/ 68,57/ 47,26/ 04,81

012345678, 024157386, 031852647, 048271635 01,23/ 68,57/ 46,25/ 04,71

012345678, 024157386, 035261847, 046317285 01,23/ 68,57/ 48,25/ 04,71

012345678, 024157386, 035284617, 047263185 01,23/ 68,57/ 46,25/ 74,81

012345678, 024158637, 031648275, 047183526 56,78/ 02,41/ 31,64/ 83,52

012345678, 024158637, 031752846, 047261835 56,78/ 02,41/ 31,64/ 83,05

012345678, 024158637, 035274816, 046283175 56,78/ 02,41/ 35,61/ 83,04

012345678, 024158637, 035718264, 052748316 56,78/ 02,41/ 35,71/ 38,60

012345678, 024158637, 038162574, 053172846 56,78/ 02,41/ 38,57/ 06,31

012345678, 024158637, 038174625, 048275316 56,78/ 02,41/ 38,62/ 75,31

012345678, 024163857, 031527486, 046281735 56,78/ 02,41/ 31,48/ 26,53

012345678, 024163857, 031746825, 048153726 56,78/ 02,41/ 31,47/ 26,35

012345678, 024163857, 035172684, 052813746 56,78/ 02,41/ 35,17/ 28,60

012345678, 024163857, 035172846, 047318625 56,78/ 02,41/ 35,17/ 04,26

012345678, 024163857, 035281746, 048627315 56,78/ 02,41/ 35,17/ 04,26

012345678, 024163857, 037481526, 046827135 56,78/ 02,41/ 37,26/ 04,35

012345678, 024168357, 031582746, 048173625 56,78/ 02,41/ 31,46/ 25,73

012345678, 024168357, 031584726, 046371825 56,78/ 02,41/ 31,47/ 25,36

012345678, 024168357, 031746285, 048152736 56,78/ 02,41/ 31,47/ 25,36

012345678, 024168357, 031748526, 046372815 56,78/ 02,41/ 31,74/ 05,63

012345678, 024168357, 031852746, 048263715 56,78/ 02,41/ 31,74/ 05,63

012345678, 024168357, 036258174, 051372846 56,78/ 02,41/ 36,74/ 05,28

012345678, 024168357, 036271584, 052813746 56,78/ 02,41/ 36,71/ 05,28
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012345678, 024168357, 036471825, 048513726 56,78/ 02,41/ 36,71/ 04,85

012345678, 024168357, 037462815, 048527136 56,78/ 02,41/ 37,62/ 04,13

012345678, 024168375, 031582647, 048172536 56,78/ 02,41/ 31,47/ 25,36

012345678, 024168375, 031584627, 047182536 56,78/ 02,41/ 31,62/ 47,53

012345678, 024168375, 031852647, 048271536 56,78/ 02,41/ 31,26/ 48,53

012345678, 024168375, 031852746, 048263517 56,78/ 02,41/ 31,27/ 48,35

012345678, 024168375, 035182647, 048527136 56,78/ 02,41/ 35,47/ 06,13

012345678, 024168375, 035182746, 048526317 56,78/ 02,41/ 35,74/ 26,31

012345678, 024168537, 031572846, 047183625 56,78/ 02,41/ 31,72/ 04,36

012345678, 024168537, 031752846, 047263815 56,78/ 02,41/ 31,75/ 04,38

012345678, 024168537, 031825746, 048362715 56,78/ 02,41/ 31,57/ 04,83

012345678, 024168537, 036257184, 051382746 56,78/ 02,41/ 36,71/ 05,82

012345678, 024168537, 036275184, 052831746 56,78/ 02,41/ 36,27/ 05,31

012345678, 024168537, 036281574, 052713846 56,78/ 02,41/ 36,28/ 05,71

012345678, 024168537, 036471825, 048315726 56,78/ 02,41/ 36,82/ 04,31

012345678, 024168537, 036472815, 048317526 56,78/ 02,41/ 36,28/ 04,31

012345678, 024168537, 036481725, 047513826 56,78/ 02,41/ 36,72/ 04,38

012345678, 024168537, 038157264, 052847136 56,78/ 02,41/ 38,64/ 05,13

012345678, 024168537, 038251746, 048136275 56,78/ 02,41/ 38,46/ 05,13

012345678, 024168537, 038462715, 047528136 56,78/ 02,41/ 38,62/ 04,75

012345678, 024168573, 046271835, 063152847 56,78/ 02,41/ 62,83/ 07,15

012345678, 024168573, 046382517, 053184726 56,78/ 02,41/ 63,82/ 05,47

012345678, 024168573, 047182536, 051384627 56,78/ 02,41/ 36,82/ 13,05

012345678, 024168573, 047182635, 064831527 56,78/ 02,41/ 63,71/ 83,52

012345678, 024173586, 031648257, 047263815 56,78/ 02,41/ 31,57/ 04,38

012345678, 024173586, 031846257, 047283615 56,78/ 02,41/ 31,57/ 04,83

012345678, 024173586, 036182574, 051384627 56,78/ 02,41/ 36,82/ 05,13

012345678, 024173586, 036251847, 046138275 56,78/ 02,41/ 36,18/ 05,27

012345678, 024173586, 036274815, 046138257 56,78/ 02,41/ 36,18/ 07,25
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012345678, 024173586, 036275184, 052831647 56,78/ 02,41/ 36,18/ 07,25

012345678, 024173586, 036472815, 048316257 56,78/ 02,41/ 36,18/ 07,25

012345678, 024173586, 038251647, 048136275 56,78/ 02,41/ 38,64/ 05,13

012345678, 024173586, 038275164, 052631847 56,78/ 02,41/ 38,64/ 05,13

012345678, 024173586, 038472615, 046318257 56,78/ 02,41/ 38,26/ 04,31

012345678, 024173685, 031825746, 048351627 56,78/ 02,41/ 31,57/ 04,83

012345678, 024173685, 031846257, 047283516 56,78/ 02,41/ 31,57/ 04,83

012345678, 024173685, 031847526, 046153827 56,78/ 02,41/ 31,75/ 04,38

012345678, 024173685, 035184627, 047528316 56,78/ 02,41/ 35,27/ 83,16

012345678, 024173685, 035274816, 046283157 56,78/ 02,41/ 03,16/ 83,57

012345678, 024173685, 038251647, 048135726 56,78/ 02,41/ 03,47/ 13,26

012345678, 024175386, 031625847, 046372815 56,78/ 02,41/ 03,47/ 63,15

012345678, 024175386, 031647285, 048152637 56,78/ 02,41/ 03,47/ 15,63

012345678, 024175386, 036152847, 046273185 56,78/ 02,41/ 03,47/ 62,31

012345678, 024175386, 036472815, 048526137 56,78/ 02,41/ 36,81/ 07,52

012345678, 024175386, 037285164, 052631847 56,78/ 02,41/ 03,51/ 63,47

012345678, 024175386, 037461825, 048513627 56,78/ 02,41/ 03,74/ 51,36

012345678, 024175836, 035164827, 047318625 56,78/ 02,41/ 03,51/ 47,62

012345678, 024175836, 035186274, 052846137 56,78/ 02,41/ 03,74/ 61,28

012345678, 024175836, 035261847, 046827315 56,78/ 02,41/ 03,47/ 82,15

012345678, 024175836, 035281647, 048627315 56,78/ 02,41/ 03,47/ 62,15

012345678, 024175863, 046182537, 051384726 56,78/ 02,41/ 18,53/ 06,72

012345678, 024175863, 047382516, 053184627 56,78/ 02,41/ 38,25/ 07,31

012345678, 024186357, 031647285, 048371526 56,78/ 02,41/ 03,47/ 15,26

012345678, 024186357, 037482516, 046271385 56,78/ 02,41/ 03,74/ 62,13

012345678, 024186357, 038471526, 046137285 56,78/ 02,41/ 84,52/ 61,37

012345678, 024186357, 038517264, 052847316 56,78/ 02,41/ 51,62/ 84,73

012345678, 024186375, 038472516, 046285317 56,78/ 02,41/ 38,25/ 07,31

012345678, 024615837, 031486275, 047182536 56,78/ 02,46/ 31,27/ 18,53
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012345678, 024618357, 031472586, 048263715 56,78/ 02,46/ 31,72/ 04,15

012345678, 024618537, 036827415, 048317526 56,78/ 02,46/ 15,27/ 04,31

012345678, 024618537, 038627514, 052847136 56,78/ 02,46/ 27,51/ 84,13

012345678, 024713685, 038157264, 061482537 56,78/ 02,47/ 38,15/ 06,14

012345678, 024713685, 038415726, 046182537 56,78/ 02,47/ 03,41/ 61,53

012345678, 024716835, 037285146, 048136257 56,78/ 02,47/ 03,14/ 13,25

012345678, 024718536, 031486275, 046152837 56,78/ 02,47/ 03,14/ 15,28

012345678, 024731586, 035264817, 041638275 56,78/ 02,47/ 03,52/ 41,38

012345678, 024731586, 038264175, 048163527 56,78/ 02,47/ 03,41/ 16,35

012345678, 024731685, 035172846, 041836257 56,78/ 02,47/ 03,51/ 41,62

012345678, 024731685, 035264817, 041572836 56,78/ 02,47/ 03,52/ 41,83

012345678, 024731685, 036482517, 041835726 56,78/ 02,47/ 03,25/ 41,83

012345678, 024731685, 038157264, 063528417 56,78/ 02,47/ 03,15/ 63,41

012345678, 024731685, 038417526, 046351827 56,78/ 02,47/ 03,41/ 51,82

012345678, 024736815, 035827146, 048316257 56,78/ 02,47/ 03,14/ 31,25
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