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Abstract 

 

The forestry sector includes silviculture, forest management, logging, and wood utilization. 

Forestry has been experiencing dramatic transformation due to technological advances, changing 

markets of labor, capital, and goods and service. Recent Covid-19 pandemic is another example 

of the impact of globalization, including the lumber. This dissertation chose the transformation of 

forest management in China, the labor market and profitability, and the lumber market in the USA 

to understand the forestry sector.  

The developing countries, for example, China, have experienced an unprecedented 

transformation of the rural society and livelihoods. Self-subsistence forest management has 

transitioned to more business-oriented management. Understanding what attributes are driving the 

transformation of the households and the forest management will help the policy makers to design 

more specific policies to facilitate the transformation. The Logit model helped to identify factors 

that are significantly correlated with the transformation of traditional peasant households to three 

emerging household categories namely Forestry Cooperative (FC), Family Forestry Farm (FFF), 

and Forestry Specialized Household (FSH), using household survey data from the seven provinces 

in China in 2016.  

In developed countries, for example, the United States, have experienced technological 

advancements, policy changes, parcelization of forestland, business cycle, and the change of 

relative costs of factors, which have a significant impact on the forest industry, especially the 

logging industry. The official databases related to the logging industry aids in the quantitative 

analysis of employment and profitability in the logging industry in recent decades in the U.S. It 

was found that employment in the U.S. logging industry has been declining over the past several 
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decades. An investigation of the drivers of employment in the U.S. logging industry from 1997 to 

2019, using Directed Acyclic Graph (DAG) and Forecast Error Variance Decomposition (VD), 

identified the trends in the industry. 

 Lumber product is one of the primary products coming from the logging industry. Firms 

engaged in producing, processing, marketing or using lumber and lumber products always take 

positions in the lumber futures markets. The accurate prediction of future prices can help 

companies and investors hedge risks and make correct market decisions. Our novel approach 

utilized the Google Trends Index related to lumber prices as predictors and employed Machine 

Learning and Deep Learning Models to nowcast lumber futures price, indicating both the methods 

have higher predictive power. 
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Chapter 1. Introduction 

1.1 Background 

Forestry sector includes silviculture, forest management, logging and wood utilization. 

Forestry has been experiencing dramatic transformation due to the technological advances, 

changing markets of labor, capital, and goods and service. Recent Covid-19 pandemic is another 

example of the impact of globalization, including the lumber. This dissertation chose the 

transformation of forest management in China, the labor market and profitability and the lumber 

market in the USA to understand the forestry sector. 

In the past few decades, an unprecedented transformation has taken place in the global rural 

society, especially in the developing countries, for example, China. China's economic reform was 

initiated in the rural areas in the late 1970s and then extended to the industries and cities. Over the 

past 40 years, fast industrialization, rapid growth in income, and significant infrastructure 

improvements took place that was unprecedented in the Chinese history. One of the effects of the 

transformation is to enable the rural population, known as ‘peasants’, to change their traditional 

lifestyles and livelihoods. This transformation also extends to forest management. Self-subsistence 

forest management has transitioned to more business-oriented management, typically the Forestry 

Cooperatives (FC), Family Forestry Farms (FFF), and Forestry Specialized Households (FSH) 

identified in this dissertation. Understanding what attributes drive the transformation of 

households and forest management will help policymakers design more specific policies to 

facilitate the transformation.  

In developed countries, for example, the United States, with technological advancements, 

policy changes, parcelization of forestland, economic cycle, and the change of relative costs of 
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factors, the logging industry has undergone dramatic changes in the past few decades. Employment 

in the logging industry is concentrated in the West and the South, seeing the most significant 

decline in employment. Since logging wages have increased at about the rate of inflation and the 

interest rate remains low, logging firms continue to mechanize. On one hand, changes in 

employment and mechanization affect the cost of logging and the profit, while on the other, firm 

profitably affects employment and mechanization. It is necessary to provide a quantitative analysis 

of U.S. logging industry data and present trends in employment and profitability over the last 20 

to 30 years. The results will help us better understand the factors affecting the US logging industry. 

Employment in the U.S. logging industry has declined in recent years. The West and South, 

the most concentrated areas of logging, have dropped the most. Employment in the logging 

industry has fallen by an average of 2% per year since 1997. The labor market in the logging 

industry depends on both demand and supply. From the demand side, the total removal of forest 

resources is related to the degree of mechanization and the economic cycle, particularly the 

housing market and building permits, pulp and paper prices. From the supply side, the most critical 

variables are relative wages with competitive sectors. However, these economic factors are all 

interrelated. Therefore, it is necessary to establish a contemporaneous causal relationship among 

these multiple variables to investigate the employment drivers.  

Lumber product is one of the leading products coming from the logging industry. Firms 

engaged in producing, processing, marketing, or using lumber and lumber products always take 

positions in the lumber futures markets. Since the COVID-19 pandemic, the lumber futures price 

has experienced colossal volatility. The average opening price from May 2011 to January 2020 

was $337 per thousand board feet (mbf), while the average opening price from February 2020 to 

May 2021 was $698 mbf. The lumber price reached its highest point in the past ten years on May 
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7th, 2021, with $1,677 mbf. Therefore, there is an urgent need to find a reliable method to predict 

the lumber futures price, which would help enterprises and investors hedge risks and make correct 

decisions in the market. 

1.2 Scholarly contributions 

This dissertation firstly investigates the direction and magnitude of critical socioeconomic 

factors affecting the transformation of the households in China using the FC, FFF, and FSH.  

Secondly, it provides a quantitative analysis of the US logging industry data, and presents 

employment and profitability trends. Thirdly, this dissertation investigates the drivers of 

employment in the U.S. logging industry, using DAG and VD. Finally, this dissertation predicts 

the lumber futures price using different models. In particular, the contributions include: 

• Help better understand what economic, social, and livelihood attributes drive the 

transformation of households and how the traditional forest management shifts to 

business management and shapes the rural society in China. 

• Add both firm-level data from previous research with federal and state-level data, 

providing additional evidence for industry-level trends and relationships, helping 

better understand the factors influencing the U.S. logging industry. Also, present a 

feasibility method for estimating the profit for the logging industry. 

• For the first time, the utilization of the DAG approach disclosed the contemporaneous 

causal relations among employment, wage, mechanization, logging product prices, 

and production levels, and VD to analyze the dynamic relationship among variables. 

Thereby, bridge the gap in the literature by exploring contemporaneous causal 

relationships between employment in the logging industry and different economic 
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variables, and help to understand better the effects of these factors on employment in 

the short and long run as well. 

• Offer a fresh and novel perspective on nowcasting the lumber price using Google 

Trends Index through Machine Learning Models (SVM, Random Forest, XGBoost, 

and CART) and Deep Learning Models (ANN, RNN, and CNN).  

1.3 Dissertation structure 

This dissertation consists of six chapters. Chapter 1, introduced the research background and 

scholarly contributions. Chapter 2, explored the factors contributing to the transformation of 

households and traditional forest management using household survey data in seven provinces in 

China in 2016. The age and education of the household heads, income, the holding areas of 

cropland, ecological forest, forestland, leasing forestland, and legally contracted forestland, and 

their located provinces were found to be statistically significant in transforming the household’s 

forest management. The factors that drive the transformation to various ownership types showed 

some variations as well. The findings can help us better understand not only the transformation of 

forest management but also the rural economy and society in general. The results have policy 

implications on how to facilitate forest management transformation further. 

Chapter 3, analyzed the logging industry in recent decades in the U.S. based on Occupational 

Employment Statistics (OES), Quarterly Workforce Indicators (QWI), Quarterly Census of 

Employment and Wages (QCEW), and Timber Product Output (TPO) reports. The logging 

industry has been experiencing reduced employment and the implications of the aging workforce. 

This might be due to increased productivity from the technological advancement of mechanization, 

and reduced demand for logging. Economic Input-Output Life Cycle Assessment (EIO-LCA) 
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model was applied to estimate the profitability of the entire industry at the state level. It was found 

that the reduced demand and increased operating costs lead to poor profitability and a wave of 

closures of logging firms, but also accelerating adjustment in the logging industry. Some severe 

challenges for the logging industry were identified, including lack of practical monitor tools for 

the entire sector, structural shortage of labor, and rising operating costs. 

Chapter 4, investigated the drivers of employment in the U.S. logging industry from 1997 to 

2019, using Directed Acyclic Graph (DAG), which was first applied to disclose the 

contemporaneous causal relations among employment, wages, mechanization, logging production 

level and product prices.  Based on the Vector Autoregression (VAR) model and DAG, Forecast 

Error Variance Decomposition (VD) was used to examine their dynamic relationships. The results 

showed that logging production level affects employment directly and indirectly. An increase 

(decrease) in the level of logging production directly increases (decreases) wages, followed by an 

increase (decrease) in employment. The results of VD showed employment in the logging industry 

is most prominently explained by the production level (highest 52.0% at horizon 1-year), followed 

by the wage (highest 42.0% at horizon 20-year). In contrast, capital and product price have a 

limited influence on employment. 

Chapter 5, explored whether Internet browsing habits can accurately nowcast the lumber 

futures price. The predictors were Google Trends Index related to lumber prices. By employing 

both Machine Learning and Deep Learning methods, it was shown that despite the high predictive 

power of both methods, on average, Deep Learning Models can better capture trends and provide 

more accurate predictions than the Machine Learning Models. The Artificial Neural Network 

model is the most competitive model, followed by the Recurrent Neural Network model. Finally, 

Chapter 6 concluded the dissertation with some possible future research directions.  
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Chapter 2. From peasant to farmer: transformation of forest management in China 

2.1 Introduction 

Chinese economic reform was initiated in the rural areas in the late 1970s, and then extended 

to industries and cities. Over the past 40 years, fast industrialization, rapid growth in income, and 

significant improvements in infrastructure have been taking place that are unprecedentedly in 

Chinese history. The transformation is not only that of a centralized planning economy becoming 

a market-based economy, but also the economic structure from primarily an agricultural economy 

to a more industrial and services based economy. However, 40% of the Chinese population still 

live in rural areas and the long-standing rural–urban inequalities still remain (National Bureau of 

Statistics of China 2019). Farming is also at a disadvantaged position due to the manipulated low 

prices of agricultural products in order to support industrialization (Gustafsson and Shi 2002; Long 

et al. 2011), and small amount of the land that is available for the large population. The increasing 

labor costs and the evenly distributed land make agriculture and forest management less 

competitive in recent decades. 

The transformation of rural China is essentially from a traditional subsistence economy to 

market economy described by Schultz (1964) in the middle of last century when many developed 

countries were in similar transformations. Both the central and local governments have tried hard 

to improve road access, the quality of life for rural populations and the rural environments in recent 

decades (Liu et al. 2013, 2016; Long et al. 2010; Wen 2018; Zhou et al. 2018). Financial capital 

has been mobilized to rural development, such as micro-financing in forestry (Zhou et al. 2016), 

land transfer is encouraged, and labor is more specialized to boost agricultural and entrepreneurial 

advancements. All of these changes together with increasing income and information access have 
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dramatically changed the rural lifestyle, promoted technology-driven agriculture, and new 

economic and community organizations (Chen et al. 2010; Long et al. 2011). 

One of the impacts of the rural–urban transformation is enabling the rural population, known 

as ‘peasants’, to change their traditional lifestyles and livelihoods. In rural China, ‘peasant’ is not 

just an occupation, but also a symbol of a certain social class having a traditional and self-sufficient 

mode of agricultural production and poorly educated (Cohen 1993; Schneider 2015; Zhang and 

Donaldson 2010). Because of the existing dual agricultural and non-agricultural registered 

residence system, peasants can move to cities as itinerant populations, however, they cannot enjoy 

the same benefits and services as the urban or non-agricultural residents do (Cheng and Selden 

1994; Fan 1999). However, the policy allows some peasants to convert to commercial farmers 

(Zhang and Donaldson 2010). Unlike ‘peasant’, ‘farmer’ is more of an occupation or profession, 

not connoting to any social class, identity, or status. Farmers can be either agricultural or non-

agricultural registered residents and their products are more for sale than self-sufficiency. Thus, 

‘farmer’ is a transformed generation of peasant with a higher level of education, technological 

skills, management ability, income, and social status. Most importantly, their formal occupation is 

based in agriculture (Wei and Liu 2013). 

This transformation also extends to forest management, particularly when most rural 

households obtained forestland use rights after the second round of collective forest tenure started 

in 2003 (Wang et al. 2007), and where forestry is important in the rural economy (Wang et al. 

2014, 2015). Forest management might experience faster transformation than agriculture as timber 

is more for sale and timberland is less equally distributed (Huang et al. 2019). Along with issuing 

forest tenure certificates to households, the government launched other reforms including 

promotion of new forest management entities, namely Forestry Cooperatives (FC), Family 
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Forestry Farms (FFF), and Forestry Specialized Households (FSH) (Table 1). We have good 

reason to believe that they more represent the new types of forest management with more business-

orientation. 

Table 1. Characteristics of the forestry cooperative, family forestry farm, and forestry specialized 

household.(State Forestry Administration 2017) 

Characteristics 

Emerging forestry entities 

Forestry Cooperative (FC) Family Forestry Farm 

(FFF) 

Forestry Specialized 

Household (FSH) 

Objective Better access to market and 

financial resource; increase 

market power and returns 

through pooling land, labor 

and capital 

Increased economy of 

scale and promote forest 

management mainly 

through self-employment 

Increased economy of 

scale, promote rural 

employment and division 

of labor 

Scale Large Medium Large 

Registration Industrial and commercial 

department 

Industrial and commercial 

department 

Forestry department 

Legal status Specialized cooperative Individual business Individual household 

 

The 2008 financial crisis negatively affected non-agricultural employment, causing some 

peasants not satisfied in cities to return to villages with a broader perspective, knowledge, skills 

and capital than those who stayed at home. Some of them chose to manage forestry as a business 

and became farmers who are more capable of accessing markets, financial support from the 

government, and using machine. Other peasants might be slower in the transformation. The 

differences are a resulted of entrepreneurship, business involvement, specialization, and scale (Zhu 

et al. 2013). 

The Forestry Cooperative (FC) refers to an economic mutual aid organization, which is 

voluntarily and jointly organized by households or similar providers of forestry production and 

management services (Zhang et al. 2014). FC was initiated with the law related with China’s 
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Farmers’ Professional Cooperatives in 2007. The law required cooperatives to register at the 

Industrial and Commercial Department. The objectives of promoting these cooperatives are to 

strengthen the rural economy, link small households to large markets, and promote better forest 

management (Bijman and Hu 2011; Deng et al. 2010; Yang et al. 2013). The cooperatives enjoy 

better access to land pool and financial resources from the government (Zhang and Zhi 2010). 

Family Forestry Farms (FFF) have been listed for priority development by the central 

government since 2008 and were designated as the main agricultural and forestry identity in 2013. 

After the introduction of supporting policies in Liaoning Province in 2014, the policies supporting 

FFF were extended nationwide and these entities began to emerge. FFF refers to a market and 

profit-oriented economic enterprises invested in and operated mainly by family members. The 

main income of the household should come from the farm, and the scale of the farm should exceed 

a certain size. FFF has the qualifications of a market entity, such as self-employed and sole 

proprietorship enterprises (He et al. 2017; Huang and Liang 2018; Shen and Shen 2018). 

Forestry Specialized Households (FSH) have been promoted by the central government for 

more than a decade (Li 2016). While the FC mainly employs the labors from their members and 

FFF is mainly dependent on their family members, FSH is characterized by the management of 

large-scale forestland through employed labor. 

Such transformations have important implications on forest management, household income, 

rural employment, and many other socioeconomic attributes. Garnevska et al. (2011) argued that 

a community’s likelihood to form cooperatives is impacted by prevailing legal environment, 

political leadership, public policy, and the community’s rational behavior towards community 

feelings. Zhang and Donaldson (2010) found that well-developed markets for agricultural 

products, labor, and land allow rural households to shift from peasant to farmer. In a similar study, 
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Omiti et al. (2009) found that transformation of rural households is augmented by market 

proximity, product price, and availability of market information. Government land administration 

and agricultural spending policies have also been shown to strongly contribute to rural household 

transformation (Sitko and Jayne 2014). 

The transformation and the driving socioeconomic factors have not been widely investigated. 

Our study aimed to investigate the direction and magnitude of important socioeconomic factors 

affecting the transformation of the households in China using the FC, FFF and FSH, which we 

identified them as transformed households or farmers. We believe the results of the study will help 

us better understand what economic, social, and livelihood attributes are driving the transformation 

of households and how the traditional forest management shifts to business management and 

shapes the rural society in China. The results will help the government to design more specific 

policies and programs to facilitate the transformation. The results can be extended into many other 

countries experiencing similar transformations. 

2.2 Empirical model  

The transformation for the households and their management types can be explained, at least 

in part, through the households’ economic and social attributes, as well as their land characteristics. 

In order to identify the characteristics of traditional households (peasant) contributing to their 

transformation to the new forms (farmers), we adopted a logistic regression framework. We 

assumed that the individual attributes of the ‘peasants’, including age and education of household 

head, and household level attributes including total income, family size, cropland area, the 

composition of the forestland and land tenure, as well as location are likely to affect the 

transformation likelihood. 
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The response variable in our study was whether a ‘peasant’ household transformed to a 

‘farmer’ household: Y = 1 if a household is a FC, FFF or FSH and Y = 0 if a household is a 

traditional peasant household. The explanatory variables are represented by vectors consisting of 

characteristics of the household and household head. 

The probability that a household would transform from a traditional household to a new type 

of management is given by Eq. (1): 

P𝑖𝑘(𝑌𝑘 = 1 if transformed, 0 otherwise|𝑋𝑖𝑘) =
𝑒𝛽0𝑘+𝛽𝑖𝑘𝑥𝑖𝑘

1+𝑒𝛽0𝑘+𝛽𝑖𝑘𝑥𝑖𝑘
   (1) 

where 𝑌𝑘 is the dependent variable with a value of 1 for the household transforming to the kth type 

of transformed household. Three regressions were made when k = 1, 2, 3 to understand household 

becoming a FC, FFF and FSH, respectively, and another regression combining all transformed 

household when k = 4) and 0 for nontransformation. 𝑥𝑖𝑘 is the ith explanatory variable that relates 

to the kth type of transformed household. 𝛽𝑖𝑘 is the ith estimated parameter that relates to the kth 

type of transformed household. The parameters were estimated using maximum likelihood. 

(Cramer and Ridder 1988; Sheikh et al. 2003). 

Eq. (1) can be solved for 𝛽𝑖𝑘, to derive Eq.  (2) 

    𝛽𝑖𝑘 = 𝑙𝑜𝑔 (
𝑃𝑖𝑘(𝑌=1)

1−𝑃𝑖𝑘(𝑌=1)
) − 𝑙𝑜𝑔 (

𝑃𝑖𝑘(𝑌=0)

1−𝑃𝑖𝑘(𝑌=0)
)    (2) 

And the Odds Ratio (𝑂𝑅𝑖𝑘) can be defined as 

     𝑂𝑅𝑖𝑘 =

𝑃𝑖𝑘(𝑌=1)

1−𝑃𝑖𝑘(𝑌=1)

𝑃𝑖𝑘(𝑌=0)

1−𝑃𝑖𝑘(𝑌=0)

      (3) 

Thus, Eq. (2) reduces to Eq. (4): 
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     𝑒𝛽𝑖𝑘 = 𝑂𝑅𝑖𝑘       (4) 

Following Xie et al. (2014), we included the square of AGE to check the monotonicity of the 

transformation probability with the household’s age. Some physical characteristics including 

cropland area, the composition of the forestland and the land tenure are likely to have an impact 

on the transformation. The composition of forestland can be classified by economic forest, timber 

forest and bamboo forest in China. Households manage their timber or bamboo forest less 

intensively than economic forests, which is a forest with main purpose of producing fruit, edible 

oil, industrial raw materials and medicinal materials, including fruit, tea and mulberry trees. A 

larger proportion of timber forest (the type of forest mainly for timber production) may slow down 

the transformation. The composition of forestland can be also classified by ecological forest and 

commercial forest. More ecological forest may have a negative impact on the transformation. 

There are significant differences in the physiographic and policy attributes among the 

Chinese provinces. For example, Hunan is located in central China and has high forest coverage; 

Shaanxi is located in north China with only 43% forest coverage; Gansu is located in northwest 

China and is one of the least developed provinces and part of it is desert area, but Gansu introduced 

a series of policies to promote FC, FFF and FSH. Hence, we inserted province-level variables in 

our model. 

2.3 Data collection 

The socioeconomic data from 2009 to 2017 for this study were collected from and with the 

help of the State Forestry Administration of the following provinces: Liaoning, Fujian, Jiangxi, 
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Hunan, Yunnan, Shaanxi and Gansu. We applied stratified sampling method to randomly select 

seven provinces in seven regions in China (Figure 1). 

Figure 1. Distribution of sample counties across the Liaoning, Fujian, Jiangxi, Hunan, Yunnan, 

Shaanxi and Gansu Provinces in China.(State Forestry Administration 2012) 

Each province was divided into three regions. Then stratified sampling was applied to select 

sample counties, based on the status of forest resources and socioeconomic conditions. 10 counties 

were selected from each province. In each sample county, a symmetric equidistance method was 

applied to select sample townships and towns, according to economic conditions. Five townships 

were selected from each county, and a village was randomly selected from each township. In each 

village, the symmetric equidistance method was applied to select 10 households based on the 

household registration list (State Forestry Administration 2010). Altogether, these surveys were 

designed to cover 3500 households in 350 villages from 70 counties of 7 provinces. Field surveys 

were conducted with the same households every year since 2009. In this study, we only use the 

2016 dataset. We omitted households with missing or incomplete information. Thus, our sample 

size was 3487 instead of 3500. 
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The summary of the socioeconomic variables attributes of the households is presented in 

Table 2. Among the 3487 households, there were 180 (5%), 26 (1%), 146 (4%) and 3135 (90%) 

households who joined FCs, established FFFs, became FSHs and did not change, respectively. 

Thus, there were 352 transformed households in 2016 in our sample. We separately estimated the 

probability that a household would transform from a traditional household to a transformed 

household. Therefore, in the logit model of FCs, FFFs households, FSHs and transformed 

households, the sample sizes are 180, 26, and 146 and 352, respectively. Jiangxi had the largest 

number of households participating in FCs and FSHs among these seven provinces in our sample, 

while Liaoning has the largest number of FFFs. Jiangxi also had the largest number of transformed 

households. Gansu, the least developed province of the seven provinces, has the largest number of 

traditional peasants (Figure 2). 

Figure 2. Distribution of traditional and transformed households among seven different 

provinces, China. 
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Table 2. Descriptive statistics of household characteristic variables. 

Variables Definition 
Total 

households 

Traditional 

households 

Transformed household  

Forestry 

cooperative 

Family 

forestry 

Farm 

Forestry 

specialized 

household 

Total 

– Sampled households # 3487 3135 180 26 146 352 

AGE 
Household head age 

(years) 

55.28 

(10.85) 

55.36 

(10.94) 

53.12 

(9.76) 

56 

(11.32) 

56.08 

(9.84) 

54.56 

(9.99) 

EDU 

Education of household 

head 

(Elementary & less = 1; 

Junior high = 2; Senior 

high/Technical = 3; 

Junior college or 

above = 4) 

1.77 

(0.76) 

1.76 

(0.75) 

1.92 

(0.75) 

2.12 

(0.86) 

1.90 

(0.87) 

1.93 

(0.81) 

INC 
Total household income 

(1000 Yuan*) 

82.63 

(417.8) 

70.53 

(370.2) 

153.7 

(444.6) 

94.40 

(72.26) 

252.3 

(974.7) 

190.2 

(704.7

) 

POP Family size (#) 
4.67 

(2.03) 

4.63 

(2.04) 

4.92 

(1.80) 

5.08 

(1.50) 

5.06 

(2.08) 

4.99 

(1.91) 

CRP 
Cropland area 

(ha) 

0.50 

(1.03) 

0.48 

(0.74) 

0.79 

(3.27) 

0.73 

(0.73) 

0.48 

(0.54) 

0.65 

(2.37) 

ECO 

Ecological 

forestland/total 

forestland (%) 

0.48 

(0.47) 

0.50 

(0.47) 

0.27 

(0.38) 

0.42 

(0.46) 

0.35 

(0.43) 

0.32 

(0.41) 

TIM 

Timber forestland & 

bamboo/total forestland 

(%) 

0.55 

(0.47) 

0.54 

(0.47) 

0.57 

(0.45) 

0.45 

(0.49) 

0.65 

(0.44) 

0.59 

(0.45) 

FOR 
Total forestland 

(ha) 

6.02 

(18.80) 

4.49 

(9.88) 

17.24 

(60.23) 

10.09 

(16.36) 

24.11 

(36.34) 

19.56 

(49.32

) 

TRS Forestland transfer (ha) 
0.69 

(8.39) 

0.28 

(2.08) 

4.74 

(31.97) 

0.83 

(4.22) 

4.42 

(17.22) 

4.32 

(25.42

) 

CTS 

Legally contracted 

forestland/total 

forestland (%) 

0.50 

(0.49) 

0.49 

(0.49) 

0.50 

(0.468) 

0.81 

(0.40) 

0.62 

(0.46) 

0.57 

(0.47) 

Notes: Each of the values in the table is the mean of 3487 observations; *1Chinese Yuan = 0.144 

US $, as of Dec 31, 2016; **15mu=1ha 
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The household characteristics are also summarized in Table 2. The average age of the 

household heads was 55 years old. Households that joined FC were statistically significant 

younger. Most of the household heads had finished elementary school, 16% of them had finished 

high school or higher education, and only 70 of them, accounting for 2%, had finished university. 

The transformed households were more educated: 20% of them finished high school or higher 

education and 5% of them had education in university, while for the traditional counterparts, these 

were 15% and 2%, respectively. The average family size was 4.67. The average income of 

traditional households was only 69,950 yuan (1 Chinese Yuan = $0.144 US as of Dec 31, 2016) 

and 16,096 yuan per capita, which was lower than that of transformed households (190,200 yuan 

and 49,985 yuan per capita) and FSH (252,300 yuan and 74,410 per capita) (Table 2). 

On average, households surveyed had 0.50 ha cropland, and 0.11 ha cropland per capita, 

which is slightly higher than the national average of 0.095 ha per person. In our sample, ecological 

forests accounted for 47% of the total forest area. Specifically, ecological forests, which refer to 

forests with ecological and social benefits as the main functions and are delineated according to 

the regulations of the central or the provincial governments, accounted for only 27%, 42% and 

35% of the total forest area in the samples of FC, FFF and FSH, respectively. The proportion of 

ecological forests among transformed households was 32%, which was lower than that of 

traditional households (50%). Classified by forest uses, 55% of the forest area was comprised of 

timber forests, forests with the main purpose of cultivating and providing timber or bamboo, 

including arboreal forests (45%) and bamboo forests (10%). Notably, FSHs have the highest 

proportion of timber forest area (65%), and the proportions of timber forest area in households 

joining FC and FFF were 57% and 45%, respectively. 
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Among the households surveyed, they had 6.02 ha of forestland on average. The transformed 

households had 19.56 ha of forestland, which was much greater than that of the traditional 

households with 4.50 ha on average: FSHs and FCs were larger scale with 17.25 ha and 24.11 ha, 

respectively, and FFFs had 10.09 ha forestland on average. The average area of forestland transfer 

was 0.69 ha. Notably, for households joining FCs and the FSHs, their areas of transfer of forestland 

were 4.74 ha and 4.42 ha, respectively, suggesting that FC and FSH had much larger scales of 

forestland as they had leased in some forestland from others. Also, in our sample, 50% of the 

forestland had signed their legal contracts with the village, which could make them have more 

security of forestland tenure. 

2.4 Results and discussion 

The likelihood ratio Chi square of the fitted models were 149.24, 51.56, 212.93, and 314.01, 

for FC, FF, and FSHs, and the total households, respectively, all of which were strongly significant 

(p < 0.01) (Table 3). It turns out that the models fitted well with the data. The Pseudo ­R2 were 

0.107, 0.171, 0.178 and 0.138, respectively. The McKelvey and Zavoina’s ­R2 were 0.262, 0.383, 

0.260 and 0.347, respectively. The variability of dependent variable explained in these models 

were not high, perhaps because a few potential factors were missing, such as the level of 

households’ forestry skills, the quality of forestlands, local climatic conditions and the frequency 

of disasters. Of the 16 variables in the study, we found nine were statistically significant affecting 

the likelihoods of transforming to FC, six to FFF, and nine to FSHs. Overall, 12 factors were 

statistically significant in facilitating households to become FC or FFF, or FSH. 
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Table 3. Results of the logit model on transformed households. 

Variables 
Forestry 

cooperative 

Odds 

ratios 

Family 

forestry 

farm 

Odds 

ratios 

Specialized 

household 

Odds 

ratios 

Total 

transformed 

household 

Odds 

ratios 

AGE 
0.093 1.10 − 0.047 0.95 0.13* 1.14 0.086* 1.09 

(0.065)  (0.13)  (0.08)  (0.049)  

AGE2 
− 0.001 1.00 0.0005 1.00 − 0.001 1.00 − 0.0008* 1.00 

(0.0006)  (0.0012)  (0.001)  (0.0004)  

EDU 
0.13 1.14 0.51** 1.67 0.15 1.16 0.16** 1.17 

(0.11)  (0.25)  (0.12)  (0.08)  

INC 
0.00 1.00 0.0001 1.00 0.0002** 1.0002 0.0001 1.00 

(0.0002)  (0.0005)  (0.001)  (0.0009)  

POP 
0.055* 1.06 0.15** 1.16 0.08** 1.08 0.076*** 1.08 

(0.033)  (0.06)  (0.035)  (0.028)  

CRP 
0.007** 1.01 0.0001 1.00 − 0.011 0.99 0.006** 1.01 

(0.003)  (0.014)  (0.008)  (0.003)  

ECO 
− 0.67*** 0.51 − 0.85 0.43 − 0.77*** 0.46 − 0.75*** 0.47 

(0.23)  (0.54)  (0.27)  (0.17)  

TIM 
− 0.23 0.80 − 0.55 0.58 0.057 1.06 − 0.13 0.88 

(0.18)  (0.49)  (0.23)  (0.14)  

FOR 
0.001*** 1.00 0.002*** 1.00 0.003*** 1.00 0.003*** 1.00 

(0.0004)  (0.0007)  (0.0004)  (0.0003)  

TRS 
0.003* 1.00 − 0.0005 1.00 0.004*** 1.00 0.003*** 1.00 

(0.0015)  (0.003)  (0.001)  (0.001)  

CTS 
0.24 1.28 1.39** 4.01 0.78*** 2.19 0.50*** 1.65 

(0.20)  (0.68)  (0.24)  (0.16)  

LN 
1.68*** 5.37 1.38** 3.97 0.95** 2.57 1.26*** 3.51 

(0.45)  (0.68)  (0.46)  (0.30)  

FJ 
1.53*** 4.63 − 1.30 0.27 1.06** 2.88 1.09*** 2.96 

(0.49)  (1.35)  (0.52)  (0.33)  
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Variables 
Forestry 

cooperative 

Odds 

ratios 

Family 

forestry 

farm 

Odds 

ratios 

Specialized 

household 

Odds 

ratios 

Total 

transformed 

household 

Odds 

ratios 

JX 
1.58*** 4.86 0.54 1.72 1.00* 2.72 1.10*** 3.02 

(0.50)  (1.00)  (0.53)  (0.34)  

HN 
0.31 1.36 − 0.59 0.56 0.44 1.55 0.22 1.25 

(0.56)  (1.28)  (0.55)  (0.37)  

YN 
1.41*** 4.10 − 1.35 0.26 0.22 1.25 0.75** 2.11 

(0.47)  (1.22)  (0.52)  (0.33)  

SX 
0.31 1.37 − 1.72 0.18 0.20 1.22 0.09 1.09 

(0.52)  (1.43)  (0.51)  (0.34)  

Constant 
− 6.65*** 0.001 − 6.04 0.0024 − 9.00*** 0.0001 − 6.22*** 0.002 

(1.84)  (3.90)  (2.35)  (1.40)  

Observations 3318  3164  3284  3487  

Log-likelihood − 624.96  − 124.95  − 490.77  − 983.79  

Pseudo R2 0.107  0.171  0.178  0.138  

McKelvey and 

Zavoina’s R2 
0.262  0.383  0.260  0.347  

LR chi2 149.24  51.56  212.93  314.01  

Prob > chi2 0.0000  0.0000  0.0000  0.0000  

*p < 0.1; **p < 0.05; ***p < 0.01; Values in the parentheses indicate standard error of the 

coefficients; Liaoning (LN), Fujian (Fj), Jiangxi (JX), Hunan (HN), Yunnan (YN) and Shaanxi 

(SX) 

 

The OR of the variable AGE was 1.09, indicating that with an increase of individuals’ age 

increases their likelihood to convert to a transformed household by 1.09 folds. Also, age has a 

positive impact on the FSH transformed (OR = 1.14), but it seemingly does not have significant 

impacts on switching to FC or FFFs, it had a significant impact on transformation to one of the 

three new types (OR = 1.09) (Table 3). However, the parameter estimated of AGE and AGE2 were 

0.086 and − 0.0008 (p < 0.1), respectively, suggesting age of household heads increase would 
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increase the likelihood of transformation before reaching age of 56 years, and continues to get 

older would decrease the likelihood after 56 years old. Likely younger households tend to be risk 

takers and are more open to adopt new technologies and new organizational forms (Sheikh et al. 

2003). With age increase, the household heads gain additional skills and experiences and are more 

inclined to transformation (Xie et al. 2014), while they would not try a newer technology or 

organizational structure. These two effects add up so that the likelihood of transformation begins 

to decrease after they get older than a certain age. 

Education (EDU) had positive impacts on the total households transformed (OR = 1.17, 

p < 0.05). The respondents’ education was also found to significantly affect their likelihood to 

transform to FFF in particular (OR = 1.67, p < 0.05). While household income (INC) was more 

likely to positively affect its likelihood to transform to FSH (OR = 1.0002, p < 0.05) (Table 3). Our 

finding align with the findings of Wei and Liu (2013) who also found traditional households with 

higher incomes and education had greater likelihoods of transformation. McCullough et al. (2008) 

also suggested that under the consumption upgrade and restructuring of supply chains, the 

traditional households with capital and knowledge intensive production technologies are more 

transformative. They also claimed that higher incomes, more skilled labor and more educated 

households are more likely to be the transformed households. Although education has a positive 

relationship to transformation according to the results and these researches, it probably became 

negative when the household heads received more education than a certain level that would allow 

them to choose an alternative career. 

Population (POP) and total forestland area (FOR) are highly correlated with the traditional 

households converting to FC, FFF and FSH, and all household types combined (Table 3). 

Household family population relates to the labor a family can supply. Since FFF and FSH require 
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more labor, family size being positively linked to the probability of a household to transform is 

logical. McCullough et al. (2008) found that the traditional households with larger land areas are 

more likely to transform to new forms of management. Total cropland area (CRP) OR is 1.01 

(p < 0.05), which means increasing one ha of cropland would increase a household’s likelihood to 

join FC increases by 1.01 times, suggesting the complementary nature of farming and forest 

management. Households with large cropland strengthen the rural economy and consolidate 

business in rural area, including higher intentions for forest management (Xie et al. 2014; Romm 

et al. 1987). 

Unlike all other variables, proportion of a household’s ecological forest area (ECO) had a 

strong negative impact on its likelihood to transform to FC (OR = 0.51, p < 0.01), FSH (0.46, 

p < 0.01) or all of the house types combined (0.47, p < 0.01) (Table 3). If households’ forests were 

designated as ecological forests, the households can receive government subsidies and would be 

restrained from logging and other removal activities. Given this, the households might intensify 

farming or search for off-farm jobs (Liu et al. 2010). 

The positive and significant signs of area of forestland transfer (TRS) on transformation of 

FCs, FSHs, and the three types combined (Table 3), indicate that the probability of transformation 

is higher when households have transferred more forestland from others. Ceng and Xia (2014) 

found empirical evidence that the transfer of land has a positive effect on transformation from 

peasant to farmer. The forestland transfer means the households rent forestland from other 

households and thus they had larger forestland area and would pay more attention to forestry. As 

a result, these households are more likely to join FCs, establish FFF or be FSH. The signing of a 

legal contract (CTS) is also critical for the transformation. In our results, the proportion of legally 

contracted forestland positively affects the transformation to new farmers (p < 0.01), which implies 
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legal contracts are important for the successful transformation of households. The share of legally 

contracted forestland in total forestland area measures the security of forestland tenure. The 

households that signed forestland contracts with their villages could have more security of 

forestland tenure, and thus invest more in their forestland. 

In addition to respondents’ socioeconomic attributes, their geographical distributions also 

statistically significant affected their decision to switch. The largest possibility of such 

transformation was in Liaoning (LN) province, among the seven provinces in this study. Peasants 

in this province were more likely to switch to each of the three household types and all the types 

combined. Liaoning is the first province having FFF supporting policies, and it also has some early 

policies to support FC and FSH. Fujian (FJ) and Jiangxi (JX) provinces exhibited similar trends. 

Participants in these provinces transformed to all the other household types except FFF. Fujian is 

a well-developed province with a highly developed market economy and the first province that 

started collective forestland tenure reform. Both Fujian and Jiangxi have high forest coverage and 

policies supporting new types of farmers. Peasants in Yunnan (YN) province were not likely to 

switch to any new household type except FC. Yunnan, located in southwest China, is one of 

China’s most undeveloped provinces and is situated in a mountainous area. A large percentage of 

the households in this province are ethnic minorities and they are traditionally used to helping each 

other, thus local households might prefer to work together to manage their forestland. Respondents 

in Hunan (HN) and Shanxi (SX) provinces were significantly less likely to switch to any of FC, 

FFF and FSH, because of lack of policy support and underdevelopment of commercial markets. 

Households in Gansu (GS) province were the least likely to be transformed among the seven 

provinces. This is perhaps caused by the fact that Gansu is most underdeveloped among these 
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provinces with a poorly developed market economy, and part of the areas is deserts, which is not 

easy to develop as forestry. 

2.5 Conclusions and recommendation 

China is transforming from an agrarian society to an industrial society and more and more 

people are migrating from the countryside to urban areas. Currently, even the most isolated 

communities have noticeable exposure to commercial markets. This is particularly true for the 

communities dependent on forest products and non-wood forest products for sale. However, the 

transformation in terms of forest management practices and aligned market development still 

seems slow and exhibits significant regional or provincial variation. This study has identified 

factors that are significantly correlated with the transformation of traditional peasant households 

to three emerging household types namely FC, FFF, and FSH. 

The contributing factors identified in this study include age and education level of household 

head, total income of household, areas of cropland and forestland, forestland transfer, legally 

contracted and proportion of ecological forest area, as well as province. Our findings reveal that 

the age pattern is a quadratic curve. An increase in household head age increases the likelihood of 

transforming to the new categories before the age of approximately 56 years. The age becomes 

negative after getting older than 56 years. Households with well-educated heads or high income 

showed increased probabilities to transform their structure. Family size has appeared to be one of 

the strongest driving forces for traditional households to transform. Our results further reveal that 

a household’s share of cropland area has important positive impacts on potential household 

transformation, which may be attributed to its financial strength. We also conclude that household 

transformation potentials have significant variations among provinces. Households in Liaoning, 
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Fujian, and Jiangxi have higher probabilities of transformation owing to the size and strength of 

their well-developed economies. Households in Liaoning are more likely to build up FFF since 

this is China’s first province to introduce policies supporting FFF. In contrast, traditional 

households in Hunan and Shanxi provinces had the least likely to opt for household transformation. 

Our analysis shows that the household’s share of forestland area and the area of forestland 

transfer have positive impacts on potential household transformation. These results suggest that 

policy makers should improve the incentives to engage the households that have moved to cities 

or are not well versed in forestry practices, to transfer their forestland use rights. This would help 

consolidate forestland to fewer households. Our findings also reveal that the legal contract of land 

use rights is an important factor for household transformation, indicating importance of security 

of forestland tenure. As a result, the forestry authority should continue to issue the government 

sanctioned forest tenure certificates and promote the collective adoption of the legal contracts. This 

might expedite the household transformation process with the prospect of better economies of 

scale across the country. 

Rural households are gradually transforming around the world, so too is forest management 

(Keskitalo 2017). China’s households may have made substantial transformations from rural 

households in a relatively short period, but still are not the point of post-industrial societies in 

which forest management is becoming to aim more one amenities and less timber production 

(Zhang et al. 2005, 2009). We only identified FC, FFF and FSH as transformed households, and 

may have omitted many other households who have carried out transformation but not identified 

and categorized as the three types in this study. A more complete picture of household 

transformation will help the policymakers plan for more comprehensive and future oriented 

policies. 
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Chapter 3. Logging industry in the United States: employment and profitability 

3.1 Introduction 

With technological advancements, policy changes, parcelization of forestland, business 

cycle, and the change of relative costs of factors, the labor force of the logging industry in the U.S. 

has undergone dramatic changes in the past few decades (Conrad IV et al., 2018a). Employment 

in the logging industry is concentrated in the West and the South, which experienced large declines 

in employment. The employment decline was likely related to the change in the age distribution 

of the loggers (Baker and Greene, 2008; Rum-mer, 1994). Survey results from various studies have 

indicated an increase in the mean and median age of logging business owners and employees 

(Allen et al., 2008; Bolding et al., 2010; Broussard Allred, 2009; Egan, 2011; Greene et al., 2013; 

Grushecky et al., 2006; LeBel and Stuart, 1998; Leon and Benjamin, 2012). These authors discuss 

the importance of the age imbalance in logging, and many U.S. industries face an aging workforce 

as the Baby-boomer generation nears retirement age (Butler, 2008; Dorr and Feuerhelm, 2021; 

Grice et al., 2011; Schwatka et al., 2012). 

Since logging wages have increased at about the rate of inflation and the interest rate remains 

low, logging firms continue to mechanize. Capital investments were mostly used for harvesting 

and transportation equipment, in addition to buying stumpage (Shivan et al., 2020). Early in the 

2000s, the initial investment of logging firms was between $0.4 million to $1.5 million 

(Rickenbach and Steele, 2005). By the mid-2010s, the average equipment investment of Georgia 

logging firms was $1.97 million, and $2.23 million for South Carolina firms (Conrad IV et al., 

2018b). However, demand for logging workers continues despite mechanization (Abt, 2013). The 

logging firm owners have indicated that recruitment of qualified employees was a challenging 

aspect of managing their business (Bolding et al., 2010; Egan and Taggart, 2009). 
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On one hand, changes in employment and mechanization affect the cost of logging and profit, 

while on the other, firm profitably affects employment and mechanization. In some firm-level 

surveys, the profits of logging firms were decreasing (Baker et al., 2014; Blinn et al., 2015; 

Broussard Allred, 2009), while other surveys in other regions showed the profits still increasing, 

or at least stable (Egan, 2011; Milauskas and Wang, 2006; Ricken-bach and Steele, 2005). 

However, the acquisition of the profit data is solely based on the questionnaires issued to the 

selected firms. Due to time and budget constraints, only a few surveys are conducted, and the 

accuracy of self-reported firm financial data is unknown. The limits of survey data and the lack of 

industry-level data obscure our understanding of logging industry profitability. Therefore, a simple 

and cost-effective economic model to estimate the profit for the industry would be valuable to 

investigate the factors affecting profit and how changes in profit affect the operational behavior of 

logging firms and would provide information for the policymakers. 

Previous research data from logging firms were collected selectively and focused on aspects 

of the logging industry like demography, employment, harvesting systems, pro-duction level, 

operational costs, and/or profitability. The analyses were beneficial for the research in the logging 

industry. However, they failed to identify the overall situation and trends. Conflicting conclusions 

drawn from these analyses might be traced to sample size effects or regional differences. This 

paper adds both firm-level data from previous research with federal and state-level data, providing 

additional evidence for industry-level trends and relationships.  

This study focuses on the two major core factors related to business in the logging industry: 

labor and firms. The objective of this paper is to provide a quantitative analysis of U.S. logging 

industry data and present trends in employment and profitability over the last 20 to 30 years. The 

results of the study will help us better understand the factors influencing the U.S. logging industry. 
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3.2 Data and methodology 

3.2.1 Study Area 

The study area included regional and state data from New England (Connecticut, Maine, 

Massachusetts, New Hampshire, Rhode Island, and Vermont), Mid-Atlantic (Delaware, Maryland, 

New Jersey, New York, and Pennsylvania), the South (Alabama, Arkansas, Florida, Georgia, 

Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West 

Virginia), Mid-West (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, 

North Dakota, Ohio, South Dakota, and Wisconsin), the Southwest (Arizona, New Mexico, 

Oklahoma, and Texas), and the West (Alaska, Colorado, California, Hawaii, Idaho, Montana, 

Nevada, Oregon, Utah, Washing-ton, and Wyoming). 

The main interest of this paper is to study the industry-level situation and trends in the 

logging industry. Therefore, we selected indicators for the logging industry using official estimates 

of employment, wage, number of establishments, production level, and production price of logging 

industry (Code 1133 North American Industry Classification System, NAICS) at the state-level 

from U.S. Bureau of Labor Statistics, U.S. Census Bureau and U.S. Department of Agriculture, 

Forest Service. The logging industry (NAICS 1133) comprises firms primarily engaged in cutting 

timber; producing rough, round, hewn, or riven primary wood; cutting and transporting timber; 

and producing wood chips in the field (Office of Management and Budget, 2017). 

3.2.2 Data Sources 

Specifically, we extracted the data for the logging industry from Occupational Employment 

Statistics (OES), Quarterly Workforce Indicators (QWI), Quarterly Census of Employment and 
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Wages (QCEW), Timber Product Output (TPO) Reports, and Producer Price Index (PPI). Due to 

the availability of data, the analysis presented in this paper focuses on the period from 1997-2019. 

OES program collects data on wage and salary workers in nonfarm establishments for about 

800 occupations, including national and state annual employment, hourly wage, and annual wage 

data. The OES survey is a semi-annual mail survey of nonfarm establishments (Bureau of Labor 

Statistics, 2020c). The data is classified by the Standard Occupation Code (SOC) and NAICS 

Code. The data extracted from OES included state-level employment, mean hourly wage, and 

annual mean wage data of Fallers, Log-ging Equipment Operators, Log Graders and Scalers, and 

Logging Workers, All Others from 1997 to 2019 (Bureau of Labor Statistics, U.S. Department of 

Labor, 2020). 

The QWI has a set of 32 economic indicators, including employment, job creation/ 

destruction, wages, hires, and other measures of employment flows. The QWI data is based on the 

administrative records on employment collected by the states, social security data, federal tax 

records, and other census and survey data. QWI data set includes quarterly national and state 

employment and wage data for most industries. Application Programming Interfaces (APIs) can 

be applied to extract QWI data via Python, R or Excel. Package “CenPy” was used to run APIs 

from QWI on Python and Library “tidyqwi” on R. The data extracted from QWI included 

information like state-level employment data from 1997 to 2017, state-level employment by age 

classes in 1997, 2007, and 2017, state-level monthly earnings of newly stable employees in the 

logging industry and all industries in the U.S. from 1997 to 2019, and state-level total quarterly 

payroll from 2001 to 2019 (U.S. Census Bureau, 2019). 

The QCEW publishes a quarterly count of employment and wages reported by employers 

covering more than 95 percent of the U.S. jobs available at the county, state, and national levels 
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by detailed industry. The QCEW data is collected from the unemployment insurance (UI) 

accounting system, Quarterly Contributions Report (QCR), Report of Feder-al Employment and 

Wages, Annual Refiling Survey (ARS), and Multiple Worksite Report (MWR). However, QCEW 

excludes sole proprietors, the unincorporated self-employed, unpaid family members, specific 

farm and domestic workers from having to report employment data, which likely reduces the 

representativeness of the data set (Bureau of Labor Statistics, 2020a). Data from QCEW can be 

extracted through the One-Screen Data Search (Bureau of Labor Statistics, 2020f). The State-level 

Number of Establishments in the logging industry (NAICS 1133) from 2001 to 2015 were also 

extracted from QCEW (Bureau of Labor Statistics, 2020e). 

TPO is conducted by Forest Inventory and Analysis (FIA) to estimate timber products at the 

state-level. Primary wood-using mills were sampled, by state, to estimate round-wood production 

(U.S. Department of Agriculture, Forest Service, 2020). However, TPO only covers some states 

and some years. The state-level total volume of roundwood products from 1997 to 2018 was 

extracted from the TPO data set (U.S. Department of Agriculture, Forest Service, 2019). PPI data 

by NAICS Industry can be extracted at the one screen tool (Bureau of Labor Statistics, 2020d). 

However, the PPI data set does not have any state-level data. The national PPI for NAICS 1133 

from 1997 to 2018 was extracted from PPI by Industry. 

3.2.3 Methodology 

We used OES data to calculate the compound annual rate of growth with regards to the total 

hours worked in the logging industry at the state-level and used TPO data to calculate the 

compound annual rate of growth with regards to the volume of output in the logging industry at 

the state-level. Considering that the volume of output cannot reflect the improvement of product 
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quality, we introduced the price factor, PPI in logging industry with an index base set at 1981 = 

100 (Harrison and Sharpe, 2009). The volume output multiplied by PPI expressed the value of 

output, which was used to estimate the labor productivity (Moulton, 2018). The rate of growth in 

labor productivity based on volume of output is equal to the compound annual rate of growth in 

the volume of logging production minus the compound annual rate of growth in hours worked. 

And the rate of growth in labor productivity based on value of output is equal to the compound 

annual rate of growth in the economic value of logging production minus the compound annual 

rate of growth in hours worked. 

Considering the difficulty of collecting profit data and the lack of profit statistics at the 

federal or state-level, we applied a new method to simply estimate the profit of logging firms which 

was the Economic Input-Output Life Cycle Assessment (EIO-LCA) Model. EIO-LCA models are 

based on the environmental Input-Output (I/O) modeling approach (Leontief, 1986) and are 

developed by Carnegie Mellon University (Norman et al., 2007). EIO-LCA models were applied 

to estimate the materials and energy resources required for the supply chain, environmental 

emissions, and economic values. In EIO-LCA models, the output of the first tier of suppliers, 𝑋1, 

is given by Eq.(5):  

𝑋1 = (𝐼 + 𝐴)𝑦         (5) 

where I is the identity matrix, y is final demand, and A is the matrix of intermediate input 

coefficients. Eq. (5) means the sector and all other sectors need to produce I × y and A× y units of 

production, respectively, to meet the demand (Carnegie Mellon University, 2021b). 

The output of the first tier of suppliers also creates a demand for output from their direct 

suppliers, the second tier of suppliers. The final demand of the second tier of suppliers is A×A× y. 
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Consequently, the final demand of the third tier of suppliers is A×A×A× y, and so on. Thus, the 

total output can be written as: 

X = (I+A+AA+AAA+⋯)y        (6) 

where X is a vector of total output.  

The intermediate input coefficients 𝑎𝑖𝑗 can be calculated by Eq. (7): 

𝑎𝑖𝑗 = 𝑋𝑖𝑗 𝑋𝑗
−1⁄          (7) 

where 𝑋𝑖𝑗  is the intermediate transaction from industry i to industry j, 𝑋𝑗  is the total input of 

industry j. 

The value-added for any industry is the difference between its total input and the total cost 

of intermediate transactions: 

𝑉𝑗 = 𝑋𝑗 − ∑ 𝑋𝑖𝑗
𝑛
𝑖=1       (8) 

where 𝑉𝑗  is the value-added for industry j (Khongprom et al., 2020), and it is the sum of 

compensation of employees, taxes, and profits in industry j (Carnegie Mellon University, 2021a). 

3.3 Results and discussions 

3.3.1 Employment 

Declining employment is a problem endemic to the logging industry and experienced in all 

industrialized countries (Goldstein et al., 2005), such as Canada (Dodson et al., 2015) and Europe 

(Spinelli et al., 2013) with a similar situation in the U.S. The regional employment declined from 

1997 to 2017 (Table 4), and employment in the whole country fell at an annual rate of 2.0% (U.S. 
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Census Bureau, 2019). The Southwest region experienced the fastest decline of all six regions with 

a decrease of 3.9%. The Mid-Atlantic had the lowest employment and the second-fastest regional 

decline. The South, which had the highest employment, had a decline near the U.S. total at -1.8%. 

Table 4. Annual growth of employment in logging industry from 1997 to 2017.(U.S. Census 

Bureau, 2019) 

Region 
Total Employment, 

1997* 

Total Employment, 

2017 

Total Growth of 

Employment (%) 

Annual Growth of 

Employment (%) 

New England 3283 2750 -16.2 -0.9 

Mid-Atlantic 2284 1327 -41.9 -2.7 

The South 36761 25575 -30.4 -1.8 

The Southwest  3154 1430 -54.7 -3.9 

Mid-West 5206 4176 -19.8 -1.1 

The West  20853 12553 -39.8 -2.5 

* For states that had no employment data for 1997, the closest available year was used. 

The lack of newly hired workers is one of the main reasons presented for declining 

employment (Greene et al., 2013). One proposed cause of the decline in the number of younger 

loggers has been the relatively low appeal of logging employment and business creation 

(Broussard Allred, 2009). The surveys attribute difficulties in recruiting to uncertainty and 

instability concerning business outlook and seasonal (Blinn et al., 2015; Egan and Taggart, 2009; 

Shivan et al., 2020). Logging jobs are physically demanding, mostly outdoors, and require work 

in poor weather and isolated areas (Bureau of Labor Statistics, 2020b). Higher compensation may 

be required to attract new employees. However, over the years, the wages of newly hired 

employees in the logging industry have been almost the same as the average for all industries in 

the U.S., and in some years even lower (Figure 3), while other industries can offer higher pay, 

better benefits, and more steady work (Blinn et al., 2015). 
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The age class of the employees reflected the expansion of the industry into the mid-1990s 

followed by a steady decline. The mode age class shifted from 35-44 in 1997 to 45-54 (28%) by 

2007. By 2017 age classes 45-54 (25%) and 55-64 (22%) had similar em-ployment. The 55-64 age 

class showed relatively large growth from 2007 to 2017, increasing from 10% to 22% (Figure 4). 

The population in the U.S. had a similar trend and those aged 55 and older accounted for 26.7% 

and 36.7% in 1999 and 2019, respectively (Bureau of Labor Statistics, U.S. Department of Labor, 

2020). The shift in age has coincided with the decline in employment, so the shift may result from 

the aging of current workers and the limited demand for new labor. 

Figure 3. Average monthly earnings of newly stable employees in logging industry and all 

industries, US, from 1997 to 2019.(U.S. Census Bureau, 2019) 
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Figure 4. Age distribution of employees in logging industry, US, 1997, 2007 and 2017.(U.S. 

Census Bureau, 2019) 

Technical advancement is another main reason for declining employment. We estimated the 

rate of growth in labor productivity of some states in the South, Southwest and the West (Table 

5). The Volume of Output column and the Value of Output column are the rate of growth in the 

volume of logging production and the economic value of logging production, respectively. The 

Hours Worked column is the rate of growth in hours worked. Except for Tennessee and Oregon, 

both rates of growth in labor productivity were positive. The output and hours worked have 

declined in most states since 1997, but output declined at a slower pace than hours worked, which 

led to labor productivity growth. 

Although employment in the logging industry declined, the number of logging equipment 

operators remained stable, from 22,690 in 2002 to 21,110 in 2019. The fallers declined, from 8410 

in 2002 to 3180 in 2019. According to SOC codes, fallers (45-2021) use motor-manual methods 

(chainsaws) to fall trees (Bureau of Labor Statistics, 2019a). The change could indicate an increase 

in mechanization, increased productivity caused by equipment upgrades, or be related to changes 

in the terrain and forest types where timber harvesting occurred. The two states with declining 
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productivity in Table 5Table 5 also might be characterized as somewhat dependent on motor-

manual felling. However, similar states like Washington and Kentucky had growth. Although 

mechanization can replace labor, the logging industry might also face a structural shortage of labor. 

This industry did not lack workers, but the availability of skilled and technical workers may be 

limited. For example, it may take a new worker a year to master forwarder operation, including 

time on simulators (Wilson, 2017). With the progress of mechanization, logging firms increasingly 

needed equipment operators but faced difficulties in recruiting qualified employees (Bolding et 

al., 2010). 

As the data in Table 5 indicate, the production level decreased in most states across this time. 

Most of the major states for logging, such as most southern states, had varying degrees of decline 

in output and corresponding declines in employment. A small number of states, Florida, South 

Carolina, and Oregon, had increased harvest level, but employment declined. 
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Table 5. The rate of growth in output, hours worked, and labor productivity, U.S. (%).  (Bureau 

of Labor Statistics, U.S. Department of Labor, 2020; U.S. Department of Agriculture, Forest 

Service, 2019) 

Region State Report year 
Volume 

of output 

Value of 

output 

Hours 

worked 

Labor 

productivity 

(volume) 

Labor 

productivity 

(value) 

The South  Alabama 1997-2015 -1.5 -1.3 -2.3 0.8 1.0 

 
Arkansas 1997-2015 -1.4 -1.2 -4.6 3.4 3.6 

 
Florida 1997-2015 0.3 0.5 -1.5 1.8 2.1 

 
Georgia 1997-2015 -0.1 0.2 -2.2 2.1 2.4 

 
Kentucky 1997-2015 -0.3 0.0 -2.4 2.1 2.4 

 
Louisiana 1997-2015 -0.3 0.0 -2.0 1.8 2.0 

 
Mississippi 1997-2015 -1.3 -1.1 -2.5 1.2 1.5 

 
N. Carolina 1997-2015 -1.7 -1.4 -1.7 0.1 0.3 

 
S. Carolina 1997-2015 0.8 1.0 -0.7 1.4 1.7 

 
Tennessee 1997-2015 -2.5 -2.2 -0.9 -1.6 -1.3 

 
Virginia 1997-2015 0.0 0.3 -0.3 0.3 0.6 

The 

Southwest  

Oklahoma 1997-2015 -1.4 -1.1 -5.1 4.0 4.2 

Texas 1997-2013 -2.5 -2.2 -3.2 0.8 1.1 

The West  California 2000-2016 -1.8 -1.1 -4.7 3.0 3.7 

 
Colorado 2002-2016 4.5 5.8 3.7 0.7 2.0 

 
Idaho 2001-2015 0.9 2.2 -2.4 3.3 4.7 

 
Oregon 2003-2017 0.1 1.3 3.0 -2.8 -1.6 

 
Washington 2002-2016 -1.6 -0.3 -1.7 0.1 1.5 

 
Wyoming 2000-2018 3.7 4.6 -3.2 7.2 8.1 

Average 
  

-0.3 0.2 -1.8 1.6 2.1 
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3.3.2 Profitability 

Figure 5 (a) and (b) are the results of the logging EIO-LCA models with the infla-tion-

adjusted profits of logging firms and profits per logging firm (2019 Constant-dollar) in several 

states. From 1995 to 2009, the real profit and weighted average profit made by logging firms in 

these states continued to decline, reaching the lowest point in 2009 because of the economic 

recession. 

Figure 5. Inflation-adjusted (a) net profits of the logging industry at state-level and (b) net profits 

per logging firm in some states from 1995 to 2015, based on the EIO-LCA models (2019 

Constant-dollar). (Carnegie Mellon University, 2020; U.S. Census Bureau, 2019)  
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Notes: AL, MS, GA, NC, SC, LA, TX, TN, VA, and FL signify Alabama, Mississippi, Georgia, 

North Carolina, South Carolina, Louisiana, Texas, Tennessee, Virginia, and  Florida, respectively. 

Demand for logging services is highly dependent on the economic cycle. The amount of 

timber harvested has largely been impacted by the demand for wood-frame housing (Drapala, 

2009), the pulp and paper and furniture industries in the past decades (Abbas et al., 2014; 

Grushecky et al., 2006). When the economy is in boom periods, demand for construction, house 

renovation and furniture stimulate the demand for logging production, which in turn promotes the 

increase in prices and then the logging output. During an economic recession, logging suffers a 

sharp drop in profits due to the decline in demand and then prices.  

 Figure 6 demonstrates the relationship between the annual new private-owned housing units 

started in the U.S. and profit per logging firms. The new housing started can be applied as an 

indicator of demand for logging production. It can be observed that there is a positive correlation 

between profit and the new housing, as depicted in Figure 6. The new housing units started to 

reach their lowest point at 6648 in 2009 because of the economic crisis of 2008. Meanwhile, the 

profit also reached its lowest point. Following the economic crisis, the demand for housing began 

to increase, which was reflected in logging profit. Although the profit and new housing units had 

the same tendency after 2009, the profit decreased more than the new housing units during the 

recession and did not return to the level before the recession, making them not less correlated after 

2009. This may result from the increasing operating costs, which squeezed the profit. 
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Figure 6. Inflation-adjusted profit per firm and annual new privately-owned housing units started 

(2019 Constant-dollar), 2001 to 2015. (Federal Reserve, 2021; U.S. Census Bureau, 2019)  

The data show that the production level of all the states in 2009 had dropped sharply (Figure 

7 (a)), and the Annual PPI of Logging also showed a decrease (Figure 8) due to the 2008 economic 

recession. Revenues from the logging industry in several states fell sharply in 2009 and then began 

to rebound (Figure 7(b)), indicating that the revenue of logging services had been seriously 

affected by the economic recession. From the comparison of these indicators, we can confer that 

the economic cycle had an impact on demand for logging production and then affected the price 

and production level of firms, finally influencing both the revenue and the profit. 

Increasing operating costs (e.g., insurance premiums, wages, logging equipment and fuel 

costs) also reduced profit (Baker et al., 2014; Jacobson et al., 2009). Logging firms have operating 

costs as a combination of internal costs with labor, capital and operating cost components, which 

can be observed in Figure 9(a) and (b). 
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Figure 7. Logging industry (a) production level and (b) estimated revenue in some states, 1999 to 

2015. (Bureau of Labor Statistics, U.S. Department of Labor, 2020; Timber Update, 2020; U.S. 

Department of Agriculture, Forest Service, 2019) 

Notes: AL, FL, GA, LA, MS, NC, SC, TN, TX, and VA signify Alabama, Florida, Georgia, 

Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia, 

respectively. 
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Figure 8. Annual Producer Price Index of logging (Index Dec 1981=100), US, from 2001 to 

2019. (U.S. Census Bureau, 2019) 

Notes: PPI signifies Producer Price Index. 

 

We projected that wage and profits had a relatively negative correlation, as in Figure 9(a). 

For example, from 2002 to 2005, the real wages have fallen, while profits have risen. When wages 

reached a low point in 2005 and 2013, profits reached high points, which indicated logging firms 

lacked profit-sharing distributions with their employees.  

Figure 9(a) also showed that wage accounted for a larger proportion of total costs. In the 

South, the wage accounted for more than 30% of the total costs (Xu et al., 2014). Nominal wages 

in the logging industry have increased by 3.73 times since 1977, with an average annual increase 

of 3.18% (Bureau of Labor Statistics, 2019b).  
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Figure 9. Inflation-adjusted profit per firm (a) annual wage, and (b) capital stock per ton 

production (2019 Constant-dollar), 2001 to 2015. (Barynin et al., 2013; U.S. Census Bureau, 

2019) 

Notes: Green Short Ton= 2,000 pounds of fresh-cut woody material at a “green” moisture content 

(Shelly, 2007). 
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We selected the states with the largest employment in the six regions and estimated the 

annual inflation-adjusted payroll (2019 Constant-dollar) paid by per logging firms in these six 

states from 2001 to 2019 (Figure 10). Real payroll per firm in these states had risen from 2001 to 

2016, except for New York, which remained stable. Unlike the demand for logging production and 

prices, real payroll per firm in these states was not greatly affected by the economic recession. 

After 2016, real payroll per firm in Oregon and Texas fell sharply, but the average of these six 

states had increased steadily from 2001 to 2019. The increase in payroll was coincidental with the 

change in labor productivity. The average growth in labor productivity (volume) of sample states 

was 1.6%, while the labor productivity (volume) of Texas alone was 0.8%, and that of Oregon was 

-2.8% (Table 5). 

Figure 10. Inflation-adjusted payroll per logging firms (2019 Constant-dollar) in some states 

from 2001 to 2019.(Bureau of Labor Statistics, 2020d; U.S. Census Bureau, 2019) 

Notes: GA, ME, NY, MI, TX, and OR signify Georgia, Maine, New York, Michigan, Texas, and 

Oregon, respectively. 
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economic recession, led to an increase in unit capital stock. This also implies an increase in unit 

capital expenditure because some capital expenditures are fixed costs and will not decrease as the 

production level decreases. This also shows that the sharp decline in profits in 2009 was not only 

due to changes on the demand side but also due to constant labor costs and capital expenditures, 

which led to an increase in unit costs and squeezed profits. Transportation costs have also risen 

over the period, including driver wages, log truck insurance and transportation rates (Conrad IV et 

al., 2018b; Costello and Suarez, 2015). 

After 2009, real profit rose (Figure 5(a)). Low profit, resulting from low demand and rising 

costs, was previously an important reason for firm owners to leave the log-ging industry (Egan 

and Taggart, 2004). The number of logging firms had been de-creasing, and the recession starting 

in 2008 accelerated this process. In the short run, logging firms would run without making a profit 

if they could cover variable costs to meet cash flow demands. In the long term, logging firms 

would use unprofitable jobs to bridge the gap between profitable jobs, especially when idling the 

business would result in greater losses (Regula et al., 2018). 

With the reduction of profit, the impact of the 2008 economic recession, logging firms 

closed. However, the economic recovery increased demand while the number of logging firms still 

fell, leading to the rising market prices. The average firm profits have also been restored to the 

pre-recession level (Figure 5(b)). Thus, despite rising costs, increased profit began to attract new 

firms to enter the logging industry. The number of logging firms in some states stopped decreasing 

in 2015 and started to increase slightly (Bureau of Labor Statistics, 2020e). 

3.4 Conclusion  

 



49 

 

This chapter analyzed the logging industry in the U.S. in recent decades from federal and 

state-level data, including OES, QWI, QCEW and TPO. These data sets contain many state-level 

indicators from multiple states over long periods, which can provide valuable information to 

investigate the facts and trends in the logging industry. The firm-level surveys also have value, 

such as those from Georgia and South Carolina (Conrad IV et al., 2018b), Michigan (Abbas et al., 

2014), Maine (Taggart and Egan, 2011), and the South (Abt, 2013; Baker et al., 2012; Greene et 

al., 2013). These surveys can provide important information about the logging industry at the firm 

level, but those surveys were not conducted every year and suffered from small sample size and 

the associated bias. As a result, the multi-year, industry-level data can better demonstrate changes 

across the U.S. or regions and serve for comparisons between states and/or regions. The U.S. 

Bureau of Labor Statistics and the USDA Forest Service should pay attention to the construction 

of these databases, ensure the completeness and validity of the data, and strive to include data from 

more states. Thus, it would be easier for policymakers and industry practitioners to effectively 

monitor the entire logging industry. 

This paper presents a feasibility method for estimating the profit for the logging industry. 

Due to time and budget constraints and a lack of profit statistics at the industry–level, it is valuable 

to estimate profit by the EIO-LCA model, which is simple and cost-effective. It can provide 

information to support the logging business operation and policymaking. 

While it appears the declining employment resulted from the unavailability of newly hired 

workers (Greene et al., 2013), the more fundamental cause can be technological advancement 

represented by mechanization and the decline in the demand for logging production. We believe 

the decline in employment due to the inadequacy of newly hired workers is a short-term issue, 

whereas, mechanization tends to be a long-term one. This is consistent with other studies (Allen 
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et al., 2008; Baker and Greene, 2008; Broussard Allred, 2009; Leon and Benjamin, 2012). 

Additionally, the inadequacy of newly hired workers results in the continuing aging workforce, 

which Canada is also facing (Allen et al., 2008). Future research needs to apply econometric 

modeling to analyze the contemporaneous causal relations among employment, wage, 

mechanization, production price and other factors in the logging industry, and to investigate the 

dynamic relationship among employment and other factors in short and long terms.  

The labor shortage in the logging industry is a structural shortage, not a lack of labor, but a 

lack of skilled and technical workers. The structural shortage of labor will be a serious challenge 

for the logging industry. Logging firms are making up for the labor shortage through 

mechanization. However, mechanization also means increasing the qualifications of required 

workers. But based on the reality of a continuing aging workforce and the decline of younger 

workers entering, finding qualified workers could be difficult (Leon and Benjamin, 2012; Xu et 

al., 2014). A similar situation has also been reported in other countries, for example, New Zealand 

(Bayne and Parker, 2012; Kirk et al., 1997). Employers may need some assistance in on-the-job 

or off-the-job training to increase the number of qualified loggers. Skills certification and 

occupational licensing have been used to provide mobility for workers and may help employers 

easily identify qualified workers. 

Since the early 1970s, employment in the logging industry in the U.S. has been steadily 

declining, while the production level has increased significantly, mainly due to technological 

advancements. As a result, the overall productivity of the logging industry has increased. There 

are significant differences in the logging industry productivity among different regions and states. 

Georgia and South Carolina have the highest logging labor productivity. Rising productivity levels 

in the southern U.S. have been described by Conrad IV et al. (2018b). High productivity in the 
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South is largely the result of the mechanized harvest system and its compatibility with planted pine 

forests. Mechanized logging operations accounted for more than 70% of the logging firms in 

Georgia since 1987, and it has accounted for more than 80% since 1992 (Baker and Greene, 2008). 

These studies are consistent with the results of our study. However, an opposite situation has been 

identified and the logging employment in Montana, Canada, decreased by 44% since 1993, while 

production level and revenue decreased more (64% and 71%, respectively), which indicated 

productivity of the logging industry might decrease (Morgan, T.A., Keegan, C.E., Hayes, S.W., 

Sorenson, C.B., 2013). Another study from Alberta, Canada, found that the rate of technical change 

and total factor productivity growth was negative because of stringent forest management 

regulations (Wang and An, 2019). 

The logging industry is an important part of the timber supply chain and has an important 

impact on sustainable forest management. Therefore, logging firms with high production 

efficiency will determine the future of forestry in the U.S. (Conrad IV et al., 2018a; Duc et al., 

2009). Future research is needed to measure the capital productivity and total factor productivity 

of logging firms at the industry level and study the influencing factors. 

The prosperity of the logging industry is highly dependent on the economic conditions with 

an impact on both demand and price. Other studies based on firm-level data have reached similar 

conclusions: the economic recession that began in 2008 had severely affected the business 

environment in which they operated and that their profits were not sufficient to sustain their 

operations (Baker et al., 2012; Jacobson et al., 2009). Coupled with the continuous increase in 

operating costs, these two factors together have led to a wave of closures of logging firms. Similar 

situations were found in Canada (Cubbage et al., 1988; Dodson et al., 2015) and Europe (Spinelli 

et al., 2017). But it also accelerated the adjustment of the logging industry. With the decline in the 
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number of logging firms, the adjustment of business strategies and the recovery of the economy, 

the profits of logging firms have risen again. With the outbreak of COVID-19, the U.S. economy 

fell into a recession again. Subsequently, the federal government launched multiple rounds of 

economic stimulus policies, which not only stimulated the economic recovery but also promoted 

the prosperity of the real estate market. Future research can focus on the impact of COVID-19 as 

a natural experiment to study the consequences of the economic cycle on the logging industry or 

the impact of the real estate market on the logging industry. 
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Chapter 4. What drives the change in employment in the U.S. logging industry? -A Directed 

Acyclic Graph approach 

4.1 Introduction 

Forestry plays an essential role in the U.S. rural economy. For example, the forestry industry 

in Virginia generated more than $23 billion in industry output and employed nearly 145,000 people 

in 2006 (Bolding et al., 2010; Rephann, 2008). The logging industry is an integral part of the forest 

industry, providing raw materials (for example, sawn wood and wood chips) to the wood 

processing industry. It was estimated that the logging industry contributed $36.2 billion to the 

economy and created 488 thousand jobs in the U.S. (Jolley et al., 2020). In the Northern Forest 

region, the logging industry employed approximately 11 thousand employees and provided 

valuable jobs for rural communities, where no other jobs were available (Leon and Benjamin, 

2012). For example, the logging industry in Maine generates good job opportunities in rural areas 

where employment opportunities are limited (Taggart and Egan, 2011). It was estimated that 

logging and trucking industries in Maine contributed $619 million in output, 9 thousand jobs, and 

$342 million in labor income in 2017 (Bailey et al., 2020). 

However, employment in the logging industry has declined across the U.S. in recent years. 

The West and South, where the most concentrated areas of logging, have declined the most. 

Employment in the logging industry has fallen by an average of 2% per year since 1997 (Figure 

11). Oregon provides the most prominent employment opportunity in the West and even the whole 

of the U.S. The logging employment in Oregon dropped from 7,727 in 1997 to 7,408 in 2002 and 

further declined from 6,631 in 2007 to 5,262 in 2017. In 2002, Alabama had the most significant 

logging employment in the South at 5,133, while Georgia came in second at 4,968. Georgia 
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surpassed Alabama as the state with the most logging jobs in 2017, but employment in both states 

fell to 3,994 and 3,772, respectively.  

 

 

Figure 11. Employment in Logging Industry across the U.S., 1997-2019. 

This study applied the Directed Acyclic Graph (DAG) to investigate the drivers of 

employment in the U.S. logging industry from 2007 to 2017. It attempted to bridge this gap by 

exploring contemporaneous causal relationships among employment, wages, mechanization, 

logging product level and product prices. The labor market in the logging industry depends on 

both demand and supply. From the demand side, the total removal of forest resources is associated 

with the degree of mechanization and the business cycle, particularly the housing market and 

building permits, pulp and paper prices. From the supply side, the most critical variables are 

relative wages with competitive sectors. Then, this study employed the Forecast Error Variance 

Decomposition (VD), and tried to understand better the effects of these factors on employment in 

the short and long-run.  



59 

 

Previous research mainly focused on one single factor in the logging industry, such as 

demography, employment, harvesting systems, and/ or production level, and only pairwise 

directional connectedness between two variables was identified.  For example, Abbas et al. (2014) 

analyzed the employment and mechanization in Michigan and Wisconsin logging industry by 

statistical analysis and found that the decreased production level resulted from the shutdown of the 

pulp and paper industries leading to the logging equipment operators leaving the industry. 

Jacobson et al. (2009) collected data via focus groups and a survey questionnaire in Pennsylvania 

and found that the production partly affected employment through statistical analysis. Lee and 

Eckert (2002) had a similar conclusion based on statistical analysis to study the logging industry 

in the states of Washington and Oregon in the U.S. and Japan. Shivan et al. (2020) investigated 

the status of the logging industry in Michigan, Minnesota, and Wisconsin via descriptive and 

inferential statistical techniques and found that higher wages and benefits can increase 

employment. Duc et al. (2009) used the data from a mail survey in Alabama to regress production 

functions and found the elasticity between labor and machine was unitary. Allred et al. (2011) 

surveyed the midwest logging firm and applied Principal Component Analysis (PCA) and Analysis 

of variance (ANOVA) to investigate the influence of mechanization on the cost and profitability 

of the logging industry. Baker and Greene (2008) conducted a survey in Georgia and found that 

mechanization increases production per person-hour and the efficiency of the human capital using 

statistical analysis, which indicates that an increase in the capital can reduce costs, which in turn 

lowers product prices.  

However, employment, wage, mechanization, logging product prices, and production levels 

are interrelated and, therefore, a contemporaneous causal relationship needs to be established 

between these multiple variables. Some comprehensive studies systematically describe various 
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aspects of the logging industry (Boltz et al., 2003; Conrad and Greene, 2017; Conrad IV et al., 

2018; Moskalik et al., 2017), but most are literature reviews that do not focus on the reasons behind 

these facts.  

4.2 Data and empirical approach 

4.2.1 Data sources 

We extracted the data for the logging industry (Code 1133 North American Industrial 

Classification System, NAICS) to construct the time- series from Quarterly Workforce Indicators 

(QWI), Timber Product Output (TPO) Reports, Wood Supply Chain Analysis, and Timber Update 

(Table 6). Due to the limited availability of data, we are only able to work on a smaller dataset 

from 11 states (Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, 

South Carolina, Tennessee, Texas, and Virginia) for six years (2007, 2009, 2011, 2013, 2015 and 

2017). There were a few missing data in 2008, 2010, 2012, 2014, and 2016. As a result, we applied 

the average interpolation method for the missing data in between two data points. Table 6 shows 

the list of variables used in this study. To reduce the skewness of the raw data, the Emp, W, and Q 

were transformed into their respective logarithmic forms. 
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Table 6. List of variables. 

Variables Description Data Sources Unit 

Emp Employment in the logging 

industry 

QWI # 

W Average monthly earnings of 

logging workers 

QWI $ 

K Capital stock per ton production Wood Supply Chain 

Analysis 

$/Green Short 

Ton 

P Logging product price 

(stumpage price) 

Timber Update $ 

Q Logging production level TPO 1000 Cubic 

Feet 

Notes: QWI (Quarterly Workforce Indicators): 

https://qwiexplorer.ces.census.gov/static/explore.html#x=0&g=0; Wood Supply Chain Analysis: 

https://www.forestresources.org/resources/research/item/1532-wood-supply-chain-analysis-

special-market-analysis-study; Timber Update: https://timberupdate.com/timber-prices/; TPO 

(Timber Product Output Reports): http://srsfia2.fs.fed.us/php/tpo_2009/tpo_rpa_int1.php. 

4.2.2 Empirical approach 

To investigate the causal relationships among employment, wage, mechanization, logging 

product prices, and logging production levels in the logging industry, the following steps were 

identified. We first applied a multivariate time-series model, the Vector Autoregression (VAR) 

model. Secondly, we employed a graphical modeling analysis, the Directed Acyclic Graph (DAG) 

approach to capture the dynamic relationships between variables and determine their 

contemporaneous causal relationships. Finally, we conducted a structural analysis, Forecast Error 

Variance Decomposition (VD), to prove the importance of shocks in explaining changes in each 

variable in the VAR and show how the importance of shocks changes over time. 

https://qwiexplorer.ces.census.gov/static/explore.html#x=0&g=0
https://www.forestresources.org/resources/research/item/1532-wood-supply-chain-analysis-special-market-analysis-study
https://www.forestresources.org/resources/research/item/1532-wood-supply-chain-analysis-special-market-analysis-study
https://timberupdate.com/timber-prices/
http://srsfia2.fs.fed.us/php/tpo_2009/tpo_rpa_int1.php
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4.2.2.1 Vector Autoregression 

The Vector Autoregression (VAR) model was first proposed by Sims (1980), which can 

provide a framework for understanding the causal relationships of multivariate time-series data. 

This paper employed the VAR model to capture the dynamic interdependence between 

employment, wage, mechanization, logging product price, and logging production level. The VAR 

model with n variables can be written as: 

𝑌𝑡  = c +  ∑ 𝐵𝑙𝑌𝑡−𝑙
𝑝
𝑙=1 + 𝜀𝑡        (9) 

where 𝑌𝑡 is an (n×1) vector of the intended variable; c is an (n×1) vector of constants; p represents 

the lag order of the model; 𝐵𝑙 is an (n×n) matrix of autoregressive coefficients to be estimated for 

lagged l period; 𝜀𝑡 is an (n×1) vector of uncorrected random errors. In this study, 𝑌𝑡 is a (5×1) 

vector including the variables Emp, W, P, Q and K in period t; c is a (5×1) vector; 𝐵𝑙 is a (5×5) 

matrix of coefficients; 𝜀𝑡 is a (5×1) vector. 

However, the VAR model cannot explain the contemporaneous relationships between the 

variables since the correlation is hidden in the error term of the VAR model (Haigh and Bessler, 

2004; Ji et al., 2018). Additionally, it is hard to economically explain the coefficients of the VAR 

model (Sims, 1980). As a result, Directed Acyclic Graph and Forecast Error Variance 

Decomposition were widely used based on the VAR model.  

4.2.2.2 Directed Acyclic Graphs 

DAG approach was pioneered by Pearl (1995) and Spirtes et al. (2000) to explore the 

contemporaneous casual relationships and identify the causal patterns. DAG approach was first 

used to determine the causal flows based on the residual of the VAR model by Swanson and 
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Granger (1997). The residual correlation coefficient of the VAR model can be applied to build 

upon the contemporaneous causal flows by the DAG approach.  In this paper, we used the DAG 

approach to explore the contemporaneous relationships of economic factors in the logging labor 

industry and identify the causal patterns among them.  

The basic idea behind the DAG is to depict the causal link (cause → effect) between two 

variables to represent the contemporaneous causal flow. If these two variables, for example, X and 

Y, are linked by an arrow, it signifies they are adjacent. The arrow represents the causal relationship 

between X and Y. If the arrow is from X to Y (X→Y), X is referred to as the parent of Y and Y is X’s 

child (Chen et al., 2021), which suggests X results in Y. Therefore, if there is no edge between X 

and Y (X  Y), it means there is no causal relationship between X and Y. If there is a non-directed 

edge (X-Y), it means the direction of the causal relationship between X and Y is unknown. Also, 

the bidirected edges (X↔Y) indicate a bidirectional causality relationship between X and Y (Pan et 

al., 2019). However, the bidirectional edges do not exist in DAG (Chen et al., 2021). 

In this study, we applied Peter-Clark (PC) algorithm to identify the edges and direction of 

the causal relationship among the variables. The PC algorithm is divided into two steps: 

Firstly, a complete undirected graph is built up. In this graph, all the variables have an edge 

linking to every other variable. Then, the unconditional correlation test between any pairs of 

variables is carried out. If the correlation is not statistically different from zero, the edge between 

these two variables would be eliminated. 

Secondly, conditional correlation is tested for the remaining edges. The remaining edges are 

checked for the first-order conditional correlation, given any third variable. If the correlation is not 

statistically different from zero, the edge would be deleted. Then the edges which survive the first-
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order conditional correlation test are checked for second-order partial correlation and so on. The 

algorithm continues to check the conditional correlation test for N variables until (N – 2)th  order 

(Spirtes et al., 2000). 

To test whether the unconditional correlations and conditional correlations are statistically 

different from zero, Fisher’s z-statistic was applied in this study: 

𝑧[ρ(i, j|𝑘) 𝑛] =  [
1

2
 √(𝑛 − |𝑘| − 3]  × 𝑙𝑛 {

|1+ ρ(i,j|𝑘)|

1− ρ(i,j|𝑘)
}  (10) 

where n is the number of observations which are applied to calculate the correlations, ρ(𝑖, 𝑗|𝑘) is 

the population conditional correlation coefficient between series i and j, which is conditional on 

series k (Bessler and Yang, 2003).  

4.2.2.3 Forecast Error Variance Decomposition 

To analyze the dynamic structure of the VAR model, Forecast Error Variance Decomposition 

(VD) is applied to simulate how much of the forecast error variance of variables can be explained 

by exogenous shocks to the other variables and endogenous shocks by themselves (Bernanke and 

Gertler, 1995).  

A VAR model can be expressed as a Vector Moving Average (VMA) (Enders, 2008). 

Therefore, Eq.(11) can be iterated backward infinite times to obtain a moving average order:  

𝑌𝑡  = µ +  ∑ 𝐵𝑙𝜀𝑡−𝑙
∞
𝑙=0       (11) 

where μ = ( I +  𝐵1 + 𝐵2 +  𝐵3 + ⋯ )𝐵0 is an unconditional mean of 𝑌𝑡 (Alsaedi and Tularam, 

2020; Sheng and Tu, 2000). Thus, the mth  horizon forecast error is 

𝑌𝑡+𝑚 − 𝐸𝑡(𝑌𝑡+𝑚)  =  ∑ 𝐵𝑙𝜀𝑡+𝑚−𝑙
𝑚−1
𝑙=0      (12) 
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And the mth  horizon forecast error variance of 𝑦1,𝑡 is 

𝑣𝑎𝑟(𝑦1,𝑡+𝑚) =  𝜀1
2 ∑ 𝜃1,2(𝑙)2𝑚−1

𝑙=1  + 𝜀2
2 ∑ 𝜃1,3(𝑙)2𝑚−1

𝑙=1  + … + 𝜀𝑛
2 ∑ 𝜃1,𝑛(𝑙)2𝑚−1

𝑙=1   (13) 

where 𝜃 is the impulse response function. Therefore, the ratio of relative variance contribution can 

be represented as: 

𝑅1,𝑛(𝑚) =
𝜀𝑛

2 ∑ 𝜃1,𝑛(𝑙)2𝑚−1
𝑙=1

𝑣𝑎𝑟(𝑦1,𝑡+𝑚)
     (14) 

where 𝑅1,𝑛(𝑚) is represents how much of the change in Variable 1 is caused by the shock of 

Variable n at the mth  horizon (Enders, 2008). 

Because of the contemporaneous correlation among the errors of the VAR model, Cholesky 

decomposition is used to orthogonalize the covariance matrix of the residuals (Sims, 1980). 

However, the input order of the variable would be essential to the VD (Swanson and Granger, 

1997) because different input order leads to varying results of VD. The previous research confirms 

the input order based on their subjective causal assumptions and analyses (Alsaedi and Tularam, 

2020; Esmaeili and Rafei, 2021; McKenzie et al., 2009; Omisakin and Olusegun, 2008). The DAG 

approach identifies the causal patterns based on the data without any subjective assumptions and 

analyses, which can be used to confirm the input order of VD. 

Due to the panel structure of the dataset, it is necessary to test the stationarity of each panel 

series to avoid spurious regression and ensure the validity of the results. Harris-Tzavalis, Breitung, 

and PP-Fisher tests were applied to examine the dataset that shows stationarity. If all variables 

were not stationary at their level, the Johansen-Fisher panel cointegration test was performed on 

the dataset. The Johansen-Fisher test is a non-parametric test that does not assume homogeneity in 

the coefficients. After testing the stationary and cointegration of our data, a VAR model of 
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employment and the influencing factors were established. Subsequently, the DAG approach was 

applied to identify the causal relationship among the variables based on the results of the VAR 

model. Finally, the VD was utilized to investigate the dynamic relationship among the variables 

in the short- and long- run. 

4.3 Results 

The preceding section is divided into three sections: VAR, DAG and VD, which discuss the 

analysis results. The VAR section focuses on the tools used for performing the aforementioned 

analyses, including Panel Data Unit Root Test, Panel Data Cointegration Test, and  VAR. The 

DAG section is subdivided to focus on each of the paths among employment, production level, 

wage, capital, and product price. The VD section focuses on the dynamic relationship among these 

variables in the short- and long- run.  

Due to the panel structure of the dataset, it is necessary to test the stationarity of each panel 

series to avoid spurious regression and ensure the validity of the results. Harris-Tzavalis, Breitung, 

and PP-Fisher tests were applied to examine the stationarity of the dataset. If all variables were not 

stationary at their level, the Johansen-Fisher panel cointegration test was performed on the dataset. 

The Johansen-Fisher test is a non-parametric test that does not assume homogeneity in the 

coefficients. After testing the stationary and cointegration of our data, a VAR model of 

employment and the influencing factors were established. Subsequently, the DAG approach was 

applied to identify the causal relationship among the variables based on the results of the VAR 

model. Finally, the forecast error variance decomposition was utilized to investigate the dynamic 

relationship among the variables. 
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4.3.1 Panel data unit root test 

For time-series data analysis, we need to confirm the stationarity of the data series and avoid 

the potential spuriousness (Kao, 1999; Olagunju et al., 2021). As a result, applying the panel unit 

root tests is necessary before analyzing the panel data (Table 7). In our study, the Harris-Tzavalis 

(Harris and Tzavalis, 1999), Breitung (Breitung, 2002), and PP-Fisher (Maddala and Wu, 1999) 

tests were explicitly employed.  

The results show that none of the level tests on the W, P and Q rejected the null hypothesis 

of non-stationarity/existence of a unit root, but all the first difference tests on them reject the 

original hypothesis, indicating that the W, P and Q are first-different stationary and integrated of 

order one. Only the level test of the PP-Fisher on Emp and K rejected the null hypothesis and not 

the Harris-Tzavalis and Breitung test. However, all of the first difference tests on them rejected 

the null hypothesis significantly. Therefore, Emp and K can be regarded as first-different stationary 

and integrated of order one. 

Table 7. Results of panel unit root test. 

Variables                    Method H-T Breitung PP 

Level Emp 0.998 0.475 93.215*** 

W 1.003 6.670 1.817 

P 1.012 -0.147 4.881 

Q 0.997 -0.582 29.581 

K 1.022 1.618 76.207*** 

First 

Difference 

Emp 0.317*** -2.684*** 60.332*** 

W 0.7228*** -1.537* 73.476*** 

P 0.178*** -4.870*** 49.106*** 

Q 0.4834*** -1.531* 31.323* 

K 0.272*** -2.934*** 44.824*** 
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Notes: ***, **, and * denote rejection of the null hypothesis at the 1%, 5%, and 10% levels, 

respectively. 

H-T and P.P. signify Harris-Tzavalis and Phillips-Perron-Fisher, respectively. 

4.3.2 Panel data cointegration test 

As all variables are not stationary at their level but integrated under order one, it is necessary 

to employ the panel cointegration test before further econometric analysis. To make sure the results 

are robust, Pedroni Test (Pedroni, 2004) and Kao Test (McCoskey and Kao, 1998) were applied 

(Table 8). The results show that all the cointegration tests significantly reject the null hypothesis 

(no cointegration). Hence, there is strong evidence indicating that all the five variables have a long-

run stable equilibrium relationship. 

Table 8. Results of panel cointegration test. 

  Pedroni Test   Kao Test 

Modified PP 3.126*** ADF -1.865** 

PP -5.858*** 
  

ADF -6.256***     

Notes: ***, **, and * denote rejection of the null hypothesis at the 1%, 5%, and 10% levels, 

respectively. PP and ADF signify Phillips-Perron and Augmented Dickey-Fuller, respectively. 

4.3.3 Vector Autoregression 

After testing the stationarity and cointegration of our data, we build up a VAR model of 

employment and the influencing factors. Table 9 shows the results of the five-variable VAR 

residual correlation matrix. The DAG approach was applied to analyze the VAR residual 

correlation matrix of these five variables to get contemporaneous causal patterns among 

employment, wage, capital, product price, and production level. 
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Table 9. Residual Correlation Coefficient Matrix of VAR 

 Emp W P Q K 

Emp 1 
    

W 0.7996 1 
   

P 0.6773 0.6941 1 
  

Q 0.7381 0.7630 0.4336 1 
 

K -0.8987 -0.9223 -0.7380 -0.7065 1 

4.3.4 Directed Acyclic Graph results 

After testing the stationarity of each panel series and their cointegration, we carried out a 

VAR model. Following that, we applied the PC algorithm in Tetrad 6.8 to analyze the residual 

correlation coefficient matrix of the VAR model to obtain the DAG. The DAG, in turn, was used 

to disclose the contemporaneous causal structure. Figure 12 represents the Complete Undirected 

Graph on the variables. Figure 13 presents the DAG on these variables at the 20% significance 

level, which allows us to more accurately identify a contemporaneous causal relationship in a small 

sample (Spirtes et al., 2000).  

In Figure 12, the Complete Undirected Graph shows the undirected path connecting each 

variable with every other variable. It reveals that these five economic variables were interrelated 

with each other. 
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Figure 12. Complete Undirected Graph on employment in the logging industry. 

Figure 13. Directed Acyclic Graph on employment in logging industry (Significant Level at 

20%). 
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Figure 13 shows the causal relationships paths among employment, production level, wage, 

capital, and product price. There are six paths in the graph: Q 
+
→ Emp, Q 

+
→ W, W 

+
→ Emp, Q 

+
→ 

Emp, Emp 
–

→ K, and K 
–

→ P. 

The paths among employment and its influencing factors can be refined into the following 

two paths: Q 
+
→ Emp, and Q 

+
→ W 

+
→ Emp. 

• Q 
+
→  Emp: The results show that the level of production can directly promote 

employment. Higher production levels mean that logging firms need to hire more 

employees to increase production. In other words, a decline in employment may be 

caused by a decrease in product output.  

• Q 
+
→ W 

+
→ Emp: The results show that production level has a positive impact on 

wage, and wage directly impacts employment.  

Figure 13 also shows the relationship between employment, wage, capital, and product 

prices, which discussed here further： 

• Q 
+
→ Emp 

–
→ K: The production level affects capital through both employment and 

wage and indirectly affects the capital. Additionally, capital is negatively affected by 

employment, showing a substitution effect between capital and labor.  

• Q 
+
→ W 

–
→ K: The production level has a direct positive effect on wage. And wage 

negatively affected capital.  

• K 
–

→ P: The product price has a negative influence on capital. 
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4.3.5 Forecast Error Variance Decomposition results 

After analyzing the contemporaneous causal relationship via DAG, we then investigated how 

much of the change in employment across time is caused by endogenous shocks by itself and how 

much by exogenous shocks, as well as other variables. The Forecast Error Variance Decomposition 

(VD) was utilized to investigate this dynamic relationship among variables (Table 10).  

Table 10 reports the decomposition at horizons 1- to 5-, 10-, 15- and 20-year. It shows that 

employment in the logging industry is most prominently explained by the production level, 

followed by the wage. The promotion effect of production level on employment gradually 

decreases over time, and the percentage contribution decreases from 52.0% at horizon 1-year to 

37.2% at horizon 20-year. The wage has the opposite effect. The wage plays an increasing role in 

the variation of employment, with 13.6% at horizon 1-year and 42.0% at horizon 20-year. Capital 

and product price only have limited influence on employment over time. These results are also 

consistent with that of the DAG. In addition, employment is also influenced by itself with a 

percentage contribution of 34% at horizon 1-year, and then the influence decreases step-wise. The 

influence is reduced to 4% at the horizon 20-year.  

Forecast error variance for the wage is most prominently explained by the production level 

(55%), followed by the endogenous shock of the wage (45%). The shocks from employment, 

capital, and price are relatively small compared to that of production level and wage itself, which 

are consistent with those of the DAG. In addition, wage and employment play an important role 

in driving the capital. The wage keeps the stable influence on capital. On the other hand, 

employment plays a decreasing role with the extension of the forecast period.  
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Table 10. Results of Forecast Error Variance Decomposition. 

VD of Variable Horizon Q W Emp K P 

Q 1 1 0 0 0 0 
 2 0.813 0.149 0.012 0.017 0.009 
 3 0.633 0.267 0.023 0.035 0.043 
 4 0.526 0.289 0.024 0.043 0.118 
 5 0.592 0.216 0.019 0.028 0.145 
 10 0.445 0.346 0.034 0.048 0.128 
 15 0.415 0.369 0.036 0.052 0.128 
 20 0.392 0.390 0.038 0.055 0.125 

W 1 0.582 0.418 0 0 0 
 2 0.486 0.468 0.013 0.021 0.013 
 3 0.380 0.509 0.021 0.039 0.051 
 4 0.319 0.484 0.021 0.045 0.131 
 5 0.498 0.322 0.018 0.027 0.134 
 10 0.468 0.332 0.032 0.044 0.124 
 15 0.440 0.350 0.034 0.048 0.127 
 20 0.413 0.371 0.036 0.052 0.128 

Emp 1 0.543 0.128 0.329 0 0 
 2 0.496 0.287 0.186 0.018 0.013 
 3 0.397 0.372 0.146 0.035 0.051 
 4 0.318 0.373 0.134 0.042 0.133 
 5 0.469 0.262 0.085 0.027 0.158 
 10 0.437 0.351 0.036 0.048 0.128 
 15 0.412 0.372 0.036 0.052 0.128 
 20 0.390 0.392 0.038 0.056 0.124 

K 1 0.498 0.341 0.089 0.072 0 
 2 0.420 0.404 0.084 0.077 0.015 
 3 0.337 0.432 0.084 0.086 0.061 
 4 0.391 0.351 0.068 0.072 0.118 
 5 0.559 0.292 0.041 0.040 0.068 
 10 0.557 0.297 0.029 0.033 0.084 
 15 0.541 0.299 0.029 0.035 0.096 
 20 0.520 0.306 0.030 0.037 0.107 

P 1 0.188 0.315 0.071 0.006 0.419 
 2 0.263 0.156 0.037 0.003 0.541 
 3 0.583 0.199 0.022 0.016 0.180 
 4 0.571 0.318 0.031 0.033 0.048 
 5 0.492 0.397 0.038 0.047 0.026 
 10 0.510 0.388 0.038 0.043 0.022 
 15 0.522 0.378 0.037 0.041 0.022 
 20 0.534 0.368 0.036 0.040 0.023 
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4.4 Discussion 

4.4.1 Directed Acyclic Graph Analysis 

4.4.1.1 Q 
+
→ Emp 

The shrinking logging industry has accelerated the decline in logging employment. The 

amount of timber harvested in the U.S. has largely been impacted by a sharp decline in demand 

for wood-frame housing (Drapala, 2009; Yin, 2001), and a systematic reduction in the pulp and 

paper and furniture industries in the past decades (Abbas et al., 2014; Grushecky et al., 2006). In 

most major logging states, such as most southern states, demand for timber has declined to varying 

degrees (Figure 1), thereby lowering employment.  

The decline in demand for logs has caused them not to operate at full capacity. For example, 

it was  estimated only 60% of their total operating capacity in Minnesota and 73% in Michigan 

(Abbas et al., 2014; Blinn et al., 2015). The decrease in production volume led to the increase in 

unit cost because for a given size and production level, and the reduced production volume resulted 

in logging firms not operating at the lowest point of the cost curve, leading to increased operating 

costs (LeBel and Stuart, 1998). In response to declining production levels, logging firms need to 

adjust their operating capacity to return to the lowest point of the cost curve. As a result, these 

firms have to reduce the number of employees accordingly. 
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4.4.1.2 Q 
+
→ W 

+
→ Emp 

The effect of production level on wage is easy to understand because the wage is based on 

the production, at least partly (Xu et al., 2014). When the production level increases, it requires 

logging firms to recruit more employees, thereby driving up wages. In addition, existing 

employees may have to increase their working hours to match the higher production level, so 

wages also rise, and vice versa. Thirdly, the firms may offer higher wages to hire trained employees 

to increase productivity. In the context of expected experience, the wage increase for the 

performance step is reasonable (Xu et al., 2014). 

Wage has an effect on employment for two reasons. First, wages can provide market signals 

for logging firms and workers. Logging firms can raise wages to recruit more employees. Second, 

higher wages also signal opportunities and career prospects, attracting additional employees. 

4.4.1.3 Q 
+
→ Emp 

−
→ K 

Employment has a direct negative effect on capital. On the one hand, reduced employment 

can lead to an increase in capital. The U.S. logging industry faces a severe aging workforce and 

declining recruitment of the upcoming generations(He et al., 2021). As more and more employees 

retire, to recruit new employees is challenging for low profit margins and full of uncertainty, 

instability, and seasonal operations (Egan and Taggart, 2009; Shivan et al., 2020). Logging is 

physically demanding and the fatal civilian occupation in the U.S. because logging workers must 

spend all their time outdoors, sometimes in poor weather and often in isolated areas (Bureau of 

Labor Statistics, 2020; Scott et al., 2020). Logging firms cannot offer attractive salaries to attract 

new employees (He et al., 2021). As a result, the young will not enter the industry to replace those 
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who leave (Baker and Greene, 2008). Thus, the logging firms had to replace jobs through the 

substitution of capital for labor.  

On the other hand, increased employment can result in a decrease in capital. The logging 

firms, especially small-scale firms, tend to employ more staff to exploit the internal economies 

instead of investing in mechanized systems. Small-scale logging firms are widespread in the U.S. 

and have been remarkably tenacious. The small-scale logging firms are developed with a long 

history in the U.S. (Conrad IV et al., 2018). One of the main reasons for the presence of many 

small logging firms is parcelization (Milauskas and Wang, 2006; Yin et al., 1998). The number of 

forestland owners has increased rapidly in the last decade, resulting in a decline in the average size 

of forest ownerships, most of which are nonindustrial private forest (NIPF) owners (Rickenbach 

and Steele, 2006). However, the large logging firms with mechanized harvest systems may not 

match this small-scale forestland as well as the low logging volume (Greene et al., 1998). In 

contrast, small logging firms have advantages in harvesting on small size private tracts (Blinn et 

al., 2015). Unlike large firms, small logging firms do not own mechanized equipment and employ 

much staff to take advantage of the internal economies of scale (Shivan et al., 2020). Compared 

with large firms, small firms are more inclined to operate seasonally and reduce capital expenses 

to maintain efficiency. Small firms are also less likely to afford the cost of equipment repair and 

maintenance (LeBel and Stuart, 1998). As a result, small logging firms are ‘hand crews’, they hire 

employees to harvest timber by chain saw instead of harvesting systems (Egan, 2011). 

4.4.1.4 Q 
+
→ W 

−
→ K 

One of the possible reasons for this situation is that although high wages provide incentives 

for logging firms to replace labor with machines, high wages have made it difficult for firms to 
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accumulate capital. Logging firms must remain profitable to remain in business and continue 

investing in their businesses, but the high wage reduces their profitability (Jacobson et al., 2009). 

The largest contribution to costs is due to the wage. Wages account for an average of about 30% 

of the total costs in the South (Xu et al., 2014).  

As a result, confronting high wages, the logging firms, especially the small logging firms, 

cannot afford the wage costs of a large team, and they would outsource some production processes 

instead of investing in mechanized systems, which can cope with the low production level (Stuart 

et al., 2010). Logging firms tend to contract labor-intensive activities because they can alleviate 

their workload and keep a small staff crew (Wang, 1999), thus saving the salary costs. Trucking is 

a large cost for logging firms (Yin and Caulfield, 2002) and most small firms cannot afford large 

investments and expenses of trucking, so they would choose to contract out trucking, which can 

be much cheaper than operating their fleets and focus on the harvesting business (Hamsley et al., 

2007; Shivan et al., 2020).  

4.4.1.5 K 
–

→ P 

In fact, logging firms can benefit from mechanization by using more equipment and 

technology to reduce product prices and become more cost-efficient (Mac Donagh et al., 2017).  

In the past two decades, logging firms have been promoting the mechanization of harvested 

systems. The proportion of loggers using the capital-intensive mechanized harvesting systems has 

increased over time, making logging a much more capital-intensive industry (Kollberg, 2005). 

The mechanization process enables logging firms to obtain higher productivity. The 

productivity of the logging firms in most states has increased since 1997 because of the widespread 

use of mechanized harvested systems (He et al., 2021). The mechanized firms in Wisconsin 
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produced 0.73 million cubic feet per year on an average, while the non-mechanized firms produced 

only 0.23 million cubic feet per year (Rickenbach and Steele, 2005). Previous research shows that 

due to significant capital investments, production increased from 3.4 to 5.5 tons per person-hour 

between 1987 and 2012 in the South (Greene et al., 2013). According to a survey conducted in the 

northeastern U.S., the average unit cost of fully mechanized crews was 0.795 dollars/ cubic foot, 

while that of the hand-felling crews was 0.947 dollars/ cubic foot (Kelly et al., 2017). Therefore, 

the mechanized harvested systems contributed to increasing productivity, decreasing the average 

per-unit cost (Cubbage and Carter, 1994), and thus the per-unit logging product price decreased. 

4.4.2 Forecast Error Variance Decomposition Analysis 

The wage keeps the stable influence on capital. This result might be explained by the fact 

that the increase in wage has been long-term and stable in promoting logging firms to choose to 

outsource some of their businesses instead of mechanization. On the other hand, employment plays 

a decreasing role in driving capital with the extension of the forecast period. This result may be 

explained by the fact that the logging firms need to consider costs, markets, profitability, and ease 

of obtaining loans to decide whether to purchase machines in the long-run. Therefore, the impact 

of employment on capital, in the long-run, is getting lower and lower. The product price is 

determined mainly by itself in the short-run, while this endogenous shock gradually decreases in 

the long-run. This relationship may partly be explained by price rigidities, such as menu costs and 

other frictions in adjusting prices (Angeletos and Jennifer, 2009), or imperfect information (Lucas, 

JR et al., 2012; Mankiw and Reis, 2002). 
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4.5 Conclusion 

This study focuses on investigating the driving factors for employment in the logging 

industry in the U.S. from 2007 to 2017. A DAG approach was applied to study the 

contemporaneous causal relations among employment, wage, mechanization, logging product 

prices, and production levels. The VD was then employed to analyze the dynamic relationship 

among variables. 

The results of the DAG analysis show that there are two conduct paths affecting employment 

in the logging industry. First, the production level directly impacts employment and has a positive 

impact on employment. Second, the production level drives wages, and wages promote 

employment. In addition, the production level affects mechanization through its impact on 

employment and wage, followed by the influence of mechanization on the product price. The VD 

results based on the DAG and VAR model verify that employment is most prominently explained 

by the production level, followed by the wage. The wage is not only influenced by itself but also 

by the production level. The wage and employment influence mechanization largely. The product 

price is mainly influenced by itself in the short-run, while this endogenous shock gradually 

decreases in the long-run. 

Based on the previous empirical results, we put forth the following policy implications and 

suggestions. First, if the policy goal is to promote employment and maintain employment stability, 

then increasing logging production supplies from small and medium-sized logging firms would be 

helpful since they are more inclined to hire employees to reinforce the competitive position of 

large firms rather than mechanization. A broadly similar point has also been made by Lee and 

Eckert (2002). Second, although mechanization can solve the shortage of employment and reduce 

product prices, many logging firms still hire employees instead of purchasing machines because 
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consideration of several conditions was needed to achieve mechanization: low loan interest, ease 

of obtaining loans, efficient equipment maintenance, reasonable operating costs, and production 

level compatible with mechanized harvesting systems (Cook et al., 2021; He et al., 2021; Mac 

Donagh et al., 2017). As a result, if the policy goal is to promote the mechanization of the logging 

industry, for example, to reduce the price of timber products, then policymakers at least need to 

address these obstacles, providing tax breaks, loan concessions, and fiscal subsidies for those firms 

which are going to purchase mechanized logging system. Third, with the advancement of 

mechanization, the logging workers also need to keep up with technological progress. The 

policymakers can offer some skills training programs to increase the number of qualified logging 

machine operators, for example, assisting the ‘hand crews’ transform into mechanized crews. 
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Chapter 5. Nowcasting of lumber futures price with Google Trends Index: Using Machine 

Learning and Deep Learning Models 

5.1 Introduction 

Lumber futures have been traded at Chicago Mercantile Exchange since 1969 (Mehrotra and 

Carter 2017). Since the COVID-19 pandemic, the lumber futures price has experienced huge 

volatility. Figure 14  plots the daily opening price of lumber futures from May 3, 2011, to May 28, 

2021. The opening price of lumber futures plummeted on April 1, 2020, and then returned to the 

normal level before the pandemic. After that, it continued to climb steeply and finally reached its 

highest point in 10 years on May 7, 2021, with $1,677 per thousand board feet (mbf). It was $425.9 

per mbf on January 21, 2020, when the first COVID-19 case in the United States was confirmed 

(Sahu and Kumar 2020). The average opening price from May 2011 to January 2020 was $337 per 

mbf, while the average opening price from February 2020 to May 2021 was $698 per mbf. The 

unusual fluctuations exposed lumber futures products that were originally designed to hedge 

uncertainties to huge risks. Therefore, there is an urgent need to find a reliable method to predict 

the lumber futures price, which would help enterprises and investors hedge risks and make correct 

decisions in the market. 
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Figure 14. The opening prices of lumber futures, US, May 2011 -May 2021. 

 In recent decades, several lumber price prediction methods have been proposed, such as 

ordinary least-squares regression (Mehrotra and Carter 2017), vector autoregressive model (VAR) 

(Song 2006), autoregressive integrated moving average model (ARIMA) (Buongiorno and 

Balsiger 1977, Oliveira et al. 1977, Banaś and Utnik-Banaś 2021), seasonal autoregressive moving 

average model (SARIMA) (Banaś and Utnik-Banaś 2021), seasonal autoregressive moving 

average model with exogenous variables (SARIMAX) (Banaś and Utnik-Banaś 2021), forest 

simulation model (FORSIM) (Buongiorno et al. 1984), and sales & operations planning network 

model (Marier et al. 2014). Most of the literature on lumber price prediction is based on traditional 

statistical models (Marier et al. 2014), econometric models (Banaś and Utnik-Banaś 2021, 

Buongiorno and Balsiger 1977, Mehrotra and Carter 2017, Oliveira et al. 1977, Song 2006), or 
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mathematical models (Buongiorno et al. 1984). So far, only one paper has used a recurrent neural 

networks model, which is a deep learning method to predict the closing price of lumber futures in 

the next few days using the price obtained from the previous few days (Verly Lopes et al. 2021). 

 In other domains, machine learning models and deep learning models were widely used for 

time series forecasting. A support vector machine (SVM) method was employed to forecast the 

daily electrical load (Singh and Mohapatra 2021) or wind speed (Gangwar et al. 2020). A random 

forest method was conducted in other studies to estimate poverty (Zhao et al. 2019) or the biomass 

weight of wheat (Zhou et al. 2016). XGBoost was run to forecast crude oil price (Gumus and Kiran 

2017) or sales of the enterprise (Gurnani et al. 2017, Ji et al. 2019). Classification and regression 

tree (CART) was carried out to forecast precipitation (Choubin et al. 2018) or currency exchange 

rate (Haeri et al. 2015). And the deep learning models, including artificial neural network (ANN), 

recurrent neural network (RNN), and convolutional neural network (CNN), were applied to 

forecast construction material prices (Mir et al. 2021), photovoltaic power (Abdel-Nasser and 

Mahmoud 2019), gas demand (Su et al. 2019a), stock markets (Hoseinzade and Haratizadeh 2019), 

or river discharges (Awchi 2014). Overall, machine learning models and deep learning models 

have been widely employed to predict economic indicators, socioeconomic indicators, and science 

indicators. Machine learning models and deep learning models are statistical approaches. 

Compared to the traditional econometric models, they capture the hidden nonlinear characteristics 

among variables and provide more accurate predictions, while the econometric models are based 

on strict linear assumptions (Herrera et al. 2019) and might overfit the sample and yield forecasting 

error (Shobana and Umamaheswari 2021). 

 Some previous studies predicted the future lumber price based on the past values, which is 

an autoregressive technique (Song 2006). Other studies use some exogenous independent variables 
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to predict the lumber prices, such as the construction confidence index (Banaś and Utnik-Banaś 

2021) and specific characteristics of the lumber supply chain (Marier et al. 2014). Models that 

include exogenous independent variables can produce good prediction results because the 

exogenous variables normally contain more information. However, none of these studies included 

public attention as an exogenous variable. Google is the most popular search engine in the United 

States. Google Trends is a publicly available service provided by Google. It provides access to 

aggregated information about different search queries and how those queries change over time. 

The Google Trends index is an index measuring search volume of different queries over time. 

Users can use the Google Trends index to observe changes in the query volume of certain keywords 

over time and compare the query volume of different keywords over time. This provides an 

opportunity to capture the interest and concern of the public in real time without any cost. 

Therefore, Google Trends index is widely used to predict economic indicators and socioeconomic 

indicators, such as sales, unemployment, travel, consumer confidence (Choi and Varian 2012), 

consumer behavior (Carrière-Swallow and Labbé 2013), housing market (Dietzel 2016), the stock 

price (Hu et al. 2018), and so on. 

 This prospective study aims to use the Google Trends index of some keywords from the 

previous day to predict the next day’s opening price of lumber futures. Nowcasting is the process 

of predicting the present, the very near future, or the very recent past value of an indicator based 

on real-time data (Banbura et al. 2010, Chumnumpan and Shi 2019). Nowcasting the opening price 

of lumber futures can help investors to take appropriate actions during the premarket trading hours 

between 8:00 a.m. to 9:30 a.m. Eastern each trading day. It would have a beneficial impact on 

hedging risks and expanding trade opportunities (Dungey et al. 2009). It would also be useful in 

helping enterprises navigate during normal and unusual times such as a pandemic. The statistical 



90 

 

significance of the keywords of the Google Trends index will change over time. In other words, 

different factors have various effects on lumber futures price in different situations. The models 

can dynamically select the keyword variables in different time periods. As a result, the components 

of variables will change to capture dynamic trends of the real world. This study fills the gap in the 

literature by using machine learning and deep learning models to nowcast the lumber futures prices 

via Google Trends index. 

 This section consists of five sections. The “Data” section briefly introduces the data. The 

“Prediction Models” section describes the models adopted in this study. The “Results and 

Discussion” section  presents and discusses the results, and the “Conclusion” section concludes 

this study. 

5.2 Data 

5.2.1 Data collection 

The Chicago Mercantile Exchange lumber futures price daily data were extracted from 

Investing.com. The dataset includes opening price, closing price, highest price, and lowest price 

of lumber futures. The data are from May 2011 to May 2021, with a total of 2,523 entries of data. 

The opening price of lumber futures is plotted in Figure 14. 

 The actual Google search requests for some lumber price–related keywords were then 

extracted from Google Trends index to match the same time series as the lumber price datasets. 

Keyword variables include 2 by 4 (a length of sawn wood 2 inches thick and 4 inches wide), BDFT 

(board foot), CLT (cross-laminated timber), commodity, DIY (do it yourself), fire, forest products 

association, forestry, hardwood, harvest, home building, home improvement, home renovation, 
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invest, logging, logs, lumber futures, lumber price, lumber yard, MDF (medium density 

fiberboard), OSB (oriented strand board), plywood, sawmill, softwood, stock market, timber, and 

wood. Research has seen an effect on the lumber prices for a reduction in the quality of softwood 

lumber or in that case any lumber. Hence, more general keywords were included instead of the 

specific kinds of lumber. For example, the Southern pine and Douglas-fir lumber, which are the 

two most commercially important types of softwood lumber, have not changed in strength and 

stiffness over the last five decades (Miyamoto et al. 2018, França et al. 2021, Shmulsky et al. 2021, 

Babula and Zhang 2019, Babula et al. 2012, Zhang and Sun 2001), and thus they were not included 

in the keywords. 

 Google Trends index will standardize the data to a scale of 0 to 100 to represent the 

“interest over time.” But the scale of this data set will change if the same variable is colisted with 

other keywords or if the time range is changed. Therefore, it is important to always extract the 

same combination of words in the same time range during the modeling and prediction process to 

avoid restandardization of the same data set to different scales. However, the many years of daily 

keyword data cannot be downloaded directly from Google Trends. In order to avoid 

restandardization, application programming interface (API) was applied to extract Google Trends 

index data via R. The library “gtrendsR” on R was employed to extract the Google Trends index, 

and it retrieves the index via APIs. The descriptive statistics of opening price and closing price of 

lumber futures price and the whole Google Trends index of keywords is provided in Table 11. 
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Table 11. Descriptive statistics of lumber price and Google Trends Index, US, May 2011 – May 

2021. 

    Count Mean Std Min 25% 50% 75% Max 

Google  

Trends  

Index 

2 by 4 2523 0.014 0.017 0.000 0.004 0.007 0.018 0.148 

bdft 2523 0.003 0.024 0.000 0.000 0.000 0.000 0.500 

clt 2523 0.185 0.093 0.000 0.111 0.174 0.249 0.500 

commodity 2523 0.060 0.027 0.007 0.040 0.057 0.073 0.260 

DIY 2523 2.053 1.362 0.200 1.210 1.950 2.400 12.420 

fire 2523 31.476 9.235 7.360 25.440 30.680 36.580 100.000 

forest products 

association 
2523 0.013 0.073 0.000 0.000 0.000 0.000 0.890 

forestry 2523 0.429 0.131 0.070 0.336 0.420 0.507 1.000 

hardwood 2523 0.082 0.034 0.020 0.060 0.080 0.100 0.210 

harvest 2523 0.357 0.181 0.050 0.240 0.300 0.450 2.240 

home building 2523 0.054 0.018 0.007 0.042 0.052 0.064 0.153 

home improvement 2523 0.041 0.060 0.000 0.010 0.020 0.030 0.400 

home renovation 2523 0.033 0.022 0.000 0.016 0.030 0.047 0.126 

invest 2523 1.523 0.694 0.304 1.035 1.382 1.849 6.000 

logging 2523 0.650 0.130 0.231 0.557 0.650 0.739 0.990 

logs 2523 0.042 0.021 0.010 0.020 0.040 0.060 0.140 

lumber futures 2523 0.0001 0.0007 0.0000 0.0000 0.0000 0.0000 0.0128 

lumber price 2523 0.001 0.004 0.000 0.000 0.000 0.001 0.044 

lumber yard 2523 0.008 0.007 0.000 0.003 0.006 0.011 0.046 

mdf 2523 0.197 0.078 0.018 0.143 0.191 0.248 0.470 

OSB 2523 0.226 0.123 0.000 0.140 0.211 0.291 1.000 

plywood 2523 0.777 0.273 0.207 0.577 0.740 0.918 2.000 

sawmill 2523 0.475 0.148 0.080 0.370 0.466 0.572 0.980 

softwood 2523 0.0002 0.0002 0.0000 0.0000 0.0002 0.0004 0.0028 

stock market 2523 0.707 2.003 0.020 0.150 0.280 0.540 35.000 

timber 2523 1.544 0.333 0.619 1.325 1.530 1.734 3.230 

wood 2523 12.518 4.947 3.630 9.180 11.760 15.360 37.600 

Opening Price of Lumber Futures 2523 384.8 186.1 211.9 292.5 336.6 390.5 1677.0 

Closing Price of Lumber Futures 2523 384.7 186.7 209.7 292.7 336.3 390.0 1686.0 
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5.2.2 Variable Selection 

To increase the model interpretability, remove redundant or irrelevant variables, and reduce 

overfitting, least absolute shrinkage and selection operator (LASSO) was first applied to perform 

independent variable selection (Fonti and Belitser 2017). The LASSO estimate can be written as 

𝛽̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛽

{
1

2
∑ (𝑦𝑖 −  𝛽0 −  ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )

2𝑁
𝑖=1 +  𝜆 ∑ |𝛽𝑗|𝑝

𝑗=1 }    (15) 

where λ ≥ 0 is a constant parameter that controls the strength of regularization. The value of λ is 

directly proportional to the amount of regularization (Muthukrishnan and Rohini 2016, Fonti and 

Belitser 2017). In the LASSO process, the variables that have nonzero coefficients after the 

regularization are selected as part of the model (Fonti and Belitser 2017). As a result, the lumber 

futures closing price, and the Google Trends index of the four terms “2 by 4,” “commodity,” 

“invest,” and “lumber futures” were selected as the feature inputs of the models (Table 12). Figure 

15 plots the daily Google Trends index of the above keywords from May 3, 2011, to May 28, 2021. 

Table 12. LASSO results. 

Variable LASSO Variable LASSO Variable LASSO 

Close 0.002241 harvest 0 mdf 0 

2 by 4 0.063729 home building 0 OSB 0 

bdft 0 

home 

improvement 0 plywood 0 

clt 0 home renovation 0 sawmill 0 

commodity -0.35150 invest 0.007146 softwood 0 

DIY 0 logging 0 stock market 0 

fire 0 logs 0 timber 0 

forest products 

association 0 lumber futures -8.96809 wood 0 

forestry 0 lumber price 0   

hardwood 0 lumber yard 0   
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Figure 15. Google Trends Index after LASSO, US, May 2011 -May 2021. 

5.2.3 Sample Splitting 

Before building up the models, the dataset was divided into two subsets: a training set and a 

test set, which can avoid overfitting the models and improve the accuracy of the models (LeCun 

et al. 2015, Roelofs et al. 2019). The models will be trained on the training set, and the fitted 

models will be used to estimate the predicted value in the test set, which can provide an evaluation 

of the models. The different splitting rate of the data set is selected in respect to the object of 

characteristics of the studied subjects (Tao et al. 2020, Nguyen et al. 2021) and the sample size 

(Tai et al. 2019). In this study, considering that the lumber price does not fluctuate abnormally 

until the second half of 2020 and there are thousands of entries of samples, the splitting rate of the 

data set is determined to be 95 percent. The training set and the test set contain 95 and 5 percent 
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of the total sample, respectively, which means the data of the first nine and a half years (May 3, 

2011, to November 24, 2020) was used as the training set, and the data of the last six months 

(November 25, 2020, to May 28, 2021) will be used as the test set. 

5.3 Prediction models 

Machine learning (ML) models and deep learning (DL) models have emerged with the 

advent of big data technology and gained in popularity as frontier prediction methods (Liakos et 

al. 2018). Machine learning models are the algorithms of providing machines the ability to 

optimize the performance without being strictly programmed (Schmidt et al. 2019, Kadam et al. 

2020). Machine learning models include support vector machine (SVM), random forest, XGBoost, 

classification and regression trees (CART), and many more (Friedman et al. 2001). Deep learning 

models are defined as representation-learning algorithms composed of processing units organized 

in input, hidden layers, and output layers (LeCun et al. 2015, Shrestha and Mahmood 2019). Deep 

learning models include artificial neural network (ANN), recurrent neural network (RNN), and 

convolutional neural network (CNN) (Miotto et al. 2018). 

5.3.1 Machine Learning Models 

5.3.1.1 Support Vector Machine 

Support Vector Machine is an algorithm that maximizes a specific mathematical function 

based on a given data set (Noble, 2006). SVM can be applied to time series prediction by 

introducing kernel functions (Pyo et al., 2017). In the SVM, the input vector 𝑥 is mapped to the 

high dimensional feature space using the nonlinear mapping function 𝛷(𝑥) and run regression in 

the space (Wang et al., 2008). The SVM can be represented as the following equation: 
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𝑦𝑆𝑉𝑀̂ =  𝑏 + ∑ 𝑤𝑖𝛷𝑖(𝑥)𝑛
𝑖       (16) 

where 𝑦𝑆𝑉𝑀̂  is the predicted value, parameters b and 𝑤𝑖   can be estimated by minimizing the 

regularized risk function: 

𝑅(𝐶) = 𝐶 
1

𝑛
 ∑ 𝐿𝜀(𝑦,𝑛

𝑖=1 𝑦𝑆𝑉𝑀̂) +  
1

2
 ‖𝑤‖2       (17) 

where C is a regularization constant, 𝑦 is the actual value,  𝐿𝜀 is the loss function, 
1

2
 ‖𝑤‖2 is a 

measurement of function flatness. By introducing the kernel function 𝐾(𝑥, 𝑦), the Eq. (17) can be 

transformed into the explicit form: 

𝑓𝑆𝑉𝑀(𝑥, 𝜕𝑖 , 𝜕𝑖
∗) =  ∑ (𝜕𝑖 − 𝜕𝑖

∗)𝐾(𝑛
𝑖=1 𝑥, 𝑥𝑖) + 𝑏        (18) 

where 𝜕𝑖 and 𝜕𝑖
∗ are the Lagrange multipliers which satisfy the condition: 𝜕𝑖 × 𝜕𝑖

∗ = 0, 𝜕𝑖 ≥ 0 and 

𝜕𝑖
∗ ≥ 0 (Choudhry and Garg, 2008; Wang et al., 2008). In this study, the 𝐾(𝑥, 𝑥𝑖) is the polynomial 

kernel function: 

𝐾(𝑥, 𝑥𝑖) = (𝑥𝑥𝑖)3      (19) 

where 𝑥𝑖 is the sample in the training set (Choudhry and Garg, 2008). 

5.3.1.2 Random Forest 

Random Forest is an algorithm that obtains the output by combining many decision trees to 

form forests (Breiman, 2001). Specifically, it selects a bootstrap sample from the training set, 

which is selected randomly with replacement, and then obtains the optimal split point to split the 

node into two subtrees by minimizing MSE, which is called growing a random forest tree, 𝑇𝑚. 

After creation of M trees, the final output of Random Forest is defined as (Huang and Liu, 2019; 

Peng et al., 2021; Yoon, 2021): 
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𝑦𝑅𝐹̂ =  
1

𝑀
∑ 𝑇𝑚(𝑥)𝑀

𝑚=1       (20)  

5.3.1.3 XGBoost 

XGBoost is a regression tree algorithm, which is also called Extreme Gradient Boosting. 

XGBoost is based on the Gradient Boosting Decision Tree algorithm and applies the addition of 

regularization terms to control the complexity of the model, which can prevent overfitting and 

improve the accuracy (Peng et al., 2019). As a result, the objective functions consist of two parts: 

training loss 𝐿(θ) and regularization Ω(θ): 

𝑜𝑏𝑗(θ) = 𝐿(θ) +  Ω(θ)     (21) 

where 𝜃 is the parameter (Gurnani et al., 2017; Peng et al., 2019). The training loss is defined as: 

𝐿(θ) =  ∑ (𝑦𝑖 − 𝑦𝑋𝐺𝐵𝑖̂
)𝑛

𝑖=1      (22) 

where 𝑦𝑖 is the actual value. In the XGBoost, each inner node represents the value of the attribute 

test, and the leaf node with values represents a decision (Shilong and others, 2021). 𝑦𝑋𝐺𝐵𝑖̂
 is the 

output, which is the sum of all predict values form M trees and can be written in the form: 

𝑦𝑋𝐺𝐵𝑖̂
=  ∑ 𝑓𝑚(𝑥𝑖)

𝑀
𝑚=1 , 𝑓𝑚 ∈ 𝐹     (23) 

where m is the number of trees, 𝑥𝑖 is the ith training sample, 𝑓𝑚 is the value for the mth tree in the 

functional space 𝐹 (Peng et al., 2019; Shilong and others, 2021).  

The target function can be finally expressed as: 

𝑜𝑏𝑗(𝜃) = ∑ 𝐿(𝑦𝑖, 𝑦𝑋𝐺𝐵𝑖̂
)𝑛

𝑖=1 +  ∑ 𝛺(𝑓𝑚)𝑀
𝑚=1     (24) 
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5.3.1.4 Classification and Regression Trees 

Classification and Regression Trees (CART) is a non-parametric statistical model, which is 

employed for classification problems or regression problems. If the output variable is continuous, 

the CART model will generate a regression tree. The CART tree is a hierarchical binary tree that 

is built up by splitting subsets of the data set by applying all output variables to generate two sub-

nodes repeatedly. For determining the splitting, each predictor is evaluated to discover the best cut 

point, based on the least-squares deviation (LSD) impurity measure, R(t) (Mahjoobi and Etemad-

Shahidi, 2008; Samadi et al., 2014): 

𝑅(𝑡) =
1

𝑁𝜔(𝑡)
∑ 𝜔𝑖𝑖∈𝜔 𝑓𝑖(𝑦𝑖 − 𝑦̅𝐶𝐴𝑅𝑇(𝑡))2   (25) 

where 𝑁𝜔(𝑡) is the weighted number of records at node t, 𝜔𝑖 is the value of the weighting field for 

record i, 𝑓𝑖 is the value of the repeat field, 𝑦𝑖 is the value of the target field, and 𝑦̅𝐶𝐴𝑅𝑇(𝑡) is the 

mean of the output variable at node 𝑡. 

5.3.2 Deep Learning Models 

5.3.2.1 Artificial Neural Network 

The Artificial Neural Network (ANN) Model connects the units called artificial neurons to 

generate complex networks (Kurbatsky et al., 2014; Su et al., 2019b). In each unit, there is an 

activation function, 𝑓, which applies the input variables, 𝑥𝑖 , to generate the output value. The 

output of a unit conveyed to next unit as an input via a weighted connection. Given a unit, 𝑗, the 

output of this unit can be expressed as (Su et al., 2019b): 

𝑦𝐴𝑁𝑁𝑖
̂ = 𝑓𝐴𝑁𝑁(∑ 𝜔𝑖𝑗𝑥𝑖

𝑛
𝑖=1 +  𝑡𝑗)    (26) 
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where 𝜔𝑖𝑗 is the connection weights, 𝑡𝑗 is the bias term. The activation function, 𝑓𝐴𝑁𝑁 is rectified 

linear unit activation function in this study. The ANN model in this study is composed of an input 

layer, 7 hidden layers, and an output layer. The output layer sums up the output of units from 

hidden layers. Different values of hyperparameter were tested and the model with the best 

performance has a batch size 8, epochs 100, an optimizer of Adam, loss function of mean squared 

error, and one hidden layer with 64 units in this study. 

5.3.2.2 Recurrent Neural Network 

Recurrent Neural Network (RNN) is a model of Neural Network. It applies the previous 

values of observations to calculate the future value by connecting the computational units from a 

directed circle (Moghar and Hamiche, 2020; Selvin et al., 2017). However, the RNN confronts 

two problems: vanishing gradient and exploding gradient (Bouktif et al., 2018). As a result, Long 

Short-Term Memory (LSTM) was introduced to solve these problems in this study. The U.S.ually 

hidden layers were replaced with LSTM cells. The LSTM cells consist of input gate, forget gate, 

output gate, and cell state, which makes it possible to control the gradient flow and then overcome 

the vanishing and exploding gradient problems (Bouktif et al., 2018; Selvin et al., 2017). The 

LSTM cell can be expressed as (Bouktif et al., 2020): 

𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓)     (27) 

𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)     (28) 

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 · [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑐)    (29) 

𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜)     (30) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡)      (31) 
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where 𝑥𝑡 is input vector at time t, ℎ𝑡−1 and ℎ𝑡 are output vector of hidden units at time t-1 and time 

t, respectively. 𝑓𝑡 , 𝑖𝑡 and 𝑜𝑡 are forget, input, and output gate vector, respectively. 𝑐𝑡 is the cell 

state vector. 𝑊∗  and 𝑏∗  are the weight matrices and bias vector parameters of the LSTM unit, 

respectively. In this study, the RNN model is composed of an LSTM layer with 500 units and has 

epochs 50, batch size 9, an optimizer of Adam, and loss function of mean squared error. The 

activation function and recurrent activation function are hyperbolic tangent activation function and 

hard sigmoid activation function, respectively. 

5.3.2.3 Convolutional Neural Network 

Convolutional Neural Network (CNN) is a class of feedforward neural networks, which can 

be effectively applied in image recognition, natural language processing, and time-series data 

prediction (Lu et al., 2020). CNN consists of convolution layer, pooling layer, and fully connected 

layers. It extracts data features via the convolution layer and connects the units locally using the 

pooling layer, which reduces the redundant features (Chen et al., 2021). Then it converts the 

features in the previous layers to the final output using fully connected layers, which can be 

expressed as (Balaji et al., 2018): 

𝑦𝐶𝑁𝑁𝑖
𝑗̂ =  𝑓𝐶𝑁𝑁(∑ 𝑦𝐶𝑁𝑁𝑘

𝑗−1̂
𝑘 𝑤𝑘,𝑖

𝑗−1
)     (32) 

where 𝑦𝐶𝑁𝑁𝑖
𝑗̂  is the output value of unit i at the layer j, 𝑦𝐶𝑁𝑁𝑘

𝑗−1̂
 is the output value of unit k at the 

layer j-1, 𝑓𝐶𝑁𝑁 is the activation function. In this study, the activation function of CNN is rectified 

linear unit activation function. 𝑤𝑘,𝑖
𝑗−1

 is the weight of the connection between unit k at layer j-1 and 

unit i at layer j. In this study, the data is convoluted through a 1 dimensional convolution layer 

(Conv-1D layer) within 16 units, and then the Max Pooling layer. Next, the data is convoluted 
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through another Conv-1D layer within 32 units, and then the Global Max Pooling layer. The 

activation function is Rectified Linear Unit. The CNN model has epochs 1500, an optimizer of 

Adam, and a loss function of mean squared error. 

5.3.3 Evaluation of models 

To evaluate the performance of these models, the Mean Squared Error (MSE), Mean 

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Symmetric Mean Absolute 

Percentage Error (SMAPE) were used as the criteria. The measures are as follows: 

MSE = 
1

𝑁
∑ (𝑦𝑖̂ −  𝑦𝑖)2𝑁

𝑖=1      (33) 

MAE = 
1

𝑁
∑ |𝑦𝑖̂ −  𝑦𝑖|

𝑁
𝑖=1       (34) 

MAPE = 
100%

𝑁
∑ |

𝑦𝑖̂− 𝑦𝑖

𝑦𝑖
|𝑛𝑁

𝑖=1      (35) 

SMAPE = 
100%

𝑁
∑

|𝑦𝑖̂− 𝑦𝑖|

(|𝑦𝑖̂| + |𝑦𝑖|)/2

𝑁
𝑖=1     (36) 

where 𝑁 is the number of training set samples or test set samples, 𝑦𝑖 is a real value at time 𝑡, and  

𝑦𝑖̂  is the corresponding predicted value. 

5.4 Results and discussion 

In this study, a baseline model was established, based on the naïve forecasting method, to 

provide the required point of comparison when evaluating all other models.1 Naïve forecasting is 

 
1 We have built up a multiple linear regression (MLR) model with the open price at time t − 1 according to the 

recommendations. The MSE, MAE, MAPE, and SMAPE of the MLR model are 2067.48, 30.65, 2.89, and 2.90 percent, 

respectively. Overall, the performance is slightly better than the naïve forecasting, but does not differ substantially. 

Therefore, we decide to use the naïve forecasting model, the common baseline method in the machine learning 

research field. This also follows the zero rule algorithm for the baseline method (Choudhary and Gianey 2017). 
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the method in which actual values in the last period are simply taken as predicted values in this 

period. In the baseline model, the opening price at the previous time step t − 1 was used to be the 

predicted value at the time step t.2 

The prediction results of different models of the test set are shown in Figure 16, which 

contains 127 observations from November 25, 2020, to May 28, 2021. All four machine learning 

models and three deep learning models showed strong predictive ability because the predicted 

lumber prices are close to the actual prices. 

Figure 16 shows that the random forest, XGBoost, CART, ANN, RNN, and CNN models 

can capture the trends and dynamics in the test set, while the SVM model fails to identify the 

pattern in the highest price interval, which makes the nowcasting less accurate. It should be noted 

that the actual lumber price in the test set is much higher than that in the training set. Most of the 

machine learning and deep learning models can still capture the trends and identify the pattern. 

This shows that the machine learning and deep learning models have the ability to extract hidden 

features among variables in high-dimensional and multivariate data sets in a complex and dynamic 

environment (Köksal et al. 2011, Wuest et al. 2016). 

From the overall performance, the ANN model performs better than other models. There is 

a large overlap between predicted prices and actual prices, especially for the prediction of an 

abnormal trend of rapid growth from mid-March 2021 to early May 2021. Moreover, the ANN 

model provides significantly better predictions than the baseline model. Although the random 

forest, XGBoost, CART, and RNN models are inferior to ANN, the predicted prices of these 

 
2 Akaike information criterion (AIC), Bayesian information criterion (BIC), and Hannan-Quinn information criterion 

(HQIC) were employed to determine the lag order for the baseline model. Based on the selection criterion of the three 

models, the Lag 1 was selected because it has the smallest AIC, BIC, and HQIC values. 
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models were highly consistent with the actual observations. SVM and CNN models have the 

weakest prediction effects among the machine learning and deep learning models, respectively, 

although predicted prices of these two models are also roughly close to the actual prices. The SVM 

model overestimates the lumber price from mid-March to early May significantly, and the CNN 

model cannot capture the trend of rapid growth very well, compared with the other two deep 

learning models. This result might be explained by the fact that the CNN model does not depend 

on any information from previous observations to make a prediction (Selvin et al. 2017). 

Figure 17 compares the average prediction performance between machine learning models, 

deep learning models, and the baseline model. Comparing the predictive performance of all seven 

models shows that the ANN model performs the best overall. The MSE, MAE, MAPE, and 

SMAPE of the test set are the lowest among these models. This may be explained by the good self-

learning, self-adapting, and self-organizing ability of the ANN model, which can analyze the 

patterns and rules of observations through training (Su et al. 2019b). The RNN model is the second-

best prediction performance model, which could be attributed to the good ability to use information 

from previous lags to predict the future values by RNN (Selvin et al. 2017). XGBoost gives more 

accurate predictions than other machine learning models, and it is also the third-best model among 

all seven models. ANN, RNN, XGBoost, random forest, CART, and CNN models provide more 

accurate results than the baseline model. In addition, the performance of the machine learning and 

deep learning models are generally better than traditional time series models. For example, Banaś 

and Utnik-Banaś (2021) forecasted round wood prices from 2019 Q1 to 2020 Q4 in Poland using 

ARIMA, SARIMA, and SARIMAX models, whose MAPE was 2.57, 2.20, and 1.75 percent on 

average, respectively. All the models except for SVM in this study have better performance than 
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the ARIMA model. The ANN, RNN, XGBoost, random forest, and CART models in this study 

are better than the SARIMA model, and the ANN and RNN are better than the SARIMAX model. 

Figure 16 and Figure 17 show that, compared with machine learning models, deep learning 

models are, on average, more capable of capturing the trends and providing more accurate 

predictions. This may result from the better overfitting reduce ability of deep learning models. 

This can also be seen in Figure 17. The fitting performance of the three deep learning models to 

the training set is worse than that of the machine learning models. 

5.5 Conclusion 

This study describes a new approach for nowcasting the lumber futures price using Google 

Trends index through machine learning models (SVM, random forest, XGBoost, and CART) and 

deep learning models (ANN, RNN, and CNN). We show that deep learning models generally give 

more accurate predictions than machine learning models. Among the seven models, the ANN 

model provides the best performance, followed by the RNN model. The comparison with the 

baseline model shows that the random forest, XGBoost, CART, ANN, RNN, and CNN models 

provide more accurate predictions than the baseline model. Our findings also imply that the Google 

Trends index, which reflects the dynamic changes of the interest and attention from the public, can 

provide enough information to be good predictors in nowcasting lumber futures prices. 
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Figure 16. Models Fitting on Test Set. 
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Figure 17. Models Evaluation. 
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By using the prediction methods and Google Trends index, investors can take appropriate 

measures to hedge risks and make profits during premarket trading hours. The high predictive 

power of this approach implies that the big data models should be added to the toolbox of investors 

and policymakers to predict other economic variables. One probable criticism to these methods 

being applied to predict the lumber futures price followed by appropriate actions is that it might 

enhance the lumber futures market volatility and further lead to the invalidation of the forecasting. 
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Chapter 6. Conclusion and future work 

6.1 Conclusion 

This dissertation aimed to contribute in the field of the forest management, the logging 

industry and the lumber futures through several perspectives. Firstly, it investigated the direction 

and magnitude of critical socioeconomic factors affecting the transformation of the households in 

China. Secondly, a quantitative analysis of the US logging industry data, presented employment 

and profitability trends, and explored contemporaneous causal relationships between employment 

and different economic variables were provided. Finally, the novel approach of utilizing the 

Google Trends Index to predict the lumber futures price using Machine Learning and Deep 

Learning Models was put forth.  

Chapter 2 concluded that the age and education of the household heads, income, the holding 

areas of cropland, ecological forest, forestland, leasing forestland, and legally contracted forestland 

and their located provinces were found to be statistically significant in transforming the 

household’s forest management. The factors that drive the transformation to various ownership 

types showed some variations as well.  

Likewise chapter 3 concluded the logging industry has been experiencing reduced 

employment and aging workforce in the past two decades. This might be due to increased 

productivity from the technological advancement of mechanization, and reduced demand for 

logging. This chapter also identified that the reduced demand and increased operating costs led to 

poor profitability and a wave of closures of logging firms, which accelerated the management 

adjustment in the logging industry.  
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Chapter 4 concluded that logging production level affects employment directly and 

indirectly. An increase (decrease) in the level of logging production directly increases (decreases) 

wages, followed by an increase (decrease) in employment. Employment in the logging industry is 

most prominently explained by the production level (highest 52.0% at horizon 1-year), followed 

by the wage (highest 42.0% at horizon 20-year). In contrast, capital and product price have a 

limited influence on employment. 

Lastly, Chapter 5 presented the idea for the first time that despite the high predictive power 

of Machine Learning and Deep Learning Models, on average, Deep Learning Models can better 

capture trends and provide more accurate predictions than Machine Learning Models. The 

Artificial Neural Network model is the most competitive, followed by the Recurrent Neural 

Network model. The Google Trends Index, which reflects the dynamic changes of the interest and 

attention from the public, can provide enough information to be good predictors in nowcasting 

lumber futures prices. 

6.2 Future work 

Rural households are gradually transforming around the world, so too is the forest 

management. China’s households may have made substantial transformations from rural 

households in a relatively short period, however they are yet to reach the point similar to the post-

industrial societies where forest management is aiming for more amenities and less timber 

production. We only identified FC, FFF and FSH as the transformed households, and may have 

omitted many other probable households who have carried out transformation. A more complete 

picture of the household transformation will help the policymakers plan for more comprehensive 

and future oriented policies. 
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Since the early 1970s, the employment in the logging industry in the US has been steadily 

declining, while the production level has increased significantly, mainly due to technological 

advancements. The logging industry is an important part of the timber supply chain and has an 

important impact on the sustainable forest management. Therefore, logging firms with high 

production efficiency will determine the future of forestry in the US. Future research is required 

to measure the capital productivity and total factor productivity of the logging firms at the industry-

level and study the influencing factors as well.  

The prosperity of the logging industry is highly dependent on the economic conditions with 

an impact on both demand and price. With the outbreak of COVID-19, the US economy fell into 

a recession again. Subsequently, the federal government launched multiple rounds of economic 

stimulus policies, which not only stimulated the economic recovery, but also promoted the 

prosperity of the real estate market. Future research can focus on the impact of COVID-19 as a 

natural experiment to study the consequences of the economic cycle on the logging industry, or 

the impact of the real estate market on the logging industry. 

Machine Learning and Deep Learning Models provide accurate results for nowcasting 

lumber futures price. Further research might explore to apply more elaborate models, for example 

hybrid model, and more accurate training strategies to nowcast or forecast the lumber futures price 

many days ahead. The further research can also compare the performance between Machine 

Learning, Deep Learning Models and traditional econometric models. 

 


