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Abstract

This dissertation includes three essays conducting analyses of firm performance with the

emphasis on estimating production technology, productivity, cost effectiveness and their re-

lations with closely related aspects of firm behavior: exporting decisions, cross-firm learn-

ing and technology spillovers, local neighborhood influences, operational scope, etc. I con-

tribute to the literature by extending and implementing methods for structural identifica-

tion of firm-level production/cost functions and productivity to address issues of hetero-

geneity and endogeneity.

In the first chapter, I investigate the nexus between firm productivity and export behav-

ior in a structural framework of firm production. My approach allows the firm’s productivity

to be affected not only by its own export behavior but also by that of its spatially proxi-

mate peers. The latter channel facilitated by cross-firm spillovers has been largely ignored

in the literature. My model provides an internally consistent strategy for the measurement

of productivity-boosting effects of exports that accommodates both channels. I apply it to

Chilean manufacturing data from 1995-2007 and find significant evidence in favor of both

the internal (within-firm) and external (cross-firm) effects of exporting.

The next chapter proposes a methodology to accommodate locational heterogeneity in

production analysis. My approach is novel in that I explicitly model spatial variation in pa-

rameters in the production-function estimation. I accomplish this by allowing the parame-

ters to be unknown functions of the firm’s geographic location and estimate them via local

kernel methods. This allows the production technology to vary across space, thereby accom-

modating neighborhood influences on firm production. Using this methodology, I study

China’s chemicals manufacturing in 2002-2004 and find that differences in technology are
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the main source of the cross-location differential in total productivity in this industry.

The third chapter provides new and more robust evidence of scope economies in U.S.

commercial banking. I improve upon the prior literature not only by analyzing the most

recent data and accounting for banks’ nontraditional non-interest-income-centered opera-

tions, but also in multiple methodological ways. I estimate a flexible time-varying-coefficient

panel-data quantile regression model which accommodates three-way heterogeneity across

banks. The results provide strong evidence in support of significantly positive scope econom-

ies across banks of virtually all sizes.
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Chapter 1

Learning by Exporting and from Exporters
in Chilean Manufacturing*

1.1 Introduction

Governments in both the developing and developed countries commonly pursue policies

aimed at promoting exports. In addition to boosting aggregate demand, such policies are

also routinely justified by arguing that domestic exporters benefit from export-driven pro-

ductivity improvements via absorption of new technologies from abroad, learning of in-

ternational best practices that lead to improved business processes, productivity enhance-

ments driven by the exposure to more competition, scale effects, quality and variety effects,

etc. The latter productiv-ity-enhancing mechanism is usually referred to as “learning by ex-

porting” (LBE) (e.g., Clerides et al., 1998; Aw et al., 2000; Delgado et al., 2002; Baldwin and

Gu, 2004; Van Biesebroeck, 2005; De Loecker, 2007; De Loecker, 2013). Such export-related

productivity gains are facilitated by the firm’s own direct access to foreign customers, part-

ners and rivals. However, not only can the domestic firms learn from their own export ex-

periences, but they also can learn from their local peers who engage in exports, and this

indirect learning opportunity is available to both exporters and non-exporters. These exter-

nal export-driven productivity spillovers are a type of cross-firm peer effects, which we refer

to as “learning from exporters” (LFE), and effectively capture secondary productivity effects

*This chapter is based on Zhang and Malikov (2019).
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of export engagement. Such cross-firm spillovers may arise due to labor turnover, learn-

ing by imitation, customer-supplier discussions, etc. (see Greenaway et al., 2004; Sala and

Yalcin, 2015). For instance, the movement of labor from the exporting firms to other domes-

tic firms may facilitate the dispersion of tacit knowledge about more innovative/efficient

foreign technologies or the institutional knowledge about foreign markets, which may help

these firms improve their productivity as well.

Taking the indirect cross-firm productivity effect of export engagement for granted—as

customarily done in the literature on the productivity–exports nexus—will likely underes-

timate the total productivity benefits of exporting. Besides, omitting this important mech-

anism may also contaminate the measurement of the more traditional LBE effect on firm

productivity because it leads to an endogeneity-inducing omitted variable bias. In this pa-

per, we extend De Loecker (2013) to develop a unified empirical framework for productivity

measurement that explicitly accommodates both the direct LBE channel taking place within

the firm as well as the indirect LFE channel working between firms, which we then apply to

a panel of manufacturing plants in Chile in 1995–2007.

While the literature on the (within-firm) learning-by-exporting effects is rather well-esta-

blished (e.g., Kunst and Marin, 1989; Aw and Hwang, 1995; Bernard and Jensen, 1999; Bald-

win and Gu, 2003; Greenaway and Kneller, 2004; Keller, 2004; Blalock and Gertler, 2004;

De Loecker, 2007; De Loecker, 2013; Wagner, 2007; Salomon and Jin, 2008; Park et al., 2010;

Aw et al., 2011; Kasahara and Lapham, 2013; Manjón et al., 2013), the empirical analysis

of external effects of exporting on productivity in the industry beyond the exporter firm is

practically non-existent. The existing work on “export spillovers” focuses mainly on how the

average export participation in the industry affects the export status or the marginal cost

of non-exporters nearby (e.g., Aitken et al., 1997; Clerides et al., 1998; Bernard and Jensen,

2004; Greenaway et al., 2004; Greenaway and Kneller, 2008; Koenig, 2009; Koenig et al., 2010;

Alvarez et al., 2013; Poncet and Mayneris, 2013). To our knowledge, the productivity implica-

tions of export spillovers in the domestic industry have not been studied empirically except

for the two attempts (see below), both of which employ empirical strategies that are not only

overly restrictive or “internally inconsistent” in their modeling of firm productivity (or both)
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but are also seriously hindered by well-known identification problems associated with the

production function estimation.

Using the older Chilean manufacturing data, Alvarez and López (2008) also attempt to

estimate productivity effects of export spillovers. They do so in two steps whereby they first

estimate unobserved firm productivity via standard proxy methods while ignoring the de-

pendence of the former on exports under the assumption of exogenous first-order Markov

evolution of productivity and then examine spillover effects in a second step by (linearly)

regressing the already estimated firm productivity on the average export spillover exposure.

Taken at its face value, such a second-step analysis is problematic because it contradicto-

rily postulates the existence of an endogenous exporting-productivity relationship that is

at odds with the assumption about firm productivity being purely autoregressive in the first

stage. Consequently, this approach cannot provide structurally meaningful interpretation of

externality effects of exporting on productivity, also in part due to its inability to distinguish

between different data-generating processes, including the one with an “external learning”

mechanism, that all can give rise to a positive correlation between the export orientation of

the industry and firm productivity (also see De Loecker, 2013).

We avoid this internal inconsistency in our model by explicitly accounting for potential

export spillover-induced productivity improvements during the estimation of firm produc-

tivity, which is partly what enables us to consistently estimate the LFE effects along with

other production-function components. Alternatively, the estimates of both the produc-

tivity and the export effects thereon would have suffered from the omitted variable bias

due to omission of the relevant measurement of the peers’ exporting activities from the

productivity-proxy function that are correlated with the firm’s own export behavior as well

as quasi-fixed inputs (via its latent productivity). Thus, empirical findings of external ex-

port spillovers based on a two-step estimation procedure may be spurious. Furthermore,

measuring the firm’s spillover exposure using the average export intensity of all firms in

the industry including a recipient of such externality effects, as pursued by Alvarez and

López (2008), precludes the identification of purely external spillover effects of exporting on

productivity by conflating it with the direct LBE effect of the firm’s own export experience

12



thereby, in the end, yielding a total of the two effects with no indication of their relative sig-

nificance. In contrast, we distinguish between the firm’s own export engagement and that of

its peers, with the second measure capturing a purely external characteristic of the industry

that the firm faces.

We also significantly improve upon Wei and Liu (2006). While employing a one-step

analysis that recognizes the existence on both the LBE and LFE effects on productivity dur-

ing the estimation, they do so by restrictively assuming that productivity effects of exporting

are constant (as implied by linearity) which they estimate by including the export variables

directly into the Cobb-Douglas production function. Besides linearity that rules out het-

erogeneous effects, such an approach is problematic because it assumes that the relation-

ship between exporting and productivity is deterministic and, more importantly, it implies

the possibility for a unit-elastic substitution between inputs and export variables (see De

Loecker, 2013, for more on these points). Lastly, Wei and Liu (2006) proceed to estimate the

production function via OLS with no account for the endogeneity problem associated with

the correlation of input allocations (and potentially, the firm’s export orientation) with the

innovation in productivity (Griliches and Mairesse, 1998a).

In this paper, we contribute to the literature by robustly measuring and testing the di-

rect learning-by-exporting and indirect learning-from-exporters effects on productivity in

a consistent structural framework of firm production. Building upon Doraszelski and Jau-

mandreu (2013) and De Loecker (2013), we formalize the evolution of firm productivity as

an endogenous export-controlled process, where we explicitly accommodate two potential

channels —internal and external (direct and indirect)—by which exporting may impact fu-

ture productivity of domestic firms. Specifically, we allow the firm’s productivity be affected

not only by its own export behavior but also by that of its spatially proximate peers in the

industry. This allows a simultaneous, internally consistent identification of firm produc-

tivity and the corresponding LBE and LFE effects. Our identification strategy utilizes the

structural link between the parametric production function and the firm’s first-order condi-

tion for static inputs which helps us circumvent Ackerberg et al.’s (2015) and Gandhi et al.’s

(2018) non-identification critiques of conventional proxy-based productivity estimators à la
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Olley and Pakes (1996) and Levinsohn and Petrin (2003). In addition, owing to the nonpara-

metric treatment of the firm productivity process, our model enables us to accommodate

heterogeneity in productivity effects of exporting across firms. This also lets us explore po-

tential nonlinearities in the LBE and LFE effects whereby they can interact with each other

as well as, more importantly, with the firm’s own productivity thus allowing for condition-

ing on the learning firm’s absorptive capacity. To this end, not only do we provide a more

comprehensive picture of the productivity effects of exporting, but we do so in a robust way

by dealing with the internal inconsistency and non-identification problems prevalent in the

earlier literature.

We study productivity-enhancing effects of exporting using plant-level data on Chilean

manufacturers during the 1995–2007 period, with exporters accounting for 21% of the sam-

ple. Using our semiparametric methodology, we find that exporters enjoy a statistically sig-

nificant productivity premium over non-exporters along the entire distribution of produc-

tivity. We find significant evidence in favor of both the LBE and LFE effects. Overall, the LBE

productivity effect is statistically significant for 93% of all firms in our data set, although the

results suggest that that the bulk of a productivity boost attributable to (internal) learning

from exporting takes place immediately after the domestic firm engages in exports. On av-

erage, the size of the LFE effect is comparable to that of LBE. However, at the observation

level, the LFE effect is significantly non-zero for 69% of plants only, thus suggesting that

the indirect cross-firm productivity-boosting effect of exporting is less prevalent in man-

ufacturing than the direct learning effect taking place within the firm. We also document

that the LFE effect is stronger for the firms who also export themselves. This empirical evi-

dence therefore suggests that exporters benefit from the exposure to peer exporters in their

local industry more than do non-exporters, plausibly because there may be complemen-

tarities between internal/direct and external/indirect learning from export experiences. We

also document that less productive plants benefit more from the export-driven learning (via

both the internal or external channels) thereby suggesting that more productive plants may

have less absorptive capacity to learn from their own export experiences as well as to absorb

knowledge from their exporting peers. We also find that the more export-oriented firm is,
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the less (more) it learns by exporting (from exporters). A greater exposure to exporters helps

plants absorb productivity improvements from their own export behavior while shows no

significant effect on learning from exporters indicating that export spillovers in the industry

improve plant productivity at a constant rate.

The rest of paper is organized as follows. Section 1.2 presents the conceptual framework.

Section 1.3 describes our identification and estimation procedure. The data are discussed

in Section 3.4. We report the empirical results in Section 3.5. Section 3.6 concludes.

1.2 Conceptual Framework

Consider the firm i (= 1, . . . ,n) at time t (= 1, . . . ,T ). Following the convention in the produc-

tivity literature (e.g., Olley and Pakes, 1996; Blundell and Bond, 2000; Levinsohn and Petrin,

2003; De Loecker and Warzynski, 2012; Doraszelski and Jaumandreu, 2013; Ackerberg et al.,

2015; Konings and Vanormelingen, 2015; Jin et al., 2019), we assume that the firm employs

physical capital Ki t , labor Li t and an intermediate input such as materials Mi t to produce

the output Yi t via the Cobb-Douglas production technology subject to the Hicks-neutral

productivity:

Yi t = A0K αK
i t LαL

i t MαM
i t exp

{
ωi t +ηi t

}
, (1.2.1)

where A0 is a scalar constant; (αK ,αL ,αM )′ are the input elasticities; ωi t is the firm’s persis-

tent productivity which is known to the firm at time t but unknown to an econometrician;

and ηi t is a random i.i.d. productivity shock such that E [ηi t |Ii t ] = E [ηi t ] = 0, where Ii t is

the i th firm’s information set in period t .1

As in the productivity literature (e.g., Gandhi et al., 2020; Tsionas and Mallick, 2019; Hou

et al., 2020), physical capital Ki t and labor Li t are said to be subject to adjustment frictions

(e.g., time-to-install, hiring and training costs), and the firm optimizes them dynamically at

time t −1 rendering these inputs predetermined quasi-fixed state variables. Materials Mi t

is a freely varying input and is determined by the firm statically at time t . Both Ki t and Li t

1We have also experimented with adding the time trend and its square term into the production function to
control for temporal change. Our findings about the LBE and LFE productivity effects are largely unchanged
and continue to hold. For simplicity sake, we have opted for a more parsimonious specification.
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follow their respective laws of motion:

Ki t = Ii t−1 + (1−δ)Ki t−1 and Li t = Hi t +Li t−1, (1.2.2)

where Ii t , Hi t and δ respectively denote the gross investment, net hiring and the capital de-

preciation rate of the firm i in period t . We assume that the risk-neutral firm faces perfectly

competitive output and input markets and seeks to maximize a discounted stream of the

expected life-time profits subject to its state variables and expectations about the market

structure variables including prices that are common to all firms.

In this paper, our principal interest is in the measurement of internal and external pro-

ductivity effects of exporting in a domestic industry. Instead of modeling the firm’s export

behavior in a discrete fashion by focusing on its “status” as popularly done in the literature

(e.g., Blalock and Gertler, 2004; Van Biesebroeck, 2005; Amiti and Konings, 2007; Kasahara

and Lapham, 2013), we formalize the firm’s exporting in a richer, continuous framework

along the lines of De Loecker (2007) and Malikov et al. (2020). Specifically, we rely on the

firm’s export intensity as a measure of its own export behavior as well as to model its ex-

posure to peer exporters in the industry. Let Xi t ∈ [0,1] denote the firm’s export intensity

defined as the nominal share of its total output produced for the export abroad, with its

boundary values corresponding to wholly domestic and fully export-oriented firms. Build-

ing on Malikov et al. (2020), we conceptualize the firm’s exporting decisions as the choice of

the degree of its export orientation subject to delay due to costly adjustments. For instance,

exporters may face irreversible adjustment costs such as time for and cost of finding new

intermediaries/buyers abroad, contract (re)negotiations, obtaining new permits, etc. That

is, we assume that the firm’s decision to change the degree of its export orientation in pe-

riod t (or leave it unchanged) is made at time t − 1; ergo, the firm’s export intensity Xi t is

predetermined.2 Essentially, export adjustments are treated as an investment-like decision.

2Van Biesebroeck (2005) and De Loecker (2013) make similar assumptions about quasi-fixity of the export
variable.
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Hence, the firm’s export intensity Xi t evolves according to the following dynamic process:

Xi t =Xi t−1 +Xi t−1, (1.2.3)

where Xi t is an endogenous adjustment in the degree of the firm’s export orientation.

We next formalize the productivity effects of exports. We do so by extending De Loecker’s

(2013) framework to accommodate not only the more traditional direct LBE effects but also

to allow for indirect effects via learning from the exporting peers. That is, we explicitly model

two potential channels—internal and external (direct and indirect)—by which exporting

may impact productivity of domestic firms.

The first channel, referred to as “learning by exporting,” takes place within the firm in-

ternally and is commonly attributed to the exporter firm’s absorption of new technologies

from abroad, learning of international best practices that lead to improved manufacturing

processes, productivity enhancements driven by the exposure to more competition, scale

effects, quality and variety effects, etc. These export-related productivity gains are facili-

tated by the firm’s own direct access to foreign customers and rivals.

The second channel is less obvious and oftentimes left unaccounted for in the literature.

Domestic firms (both the exporters and non-exporters) can learn not only from their own

export behavior but also indirectly from their exporting peers’. These external export-driven

productivity spillovers are a type of cross-firm peer effects, which we refer to as “learning

from exporters,” and effectively capture secondary productivity effects of export engage-

ment. Such cross-firm spillovers may arise due to, say, labor turnover, learning by imitation

or customer-supplier discussions (see Greenaway et al., 2004; Sala and Yalcin, 2015). For

instance, by monitoring successful exporting peers’ market behavior both domestically and

in the foreign markets, domestic firms can imitate and then adopt their business strategies

to boost own productivity. Alternatively, the movement of labor from the exporting firms to

other domestic firms may facilitate the dispersion of tacit knowledge about more innova-

tive/efficient foreign technologies and better business practices or the institutional knowl-

edge about foreign markets, which may help the hiring firms increase their productivity.
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To capture export-driven productivity spillovers, we proxy each firm’s exposure to ex-

porters in the industry using the average export intensity of its spatially proximate peers

operating in the same industry defined as

X i t =
∑
j 6=i

pi j t X j t , (1.2.4)

where {pi j t ; j ( 6= i ) = 1. . . ,n} are the peer-firm weights identifying exporters in the firm i ’s

industry and spatial locality in period t . More concretely, we construct the peer connection

weights as pi j t = 1( j ∈ Li t )
/∑n

k(6=i )=1 1(k ∈ Li t ), where Li t denotes a set of firms that are

in the same industry and geographical region as is the firm i in time period t . This defini-

tion is based on the conventional argument that geographical proximity and industry play

a central role in productivity spillovers. For example, it is technologically easier and less

costly for firms to monitor and mimic strategies of other exporters that operate within the

same industry and region. This is also in line with the literature on export spillovers (e.g., see

Bernard and Jensen, 2004; Greenaway and Kneller, 2008; Koenig, 2009; Koenig et al., 2010;

Poncet and Mayneris, 2013). We weigh all peers equally, given that the export intensity is

already measured relative to the scale of production.

Note that our export exposure measure is firm-specific because it excludes the i th firm.

Thus, X i t captures the external export orientation of the local industry which the firm i is

exposed to. This measure varies across both the firms and time. While closely related, X i t is

therefore not the “grand” industry average but the peer average in the industry. As discussed

below, this distinction is crucial for the separable identification of the LBE and LFE effects.

We model firm productivity evolution as a controlled first-order Markov process, whereby

we allow the firm i to improve its productivity not only via learning by exporting but also via

learning from the exporting peers. Generalizing Doraszelski and Jaumandreu’s (2013) and

De Loecker’s (2013) formulations to include cross-firm effects of exporting, we specify the

following productivity process:

ωi t = h
(
ωi t−1, Xi t−1, X i t−1

)
+ζi t , (1.2.5)
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where h(·) is the conditional mean function ofωi t ; and ζi t is a random innovation in persis-

tent productivity that is unanticipated by the firm at period t−1: E [ζi t |Ii t−1] = E
[
ζi t |ωi t−1, Xi t−1, X i t−1

]
=

E [ζi t ] = 0.

The evolution process in (1.2.5) implicitly assumes that both the internal and external

learning is a costly process which is why the dependence of ωi t on controls is lagged im-

plying that the export-driven improvements in firm productivity take a period to mate-

rialize. Further, motivated by the literature on the productivity effects of exporting (e.g.,

Van Biesebroeck, 2005; De Loecker, 2013; Malikov et al., 2020), in E [ζi t |Ii t−1] = 0 we as-

sume that, due to adjustment costs, the firm does not experience immediate changes in

its export orientation in light of a productivity shock. This structural timing assumption

about the arrival of ζi t , which renders both Xi t−1 and X i t−1 predetermined with respect to

a random innovation at time t , helps identify both the direct learning and external spillover

effects. The LBE and LFE effects can then be measured as LBEi t = ∂E [ωi t |·]
/
∂Xi t−1 and

LF Ei t = ∂E [ωi t |·]
/
∂X i t−1, respectively.

Since, in our productivity process (1.2.5), the exporting enters the conditional mean of

productivity via two variables, of natural interest is the ability of our model to separate the

direct LBE effect from the indirect LFE spillovers. Using simple calculus we can show that,

owing to the definition of the average peer export orientation which excludes the export

information pertaining to the i th firm:

dh(·)
dXi t−1

= ∂h(·)
∂Xi t−1︸ ︷︷ ︸

LBEi t

+ ∂h(·)
∂X i t−1︸ ︷︷ ︸

LF Ei t

×∂X i t−1

∂Xi t−1
= LBEi t , (1.2.6)

because ∂X i t−1
/
∂Xi t−1 = ∂∑

j 6=i pi j t X j t−1
/
∂Xi t−1 = 0. Thus, LBEi t is separably identifiable.

Intuitively, all observable variation in the expected productivity due to the change in the

firm’s own export intensity is attributable to the direct learning effect because its exporting

does not immediately affect the export behavior of its peers. Obviously, the separability of

the two effects would be impossible if, in place of the average peer export intensity, we would

have used the total average of all firms as oftentimes done in the literature (e.g., Alvarez and

López, 2008).
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Lastly, owing to the unspecified nonparametric form of the conditional mean of ωi t in

(1.2.5), we are able to obtain observation-specific estimates of the LBE and LFE effects thus

allowing for potential cross-firm heterogeneity in the link between exporting and produc-

tivity. This also enables us to explore potential nonlinearities in the productivity effects of

exporting whereby they can interact with each other as well as with the firm’s own produc-

tivity.

1.3 Empirical Strategy

Estimating productivity using ordinary least squares regression would results in a simul-

taneity bias due to the dependence of inputs (regressors in the production function) on un-

observed firm productivity ωi t because the latter is a part of the firm’s information set Ii t

based upon which it makes optimal input allocation decisions. This omitted variable bias

is also known as a “transmission bias" (Griliches and Mairesse, 1998a). A control-function-

based method proposed by Olley and Pakes (1996) and extended by Levinsohn and Petrin

(2003) tackles this endogenous problem by proxying for unobservableωi t via the observable

static intermediate input Mi t and then using weakly exogenous higher-order lags of inputs

to instrument for endogenous freely varying inputs. Recently, this methodology has been

critiqued for the lack of identification due to perfect functional dependence between freely

varying inputs and self-instrumenting quasi-fixed factors (Ackerberg et al., 2015) and vio-

lation of the “order condition” in the instrumentation of these endogenous freely varying

inputs (Gandhi et al., 2020). As a solution, Gandhi et al. (2020) have suggested employing

the information contained in the first-order condition for static inputs to identify both the

production function and latent firm productivity. However, because their procedure is fully

nonparametric, its implementation is three-stage and quite computationally burdensome,

especially in its requirement to integrate the estimated static input elasticity function at each

observation in order to recover the unknown production function. In this paper, we there-

fore rely on Malikov and Zhao’s (2019) more easy-to-implement semiparametric adaptation

of the Gandhi et al. (2020) methodology (which we modify to suit our research question)
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that utilizes the prespecified parametric form of the production function to derive the proxy

function. This is similar to the idea pursued by Doraszelski and Jaumandreu (2013). The

semiparametric adaptation can significantly ease the demand on data as well as the com-

putational burden of estimation.

Identification.—Consider the firm’s optimality condition for materials. Since the inter-

mediate input Mi t is freely varying and thus affects profits only in the current period, the

firm’s restricted expected profit maximization problem with respect to Mi t is as follows:

max
Mi t

P Y
t A0K αK

i t LαL
i t MαM

i t exp{ωi t }θ−P M
t Mi t , (1.3.1)

where P Y
t and P M

t respectively denote the output and material input price, both of which

are competitively determined. The constant θ is defined as θ ≡ E
[
exp

{
ηi t

} |Ii t
]
.

Taking the log-ratio of the first-order condition with respect to Mi t

αM P Y
t A0K αK

i t LαL
i t MαM−1

i t exp{ωi t }θ = P M
t (1.3.2)

and the production function in (1.2.1) gives

ln
(
SM

i t

)= ln(αMθ)−ηi t , (1.3.3)

where SM
i t ≡ P M

t Mi t

P Y
t Yi t

is the intermediate input share of output. Thus, we can identify a com-

posite constant αMθ from the unconditional moment E
[
ηi t

]= 0, from where we have that

ln(αMθ) = E
[
ln

(
SM

i t

)]
. (1.3.4)

We can also identify θ on its own via

θ ≡ E
[
exp

{
ηi t

}]= E
[
exp

{
ln(αMθ)− ln

(
SM

i t

)}]= E
[
exp

{
E

[
ln

(
SM

i t

)]− ln
(
SM

i t

)}]
, (1.3.5)

with equation (1.3.4) used to substitute for ln(αMθ) in the third equality.
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Combining (1.3.4) and (2.3.8), we identify the firm’s material elasticity αM as

αM = exp
{
E

[
ln

(
SM

i t

)]}
/E

[
exp

{
E

[
ln

(
SM

i t

)]− ln
(
SM

i t

)}]
, (1.3.6)

where it is a unique function of the first moments of data.

To identify the rest of production function as well as latent firm productivity, we take the

log of (1.2.1) on both sides to obtain

yi t =α0 +αK ki t +αLli t +αM mi t +ωi t +ηi t , (1.3.7)

where α0 ≡ ln A0; and the lower-case variables correspond to the log form of the respec-

tive upper-case variables. Exploiting the Markov process of ωi t in (1.2.5) and bringing the

already identified material elasticity αM to the left-hand side, we rewrite (1.3.7) as follows:

y∗
i t =αK ki t +αLli t + g

(
ωi t−1, Xi t−1, X i t−1

)
+ζi t +ηi t , (1.3.8)

where y∗
i t = yi t −αM mi t is fully identified and can be treated as an observable, and g (·) ≡

h(·)+α0 is of unknown functional form.

Next, from equation (1.3.2) we derive the explicit form of the conditional demand func-

tion for Mi t , which we then invert to proxy for the unobservable scalar ωi t in (1.3.8) in the

spirit of material-based proxy estimators:

y∗
i t =αK ki t +αLli t + g

([
m∗

i t−1 −αK ki t−1 −αLli t−1
]

, Xi t−1, X i t−1

)
+ζi t +ηi t , (1.3.9)

where m∗
i t−1 = ln

(
P M

t−1

P Y
t−1

)
− ln(αMθ)− (αM −1)mi t−1 is also fully identified and treated as an

observable. Since all regressors appearing in (1.3.9) including ki t , li t , ki t−1, li t−1, m∗
i t−1(mi t−1),

Xi t−1 and X i t−1 are predetermined based on our structural assumptions, there is no endoge-

nous covariate on the right-hand side of the equation. That is,

E
[
ζi t +ηi t

∣∣ki t , li t ,ki t−1, li t−1,m∗
i t−1(mi t−1), Xi t−1, X i t−1

]
= 0, (1.3.10)
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and the equation (1.3.9) is identified.

One remark is in order here. From (1.3.9)–(1.3.10), it is obvious that, if there were indeed

non-zero export spillovers and we had failed to account for them in the firm’s productiv-

ity evolution process, then X i t−1 would have been omitted from the proxy function g (·) in

(1.3.9) and, consequently, been absorbed, along with its interactions with other arguments

of the proxy, into the error term. In the latter case, the error term would then contain vari-

ation from the firm’s quasi-fixed inputs, its own export intensity as well as the average ex-

port orientation of its peers. Generally, these all would be correlated with quasi-fixed inputs

and the export variable included as regressors thus violating the exogeneity condition. The

model would be unidentified due to the omitted variable bias. This highlights the impor-

tance of embedding the external spillover channel into the analytical framework explicitly.

Lastly, we can recover latent firm productivity up to a constant:

ωi t +α0 = yi t −αK ki t −αLli t −αM mi t −ηi t , (1.3.11)

using the identified production-function parameters and the productivity shock.

Estimation Procedure.—The estimation is simple and involves a two-stage procedure. In

the first stage, we estimate αM via a sample counterpart of (1.3.6) constructed using sample

averages computed from the raw data on material share:

α̂M = exp

{
1

nT

∑
i

∑
t

ln
(
SM

i t

)}/[
1

nT

∑
i

∑
t

exp

{[
1

nT

∑
i

∑
t

ln
(
SM

i t

)]− ln
(
SM

i t

)}]
. (1.3.12)

As a by-product, we also have lnà(αMθ) = 1
nT

∑
i
∑

t ln
(
SM

i t

)
and η̂i t = lnà(αMθ)− ln

(
SM

i t

)
.

With these estimates in hand, we then construct estimates of y∗
i t and m∗

i t as ŷ∗
i t = yi t−α̂M mi t

and m̂∗
i t−1 = ln

(
P M

t−1

P Y
t−1

)
− lnà(αMθ)− (α̂M −1)mi t−1, respectively.

The second-stage estimation requires the choice of an approximator for the unknown

g (·). We use the popular second-order polynomial sieves (e.g., Gandhi et al., 2020).3 Specif-

3We have also experimented with third-order polynomials, and the results are qualitatively similar except nois-
ier, as expected.
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ically, we approximate g (·) as follows:

g (·) ≈
(
1,Wi t−1 (α) ,W 2

i t−1 (α) , Xi t−1, X 2
i t−1, X i t−1, X

2
i t−1,Wi t−1 (α) Xi t−1,Wi t−1 (α) X i t−1, Xi t−1X i t−1

)
γ

=λi t (α)′γ

where we let α = (αK ,αL)′, Wi t−1 (α) = m̂∗
i t−1 −αK ki t−1 −αLli t−1, and γ is the unknown

parameter vector.

We estimate (1.3.9) using a nonlinear least squares method to obtain the second-stage

estimates of (αK ,αL)′ and γ:

min
αK ,αL ,γ

∑
i

∑
t

(
ŷ∗

i t −αK ki t −αLli t −λi t (αK ,αL)′γ
)2 . (1.3.13)

With the estimated production-function parameters in hand, we can compute the pro-

ductivity effects via �LBE i t = ∂ĝ (·)/∂Xi t−1 and �LF E i t = ∂ĝ (·)/∂X i t−1, where ĝ (·) =λi t (α̂)′ γ̂.4

We also recover ωi t up to a constant via áωi t +α0 = yi t − α̂K ki t − α̂Lli t − α̂M mi t − η̂i t .

Bootstrap.—For statistical inference, we employ accelerated biased-corrected percentile

bootstrap confidence intervals proposed by Efron (1987), which can correct for finite-sample

biases and control for higher moments (skewness) of the sampling distribution. Due to the

panel structure of data, we employ wild residual block bootstrap, which can preserve the

within-firm correlation in the data, to approximate the sampling distribution of the estima-

tor. In addition, we bootstrap both stages jointly because the estimation in the second stage

is based on the first-stage estimator.

Having obtained the bootstrap estimates of all parameters
{(
α̂b

K , α̂b
L , α̂b

M , γ̂b)′
; b = 1,2, ...B

}
,5

we then use them to construct the bootstrap replications of our main estimands of interest:{�LBE
b
i t

}
and

{�LF E
b
i t

}
, which we then use to construct accelerated biased-corrected per-

centile confidence intervals for each observation-specific LBEi t and LF Ei t . For simplicity,

let Ẑ represent an estimate of some functional of interest Z and {Ẑ b} be the set of its boot-

strap estimates. Then, a two-sided (1−a)100% confidence intervals for Z is the [α1 ×100]th

4Note that the definitions of the LBE and LFE effects are based on the gradients of h(·) but, since g (·) and h(·)
differ only by an additive constant, their gradients are equal.

5We set B = 500.
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and [α2 ×100]th percentiles of the empirical distribution of {Ẑ b}, where

α1 =Φ
(

q̂0 + q̂0 +qα/2

1− ĉ
(
q̂0 +qα/2

)), α2 =Φ
(

q̂0 +
q̂0 +q(1−α/2)

1− ĉ
(
q̂0 +q(1−α/2)

)),

and Φ denotes the standard normal cdf; qα/2 =Φ−1(α/2); q̂0 denotes a bias-correction fac-

tor defined as q̂0 = Φ−1
(

#
{

Ẑ b<Ẑ
}

B

)
; ĉ denotes an acceleration parameter which, following

the literature (e.g., Shao and Tu, 1995), we estimate via jackknife: ĉ = ∑J
j=1

(∑J
s=1 Ẑ s − Ẑ j

)/
6
[∑J

j=1

(∑J
s=1 Ẑ s − Ẑ j

)2 ]3/2, where
{

Ẑ j
}

are the jackknife estimates of Z .6

1.4 Data

Our data come from the Encuesta Nacional Industrial Anual (ENIA), a national industrial

survey, conducted by the Chilean National Institute of Statistics annually. The sample pe-

riod runs from 1995 to 2007. Manufacturing plants are classified into 22 industry groups ac-

cording to the 2-digit International Standard Industry Classification (ISIC) code. The dataset

contains information on plants from 13 regions including Tarapacá, Antofagasta, Atacama,

Coquimbo, Valparaíso, Libertador Gral. Bernardo O’Higgins, Maule, Biobío, La Araucanía,

Los Lagos, Aisén del Gral. Carlos Ibáñez del Campo, Magallanes and Chilean Antarctica, and

the Santiago Metropolitan region. Though each observation represents a plant rather than a

firm, single-plant establishments account for over 90% of total units (also see Pavcnik, 2002).

The total output is defined as the total revenue from the sale of products and work done.

Capital is the fixed assets balance for buildings, machinery and vehicles at the end of a pe-

riod. Materials are defined as the total expenditure on intermediate inputs consisting of raw

materials and other intermediates. These three variables are measured in hundred thou-

sands of pesos, and we deflate them using price deflators at the 4-digit ISIC level. We mea-

sure labor using the total number of people working at the plant. We drop observations that

contain missing or negative values for these variables and exclude extreme outliers lying

outside the interval between the 1th and 99th percentiles of these four variables. In the end,

6To account for the panel structure of data and to manage computational time, we use a delete-20T jackknife,
i.e., we leave 20 cross-sections out to obtain jackknife estimates.
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Table 1.1. Data Summary Statistics, 1995–2007

Variable Mean 5th Perc. Median 95th Perc.

Output (Y ) 276.46 8.37 54.75 1348.35
Capital (K ) 102.24 0.48 12.15 513.97
Labor (L) 49.74 6.00 22.00 196.00
Materials (M) 125.94 2.85 24.09 626.56
Export Intensity (X ) 0.056 0.000 0.000 0.499
Exposure to Exporter (X ) 0.060 0.000 0.036 0.217
Exporter Status 0.206

Notes: Y , K , M are measured in hundred thousands of real pesos. L
is measured in the number of people. X is a unit-free proportion of
firm’s exports in total output. X is also a unit-free proportion.

our sample consists of 8,353 manufacturing plants with the total of 47,622 observations.

Export intensity is calculated as the nominal proportion of firm’s exports in its total sales,

ranging from 0 to 1 by construction. Out of all plants, exporters are 21%. As discussed earlier,

we measure each plant’s exposure to exporters using the average export intensity of its peers

(excluding the plant in question). Peers are identified as operating in the same of 13 regions

and the same 2-digit industry in the same period. The exposure variable also ranges between

0 and 1 by construction. Table 1.1 provides the summary statistics for our data.

1.5 Results

Our primary interest is in the estimates of productivity effects of exporting. Owing to a non-

parametric form of the conditional mean of ωi t , we obtain observation-specific estimates

of the LBE and LFE effects. Since these effects are defined as the gradients of the firm log-

productivity with respect to export intensity or the average thereof both of which are pro-

portions, the reported LBEi t (LF Ei t ) is a semi-elasticity measuring percentage changes in

productivity per unit percentage point change in the firm’s export intensity (the average ex-

ternal export orientation of the local industry that the firm faces). Lastly, both effects mea-

sure “short-run” productivity improvements per annum, which however can accumulate

over the years owing to a persistent autoregressive nature of the firm’s productivity evolu-

tion.

Production Function.—Before proceeding to the main discussion of productivity and the
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Table 1.2. Production Function Parameter Estimates

Parameter Point Estimate Lower Bound Upper Bound

Capital Elasticity 0.214 0.204 0.226
Labor Elasticity 0.456 0.435 0.476
Material Elasticity 0.288 0.284 0.291

Scale Elasticity 0.957 0.938 0.975

Notes: Reported are the input elasticity estimates along with their
two-sided 95% lower and upper confidence bounds. Scale elasticity
is the sum of capital, labor and material elasticities.

implications of exporting on the former, we first consider estimates of the production func-

tion parameters. Table 1.2 reports point estimates of the capital, labor and material elas-

ticities along with the lower and upper bounds corresponding to two-sided 95% bootstrap

percentile confidence intervals. Elasticities of capital, labor and material are all statistically

significant at 0.29, 0.21 and 0.46, respectively. Scale elasticity defined as the sum of all three

input elasticities is statistically significant at 0.96, indicating the decreasing return to scale,

consistent with the profit-maximizing behavior.

Exporter Productivity Differential.—We begin by examining an overall cross-firm pro-

ductivity differential across exporters and non-exporters in the Chilean manufacturing sec-

tor. The mean estimate of the (log)-productivity differential between exporters and non-

exporters is 0.280 with the corresponding two-sided 95% bootstrap percentile confidence

interval of (0.255, 0.308), which indicates that, on average, exporters are more productive

than non-exporters. This is consistent with findings in the related literature on productivity

of Chilean exporters (e.g., Alvarez and Lopez, 2005).

We further investigate if the plant’s exporter status commands a productivity premium

of a varying magnitude and significance at different points in the productivity distribution.

We do so by estimating the following simple quantile regression:

Qτ [ωi t |·] =β0,τ+β1,τEXPi t for τ ∈ (0,1),

where EXPi t is the exporter status indicator such that 1(Xi t > 0). Employing the conditional

quantile regression enables us to explore potential distribution heterogeneity in the exporter
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productivity differential. We estimate this model for the quantile index τ taking values from

0.2 to 0.8 (with the 0.05 increments) thereby focusing on the central portion of the produc-

tivity distribution.

Figure 1.1(a) plots the quantile regression estimates of the β1,τ coefficient (the exporter

productivity differential) against τ, along with the 95% confidence intervals. The solid hor-

izontal line corresponds to the productivity differential estimated at the conditional mean.

The quantile productivity differentials are all significantly positive and increasing with the

quantile ofω, indicating that the productivity divergence between exporters and non-expor-

ters is more prominent magnitude-wise among the more productive firms. Including con-

trols for the plant size (proxied by the number of employees) as well as the region and year

effects produces the same findings as can be seen in Figure 1.1(b).

For a more holistic look at the productivity differential between exporters and non-expor-

ters, we also plot the kernel density of the firm log-productivity for exporters and non-

exporters, as shown in Figure 1.2. This allows us to compare distributions of productiv-

ity estimates as opposed to merely focusing on marginal moments or quantiles. The fig-

ure indicates that exporters appear to enjoy a productivity premium over non-exporters

distribution-wise. To support this visual evidence, we do a formal test to check if exporters

are more productive than non-exporters along the entire distribution of productivity. We

utilize a generalization of the Kolmogorov-Smirnov test proposed by Linton et al. (2005) to

test the (first-order) stochastic dominance of exporters’ productivity over non-exporters’.

This test permits variables to be estimated latent quantities as opposed to observables from

the data and to also share dependence (in our case, the dependence due to their construc-

tion using the same set of parameter estimates). Specifically, let G1 (ω) and G0 (ω) denote the

cumulative distribution functions of productivityω ∈Ω for exporters and non-exporters, re-

spectively. We then construct the null hypothesis that non-exporters’ productivity is stochas-

tically dominated by that of exporters as follows:

H0 : sup
ω∈Ω

[G1 (ω)−G0 (ω)] ≤ 0 vs. H1 : sup
ω∈Ω

[G1 (ω)−G0 (ω)] > 0,
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Figure 1.1. Exporter Productivity Differential Estimates across Productivity Quantiles with
the 95% Confidence Intervals

Notes: Solid horizontal lines correspond to the productivity differentials estimated at the
conditional mean.

Figure 1.2. Distributions of log-Productivity by the Exporter Status

Notes: Vertical lines correspond to the respective sample means.
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with the corresponding test statistic defined as

D = max
1≤ j≤(n1+n0)

√
n1n0

n1 +n0

[
G1,n1

(
ω̂ j

)−G0,n0

(
ω̂ j

)]
,

where Gs,ns is the empirical distribution function of the estimated (log) productivityω for the

sth category of plants of the sample size ns , with s = {0,1}. Employing the sub-sampling pro-

cedure from Linton et al. (2005), we obtain the p-value for the test statistic of 0.7789.7 Thus,

we fail to reject the null hypothesis whereby non-exporters’ productivity is stochastically

dominated by that of exporters. Combined with the above discussion, we can conclude that

exporters enjoy a statistically significant productivity premium over non-exporters along the

entire distribution of productivity.

Learning by Exporting and from Exporters.—Next, we consider the within-firm evidence

of productivity-enhancing effects of exporting. Table 1.3 reports a summary of point esti-

mates of the LBE and LFE effects for all firms as well as for exporters and non-exporters only.

We also test for the statistical significance of these effects at each observation. The shares of

observations for which each of the two productivity effects of exporting is significant at the

5% level are provided in the last column of the table.

The LBE effect is estimated to average at 0.36 for the entire sample, indicating that a

1 percentage point increase in the firm’s own export intensity raises its future productivity

by 0.36%. The point estimates are between 0.32 and 0.45 within the inter-quartile range.

Overall, the LBE productivity effect is statistically significant for 93% of firms in our data

set. However, we do document notable differences in the magnitude and prevalence of LBE

across exporters and non-exporters. For actual exporters (Xi t > 0), the mean LBE effect is

significant at 0.158, albeit the observation-specific point estimates are statistically non-zero

only for 68% of the exporting firms. This contrasts starkly with the results for non-exporters.

While the latter category of firms does not actually export, we still can evaluate the LBE ef-

fect on their future productivity at Xi t = 0. Essentially, these estimates of the LBE effect

7We use rn equidistant sub-sample sizes Bn = {b1, · · · ,br }, where b1 = [
loglogn

]
, brn = [

n/loglogn
]
, and the

number of unique sub-sample sizes is r = 199. For each b, we get a p-value. The reported is the mean of these
p-values.
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Table 1.3. The LBE and LFE Productivity Effect Estimates

Point Estimates Stat. Signif.
Mean 1st Qu. Median 3rd Qu. (% Obs.)

—Learning by Exporting—
All 0.363 0.323 0.39 0.451 92.7

(0.189, 0.555) (0.139, 0.531) (0.207, 0.603) (0.25, 0.675)
Exporters 0.158 –0.000 0.257 0.353 68.3

(0.068, 0.254) (–0.072, 0.067) (0.117, 0.419) (0.184, 0.546)
Non-exporters 0.418 0.356 0.408 0.465 99.2

(0.234, 0.643) (0.170, 0.572) (0.220, 0.628) (0.259, 0.695)

—Learning from Exporters—
All 0.324 0.141 0.296 0.457 68.5

(0.116, 0.545) (–0.059, 0.363) (0.069, 0.52) (0.166, 0.729)
Exporters 0.508 0.182 0.399 0.778 73.9

(0.302, 0.760) (–0.013, 0.432) (0.189, 0.618) (0.508, 1.148)
Non-exporters 0.275 0.132 0.28 0.42 67.1

(0.027, 0.489) (–0.088, 0.340) (0.027, 0.497) (0.124, 0.701)

Notes: Reported is a summary of point estimates of the LBE and LFE effects tabulated by the
firm’s exporter status, with two-sided 95% bootstrap percentile confidence intervals in paren-
theses. The far right column reports the share of sample for which the observation-specific
estimates are statistically significant at the 5% level.

are “counterfactual” and provide a measurement of how much non-exporters’ productivity

would have changed if they started exporting (marginally increased their export intensity

from zero to a positive value). The average LBE estimate for non-exporters is 0.418 and sig-

nificant. In fact, the point estimates of the LBE effect are statistically significant for virtually

all non-exporters (99%). Magnitude-wise, the average effect size for non-exporters is about

2.6 times larger than that for active exporters. This is reasonable as the decision to export

may go together with other firm-level actions that can enhance productivity, such as tech-

nology adoption, quality upgrading or R&D spending (e.g., Verhoogen, 2008; Aw et al., 2011;

Bustos, 2011). Due to the lack of rich data, our LBE estimates are more of the "reduced-

form" estimates that bundle different channels together. These findings reasonably sug-

gest that the bulk of a productivity boost attributable to (internal) learning from exporting

and probably other exporting related investment takes place immediately after the domestic

firm engages in exports and thus gains access to new technology and business practices.

On average, the size of the LFE effect is comparable to that of LBE: the pooled mean

estimate of the LFE effect is statistically significant at 0.32 (vs. 0.36). However, at the ob-

servation level, the LFE effect is significantly non-zero only for 69% of all firms, thus sug-
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Table 1.4. Estimates of the LBE and LFE Functions

LBE LFE

ωi t−1 –0.1127 –0.3455
(–0.212, –0.039) (–0.575, –0.1338)

Xi t−1 –0.9698 1.2104
(–1.4543, –0.4346) (0.5832, 2.0077)

X i t−1 1.2104 0.2198
(0.5832, 2.0077) (–0.9592, 1.3766)

Notes: Reported are the parameter estimates for the
LBE and LFE functions derived from the polynomial
approximation of the conditional mean of ωi t , along
with the two-sided 95% bootstrap percentile confi-
dence intervals in parentheses.

gesting that the indirect cross-firm productivity-boosting effect of exporting is less preva-

lent in manufacturing than the direct learning effect taking place within the firm. We also

interestingly document that the LFE effect is stronger for the firms who also export them-

selves. Namely, the average estimate of the LFE effect for the exporter firms is estimated

at 0.508, whereas the corresponding estimate for non-exporters is half that at 0.275. In ad-

dition, non-zero learning from exporters is also more prevalent for exporters (74%) than it

is for non-exporters (67%). The empirical evidence therefore suggests that exporters bene-

fit from the exposure to peer exporters in their local industry more than do non-exporters.

Plausibly, there may be complementarities between internal/direct and external/indirect

learning from export experiences. This is reasonable because challenges associated with

engagements in the foreign market can make exporters more motivated and pressured than

their fully domestically-oriented non-exporting peers to improve further and more intensely

so. Overall however, the external LFE effect is significant for most manufacturing plants.

Next, we explore heterogeneity in the productivity effects of exporting. Firms are highly

heterogeneous across many dimensions including their productivity, the degree of their ex-

port orientation as well as the intensity of their exposure to other exporters in the industry.

In what follows, we investigate if these characteristics influence the effect size of internal

and external learning from exporting.

Recall that we obtain the estimate of the productivity effects of exporting via �LBE i t =
∂ĝ (·)/∂Xi t−1 and �LF E i t = ∂ĝ (·)/∂X i t−1, where we estimate g

(
ωi t−1, Xi t−1, X i t−1

)
using the
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second-order polynomial sieve approximation. Thus, by derivation, both �LBE i t and �LF E i t

are the estimated linear functions of the “determinants” of firm productivity
(
ωi t−1, Xi t−1, X i t−1

)′
.

Table 1.4 reports the estimates of parameters on these three variables for LBE and LFE.

The coefficient estimates on ωi t−1 for both LBE and LFE are significantly negative, indi-

cating that the magnitude of these effects declines as firms get more productive. Thus, less

productive plants benefit more from export-driven learning, be it an internal or external

channel. This finding is largely in line with economic intuition whereby more productive

plants would have less absorptive capacity to learn from their own export experiences as

well as to absorb knowledge from their surroundings including the exporting peers. We also

find that the firm’s own export intensity Xi t−1 has a significantly negative effect on learning

by exporting but a significantly positive effect on learning from exporters, indicating that

less export-oriented plants improve more via learning by exporting and less via learning

from exporters (and vice versa). Basically, this is indicative of the diminishing productivity

return to the own export experience: an increase in the degree of firm’s export orientation

enhances its productivity at a decreasing rate. But we do not find such a pattern for the

LFE effect. On the contrary, the more export-oriented the plant is, the higher the cross-

firm export-driven productivity spillovers are, which buttresses our earlier discussion of po-

tential complementarities between exporting and external learning from Table 1.3. Lastly,

the results in Table 1.4 suggest that the average of peer export orientation in the local in-

dustry X i t−1 has a significantly positive influence on learning by exporting, indicating that

a greater exposure to exporters helps plants absorb productivity improvements from their

own export behavior. At the same time, we find no significant effect of X i t−1 on the LFE

effect size, indicating that the average export participation in the industry improves future

plant productivity at a constant rate.

1.6 Conclusion

Governments in both the developing and developed countries commonly pursue policies

aimed at promoting exports. In addition to boosting aggregate demand, such policies are
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also routinely justified by arguing that domestic exporters benefit from export-driven pro-

ductivity improvements. When studying these productivity effects, the existing literature

mostly focuses on whether firms improve their performance by engaging in exports them-

selves, a mechanism called “learning by exporting,” while largely neglecting a secondary

channel whereby domestic firms can also learn from their exporting peers via cross-firm

spillovers. This indirect learning opportunity, which we refer to as “learning from exporters,”

is available to both exporters and non-exporters. Omitting this important mechanism may

not only provide an incomplete assessment of total productivity benefits of exporting but

may also jeopardize the measurement of the more traditional direct learning-by-exporting

effects because of the endogeneity-inducing omitted variable bias.

In this paper, we extend De Loecker (2013) to develop a unified empirical framework for

productivity measurement that explicitly accommodates both the direct LBE channel taking

place within the firm as well as the indirect LFE channel working between firms, which en-

ables us to robustly measure and test these two effects in a consistent structural framework.

We do so by formalizing the evolution of firm productivity as an export-controlled process,

with the future productivity potentially affected not only by the firm’s own export behavior

but also by that of its spatially proximate peers in the industry. This allows a simultaneous,

“internally consistent” identification of firm productivity and the corresponding effects of

exporting. Our identification strategy utilizes the structural link between the parametric

production function and the firm’s first-order condition for static inputs which helps us cir-

cumvent Ackerberg et al.’s (2015) and Gandhi et al.’s (2018) non-identification critiques of

conventional proxy-based productivity estimators. In addition, owing to the nonparametric

treatment of the firm productivity process, our model enables us to accommodate hetero-

geneity and nonlinearity in productivity effects of exporting across firms.

We apply our semiparametric methodology to a panel of manufacturing plants in Chile

in 1995–2007. We find significant evidence in favor of both the LBE and LFE effects. Over-

all, the LBE productivity effect is statistically significant for 93% of all firms in our data set,

although the results suggest that that the bulk of a productivity boost attributable to (in-

ternal) learning from exporting takes place immediately after the domestic firm engages in
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exports. On average, the size of the LFE effect is comparable to that of LBE. However, at the

observation level, the LFE effect is significantly non-zero only for 69% of plants, thus sug-

gesting that the indirect cross-firm productivity-boosting effect of exporting is less prevalent

in manufacturing than the direct learning effect taking place within the firm. We also doc-

ument that less productive plants benefit more from export-driven learning (via both the

internal or external channels) thereby suggesting that more productive plants may have less

absorptive capacity to learn from their own export experiences as well as to absorb knowl-

edge from their exporting peers. We also find that the more export-oriented firm is, the less

(more) it learns by exporting (from exporters). A greater exposure to exporters also helps

plants absorb productivity improvements from their own export behavior implying that the

two channels are complementary.
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Chapter 2

Accounting for Cross-Location
Technological Heterogeneity in the

Measurement of Operations Efficiency and
Productivity*

2.1 Introduction

It is well-documented in management, economics as well as operations research that busi-

nesses, even in narrowly defined industries, are quite different from one another in terms of

productivity. These cross-firm productivity differentials are large, persistent and ubiquitous

(see Syverson, 2011). Research on this phenomenon is therefore unsurprisingly vast and in-

cludes attempts to explain it from the perspective of firms’ heterogeneous behaviors in re-

search and development (e.g., Griffith et al., 2004), corporate operational strategies (Smith

and Reece, 1999), ability of the managerial teams (Demerjian et al., 2012), ownership struc-

ture (Ehrlich et al., 1994), employee training and education (Moretti, 2004), allocation effi-

ciency (Song et al., 2011), participation in globalization (Grossman and Helpman, 2015) and

many others. In most such studies, a common production function/technology is typically

assumed for all firms within the industry, and the differences in operations performance of

firms are confined to variation in the “total factor productivity,” the Solow residual (Solow,

*This chapter is based on Malikov et al. (2021).

36



1957).1

In this paper, we approach the heterogeneity in firm performance from a novel perspec-

tive in that we explicitly acknowledge the existence of locational effects on the operations

technology of firms and their underlying productivity. We allow the firm-level production

function to vary across space, thereby accommodating potential neighborhood influences

on firm production. In doing so, we are able to examine the role of locational heterogeneity

for cross-firm differences in operations performance/efficiency.

A firm’s location is important for its operations technology. For example, Ketokivi et al.

(2017) show that hospital location is significantly related to its performance and that a hos-

pital’s choice of strategy can help moderate the effect of location through the interplay of

local environmental factors with organizational strategy. As shown in Figure 2.1, chemical

enterprises in China, the focus of empirical analysis in this paper, are widely (and unevenly)

distributed across space. Given the sheer size of the country (it is the third largest by area), it

is implausible that, even after controlling for firm heterogeneity, all these businesses operate

using the same production technology. Organizations in all industries—not only hospitals

and chemical manufacturers—develop strategies to respond to local environment and the

associated competitive challenges, and those strategies drive operational decisions regard-

ing investments in new or updated technologies.

Theoretically, there are many reasons to believe that the production technology is location-

specific. First, exogenous local endowments and institutional environments, such as laws,

regulations and local supply chains, play a key role in determining firm performance. The

location of firms determines key linkages between the production, market, supply chain

and product development (Goldstein et al., 2002). If we look at the global distribution of the

supply chains of many products, the product development and design is usually conducted

in developed countries such as the U.S. and European countries, while the manufacturing

and assembly process is performed in East Asian countries such as China and Vietnam. This

spatial distribution largely reflects the endowment differences in factors of production (e.g.,

1A few studies alternatively specify an “augmented” production function which, besides the traditional inputs,
also admits various firm-specific shifters such as the productivity-modifying factors mentioned above. But
such studies continue to assume that the same technology frontier applies to all firms.
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Figure 2.1. Spatial Distribution of Manufacturers of Chemicals in China, 2004–2006

skilled vs. unskilled labor) and the consequent relative input price differentials across coun-

tries. Analogously, take the heterogeneity in endowment and institutions across different

locations within a country. There are many more world’s leading universities on the East

and West Coasts of the U.S. than in the middle of the country, and they provide thousands

of talented graduates each year to the regional development, bolstering growth in flagship

industries such as banking and high-tech in those locations. In China, which our empiri-

cal application focuses on, networking and political connections are, anecdotally, the key

factors for the success of a business in the Northeast regions, whereas the economy on the

Southeast Coast is more market-oriented. Furthermore, there are many broadly defined

special economics zones (SEZs) in China, which all are characterized by a small designated

geographical area, local management, unique benefits and separate customs and adminis-

trative procedures (see Crane et al., 2018). According to a report from the China Develop-

ment Bank, in 2014, there were 6 SEZs, 14 open coastal cities, 4 pilot free-trade areas and 5 fi-

nancial reform pilot areas. There were also 31 bonded areas, 114 national high-tech develop-

ment parks, 164 national agricultural technology parks, 85 national eco-industrial parks, 55

national eco-civilization demonstration areas and 283 national modern agriculture demon-
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stration areas. They spread widely in China and support various economic functions, giving

rise to locational heterogeneity in the country’s production.

Second, most industries are geographically concentrated in general, whereby firms in

the same or related industries tend to spatially cluster, benefiting from agglomeration econo-

mies reflected, among other things, in their production technologies that bring about local-

ized aggregate increasing returns. Ever since Marshall (1920) popularized these ideas, re-

searchers have shown that industry concentration is too great to be explained solely by the

differences in exogenous locational factors and that there are at least three behavioral micro-

foundations for agglomeration: benefits from labor market pooling/sharing, efficiency gains

from the collocation of industries with input-output relationships that improves the qual-

ity of matches and technology spillovers (see Ellison and Glaeser, 1999; Duranton and Puga,

2004; Ellison et al., 2010; Singh and Marx, 2013). The key idea of agglomeration economies is

that geographic proximity reduces the transport costs of goods, people and, perhaps more

importantly, ideas. While it is more intuitive that the movement of goods and people is

hindered by spatial distance, the empirical evidence from prior studies shows that tech-

nology spillovers are also highly localized because knowledge transfers require interaction

that proximity facilitates (see Almeida and Kogut, 1999; Alcácer and Chung, 2007; Singh and

Marx, 2013). Therefore, owing to the role of local neighborhood influences, firms that pro-

duce the same/similar products but are located in regions with different industry concen-

tration levels are expected to enjoy different agglomeration effects on their operations.

Because location is an important factor affecting firm performance, previous empiri-

cal studies heavily rely on spatial econometrics to examine the locational/spatial effects on

production. Oftentimes, spatially-weighted averages of other firms’ outputs and inputs are

included as additional regressors in spatial autoregressive (SAR) production-function mod-

els (e.g., Glass et al., 2016b, 2020a,b; Vidoli and Canello, 2016; Serpa and Krishnan, 2018;

Glass and Kenjegalieva, 2019; Kutlu et al., 2020; Hou et al., 2020). The appropriateness of

such a conceptualization of firm-level production functions in the presence of locational

influences however remains unclear because these SAR specifications are difficult to rec-

oncile with the theory of firm. For instance, the reduced form of such models effectively
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implies substitutability of the firm’s inputs with those of its peers and does not rule out the

possibility of the firm’s output increasing when the neighboring firms use more inputs even

if the firm itself keeps own inputs fixed and the productivity remains the same. Further,

these models continue to implausibly assume that all firms use the same production tech-

nology no matter their location. The practical implementation of SAR production-function

models is, perhaps, even more problematic: (i ) they imply additional, highly nonlinear pa-

rameter restrictions necessary to ensure that the conventional production axioms are not

violated, and (ii ) they are likely unidentifiable from the data given the inapplicability of

available proxy-variable estimators and the pervasive lack of valid external instruments at

the firm level. We discuss this in detail in Appendix A.1.2

In this paper, we consider a semiparametric production function in which both the input-

to-output transformation technology and productivity are location-specific. Concretely, us-

ing the location information for firms, we let the input-elasticity and productivity-process

parameters be nonparametric functions of the firm’s geographic location (latitude and lon-

gitude) and estimate these unknown functions via kernel methods. Our methodology cap-

tures the cross-firm spatial influences through local smoothing, whereby the production

technology for each location is calculated as the geographically weighted average of the

input-output relationships for firms in the nearby locations with larger weights assigned

to the firms that are more spatially proximate. This is fundamentally different from the

SAR production-function models that formulate neighborhood influences using spatially-

weighed averages of the output/inputs quantities while keeping the production technology

the same for all firms. Consistent with the agglomeration literature, our approach implies

that learning and knowledge spillovers are localized and that their chances/intensity dimin-

ish with distance. Importantly, by utilizing the data-driven selection of smoothing parame-

ters that regulate spatial weighting of neighboring firms in kernel smoothing, we avoid the

need to rely on ad hoc specifications of the weighting schemes and spatial radii of neighbor-

hood influences like the traditional SAR models do. It also allows us to be agnostic about

2But we should note that studies of the nexus between location/geography and firm performance in operations
research and management are not all confined to the production theory paradigm; e.g., see Bannister and
Stolp (1995), Goldstein et al. (2002), Kalnins and Chung (2004, 2006), Dahl and Sorenson (2012) and Kulchina
(2016).
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the channels through which firm location affects its production, and our methodology in-

clusively captures all possible mechanisms of agglomeration economies.

Our conceptualization of spatial influences by means of locationally-varying parame-

ters is akin to the idea of “geographically weighted regressions” (GWR) introduced and pop-

ularized in the field of geography by Brunsdon et al. (1996); also see Fotheringham et al.

(2002) and many references therein. Just like ours, the GWR technique aims to model pro-

cesses that are not constant over space but exhibit local variations and do so using a varying-

coefficient specification estimated via kernel smoothing over locations. However, the prin-

cipal—and non-trivial—distinction of our methodology from the GWR approach is in its

emphasis on identification of the spatially varying relationship. Concretely, for consistency

and asymptotic unbiasedness the GWR methods rely on the assumption that (non-spatial)

regressors in the relationship of interest are mean-orthogonal to the stochastic disturbance

which rules out the presence of correlated unobservables as well as the potential simul-

taneity of regressors and the outcome variable for reasons other than spatial autoregression.

The latter two are, however, more the rule rather than the exception for economic relations,

which are affected by behavioral choices, including the firm-level production function. Re-

covering the data generating process underlying the firm’s production operations from ob-

servational data (i.e., its identification) requires tackling the correlation between regressors

and the error term that the GWR cannot handle, making it unable to consistently estimate

the production technology and firm productivity. This is precisely our focus.3

The identification of production functions in general, let alone with locational hetero-

geneity, is not trivial due to the endogeneity issue whereby the firm’s input choices are cor-

related with its productivity. Complexity stems from the latency of firm productivity. Due to

rather unsatisfactory performance of the conventional approaches to identification of pro-

duction functions, such as fixed effects estimation or instrumentation using prices, there is

a growing literature targeted at solving endogeneity using a proxy-variable approach (e.g.,

see Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015; Gandhi et al.,

2020) which has gained wide popularity among empiricists.

3In effect, our methodology constitutes a generalization of the GWR technique to accommodate endogenous
regressors in the context of production-function estimation.
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To identify the locationally-varying production functions, we develop a semiparametric

proxy-variable estimator that accommodates locational heterogeneity across firms. To this

end, we build upon Gandhi et al. (2020) whose framework we extend to incorporate spatial

information about the firms in a semiparametric fashion. More specifically, we make use of

the structural link between the production function (of the known varying-coefficient func-

tional form) and the optimality condition for a flexible input derived from the firm’s static

expected profit maximization problem. We propose a two-step estimation procedure and,

to approximate the unknown functional coefficients, employ local-constant kernel fitting.

Based on the estimated location-specific production functions, we further propose a loca-

tional productivity differential decomposition to break down the cross-region production

differences that cannot be explained by input usage (i.e., the differential in “total productiv-

ity” of firms across locations) into the contributions attributable to differences in available

production technologies and to differences in total-factor operations efficiency of firms.

We apply our model to study locationally heterogeneous production technology among

Chinese manufacturing firms in the chemical industry in 2002–2004. Based on the results

of the data-driven cross-validation as well as formal statistical tests, the empirical evidence

provides strong support to the importance and relevance of location for production. Quali-

tatively, we find that both technology and firm productivity vary significantly across regions.

Firms are more likely to exhibit higher (internal) returns to scale in regions of agglomera-

tion. However, the connection between firm productivity and industry concentration across

space is unclear. The decomposition analysis reveals that differences in technology (as op-

posed to in idiosyncratic firm heterogeneity) are the main source of cross-location total pro-

ductivity differentials, on average accounting for 2/3 of the differential.

To summarize, our contribution is as follows. We propose a semiparametric methodol-

ogy to accommodates locational heterogeneity in the production-function estimation while

maintaining the standard structural assumptions about firm production. Unlike the avail-

able SAR-type alternatives, our model explicitly estimates the cross-locational variation in

production technology. To operationalize our methodology, we extend the widely-used proxy-

variable identification methods to incorporate firm location. Our model as well as the pro-
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posed decomposition method for disentangling the effects of location on firm productiv-

ity from those on technological input-output relationship should provide a valuable addi-

tion to the toolkit of empiricists interested in studying agglomeration economies and tech-

nology spillovers. In the context of operations management in particular, our methodol-

ogy will be most useful for empirical studies focused on the analysis of operations effi-

ciency/productivity and its “determinants;” (e.g., Ross and Droge, 2004; Berenguer et al.,

2016; Jola-Sanchez et al., 2016; Lam et al., 2016, are just a few recent examples of such anal-

yses). In the case of multi-input production, the “total factor productivity” is among the

most popular comprehensive measures of operations efficiency/productivity of the firm,

and our paper shows how to measure the latter robustly when production relationships are

not constant over space and are subject to neighborhood influences. This is particularly

interesting because the effects of location, supply chain integration and agglomeration on

firm performance have recently attracted much attention among researchers in operations

management (e.g., Goldstein et al., 2002; Ketokivi et al., 2017; Flynn et al., 2010).

The rest of the paper is organized as follows. Section 2.2 describes the model of firm-

level production exhibiting locational heterogeneity. We describe our identification and

estimation strategy in Section 2.3. We provide the locational productivity differential de-

composition in Section 2.4. The empirical application is presented in Section 2.5. Section

3.6 concludes. Supplementary materials are relegated to the Appendix.

2.2 Locational Heterogeneity in Production

Consider the production process of a firm i (i = 1, . . . ,n) in the time period t (t = 1, . . . ,T ) in

which physical capital Ki t∈ℜ+, labor Li t∈ℜ+ and an intermediate input such as materials

Mi t∈ℜ+ are transformed into the output Yi t∈ℜ+ via a production function given the (unob-

served) firm productivity. Also, let Si be the (fixed) location of firm i , with the obvious choice

being Si = (lati , longi )′, where lati and longi are the latitude and longitude coordinates of the
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firm’s location. Then, the locationally varying production function is

Yi t = F|Si (Ki t ,Li t , Mi t )exp{ωi t }exp
{
ηi t

}
, (2.2.1)

where F|Si (·) is the firm’s location-specific production function that varies over space (as

captured by Si ) to accommodate locational heterogeneity in production technology, ωi t

is the firm’s persistent Hicks-neutral total factor productivity capturing its operations effi-

ciency, and ηi t is a random transitory shock. Note that, so long as the firm’s location is fixed,

ωi t that persist for the same firm i , by implication, then also has the evolution process that

is specific to this firm’s location Si ; we expand on this below.

As in Gandhi et al. (2020), Malikov et al. (2020) and Malikov and Zhao (2021), physical

capital Ki t and labor Li t are said to be subject to adjustment frictions (e.g., time-to-install,

hiring/training costs), and the firm optimizes them dynamically at time t−1 rendering these

predetermined inputs quasi-fixed at time t . Materials Mi t is a freely varying (flexible) input

and is determined by the firm statically at time t . Thus, both Ki t and Li t are the state vari-

ables with dynamic implications and follow their respective deterministic laws of motion:

Ki t = Ii t−1 + (1−δ)Ki t−1 and Li t = Hi t−1 +Li t−1, (2.2.2)

where Ii t , Hi t and δ are the gross investment, net hiring and the depreciation rate, respec-

tively.

Following the convention, we assume that the risk-neutral firm maximizes a discounted

stream of expected life-time profits in perfectly competitive output and factor markets sub-

ject to the state variables and expectations about the market structure variables including

prices that are common to all firms.4 Also, for convenience, we denote Ii t to be the infor-

4 We use the perfect competition and homogeneous price assumption mainly for two reasons: (i ) it is the most
widely used assumption in the literature on structural identification of production function and productivity,
and (ii ) this assumption has been repeatedly used when studying the same data as ours (e.g., Baltagi et al.,
2016; Malikov et al., 2020). Relaxing the perfect competition assumption is possible but non-trivial, and it
requires additional assumptions about the output demand (e.g., De Loecker, 2011) and/or extra information
on firm-specific output prices that are usually not available for manufacturing data (e.g., De Loecker et al.,
2016) or imposing ex ante structure on the returns to scale (see Flynn et al., 2019). It is still a subject of ongoing
research. Given the emphasis of our contribution on incorporating technological heterogeneity (associated
with firm location, in our case) in the measurement of firm productivity, we opt to keep all other aspects
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mation set available to the firm i for making the period t production decisions.

In line with the proxy variable literature, we model firm productivity ωi t as a first-order

Markov process which we, however, endogenize à la Doraszelski and Jaumandreu (2013)

and De Loecker (2013) by incorporating productivity-enhancing and “learning” activities

of the firm. To keep our model as general as possible, we denote all such activities via a

generic variable Gi t which, depending on the empirical application of interest, may mea-

sure the firm’s R&D expenditures, foreign investments, export status/intensity, etc.5 Thus,

ωi t evolves according to a location-inhomogeneous controlled first-order Markov processes

with transition probability P ω
|Si

(ωi t |ωi t−1,Gi t−1). This implies the following location-specific

mean regression for firm productivity:

ωi t = h|Si (ωi t−1,Gi t−1)+ζi t , (2.2.3)

where h|Si (·) is the location-specific conditional mean function of ωi t , and ζi t is a ran-

dom innovation unanticipated by the firm at period t − 1 and normalized to zero mean:

E [ζi t |Ii t−1] = E [ζi t ] = 0.

The evolution process in (2.2.3) implicitly assumes that productivity-enhancing activi-

ties and learning take place with a delay which is why the dependence ofωi t on a control Gi t

is lagged implying that the improvements in firm productivity take a period to materialize.

Further, in E[ζi t |Ii t−1] = 0 we assume that, due to adjustment costs, firms do not experience

changes in their productivity-enhancing investments in light of expected future productiv-

ity innovations. Since the innovation ζi t represents inherent uncertainty about productivity

evolution as well as the uncertainty about the success of productivity-enhancing activities,

the firm relies on its knowledge of the contemporaneous productivity ωi t−1 when choosing

the level of Gi t−1 in period t −1 while being unable to anticipate ζi t . These structural timing

assumptions are commonly made in models with controlled productivity processes (e.g.,

Van Biesebroeck, 2005; Doraszelski and Jaumandreu, 2013, 2018; De Loecker, 2013; Malikov

et al., 2020; Malikov and Zhao, 2021) and are needed to identify the within-firm productivity-

of modeling consistent with the convention in the literature to ensure meaningful comparability with most
available methodologies.

5A scalar variable Gi t can obviously be replaced with a vector of such variables.
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improving learning effects.

We now formalize the firm’s optimization problem in line with the above discussion. Un-

der risk neutrality, the firm’s optimal choice of freely varying input Mi t is described by the

(static) restricted expected profit-maximization problem subject to the already optimal dy-

namic choice of quasi-fixed inputs:

max
Mi t

P Y
t F|Si (Ki t ,Li t , Mi t )exp{ωi t }θ−P M

t Mi t , (2.2.4)

where P Y
t and P M

t are respectively the output and material prices that, given the perfect

competition assumption, need not vary across firms; and θ ≡ E[exp{ηi t }| Ii t ]. The first-

order condition corresponding to this optimization yields the firm’s conditional demand for

Mi t .

Building on Doraszelski and Jaumandreu’s (2013, 2018) treatment of productivity-enhan-

cing R&D investments (a potential choice of Gi t in our framework) as a contemporaneous

decision, we describe the firm’s dynamic optimization problem by the following Bellman

equation:

Vt
(
Ξi t

)= max
Ii t ,Hi t ,Gi t

{
Πt |Si (Ξi t )−CI

t (Ii t )−CH
t (Hi t )−CG

t (Gi t )+E
[
Vt+1

(
Ξi t+1

)∣∣∣Ξi t , Ii t , Hi t ,Gi t

]}
,

(2.2.5)

where Ξi t = (Ki t ,Li t ,ωi t )′ ∈ Ii t are the state variables;6 Πt |Si (Ξi t ) is the restricted profit

function derived as a value function corresponding to the static problem in (2.2.4); and Cκ
t (·)

is the cost function for capital (κ = I ), labor (κ = H) and productivity-enhancing activities

(κ=G).7 In the above dynamic problem, the level of productivity-enhancing activities Gi t+1

is chosen in time period t +1 unlike the amounts of dynamic inputs Ki t+1 and Li t+1 that are

chosen by the firm in time period t (via Ii t and Hi t , respectively). Solving (2.2.5) for Ii t , Hi t

and Gi t yields their respective optimal policy functions.

An important assumption of our structural model of firm production in the presence of

6The firm’s location Si is suppressed in the list of state variables due to its time-invariance.
7The assumption of separability of cost functions is unimportant, and one can reformulate (2.2.5) using one

Ct (Ii t , Hi t ,Gi t ) for all dynamic production variables.
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locational heterogeneity is that firm location Si is both fixed and exogenous. However, the

identification of locational heterogeneity in production may be complicated by the poten-

tially endogenous spatial sorting problem, whereby more productive firms might ex ante

sort into the what-then-become high productivity locations. Under this scenario, when we

compare firm productivity and technology across locations, we may mistakenly attribute

gradients therein to the locational effects such as agglomeration and neighborhood influ-

ences, while in actuality it may be merely reflecting the underlying propensity of all firms

in a given location to be more productive a priori. While there has recently been notable

progress in formalizing and understanding these coincident phenomena theoretically (e.g.,

Behrens et al., 2014; Gaubert, 2018), disentangling firm sorting and spatial agglomeration

remains a non-trivial task empirically.8 However, by including the firm’s own lagged pro-

ductivity in the autoregressive ωi t process in (2.2.3), we are able (at least to some extent)

to account for this potential self-sorting because sorting into locations is heavily influenced

by the firm’s own productivity (oftentimes stylized as the “talent” or “efficiency” in theo-

retical models). That is, the locational heterogeneity in firm productivity and technology

in our model is measured after partialling out the contribution of its own past productiv-

ity. Incidentally, De Loecker (2013) argues the same in the context of productivity effects of

exporting and self-selection of exporters.

2.3 Methodology

This section describes our strategy for (structural) identification and estimation of the firm’s

location-specific production technology and unobserved productivity.

8Urban economics literature also distinguishes the third endogenous process usually referred to as the “se-
lection” which differs from sorting in that it occurs ex post after the firms had self-sorted into locations and
which determines their continuing survival. We abstract away from this low-productivity-driven attrition
issue in the light of the growing empirical evidence suggesting that it explains none of spatial productivity
differences which, in contrast, are mainly driven by agglomeration economies (see Combes et al., 2012). Re-
latedly, the firm attrition out of the sample has also become commonly accepted as a practical non-issue in
the productivity literature so long as the data are kept unbalanced. For instance, Levinsohn and Petrin (2003,
p.324) write: “The original work by Olley and Pakes devoted significant effort to highlighting the importance
of not using an artificially balanced sample (and the selection issues that arise with the balanced sample).
They also show once they move to the unbalanced panel, their selection correction does not change their
results.”
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Following the popular practice in the literature (e.g., see Olley and Pakes, 1996; Levin-

sohn and Petrin, 2003; Doraszelski and Jaumandreu, 2013; Ackerberg et al., 2015; Collard-

Wexler and De Loecker, 2015; Konings and Vanormelingen, 2015), we assume the Cobb-

Douglas specification for the production function which we adapt to allow for potential lo-

cational heterogeneity in production. We do so in a semiparametric fashion as follows:

lnF|Si (·) =βK (Si )ki t +βL(Si )li t +βM (Si )mi t , (2.3.1)

where the lower-case variables denote the logs of the corresponding upper-case variables,

and the input elasticity functions [βK (·),βL(·),βM (·)]′ are unspecified smooth functions of

the firm’s location Si . The local smoothness feature of the production relationship, includ-

ing both the input elasticities and persistent productivity process below, captures the effects

of technology spillovers and agglomeration economies that give rise to local neighborhood

influences. Our methodology can also adopt more flexible specifications such as the log-

quadratic translog, which provides a natural extension of the log-linear Cobb-Douglas form.

See Appendix A.2 for the details on this extension.

Before proceeding further, we formalize the location-specific autoregressive conditional

me-an function of ωi t in its evolution process (2.2.3). Following Doraszelski and Jauman-

dreu (2013, 2019), Ackerberg et al. (2015), Grieco et al. (2016, 2019) and many others, we

adopt a parsimonious first-order autoregressive specification of the Markovian evolution for

productivity but take a step further by assuming a more flexible semiparametric location-

specific formulation akin to that for the production technology in (2.3.1):

h|Si (·) = ρ0(Si )+ρ1(Si )ωi t−1 +ρ2(Si )Gi t−1. (2.3.2)
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2.3.1 Proxy Variable Identification

Substituting for F|Si (·) in the locationally varying production function (2.2.1) using (2.3.1),

we obtain

yi t =βK (Si )ki t +βL(Si )li t +βM (Si )mi t +ωi t +ηi t (2.3.3)

=βK (Si )ki t +βL(Si )li t +βM (Si )mi t +ρ0(Si )+ρ1(Si )ωi t−1 +ρ2(Si )Gi t−1 +ζi t +ηi t ,

(2.3.4)

where we have also used the Markov process for ωi t from (2.2.3) combined with (2.3.2) in

the second line.

Under our structural assumptions, all right-hand-side covariates in (2.3.4) are predeter-

mined and weakly exogenous with respect to ζi t +ηi t , except for the freely varying input

mi t that the firm chooses in time period t conditional on ωi t (among other state variables)

thereby making it a function of ζi t . That is, mi t is endogenous.

Prior to finding ways to tackle the endogeneity of mi t , to consistently estimate (2.3.4),

we first need to address the latency of firm productivity ωi t−1. A popular solution is a proxy

variable approach à la Levinsohn and Petrin (2003) whereby latent productivity is controlled

for by inverting the firm’s conditional demand for an observable static input such as materi-

als. However, such a standard proxy approach generally fails to identify the firm’s production

function and productivity due to the lack of a valid instrument (from within the production

function) for the endogenous mi t despite the abundance of predetermined lags of inputs.

As recently shown by Gandhi et al. (2020), identification cannot be achieved using the stan-

dard procedure because no exogenous higher-order lag provides excluded relevant variation

for mi t after conditioning the model on the already included self-instrumenting variables.

As a result, the production function remains unidentified in flexible inputs. In order to solve

this under-identification problem, Gandhi et al. (2020) suggest exploiting a structural link

between the production function and the firm’s (static) first-order condition for the freely

varying input. In what follows, we build on this idea which we modify along the lines of Do-

raszelski and Jaumandreu (2013) and Malikov and Zhao (2021) in explicitly making use of
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the assumed functional form of production technology.

First step.—We first focus on the identification of production function in its flexible in-

put mi t . Specifically, given the technology specification in (2.3.1), we seek to identify the

material elasticity function βM (Si ). To do so, we consider an equation for the firm’s first-

order condition for the static optimization in (2.2.4). The optimality condition with respect

to Mi t in logs is given by (in logs)

lnP Y
t +βK (Si )ki t +βL(Si )li t + lnβM (Si )+ [βM (Si )−1]mi t +ωi t + lnθ = lnP M

t , (2.3.5)

which can be transformed by subtracting the production function in (2.3.3) from it to obtain

the following location-specific material share equation:

vi t = ln[βM (Si )θ]−ηi t , (2.3.6)

where vi t ≡ ln
(
P M

t Mi t
)− ln

(
P Y

t Yi t
)

is the log nominal share of material costs in total rev-

enue, which is observable in the data.

The material share equation in (2.3.6) is powerful in that it enables us to identify un-

observable material elasticity function βM (Si ) using the information about the log material

share vi t . Specifically, we first identify a “scaled” material elasticity functionβM (Si )×θ using

the moment condition E[ηi t |Ii t ] = E[
ηi t |Si

]= 0, from where we have that

ln[βM (Si )θ] = E[vi t |Si ]. (2.3.7)

To identify the material elasticity function βM (Si ) net of constant θ, note that θ is

θ ≡ E[
exp

{
ηi t

}]= E[
exp

{
ηi t

}]= E[
exp{E[vi t |Si ]− vi t }

]
, (2.3.8)

which allows us to isolate βM (Si ) via

βM (Si ) = exp{E[vi t |Si ]}/E
[
exp{E[vi t |Si ]− vi t }

]
. (2.3.9)
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By having identified the material elasticity function βM (Si ), we have effectively pin-

pointed the production technology in the dimension of its endogenous static input thereby

effectively circumventing the Gandhi et al. (2020) critique. This is evident when (2.3.4) is

rewritten as

y∗
i t =βK (Si )ki t +βL(Si )li t +ρ0(Si )+ρ1(Si )ωi t−1 +ρ2(Si )Gi t−1 +ζi t +ηi t , (2.3.10)

where y∗
i t ≡ yi t−βM (Si )mi t on the left-hand side is already identified/observable and, hence,

model in (2.3.10) now contains no endogenous regressors that need instrumentation.

Second step.—To identify the rest of the production function, we proxy for latent ωi t−1

using the known functional form of the conditional material demand function implied by

the static first-order condition in (2.3.5) which we analytically invert for productivity. Namely,

using the inverted (log) material functionωi t = ln[P M
t /P Y

t ]−βK (Si )ki t−βL(Si )li t−ln[βM (Si )θ]+
[1−βM (Si )]mi t to substitute for ωi t−1 in (2.3.10), we get

y∗
i t = βK (Si )ki t +βL(Si )li t +ρ0(Si )+ρ1(Si )

[
ν∗i t−1 −βK (Si )ki t−1 −βL(Si )li t−1

]
+

ρ2(Si )Gi t−1 +ζi t +ηi t , (2.3.11)

whereν∗i t−1 = ln[P M
t−1/P Y

t−1]−ln[βM (Si )θ]+[1−βM (Si )]mi t−1 is already identified/observable

and predetermined with respect to ζi t +ηi t .9 All regressors in (2.3.11) are weakly exogenous,

and this proxied model is identified based on the moment conditions:

E[ζt +ηt | ki t , li t ,ki t−1, li t−1,Gi t−1,ν∗i t−1(mi t−1),Si ] = 0. (2.3.12)

With the production technology and the transitory shock ηi t successfully identified in

the two previous steps, we can readily recover ωi t from (2.3.3) via ωi t = yi t −βK (Si )ki t −
9Following the convention in the literature (e.g., Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg

et al., 2015; Doraszelski and Jaumandreu, 2013; Gandhi et al., 2020), we assume there is no measurement
error in mi t . However, if the (log) material input is measured with errors, due to the reasons such as inven-
tories, subcontracting and outsourcing, it will affect both the first- and the second-step estimation. More
specifically, adjusting the first step is less problematic if the measurement error is classical since mi t is in the
dependent variable. However, the second-step equation (2.3.11) will have a new endogeneity issue due to the
measurement error. In such a case, additional identifying assumptions are often needed; see Hu et al. (2020)
for an example.
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βL(Si )li t −βM (Si )mi t −ηi t .

Our identification methodology is also robust to the Ackerberg et al. (2015) critique that

focuses on the inability of structural proxy estimators to separably identify the additive pro-

duction function and productivity proxy. Such an issue normally arises in the wake of per-

fect functional dependence between freely varying inputs appearing both inside the un-

known production function and productivity proxy. Our second-step equation (2.3.11) does

not suffer from such a problem because it contains no (endogenous) variable input on the

right-hand side, the corresponding elasticity of which has already been identified from the

material share equation in the first step.

2.3.2 Semiparametric Estimation

Given the semiparametric varying-coefficient specifications adopted for both the produc-

tion technology [in (2.3.1)] and productivity evolution [in (2.3.2)], we estimate both the first-

and second-step equations (2.3.6) and (2.3.11) via local least squares. We employ local-

constant kernel fitting.

Denote the unknown ln[βM (Si )θ] as some nonparametric function bM (Si ). Under the

assumption that input elasticity functions are smooth and twice continuously differentiable

in the neighborhood of Si = s, unknown bM (Si ) can be locally approximated around s via

bM (Si ) ≈ bM (s) at points Si close to s, |Si − s| = o(1). Therefore, for locations Si in the neigh-

borhood of s, we can approximate (2.3.6) by

vi t ≈ bM (s)−ηi t , (2.3.13)

with the corresponding local-constant kernel estimator of ln[βM (s)θ] given by

b̂M (s) =
[∑

i

∑
t

Kh1 (Si , s)

]−1 ∑
i

∑
t

Kh1 (Si , s)vi t , (2.3.14)

where Kh1 (Si , s) is a kernel that weights each observation on the basis of proximity of its Si

value to s.
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To avoid over-smoothing in dense ranges of the support of the data while under-smoothing

in sparse tails, which a “fixed” bandwidth parameter is well-known to produce, we employ

an “adaptive” bandwidth capable of adapting to the local distribution of the data. Specif-

ically, to weight observations, we use an h1-nearest-neighbor bandwidth Rh1 (s) defined as

the Euclidean distance between the fixed location s and its h1th nearest location among {Si },

i.e.,

Rh1 (s) = ‖S(h1) − s‖, (2.3.15)

where S(h1) is the h1th nearest neighbor of s. Evidently, Rh1 (s) is just the h1th order statistic

on the distances ‖Si −s‖. It is s-specific and, hence, adapts to data distribution. Correspond-

ingly, the kernel weight function is given by

Kh1 (Si , s) =K

(‖Si − s‖
Rh1 (s)

)
, (2.3.16)

where K(·) is a (non-negative) smooth kernel function such that
∫
K(‖u‖)du = 1; we use a

second-order Gaussian kernel.

The key parameter here that controls the degree of smoothing in the first-step estimator

(2.3.14) is the number of nearest neighbors (i.e., locations) h1, which diverges to ∞ as n →∞
but slowly: h1/n → 0. We select the optimal h1 using the data-driven cross-validation proce-

dure. Also note that, despite the location Si being multivariate, the parameter h1 is a scalar

because it modulates a univariate quantity, namely the distance. Hence, the bandwidth

Rh1 (s) is also scalar. That is, unlike in the case of a more standard kernel fitting based on

fixed bandwidths when the data are weighted using the product of univariate kernels corre-

sponding to each element in Si − s, the adaptive kernel fitting weights data using a norm of

the vector Si − s. For this reason, when employing nearest neighbor methods, the elements

of smoothing variables are typically rescaled so that they are all comparable because, when

Si is multivariate, the nearest neighbor ordering is not scale-invariant. In our case however,

we do not rescale the elements of Si (i.e., latitude and longitude) because they are already

measured on the same scale and the (partial) distances therein have a concrete physical

interpretation.
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From (2.3.9), the first-step estimator of βM (s) is

β̂M (s) = nT exp
{
b̂M (s)

}/∑
i

∑
t

exp
{
b̂M (s)− vi t

}
. (2.3.17)

We construct ŷ∗
i t ≡ yi t−β̂M (Si )mi t and ν̂∗i t−1 = ln[P M

t−1/P Y
t−1]−ln[β̂M (Si )θ]+[1−β̂M (Si )]mi t−1

using the first-step local estimates ofβM (Si ). Analogous to the first-step estimation, we then

locally approximate each unknown parameter function in (2.3.11) around Si = s via local-

constant approach. Therefore, for locations Si near s, we have

ŷ∗
i t ≈βK (s)ki t +βL(s)li t +ρ0(s)+ρ1(s)

[
ν̂∗i t−1 −βK (s)ki t−1 −βL(s)li t−1

]
+ρ2(s)Gi t−1 +ζi t +ηi t .

(2.3.18)

Denoting all unknown parameters in (2.3.18) collectively as Θ(s) = [βK (s),βL(s),ρ0(s),

ρ1(s),ρ2(s)]′, we estimate the second-step equation via locally weighted nonlinear least squares.

The corresponding kernel estimator is

Θ̂(s) = argmin
Θ(s)

∑
i

∑
t

Kh2 (Si , s)
(

ŷ∗
i t −βK (s)ki t −βL(s)li t −

ρ0(s)−ρ1(s)
[
ν̂∗i t−1 −βK (s)ki t−1 −βL(s)li t−1

]
+ρ2(s)Gi t−1

)2
, (2.3.19)

where h2 is the number of nearest neighbors of a fixed location s in the second-step estima-

tion. It diverges faster than does the first-step smoothing parameter h1 so that the first-step

estimation has an asymptotically ignorable impact on the second step.

Lastly, the firm productivity is estimated as ω̂i t = yi t −β̂K (Si )ki t −β̂L(Si )li t −β̂M (Si )mi t −
η̂i t using the results from both steps.

Finite-Sample Performance. Before applying our proposed methodology to the data, we

first study its performance in a small set of Monte Carlo simulations. The results are encour-

aging, and simulation experiments show that our estimator recovers the true parameters

well. As expected of a consistent estimator, the estimation becomes more stable as the sam-

ple size grows. For details, see Appendix A.3.
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Inference. Due to a multi-step nature of our estimator as well as the presence of nonpara-

metric components, computation of the asymptotic variance of the estimators is not simple.

For statistical inference, we therefore use bootstrap. We approximate sampling distributions

of the estimators via wild residual block bootstrap that takes into account a panel structure

of the data, with all the steps bootstrapped jointly owing to a sequential nature of our esti-

mation procedure. The bootstrap algorithm is described in Appendix A.4.

Testing of Location Invariance. Given that our semiparametric locationally varying produc-

tion model nests a more traditional fixed-parameter specification that implies locational in-

variance of the production function and the productivity evolution as a special case, we can

formally discriminate between the two models to see if the data support our more flexible

modeling approach. We discuss this specification test in detail in Appendix A.5.

2.4 Locational Productivity Differential Decomposition

Since the production function can vary across space, a meaningful comparison of produc-

tivity for firms dispersed across space now requires that locational differences in technology

be explicitly controlled. That is, the productivity differential between two firms is no longer

limited to the difference in their firm-specific total factor productivitiesωi t (unless they both

belong to the same location) because either one of the firms may have access to a more pro-

ductive technology FS(·). Given that locational heterogeneity in production is the principal

focus of our paper, in what follows, we provide a procedure for measuring and decomposing

firm productivity differentials across any two locations of choice.

Let L (s, t ) represent a set of ns
t firms operating in location s in the year t . For each of

these firms, the estimated Cobb-Douglas production function (net of random shocks) in

logs is

ŷ s
i t = β̂K (s)k s

i t + β̂L(s)l s
i t + β̂M (s)ms

i t + ω̂s
i t , (2.4.1)

where we have also explicitly indexed these firms’ observable output/inputs as well as the

estimated productivities using the location. Averaging over these firms, we arrive at the
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“mean” production function for location s in time t :

y s
t = β̂K (s)k

s
t + β̂L(s)l

s
t + β̂M (s)ms

t +ωs
t , (2.4.2)

where y s
t = 1

ns
t

∑
i ŷ s

i t1{i ∈L (s, t )}, xs
t = 1

ns
t

∑
i xs

i t1{i ∈L (s, t )} for x ∈ {k, l ,m}, andωs
t = 1

ns
t

∑
i ω̂

s
i t

1{i ∈L (s, t )}.

Taking the difference between (2.4.2) and the analogous mean production function for

the benchmark location of interest κ in the same year, we obtain the mean output differen-

tial between these two locations (in logs):

y s
t − yκt︸ ︷︷ ︸
∆y s,κ

t

=
[
β̂K (s)k

s
t + β̂L(s)l

s
t + β̂M (s)ms

t

]
−

[
β̂K (κ)k

κ

t + β̂L(κ)l
κ

t + β̂M (κ)mκ
t

]
+

[
ωs

t −ωκt
]

.

(2.4.3)

To derive the mean productivity differential (net of input differences) between these two

locations, we add and subtract the s location’s production technology evaluated at the κ

location’s inputs, i.e.,
[
β̂K (s)k

κ

t + β̂L(s)l
κ

t + β̂M (s)mκ
t

]
, in (2.4.3):

∆PROD
s,κ
t ≡∆y s,κ

t − β̂K (s)∆k
s,κ
t − β̂L(s)∆l

s,κ
t − β̂M (s)∆ms,κ

t

= [
β̂K (s)− β̂K (κ)

]
k
κ

t +
[
β̂L(s)− β̂L(κ)

]
l
κ

t +
[
β̂M (s)− β̂M (κ)

]
mκ

t︸ ︷︷ ︸
∆TECH

s,κ
t

+
[
ωs

t −ωκt
]

︸ ︷︷ ︸
∆TFP

s,κ
t

,

(2.4.4)

where ∆xs,κ
t = xs

t −xκt for x ∈ {k, l ,m}.

Equation (2.4.4) measures mean productivity differential across space and provides a

counterfactual decomposition thereof. By utilizing the counterfactual output that, given its

location-specific technology, the average firm in location s would have produced using the

mean inputs employed by the firms in location κ in year t
[
β̂K (s)k

κ

t + β̂L(s)l
κ

t + β̂M (s)mκ
t

]
,

we are able to measure the locational differential in the mean productivity of firms in the

locations s and κ that is unexplained by their different input usage: ∆PROD
s,κ
t . More impor-

tantly, we can then decompose this locational differential in the total productivity into the

contribution attributable to the difference in production technologies ∆TECH
s,κ
t and to the
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difference in the average total-factor operations efficiencies ∆TFP
s,κ
t .

The locational productivity differential decomposition in (2.4.4) is time-varying, but sho-

uld one be interested in a scalar measure of locational heterogeneity for the entire sample

period, time-specific averages can be replaced with the “grand” averages computed by pool-

ing over all time periods.

2.5 Empirical Application

Using our proposed model and estimation methodology, we explore the locationally het-

erogeneous production technology among manufacturers in the Chinese chemical industry.

We report location-specific elasticity and productivity estimates for these firms and then de-

compose differences in their productivity across space to study if the latter are mainly driven

by the use of different production technologies or the underlying total factor productivity

differentials.

2.5.1 Data

We use the data from Baltagi et al. (2016). The dataset is a panel of n = 12,490 manufac-

turers of chemicals continuously observed over the 2004–2006 period (T = 3). The industry

includes manufacturing of basic chemical materials (inorganic acids and bases, inorganic

salts and organic raw chemical materials), fertilizers, pesticides, paints, coatings and adhe-

sives, synthetic materials (plastic, synthetic resin and fiber) as well as daily chemical prod-

ucts (soap and cleaning compounds). The original source of these firm-level data is the

Chinese Industrial Enterprises Database survey conducted by China’s National Bureau of

Statistics (NBS) which covers all state-owned firms and all non-state-owned firms with sales

above 5 million Yuan (about $0.6 million). Baltagi et al. (2016) have geocoded the location

of each firm at the zipcode level in terms of the longitude and latitude (the “S” variables)

using their postcode information in the dataset. The coordinates are constructed for the

location of each firm’s headquarters and are time-invariant. By focusing on the continually

operating firms, we mitigate a potential impact of spatial sorting (as well as the attrition due
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Table 2.1. Data Summary Statistics

Variables Mean 1st Qu. Median 3rd Qu.

—Production Function Variables—

Output 86,381.98 11,021.09 23,489.53 59,483.71
Capital 35,882.40 1,951.47 5,319.28 17,431.35
Labor 199.07 43.00 80.00 178.00
Materials 48,487.82 5,896.49 12,798.35 33,063.81

—Productivity Controls—

Skilled Labor Share 0.174 0.042 0.111 0.242
Foreign Equity Share 0.140 0.000 0.000 0.000
Exporter 0.237
State-Owned 0.051

—Location Variables—

Longitude 2.041 1.984 2.068 2.102
Latitude 0.557 0.504 0.547 0.632

Output, capital and materials are in 1,000s of 1998 RMB. Labor is measured in the number
of employees. The skilled labor share and foreign equity share are unit-free proportions.
The exporter and state-owned variables are binary indicators. The location coordinates
are in radians.

to non-survival) on the estimation results and treat the firm location as fixed (exogenous).

The total number of observations is 37,470.

Figure 2.1 shows the spatial distribution of firms in our dataset on a map of mainland

China (we omit area in the West with no data in our sample). The majority are located on the

East Coast and in the Southeast of China, especially around the Yangtze River Delta that is

generally comprised of Shanghai and the surrounding areas, the southern Jiangsu province

and the northern Zhejiang province.

The key production variables are defined as follows. Output (Y ) is measured using sales.

The labor input (L) is measured by the number of employees. Capital stock (K ) is the net

fixed assets for production and operation, and the materials (M) are defined as the expendi-

ture on direct materials. Output, capital and materials are deflated to the 1998 values using

the producer price index, the price index for investment in fixed assets and the purchasing

price index for industrial inputs, respectively, where the price indices are obtained from the

NBS. The unit of monetary values is thousands RMB (Chinese Yuan).

We include four productivity-modifying variables in the evolution process of firm pro-

ductivity ωi t : the share of high-skilled workers (G1), which is defined as the fraction of

workers with a university or comparable education and is time-invariant because the data

58



on workers’ education level are only available for 2004; the foreign equity share (G2), which

is measured by the proportion of equity provided by foreign investors; a binary export sta-

tus indicator (G3), which takes value one if the firm is an exporter and zero otherwise; and

a binary state/public ownership status indicator (G4), which takes value one if the firm is

state-owned and zero otherwise.

Table 3.1 shows the summary statistics, including the mean, 1st quartile, median and 3rd

quartile for the variables. For the production-function variables, the mean values are signif-

icantly larger than their medians, which suggests that their distributions are skewed to the

right. Among firms in the chemical industry, 23.7% are exporters and 5.1% are state-owned.

Most firms do not have foreign investors, and the average ratio of foreign to total equity is

0.14. On average, 17.4% of employees in the industry have a college degree or equivalent.

2.5.2 Estimation Results

In order to estimate the locationally varying (semiparametric) production function and firm

productivity process in (2.3.1)–(2.3.2), we use the data-driven leave-one-location-out cross-

validation method to choose the optimal number of nearest neighboring locations in each

step of the estimation (h1 and h2) to smooth over “contextual” location variables Si inside

the unknown functional coefficients. This smoothing parameters regulate spatial weighting

of neighboring firms in kernel fitting and, as noted earlier, by selecting it via a data-driven

procedure, we avoid the need to rely on ad hoc specifications of both the spatial weights

and radii defining the extent of neighborhood influences. The optimal h1 and h2 values are

520 and 340 firm-years in the first- and second-step estimation, respectively. On average

across all s, the corresponding adaptive bandwidths are 0.0171 and 0.0169 radians. These

bandwidth values are reasonable, given our sample size and the standard deviations of the

longitude and latitude,10 and, evidently, are not too large to “smooth out” the firm location

to imply location invariance/homogeneity. In fact, we can argue this more formally if kernel-

smoothing is done using fixed bandwidths so that we can rely on the theoretical results by

10For the reference, the sample standard deviations for the longitude and latitude are respectively 0.0889 and
0.0941 radians.
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Hall et al. (2007), whereby local-constant kernel methods can remove irrelevant regressors

via data-driven over-smoothing (i.e., by selecting large bandwidths). When we re-estimate

our locationally-varying model in this manner, the optimal fixed bandwidths for the longi-

tude and latitude in the first-step estimation are 0.009 and 0.010 radians, respectively; the

corresponding second-step bandwidths are 0.024 and 0.023 radians. Just like in the case

of adaptive bandwidths, these bandwidth values are fairly small relative to variation in the

data, providing strong evidence in support of the overall relevancy of geographic location

for firm production (i.e., against location invariance). Our location-varying formulation of

the production technology and productivity is also formally supported by the Ullah (1985)

specification test described in Appendix A.5. Using cross-validated fixed bandwidths, the

bootstrap p-value is 0.001. At the conventional significance level, our locationally heteroge-

neous production model is confidently preferred to a location-invariant formulation.

In what follows, we discuss our semiparametric results obtained using adaptive band-

widths. For inference, we use the bias-corrected bootstrap percentile intervals as described

in Appendix A.4. The number of bootstrap replications is set to B = 1,000.

Production Function. We first report production-function estimates from our main model

in which the production technology is locationally heterogeneous. We then compare these

estimates with those obtained from the more conventional, location-invariant model that a

priori assumes common production technology for all firms. The latter “global” formulation

of the production function postulates constancy of the production relationship over space.

This model is therefore fully parametric (with constant coefficients) and a special case of

our locationally-varying model when Si is fixed across all i . Its estimation is straightforward

and follows directly from (2.3.14)–(2.3.18) by letting the adaptive bandwidths in both steps

diverge to ∞ which, in effect, obviates the need to locally weight the data because all kernels

will be the same (for details, see Appendix A.5).11

Since our model has location-specific input elasticities, there is a distribution of them

11Following a suggestion provided by a referee, we also estimate the location-invariant model with location
fixed effects added to the production function during the estimation. We find the results do not change
much from including these location effects, and therefore these results are not reported.
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Table 2.2. Input Elasticity Estimates

Locationally Varying Location-Invariant
Mean 1st Qu. Median 3rd Qu. Point Estimate

Capital 0.112 0.095 0.115 0.128 0.130
(0.104, 0.130) (0.083, 0.116) (0.110, 0.130) (0.119, 0.147) (0.118, 0.141)

Labor 0.303 0.272 0.293 0.342 0.299
(0.285, 0.308) (0.248, 0.284) (0.278, 0.293) (0.313, 0.356) (0.280, 0.318)

Materials 0.480 0.452 0.481 0.503 0.495
(0.466, 0.501) (0.414, 0.467) (0.437, 0.502) (0.456, 0.524) (0.460, 0.519)

The left panel summarizes point estimates of βκ(Si ) ∀ κ ∈ {K ,L, M } with the corresponding two-sided 95% bias-corrected
confidence intervals in parentheses. The right panel reports their counterparts from a fixed-coefficient location-invariant
model.

Figure 2.2. Input Elasticity Estimates
(Notes: Vertical lines correspond to location-invariant estimates)
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Table 2.3. Locationally Varying Returns to Scale Estimates

Mean 1st Qu. Median 3rd Qu. = 1 < 1

RTS 0.895 0.875 0.903 0.929 21.6% 82.3%
(0.820, 0.931) (0.801, 0.912) (0.827, 0.942) (0.855, 0.968)

The left panel summarizes point estimates of
∑
κβκ(Si ) with κ ∈ {K ,L, M } with the corresponding two-sided

95% bias-corrected confidence intervals in parentheses. The counterpart estimate of the returns to scale from a
fixed-coefficient location-invariant model is 0.924 (0.865, 0.969). The right panel reports the shares of locations
in which location-specific point estimates are (i) not significantly different from 1 (constant returns to scale)
and (ii) statistically less than 1 (decreasing returns to scale). The former classification is based on a two-sided
test, the latter is on a one-sided test.

(over space) and Table 2.2 summarizes their point estimates. The table also reports the

elasticity estimates from the alternative, location-invariant model. The corresponding two-

sided 95% bias-corrected confidence intervals for these statistics are reported in parenthe-

ses. Based on our model, the mean (median) capital, labor and material elasticity estimates

are 0.112, 0.303 and 0.480 (0.115, 0.293 and 0.481), respectively. Importantly, these location-

specific elasticities show significant variation. For the capital and labor inputs, the first quar-

tiles are significantly different from the third quartiles. Within the inter-quartile interval

of their point estimates, elasticities of capital, labor and materials respectively increase by

0.033, 0.070 and 0.051, which in turn correspond to the 35%, 26% and 11% changes.

In comparison, the elasticity estimates from the location-invariant production func-

tion with fixed coefficients are all larger than the corresponding median estimates from our

model and fall in between the second and third quartiles of our locationally-varying point

estimates. Figure 2.2 provides visualization of the non-negligible technological heterogene-

ity in the chemicals production technology across different locations in China, which the

traditional location-invariant model assumes away. The figure plots histograms of the esti-

mated location-specific input elasticities (and the returns to scale) with the location-invariant

counterpart estimates depicted by vertical lines. Consistent with the results in Table 2.2, all

distributions show relatively wide dispersion, and the locationally homogeneous model is

apparently unable to provide a reasonable representation of production technology across

different regions.

Table 2.3 provides summary statistics of the estimated returns to scale (RTS) from our

locationally varying production function (also see the bottom-right plot in Figure 2.2). The
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Figure 2.3. Spatial Distribution of Returns to Scale Estimates
(Notes: The color shade cutoffs correspond to the first, second (median) and third quartiles)

mean RTS is 0.895, and the median is 0.903, with the inter-quartile range being 0.054. The

right panel of Table 2.3 reports the fraction of locations in which the Chinese manufacturers

of chemicals exhibit constant or decreasing returns to scale. This classification is based on

the RTS point estimate being statistically equal to or less than one, respectively, at the 5%

significance level. The “= 1” classification is based on a two-sided test, whereas the “< 1”

test is one-sided. In most locations in China (82.3%), the production technologies of the

chemicals firms exhibit diseconomies of scale, but 21.6% regions show evidence of the con-

stant returns to scale (i.e., scale efficiency).

To further explore the locational heterogeneity in the production technology for chem-

icals in China, we plot the spatial distribution of the RTS estimates in the country in Figure

2.3. We find that the firms with the largest RTS are mainly located in the Southeast Coast

provinces and some parts of the West and Northeast China. The area nearby Beijing also

exhibits larger RTS. There are a few possible explanations of such a geographic distribution

of the returns to scale. As noted earlier, spillovers and agglomeration have positive effects
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on the marginal productivity of inputs which typically take form of the scale effects, and

they may explain the high RTS on the Southeast Coast and in the Beijing area. Locality-

specific resources, culture and polices can also facilitate firms’ production process. For ex-

ample, the rich endowment of the raw materials like coal, phosphate rock and sulfur make

the provinces such as Guizhou, Yunnan and Qinghai among the largest fertilizer production

zones in China. Furthermore, RTS is also related to the life cycle of a firm. Usually, it is the

small, young and fast-growth firms that enjoy higher RTS, whereas the more mature firms

that have grown bigger will have transitioned to the low-RTS scale. This may explain the

prevalence of the higher-RTS firms in the West and Northeast China.

Productivity Process. We now analyze our semiparametric estimates of the firm produc-

tivity process in (2.3.2). Table 2.4 summarizes point estimates of the location-specific margi-

nal effects of productivity determinants in the evolution process ofωi t , with the correspond-

ing two-sided 95% bias-corrected confidence intervals in parentheses. In the last column of

the left panel, for each productivity-enhancing control Gi t , we also report the share of loca-

tions in which location-specific point estimates are statistically positive (at a 5% significance

level) as inferred via a one-sided test.

The autoregressive coefficient on the lagged productivity, which measures the persis-

tence ofωi t , is 0.576 at the mean and 0.597 at the median, with the quartile statistics varying

from 0.518 to 0.641. It is significantly positive for firms in virtually all locations. For firms in

most locations (85.7%), skilled labor has a large and significantly positive effect on produc-

tivity: a percentage point increase in the skilled labor share is associated with an improve-

ment in the next period’s firm productivity by about 0.4%, on average. Point estimates of the

foreign ownership effect are positive in the majority of locations, but firms in only about half

the locations benefit from a statistically positive productivity-boosting effect of the inbound

foreign direct investment, with the average magnitude of only 7/50 of that attributable to

hiring more skilled labor. In line with the empirical evidence reported for China’s manu-

facturing in the literature (see Malikov et al., 2020, and references therein), firms in most

regions show insignificant (and negative) effects of the export status on productivity. The
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Table 2.4. Productivity Process Coefficient Estimates

Locationally Varying Location-Invariant
Variables Mean 1st Qu. Median 3rd Qu. > 0 Point Estimate

Lagged Productivity 0.576 0.518 0.597 0.641 99.9% 0.497
(0.540, 0.591) (0.469, 0.541) (0.553, 0.614) (0.580, 0.665) (0.455, 0.530)

Skilled Labor Share 0.387 0.287 0.419 0.500 85.7% 0.387
(0.346, 0.395) (0.241, 0.309) (0.345, 0.459) (0.471, 0.493) (0.345, 0.425)

Foreign Equity Share 0.054 –0.001 0.062 0.103 47.7% 0.056
(0.006, 0.074) (–0.034, 0.066) (0.033, 0.069) (0.099, 0.099) (0.036, 0.075)

Exporter –0.001 –0.032 –0.005 0.038 24.0% 0.006
(–0.011, 0.018) (–0.041, –0.016) (–0.012, 0.013) (0.025, 0.067) (–0.008, 0.018)

State-Owned 0.005 –0.052 0.007 0.073 29.6% –0.043
(–0.021, 0.010) (–0.101, –0.014) (–0.028, 0.025) (0.062, 0.076) (–0.072, –0.009)

The left panel summarizes point estimates of ρ j (Si ) ∀ j = 1, . . . ,dim(G) with the corresponding two-sided 95% bias-corrected confidence intervals in
parentheses. Reported is also a share of locations in which location-specific point estimates are statistically positive as inferred via a one-sided test. The
right panel reports the counterparts from a fixed-coefficient location-invariant model.

Figure 2.4. Productivity Process Coefficient Estimates
(Notes: Vertical lines correspond to location-invariant estimates)
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“learning by exporting” effects are very limited and statistically positive in a quarter of loca-

tions only. Interestingly, we find that state/public ownership is a significantly positive con-

tributor to the improvements in firm productivity in about a third of the locations in which

the Chinese chemicals manufacturing firms operate. This may be because the less produc-

tive state firms exited the market during the market-oriented transition in the late 1990s and

early 2000s (prior to our sample period), and the remaining state-owned firms are larger and

more productive (also see Hsieh and Song, 2015; Zhao et al., 2020). Another potential reason

may be that state ownership could have brought non-trivial financing benefits to these firms

which, otherwise, were usually financially constrained due to the under-developed financial

market in China during that period.

The far right panel of Table 2.4 reports productivity effects of the Gi t controls estimated

using the location-invariant model. Note that, under the assumption of a location-invariant

production, the evolution process of ωi t becomes a parametric linear model, and there is

only one point estimate of each fixed marginal effect for all firms. Comparing these esti-

mates with the median estimates from our model, the location-invariant marginal effects

tend to be smaller. While the persistence coefficient as well as fixed coefficients on the

skilled labor and foreign equity shares are positive and statistically significant, the location-

invariant estimate of the state ownership effect on productivity is however significantly neg-

ative (for all firms, by design). Together with the tendency of a location-invariant model to

underestimate, this underscores the importance of allowing sufficient flexibility in modeling

heterogeneity across firms (across different locations, in our case) besides the usual Hicks-

neutral TFP.

The contrast between the two models is even more apparent in Figure 2.4, which plots

the distributions of estimated marginal effects of the productivity-enhancing controls. Like

before, the location-invariant counterparts are depicted by vertical lines. The distribution

of each productivity modifier spans a relatively wide range, and the corresponding location-

invariant estimates are evidently not good representatives for the centrality of these dis-

tributions. For example, the productivity-boosting effect of the firm’s skilled labor roughly

varies between 0.06 and 0.61% per unit percentage point increase in the skilled labor share,
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Table 2.5. Locational Productivity Differential Decomposition

Components Mean 1st Qu. Median 3rd Qu.

Locationally Varying Model

∆TECH
s,κ

1.292 1.135 1.331 1.521

∆TFP
s,κ

0.574 0.203 0.571 0.893

∆PROD
s,κ

1.866 1.652 1.869 2.086

Location-Invariant Model

∆PROD
s,κ

1.797 1.589 1.816 2.040

The top panel summarizes point estimates of the locational mean
productivity differential ∆PROD

s,κ = ∆TECH
s,κ +∆TFP

s,κ
with the

corresponding two-sided 95% bias-corrected confidence intervals in
parentheses. The bottom panel reports the counterparts from a
fixed-coefficient location-invariant model for which, by construc-

tion, ∆PROD
s,κ = ∆TFP

s,κ
with ∆TECH

s,κ = 0. In both cases, the
decomposition is pooled for the entire sample period and the bench-
mark/reference location κ is the one with the smallest mean produc-
tion: κ= argmins y s .

depending on the location. The distribution of this marginal effect across locations is some-

what left-skewed, and the corresponding location-invariant effect estimate evidently does

not measure central tendency of these locationally-varying effects well. Similar observations

can be made about other varying coefficients in the productivity process.

Productivity Decomposition. We now examine the average productivity differentials for

firms in different regions. To this end, we perform the locational decomposition proposed

in Section 2.4 to identify the sources of production differences that cannot be explained by

input usage. Recall that, by our decomposition, the locational differential in the mean total

productivity (∆PROD
s,κ
t ) accounts for the cross-regional variation in both the input elastic-

ities (∆TECH
s,κ
t ) and the total factor productivity (∆TFP

s,κ
). It is therefore more inclusive

than the conventional analyses that rely on fitting a common production technology for all

firms regardless of their locations and thus confine cross-firm heterogeneity to differences

in ωi t only.

Table 2.5 presents the decomposition results (across locations s) following (2.4.4). Be-

cause we just have three years of data, we perform the decomposition by pooling over the

entire sample period. Thus, reported are the average decomposition results across 2002–

2004. Also note that, for a fixed benchmark location κ, the decomposition is done for each

s-location separately. For the benchmark/reference location κ, we choose the zipcode with
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the smallest mean production, i.e., κ= argmins y s , where y s is defined as the time average of

(2.4.2).12 Therefore, the numbers (×100%) in Table 2.5 can be interpreted as the percentage

differences between the chemicals manufacturers operating in various locations (s) versus

those from the least-production-scale region (κ) in China. Because the reference location is

fixed, the results are comparable across s.

Based on our estimates, the mean productivity differential is 1.866, which means that,

compared to the location with the smallest scale of chemicals production, other locations

are, on average, 187% more productive (or more effective in the input usage). The inter-

quartile range of the average productivity differential spans from 1.652 and 2.086. Econom-

ically, these differences are large: firms that are located at the third quartile of the loca-

tional productivity distribution are about 43% more productive than firms at the first quar-

tile. When we decompose the productivity differential into the technology and TFP differ-

entials, on average, ∆TECH
s,κ

is 2.3 times as large as ∆TFP
s,κ

and accounts for about 69%

of the total productivity differences across locations.13 This suggests that the cross-location

technological heterogeneity in China’s chemicals industry explains most of the productivity

differential and that the regional TFP differences are relatively more modest.

Table 2.5 also summarizes the locational productivity differential estimates from the

standard location-invariant model. Given that this model assumes fixed coefficients (same

technology for all firms), we cannot perform a decomposition here, and all cross-location

variation in productivity is a priori attributed to TFP by design. Compared with our locationally-

varying model, this model yields similar total productivity differentials across regions but,

due to its inability to recognize technological differences, it grossly over-estimates cross-

location differences in TFP.

To explore the spatial heterogeneity in the decomposition components, we plot the spa-

tial distributions of ∆TECH
s,κ

, ∆TFP
s,κ

and ∆PROD
s,κ

on the map in Figure 2.5. The spatial

distribution of∆TECH
s,κ

aligns remarkably with that of RTS in Figure 2.3. Noticeably, the re-

gions of agglomeration in the chemicals industry (see Figure 2.1) tend to demonstrate large

12Obviously, the choice of a reference location is inconsequential because its role is effectively that of a nor-
malization.

13That is, the ratio of ∆TECH
s,κ

to ∆PROD
s,κ

is 0.69.
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Figure 2.5. Locational Productivity Differential Decomposition Estimates Across Space
(Notes: The color shade cutoffs correspond to the first, second (median) and third quartiles)

technology differentials. In contrast, the spatial distribution of∆TFP
s,κ

shows quite a differ-

ent pattern, whereby the locations of large TFP (differentials) are less concentrated. Unlike

with the ∆TECH
s,κ

map, the dark-shaded regions on the ∆TFP
s,κ

map are widely spread

around and have no clear overlapping with the main agglomeration regions in the industry.

The comparison between these two maps suggests that, at least for the Chinese chemicals

manufacturing firms, the widely-documented agglomeration effects on firm productivity

are associated more with the scale effects via production technology rather than the im-

provements in overall TFP. That is, by locating closer to other firms in the same industry, it

may be easier for a firm to pick up production technologies and know-hows that improve

productiveness of inputs technologically and thus expand the input requirement set corre-

sponding to the firm’s output level14 given its total factor productivity. Instead, agglomer-

ation effects that increase the effectiveness of transforming all factors into the outputs via

available technology (by adopting better business practices or management strategies) may

14And more generally, shifting the family of firm’s isoquants corresponding to a fixed level of ωi t toward the
origin.
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be less likely to spill among the Chinese manufacturers of chemicals. Importantly, if we a

priori assume the fixed-coefficient production function common to all firms, the techno-

logical effects of agglomeration (via input elasticities) would be wrongly attributed to the

TFP differentials.

2.6 Concluding Remarks

Although it is widely documented in the operations management literature that the firm’s lo-

cation matters for its performance, few empirical studies of operations efficiency explicitly

control for it. This paper fills in this gap by providing a semiparametric methodology for the

identification of production functions in which locational factors have heterogeneous ef-

fects on the firm’s production technology and productivity evolution. Our approach is novel

in that we explicitly model spatial variation in parameters in the production-function esti-

mation. We generalize the popular Cobb-Douglas production function in a semiparametric

fashion by writing the input elasticities and productivity parameters as unknown functions

of the firm’s geographic location. In doing so, not only do we render the production technol-

ogy location-specific but also accommodate neighborhood influences on firm operations

with the strength thereof depending on the distance between firms. Importantly, this en-

ables us to examine the role of cross-location differences in explaining the variation in op-

erational productivity among firms.

The proposed model is superior to the alternative SAR-type production-function formu-

lations because it (i) explicitly estimates the locational variation in production functions,

(ii) is readily reconcilable with the conventional production axioms and, more importantly,

(iii) can be identified from the data by building on the popular proxy-variable methods,

which we extend to incorporate locational heterogeneity in firm production. Our method-

ology provides a practical tool for examining the effects of agglomeration and technology

spillovers on firm performance and will be most useful for empiricists focused on the anal-

ysis of operations efficiency/productivity and its “determinants.”

Using the methods proposed in our paper, we can separate the effects of firm location on
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production technology from those on firm productivity and find evidence consistent with

the conclusion that agglomeration economies affect the productivity of Chinese chemicals

manufacturers mainly through the scale effects of production technology rather than the

improvements in overall TFP. Comparing our flexible semiparametric model with the more

conventional parametric model that postulates a common technology for all firms regard-

less of their location, we show that the latter does not provide an adequate representation

of the industry and that the conclusion based on its results can be misleading. For manage-

rial implications, our study re-emphasizes the importance of firm location for its operations

efficiency in manufacturing industries. Our findings also suggest that hiring skilled labor

has a larger productivity effect compared to other widely-discussed productivity-enhancing

techniques, such as learning by exporting.
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Chapter 3

Off-Balance-Sheet Activities and Scope
Economies in U.S. Banking*

3.1 Introduction

Just like in other industries, executive managers in banking must choose the optimal scope

of operations. Despite the long-lasting implications of this strategic choice for firm perfor-

mance, the dichotomy between operational “focus” and breadth remains unsettled from the

corporate strategy perspective. The common arguments for limited-scope operations à la

Skinner (1974a,b) usually feature cost and quality benefits associated with more specialized

expertise and tacit knowledge, lessened complexity, diminished technological uncertainty,

etc. On the other hand, there may be a strong incentive to diversify revenue streams by

broadening the firm’s product mix in order to capitalize on potential scope-driven cost sav-

ings and thereby increase firm value (see Panzar and Willig, 1981; Rumelt, 1982; Villalonga,

2004). When it comes to commercial banking, leveraging operational scope and breadth

thereof continues to play a vital role in operations management.

The scope of bank operations has also been a subject of intense policy debate, thereby

expanding practical importance of understanding the relation between operational scope

and bank performance beyond industry managers and stakeholders. Namely, the financial

crisis of 2007–2008 and the ensuing Great Recession turned attention of policy-makers and

*This chapter is based on Zhang and Malikov (2021).
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academics alike onto large “too-big-to-fail” (TBTF) commercial banks and the serious sys-

temic risks that they pose. The emergence of behemoth banks due to deregulation as well

as technological innovations (including those in information technologies) has given rise to

concerns about the costs that such “systemically important financial institutions” impose

on the economy and fueled policy debates about whether banks should be subject to size

limitations, even including the talks of break-up. These policy discussions have led to the

enactment of new financial regulations such as the Dodd–Frank Wall Street Reform and the

Consumer Protection Act of 2010 that seek to eliminate the TBTF doctrine by setting restric-

tions on the scale and scope of bank operations. However, the potential cost savings asso-

ciated with operating at a large scale with a more diversified scope of revenue-generating

activities, which are to be forgone owing to the new regulations, have been by and large

neglected in these policy discussions.

Large banks may derive such cost efficiency benefits from their ability to offer financial

services at lower average cost due to (i) “scale economies” driven by the increasing returns to

scale as well as (ii) their unique position to innovate and expand the scope of offered finan-

cial products and thereby economize costs (“scope economies”) via input complementari-

ties and positive spillovers (see Markides and Williamson, 1994; Milgrom and Roberts, 1995)

as well as, in the case of commercial banking, risk diversification across different products

(e.g., Rossi et al., 2009). In theory, these cost savings are passed onto customers in the form

of lower net interest margins. This raises an important policy and research question about

significance of the trade-off between lower systemic risk pursued by the newly enacted reg-

ulations and the cost savings that banks may be forced to forgo as a result. Both have non-

negligible implications for consumer welfare. It is therefore imperative to investigate the

prevalence of scale and scope economies in banking in order to not only shed light on po-

tential unintended consequences of the financial reforms already put in place but also to

inform future policies and regulations. This information also can help banks in formulating

optimal product-scope operational strategies.

While studies of scale economies in commercial banking are many, the attempts to mea-

sure scope economies are however scant and outdated. The latter is especially lacking given
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the introduction of many “nontraditional” financial product innovations involving deriva-

tives, securitization and mortgages by the large banks in the past two decades that have

allowed them to expand the scope of their revenue-earning operations. The objective of this

paper is to fill in this gap.

Early studies of scale economies in banking date as far back as Berger et al. (1987), Mester

(1987, 1992) and Hughes and Mester (1993, 1998) to name a few, and with the passage of new

financial reforms, this body of research has only been growing. No matter the methods em-

ployed, most recent studies find empirical evidence in support of the statistically significant

increasing returns to scale in the U.S. banking sector. Some find significant scale economies

mostly for large commercial banks (e.g., Wheelock and Wilson, 2012; Hughes and Mester,

2013; Restrepo-Tobòn and Kumbhakar, 2015); others find economies of scale for medium

and small banks as well (e.g., Malikov et al., 2015; Restrepo-Tobòn et al., 2015; Wheelock and

Wilson, 2018).

With the sole exception (see below), there however have been virtually no attempt to in-

vestigate product scope economies in banking over the past two decades despite the drastic

transformations that this sector has undergone during that time. This perhaps can be at-

tributed to the lack of empirical evidence in support of statistically and/or economically

significant scope economies among U.S. commercial banks documented in the 1980s and

1990s.1 It makes scope economies in the present-day banking sector be a seriously over-

looked issue because the technological advancements along with regulatory changes have

restructured the U.S. banking industry dramatically, especially since the passage of the Gra-

mm–Leach–Bliley Act in 1999, which largely lifted the restrictions prohibiting the consoli-

dation of commercial banks, investment banks, securities firms and insurance companies.

Since then, banks in the U.S. have experienced a drastic shift from traditional banking activ-

ities (viz., issuance of loans) towards the nontraditional activities such as investment bank-

ing, venture capital, security brokerage, insurance underwriting and asset securitization

(DeYoung and Torna, 2013). Thus, the portfolio of products offered by the modern banks

1E.g., see Berger et al. (1987), Mester (1987), Hughes and Mester (1993), Pulley and Braunstein (1992), Ferrier
et al. (1993), Pulley and Humphrey (1993), Jagtiani et al. (1995), Jagtiani and Khanthavit (1996), Wheelock and
Wilson (2001).
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is very different from that two decades ago, which underscores the importance of our paper.

Nontraditional off-balance-sheet banking operations are well-documented to substan-

tially influence banks’ financial performance including profitability and risk profiles (e.g.,

Stiroh, 2004; Laeven and Levine, 2007; Apergis, 2014), and omitting these revenue-earning

operations in the analysis of banking technology may lead to erroneous inference and con-

clusions due to misspecification (see Clark and Siems, 2002; Rime and Stiroh, 2003; Casu and

Girardone, 2005; Lozano-Vivas and Pasiouras, 2010). To our knowledge, Yuan and Phillips

(2008) who explicitly recognize the role of nontraditional banking activities (namely, insur-

ance) is the only attempt at measuring scope economies in the U.S. banking post 2000. Their

analysis looks at a single nontraditional operation and stops at 2005, which obviously ex-

cludes the most relevant period after the structural-change-inducing financial crisis.

In this paper, we contribute to the literature by providing new and more robust evidence

about scope economies in U.S. commercial banking. We improve upon the prior literature

not only by analyzing the most recent and relevant data (2009–2018) and accounting for

bank’s nontraditional non-interest-centered operations, but also in multiple methodologi-

cal ways as follows. In a pursuit of robust estimates of scope economies and statistical infer-

ence thereon, we estimate a flexible, yet parsimonious, time-varying-coefficient panel-data

quantile regression model which accommodates (i) distributional heterogeneity in the cost

structure of banks along the size of their costs, (ii) temporal variation in cost complementar-

ities and spillovers due to technological change/innovation, and (iii) unobserved bank het-

erogeneity (e.g., latent management quality) that, if unaccounted, confounds the estimates.

Our analysis is structural in that we explicitly estimate a model of bank cost structure which

facilitates the measurement of counterfactual costs necessary to test for scope economies.

By employing a quantile approach, we are able to capture distributional heterogene-

ity in the bank cost structure. Unlike the traditional regression models that focus on the

conditional mean only, quantile regression provides a complete description of the relation-

ship between the distribution of bank costs and its determinants. Since banks of vary-

ing size/scale are highly heterogeneous in their operations (e.g., see Wheelock and Wilson,

2012), it is reasonable to expect that large- and small-scale banks exhibit different scope-

75



driven potential for cost saving (if any) and, therefore, there remains much untapped ben-

efit of examining scope economies in banking via quantile analysis. Thus, contrary to all

prior studies of scope economies in banking which provide evidence solely for average costs

via conventional conditional-mean regressions, we focus our analysis on conditional quan-

tiles of the bank cost distribution, with the bank’s operating cost being a good proxy for

its size/scale. Not only does this approach enable us to accommodate potential hetero-

geneity in the prevalence of scope economies among banks of different sizes, but it is also

more robust to the error distributions including the presence of outliers in the data. Fur-

thermore, it exhibits a useful equivariance property thereby letting us avoid biases in the

scope economies computations that numerous earlier studies suffer from (to be discussed

later).

To operationalize our analysis, we employ the recently developed quantile estimator

(Machado and Santos Silva, 2019) that we extend to allow temporal variation of unknown

form in the parameters in order to flexibly capture the impact of technological innovations

on bank operations and costs. Our empirical results provide strong evidence in support of

statistically significant scope economies across banks virtually of all sizes in the U.S. banking

sector. For banks in the middle interquartile range of the cost distribution, as many as 82.3%

exhibit positive economies of scope. For the top half of the distribution, the prevalence of

significant scope economies is ≥97.5%. Even at the very bottom of cost distribution where

the product diversification opportunities may not be as abundant or easily accessible, our

test results suggest that roughly two thirds of banks (65%) enjoy scope-driven cost savings

and those, who do not, largely exhibit scope invariance. We find no material evidence in

support of scope diseconomies. Our findings are in stark contrast with earlier studies.

The rest of the paper unfolds as follows. Section 3.2 discusses the theoretical framework.

Section 3.3 describes our econometric model. Data are summarized in Section 3.4, following

by Section 3.5 that reports the empirical results. We then conclude in Section 3.6.
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3.2 Theory of Multi-Product Costs

In order to test if there is an untapped cost savings potential for commercial banks due to

scope economies, we need to formally model their cost structure. Following the conven-

tion in the banking literature, we do so using the dual cost approach. Not only is this ap-

proach convenient because it facilitates the direct measurement of the bank’s costs via the

estimated dual cost function necessary for testing for scope economies, but it also does not

require the use of input quantities during the estimation (unlike in the primal production

approach) which can lead to simultaneity problems since input allocations are the bank’s

endogenous decision whereas input prices are widely accepted as being exogenously deter-

mined owing to competition in the factor market including that for deposits.

A model of bank costs calls for specification of the outputs and inputs of bank produc-

tion. Given the bank’s core functions as a financial intermediary, most studies in the lit-

erature adopt Sealey and Lindley’s (1977) “intermediation approach” which focuses on the

bank’s production of intermediation services and the associated costs inclusive of both the

interest and operating expenses. In this paradigm, the revenue-generating financial assets

such as loans and trading securities are conceptualized as outputs, whereas inputs are typi-

cally specified to include labor, physical capital, deposits and other borrowed funds as well

as equity capital (for an excellent review, see Hughes and Mester, 2015). Given the recent in-

dustry trends and the growing importance of nontraditional income-earning activities that

banks engage in, we also include an output measure of non-interest off-balance-sheet in-

come. Together with loans and securities, this makes a total of M = 3 outputs.

Concretely, we formalize the bank’s cost structure via the following multi-product dual

variable cost function:

Ct (Y ,W ,K ) = minX≥0
{

X ′W | (X ,K ) can produce Y at time t
}

, (3.2.1)

where the arguments of cost function Ct (·) are the output quantities Y ∈ℜM+ , variable input

prices W ∈ ℜJ
+ and fixed input quantities K ∈ ℜP+; and X ∈ ℜJ

+ is the vector of variable input
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quantities. Importantly, the cost function in (3.2.1) is time-varying thereby accommodating

the evolution of the bank cost structure over time in the face of technological advancements

and regulatory changes.

The multi-product firm’s cost structure is said to exhibit scope economies if its average

cost is decreasing in the number of outputs/operations (Panzar and Willig, 1981). Commer-

cial banks may achieve such cost savings by spreading fixed costs (e.g., branch costs and

data processing costs) over the more diversified output mix (fixed asset amortization) which

now, more often than not, includes nontraditional off-balance-sheet operations. Scope

economies may also arise from positive spillovers via the (re)use of “public inputs” such as

client credit information and customer relations as well as intangible assets including tacit

knowledge and know-hows. Complementarities across different products can play a big role

too. For example, some off-balance-sheet operations such as loan commitments (which

generate income for banks via fees) essentially represent a technological expansion of tradi-

tional lending at a little cost added. At the same time, they can help banks expand the scope

of their customer relationship with all the cost-saving informational gains that come with it

(Berger and Udell, 1995; Das and Nanda, 1999; Degryse and Van Cayseele, 2000). Banks can

also reuse the information gathered when issuing loans to reduce the searching or monitor-

ing requirements of the off-balance-sheet activities.

To test for the potential for scope-driven cost savings, we use an expansion-path mea-

sure of subadditivity of the bank’s cost function à la Berger et al. (1987), with the rationale

being that subadditivity sheds light on scope economies, the presence of which is a neces-

sary condition for the former (see Evans and Heckman, 1984). Specifically, the subadditiv-

ity measure relies on comparison of the costs of smaller multi-output banks of differential

degrees of specialization with the cost of a larger, more diversified bank.2 Intuitively, this

approach zeroes in on scope economies from a perspective of relative|as opposed to abso-

lute|notion of revenue diversification. Then, for some distribution weights 0 ≤$κ
m ≤ 1 such

that
∑
κ$

κ
m = 1 for all m = 1,2,3 and κ ∈ {A,B ,C }, the bank is said to enjoy scope economies

2While preserving the equality of total output quantities on both sides, of course.
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at time t if ∑
κ∈{A,B ,C }

Ct
(
$κ

1 Y1,$κ
2 Y2,$κ

3 Y3
)−Ct

(
Y1,Y2,Y3

)> 0, (3.2.2)

where we have suppressed all arguments of the cost function besides outputs.

While the above methodology deviates from the conventional definition of scope econo-

mies (Baumol et al., 1982) which relies on the comparison of the cost of producing outputs

individually with the cost of their joint production, whereby the bank is said to enjoy scope

economies if Ct (Y1,0,0)+Ct (0,Y2,0)+Ct (0,0,Y3)−Ct (Y1,Y2,Y3) > 0, it is both more realistic

and robust. This is so because it does not require computation of the counterfactual cost

of producing each output separately by a fully specialized single-output bank, which natu-

rally suffers from “excessive extrapolation” (Evans and Heckman, 1984; Hughes and Mester,

1993) since the counterfactuals require extrapolation of the estimated multi-output cost

function to its boundaries corresponding to the non-existent single-output specializations.

Also, the conventional measure of scope economies is just a special case of (3.2.2) with a pair

of weights taking zero values for each counterfactual bank.

To further avoid excessive extrapolation, we restrict the choice of {$m} to the “admissible

region” defined by the two data-driven constraints, following Evans and Heckman (1984).

First, each counterfactual bank is ensured to not produce less of each output than banks do

in the sample. That is, we require that $κ
mYm ≥ min{Ym} for all m = 1,2,3 and κ ∈ {A,B ,C }.

The second constraint ensures that each counterfactual bank does not specialize in either

one of the outputs to a greater extent than banks do in the sample. In other words, ratios of

output quantities for each counterfactual bank must fall in the range of such ratios observed

in the data, i.e., for any pair Ym and Ym′ :

min

{
Ym

Ym′

}
≤ $κ

mY ∗
m +min{Ym}

$κ
m′Y ∗

m′ +min{Ym′}
≤ max

{
Ym

Ym′

}
, (3.2.3)

where Y ∗
m = Ym −3×min{Ym} for all m = 1,2,3. Thus, we examine the within-sample scope

economies.

The quantitative measure of cost subadditivity St (in proportions) is obtained by divid-
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ing the expression in (3.2.2) by Ct (Y1,Y2,Y3):

St =
∑
κ∈{A,B ,C } Ct

(
$κ

1 Y ∗
1 +min{Y1},$κ

2 Y ∗
2 +min{Y2},$κ

3 Y ∗
3 +min{Y3}

)
−Ct

(
Y1,Y2,Y3

)
Ct

(
Y1,Y2,Y3

) ,

(3.2.4)

where the counterfactual costs under the summation operator have been redefined in order

to operationalize the first of the two constraints characterizing the admissible region. Pos-

itive (negative) values of St provide evidence of scope economies (diseconomies); while a

zero value suggests scope invariance of the bank’s cost structure.

Clearly however, the value of St depends on the choice of distribution weights {$κ
m}. To

test for scope economies, we adopt a conservative approach to measuring cost subadditivity,

whereby {$κ
m} are chosen such that the corresponding St is the smallest. With this, “the”

measure of cost subadditivity (for each bank-year) is

S ∗
t = min

{$κm }
St

(
$κ

m ; m = 1,2,3;κ ∈ {A,B ,C }
)

. (3.2.5)

The rationale is as follows. If the smallest subadditivity measure is still positive, then

one can quite safely infer that scope economies are locally significant over the bank’s output

space in a given year. Thus, the main hypothesis of interest is as follows.

HYPOTHESIS.—Consistent with scope economies, the cost subadditivity measure S ∗
t > 0.

3.3 Empirical Model

We estimate the bank’s dual variable cost function Ct (·) at different conditional quantiles

of costs. Let Ci t be the variable cost of a bank i = 1, . . . ,n in year t = 1, . . . ,T and V i t =
(Y ′

i t ,W ′
i t ,K ′

i t )′ be the vector of (strictly exogenous) cost-function regressors. We use lower

case of Ci t and V i t in the following to denote the log transformations of the variables: e.g.,

v i t = lnV i t . Letting the bank’s variable cost structure be of the translog3 form and described

by a location-scale model à la Koenker and Bassett (1982) extended to accommodate bank

3Quadratic log-polynomial.
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fixed effects and time-varying coefficients, we have

ci t =
[
β0 +β∗

0 L(t )
]+ [

β1 +β∗
1 L(t )

]′v i t + 1
2

[
β2 +β∗

2 L(t )
]′vec

(
v i t v ′

i t

)+λi +ui t , (3.3.1)

with

ui t =
([
γ0 +γ∗0 S(t )

]+ [
γ1 +γ∗

1 S(t )
]′v i t + 1

2

[
γ2 +γ∗

2 S(t )
]′vec

(
v i t v ′

i t

)+σi

)
εi t , (3.3.2)

where
(
β0,β′

1,β′
2,β∗

0 ,β∗
1
′,β∗

2
′)′ are unknown location-function coefficients;

(
γ0,γ′

1,γ′
2,γ∗0 ,γ∗

1
′,γ∗

2
′)′

are unknown scale-function coefficients; and λi and σi are the unobserved bank-specific

location and scale fixed effects, respectively.

To allow for technological change in the bank cost structure, we borrow from Baltagi and

Griffin (1988) and introduce two scalar time indices L(t ) and S(t ). Both time indices are un-

observable and can be thought of as the unknown functions of time. Such time indices are

advantageous over simple trends (including quadratic) in modeling temporal changes be-

cause they provide richer variation in the measurement of technological change and much

closer approximation to observed temporal changes than do the simple time trends. Note

that index L(t ) enters the location function non-neutrally, shifting not only the intercept

β0 +β∗
0 L(t ) but also the linear β1 +β∗

1 L(t ) and quadratic slopes β2 +β∗
2 L(t ), thereby allow-

ing for flexible locational shifts in the costs over time. Analogous scale changes over time

are allowed by means of S(t ). In all, by means of the time indices in both the location and

scale functions, we are able to accommodate temporal changes in the entire conditional cost

distribution.

Essentially, our model in (3.3.1)–(3.3.2) is a generalization of the popular translog cost-

funct-ion specification, where all parameters now vary with time, the covariates affect not

only the location (centrality) but also the scale (variability) of the conditional cost distribu-

tion; and the bank fixed effects are both location- and scale-shifting. The two equations to-

gether facilitate a quantile analysis of the bank’s cost structure. Along the lines of Machado

and Santos Silva (2019) upon whom we build our estimation procedure, we assume that

(i) εi t is i .i .d . across i and t with some cdf Fε; (ii) εi t ⊥ v i t with the normalizations that
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E [εi t ] = 0 and E [|εi t |] = 1; and (iii) Pr
[[
γ0 +γ∗0 S(t )

]+ [
γ1 +γ∗

1 S(t )
]′v i t + 1

2

[
γ2 +γ∗

2 S(t )
]′×

vec
(
v i t v ′

i t

)+σi > 0
] = 1. Then, for any given quantile index τ ∈ (0,1), the τth conditional

quantile function of the log-cost ci t implied by (3.3.1)–(3.3.2) is

Qc [τ|v i t ] =
t-varying quantile intercept︷ ︸︸ ︷[

β0 +γ0qτ+β∗
0 L(t )+γ∗0 S(t )qτ

]
+

t-varying linear quantile slopes︷ ︸︸ ︷[
β1 +γ1qτ+β∗

1 L(t )+γ∗
1 S(t )qτ

]′
v i t +

1

2

[
β2 +γ2qτ+β∗

2 L(t )+γ∗
2 S(t )qτ

]′︸ ︷︷ ︸
t-varying quadratic quantile slopes

vec
(
v i t v ′

i t

)+ [
λi +σi qτ

]
︸ ︷︷ ︸

individual quantile fixed effect

(3.3.3)

where qτ = F−1
ε (τ) is the (unknown) τth quantile of εi t .

The translog cost model in (3.3.3) is quantile-specific because all bracketed “compos-

ite” coefficients vary not only with time but also with the cost quantile τ. Furthermore,

the technological change in the cost frontier is also quantile-specific thereby allowing for

heterogeneous temporal shifts across the entire cost distribution as opposed to a shift in

the mean only. The unobserved bank fixed effect inside the last brackets is also quantile-

specific. Thus, quantile model (3.3.3) can be rewritten compactly as

Qc [τ|v i t ] ≡ α0(τ, t )+α1(τ, t )′v i t + 1

2
α2(τ, t )′vec

(
v i t v ′

i t

)+µi ,τ, (3.3.4)

with the “alpha” coefficients corresponding to the bracketed expressions in (3.3.3) and µi ≡
λi +σi qτ.

We opt to begin with the location-scale model to derive the conditional quantile function

of interest in (3.3.3) as opposed to postulating a quantile regression à la (3.3.4) prima facie

because we seek to estimate these quantiles indirectly. This is motivated by the presence

of unobserved fixed effects in the quantile model. Namely, since there is no known general

transformation that can purge unit fixed effects from the quantile model (owing to nonlin-

earity of the quantile operator), in such a case the routine check-function-based estimators

proceed to directly estimate a vector of individual effects by means of including a full set of

unit dummies. However, as noted by Koenker (2004), the introduction of a large number

of unit fixed effects significantly inflates the variability of estimates of the main parameters
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of interest, i.e., the slope coefficients. Furthermore, the optimization of an L1-norm corre-

sponding to the check-function-based estimators, when there is a large number of binary

variables and the associated parameters to be estimated, is well-known to be computation-

ally cumbersome and oftentimes intractable in practice.4 The traditional solution to this

assumes that unit fixed effects are only location-shifting and regularizes these individual ef-

fects by shrinking them to a common value (see Koenker, 2004; Lamarche, 2010), but these

estimators have gained little popularity in applied work largely because of their complexity.

While there is an alternative fixed-effect quantile estimator proposed by Canay (2011) that

requires no regularization and is notably simpler to implement, it continues to assume that

the unit fixed effects have a pure location shift effect. Using the notation of (3.3.4), this is

tantamount to assuming that µi ,τ =µi for all τ. Furthermore, none of these check-function-

based estimators guarantee that the estimates of regression quantiles do not cross, which

is a pervasive but oft-ignored problem in applied work. We therefore adopt the approach

recently proposed by Machado and Santos Silva (2019) that allows an easy-to-implement

indirect estimation of the quantile parameters via moments, where all parameters are es-

timated based on the moments implied by the location-scale model in (3.3.1)–(3.3.2). Be-

sides its relative computational simplicity, this approach is advantageous for its ability to

control for unobserved unit heterogeneity that is both location- and scale-shifting: the indi-

vidual effects are allowed to affect the entire distribution rather than just shifting its location

(therefore, {µi ,τ} are also quantile-specific). Lastly but not least importantly, this moment-

based approach can be easily applied to nonlinear-in-parameters models (like ours is) and

produces non-crossing quantile regressions.

To operationalize the estimator, we model unobservable L(t ) and S(t ) via discretiza-

tion. For each κ = 1, . . . ,T , define the dummy variable Dκ,t that is equal to 1 in the κth

time period and 0 otherwise. Then, we discretize time indices as L(t ) = ∑T
κ=2ηκDκ,t and

S(t ) = ∑T
κ=2θκDκ,t , where L(1) = η1 = 0 and S(1) = θ1 = 0 are normalized for identification.

Parameter identification also requires that bothβ∗
0 and γ∗0 be normalized; we setβ∗

0 = γ∗0 = 1.

Under these identifying normalizations, β0, β1, γ0 andγ1 are naturally interpretable as “ref-

4For instance, in our empirical application n > 7,500.
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erence” coefficients in time period t = 1. Then, a feasible analogue of the τth conditional

cost quantile in (3.3.3) is given by

Qc [τ|v i t ] =
[
β0 +γ0qτ+

∑
κ

(ηκ+θκqτ)Dκ,t

]
+

[
β1 +γ1qτ+

∑
κ

(β∗
1ηκ+γ∗

1θκqτ)Dκ,t

]′
v i t +

1

2

[
β2 +γ2qτ+

∑
κ

(β∗
2ηκ+γ∗

2θκqτ)Dκ,t

]′
vec

(
v i t v ′

i t

)+[
λi +σi qτ

]
. (3.3.5)

Two remarks are in order. First, the discretized parameterization of the unknown L(t )

and S(t ) is akin to a nonparametric local-constant estimation of these unknown functions

of time with the bandwidth parameter being set to 0. Second, though it might appear at

first that, when L(t ) and S(t ) are modeled using a series of time dummies, we obtain the

time-varying slope coefficients on v i t by merely interacting the latter with time dummies

and adding them as additional regressors, this is not the case here because time dummies

are restricted to have the same parameters {ηk } and {θk } both when entering additively as

well as when interacting with v i t . Thus, the location and scale functions are not “fully satu-

rated” specification but, in fact, are more parsimonious nonlinear (in parameters) functions

with much fewer unknown parameters. This is important because, by avoiding a fully satu-

rated specification that is equivalent to sample-splitting into cross-sections, we are able to

accommodate time-invariant individual fixed effects in the model, the estimation of which

requires the cross-time “within” variation.5

Although the estimation of (3.3.3) can be done in one step via nonlinear method of mo-

ments, we adopt a multi-step procedure that is significantly easier to implement. This is

possible because the moments implied by model (3.3.1)–(3.3.2) and its assumptions are se-

quential in nature. In other words, we can first estimate parameters of the location function

and then those of the scale function in two separate steps. After that, based on the estimates

of these parameters, the third step is taken to estimate unknown quantiles and, ultimately,

recover time-varying quantile coefficients in (3.3.3). In what follows, we describe this pro-

5Incidentally, the nonlinearity of our model is also the reason why we do not use the Canay (2011) fixed-effects
quantile regression estimator which provides an alternative to Machado and Santos Silva (2019) with the dif-
ference being that the former uses the check-function-based estimator as opposed to moment-based. Given
that the L1 optimization used in the check-function-based estimations is not as adept to handling nonlin-
earities in parameters and, more importantly, to the presence of many dummy variables, we opt for the L2

moment-based estimator.
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cedure in detail.

3.3.1 Estimation Procedure

First, for ease of notation, we define D t = [D2,t , . . . ,DT,t ]′,η= [η2, . . . ,ηT ]′ andθ = [θ2, . . . ,θT ]′.

Step 1. We first estimate parameters of the location function. Under the assumption (ii),

from (3.3.1) it follows that the conditional mean function of the log-cost ci t is

E [ci t |v i t ,D t ] =β0+
∑
κ

ηκDκ,t+
[
β1+β∗

1

∑
κ

ηκDκ,t

]′
v i t+1

2

[
β2+β∗

2

∑
κ

ηκDκ,t

]′
vec

(
v i t v ′

i t

)+λi ,

(3.3.6)

which can be consistently estimated in the within-transformed form via nonlinear least

squares after purging additive location fixed effects.6

Given the nonlinearity and high dimensionality of (3.3.6) in parameters, we estimate the

slope coefficients via concentration by noticing that, conditional on η, this mean regression

is linear in [β′
1,β′

2,β∗
1
′,β∗

2
′]′ yielding the profiled least-squares estimator for [β1(η)′,β2(η)′,

β∗
1 (η)′,β∗

2 (η)′]′. Specifically, letting the concentrated sum of (within-transformed) squared

errors be

M(η) =∑
i

∑
t

[
ci t − c i −η′

(
D t −D

)− (
v i t −v i

)′
β1

(
η
) −(

η′D t ·v i t −η′D t ·v i

)′
β∗

1

(
η
)− 1

2

(
vec

(
v i t v ′

i t

)−vec
(
v i v ′

i

))
β2

(
η
) −

1

2

(
η′D t ·vec

(
v i t v ′

i t

)−η′D t ·vec
(
v i v ′

i

))′
β∗

2

(
η
)]2

, (3.3.7)

with the “bar” denoting the cross-time averages of variables that it tops, we have the pro-

filed estimators [β1(η)′,β2(η)′,β∗
1 (η)′,β∗

2 (η)′]′ = (∑
i
∑

t Xi tX
′
i t

)−1 ∑
i
∑

t Xi tY
†
i t , where Xi t =[(

v i t −v i
)′ , (η′D t ·v i t−η′D t ·v i

)′, 1
2

(
vec

(
v i t v ′

i t

)−vec
(
v i v ′

i

))
, 1

2

(
η′D t ·vec

(
v i t v ′

i t

)−η′D t ·vec
(
v i v ′

i

))′
and Y†

i t = ci t − c i −η′
(
D t −D

)
.

Thus, the nonlinear fixed-effects estimators of the slope coefficients [η′,β′
1,β′

2,β∗
1
′,β∗

2
′]′

6Note that, although (3.3.6) is nonlinear, the presence of fixed effects does not give rise to the incidental pa-
rameter problem in this case because {λi } enters the model additively and is not inside the nonlinear mean
function.
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in the location functions are

η̂= argmin
η

M(η) and β̂1 =β1

(
η̂
)

, β̂2 =β2

(
η̂
)

, β̂
∗
1 =β∗

1

(
η̂
)

, β̂
∗
2 =β∗

2

(
η̂
)

. (3.3.8)

Under the usual
∑n

i=1λi = 0 normalization, we can then recover the intercept β0 and the

fixed effects {λi } via

β̂0 = 1

nT

∑
i

∑
t

(
ci t − η̂′D t −

[
β̂1 + η̂′D t · β̂∗

1

]′
v i t − 1

2

[
β̂2 + η̂′D t · β̂∗

2

]′
vec

(
v i t v ′

i t

))
, (3.3.9)

λ̂i = 1

T

∑
t

(
ci t − β̂0 − η̂′D t −

[
β̂1 + η̂′D t · β̂∗

1

]′
v i t − 1

2

[
β̂2 + η̂′D t · β̂∗

2

]′
vec

(
v i t v ′

i t

)) ∀i .

(3.3.10)

Hence, the residual estimator is

ûi t = ci t − β̂0 − η̂′D t −
[
β̂1 + η̂′D t · β̂∗

1

]′
v i t − 1

2

[
β̂2 + η̂′D t · β̂∗

2

]′
vec

(
v i t v ′

i t

)− λ̂i . (3.3.11)

Step 2. We then estimate parameters of the scale function. Based on the assumptions (ii)–

(iii), we have an auxiliary conditional mean regression:

E [|ui t ||v i t ,D t ] = γ0+
∑
κ

θκDκ,t+
[
γ1+γ∗

1

∑
κ

θκDκ,t

]′
v i t+1

2

[
γ2+γ∗

2

∑
κ

θκDκ,t

]′
vec

(
v i t v ′

i t

)+σi ,

(3.3.12)

which, just like in the first step, we can estimate via nonlinear least squares after within-

transform-ing scale fixed effects out. Concretely, with the concentrated squared residual

objective function

M(θ) =∑
i

∑
t

[
|ûi t |− |ûi |−θ′

(
D t −D

)− (
v i t −v i

)′
γ1 (θ) −(

θ′D t ·v i t −θ′D t ·v i

)′
γ∗

1 (θ)− 1

2

(
vec

(
v i t v ′

i t

)−vec
(
v i v ′

i

))
γ2 (θ) −

1

2

(
θ′D t ·vec

(
v i t v ′

i t

)−θ′D t ·vec
(
v i v ′

i

))′
γ∗

2 (θ)

]2

, (3.3.13)

86



and the corresponding profiled estimators given by [γ1(θ)′,γ2(θ)′,γ∗
1 (θ)′,γ∗

2 (θ)′]′ = (∑
i
∑

t Xi tX
′

i t

)−1×∑
i
∑

t Xi tY
†

i t , where Xi t = [(
v i t −v i

)′ , (
θ′D t · v i t −θ′D t ·v i

)′, 1
2

(
vec

(
v i t v ′

i t

)− vec
(
v i v ′

i

))
,

1
2

(
θ′D t ·vec

(
v i t v ′

i t

)−θ′D t ·vec
(
v i v ′

i

))′ and Y †
i t = |ûi t |−|ûi |−θ′

(
D t−D

)
, the nonlinear fixed-

effects estimators of the scale-function slope coefficients [θ′,γ′
1,γ′

2,γ′
3,γ′

4]′ are

θ̂ = argmin
θ

M(θ) and γ̂1 =γ1

(
θ̂
)

, γ̂2 =γ2

(
θ̂
)

, γ̂∗
1 =γ∗

1

(
θ̂
)

, γ̂∗
2 =γ∗

2

(
θ̂
)

. (3.3.14)

To recover the common intercept γ0 and the scale fixed effects {σi }, use
∑n

i=1σi = 0:

γ̂0 = 1

nT

∑
i

∑
t

(
|ûi t |− θ̂′D t −

[
γ̂1 + θ̂

′
D t · γ̂∗

1

]′
v i t − 1

2

[
γ̂2 + θ̂

′
D t · γ̂∗

2

]′
vec

(
v i t v ′

i t

))
, (3.3.15)

σ̂i = 1

T

∑
t

(
|ûi t |− γ̂0 − θ̂′D t −

[
γ̂1 + θ̂

′
D t · γ̂∗

1

]′
v i t − 1

2

[
γ̂2 + θ̂

′
D t · γ̂∗

2

]′
vec

(
v i t v ′

i t

)) ∀i .

(3.3.16)

Step 3. For any given quantile index 0 < τ < 1 of interest, we next estimate the uncondi-

tional quantile of εi t . From (3.3.2), we have the conditional quantile function of ui t :

Qu [τ|v i t ,D t ] =
(
γ0 +

∑
κ

θκDκ,t +
[
γ1 +γ∗

1

∑
κ

θκDκ,t

]′
v i t + 1

2

[
γ2 +γ∗

2

∑
κ

θκDκ,t

]′
vec

(
v i t v ′

i t

)+σi

)
qτ.

(3.3.17)

We therefore can estimate qτ via a univariate quantile regression (with no intercept) via

q̂τ = argmin
q

∑
i

∑
t
ρτ

{
ûi t−

(
γ̂0+θ̂′D t+

[
γ̂1+θ̂

′
D t ·γ̂∗

1

]′
v i t+1

2

[
γ̂2+θ̂

′
D t ·γ̂∗

2

]′
vec

(
v i t v ′

i t

)+σ̂i

)
q

}
,

(3.3.18)

whereρτ{ξ} = ξ (τ− I {ξ< 0}) is the check function, ûi t is estimated in Step 1, and
[
θ̂
′
, γ̂0, γ̂′

1, γ̂′
2,

γ̂∗
1
′, γ̂∗

2
′
]′

and {σ̂i } are estimated in Step 2.

With all unknown parameters now estimated, we can construct the estimator of the fea-

sible analogue of the τth conditional quantile of the log-cost in (3.3.3).

For statistical inference, we use bootstrap. To correct for finite-sample biases, we em-

ploy Efron’s (1982) bias-corrected bootstrap percentile confidence intervals. Bootstrap also
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significantly simplifies testing because, owing to a multi-step nature of our estimator, com-

putation of the asymptotic variance of the parameter estimators is not trivial. Due to the

panel structure of data, we use wild residual block bootstrap, thereby taking into account

the potential dependence in residuals within each bank over time. Details are provided in

Appendix B.2.

3.4 Data

The bank-level data come from the Reports of Condition and Income (the so-called Call

Reports) and the Uniform Bank Performance Reports (UBPRs). We obtain annual year-end

data for all FDIC-insured commercial banks between 2009 and 2018. As discussed in the

introduction, our primary focus is on the post-financial-crisis period.

We exclude observations that have negative/missing values for assets, equity, output

quantities and input prices, which are likely the result of erroneous data reporting. This

leaves us with an operational sample of 58,021 observations for 7,583 banks. We deflate all

nominal variables to the 2005 U.S. dollars using the consumer price index. Consistent with

the widely used intermediation approach of Sealey and Lindley (1977), we define the vari-

ables as follows.

The two traditional outputs are Y1 — total loans, which include real estate loans, agricul-

tural loans, commercial and industrial loans, individual consumer loans and other loans,

and Y2 — total securities, which is the sum of securities held-to-maturity and securities

held-for-sale. These output categories are conventional and the same as those considered

by, e.g., Koetter et al. (2012). We also include the output measure of nontraditional bank

operations such trading and investment services, Y3. Since non-interest income is heavily

influenced by off-balance-sheet activities (Clark and Siems, 2002), we follow the literature

in using the non-interest income minus service charges on deposits as a measure of off-

balance-sheet income (e.g., Wheelock and Wilson, 2012, 2018; Malikov et al., 2015).

The three variable inputs are X1 — physical capital measured by fixed assets, X2 — labor,

measured as the number of full-time equivalent employees, and X3 — total borrowed funds,
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Table 3.1. Data Summary Statistics

Variables Mean 1st Qu. Median 3rd Qu.

C 39,692.94 1,874.71 3,911.11 8,946.57
Y1 1,140,365.00 43,481.64 97,922.83 236,489.00
Y2 417,858.60 11,492.15 29,088.64 72,806.76
Y3 28,890.97 145.65 480.42 1,697.59
W1 61.06 15.27 22.50 38.03
W2 58.33 47.02 54.67 65.56
W3 0.740 0.362 0.589 0.976
K1 229,008.90 8,090.69 16,506.67 37,521.77
K2 0.026 0.008 0.016 0.032

C – total variable costs; Y1 – total loans; Y2 – total securities; Y3 – off-balance-
sheet output; W1 – price of physical capital; W2 – price of labor; W3 – price of
financial capital; K1 – total equity; K2 – the ratio of nonperforming assets to
total assets. Variables C , W1, W2, Y1, Y2, Y3, and K1 are in thousands of real
2005 USD. Variables W3 and K2 are unit-free.

inclusive of deposits and federal funds. Their respective prices are W1, W2 and W3, where W1

is measured as the expenditures on fixed assets divided by premises and fixed assets, W2 is

computed by dividing salaries and employee benefits by the number of full-time equivalent

employees, and W3 is computed as the interest expenses on deposits and fed funds divided

by the sum of total deposits and fed funds purchased. Total variable cost C is a sum of

expenses on X1, X2 and X3.

We also consider equity capital K1 as an additional input. However, due to the unavail-

ability of the price of equity, we follow Berger and Mester (2003) and Feng and Serletis (2010)

in modeling K1 as a quasi-fixed input. The treatment of equity as an input to banking

production technology is consistent with Hughes and Mester (1993, 1998) and Berger and

Mester (2003) in that banks may use it as a source of loanable funds and thus as a cush-

ion against losses. By including equity K1 in the cost analysis, we are therefore also able to

control for the bank’s insolvency risk along the lines of Hughes and Mester’s (2003) argu-

ments, whereby “an increase in financial capital reduces the probability of insolvency and

provides an incentive for allocating additional resources to manage risk in order to protect

the larger equity stake” (p.314). In effect, conditioning the bank’s cost on financial capital

also allows controlling for quality of loans since the latter is influenced by risk preferences:

as Mester (1996) explains, risk-averse bank managers may choose to fund their loans with

higher equity-to-deposits ratios (and thus less debt) than a risk-neutral bank would.
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In our analysis, we also condition the bank’s cost on a proxy measure of its credit risk.

Specifically, we use the ratio of nonperforming assets to total assets K2, which reflects the

quality of assets held by the bank.7 Controlling for nonperforming outputs when modeling

bank costs is imperative because lower-quality assets generally require more resources to

manage a higher-level (e.g., see Hughes and Mester, 2013). Following the literature, we de-

fine nonperforming assets as a sum of (i) total loans and lease financing receivables past due

30 days or more and still accruing, (ii) total loans and lease financing receivables not accru-

ing, (iii) other real estate owned and (iv) charge-offs on past-due loans and leases. The loss

provision is measured using the total provision for loan and lease losses. Table 3.1 provides

summary statistics for these variables.

3.5 Empirical Results

This section reports the results based on our time-varying-coefficient fixed-effects quantile

model of bank cost in (3.3.1)–(3.3.2) that explicitly accommodates three-way heterogeneity

across banks: (i) distributional heterogeneity, (ii) cross-time heterogeneity, and (iii) unob-

served bank heterogeneity.

Although our analysis is at different quantiles of the bank’s cost, the interpretation of

distribution heterogeneity can be generalized and extended to bank size because the bank’s

operation cost is a good proxy for its size/scale. To sufficiently capture distributional hetero-

geneity across banks, we estimate our model for the 0.10th, 0.25th, 0.50th, 0.75th and 0.90th

quantiles. The middle three quantiles shed light on the cost structure of mid-size banks in

the interquartile range of the conditional log-cost distribution, whereas the more extreme

0.10th and 0.90th quantiles provide evidence for the smaller and larger banks, respectively.

For inference, we use the 95% bias-corrected bootstrap percentile confidence intervals:

one- or two-sided, as appropriate. In what follows, we discuss our main empirical results

pertaining to scope economies. We then supplement that discussion by also considering

two other sources of potential cost savings in banking, namely, scale economies and tech-

7While we denote this variable as a “K,” we do not conceptualize it as a quasi-fixed input quantity analogous
to K1.
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nological progress. The summary of usual cost elasticities are reported in the Appendix.

3.5.1 Scope Economies

As discussed in Section 3.2, we investigate the presence of scope economies by using the

expansion-path measure of cost subadditivity. Since we analyze bank cost structure across

the entire cost distribution as opposed to its first moment (i.e., conditional mean), our

cost subadditivity measure is not only observation- but also cost-quantile-specific. When

evaluating the formulae in (3.2.4)–(3.2.5), we replace Ct (·) with the exponentiated quantile

function of the log-cost Qc (τ|·) since our cost function estimation is for a conditional log-

quantile. That is, for a given quantile τ, we compute the cost subadditivity measure as

St (τ) =
∑
κ exp

[
Qc

(
τ|$κ1 Y ∗

1 +min{Y1},$κ2 Y ∗
2 +min{Y2},$κ3 Y ∗

3 +min{Y3}, t
)]

−exp
[
Qc

(
τ|Y1,Y2,Y3, t

)]
exp

[
Qc

(
τ|Y1,Y2,Y3, t

)] .

(3.5.1)

It is noteworthy that our use of quantiles offers another advantage over the more tra-

ditional conditional-mean models whereby, owing to a “monotone equivariance property”

of quantiles, our estimates of St (τ), which are based on the level of cost, are immune to

transformation biases due to exponentiation of the estimated log-cost function. The same

however cannot be said about the estimates of scope economies in analogous conditional-

mean analyses. Specifically, to evaluate scope economies, most studies typically exponen-

tiate the predicted logarithm of bank cost from the estimated translog conditional-mean

regressions while ignoring Jensen’s inequality. Consequently, their scope economies esti-

mates are likely biased. To see this, let the conventional fixed-coefficient translog cost re-

gression be c = f (v )+εwith E[ε|v ] = 0, and recall that upper/lower-case variables are in lev-

els/logs. It then trivially follows that E[C |v ] = exp{ f (v )}E[exp{ε}|v ] which generally diverges

from exp{ f (v )} by a multiplicative function of v . Since cost counterfactuals in St (τ) admit

different “v” values as arguments, the cost subadditivity measure above will normally be bi-

ased and need not have the same magnitude or even sign as the true quantity unless exp{ε}

is mean-independent of v which is unlikely to be true in practice, say, if ε is heteroskedas-

tic. In the case of quantile estimation, we however do not face such a problem owing to
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Table 3.2. Cost Subadditivity Estimates

Cost Point Estimates Inference Categories, %
Quantiles (τ) Mean 1st Qu. Median 3rd Qu. = 0 6= 0 > 0 ≤ 0

Q(0.10) 0.252 0.144 0.239 0.334 37.97 62.03 64.96 35.04
(0.09, 0.375) (–0.025, 0.293) (0.096, 0.34) (0.185, 0.428)

Q(0.25) 0.297 0.202 0.282 0.367 20.27 79.73 82.27 17.73
(0.144, 0.403) (0.063, 0.315) (0.144, 0.377) (0.214, 0.467)

Q(0.50) 0.361 0.280 0.346 0.421 3.25 96.75 97.52 2.48
(0.241, 0.482) (0.179, 0.4) (0.229, 0.468) (0.286, 0.558)

Q(0.75) 0.421 0.343 0.409 0.482 0.98 99.02 99.22 0.78
(0.303, 0.587) (0.25, 0.499) (0.296, 0.587) (0.33, 0.664)

Q(0.90) 0.457 0.379 0.447 0.520 0.79 99.21 99.38 0.62
(0.334, 0.644) (0.273, 0.528) (0.325, 0.624) (0.369, 0.734)

The left panel summarizes point estimates of S ∗
t (τ) with the corresponding two-sided 95% bias-corrected confidence intervals in parenthe-

ses. Each bank-year is classified as exhibiting scope economies [S ∗
t (τ) > 0] vs. non-economies [S ∗

t (τ) ≤ 0] and scope invariance [S ∗
t (τ) = 0]

vs. scope non-invariance [S ∗
t (τ) 6= 0] using the corresponding one- and two-sided 95% bias-corrected confidence bounds, respectively. The

right panel reports sample shares for each category and for its corresponding negating alternative. Percentage points sum up to a hundred
within binary groups only.

the equivariance of quantiles to monotone transformations, viz. QC [τ|v ] = Qexp{c}[τ|v ] =
exp{Qc [τ|v ]} (e.g., see Koenker, 2005).

Now, recall that St (τ) depends on the choice of {$κ
m}, which we circumvent by choos-

ing weights that yield the smallest cost subadditivity measure for a given cost quantile τ

in the admissible region: S ∗
t (τ). Namely, for each fixed cost quantile of interest, we per-

form a grid search over a permissible range of weights in [0,1]6 at the 0.1 increments. We

do this for each bank in a given year. Table 3.2 summarizes such point estimates of S ∗
t (τ)

for different quantiles of the conditional cost distribution. (We caution readers against con-

fusing quantiles of the conditional cost distribution τ, for which our bank cost function and

the cost subadditivity measure are estimated, with the quantiles of empirical distribution of

observation-specific S ∗
t (τ) estimates corresponding to a given τ.)

The two hypotheses of particular interest here are (i)H0 : S ∗
t (τ) ≤ 0 v.H1 : S ∗

t (τ) > 0 and

(ii)H0 : S ∗
t (τ) = 0 v.H1 : S ∗

t (τ) 6= 0. Both tests are essentially the same, except for the one- or

two-sided alternatives. Although the (i , t ) index on outputs is suppressed in (3.5.1), the tests

are at the level of observation (bank-year). In case of (i), rejection of the null would imply

that even the smallest subadditivity measure is statistically positive and scope economies

can thus be inferred to also be locally significant over the bank’s output space in a given

year. In case of (ii), failure to reject the null would suggest that subadditivity measure is
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statistically indistinguishable from zero, which is consistent with the bank’s cost structure

exhibiting local scope invariance.

The right panel of Table 3.2 reports the results of these hypothesis tests. Namely, for

each cost quantile τ, we classify banks in our data based on the two dichotomous groups

of categories: banks that exhibit scope economies [S ∗
t (τ) > 0] vs. scope non-economies

[S ∗
t (τ) ≤ 0] and the banks whose cost structure that exhibits scope invariance [S ∗

t (τ) = 0]

vs. scope non-invariance [S ∗
t (τ) 6= 0].

Our results provide strong evidence in support of statistically significant scope economies

across banks virtually of all sizes in the U.S. banking sector. For banks in the middle in-

terquartile range of the cost|essentially, size|distribution, as many as 82.3% exhibit positive

economies of scope. For the top half of the distribution (median or higher), the prevalence of

significant scope economies is ≥97.5%. Even at the very bottom of cost distribution (τ= 0.1)

where the revenue diversification opportunities may not be as abundant or easily accessible,

our test results suggest that roughly two thirds of banks (65%) enjoy scope-driven cost sav-

ings and those, who do not, largely exhibit scope invariance. Figure 3.1 provides a graphic

illustration of these results. For each considered cost quantile τ, the figure shows a scatter-

plot of the S ∗
t (τ) estimates for each bank-year observation along with the corresponding

one-sided 95% lower confidence bound. Here, we sort these estimates by their lower con-

fidence bounds (solid line) and color them based on whether they are significantly above

0 or not. From Figure 3.1, it is evident that the share of banks enjoying significant scope

economies is growing with the quantile of conditional cost distribution.

Overall, having accounted for three-way heterogeneity across banks in a pursuit of ro-

bust estimates of bank cost subadditivity, we find no notable empirical evidence in support

of scope diseconomies.8 This is in stark contrast with earlier studies of scope economies

in U.S. banking (e.g., Berger et al., 1987; Mester, 1987; Hughes and Mester, 1993; Pulley and

Braunstein, 1992; Ferrier et al., 1993; Pulley and Humphrey, 1993; Jagtiani et al., 1995; Jag-

tiani and Khanthavit, 1996; Wheelock and Wilson, 2001). Besides our reliance on the more

robust estimation methodology, the qualitative differences between our and prior findings

8In fact, formally testing if S ∗
t (τ) < 0 reveals that only at most 0.02% of banks show significantly negative scope

economies, and this only pertains to the bottom 0.10th cost quantile.
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Figure 3.1. The One-Sided 95% Lower Bounds (solid lines) of the Cost Subadditivity Point
Estimates (scatter points)
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can also be attributed to fundamental changes that the banking sector has undergone in the

past two decades characterized by the growing importance of nontraditional banking op-

erations propelled by the financial product innovations involving derivatives, securitization

and mortgages as well as as other technological cost-saving advancements.

Although, the subadditivity measure does not directly quantify the magnitude of scope

econ-omies in the conventional interpretation of the latter, the value of its point estimates

can still provide useful insights into the diversification-driven cost savings. Recall that S ∗
t (τ)

compares the cumulative cost of multiple smaller banks of higher degrees of relative output

specialization with the cost of a larger, more relatively diversified bank. Essentially, the sub-

additivity measure sheds light on scope economies from a perspective of relative|as opposed

to absolute|notion of revenue diversification. Measured is the reduction in bank cost (in pro-

portions) afforded by achieving lower specialization in any one output. From the left panel

of Table 3.2, the mean estimates of cost subadditivity ranges from 0.252 to 0.457 depending

on the conditional cost quantile. This suggests, on average, the potential for a 25–46% cost

saving if the bank “rebalances” its joint production of loans, securities and off-balance-sheet

outputs. We also find that the magnitude of diversification-driven economies increases as

one moves from the bottom to top of the bank cost distribution, thereby suggesting that

larger banks (higher τ) may economize cost better compared to those of smaller size in the

lower end of the cost distribution.

For a more holistic look at the empirical evidence of scope economies across differ-

ent quantiles of the bank cost distribution, we also provide box-plots and kernel density

plots of the S ∗
t (τ) estimates, respectively graphed in Figure 3.2 and Figure 3.3. These en-

able us to compare distributions of the cost subadditivity estimates as opposed to merely

focusing on marginal moments. Consistent with our earlier discussion, both figures indi-

cate that large-scale banks lying in the upper quantiles of the cost distribution appear to

enjoy diversification-driven cost economies than those in the lower cost quantiles. To sup-

port this visual evidence, we formally test for the (first-order) stochastic dominance of scope

economies exhibited by banks in the top cost quantiles over those exhibited by those in the

bottom quantiles.
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Figure 3.2. Cost Subadditivity Estimates Across Cost Quantiles

Figure 3.3. Kernel Densities of Cost Subadditivity Estimates Across Cost Quantiles
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Table 3.3. p-Values for the Stochastic Dominance Tests for Scope Economies Across Cost
Quantiles

Pair-Wise Multiple Quantiles
Q(0.75) Q(0.50) Q(0.25) Q(0.10) {Q(0.75),Q(0.50), . . . } {Q(0.50),Q(0.25), . . . } {Q(0.25),Q(0.10)}

Q(90) 0.920 0.859 0.729 0.698 0.920 0.859 0.729
Q(75) 0.462 0.191 0.658 0.462 0.553
Q(50) 0.789 0.779 0.804
Q(25) 0.975

We utilize a generalized Kolmogorov-Smirnov test proposed by Linton et al. (2005) which

permits testing dominance over multiple variables (in our case, more than two cost quan-

tiles) and allows these variables to be estimated latent quantities as opposed to observables

from the data and to also share dependence (in our case, the dependence is due to common

parameter estimates used to construct quantile coefficients). Specifically, let Fτ(S ) repre-

sent the cumulative distribution functions of the S ∗
t (τ) estimates for a given cost quantile τ.

We then form the null hypotheses that diversification-driven scope economies exhibited by

banks in the lower quantiles of the cost distribution are stochastically dominated by those in

the upper quantiles of the cost distribution. More formally, for any cost quantile of interest

τ ∈Twith T= {0.10,0.25,0.50,0.75,0.90}, we are interested in

H0 : min
τ 6=τ∈T

sup
S ∈S

[
Fτ(S )−Fτ(S )

]≤ 0 v. H1 : min
τ 6=τ∈T

sup
S ∈S

[
Fτ(S )−Fτ(S )

]> 0.

We use the sub-sampling procedure suggested by Linton et al. (2005) to perform the test.9

The left panel of Table 3.3 reports p-values for the tests of pair-wise dominance of S ∗
t (τ)

from the “row” quantile model over S ∗
t (τ) from the “column” quantile model, whereas the

right panel reports p-values for the tests of dominance of S ∗
t (τ) from the “row” quantile

over a joint multi-quantile set of S ∗
t (τ) from the “column” quantiles. All p-values are safely

greater than the conventional 0.05 level, and we fail to reject the nulls. Combined with the

visual evidence from Figures 3.2–3.3, we can therefore conclude that banks in the higher

quantiles of the cost distribution exhibit larger scope economies than do smaller banks the

lower cost quantiles along the entire distribution of observable output mixes.

9We employ 199 equidistant sub-sample sizes Bn = {b1, . . . ,b199}, where b1 = [loglog N ], b199 = [N /loglog N ]
with N = nT being the sample size. For each sub-sample size, we get a p-value. The reported is the mean of
these 199 p-values.
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3.5.2 Scale Economies

We complement our analysis of the scope-driven cost savings in the U.S. banking with the

examination of economies of scale. Scale economies are said to exist if the banks’ average

cost declines with equiproportional expansion of its outputs (i.e., with the increase in scale

of production). As discussed in the introduction, the latter has been a subject of particular

academic interest in face of the post-crisis regulatory reforms in the banking sector.

Our measure of returns to scale takes into account quasi-fixity of the equity input per

Caves et al. (1981):

Rt (τ) = (
1−∂Qc (τ|·)/∂k1

)/∑
m
∂Qc (τ|·)/∂ym , (3.5.2)

where we replaced the usual logCt (·) with the quantile function of the log-cost Qc (τ|·) in

the formula since our cost function estimation is for a conditional quantile. The measure of

returns to scale is therefore both observation- and cost-quantile-specific.

Just like in the case of scope economies, for a given τ, we are mainly interested in the

following two hypotheses: (i) H0 : Rt (τ) ≤ 1 v. H1 : Rt (τ) > 1 and (ii) H0 : Rt (τ) = 1 v. H1 :

Rt (τ) 6= 1. In case of (i), rejection of the null would imply that the returns to scale statisti-

cally exceed 1 implying increasing returns (IRS) and, thus, significant scale economies. In

case of (ii), failure to reject the null would suggest that returns to scale are statistically indis-

tinguishable from 1, which is consistent with the bank exhibiting constant returns to scale

(CRS) and, hence, scale invariance of costs.

Table 3.4 summarizes point estimates of the returns to scale for all estimated quantiles

of the conditional cost distribution of banks. The right panel of the table reports the results

of the hypothesis tests. Namely, reported is the breakdown of banks that exhibit IRS (scale

economies) vs. non-IRS (scale non-economies) and of banks that exhibit CRS (scale invari-

ance) vs. non-CRS (scale non-invariance).

The results in Table 3.4 provide overwhelming evidence of ubiquitous scale economies

in the banking sector, across all cost quantiles. The average point estimates of returns to

scale ranges from 1.341 to 1.432, with banks from the higher quantiles of cost distribution

exhibiting increasing returns to scale of larger magnitudes compared to those from the lower
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Table 3.4. Returns to Scale Estimates

Cost Point Estimates Inference Categories, %
Quantiles (τ) Mean 1st Qu. Median 3rd Qu. = 1 6= 1 > 1 ≤ 1

Q(0.10) 1.341 1.263 1.324 1.397 0.88 99.12 99.25 0.75
(1.233, 1.378) (1.228, 1.294) (1.273, 1.357) (1.334, 1.443)

Q(0.25) 1.357 1.276 1.340 1.416 0.87 99.13 99.25 0.75
(1.305, 1.393) (1.237, 1.306) (1.291, 1.372) (1.357, 1.461)

Q(0.50) 1.383 1.297 1.366 1.447 0.83 99.17 99.28 0.72
(1.337, 1.425) (1.258, 1.332) (1.321, 1.402) (1.392, 1.502)

Q(0.75) 1.411 1.32 1.394 1.481 0.78 99.22 99.3 0.7
(1.367, 1.476) (1.283, 1.364) (1.351, 1.444) (1.43, 1.548)

Q(0.90) 1.432 1.334 1.411 1.502 0.74 99.26 99.3 0.7
(1.385, 1.519) (1.293, 1.381) (1.364, 1.466) (1.447, 1.578)

The left panel summarizes point estimates of Rt (τ) with the corresponding two-sided 95% bias-corrected confidence intervals in paren-
theses. Each bank-year is classified as exhibiting IRS [Rt (τ) > 1] vs. non-IRS [Rt (τ) ≤ 1] and CRS [Rt (τ) = 1] vs. non-CRS [Rt (τ) 6= 1]
using the corresponding one- and two-sided 95% bias-corrected confidence bounds, respectively. The right panel reports sample shares
for each category and for its corresponding negating alternative. Percentage points sum up to a hundred within binary groups only.

quantiles. We find that almost every single bank in our sample exhibits statistically signifi-

cant scale economies (IRS). These results suggest that, when the bank radially expands the

scale of its operation, its average variable cost decreases. These findings are consistent with

the prior results which however are almost exclusively based on the analyses of bank costs at

the conditional mean (e.g., Wheelock and Wilson, 2012; Hughes and Mester, 2013; Restrepo-

Tobòn and Kumbhakar, 2015; Malikov et al., 2015; Restrepo-Tobòn et al., 2015; Wheelock and

Wilson, 2018). Given that we find evidence of significant scale economies along the entire

cost distribution, our results provide the robust assurance to these earlier findings reported

in the literature.

3.5.3 Technological Change

We conclude our analysis of bank cost structure by examining temporal shifts in the bank

cost frontier in face of technological advancements as well as regulatory changes in the in-

dustry in aftermath of the 2008 financial crisis. A cost-diminishing technological change can

provide another means for cost savings.

Because we model temporal variation in the cost relationship using discretized time in-

dices, we replace the standard continuous measure of technical change with a discrete dual
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Table 3.5. Technical Change

Cost Point Estimates Categories, %
Quantiles (τ) Mean 1st Qu. Median 3rd Qu. > 0 ≤ 0

Q(0.10) 0.016 0.009 0.016 0.025 73.92 26.08
(0.013, 0.019) (0.006, 0.012) (0.013, 0.021) (0.022, 0.03)

Q(0.25) 0.017 0.01 0.018 0.025 80.78 19.22
(0.014, 0.019) (0.008, 0.013) (0.013, 0.021) (0.022, 0.028)

Q(0.50) 0.018 0.009 0.020 0.029 81.56 18.44
(0.015, 0.02) (0.007, 0.013) (0.017, 0.023) (0.025, 0.031)

Q(0.75) 0.019 0.007 0.023 0.033 74.94 25.06
(0.017, 0.021) (0.004, 0.01) (0.02, 0.027) (0.028, 0.038)

Q(0.90) 0.019 0.003 0.024 0.037 71.96 28.04
(0.017, 0.022) (–0.001, 0.008) (0.02, 0.028) (0.029, 0.042)

The left panel summarizes point estimates of T Ct (τ) with the corresponding two-sided 95% bias-corrected confidence
intervals in parentheses. Each bank-year is classified as exhibiting technical progress [T Ct (τ) > 0] vs. non-progress
[TCt (τ) ≤ 0] using the corresponding one-sided 95% bias-corrected confidence bound. The right panel reports sample
shares for each category.

measure of technological change at each cost quantile τ. Namely, from (3.3.3), we have

−T C t (τ) ≡ Qc (τ|·, t )−Qc (τ|·, t −1)

= ∆L(t )+∆S(t )qτ +[
β3∆L(t )+γ3∆S(t )qτ

]′
v i t + 1

2

[
β4∆L(t )+γ4∆S(t )qτ

]′
vec

(
v i t v ′

i t

)
, (3.5.3)

where ∆L(t ) = L(t )−L(t −1) and ∆S(t ) = S(t )−S(t −1), with its feasible analogue given by

−TCt (τ) = (
ηκ+θκqτ

)
Dκ,t −

(
ηκ−1 +θκ−1qτ

)
Dκ−1,t−1 +[(

β3ηκ+γ3θκqτ
)
Dκ,t −

(
β3ηκ−1 +γ3θκ−1qτ

)
Dκ−1,t−1

]′
v i t +

1

2

[(
β4ηκ+γ4θκqτ

)
Dκ,t −

(
β4ηκ−1 +γ4θκ−1qτ

)
Dκ−1,t−1

]′
vec

[
v i t v ′

i t

]
. (3.5.4)

The first line in (3.5.4) corresponds to Hick-neutral component of technological change,

whereas the last two lines represent non-neutral change.

The point estimates of technological change at different cost quantiles are summarized

in Table 3.5. The right panel of the table reports results of a one-sided test of H0 : TCt (τ) ≤
0 v.H1 : TCt (τ) > 0, i.e., a test of whether TCt (τ) is statistically positive implying that the bank

enjoys technological progress and, therefore, a ceteris paribus cost diminution over time.

The data suggest that, in the period following the financial crisis, banks have been bene-

100



fiting from the non-negligible cost-diminishing technological advances of 1.6–1.9% p.a., on

average. We find that overwhelming majority of banks have experienced significant techni-

cal progress. The share of banks with statistically positive technological change estimates

is at least as large as 72%, with cost diminution being slightly more prevalent among banks

in the middle of the cost distribution. Overall, our results are unsurprising in light of many

technological advancements that have been happening in the banking industry such as the

growing networks of automated teller machines, growing credit card networks, electronic

payments, internet banking, etc.; they are also consistent with earlier findings (e.g., Whee-

lock and Wilson, 1999; Almanidis, 2013; Malikov et al., 2015).

3.6 Conclusion

Propelled by the recent financial product innovations, banks are becoming more complex,

bran-ching out into many “nontraditional” banking operations beyond issuance of loans.

This broadening of operational scope in a pursuit of revenue diversification may be bene-

ficial if banks exhibit scope economies. The existing empirical evidence lends no support

for such product-scope-driven cost economies in banking, but it is greatly outdated and,

surprisingly, there has been little (if any) research on this subject despite the drastic trans-

formations that the U.S. banking industry has undergone over the past two decades in the

wake of technological advancements and regulatory changes. Commercial banks have sig-

nificantly shifted towards nontraditional operations such as investment banking, venture

capital, security brokerage, insurance underwriting and asset securitization, thereby making

the portfolio of products offered by pres-ent-day banks very different from that two decades

ago. This underscore the importance of taking a fresh look at scope economies in banks

because leveraging operational scope continues to play a vital role in operations manage-

ment in banking. It is also important from a policy evaluation perspective, in the face of new

financial regulations such as the Dodd–Frank Wall Street Reform and the Consumer Protec-

tion Act of 2010 that seek to set restrictions on the scale and scope of bank operations.

This paper provides new evidence about scope economies in U.S. commercial banking
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during the 2009–2018 post-crisis period. We improve upon the prior literature not only by

analyzing the most recent and relevant data and comprehensively accounting for bank’s

nontraditional non-interest-centered operations, but also in multiple methodological ways

as follows. In a pursuit of robust estimates of scope economies and statistical inference

thereon, we estimate a flexible, yet parsimonious, time-varying-coefficient panel-data quan-

tile regression model which accommodates three-way bank heterogeneity: (i) distributional

heterogeneity in the cost structure of banks along the size of their costs, (ii) temporal varia-

tion in cost complementarities and spillovers due to technological change/innovation, and

(iii) unobserved bank confounders such as latent management quality. Our results provide

strong evidence in support of significantly positive scope economies across banks of virtu-

ally all sizes. Contrary to earlier studies, we find no material evidence in support of scope

diseconomies.
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Appendices

A Appendix to Chapter 2

A.1 The SAR Production-Function Models

A popular approach to incorporating locational/spatial effects in production models relies

on spatial econometric techniques, whereby spatially-weighted averages of other firms’ out-

puts (and sometimes inputs too) are included as additional regressors in the SAR production-

function models. Not only does such a SAR specification of the production relationship

continues to implausibly assume the common technology for all locations, it also becomes

problematic in practice, when it comes to its estimation: (i ) the SAR production functions

imply additional, highly nonlinear parameter restrictions necessary to ensure that the con-

ventional axioms of the production theory are not violated, albeit these are usually ignored

in applied work, and (ii ) the identification of SAR production-function models from data is

hardly guaranteed due to the inapplicability of available proxy-variable estimators and the

general lack of valid external instruments. In what follows, we discuss each of these consid-

erations in detail.

Axiomatic Considerations.—For expositional simplicity, for now let us assume a determin-

istic log-linear (Cobb-Douglas) input-output relationship with a single input and suppress

the time index. The SAR production function a là Glass et al. (2016b) in logs is given by

yi = ρ
n∑

j (6=i )=1
di j y j +βK ki +ωi , (A.1)
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where {di j ≥ 0} are the non-negative spatial weights that describe the architecture of inter-

firm spatial dependence. Following the convention, di i = 0 ∀i and di j = d j i ∀i , j . Putting

these weights for all firms together gives a symmetric n ×n non-stochastic spatial weight-

ing matrix D which, following the popular practice, is row-standardized.1 Assume that D is

known. To ensure spatial stationarity, the spatial lag parameter is ρ ∈ (−1,1).

The above formulation implies that the i th firm’s output yi is a function of not only its

own input ki but of all its neighbors’ inputs {k j }, and the elasticity of own capital is no longer

equal to βK . The latter are not without implications for the theoretical regularity conditions

routinely assumed—explicitly or implicitly—about the production frontier.

To make matters more concrete, letting y = (y1, . . . , yn)′, k = (k1, . . . ,kn)′ andω= (ω1, . . . ,ωn)′,

which all are the n ×1 vectors, we have a vector of reduced-form production functions for

all firms:

y =
Q︷ ︸︸ ︷[

In −ρD
]−1 (

βK k +ω)
, (A.2)

from where we have that, for each firm i , the production function is

yi =βK

n∑
j=1

Qi j k j +
n∑

j=1
Qi jω j , (A.3)

with Qi j being the (i , j )th element of the n×n “spatial multiplier matrix” Q. Exponentiating

(A.3), we arrive at the firm i ’s production function in levels:

Yi = K βK Qi i
i

[
n∏

j (6=i )=1
K

Qi j

j

]βK n∏
j=1

exp{Qi jω j }. (A.4)

Conventional production axioms imply, among other theoretical regularity conditions,

the following about the shape of production function: monotonicity and concavity in in-

puts. Now, because the theory of production does not normally consider the possibility of

inter-firm spillovers, technically it does not differentiate between the production unit’s own

and its neighbors’ inputs. By implication however, the standard regularity conditions de-

scribe the within-unit technological relationships between the production unit’s own inputs

1That is,
∑n

j=1 di j = 1 for all rows i = 1, . . . ,n, although there are alternative normalizations available.
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and outputs.

It is straightforward to see that (A.4) remains monotone in Ki so long as the capital elas-

ticity parameter is positive (βK > 0):

∂Yi

∂Ki
=βK Qi i K βK Qi i−1

i

[
n∏

j ( 6=i )=1
K

Qi j

j

]βK n∏
j=1

exp{Qi jω j } > 0 (A.5)

because Ki ∈ℜ+ and Qi i ∈ℜ+ for all i .

Things are not as trivial when it comes to curvature. Consider the own second partial

derivative w.r.t. capital:

∂2Yi

∂K 2
i

=βK Qi i
(
βK Qi i −1

)
K βK Qi i−2

i

[
n∏

j (6=i )=1
K

Qi j

j

]βK n∏
j=1

exp{Qi jω j }. (A.6)

For (A.6) to remain non-positive in order to guarantee concavity of the production fron-

tier, it needs be that the diagonal elements of the spatial multiplier matrix Q = [
In −ρD

]−1

are such that Qi i ≤β−1
K (so long as βK > 0 just like earlier). Since Qi i is a function of ρ and D,

the latter places restrictions on both the strength of spatial dependence—the magnitude of

ρ—and the architecture of spatial relationships, i.e., the specification/design of D.

This is an important implication because, depending on the value of capital elasticity

βK , these restrictions can be quite strict if the acceptable range of Qi i is especially narrow.

In fact, the permissible range is not Qi i ≤β−1
K but

1 ≤Qi i ≤β−1
K ∀ i , (A.7)

since the diagonal elements of Q are all no smaller than 1 by construction (see Elhorst, 2010).

This already rules out the possibility of constant (internal) returns to scale commonly used

in the applied productivity research, particularly at the aggregate level. Namely, if βK = 1, it

must be that Qi i = 1 for all i which is possible only if ρ = 0. Consequently, cross-firm spatial

spillovers in (A.1) are consistent only with the decreasing returns to scale, i.e., when βK < 1.

The practical implementation can get complicated even when one is willing to assume

the decreasing returns to scale a priori. Lately, when estimating production technologies
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from the data, it has increasingly become a norm to impose theoretical regularity condi-

tions onto the estimand to ensure that the estimates are structurally meaningful. In the case

of a SAR production function, the restriction in (A.7) would also need to be imposed. While

global in nature, this constraint depends on data, is highly nonlinear and involves the inver-

sion of an n ×n matrix which can be quite computationally demanding even for moderate

sample sizes (see LeSage and Pace, 2009):

in ≤ diag
{[

In −ρD
]−1

}
≤ 1

βK
in . (A.8)

Identification Considerations.—A more fundamental issue with the SAR production-function

models concerns their (un)identifiability from the firm-level data due to the endogeneity of

the firm’s allocations of own variable inputs. The latter can be equivalently characterized as

the omitted variable problem, whereby variable inputs are correlated with firm unobserv-

ables which we capture using the persistent productivity term ωi t . Many studies consid-

ering SAR production-function models (or their Durbin extensions) leave this well-known

problem unaddressed, focusing only on the endogeneity of the SAR lag term while implau-

sibly assuming that all input regressors are exogenous or that unobservables—firm produc-

tivity, or efficiency—are purely random (see Glass et al., 2016b; Glass and Kenjegalieva, 2019;

Glass et al., 2020b). Others tackle this problem under the assumption that the endogeneity-

inducing correlated unobservables are time-invariant and can be controlled for via firm

fixed effects (e.g., Glass et al., 2016a, 2020a).

While clearly an improvement over the random treatment of firm unobservables, the

fixed-effect approach however tends to be quite unsatisfactory in practice because differ-

encing or within-transforming of the data necessary to purge fixed effects oftentimes leaves

little usable identifying variation which yields unrealistically small and statistically insignif-

icant estimates of the capital elasticity (see Griliches and Mairesse, 1998b; Ackerberg et al.,

2007; Gandhi et al., 2020). Consequently, practitioners have favored tackling endogeneity in

the production-function estimation via identification schemes involving proxy variables or

external instruments.
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The instrument-based identification of SAR production functions has been considered

by Kutlu et al. (2020), although they provide no guidance about the candidates for valid ex-

ternal instruments. In the stochastic-frontier productivity literature, the instrumentation is

most times done using firm-level variation in prices.2 However, the validity and practicality

of using lagged firm-level prices for identification is not universal. Not only are the price data

often unavailable or prone to measurement errors (Levinsohn and Petrin, 2003), but the use

of prices may also be problematic on theoretical grounds (see Griliches and Mairesse, 1998b;

Ackerberg et al., 2007, 2015; Flynn et al., 2019). Specifically, the validity of prices as exoge-

nous instruments is normally justified by invoking the assumption of perfectly competitive

markets. However, if firms were indeed price-takers, in theory, one should not observe the

firm-level variation in prices and, without such a variation, prices cannot be used as opera-

tional instruments. Even with the aggregate prices varying exogenously across space, such

a variation may be insufficient for identification as shown by Gandhi et al. (2020). If a re-

searcher does observe the variation in prices across all individual firms, the latter variation

may be reflecting differences in firms’ market power and/or the quality of inputs/outputs.

For instance, if the firm-level variation in input prices reflects differential quality in inputs,

then random updates in prices that render prices valid instruments are likely related to pro-

ductivity innovations because a more productive firm is to use more productive, higher-

quality inputs (Flynn et al., 2019). Thus, be it due to the market power or quality differen-

tials, the variation in prices will then be endogenous to firms’ decisions and hence cannot

help the identification (also see Gandhi et al., 2020). Furthermore, lagging the instruments

does not help either. Putting the issue of exogeneity aside, Flynn et al. (2019) raise concerns

about the strong conditions on the evolution processes that must be satisfied for the lagged

prices to have any strength as instruments.3

The above underscores the practical appeal of proxy-variable identification strategies

that do not require external instruments to identify production technologies. Despite some

recent attempts at the proxy-variable identification of SAR production functions (see Hou

2The less common instruments include demand shifters or the external “determinants” of firm productiv-
ity/efficiency.

3Similar arguments can be made about the demand and productivity shifters.
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et al., 2020), below we show that such proxy-variable methodologies originally designed for

the estimation of non-spatial production functions generally cannot be extended to accom-

modate their SAR specifications.

For concreteness, we augment the logged SAR production function in (A.1) to include

more than one input and a random shock and where we also resume time-indexing the

variables:

yi t = ρ
n∑

j (6=i )=1
di j y j t +βK ki t +βM mi t +ωi t +ηi t . (A.9)

For simplicity, here we assume that spatial relationships captured by the weights D = {di j }

are time-invariant. Akin to (A.3), the corresponding reduced form of the i th firm production

function at time period t is

yi t =βK

n∑
j=1

Qi j k j t +βM

n∑
j=1

Qi j m j t +
n∑

j=1
Qi j

[
ω j t +η j t

]
, (A.10)

where Q = {Qi j } is an n ×n time-invariant diagonal block of the nT ×nT spatial multiplier

matrix [
InT −ρIT ⊗D

]−1 = IT ⊗
Q︷ ︸︸ ︷[

In −ρD
]−1 .

In line with the standard structural assumptions in the proxy-variable productivity lit-

erature (and to echo those we make in Section 2.2), we assume that (i ) Ki t is dynamically

optimized with a delay and subject to the adjustment costs, whereas Mi t is freely vary-

ing and chosen statically, (ii ) persistent firm productivity follows a controlled (location-

homogeneous) first-order Markov process with transition probability P ω(ωi t |ωi t−1,Gi t−1),

and the random shock ηi t is i.i.d., (iii ) firms are risk-neutral and seek to maximize a dis-

counted stream of expected life-time profits in perfectly competitive output and factor mar-

kets. Note that, in the case of a SAR formulation of spatial effects, the extent through which

firm location plays a role in the production is via the SAR term
∑n

j (6=i )=1 di j y j t that shifts the

frontier; all production-function parameters as well as the productivity evolution process

are location-invariant.

As noted earlier, in order to identify the SAR production function in (A.9), one needs to
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tackle the endogeneity of not only the spatial lag
∑n

j (6=i )=1 di j y j t (due to the simultaneous

“reflection”) but also both firm inputs that are correlated with unobservable firm produc-

tivity ωi t . While the endogenous
∑n

j (6=i )=1 di j y j t can be handled fairly easily using internal

instruments such as the first- and higher-order spatial lags of neighbors’ inputs (per the re-

duced form in (A.10)) as typically done in spatial models, the endogeneity of inputs requires

far more finesse. Owing to the already-discussed general lack of external instruments, a pop-

ular approach to tackling this omitted variable problem is structural and relies on proxying

for the “omitted” ωi t using the inverted material demand function. Namely, analogous to

the steps we take in Section 2.3.1, making use of the Markovian nature of firm productivity,

we can rewrite the SAR production function (A.9) as

yi t = ρ
n∑

j (6=i )=1
di j y j t +βK ki t +βM mi t +h(ωi t−1,Gi t−1)+ζi t +ηi t , (A.11)

where h(·) is the conditional mean ofωi t which, if desired, can be assumed to be linear, and

ζi t is a productivity innovation.

Provided that we can construct an (observable) proxy for ωi t−1, ki t and Gi t−1 are pre-

determined and weakly exogenous w.r.t. ζi t +ηi t but the freely varying mi t is not because

it is a function of ζi t (through ωi t based on which the firm statically chooses materials in

period t ). Thus, both
∑n

j (6=i )=1 di j y j t and mi t are endogenous. Since the spatial lag is easily

instrumentable, let us focus on handling the endogeneity of mi t .

As we explain in Section (2.3.1), in order to identify the production function in flexible

inputs such as mi t , a solution is to exploit a structural link between the production func-

tion and the firm’s (static) first-order condition for mi t , which is also what we do in the first

step of our methodology. Thus, the firm’s restricted expected profit-maximization problem

w.r.t. the flexible material input subject to the already optimized dynamic input Ki t , produc-

tivity ωi t and prices (P Y
t ,P M

t )′ is

max
Mi t

P Y
t exp

{
ρ

n∑
j (6=i )=1

di jE[y j t |Ii t ]

}
K βK

i t MβM

i t exp{ωi t }θ−P M
t Mi t . (A.12)

The optimization problem now also includes the expected average neighbor log-output
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∑n
j (6=i )=1 di jE[y j t |Ii t ] net of random ex post shocks {η j t } unobservable to firms at the time of

making decisions: y j t = E[y j t |Ii t ]+η j t ∀i , j . Precisely because of the latter and so long as

there are spatial spillovers across firms in that ρ 6= 0, the firm’s first-order condition now ac-

counts for “feedback effects” whereby the change in Mi t affects not only Yi t but also—through

spillovers—neighbors’ outputs {Y j t } which, in turn, affect firm i ’s output Yi t again. There-

fore, the corresponding first-order condition is

(
βM +ρ

n∑
j ( 6=i )=1

di j
∂E[y j t |Ii t ]

∂mi t

)
P Y

t exp

{
ρ

n∑
j (6=i )=1

di jE[y j t |Ii t ]

}
K βK

i t MβM−1
i t exp{ωi t }θ = P M

t .

(A.13)

To arrive at the material share equation, we take the log of (A.13) and subtract the pro-

duction function in (A.9):

vi t = ln

[(
βM +ρ

n∑
j ( 6=i )=1

di j
∂E[y j t |Ii t ]

∂mi t

)
θ

]
−ρ

n∑
j (6=i )=1

di jη j t −ηi t

= ln

[
βM

(
1+ρ

n∑
j (6=i )=1

di j Q j i

)
θ

]
−ρ

n∑
j (6=i )=1

di jη j t −ηi t︸ ︷︷ ︸
εi t

, (A.14)

where we have made a substitution in the second line using the partial
∂E[y j t |Ii t ]

∂mi t
= Q j iβM

obtained from the reduced form in (A.10) and, just like before, vi t = ln
(
P M

t Mi t
)− ln

(
P Y

t Yi t
)

is the (observable) log nominal share of material costs in total revenue. Note that, unlike

in a model without spatial lag, the composite error term εi t ≡ −(
ρ

∑n
j (6=i )=1 di jη j t +ηi t

)
in

(A.14) follows a spatial moving average process. Although εi t is spatially correlated, this has

no impact on identification because, by assumption, shocks {ηi t } are all i.i.d. Further note

that each Q j i element in (A.14) is a function of spatial weights and the still-unknown ρ. To

make this more explicit, we write (A.14) as

vi t = ln

[
βM

(
1+ρD(i )

([
In −ρD

]−1
)

( j )

)
θ

]
+εi t , (A.15)

where A(i ) and A( j ) respectively denote the i th row and j th column of some matrix A (and

recall that di j = 0 ∀i = j ).
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The material share equation (A.14) is a nonlinear regression containing no endogenous

covariates. It therefore might appear at first that it can be seamlessly estimated via nonlinear

least squares. However, the parameters in this regression α ≡ (βM ,ρ,θ)′ are not identified.

To make this unidentification more apparent, we recast the nonlinear least-squares estima-

tor of (A.15) in a GMM framework.

Namely, we write the nonlinear equation (A.15) as vi t = hi t (D,α)+ εi t , where hi t (·) is

the regression function. Consider now the identification ofα in the following just-identified

nonlinear GMM problem that is equivalent to the nonlinear least-squares estimation:

α0 = argmin
α

E

[
∂hi t (D,α)

∂α

(
vi t −hi t (D,α)

)]′
WE

[
∂hi t (D,α)

∂α

(
vi t −hi t (D,α)

)]
, (A.16)

where

∂hi t (D,α)

∂α
=


βM

−1

1

1+ρD(i )

(
[In−ρD]−1

)
( j )

(
D(i )

([
In −ρD

]−1
)

( j )
+ρD(i )

([
In −ρD

]−1 D
[
In −ρD

]−1
)

( j )

)
θ−1

 ,

(A.17)

and W is a symmetric positive-definite moment-weighting matrix.

To see that (A.16)–(A.17) do not identify all of the α parameters, letting the element in

the second row of ∂hi t (D,α)
∂α be pictorially denoted by “�,” consider the corresponding infor-

mation matrix:

Ψ(α) = E
[
∂hi t (D,α)

∂α

∂hi t (D,α)

∂α′

]
= E


1
β2

M

1
βM

� 1
βMθ

1
βM

� �2 1
θ
�

1
βMθ

1
θ
� 1

θ2

 . (A.18)

The above 3×3 matrix Ψ(α) has rank of 1. Thus, the information matrix for the GMM

problem in (A.16) when evaluated at the true parameter valuesΨ(α0) will be rank-deficient,

and the parameters inαwill therefore be unidentified (see Rothenberg, 1971).

It is also important to note that augmenting the nonlinear least-squares moment re-
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strictions with the unconditional moment corresponding to θ given in (2.3.8) analogously to

what we do in the first step of our identification methodology will not remedy the unidentifi-

cation problem. More concretely, recalling that θ ≡ E[
exp

{
ηi t

}]
and inverting the composite

error εi t appearing in (A.15) from the spatial moving average process that it follows, we have

the additional GMM moment restriction:

0 = E[
gi t (D,α)

]≡ E[
exp

{
ηi t

}−θ]
= E

[
exp

{
−

([
In +ρD

]−1
)

(i )
εt

}
−θ

]
, (A.19)

where εt = (ε1t , . . . ,εnt )′ and each εi t = vi t−hi t (D,α) = vi t−ln

[
βM

(
1+ρD(i )

([
In −ρD

]−1
)

( j )

)
θ

]
.

With this, let us consider the information matrix I (α) = [Ψ(α),Φ(α)] for an augmented

GMM problem, where

Φ(α) = E
[
∂gi t (D,α)

∂α

]
= E


β−1

M exp
{
−

([
In +ρD

]−1
)

(i )
εt

}([
In +ρD

]−1
)

(i )
in

∂gi t (D,α)
∂ρ

θ−1 exp
{
−

([
In +ρD

]−1
)

(i )
εt

}([
In +ρD

]−1
)

(i )
in −1

 . (A.20)

It is apparent that the information matrix I (α) even when including the additional mo-

ment is still not full-rank, and the material share equation remains unidentified.

We have thus shown that, notwithstanding the Gandhi et al. (2020) result for non-spatial

proxy-variable estimators, the SAR production function cannot be identified in flexible in-

puts by exploiting a structural link between the production function and the firm’s (static)

optimality conditions. Consequently, the whole model is unidentified. This is in stark con-

trast with the main result of our paper. Our ability to capture locational effects in produc-

tion and achieve proxy-variable identification of the production technology and firm pro-

ductivity in the presence of technology spillovers and agglomeration economies stems from

our fundamentally different conceptualization of cross-firm spatial interdependence. Our

methodology incorporates firm location through local smoothing, which models the pro-

duction technology for each location as the geographically weighted average of the input-

output relationships for firms in the nearby locations, whereas the SAR production-function

121



models formulate locational aspects using the spatially weighed averages of the output/inputs

quantities while keeping the production technology location-invariant.

A.2 Translog Technology

Our methodology can adopt more flexible specifications of the firm’s production technology.

The log-quadratic translog specification provides a natural extension of the log-linear Cobb-

Douglas form. See De Loecker and Warzynski (2012) and De Loecker et al. (2016) for recent

applications of the translog production functions in the structural proxy estimation. Just like

we have done in (2.3.1), we generalize the standard fixed-parameter translog specification

to accommodate potential locational heterogeneity in production by letting its coefficients

vary with the firm’s location in a nonparametric way, i.e.,

lnF|Si (·) = βK (Si )ki t + 1
2βK K (Si )k2

i t +βL(Si )li t + 1
2βLL(Si )l 2

i t +βM (Si )mi t + 1
2βM M (Si )m2

i t +

βK L(Si )ki t li t +βK M (Si )ki t mi t +βLM (Si )li t mi t . (A.21)

Our methodology can then be modified as follows.

First step.—The firm’s first-order condition for the static optimization in (2.2.4) with re-

spect to Mi t is now takes the following form:

lnP Y
t +lnF|Si +ln

[
βM (Si )+βM M (Si )mi t +βK M (Si )ki t +βLM (Si )li t

]−mi t +ωi t +lnθ = lnP M
t ,

(A.22)

where lnF|Si equals the semiparametric translog technology in (A.21). The location-specific

material share equation corresponding to this optimality condition is now given by

vi t = ln
([
βM (Si )+βM M (Si )mi t +βK M (Si )ki t +βLM (Si )li t

]
θ
)
−ηi t , (A.23)

where βM (Si ) +βM M (Si )mi t +βK M (Si )ki t +βLM (Si )li t is the material elasticity function.

Analogous to the discussion in Section 2.3.1, the above log material share equation identifies

the locationally varying material-related production-function parameters (βM (Si ),βM M (Si ),
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βK M (Si ),βLM (Si ))′ as well as the mean of exponentiated shocks θ based on the mean-orthog-

onality condition E[ηi t |Ii t ] = E[ηi t |ki t , li t ,mi t ,Si ] = E[ηi t ] = 0.

Second step.—Having identified the production technology in the dimension of its en-

dogenous freely varying input Mi t , we can focus on the rest of production function. With

the already identified y∗
i t ≡ yi t −βM (Si )mi t − 1

2βM M (Si )m2
i t −βK M (Si )ki t mi t −βLM (Si )li t mi t

and using the inverted conditional material demand derived from (A.22) to substitute for

ωi t−1, we now have the analogue of (2.3.11):

y∗
i t = βK (Si )ki t + 1

2βK K (Si )k2
i t +βL(Si )li t + 1

2βLL(Si )l 2
i t +βK L(Si )ki t li t +ρ0(Si ) +

ρ1(Si )
[
ν∗i t−1 −βK (Si )ki ,t−1 − 1

2βK K (Si )k2
i ,t−1 −βL(Si )li ,t−1 − 1

2βLL(Si )l 2
i ,t−1−

βK L(Si )ki ,t−1li ,t−1

]
+ρ2(Si )Gi t−1 +ζi t +ηi t , (A.24)

where

ν∗i t−1 = ln[P M
t−1/P Y

t−1]− ln(
[
βM (Si )+βM M (Si )mi t−1 +βK M (Si )ki t−1 +βLM (Si )li t−1

]
θ) +

[1−βM (Si )]mi t−1 − 1
2βM M (Si )m2

i t−1 −βK M (Si )ki t−1mi t−1 −βLM (Si )li t−1mi t−1

is already identified/observable and predetermined with respect to ζi t +ηi t . All covariates

in (A.24) are predetermined and can self-instrument thereby identifying the translog model.

Estimation.—The estimation methodology here mirrors that used for the Cobb-Douglas

model except that the local-constant least-squares estimator in the first step is now also

nonlinear.

Assuming that all unknown locationally varying coefficient functions are smooth and

twice continuously differentiable in the neighborhood of Si = s, the location-specific mate-

rial share equation in (A.23) can be locally approximated around s via constants as

vi t ≈ ln
([
βM (s)+βM M (s)mi t +βK M (s)ki t +βLM (s)li t

]
θ
)
−ηi t

≈ ln
(
[βM (s)θ]+ [βM M (s)θ]mi t + [βK M (s)θ]ki t + [βLM (s)θ]li t

)
−ηi t , (A.25)
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with the corresponding kernel estimator of Θ1(s) = [βM (s)θ,βM M (s)θ,βK M (s)θ,βLM (s)θ]′

being

Θ̂1(s) = argmin
Θ1(s)

∑
i

∑
t

Kh1 (Si , s)
(
vi t − ln

(
[βM (s)θ]+ [βM M (s)θ]mi t + [βK M (s)θ]ki t + [βLM (s)θ]li t

))2
.

(A.26)

To estimate the material elasticity parameter functions [βM (s),βM M (s),βK M (s),βLM (s)]′

around Si = s net of constant θ, we first recover θ̂ as

θ̂ =∑
i

∑
t

exp
{

ln
(
[áβM (s)θ]+ [ áβM M (s)θ]mi t + [ áβK M (s)θ]ki t + [ áβLM (s)θ]li t

)
− vi t

}
(A.27)

and then use it to scale Θ̂1(s) which yields our first-step estimator:

[
β̂M (s), β̂M M (s), β̂K M (s), β̂LM (s)

]′ = nT Θ̂1(s)
/
θ̂. (A.28)

Using these first-step local estimates, we then construct ŷ∗
i t = yi t−β̂M (Si )mi t−1

2 β̂M M (Si )m2
i t−

β̂K M (Si )ki t mi t−β̂LM (Si )li t mi t and ν̂∗i t−1 = ln[P M
t−1/P Y

t−1]−ln([β̂M (Si )+βM M (Si )mi t−1+β̂K M (Si )ki t−1+
β̂LM (Si )li t−1]θ)+[1−β̂M (Si )]mi t−1−1

2 β̂M M (Si )m2
i t−1−β̂K M (Si )ki t−1mi t−1−β̂LM (Si )li t−1mi t−1.

Analogous to the first-step estimation, we then locally approximate each unknown pa-

rameter function in (A.24) via local-constant approach. Collectively denoting all unknown

parameters in the equation asΘ2(Si ) = [βK (Si ),βK K (Si ),βL(Si ),βLL(Si ),βK L(Si ),ρ0(Si ),ρ1(Si ),

ρ2(Si )]′, the second-step local-constant nonlinear least-squares estimator in the neighbor-

hood of Si = s is then given by

Θ̂2(s) = argmin
Θ2(s)

∑
i

∑
t

Kh2 (Si , s)
(

y∗
i t −βK (Si )ki t − 1

2βK K (Si )k2
i t −βL(Si )li t − 1

2βLL(Si )l 2
i t−

βK L(Si )ki t li t −ρ1(Si )
[
ν∗i t−1 −βK (Si )ki ,t−1 − 1

2βK K (Si )k2
i ,t−1 −βL(Si )li ,t−1−

1
2βLL(Si )l 2

i ,t−1 −βK L(Si )ki ,t−1li ,t−1

]
−ρ0(Si )−ρ2(Si )Gi t−1

)2
. (A.29)
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A.3 Finite-Sample Performance of the Estimator

We investigate the finite-sample performance of our proposed estimation procedure in a

set of Monte Carlo experiments. Our data generating process (DGP) builds on the setup in

Grieco et al. (2016) and Malikov et al. (2020) which we modify to allow for locational hetero-

geneity.

Without loss of generality, we dispense with labor and consider the production process

with two inputs only: a quasi-fixed capital and freely varying materials. Let the true tech-

nology take a semiparametric locationally-varying Cobb-Douglas form:

Yi t = K βK (Si )
i t MβM (Si )

i t exp{ωi t }exp{ηi t }. (A.30)

To simplify matters, we assume that all firms are located on a straight line, with the uni-

variate location variable Si indexing their relative location. We assume a discrete uniform

spatial distribution of firms, with Si ∈S= {0.50,0.51, . . . ,0.98,0.99} and D = 50 locations. The

random disturbance is ηi t ∼ i.i.d.N(0,0.072).

We assume the decreasing returns to scale across all locations but let the scale elasticity

differ across locations. Concretely, we have that the returns to scale increase as one moves

rightwards in space S by having the two input elasticity functions smoothly vary across lo-

cations as follows:

βK (Si ) = 0.2+0.1Si (A.31)

βM (Si ) = 0.4+0.1exp(S2
i ). (A.32)

The productivity components are generated as follows. We model the persistent produc-

tivity as a location-specific exogenous AR(1) process:

ωi t = ρ0(Si )+ρ1(Si )ωi t−1 +ζi t , (A.33)

where we set ρ0(Si ) = 0.5+Si−S2
i and ρ1(Si ) = 0.7∀ Si . In this, we assume that the mean firm
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Table A.1. Second-Step Estimates of Locationally-Varying Parameters

Panel A: Kernel-Smoothing Panel B: Sample-Splitting

βK (·) ρ1(·) ρ2(·) βK (·) ρ1(·) ρ2(·)
n = 100

Mean Bias –0.0113 0.0065 0.0046 –0.0059 –0.0231 –0.0297
RMSE 0.0569 0.0731 0.0329 0.1725 0.2552 0.1152
MAE 0.0449 0.0593 0.0267 0.1446 0.1991 0.0885

n = 200

Mean Bias –0.0069 0.0037 0.0036 –0.0117 0.0016 –0.0085
RMSE 0.0388 0.0508 0.0238 0.1196 0.1577 0.0693
MAE 0.0311 0.0413 0.0193 0.0937 0.1239 0.0546

n = 400

Mean Bias –0.0070 0.0030 0.0053 –0.0073 0.0034 –0.0028
RMSE 0.0278 0.0356 0.0178 0.0797 0.1027 0.0456
MAE 0.0223 0.0290 0.0144 0.0608 0.0808 0.0362

Ours is a kernel-smoothing estimator which uses information from all locations, albeit weighting
it based on the proximity to a location of interest. The sample-splitting estimator is essentially
a “frequency estimator” which splits the data sample by location to estimates location-specific
parameters using information from that location only. T = 10 throughout.

productivity is the highest in the middle ofS and symmetrically diminishes in both direction

therefrom. The firm’s initial level of productivity ωi 1 is set to ρ0(Si ) and therefore is deter-

mined purely by the firm’s location. The productivity innovation is ζi t ∼ i.i.d.N(0,0.042).

The firm’s capital is set to evolve according to Ki t = Ii t−1 + (1−δi )Ki t−1, with the firm-

specific depreciation rates δi uniformly drawn from {0.05,0.075,0.10,0.125,0.15}. The initial

levels of capital Ki 0 is drawn from U(10,200) identically and independently distributed over

i . The investment function takes the following form: Ii t−1 = K α1
i t−1 exp{α2ωi t−1}, where α1 =

0.8 and α2 = 0.1.

The materials Mi t series is generated solving the firm’s restricted expected profit maxi-

mization problem along the lines of (2.2.4). The conditional demand for Mi t is given by

Mi t = argmax
Mi t

{
P Y

t K βK (Si )
i t M

βM (Si )
i t exp{ωi t }θ−P M

t Mi t

}
=

[
βM (Si )K βK (Si )

i t exp{ωi t }
]1/(1−βM (Si ))

,

(A.34)

where, in the second equality, we have normalized P M
t = θ ∀ t and have assumed no tempo-

ral variation in output prices: P Y
t = 1 for all t .
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We estimate the model via the two-step kernel-smoothing estimation algorithm outlined

in Section 2.3.2. Although we cross-validate the optimal number of nearest neighbors (h) in

the empirical application, to conserve computational time, in our simulations we rely on

the result that the optimal h when cross-validating is h ∝ n4/(4+dim(Si )) (see Ouyang et al.,

2006) and set h = 0.3(nT )4/5. We consider a balanced panel of n = {100,200,400} firms op-

erating during T = 10 periods. Each panel is simulated Q = 500 times. For each simulation

repetition, we compute the mean bias, the root mean squared error (RMSE) and the mean

absolute error (MAE) over all firms. Panel A of Table A.1 reports these metrics averaged

across Q simulations for the capital elasticity βK (Si ) and the productivity parameters ρ0(Si )

and ρ1(Si ).4

The simulation results for our estimator are encouraging and show that our method-

ology recovers the true parameters remarkably well, thereby lending strong support to the

validity of our identification strategy. As expected of a consistent estimator, the estimation

becomes more stable as n grows. Furthermore, our estimator significantly outperforms a

crude—albeit computationally simpler—alternative estimator which splits the data sample

by location to (parametrically) estimates location-specific parameters using the informa-

tion from that location only. The results for this sample-splitting estimator are summarized

in Panel B of Table A.1. Such an alternative estimation procedure is also less practical be-

cause its feasibility is dependent on having enough data from each unique location. Our

estimation procedure is immune to this problem because it uses information from all loca-

tions but with varying degree of relative importance as determined by their proximity to a

location of interest.

A.4 Bootstrap Inference

Due to a multi-step nature of our estimator as well as the presence of nonparametric com-

ponents, computation of the asymptotic variance of the estimators is not simple. For sta-

tistical inference, we therefore use bootstrap. We approximate sampling distributions of the

4We omit the results corresponding to the material elasticity βM (Si ) estimated in the first step because the
estimator yields very precise estimates even for small sample sizes.
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estimators via wild residual block bootstrap that takes into account a panel structure of the

data, with all the steps bootstrapped jointly owing to a sequential nature of our estimation

procedure. Concretely, the bootstrap algorithm is as follows.

1. Compute the two steps of our estimation procedure using the original data. Denote

the obtained estimates as
(
β̂M (Si ), θ̂,Θ̂(Si )′

)′ for all i = 1, . . . ,n. Let the (negative of)

first-step residuals be {η̂i t } and the second-step residuals be { áζi t +ηi t }. Recenter these.

2. Generate bootstrap weights ξb
i for all cross-sectional units i = 1, . . . ,n from the Mam-

men (1993) two-point mass distribution:

ξb
i =


1+p5

2 with prob.
p

5−1
2
p

5

1−p5
2 with prob.

p
5+1

2
p

5
.

(A.35)

Next, for each observation (i , t ) with i = 1, . . . ,n and t = 1, . . . ,T , jointly generate a new

bootstrap first-step disturbance ηb
i t = ξb

i ×η̂i t and a new bootstrap second-step distur-

bance (ζi t +ηi t )b = ξb
i × ( áζi t +ηi t ).

3. Generate a new bootstrap first-step outcome variable via vb
i t = ln

[
β̂M (Si )θ̂

]−ηb
i t for

all i = 1, . . . ,n and t = 1, . . . ,T .

4. Generate a new bootstrap second-step outcome variable using y∗b
i t = β̂K (Si )ki t+β̂L(Si )li t+

ρ̂0(Si )+ ρ̂1(Si )
[
ν̂∗i t−1 − β̂K (Si )ki t−1 − β̂L(Si )li t−1

]
+ ρ̂2(Si )Gi t−1 + (ζi t +ηi t )b for all i =

1, . . . ,n and t = 1, . . . ,T , where ν̂∗i t−1 = ln[P M
t−1/P Y

t−1]− ln[β̂M (Si )θ̂]+ [1− β̂M (Si )]mi t−1

is constructed using the original parameter estimates.

5. Recompute the first step using {vb
i t } in place of {vi t } and, for all i , denote the ob-

tained coefficient estimates as
(
β̂b

M (Si ), θ̂b
)′. Use these bootstrap estimates to con-

struct ν̂∗b
i t−1 = ln[P M

t−1/P Y
t−1]− ln[β̂b

M (Si )θ̂b]+ [1− β̂b
M (Si )]mi t−1 for all i = 1, . . . ,n and

t = 1, . . . ,T .

6. Recompute the second step using {y∗b
i t } in place of {ŷ∗

i t }. When recomputing the mod-

els, also use {ν̂∗b
i t−1} in place of {ν̂∗i t−1}. For all i = 1, . . . ,n, denote the obtained coeffi-

cient estimates as Θ̂b(Si ) = (
β̂b

K (Si ), β̂b
L(Si ), ρ̂ωb

0 (Si ), ρ̂ωb
1 (Si ), ρ̂ωb

2 (Si )
)′.
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Table A.2. Coverage Probability of the Two-Sided 95% Bootstrap Confidence Interval

βK βK (0.65) βK (0.75) βK (0.85)

Panel A: True Parameters are Location-Specific

n = 200 0.873 0.923 0.901 0.850
n = 400 0.843 0.907 0.933 0.883
n = 800 0.950 0.933 0.943 0.953

Panel B: True Parameters are Location-Invariant

n = 200 0.937 0.943 0.943 0.950
n = 400 0.963 0.957 0.970 0.960
n = 800 0.963 0.967 0.963 0.977

Panel A (B) corresponds to the DGP with locationally-varying (location-
invariant) coefficients. In both cases, the estimation was performed using
our kernel-weighting estimator under the presumption that coefficients are
location-specific. T = 10 throughout.

7. Repeat steps 2 through 6 of the algorithm B times.

Inference is performed using the bootstrap percentile confidence intervals. Let the obser-

vation-specific estimand of interest be denoted by E , e.g., the firm i ’s labor elasticity coeffi-

cient βL(Si ) or the returns to scale defined as the sums of βK (Si ), βL(Si ) and βM (Si ). To test

two-tailed hypotheses, we can use the empirical distribution of {Ê 1, . . . , Ê B } to estimate the

two-sided (1−α)×100% confidence bounds for E as an interval between the [α/2×100]th

and [(1−α/2)×100]th percentiles of the bootstrap distribution. Naturally, for one-tailed hy-

potheses, to estimate the one-sided lower or upper (1−α)×100% confidence bound, we can

use the [α×100]th or [(1−α)×100]th bootstrap percentiles, respectively.

Finite-Sample Performance.—Using the DGP described in Appendix A.3, we investigate a

finite-sample performance of the above bootstrap procedure in a simulation. This is of inter-

est because of the complexity of our multi-step estimation procedure, which makes estab-

lishing the validity of bootstrap nontrivial. We focus on the two-sided 95% confidence inter-

vals (α= 0.05) for (i ) the average elasticity of capital across all locations βK = 1
D

∑
Si∈SβK (Si )

and (ii ) capital elasticity at select locations βK (S0). We choose S0 = {0.65,0.75,0.85} which

roughly correspond to quartiles of S. To conserve computational time, the number of sim-

ulations is Q = 300 with B = 200 bootstrap replications per each simulation.

Panel A in Table A.2 reports coverage probabilities of the bootstrap confidence inter-

vals for capital elasticity under our DGP for the sample size n = {200,400,800}. The cover-
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Figure A.1. Power of the Two-Sided 95% Bootstrap Confidence Interval
(Vertical line corresponds to the true βK (s) value)
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age probability is estimated as the relative frequency (over Q simulations) of the estimated

95% confidence interval containing the true elasticity value. We also plot power curves for

these confidence intervals; see Figure A.1. Here, power is computed as the relative rejection

frequency against different nulls on the x-axis. The simulations show a satisfactory per-

formance of our bootstrap confidence intervals in finite samples. The results indicate that

there may be size distortions for small n, which is common for nonparametric tests. How-

ever, for a sample size modestly large enough, the estimated coverage is close to the correct

coverage. The intervals exhibit good power, which improves as n grows as anticipated of a

consistent test.

When the DGP is such that the true parameters are actually location-invariant (i.e., fixed),

the performance of bootstrap improves and the coverage probabilities match the nominal

confidence level even for small n. See Panel B of Table A.2. This is expected because the

nonparametric estimation improves significantly when the true process is parametric.

Bias-Corrected Inference.—Efron’s (1982) bias-corrected bootstrap percentile confidence

intervals provide means to robustify inference by correcting for the estimator’s finite-sample

bias. In this case, the bias-corrected two-sided (1 −α) × 100% confidence bounds for E

are estimated as an interval between the [a1 × 100]th and [a2 × 100]th percentiles of the

bootstrap distribution, where a1 = Φ(
2ẑ0 +Φ−1(α/2)

)
and a2 = Φ(

2ẑ0 +Φ−1(1−α/2)
)

with

Φ(·) being the standard normal cdf along with its quantile function Φ−1(·). Parameter ẑ0 =
Φ−1

(
#
{
Ê b < Ê

}
/B

)
is a bias-correction factor measuring median bias, with #{A } being a

count function that returns the number of times event A is true. Analogously, to esti-

mate the one-sided lower or upper (1−α)× 100% confidence bound with bias correction,

we can respectively use the [o1 ×100]th or [o2 ×100]th percentiles of the bootstrap distribu-

tion, where o1 =Φ
(
2ẑ0 +Φ−1(α)

)
and o2 =Φ

(
2ẑ0 +Φ−1(1−α)

)
. Note that the bias-corrected

confidence interval need not contain the point estimate if the finite-sample bias is large.
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A.5 Specification Test of Location Invariance

Given that our semiparametric locationally varying production model nests a more tradi-

tional fixed-parameter specification that implies locational invariance/homogeneity of the

production function and the productivity evolution as a special case, we can formally dis-

criminate between the two models to see if the data support our more flexible modeling

approach.

More concretely, we test the null hypothesis of a production model in which the tech-

nology is common to firms across all locations:

lnF|Si (·) = lnF (·) =βK ki t +βLli t +βM mi t , (A.36)

and firm productivity evolves according to a location-homogeneous first-order Markov pro-

cess with

hω
|Si

(·) = hω(·) = ρ0 +ρ1ωi t−1 +ρ2Gi t−1. (A.37)

The location-invariant fixed-coefficient analogue of our model under the null of loca-

tional homogeneity is therefore given by

yi t =βK ki t +βLli t +βM mi t +ρ0 +ρ1ωi t−1 +ρ2Gi t−1 +ζi t +ηi t , (A.38)

which we test against our semiparametric varying-coefficient alternative in (2.3.4). This is,

essentially, the test of overall relevancy of Si .

To test this hypothesis, we use Ullah’s (1985) nonparametric goodness-of-fit test based

on the comparison of the restricted (under H0) and unrestricted (under H1) models. First,

let the estimator under H0 be denoted by “tilde” whereas the estimator under H1 be de-

noted by “hat.” Then, the residual-based test statistic is Tn = (RSS0 −RSS1)/RSS1, where

RSS0 =∑
i
∑

t ( ãζi t +ηi t )2 and RSS1 =∑
i
∑

t ( áζi t +ηi t )2 are respectively the second-step resid-

ual sum of squares under the (restricted parametric) null and the (unrestricted semipara-

metric) alternative.5 Intuitively, the test statistic is expected to converge to zero under the

5We use the second-step residuals because they already incorporate information about the first-step estima-
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null and is positive under the alternative; hence the test is one-sided. To approximate the

null distribution of Tn , we use wild panel-data block-bootstrap by resampling residuals from

the model under the null.

To approximate the null distribution of Tn , we use wild panel-data block-bootstrap by

resampling residuals from model under the null. The algorithm builds on that described in

Appendix A.4.

1. Using the original data, compute the two steps of both the locationally-invariant (un-

der H0) and locationally varying (under H1) models. Denote the estimates from the

restricted model as
[
β̃M , θ̃,Θ̃′]′ and the estimates from the unrestricted alternative as[

β̂M (Si ), θ̂,Θ̂(Si )′
]′ for all i = 1, . . . ,n. Let the (negative of) first-step residuals under

the null be {η̃i t } and those under the alternative be {η̂i t }. Also, obtain the second-step

residuals under the null { ãζi t +ηi t } and under the alternative { áζi t +ηi t }. Use the latter

to compute the test statistic Tn .

2. Generate bootstrap weights ξb
i for all cross-sectional units i = 1, . . . ,n from the Mam-

men (1993) two-point mass distribution in (A.35). Next, for each observation (i , t )

with i = 1, . . . ,n and t = 1, . . . ,T , generate a new bootstrap first-step disturbance ηb
i t =

ξb
i × η̃i t and a new bootstrap second-step disturbance (ζi t + ηi t )b = ξb

i × ( ãζi t +ηi t ).

When constructing these bootstrap disturbances, use re-centered residuals.

3. Generate a new bootstrap first-step outcome variable based on the specification un-

der H0. From the first step, we have vb
i t = ln[β̃M θ̃]−ηb

i t for all i = 1, . . . ,n and t = 1, . . . ,T .

4. Recompute the first step of both the locationally-invariant and locationally varying

models using {vb
i t } in place of {vi t } and denote the obtained parameter estimates as[

β̃b
M , θ̃b

]
under the null and as

[
β̂b

M (Si ), θ̂b
]

under the alternative.

5. Generate a new bootstrap second-step outcome variable based on the specification

under H0. From the second step, we have y∗b
i t = β̃K ki t+β̃Lli t+ρ̃ω0 +ρ̃ω1

[
ν̃∗i t−1−β̃K ki t−1−

β̃Lli t−1

]
+ρ̃ω2 Gi t−1+(ζi t+ηi t )b for all i = 1, . . . ,n and t = 1, . . . ,T , where ν̃∗i t−1 = ln[P M

t−1/P Y
t−1]−

ln[β̃M θ̃]+ [1− β̃M ]mi t−1 is constructed using the original parameter estimates.

tion by virtue of sequential construction.
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6. Recompute the second step of both models using {y∗b
i t } in place of {y∗

i t }. When recom-

puting the models, also use ν̃∗b
i t−1 in place of ν̃∗i t−1 for the restricted model and ν̂∗b

i t−1 in

place of ν̂∗i t−1 for the unrestricted model, where ν̃∗b
i t−1 = ln[P M

t−1/P Y
t−1]− ln[β̃b

M θ̃
b]+[1−

β̃b
M ]mi t−1 and ν̂∗b

i t−1 = ln[P M
t−1/P Y

t−1]−ln[β̂b
M (Si )θ̂b]+[1−β̂b

M (Si )]mi t−1 are constructed

using the bootstrap parameter estimates. Denote the obtained parameter estimates as

Θ̃b = [β̃b
K , β̃b

L , ρ̃ωb
0 , ρ̃ωb

1 , ρ̃ωb
2 ]′ and Θ̂b(Si ) = [β̂b

K (Si ), β̂b
L(Si ), ρ̂ωb

0 (Si ), ρ̂ωb
1 (Si ), ρ̂ωb

2 (Si )]′.

7. Recompute the second-step bootstrap residuals under the null { ãζi t +ηi t }b = yi t−β̃b
K ki t−

β̃b
Lli t − β̃b

M mi t − ρ̃ωb
0 − ρ̃ωb

1

[
ν̂∗b

i t−1 − β̃b
K ki t−1 − β̃b

Lli t−1

]
− ρ̃ωb

2 Gi t−1 and under the alter-

native { áζi t +ηi t }b = yi t − β̂b
K (Si )ki t − β̂b

L(Si )li t − β̂b
M (Si )mi t − ρ̂ωb

0 (Si )− ρ̂ωb
1 (Si )

[
ν̂∗b

i t−1 −
β̂b

K (Si )ki t−1 − β̂b
L(Si )li t−1

]
− ρ̂ωb

2 (Si )Gi t−1. Use these to compute the bootstrap test

statistic T b
n .

8. Repeat steps 2 through 7 of the algorithm B times.

Use the empirical distribution of B+1 bootstrap statistics
{
T b

n

}
, where the first bootstrap

replica is the test statistic Tn calculated from the original data in Step 1, to obtain the p-value

as
∑

b 1
{
T b

n ≥ Tn
}

/(B +1). In our empirical application, the number of bootstrap iteration is

set to B = 999.

Estimating the Location-Invariant Model.—The location-invariant model specified in (A.36)–

(A.37) is fully parametric and a special case of our locationally-varying model when Si = S0

for all i . It is therefore can be estimated following our methodology in (2.3.14)–(2.3.18) but by

letting the adaptive bandwidths in both steps [Rh1 (s) and Rh2 (s)] diverge to ∞ which would,

in effect, obviate the need to locally weight the data because all kernels will be the same. We

can then set Kh1 (Si , s) =Kh2 (Si , s) = 1 for all i .

When the production technology and the productivity process are global and do not vary

across locations as described in (A.36)–(A.37), the location-invariant analogue of the first-

step material share equation in (2.3.6) is given by

vi t = ln[βMθ]−ηi t , (A.39)
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and that of the second-step proxied production function in (2.3.11) is given by

y∗
i t =βK ki t +βLli t +ρ0 +ρ1

[
ν∗i t−1 −βK ki t−1 −βLli t−1

]
+ρ2Gi t−1 +ζi t +ηi t , (A.40)

where ν∗i t−1 = ln[P M
t−1/P Y

t−1]− ln[βMθ]+ [1−βM ]mi t−1.

To estimate the material elasticity, denoting the unknown ln[βMθ] as some constant bM ,

we have the following counterpart of the estimator in (2.3.14) which is just a sample mean:

b̂M = 1

nT

∑
i

∑
t

vi t . (A.41)

With it, we obtain the counterpart of (2.3.17) that estimates βM :

β̂M = nT exp
{
b̂M

}/∑
i

∑
t

exp
{
b̂M − vi t

}
= nT exp

{
1

nT

∑
i

∑
t

vi t

}/∑
i

∑
t

exp

{
1

nT

∑
i

∑
t

vi t − vi t

}
. (A.42)

Using ŷ∗
i t ≡ yi t − β̂M mi t and ν̂∗i t−1 = ln[P M

t−1/P Y
t−1]− ln[β̂Mθ]+ [1− β̂M ]mi t−1, we arrive at

the location-invariant counterpart of the second-step estimator in (2.3.19):

Θ̂= argmin
Θ

∑
i

∑
t

(
ŷ∗

i t −βK ki t −βLli t −ρ0 −ρ1

[
ν̂∗i t−1 −βK ki t−1 −βLli t−1

]
+ρ2Gi t−1

)2
,

(A.43)

whereΘ= [βK ,βL ,ρ0,ρ1,ρ2]′ and which can be estimated via the usual nonlinear least squares.

For inference, we follow the same bootstrap steps as those for our main model in Ap-

pendix A.4 except that the estimated location-invariant fixed coefficients are used in place

of the locationally-varying coefficients.
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B Appendix to Chapter 3

B.1 Cost Elasticities

Tables B.1-B.2 summarize point estimates of cost elasticities along with their corresponding

two-sided bias-corrected 95% confidence intervals in parentheses.

Table B.1. Cost Elasticity Estimates

Variables Mean 1st Qu. Median 3rd Qu. Mean 1st Qu. Median 3rd Qu.

Cost Quantile: Q(10) Cost Quantile: Q(25)

Y1 0.509 0.458 0.522 0.574 0.502 0.452 0.515 0.566
(0.493, 0.532) (0.443, 0.486) (0.506, 0.545) (0.554, 0.601) (0.488, 0.524) (0.438, 0.479) (0.5, 0.537) (0.548, 0.591)

Y2 0.091 0.074 0.091 0.11 0.09 0.073 0.09 0.109
(0.083, 0.1) (0.066, 0.081) (0.082, 0.1) (0.1, 0.118) (0.082, 0.098) (0.065, 0.08) (0.081, 0.099) (0.098, 0.117)

Y3 0.049 0.028 0.047 0.067 0.051 0.03 0.049 0.07
(0.041, 0.054) (0.022, 0.032) (0.039, 0.051) (0.058, 0.073) (0.044, 0.056) (0.023, 0.034) (0.041, 0.053) (0.06, 0.075)

K1 0.141 0.097 0.132 0.175 0.139 0.096 0.13 0.171
(0.123, 0.162) (0.076, 0.116) (0.115, 0.153) (0.155, 0.199) (0.121, 0.159) (0.076, 0.115) (0.111, 0.15) (0.151, 0.192)

K2 0.012 0.005 0.013 0.02 0.013 0.006 0.015 0.022
(0.007, 0.015) (0.001, 0.008) (0.009, 0.016) (0.016, 0.023) (0.009, 0.016) (0.002, 0.009) (0.011, 0.017) (0.017, 0.024)

W1 0.078 0.064 0.08 0.094 0.076 0.063 0.077 0.089
(0.064, 0.089) (0.055, 0.074) (0.064, 0.093) (0.073, 0.111) (0.061, 0.086) (0.054, 0.073) (0.061, 0.088) (0.07, 0.103)

W3 0.175 0.135 0.167 0.213 0.172 0.13 0.164 0.21
(0.162, 0.189) (0.124, 0.146) (0.154, 0.181) (0.197, 0.231) (0.161, 0.186) (0.122, 0.141) (0.152, 0.177) (0.197, 0.227)

Cost Quantile: Q(50) Cost Quantile: Q(75)

Y1 0.492 0.443 0.505 0.555 0.482 0.433 0.494 0.543
(0.475, 0.512) (0.428, 0.465) (0.487, 0.525) (0.533, 0.578) (0.462, 0.501) (0.415, 0.452) (0.473, 0.514) (0.517, 0.567)

Y2 0.087 0.071 0.088 0.106 0.085 0.069 0.086 0.104
(0.078, 0.094) (0.063, 0.078) (0.078, 0.096) (0.096, 0.114) (0.075, 0.091) (0.06, 0.076) (0.076, 0.094) (0.093, 0.112)

Y3 0.055 0.033 0.053 0.074 0.058 0.036 0.057 0.079
(0.049, 0.06) (0.028, 0.037) (0.047, 0.057) (0.066, 0.081) (0.053, 0.066) (0.032, 0.041) (0.051, 0.064) (0.072, 0.089)

K1 0.135 0.095 0.127 0.165 0.131 0.093 0.123 0.159
(0.115, 0.152) (0.075, 0.114) (0.106, 0.144) (0.138, 0.184) (0.107, 0.147) (0.074, 0.112) (0.1, 0.139) (0.129, 0.175)

K2 0.015 0.007 0.017 0.024 0.017 0.009 0.019 0.027
(0.012, 0.018) (0.004, 0.011) (0.014, 0.02) (0.02, 0.027) (0.014, 0.021) (0.005, 0.012) (0.016, 0.023) (0.023, 0.032)

W1 0.072 0.062 0.072 0.082 0.067 0.059 0.068 0.077
(0.058, 0.081) (0.051, 0.072) (0.057, 0.083) (0.065, 0.093) (0.054, 0.077) (0.045, 0.068) (0.053, 0.078) (0.062, 0.086)

W3 0.167 0.124 0.158 0.206 0.162 0.117 0.152 0.202
(0.157, 0.178) (0.115, 0.134) (0.145, 0.168) (0.192, 0.219) (0.148, 0.172) (0.104, 0.126) (0.136, 0.161) (0.184, 0.213)
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Table B.2. Cost Elasticity Estimates (cont.)

Variables Mean 1st Qu. Median 3rd Qu.

Cost Quantile: Q(90)

Y1 0.476 0.427 0.487 0.536
(0.455, 0.497) (0.408, 0.447) (0.464, 0.509) (0.507, 0.561)

Y2 0.083 0.067 0.085 0.103
(0.073, 0.09) (0.057, 0.074) (0.074, 0.093) (0.092, 0.111)

Y3 0.06 0.037 0.059 0.082
(0.055, 0.068) (0.033, 0.043) (0.053, 0.068) (0.073, 0.093)

K1 0.128 0.092 0.121 0.156
(0.104, 0.144) (0.072, 0.11) (0.098, 0.137) (0.129, 0.171)

K2 0.018 0.009 0.02 0.029
(0.015, 0.022) (0.006, 0.013) (0.017, 0.024) (0.024, 0.033)

W1 0.065 0.056 0.065 0.074
(0.051, 0.074) (0.041, 0.066) (0.051, 0.075) (0.061, 0.083)

W3 0.159 0.112 0.148 0.2
(0.143, 0.171) (0.099, 0.126) (0.132, 0.16) (0.18, 0.212)

B.2 Bias-Corrected Bootstrap Inference

To correct for finite-sample biases, we employ Efron’s (1982) bias-corrected bootstrap per-

centile confidence intervals to conduct statistical inference. Bootstrap also significantly

simplifies testing because, owing to a multi-step nature of our estimator, computation of

the asymptotic variance of the parameter estimators is not trivial. Due to the panel struc-

ture of data, we use wild residual block bootstrap, thereby taking into account the potential

dependence in residuals within each bank over time. The bootstrap algorithm is as follows.

(i) Compute the estimator in Step 1. Save the estimated coefficients
[
η̂′, β̂0, β̂1

′
, β̂

′
2, β̂

∗
1
′, β̂∗

2
′]′,

location fixed effects {λ̂i } and residuals {ûi t }.

(ii) Generate bootstrap weightsωb
i for each cross-section/bank i from the two-point mass

distribution:

w b
i =


(
1+p

5
)

/2 with prob.
(p

5−1
)

/
(
2
p

5
)

(
1−p

5
)

/2 with prob.
(p

5+1
)

/
(
2
p

5
) . (B.1)

Next, for each observation (i , t ) with i = 1, . . . ,n and t = 1, . . . ,T , generate a new boot-

strap disturbance as ub
i t = w b

i × ûi t .

(iii) Construct a new bootstrap outcome variable: cb
i t = β̂0+∑

κ η̂κDκ,t+
[
β̂1+β̂

∗
1
∑
κ η̂κDκ,t

]′
v i t+

1
2

[
β̂2 + β̂

∗
2
∑
κ η̂κDκ,t

]′
vec

(
v i t v ′

i t

)+ λ̂i +ub
i t for all i = 1, . . . ,n and t = 1, . . . ,T .
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(iv) Recompute the Step 1 estimators in (3.3.8)–(3.3.10) using cb
i t in place of ci t to ob-

tain bootstrap estimates of the location-function coefficients and fixed effects. Signify

these by the superscript “b.” Then, compute the bootstrap estimate of the residual

ûb
i t = ci t−β̂b

0−
∑
κ η̂

b
κDκ,t−

[
β̂

b
1+β̂

∗b
1

∑
κ η̂

b
κDκ,t

]′
v i t−1

2

[
β̂

b
2+β̂

∗b
2

∑
κ η̂

b
κDκ,t

]′
vec

[
v i t v ′

i t

]−
λ̂b

i .

(v) Reestimate the Step 2 estimator in (3.3.14) and the Step 3 estimator in (3.3.18) using

ûb
i t in place of ûi t to obtain bootstrap estimates of the scale function coefficients and

qτ.

(vi) Repeat bootstrap steps (ii)–(v) B times (B = 500 in this study). Use the empirical dis-

tribution of B bootstrap replicas of some estimand of interest (say, a coefficient or

a quantile-specific function thereof such as cost subadditivity measure S ∗
t ) to con-

struct bias-corrected confidence intervals for this estimand.

To make matters concrete, let the (potentially, observation- and quantile-specific) esti-

mand of interest be denoted by Ê . We can use the empirical distribution of {Ê 1, . . . , Ê B } to

estimate the bias-corrected two-sided (1−α)×100% confidence bounds for E as an inter-

val between the [a1 ×100]th and [(1−a2)×100]th percentiles of the bootstrap distribution,

where a1 = Φ(
2ẑ0 +Φ−1(α/2)

)
and a2 = Φ(

2ẑ0 +Φ−1(1−α/2)
)

with Φ(·) being the standard

normal cdf along with its quantile function Φ−1(·). Parameter ẑ0 = Φ−1
(
#
{
Ê b < Ê

}
/B

)
is a

bias-correction factor measuring median bias, with #{A } being a count function that re-

turns the number of times event A is true. Naturally, to estimate the one-sided lower/upper

(1−α)×100% confidence bound with bias correction, we respectively use the [o1×100]th or

[(1−o2)×100]th percentiles of the bootstrap distribution, where o1 =Φ(
2ẑ0 +Φ−1(α)

)
and

o2 =Φ
(
2ẑ0 +Φ−1(1−α)

)
.
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