
Spectrum Awareness Testbed

by

Andrea Walker

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
December 11, 2021

Keywords: Cognitive radio, spectrum sensing, compressive sensing

Copyright 2021 by Andrea Walker

Approved by

Mark L. Adams, Chair, Associate Professor of Electrical and Computer Engineering
Shiwen Mao, Ginn Distinguished Professor of Electrical and Computer Engineering

Stanley Reeves, Professor of Electrical and Computer Engineering



Abstract

This thesis presents a flexible and scalable spectrum awareness testbed targeting a wide-

band frequency range. Due to the static frequency allocation scheme, spectrum scarcity has

become a problem in communications. Opportunistic spectrum access will allow secondary

users to take advantage of empty portions of the spectrum to increase the efficiency of spec-

trum use. To allow that to happen, opportunistic users must be able to identify, characterize,

and geolocate nearby transmitters.

The spectrum awareness testbed is capable of recovering the approximate carrier frequen-

cies of an input transmission. It operates in the 5G Frequency Range 1 (5G FR1) and is cur-

rently configured to sense one transmission. The testbed uses the Modulated Wideband Con-

verter (MWC) as a sub-Nyquist sampling scheme to acquire the input signal in hardware. The

input is split into multiple channels. Each channel is then mixed with a periodic waveform,

lowpass filtered, and sampled at a low rate for digital processing. The periodic waveform de-

fines a relationship between the low-rate samples in each channel and the support of the input

signal, which is recovered through a compressed sensing (CS) technique.

To verify operation of the testbed, the MWC system was simulated in Matlab. For the

parameters selected for the hardware implementation, the simulation achieved a successful

support recovery rate greater than 90% for SNR values larger than 5 dB. The MWC system

was constructed in hardware and tested using a Hardware-in-the-Loop (HWIL) setup. Multiple

carrier frequencies and signal bandwidths of 10 MHz and 80 MHz were evaluated. The largest

successful percentage of support recovery for a signal with an 80 MHz was 43.28% for the car-

rier frequency 2.0 GHz. For a signal with 10 MHz bandwidth, the largest successful percentage

of support recovery was 36.86% for the carrier frequency 2.0 GHz.

The performance of the testbed MWC hardware implementation did not meet the per-

formance seen in simulation. This is likely attributed to low input signal power levels, the

frequency range of the chosen mixer, and analog component inaccuracies. Possible solutions

ii



are suggested to improve performance. Overall, the hardware implementation functions as a

proof of concept for a wideband spectrum awareness testbed.

iii



Acknowledgments

I would like to express my gratitude to my advisor and committee chair, Dr. Mark Adams,

for the opportunity to work in the STORM Lab and his guidance and advice throughout my

time as a graduate student.

I would like to thank my committee members Dr. Stanley Reeves and Dr. Shiwen Mao

for their support.

I am thankful for my peers and friends in the STORM Lab for their support and encour-

agement throughout my time as a graduate student.

Finally, I am tremendously blessed by the support of my family for their unwavering love

and support throughout my life.

This work was supported in part by the National Science Foundation under Grant CNS-

1822055. Any opinions, findings, and conclusions or recommendations expressed in this ma-

terial are those of the authors and do not necessarily reflect the views of the foundation.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Narrowband Spectrum Sensing and Its Limitations . . . . . . . . . . . . . . . . 3

2.2 Wideband Spectrum Sensing and Its Challenges . . . . . . . . . . . . . . . . . 4

2.2.1 Brief Overview of Compressed Sensing . . . . . . . . . . . . . . . . . 5

2.2.2 Brief Overview of sub-Nyquist Sampling Methods . . . . . . . . . . . 6

3 The Modulated Wideband Converter (MWC) . . . . . . . . . . . . . . . . . . . . . 10

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Calculating the Matrix A . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Reducing Physical Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Support Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Testbed Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



4.2.1 Simulation Description . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Discussion of Hardware Choices . . . . . . . . . . . . . . . . . . . . . 33

5 Experimental Setup and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Input Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 pi(t) Waveform Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Analog Front End (AFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Data Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Digital Signal Processing for Support Recovery . . . . . . . . . . . . . . . . . 47

6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A MWC System with Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B Input Signal Indices Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C Spectrum Blind Reconstruction 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

D Orthogonal Matching Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

E Input Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vi



F pi(t) Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

G Data Capture.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

H MWC Hardware Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vii



List of Figures

1.1 An example of spectrum holes in both time and frequency. . . . . . . . . . . . 2

2.1 Illustration of Multiband Joint Detection . . . . . . . . . . . . . . . . . . . . . 5

2.2 Illustration of Multiband Joint Detection . . . . . . . . . . . . . . . . . . . . . 6

2.3 Top-level view of the Random Demodulator. . . . . . . . . . . . . . . . . . . . 7

2.4 Overview of multi-coset sampling. . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 The multiband model with transmissions at different carrier frequencies. . . . . 11

3.2 Overview of the MWC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Ideal frequency response of the lowpass filter H(f). . . . . . . . . . . . . . . . 13

3.4 The Continuous to Finite Block (CTF). . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Incorrect image of the simulation block diagram... . . . . . . . . . . . . . . . . 24

4.2 The original signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Illustration of the spectrum divided into fp-wide slices and the placement of an
input signal with fi = 3.5 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Illustration of the spectrum divided into fp-wide slices and the placement of an
input signal with fi = 3.48 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Mixing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Lowpass filter frequency response and spectrum of yi[n]. . . . . . . . . . . . . 26

4.7 A sampled sequence divided into fp-wide slices. . . . . . . . . . . . . . . . . . 27

4.8 Frequency shifting of a sequence yi[n]. . . . . . . . . . . . . . . . . . . . . . . 28

4.9 Frequency response of the digital lowpass filter. . . . . . . . . . . . . . . . . . 29

4.10 Filtering and downsampling in each virtual channel. . . . . . . . . . . . . . . . 30

4.11 Percentage of successful support recovery vs. SNR with varying fi. . . . . . . . 31

viii



4.12 Percentage of successful support recovery vs. SNR with random pi(t). . . . . . 31

4.13 Percentage of successful support recovery vs. SNR for various q. . . . . . . . . 32

4.14 Percentage of successful support recovery vs. SNR for different values of B. . . 33

4.15 Analog front end of the MWC. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.16 Circuit symbol for an ideal mixer. . . . . . . . . . . . . . . . . . . . . . . . . 34

4.17 The DC2668A evaluation board with the LTC5552 mixer. . . . . . . . . . . . . 34

4.18 Frequency response of the AFE prior to equalization. . . . . . . . . . . . . . . 35

4.19 Frequency response of the AFE after equalization. . . . . . . . . . . . . . . . . 35

4.20 Development board for the ERA-9-SM+. . . . . . . . . . . . . . . . . . . . . . 36

4.21 Amplifier frequency response. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.22 The schematic of the lowpass filter with cutoff frequency fc = 364MHz. . . . 37

4.23 The simulated frequency response of the lowpass filter. . . . . . . . . . . . . . 37

4.24 Lowpass Filter development board. . . . . . . . . . . . . . . . . . . . . . . . . 38

4.25 Actual frequency response of the LPF. . . . . . . . . . . . . . . . . . . . . . . 38

4.26 The TSW14J57EVM connected to the ADC12QJ1600EVM. . . . . . . . . . . 39

5.1 Block diagram of the hardware setup. . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Keysight AWG Soft Front Panel with CSV file selected and sampling rate con-
figured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Spectrum analyzer captures of different input signals. . . . . . . . . . . . . . . 42

5.4 Tektronix AWG Soft Front Panel for pi(t) with sampling rate configured. . . . . 42

5.5 Spectrum analyzer captures of pi(t). . . . . . . . . . . . . . . . . . . . . . . . 43

5.6 The analog front end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7 Comparison of the spectrum after mixing and filtering in hardware and software. 45

5.8 Screen capture of the ADC12QJ1600 GUI (UPDATE). . . . . . . . . . . . . . 46

5.9 Screenshots of HSDC Pro for an input signal with fi =6 Hz and B = 80 MHz. 47

ix



List of Tables

4.1 MWC parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Number of physical and virtual channels for different values of q. . . . . . . . . 32

6.1 Percentage of successful support recovery for various values of fi whenB = 80
MHz, and the equalizer is included in the AFE. . . . . . . . . . . . . . . . . . 50

6.2 Percentage of successful support recovery for various values of fi whenB = 80
MHz, and the equalizer is not included in the AFE. . . . . . . . . . . . . . . . 51

6.3 Percentage of successful support recovery for various values of fi whenB = 10
MHz, and the equalizer is not included in the AFE. . . . . . . . . . . . . . . . 52

6.4 Successful support recovery over 1000 runs for each fi and pi(t) when B = 80
MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.5 Successful support recovery over 1000 runs for each fi and pi(t) when B = 10
MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

x



List of Abbreviations

5G FR1 5G Frequency Range 1

ADC Analog-to-Digital Converter

AFE Analog-Front-End

AWG Arbitrary Waveform Generator

AWGN Additive White Gaussian Noise

COTS Commercial-off-the-Shelf

CR Cognitive Radio

CS Compressed Sensing

CSV Comma Separated Value

CTF Continuous-to-Finite

DFT Discrete Fourier Transform

DTFT Discrete-Time Fourier Transform

FFT Fast Fourier Transform

FMC FPGA Mezzanine Card

FPGA Field-Programmable Gate Array

GUI Graphical User Interface

xi



HSDC Pro High-Speed Data Converter Pro

HWIL Hardware-in-the-Loop

LO Local Oscillator

LPF Lowpass Filter

MWC Modulated Wideband Converter

NF Noise Figure

OMP Orthogonal Matching Pursuit

RF Radio Frequency

RIP Restricted Isometry Property

SFP Soft Front Panel

SNR Signal to Noise Ratio

SS Spectrum Sensing

TI Texas Instruments

xii



Chapter 1

Introduction

Spectrum scarcity impedes practical implementations of emerging wireless multimedia appli-

cations that require a larger portion of the frequency spectrum. This increased demand for

frequency spectrum has brought about a spectrum shortage. The fixed frequency allocation

scheme that has been used for decades was considered optimal because it avoided interference

between active wireless users; however, an increased number of wireless users in recent years

has introduced a spectrum scarcity problem [1].

Much research in recent years has been put into cognitive radio (CR) technologies to allow

spectrum sharing through opportunistic spectrum access [1]. Studies have shown that much of

the time, the primary user of the assigned spectrum is either not using it or using it infrequently

[2]. This situation creates temporal and spatial spectrum holes as illustrated in Figure 1.1. A

temporal spectrum hole occurs when, for a given frequency band, the band is not occupied

for some period of time. A spatial spectrum hole occurs when, for a given time, frequency

bands across the spectrum may not be in use. Due to the presence of spectrum holes, it has

been concluded that the spectrum scarcity problem is caused by inefficient allocation rather

than physical shortage of spectrum [1]. Spectrum Sensing (SS) allows opportunistic users to

take advantage of these spectrum holes in both time and frequency to use the spectrum more

efficiently. To do this, it is necessary to be able to identify, characterize, and geolocate nearby

transmitters without the use of a priori information.

The goal of this work is to design, construct, and evaluate a spectrum awareness testbed

to demonstrate the feasibility of spectrum sensing in a wideband regime. It targets the 5G

FR1 range (400 Mhz-7.125 GHz) and does not rely on a priori information. Specifically, this

means that the carrier frequencies are unknown. The proposed system is designed to detect one

1



Figure 1.1: An example of spectrum holes in both time and frequency.

transmission with a maximum bandwidth of 80 MHz at a time. However, one of the biggest

advantages of the solution lies in its scalability. Future iterations will be able to improve and

expand the performance of the system by adjusting the operating parameters and hardware.

2



Chapter 2

Background

Spectrum sensing techniques can be assigned to two broad categories: narrowband and wide-

band spectrum sensing techniques. The difference between the two is in the range of frequen-

cies each strategy can sense. Narrowband spectrum sensing techniques are limited to a single

frequency band, whereas wideband spectrum sensing techniques are useful over a wider range

of frequencies encompassing multiple frequency bands. In the case of wideband spectrum sens-

ing, compressed sensing (CS) provides a means of achieving sub-Nyquist sampling for systems

targeting a large Nyquist frequency [2]. Although wideband spectrum sensing techniques are

more useful for the frequencies targeted by this project, it is worth reviewing the concept of

spectrum sensing with an overview of narrowband spectrum sensing.

2.1 Narrowband Spectrum Sensing and Its Limitations

Some of the most common narrowband spectrum sensing techniques are energy detection, cy-

clostationary feature detection, and matched filtering [2]. They generally use a binary hypoth-

esis model with

x(t) =


n(t) 0 < t ≤ T H0

h ∗ s(t) + n(t) 0 < t ≤ T H1

(2.1)

In the binary hypothesis model, x(t) is the received signal during observation window T ,

n(t) is the additive white Gaussian Noise (AWGN) of the channel, s(t) is the transmitted signal,

and h is the channel gain. Hypothesis H0 indicates that the frequency band is unoccupied,

3



and hypothesis H1 indicates the that the frequency band is occupied. Generally speaking, the

spectrum sensing decision is made based on some threshold value that is calculated from the

probability of detection pd and the probability of false alarm pf [1].

Narrowband spectrum sensing techniques are not directly applicable to a wider frequency

range because they make a single decision for the entire range of spectrum under examination.

Some wideband techniques divide the spectrum into narrower bands and perform narrowband

spectrum sensing either sequentially or in parallel, but these approaches are costly in time and

hardware, respectively [2]. Thus, narrowband spectrum techniques are extremely limited when

it comes to examining a wider portion of the spectrum. Many narrowband techniques also

commonly rely on some form of a priori information, which was undesirable for this project.

2.2 Wideband Spectrum Sensing and Its Challenges

Clearly, narrowband spectrum sensing techniques alone are not sufficient for a testbed targeting

a wider range of frequencies. Thus, a different approach is necessary to accomplish wideband

spectrum sensing. Wideband spectrum sensing techniques reside in two categories: Nyquist

wideband sensing and sub-Nyquist wideband sensing [3].

Nyquist wideband sensing performs spectrum sensing on digital signals taken at or above

the Nyquist rate [3]. An example of this is the Multiband Joint Detection technique, illustrated

in Figure 2.1. The wideband signal x(t) is sampled by a high sampling rate Analog-to-Digital

Converter (ADC) at the Nyquist rate, and then the Fast Fourier Transform (FFT) is taken of the

digital signal. The wideband spectrum X(f) is divided into a series of narrowband spectra for

which spectrum holes were detected using the binary hypothesis test [2].

However, for the testbed to detect signals with carrier frequencies as large as 7.125 GHz, it

would need to be capable of sampling at the Nyquist rate 14.25 GHz. There are few commercial

off-the-shelf ADCs capable of sampling at such a high rate, and those that exist on the mar-

ket are prohibitively expensive for the relatively inexpensive solution presented in this work.

Another issue to consider is the analog input bandwidth of an ADC. It is not uncommon for

the analog input bandwidth of high-rate ADCs to be much less than that of the sampling rate.

4



Figure 2.1: Illustration of Multiband Joint Detection

For these reasons, it is infeasible to sample at the Nyquist rate, so it is necessary to consider

sub-Nyquist wideband sensing techniques.

Sub-Nyquist wideband sensing techniques perform spectrum sensing using a sampling

rate that is lower than the Nyquist rate. From the Nyquist-Shannon sampling theorem, it is

known that in order to sample and reconstruct a band-limited signal, the sampling rate must

be at least twice the bandlimit. Otherwise, aliasing may occur upon reconstruction and destroy

information present in the original signal [4]. Aliasing is generally undesirable, but the field

of compressed sensing has opened avenues to recover signals at sub-Nyquist rates given some

mild constraints on the signal.

2.2.1 Brief Overview of Compressed Sensing

Compressed sensing theory states that it is possible to accurately sample and recover certain

signals at less than the Nyquist rate by solving underdetermined linear systems. To ensure

accurate recovery, two conditions are necessary. The first condition is sparsity, which means

that the signal must be sparse in some domain. The second condition is incoherence, which

maintains that a signal must be spread out in the domain it is acquired in and sparse in some

other domain [5]. It was shown in Chapter 1 that inefficient allocation of frequency bands

allows for temporal and spatial spectrum holes that indicate sub-optimal use of the spectrum. In

other words, it is reasonable to assume that the signals at a receiver are sparse in the frequency

domain. It is also evident that an acquired signal will have a much denser representation in the

5



Figure 2.2: Illustration of Multiband Joint Detection

time domain in which it is observed. Therefore, any signals acquired at the receiver satisfy the

two conditions necessary for correct recovery at sub-Nyquist rates.

The underdetermined system of linear equations y = Ax in Figure 2.2 represents the com-

pressed sensing problem where y is the vector of measurements taken at a sub-Nyquist rate, x

is the desired signal that is sparse in some domain, and the matrix A represents a relationship

that ties the sub-Nyquist measurements to the original sparse signal. For an underdetermined

system of linear equations, there are infinitely many solutions [5]. Some popular methods

of solving the compressed sensing problem are basis pursuit and orthogonal matching pursuit

(OMP). These methods find the sparsest solution to the underdetermined system of linear equa-

tions [2]. For the testbed, OMP is used to recover the unknown carrier frequencies detected at

a receiver.

2.2.2 Brief Overview of sub-Nyquist Sampling Methods

Compressed sensing provides a means of leveraging the sparsity of a signal is order to sample it

at less than the Nyquist rate. However, the question still remains of how an input transmission

can be acquired by hardware such that there is a relationship between the sub-Nyquist samples

and the original sparse signal. The Modulated Wideband Converter (MWC) was used in this

6



Figure 2.3: Top-level view of the Random Demodulator.

project as a hardware implementation of sub-Nyquist sampling. This section briefly describes

some other hardware solutions to the sub-Nyquist sampling problem and their issues.

The Random Demodulator shown in Figure 2.3 is one such hardware solution. It multiplies

the input signal f(t) by a sign waveform generated from a pseudorandom sign generator [6].

The pseudorandom sign generator alternates at rateW , and the output of the mixer is integrated

and sampled at rate R [6]. The signal modulator consists of multitone functions of the form in

(2.2) with the finite set of tones in (2.3) [6].

f(t) =
∑
ω∈Ω

aωe
−j2πωt, t ∈ [0, 1) (2.2)

Ω ⊂ {0,±,±2, ...,±(W/2− 1),W/2} (2.3)

It can be shown that f(t) is recovered from the sequence y[n] by the linear system

y = ΦA (2.4)

for an R × W matrix Φ [6]. However, it turns out that the matrix Φ is extremely large and

generally has millions of rows and columns [7]. Computationally, the size of Φ is limiting

and makes it challenging to implement in practice from a digital signal processing perspective.

Also, implementation of the integrator can present challenges as well [7].

Multi-coset sampling is another potential hardware solution for the sub-Nyquist sampling

problem. Consider an input signal x(t) that is sampled at the Nyquist rate, and whose samples

7



Figure 2.4: Overview of multi-coset sampling.

are defined by the Nyquist grid x(nT ). Multi-coset sampling chooses certain samples from the

Nyquist grid in a periodic and nonuniform fashion [8]. The Nyquist grid is divided into blocks

of L consecutive samples. The sampling pattern is defined by the set C = {ci}pi = 1 where

0 ≤ c1 < ... < cp ≤ L − 1. Here, p denotes the number of cosets [8]. The ith coset, or

sampling sequence, is defined by (2.5).

xci [n] = x(nLT + ciT ) (2.5)

The average sampling rate of the multi-coset system is p/LT . This is smaller than the

Nyquist rate because p < L [8]. Figure 2.4 illustrates a multi-coset sampling system. Essen-

tially, each channel samples at a rate 1/LT but has an offset in the ith channel of ciT from

time t = 0. Unfortunately, there are two significant difficulties with this approach. First, it

is very difficult to achieve accurate time delays between the ADC on the order of the Nyquist

rate, which is on the order of several GHz. It has been noted that inaccuracies in the delays

significantly affect the recovery of the signal [7].

The second issue arises from analog bandwidth at the input of the ADC. An ADC samples

at some rate r samples/second. The analog bandwidth determines the maximal frequency b

that the ADC can process, and any spectral content above this limit is distorted [7]. For the

multi-coset system, although the sampling rate for each ADC in the system has been reduced

to well below the Nyquist rate, the input signal could have spectral content that is well above

8



b [7]. Because of this phenomenon, it would be necessary to use ADCs that have an analog

bandwidth b that is on the order of the Nyquist rate. This is an atypical use of an ADC, so

for commercial off-the-shelf devices, it would be very difficult to find an ADC that matches

the specifications of the system. Furthermore, the sampling rate and analog bandwidth of

COTS ADCs are usually similar, so to purchase an ADC with the appropriate analog bandwidth

would mean that the sampling rate is well over specifications [7]. Conversely, an ADC with

the appropriate sampling rate and analog bandwidth could be designed at the cost of great

complexity, which was well beyond the scope of this project. Either way, the cost of the ADC

for multi-coset sampling would be prohibitive.

9



Chapter 3

The Modulated Wideband Converter (MWC)

The Modulated Wideband Converter (MWC) is a hardware solution to the sub-Nyquist sam-

pling problem for applications in wideband spectrum sensing. It is capable of recovering the

unknown carrier frequencies of input transmissions with relatively low hardware complexity

and sampling rate. The MWC was developed as an improvement over the multi-coset system

described in Chapter 2.2.2. Specifically, it reduces the analog bandwidth at the input of the

ADC and uses synchronized sampling in all channels to avoid implementing small time offsets

in the ADC [7].

3.1 Background

The MWC considers a multiband model with multiple transmissions of bandwidth B at carrier

frequencies fi within some range F = [−fNY Q/2, fNY Q/2], as shown in Figure 3.1. For an

input signal x(t) within this multiband model, the MWC processes the input signal as shown

in Figure 3.2. The input signal x(t) is initially split into m channels. In the ith channel, x(t) is

mixed with a periodic waveform pi(t) that has period Tp [7]. In this version of the MWC, the

periodic waveforms in each channel are repeated M -length random sequences where

pi(t) = αik, k
Tp
M
≤ t ≤ (k + 1)

Tp
M
, 0 ≤ k ≤M − 1 (3.1)

and each αik ∈ {+1,−1} is drawn randomly. Mixing with the periodic waveform aliases the

input signal to create different linear combinations of the input signal in each channel. The

corresponding frequency fp = 1/Tp determines the rate of aliasing. Each channel is then put

10



Figure 3.1: The multiband model with transmissions at different carrier frequencies.

Figure 3.2: Overview of the MWC.

through a lowpass filter with cutoff 1
2Ts

and sampled at the low rate Fs = 1
Ts

where Fs <<

FNY Q. The digital sequences yi[n] are related to the support set of the original input signal

x(t) through the coefficients of the mixing functions pi(t) [7]. This relationship is described in

further detail in the following section.

3.2 Mathematical Analysis

This section derives the relationship between the unknown carrier frequencies of the input

signal x(t) and the low-rate digital sequences yi[n]. It is first useful to define the frequency of

the mixing functions fp and the sampling rate fs in (3.2) [7].

fp =
1

Tp
, Fp = [−fp

2
,+

fp
2

]

fs =
1

Ts
, Fs = [−fs

2
,+

fs
2

]

(3.2)

11



The mixing function pi(t) in the ith channel is periodic, so it has the Fourier expansion in

(3.3).

pi(t) =
∞∑

l=−∞

cile
j 2π
Tp
lt (3.3)

where the Fourier coefficients are calculated by (3.4) [7].

cil =
1

Tp

∫ Tp

0

pi(t)e
−j 2π

Tp
lt
dt (3.4)

Mixing is represented as the analog multiplication x̃i(t) = x(t)pi(t) and is calculated in

the frequency domain by (3.5).

X̃ i(f) =

∫ ∞
−∞

x̃i(t)e
−j2πft dt

=

∫ ∞
−∞

x(t)(
∞∑

l=−∞

cile
j 2π
Tp
lt
)e−j2πft dt

=
∞∑

l=−∞

cil

∫ ∞
−∞

x(t)e
−j2π(f− l

Tp
)t
dt

=
∞∑

l=−∞

cilX(f − lfp)

(3.5)

From (3.5), the input to the lowpass filter h(t) is a linear combination of shifted copies of

X(f), where the shifts are integer multiples of fp. Without taking sparsity into account, the

sum in (3.5) has no more than dfNY Q/fpe nonzero terms because X(f) = 0 for f /∈ F [7].

The ideal frequency response of the lowpass filter is shown in Figure 3.3. The purpose

of the lowpass filter is to limit frequencies in the sampled sequences yi[n] to the interval Fs.

Because of this constraint, the discrete-time Fourier transform (DTFT) of the ith sequence yi[n]

is defined by (3.6).

Yi(e
j2πfTs) =

∞∑
n=−∞

yi[n]e−j2πfnTs , f ∈ Fs, (3.6)

and it follows that the DTFT of the sampled sequences yi[n] in (3.6) is equal to the analog

equation of (3.5) on the interval f ∈ Fs, as shown in (3.7) [7].

12



Figure 3.3: Ideal frequency response of the lowpass filter H(f).

∞∑
n=−∞

yi[n]e−j2πfnTs =

L0∑
l=−L0

cilX(f − lfp), f ∈ Fs (3.7)

The change on the limits of the sum in (3.7) occurs because of the sampling interval Fs.

Here, L0 is the smallest integer that can be found so the sum in (3.7) contains all nonzero

contributions of X(f) over the interval Fs [7]. L0 can be found using (3.8).

L0 = dfNY Q + fs
2fp

e − 1 (3.8)

Equation (3.7) defines the relationship between the low-rate sampled sequences yi[n] and

the support set of the input signal x(t) [7]. It can be rewritten in matrix-vector form as

y(f) = Az(f), f ∈ Fs. (3.9)

In (3.9), the vector y(f) has length m and ith element yi(f) = Yi(e
j2πfTs) [7]. The unknown

support set z(f) = [z1(f), ..., zL(f)]T has length

L = 2L0 + 1 (3.10)

with

13



zi(f) = X(f + (i− L0 − 1)fp), 1 ≤ i ≤ L, f ∈ Fs

=



X(f − L0fp)

X(f − (L0 − 1)fp)

...

X(f + (L0 − 1)fp

X(f + L0fp)


.

(3.11)

The matrix A has dimensions m× L and coefficients cil

Ail = ci,−l = c∗il (3.12)

The reversed order of coefficients ci,−l in (3.12) is caused by the order of zi(f) in (3.7).

Each zi(f) is a frequency slice of X(f) with width fp [7]. Determining the nonzero zi(f) is

satisfactory to recover the support set of x(t). In this system, the parameters fp, fs, and M can

be chosen for different sensing environments [7]. The following list outlines the assumptions

used in the testbed [7]:

1. fs ≥ fp ≥ B

2. M ≥Mmin, where Mmin is defined by Mmin = 2dfNYQ
2fp

+ 1
2
e − 1

3. m ≥ 4N for blind reconstruction

It should be noted that an additional factor of two can be saved for Item 3, but at the

expense of additional digital processing [8]. That method is not used in this design but could

be useful in a future version. Item 1 ensures that z(f) has at most N nonzeros, where N is the

maximum number of active transmissions [7].

3.2.1 Calculating the Matrix A

Equation (3.12) demonstrates that each mixing function pi(t) contributes one row in the matrix

A. Each pi(t) should possess sufficient uniqueness to have linearly independent rows in A [7].

14



Recall the coefficients cil of the random periodic waveform in (3.4), and let them be expanded

in (3.13).

cil =
1

Tp

∫ Tp/M

0

pi(t)e
−j 2π

Tp
lt
dt

=
1

Tp

∫ Tp/M

0

M−1∑
k=0

αike
−j 2π

Tp
l(t+k

Tp
M

)
dt

=
1

Tp

M−1∑
k=0

αike
−j 2π

M
lk

∫ Tp/M

0

e
−j 2π

Tp
lt
dt

(3.13)

Evaluating the integral in (3.13) and letting θ = e−j
2π
M produces

dl =
1

Tp

∫ Tp/M

0

e
−j 2π

Tp
lt
dt

=
−1

j2πl
[e−j

2πl
M − 1]

=
−1

j2πl
[θl − 1]

=
1− θl

j2πl
=


1
M

l = 0

1−θl
j2πl

l 6= 0

. (3.14)

With the knowledge of (3.14), (3.13) is rewritten in (3.15).

cil = dl

M−1∑
k=0

αilθ
lk (3.15)

Next, define F̄ as the M ×M discrete Fourier transform (DFT) matrix with ith column

F̄i = [θ0i, θ1i, ..., θ(M−1)i]T , 0 ≤ i ≤M − 1, (3.16)

and then choose F as a column subset of F̄ that is ordered to reflect the enumeration of A in

(3.12).

15



F = [F̄L0 , ..., F̄−L0 ] (3.17)

Finally, letting S be an m × M with Sik = αik and D be an L × L matrix where D =

diag(dL0 , ..., d−L0) allows (3.9) to be rewritten in (3.18) and expanded upon in (3.19) [7].

y(f) = SFDz(f), f ∈ Fs (3.18)


Y1(e

j2πfTs)

...

Ym(ej2πfTs)

 =


α1,0 · · · α1,M−1

...
. . .

...

αm,0 · · · αm,M−1



| · · · | · · · |

F̄L0
· · · F̄0 · · · F̄−L0

| · · · | · · · |



dL0 0 0

0
. . . 0

0 0 d−L0





X(f − L0fp)

...

X(f)

...

X(f + L0fp)


(3.19)

3.3 Reducing Physical Channels

One of the necessary conditions for successful support reconstruction using the MWC is that

the number of physical channels must fulfillm ≥ 4N , whereN is the number of possible trans-

missions (including both the positive and negative frequency axes) [8]. For example, Figure 3.1

has N = 6. For that signal, the required number of physical channels would be m ≥ 24. It is

easy to see that the number of physical channels can rapidly grow, and each additional channel

impacts the cost and complexity of the hardware implementation. Therefore, it is desirable to

reduce the number of physical channels.

It is possible to sample at a larger rate fs in order to reduce the number of physical channels

[7]. This objective is achieved by setting fs = qfp for an odd integer q = 2q′ + 1. In this

scenario, the number of physical channels is reduced to m ≥ d4N
q
e, but at the expense of more

complex digital signal processing [8][7]. To see how this is possible, consider the channel i in

(3.7) for any f ∈ Fp

16



yi(f + kfp) =
∞∑

l=−∞

cilX(f + kfp − lfp)

=

L0−k∑
l=−L0−k

ci,(l+k)X(f − lfp)

=

L0∑
l=−L0

ci,(l+k)X(f − lfp)

. (3.20)

In (3.20), it is important to note that −q′ ≤ k ≤ q′. The first line of (3.20) occurs from

changing the variable from f to f +kfp. The result is that the system now provides q equations

for each physical channel in (3.9). For a single channel with f ∈ Fp, (3.21) demonstrates how

the additional virtual channels added to the system [7].



Yi(f − q′fp)
...

Yi(f)

...

Yi(f + q′fp)


=



ci,L0−q′ · · · ci,−L0−q′

... . . . ...

ci,L0 · · · c1 ci,0 ci,−1 · · · ci,−L0

... . . . ...

ci,L0+q′ · · · ci,−L0+q′




|

z(f)

|

 (3.21)

From (3.21), it is evident that the additional rows are shifts of the original coefficients. In

order to construct the new matrix Ā, first calculate the matrix A for the m physical channels.

Then perform the shifts described in (3.21) for each physical channel. The expanded matrix Ā

now has mq rows [7].

The left-hand side of (3.21) must account for the shifts in Ā as well. In other words, the

sequences must be time-modulated, lowpass filtered, and downsampled to the interval f ∈ Fp

before reconstruction [7]. The frequency shifts yi(f + kfp) for −q′ ≤ k ≤ q′ are accomplished

by time modulation. Each sequence is then truncated by a digital lowpass filter hD[n] that

has a cutoff frequency of fs/2q, which is equivalent to a cutoff frequency of fp/2. Finally,

the filtered sequences are decimated by the factor q. Equation (3.22) demonstrates how the

additional sequences are derived by time-modulation and lowpass filtering [7].

17



ỹi,k[ñ] = (yi[n]e−j2πkfpnTs) ∗ hD[n]|n=ñq

= (yi[n]e−j
2π
q
kn) ∗ hD[n]|n=ñq

(3.22)

3.4 Support Reconstruction

This section describes the process of recovering the carrier frequencies from the original in-

put signal, via the compressed sensing problem in Equation (3.9). Since the spectrum range

[
−fNYQ

2
,
fNYQ

2
] is divided into L slices of width fp, then each slice represents one band that is

either occupied or unoccupied. Recovering the occupied slices amounts to recovering the sup-

port of z(f). This is sufficient for estimating the carrier frequencies of the original signal x(t).

The support of a vector is the set of nonzero elements of the vector [7].

Section 3.2.1 demonstrates how to calculate the matrix A for the compressed sensing

problem. To guarantee recovery of the support of x(t), the matrix A must have spark equal

to N + 1, where the spark of a matrix is the smallest number N such that there exists a set

of N columns in A that are linearly dependent [9]. Finding the spark of a matrix is NP-hard

and generally considered to be too computationally expensive to calculate [9]. The Restricted

Isometry Property (RIP) says that the matrix A will have the RIP if there is some 0 ≤ δK < 1

such that

(1− δK)||u2 ≤ ||Au||2 ≤ (1 + δK)||u||2 (3.23)

for every N-sparse vector u [10]. Although the RIP is also computationally challenging to

verify for matrices, it has been shown that random sign matrices of the form in (3.1) with

size m × L will satisfy the RIP for N -sparse vectors with high probability as long as m ≥

CN log(M/N) for a positive constant C [10]. This property justifies the choice of random

sign matrices for the mixing functions pi(t).

To calculate the support of the vector z(f), the Continuous to Finite (CTF) block in Figure

3.4 is applied to the measurement vectors yi[n] [9]. It uses a spectrum blind reconstruction

18



Figure 3.4: The Continuous to Finite Block (CTF).

Algorithm 1 SBR4

Require: Input: y[n]
Compute Q = yi[n]yi[n]′

Decompose Q into frame V using eigendecomposition
Solve V = AU by Orthogonal Matching Pursuit (OMP) for sparsest U
return U, the sparsest solution (the support of z(f))

algorithm, SBR4, to recover the support for x(t) [8]. SBR4 is presented in Algorithm 1. Q is

calculated by

Q =

∫
f∈Fs

y(f)yH(f)df =
∞∑

n=−∞

y[n]yT [n] (3.24)

for the vector of samples y[n] = [y1[n], ..., ym[n]]T . Using the matrix Q found in (3.24), a frame

V is found using an eigendecomposition, where V is chosen to be the matrix of eigenvalues

corresponding to the nonzero eigenvalues or the eigenvalues that are above some threshold [9].

Algorithm 2 OMP
Require: Input: A, V

Initialize residual= V
while more iterations do

b← ||A′∗residual||2
BestPos = max(b)
U← U

⋃
(BestPos)

x← AUA
†
UV

residual= V − x
end while
return U, the sparsest solution (the support)

The goal of V = AU is to find the matrix U with the largest number of zero rows that

matches V [9]. Once the frame V has been calculated, Orthogonal Matching Pursuit (OMP),

a greedy recovery algorithm, is used to find the support of x(t). OMP is outlined in Algorithm

19



2 [9]. Initially, the residual is set equal to V. In each iteration, the support is incremented by

finding the column of A that is most correlated to the signal residual. Then, a partial estimate

of the signal is calculated and subtracted from the original V to update the residual [9]. The

algorithm iterates N/2 times, the max number of possible transmissions that is assumed.

20



Chapter 4

Testbed Design

This chapter outlines the software simulation and hardware design for the Spectrum Awareness

Testbed implemented using the MWC. First, the general parameters used for the MWC are

described and justified. What follows is a description of the simulation used to verify the

choice of parameters and overall operation of the MWC. A description of the analog front-end

(AFE) and discussion of the specific hardware choices closes out the chapter.

4.1 System Parameters

Parameter Set 1 Parameter Set 2
Number of transmissions N 4 2
Nyquist Frequency fNY Q 14.25 GHz 14.355 GHz
Maximum bandwidth B 100 MHz 80 MHz
Expansion Factor q 7 7
Mixing function frequency fp (MHz) 104.01 MHz 87 MHz
Sampling rate fs (MHz) 728.10 MHz 609 MHz
LPF Cutoff Frequency fs/2 364.05 MHz 304.5 MHz
Number of sign-alternations per period M 137 165
Number of analog channels m 3 2
Number of virtual channels mq 21 14

Table 4.1: MWC parameters.

Parameter Set 1 in Table 4.1 shows the original plan for the MWC operating parameters.

This design would be able to support up to two simultaneous transmissions (N = 4) with

bandwidth no greater than B = 100 MHz and carrier frequencies up to 7.125 GHz, which is

the upper bound on 5G Frequency Range 1 (FR1). For the original parameters, the mixing

21



function frequency fp was chosen to be slightly larger than the maximum bandwidth in order to

avoid edge effects [7]. Then, the sampling frequency was calculated by the multiplication fs =

qfp = 728.10 MHz. It follows that the lowpass filter cutoff frequency should be 364.05MHz.

The value for M is calculated using fNY Q/fp = 137, and the number of physical channels is

m = d4N
q
e = 3.

However, due to hardware inaccuracies in the lowpass filter, the parameters had to be

modified late into the project. Although the lowpass filter had the correct cutoff frequency in

simulation, in practice the cutoff frequency did not match the designed value. The hardware

issues are described in greater detail in Section 4.3.1. Due to time constraints, the decision was

made to modify the MWC parameters instead of prolonged hardware troubleshooting.

Parameter Set 2 of Table 4.1 shows the modified MWC operating conditions. In this

version, the MWC can sense a single transmission (N = 2) with bandwidth no greater than

B = 80 MHz and carrier frequencies up to 7.125 GHz. The maximum carrier frequency, and

subsequently the Nyquist frequency fNY Q = 14.355 GHz, were increased simply to produce

integers for the mixing function frequency fp and sampling frequency fs. Having integer num-

bers for those frequencies simplifies the generation of both the sampling clock and the mixing

functions in hardware. Despite the increase, the MWC will only be tested with signals with

carrier frequencies in 5G FR1 from 410 MHz to 7.125 GHz.

Because of the reduced lowpass filter cutoff frequency, Parameter Set 2 had to take this

pre-determined value into account to calculate the rest of the MWC parameters. The rest of

the parameters were derived by taking this constraint into account. The LPF cutoff frequency

of 300 MHz implies that the sampling rate must be approximately 600 MHz. In practice,

fs = 609 MHz was chosen because it is divisible by the expansion factor q = 7. It follows

that the mixing function frequency is fp = fs/q = 87 MHz. The number of sign-alternations

per period M is then M = fNY Q/fp = 165. Also, the number of physical channels was

decreased to reduce hardware complexity. For this implementation, the number of physical

channels is m = d4∗2
7
e = 2.

22



4.2 Software Design

Before performing hardware tests, the MWC was simulated using Matlab. The simulation en-

compasses the system from input signal generation to support recovery. Appendix A shows the

Matlab script used to perform the simulation. The latter parts of the simulation are reused

for the digital signal processing and support recovery of the data recorded from the hard-

ware implementation of the MWC. For all of the simulations, the input to the MWC takes

the form x(t) + n(t), where x(t) is a multiband signal and n(t) is Additive White Gaussian

Noise (AWGN). The multiband signal takes the form in (4.1).

x(t) =

N/2∑
i=1

√
EiBsinc(B(t− τi))cos(2πfi(t− τi)), (4.1)

where Ei are the energy coefficients, B is the bandwidth, τi are the time offsets, and fi are the

carrier frequencies [7].

4.2.1 Simulation Description

This section demonstrates all of the steps in the MWC Matlab simulation in order to illustrate

the mathematical concepts described in Chapter 3. A high-level block diagram of the simu-

lation is given in Figure 4.1. For this example, the modified MWC parameters in Table 4.1

are simulated with Ei = 1, τi = 0.5, SNR = 20 dB and fi = 3.5 GHz. To begin, the sig-

nal described by (4.1) is generated. Its time-domain and frequency-domain representation is

presented in Figure 4.2.

Next, the support set of the input signal is calculated. Recall that the spectrum is divided

into fp-wide slices, and the slice edges are defined by the range [1, L]. Figure 4.3 shows an

illustration of this concept by using the carrier frequency fi = 3.5 GHz as an example. Note

that the support for a single carrier frequency is defined as the lowest index that is nearest to

the left edge and the lowest index that is nearest to the right edge of the signal. Appendix B

provides a Matlab function to calculate the support set for a carrier frequency given fp, L0,

and B. It follows that the support for fi = 3.5 GHz that includes both positive and negative

frequencies is the set in (4.2).

23



Figure 4.1: Incorrect image of the simulation block diagram...

(a) The original signal and noise x(t) + n(t). (b) Spectrum of the original signal x(t).

Figure 4.2: The original signal.

24



Figure 4.3: Illustration of the spectrum divided into fp-wide slices and the placement of an
input signal with fi = 3.5 GHz.

Figure 4.4: Illustration of the spectrum divided into fp-wide slices and the placement of an
input signal with fi = 3.48 GHz.

Supp(fi = 3.5GHz) = [42, 43, 123, 124] (4.2)

The indices associated with the negative frequencies are found by subtracting the indices asso-

ciated with the positive frequencies from L+ 1.

As an aside, it is important to note the edge case that occurs when a carrier frequency falls

within a single fp-wide slice. Figure 4.4 shows an example of this case for fi = 3.48 GHz. The

lowest index that is nearest to both the left and right edges of the signal is the same, and the

support is given in (4.3).

Supp(fi = 3.48GHz) = [43, 123] (4.3)

The periodic waveforms pi(t) are generated randomly to have length M . Figure 4.5a

shows the spectrum of a single pi(t), where the frequency spikes occur on integer multiples of

fp = 87 MHz. Next, the input signal is mixed with each periodic waveform pi(t). In Matlab,

25



the mixing is represented by pointwise multiplication. Figure 4.5b shows the spectrum of the

signal after mixing.

(a) Spectrum of pi(t) (b) Spectrum of the mixture x(t)pi(t).

Figure 4.5: Mixing.

After mixing, the signal is lowpass filtered and sampled. The lowpass filter has a cutoff

frequency fs/2, which can be seen from the frequency response in Figure 4.6a. Applying the

filter to the mixed signal produces Figure 4.6b. Note that the signal is now bounded to the range

[−Fs/2,Fs/2], and the downsampling of the filtered signal produces the digital sequences

yi[n]. The downsampling operation concludes the portions of the simulations that imitate the

stages in the analog domain. The rest of the simulation also encompasses the digital signal

processing that is performed on the actual sampled sequences yi[n].

(a) Frequency responseH(f) of the lowpass filter. (b) Spectrum of yi[n], the sampled sequence.

Figure 4.6: Lowpass filter frequency response and spectrum of yi[n].

26



Figure 4.7: A sampled sequence divided into fp-wide slices.

The next step is to expand the number of physical channels m = 2 into mq = 14 virtual

channels via the method described in Section 3.3. Figure 4.7 shows a sampled sequence ban-

dlimited to [−Fs/2,Fs/2] and divided into fp-wide slices. Each slice represents the data for

one of q = 7 virtual channels. Each sampled sequence yi[n] is split into q virtual channels and

time-modulated by e−j
2π
q
kn for−3 ≤ k ≤ 3, which is equivalent to shifting the spectrum. Each

modulation shifts one slice of the spectrum in Figure 4.7 to baseband. Figure 4.8 demonstrates

the shifting operation. When k = 0 in Figure 4.8d, no shift occurs. For negative values of k,

the signal is right-shifted to the slice centered at the origin, and for positive values of k, the

signal is left-shifted to the slice at the origin.

After time-modulation, each virtual channel is lowpass filtered and downsampled by the

factor q. Figure 4.9 shows the frequency response of the digital filter with cutoff frequency

fp/2. Filtering and decimating each virtual channel preserves the fp-wide slice between the

green lines in Figure 4.8. Figure 4.10 shows all seven virtual channels for one physical channel.

Each virtual channel has only 101 samples.

The final step of the expander is to calculate the expanded matrix A by performing shifts

for −3 ≤ k ≤ 3 as shown in (4.4).

27



(a) The sampled sequence modulated by k = −3.

(b) The sampled sequence modulated by k = −2.

(c) The sampled sequence modulated by k = −1.

(d) The sampled sequence modulated by k = 0.

(e) The sampled sequence modulated by k = 1.

(f) The sampled sequence modulated by k = 2.

(g) The sampled sequence modulated by k = 3.

Figure 4.8: Frequency shifting of a sequence yi[n].

28



Figure 4.9: Frequency response of the digital lowpass filter.

Aexp =



ci,79 · · · ci,−2 ci,−3 ci,−4 · · · ci,80

ci,80 · · · ci,−1 ci,−2 ci,−3 · · · ci,81

ci,81 · · · ci,0 ci,−1 ci,−2 · · · ci,82

ci,82 · · · ci,1 ci,0 ci,−1 · · · ci,−82

ci,−82 · · · ci,2 ci,1 ci,0 · · · ci,−81

ci,−81 · · · ci,3 ci,2 ci,1 · · · ci,−80

ci,−80 · · · ci,4 ci,3 ci,2 · · · ci,−79



(4.4)

Finally, the Continuous-to-Finite (CTF) block applies the SBR4 and OMP algorithms to

the 14 virtual channels and expanded matrix Aexp to find the sparsest solution for the support

set. Appendices C and D show the SBR4 and OMP algorithms implemented in Matlab. For

this example, the support is successfully recovered as

RecoveredSupp = {42, 43, 123, 124} (4.5)

29



(a) The virtual sequence for k =
−3.

(b) The virtual sequence for k =
−2.

(c) The virtual sequence for k =
−1.

(d) The virtual sequence for k =
0.

(e) The virtual sequence for k =
1. (f) The virtual sequence for k = 2.

(g) The virtual sequence for k =
3.

Figure 4.10: Filtering and downsampling in each virtual channel.

4.2.2 Simulation Results

The simulations performed in this section use Parameter Set 2 given in Table 4.1 unless other-

wise specified. All of the cases considered find the percentage of successful support recovery

over 1000 runs versus SNR, where the SNR takes values from [−10, 30] dB.

First, the carrier frequency fi was drawn randomly from the 5G FR1 range [410MHz, 7.125GHz]

while the periodic waveforms pi(t) were held constant. Figure 4.11 shows the percentage of

successful recovery versus SNR for this case. For SNR > 5 dB, the percentage of successful

recovery is greater than 90%.

30



Figure 4.11: Percentage of successful support recovery vs. SNR with varying fi.

Figure 4.12: Percentage of successful support recovery vs. SNR with random pi(t).

The next simulation consists of holding fi constant at fi = 3.5 GHz and choosing new,

random periodic waveforms pi(t) for each iteration. Figure 4.12 shows the percentage of suc-

cessful recovery versus SNR for random pi(t). Similarly to the previous case, the percentage of

successful recovery was greater than 90% for SNR > 0 dB. This experiment demonstrates the

robustness of the MWC to randomly selected pi(t). This result implies the ability of a random

sequence to satisfy the RIP discussed in Section 3.4.

Figure 4.13 shows the percentage of successful recovery versus SNR for odd q in the range

[1, 9] to examine the effect of the parameter q on MWC performance. The best performance

is achieved when q = 7, and the worst performance occurs when q = 1. Table 4.2 provides

31



Figure 4.13: Percentage of successful support recovery vs. SNR for various q.

some insight to this result. Table 4.2 shows that the implementation using q = 7 has the

largest number of virtual channels. The performance of the other q values can be sorted by the

descending number of virtual channels. Therefore, the driving factor in successful recovery is

the number of virtual channels.

Expansion Factor q 1 3 5 7 9
Physical Channels m = d4N

q
e 8 3 2 2 1

Virtual Channels mq 8 9 10 14 9

Table 4.2: Number of physical and virtual channels for different values of q.

Figure 4.14 shows the percentage of successful recovery versus SNR for different values

of B at 10 MHz intervals in the range B = [10MHz, 80MHz]. Overall, B = 10 MHz has

the highest percentage of successful recovery. For SNR > 5, all of the simulated B have

percentage of successful recovery greater than 90%. However, the difference is much greater

for lower SNR values. It is clear for these lower SNR values that the percentage of successful

recovery increases with decreasing values of B.

An observation from the results of all simulations in Figures 4.11-4.14 is that the MWC

does not perform as well in low-SNR scenarios for the simulated parameters. That is because

there is a tradeoff between the number of physical channels and percentage of successful re-

covery in [7]. Performance can be improved by increasing the number of physical channels.

32



Figure 4.14: Percentage of successful support recovery vs. SNR for different values of B.

Figure 4.15: Analog front end of the MWC.

However, in order to save on cost and hardware complexity for this project, the loss in perfor-

mance was deemed to be acceptable.

4.3 Hardware Design

The hardware design for the MWC consists of the amplifiers, splitter, equalizer, mixer, lowpass

filter, and ADC required for the analog front-end. These devices were chosen to maximize

power at the inputs of the ADC. Figure 4.15 shows the analog front-end.

4.3.1 Discussion of Hardware Choices

Some of the hardware decisions made for the MWC are nonstandard, and it is beneficial to

describe the reasoning behind them. For this project, each component was either purchased

33



Figure 4.16: Circuit symbol for an ideal mixer.

Figure 4.17: The DC2668A evaluation board with the LTC5552 mixer.

on an evaluation board or the evaluation circuit was implemented in-house. For all of the

components, care was taken to find devices that operate in the desired frequency ranges for

each stage.

Mixer

The mixer presents a major challenge in any MWC implementation. Figure 4.16 shows the

circuit symbol for an ideal mixer. In a typical application, a signal on the RF or IF ports

is multiplied by a single sinusoid to perform either upmixing or downmixing. In the MWC,

however, the LO port sees the mixing functions pi(t) that alternate at approximately the Nyquist

rate and are comprised of multiple sinusoids in the frequency domain. Due to the characteristics

of pi(t), a passive mixer is used, because active mixers generally have a narrow input bandwidth

[11]. The Analog Devices LTC5552 passive mixer on the evaluation board DC2668A in Figure

4.17 was chosen for its wideband frequency range on all three of its ports.

Equalizer

In an RF chain, signals typically suffer greater attenuation at higher frequencies. The typical

application of an equalizer is to compensate for the non-flat frequency response of preceding

stages. Mixing with multiple sinusoids for the MWC requires two unusual choices for the

34



Figure 4.18: Frequency response of the AFE prior to equalization.

Figure 4.19: Frequency response of the AFE after equalization.

wideband equalizer. Usually, the equalizer is either placed at the end of the RF chain just

before the ADC inputs or in the digital domain. Because the output of the mixer for the MWC

contains energy from the entire spectrum, it would be very challenging to translate the prior

stages frequency response to the mixer’s output [11]. Thus, the equalizer is placed in the stage

prior to the mixer, as shown in Figure 4.15. The second atypical choice for the equalizer was in

selecting a passive device. Passive equalizers have large insertion loss, but an active equalizer

could introduce nonlinearities that would be challenging to take into account [11].

The Mini-Circuits EQY-12-24+ used in the MWC has a 12 dB slope from DC to 20 GHz.

Figure 4.18 shows an approximation of the frequency response for the devices preceding the

equalizer, and Figure 4.19 shows the approximate frequency response after the equalizer. Al-

though the response in Figure 4.19 is not completely flattened, the negative slope of the un-

equalized response has been eliminated after equalization.

35



Figure 4.20: Development board for the ERA-9-SM+.

Figure 4.21: Amplifier frequency response.

Amplifier

The amplifier that precedes each lowpass filter in the chain comes after the equalizer, so it was

beneficial to choose an amplifier with flat gain for the duration of the passband of the lowpass

filter. The Mini-Circuits ERA-9SM in Figure 4.20 was chosen because of its flat frequency

response from DC to 300 MHz. Its frequency response is shown in Figure 4.21.

Lowpass Filter

The final step in the analog front-end is lowpass filtering. Because the signal energy is spread

throughout the entire spectrum after mixing [11], it is necessary for the lowpass filter to have

a sharp cutoff and large stopband attenuation. An elliptic filter was chosen for the MWC due

to it having the sharpest cutoff frequency of any other filter type of the same order [12]. The

elliptic filter of order seven depicted in Figure 4.22 was designed for the MWC to have a cutoff

frequency of approximately 364 MHz. Figure 4.23 shows the simulated frequency response of

the lowpass filter. Small, modular development boards were designed using Altium Designer,

36



Figure 4.22: The schematic of the lowpass filter with cutoff frequency fc = 364MHz.

Figure 4.23: The simulated frequency response of the lowpass filter.

and then the boards and parts were ordered and assembled in-house. Figure 4.24 shows a

picture of the lowpass filter.

Testing the lowpass filters showed that the frequency response did not match the simulated

response in Figure 4.23. Figure 4.25 shows the measured frequency response of the lowpass

filter, whose cutoff frequency is approximately 300 MHz. Although the cutoff frequency did

not have the desired value, the filter has a sharp cutoff. As described in Section 4.1, the param-

eters for the MWC were adjusted to accommodate the actual cutoff frequency of the lowpass

filter. As can be seen in Figure 4.15, the lowpass filter is applied twice to provide even greater

stopband attenuation without having to design a higher order filter [11].

37



Figure 4.24: Lowpass Filter development board.

Figure 4.25: Actual frequency response of the LPF.

38



Figure 4.26: The TSW14J57EVM connected to the ADC12QJ1600EVM.

ADC

For the choice of ADC, the sampling rate, analog input bandwidth, data width, and number of

analog input channels were carefully selected. The Texas Instruments (TI) ADC12QJ1600EVM

is an ADC evaluation module that houses the ADC12QJ1600-Q1, a 12-bit, 1.6 GSPS quad

channel ADC. It connects to the TI TSW14J57EVM data capture board via a FPGA Mezza-

nine Card (FMC) that handles the transfer of data from the ADC to a PC. Data from the ADC

can be viewed and exported from TI’s High-Speed Data Converter Pro (HSDC Pro) GUI.

The ADC was selected for its large and configurable sampling rate, which can range from

500 MSPS - 1.6 GSPS. It also has analog input bandwidth of 6 GHz, which is more than

sufficient for this design. The quad channel feature allows for MWC designs that require up to

four channels. Using a quad channel device means that no external synchronization is necessary

to synchronize multiple ADCs. Figure 4.26 shows the ADC connected to the data capture

board.

39



Chapter 5

Experimental Setup and Procedure

The experimental setup consists of five main sections shown in Figure 5.1. In the input signal

generation block, various x(t) are generated using a Keysight M8196A 92 GSa/s Arbitrary

Waveform Generator. The Analog Front End (AFE) consists of the chain of amplifiers, splitter,

mixers, and lowpass filters that the input signal must pass through. The Periodic Waveform

Generator block provides the framework for generating pi(t) for the mixers. Each channel is

sampled by the ADC and captured in CSV files on a PC. Finally, the Digital Signal Processing

block reads the data captured in the CSV files and finds the successful support recovery rate for

various carrier frequencies and signal bandwidths.

5.1 Input Signal Generation

The Matlab script in Appendix E creates input signals of the form given in Equation (4.1).

This is the same equation used to generate the input signals in simulation. The input signals

Figure 5.1: Block diagram of the hardware setup.

40



Figure 5.2: Keysight AWG Soft Front Panel with CSV file selected and sampling rate configured.

are written to a CSV file in the form that the Keysight AWG expects. For hardware testing,

the carrier frequency fi and bandwidth B are modified to produce various input signals. The

sampling rate of the signal is always equal to the Nyquist rate, 14.355 GHz.

Figure 5.2 shows the Soft Front Panel (SFP) set up to import an input waveform with the

aforementioned sampling rate configured. The Keysight AWG has a maximum output voltage

of 1Vpp. In practice, using the maximum output voltage introduced additional noise to the

signal, so the output voltage was reduced to 0.8Vpp to produce a cleaner signal. Figure 5.3

shows the spectrum of two input signals at carrier frequency fi = 6 GHz. In Figure 5.3a,

the bandwidth is 10 MHz, but the spectrum analyzer shows that the bandwidth is slightly less

than 10 MHz in practice. In Figure 5.3b, the bandwidth is 80 MHz. The power level of these

signals is also a concern. Specifically, the output power of the 80 MHz bandwidth signal is

approximately 18 dB lower than the 10 MHz bandwidth signal.

5.2 pi(t) Waveform Generation

The periodic waveforms pi(t) are generated using a Tektronix 70002B 25 GSa/s AWG. Ap-

pendix F shows the Matlab script used to take a CSV file containing pi(t) waveforms and write

41



(a) Spectrum of an input signal with fi = 6 GHz and
B = 10 MHz.

(b) Spectrum of an input signal with fi = 6 GHz and
B = 80 MHz.

Figure 5.3: Spectrum analyzer captures of different input signals.

Figure 5.4: Tektronix AWG Soft Front Panel for pi(t) with sampling rate configured.

the data to a MAT file in the format that the Tektronix AWG can read. As in the previous case,

the sampling rate of the Tektronix AWG is set to the Nyquist frequency, 14.355 GHz. The Tek-

tronix AWG has a maximum output voltage of 0.5 Vpp, which is used for the periodic waveform

generation. Figure 5.4 shows the Tektronix AWG configured to generate pi(t) for two channels

at the Nyquist frequency of the system.

To demonstrate pi(t), generation, Figure 5.5a shows a spectrum analyzer capture of a

single pi(t). A closer look at the spectrum and the addition of markers in Figure 5.5b verifies

that the sinusoids comprising the spectrum of pi(t) always occur on integer multiples of fp =

87 MHz. Due to the maximum output voltage of the Tektronix AWG and the spreading of

42



the energy of each pi(t) across many sinusoids in the frequency domain, the power of each

individual sinusoid is not greater than -10 dBm.

(a) Spectrum analyzer capture of a single pi(t).

(b) Zoomed in spectrum analyzer capture of a single
pi(t).

Figure 5.5: Spectrum analyzer captures of pi(t).

5.3 Analog Front End (AFE)

Figure 5.6a shows a top-level view of the analog front end. The input signal enters on the right

from the Keysight AWG and splits into two channels before being mixed and filtered. On the

left side of the figure, the output from the two channels is connected to the ADC inputs. Figure

5.6b shows an exploded view of the AFE with most of the wiring omitted for the sake of clarity.

Once all of the components were connected, the power supplies were turned on to ensure that

the appropriate amount of current was being drawn by each device.

To verify the behavior of the hardware setup before connecting the AFE to the ADC, a

signal with fi = 6 Ghz andB = 80 MHz was supplied at the input, and then both channels after

the lowpass filters were viewed on the spectrum analyzer. Figure 5.7 provides a comparison of

the output of the lowpass filters in hardware with the simulated results for each channel. Both

channels are fairly accurate to the simulated versions, although Channel 1 has more differences.

In both cases, it is evident that different linear combinations of the input signal x(t) are present

in the mixed and filtered output.

After processing in the AFE, the signals going into the ADC are very noisy. Before con-

necting the MWC channels to the inputs of the ADC, it is beneficial to calculate the SNR at the

43



(a) Top view of the analog front end.

(b) Exploded view of the analog front end .
Figure 5.6: The analog front end.

ADC inputs. First, the noise figure (NF) of the AFE is calculated with the assumption that the

passive splitter, equalizers, and lowpass filters do not contribute much to the noise figure and

can be disregarded. The Noise Factor can be calculated for the chain of RF devices using Frii’s

equation in (5.1), where Fi and Gi are the noise factor and gain of each device, respectively

[11]. Then the noise figure is given in

F = F1 +
F2 − 1

G1

+
F3 − 1

G1G2

+ · · ·+ Fn − 1

G1G2 · · ·Gn−1

= 1.85 (5.1)

NF = 10 log10 F = 2.68dB (5.2)

The SNR is related to the NF of the system by Equation (5.3), where all quantities are given

in dB. If the input SNR is assumed to be 1 dB, then the output SNR is given by SNRo = −1.68

dB. In reality, the output SNR is probably somewhat smaller than the theoretical value due to

44



(a) Channel 1 on the spectrum analyzer after mixing
and filtering.

(b) Channel 1 in simulation after mixing and filtering.

(c) Channel 2 on the spectrum analyzer after mixing
and filtering.

(d) Channel 2 in simulation after mixing and filtering.
Figure 5.7: Comparison of the spectrum after mixing and filtering in hardware and software.

hardware inaccuracies. To complete the hardware setup, the output of the two MWC channels

is connected to the INAP and INBP inputs of the ADC evaluation board.

NF = SNRi − SNRo (5.3)

5.4 Data Capture

The ADC evaluation board and its data capture board capture data from AFE and transfer it to

a PC for processing. This setup requires connections from both boards to a PC, connections to

the ADC inputs, and a sampling clock for the ADC. The sampling clock is generated from a

Keysight MXG Analog Signal Generator and is set to an output power of 5 dBm. The sampling

rate for this MWC system is fs = 609 MHz. However, the cutoff of the LPF is not perfect

and extends beyond the theoretical cutoff fs/2. Because the selected ADC can accommodate

45



Figure 5.8: Screen capture of the ADC12QJ1600 GUI (UPDATE).

sampling rates up to 1600 MSPS, the decision was made to oversample the MWC channels by

a factor of two, clean up the filter cutoff digitally, and then downsample by a factor of two.

Therefore, the ADC sampling rate was configured as 1.218 GHz for all hardware tests. This

must also be set in the ADC GUI provided by Texas Instruments, as shown in Figure 5.8.

Texas Instruments’ software High-Speed Data Converter (HSDC) Pro allows data from the

ADC evaluation model to be captured from the board and saved to a CSV file. TI also provides

libraries for automating the data capture process. The Python script in Appendix G automates

the process of connecting to the board, downloading the appropriate firmware to the FPGA on

the data capture board, capturing data from the ADC, and saving data from the ADC as 12-bit

codes to a CSV file. The script performs 50 iterations, each of which captures 262,144 samples

per channel and saves them to a CSV file. It also provides an option to save screenshots of the

HSDC Pro GUI. Figure 5.9 shows screenshots of the HSDC Pro GUI that display the spectrum

of both channels after mixing and filtering. Note that the spectra are very similar to those in

Figure 5.7.

46



(a) Channel 1 in HSDC Pro after mixing and filtering.

(b) Channel 2 HSDC Pro after mixing and filtering.
Figure 5.9: Screenshots of HSDC Pro for an input signal with fi =6 Hz and B = 80 MHz.

5.5 Digital Signal Processing for Support Recovery

A modified version of the Matlab program used in simulation recovers the support of the signal

and determines whether the recovery is accurate. It is provided in Appendix H. The simulation

presented in Chapter 3.4 acquires 707 digital samples per physical channel, which will be

repeated for the hardware implementation. Due to the oversampling described in Section 5.4,

1414 raw samples are required from the ADC in practice. Because of this division, each file

produces 185 support recovery trials. The Python script creates 50 CSV files for every run, so

47



it follows that there are 9,250 support recovery trials per run. These raw samples are lowpass

filtered with the cutoff fs/2 = 304.5 MHz and downsampled by a factor of two to arrive at 707

digital samples from each physical channel. Then, the digital samples are processed through

the digital expander and CTF blocks to determine the support of the signal as described in

Chapter 3.4.

48



Chapter 6

Results and Discussion

6.1 Data

The MWC system presented in this thesis is designed to operate on transmissions with carrier

frequencies in 5G FR1 from 410 MHz - 7.125 GHz and signal bandwidths up to 80 MHz.

Section 4.2.2 showed how the MWC performed for multiple carrier frequencies, signal band-

widths, and choice of periodic waveforms. The hardware experiments attempt to do the same.

To that end, experiments were conducted to compare MWC performance for three different,

randomly drawn pi(t) on input signals with the carrier frequencies and bandwidths shown in

(6.1). The first set of periodic waveforms pi(t) was generated randomly. The other two sets

were chosen such that they could successfully recover the support for all of the fi in (6.1) at

low SNR.

fi = {0.5GHz, 2.0GHz, 3.0GHz, 3.5GHz, 4.0GHz, 5.0GHz, 6.0GHz}

B = {10MHz, 80MHz}
(6.1)

Table 6.1 reports the percentage of successful support recovery for the various fi in (6.1)

when B = 80 MHz. The theoretical SNR of the system was determined to be -1.68 dB, but

this is probably optimistic due to hardware inaccuracies. If the actual SNR is assumed to be

closer to -5 dB, then the simulations of Chapter 4.2.2 suggest that the percentage of successful

support recovery should be approximately 55%.

49



0.5 GHz 2 GHz
Successes Total Percentage Successes Total Percentage

Pattern 1 38 9250 0.41% 885 9250 9.57%
Pattern 2 537 9250 5.81% 1344 9250 14.53%
Pattern 3 516 9250 5.58% 1235 9250 13.35%

3 GHz 3.5 GHz
Successes Total Percentage Successes Total Percentage

Pattern 1 0 9250 0.00% 277 9250 2.99%
Pattern 2 168 9250 1.82% 541 9250 5.85%
Pattern 3 314 9250 3.39% 839 9250 9.07%

4 GHz 5 GHz
Successes Total Percentage Successes Total Percentage

Pattern 1 1824 9250 19.72% 0 9250 0.00%
Pattern 2 1338 9250 14.46% 167 9250 1.81%
Pattern 3 961 9250 10.39% 2 9250 0.02%

6.0 GHz
Successes Total Percentage

Pattern 1 1190 9250 12.86%
Pattern 2 1247 9250 13.48%
Pattern 3 1441 9250 15.58%

Table 6.1: Percentage of successful support recovery for various values of fi when B = 80
MHz, and the equalizer is included in the AFE.

The results presented in Table 6.1 do not come close to the simulated percentage. In

particular, the MWC struggled to successfully recover the support of the signal for fi =

{0.5GHz, 3.0GHz, 3.5GHz, 5.0GHz}. Chapters 5.1 and 5.2 note that the power level of the

input signal and the periodic waveforms pi(t) are limited by the maximum Vpp of the AWGs

used for testing. It was possible that increasing the power level at the inputs of the ADC could

improve performance. Since the power level of the inputs could not be increased without ad-

ditional hardware, the equalizer was removed from the AFE. The equalizer has a conversion

loss of 13 dB at its lowest frequencies, and the thought was that the additional power saved in

removing it from the AFE would outweigh the benefits of equalizing the frequency response

of the AFE. With that in mind, the equalizer was removed from the AFE for the rest of the

hardware experiments.

Table 6.2 reports the percentage of successful support recovery for the fi in (6.1) and

B = 80 MHz. The three pi(t) are the same for both sets of data. This data is a definite

improvement over Table 6.1. With only one exception, the percentage of successful support

50



recovery has either improved-in some cases dramatically-or remained comparable. The only

exception occurs at 3.5 GHz for Pattern 1, which has a successful support percentage with the

equalizer at 2.99% compared to 0.04% when the equalizer was removed. Since this only occurs

once and the performance is not vastly improved, it could probably be considered a statistical

outlier.

0.5 GHz 2 GHz
Successes Total Percentage Successes Total Percentage

Pattern 1 681 9250 7.36% 1418 9250 15.33%
Pattern 2 795 9250 8.59% 1129 9250 12.21%
Pattern 3 537 9250 5.81% 4003 9250 43.28%

3 GHz 3.5 GHz
Successes Total Percentage Successes Total Percentage

Pattern 1 1244 9250 13.45% 4 9250 0.04%
Pattern 2 921 9250 9.96% 1176 9250 12.71%
Pattern 3 265 9250 2.86% 927 9250 10.02%

4 GHz 5 GHz
Successes Total Percentage Successes Total Percentage

Pattern 1 1703 9250 18.41% 0 9250 0.00%
Pattern 2 1754 9250 18.96% 818 9250 8.84%
Pattern 3 1454 9250 15.72% 156 9250 1.69%

6.0 GHz
Successes Total Percentage

Pattern 1 2247 9250 24.29%
Pattern 2 1773 9250 19.17%
Pattern 3 2109 9250 22.80%

Table 6.2: Percentage of successful support recovery for various values of fi when B = 80
MHz, and the equalizer is not included in the AFE.

Table 6.3 reports the percentage of successful support recovery for the fi in (6.1) and B =

10 MHz. The three pi(t) are the same as used previously. From Chapter 4.2.2, the theoretical

percentage of successful support recovery for -5 dB SNR at B = 10 MHz is approximately

92%. Although the results presented in Table 6.3 do not approach that success rate, they are

generally an improvement over the the results in Table 6.2 for B = 80 MHz. Significant

improvements are evident for the fi values 0.5 GHz, 2 GHz Patterns 1-2, 3 GHz Pattern 3, 3.5

GHz, and 5 GHz Pattern 1. More modest improvements occur for fi values 4 GHz Patterns 1

and 3, 5 GHz Pattern 2, and 6 GHz. In a couple of cases, the performance at B = 10 MHz is

less than that at B = 80 MHz.

51



0.5 GHz 2 GHz
Successes Total Percentage Successes Total Percentage

Pattern 1 1377 9250 14.89% 3410 9250 36.86%
Pattern 2 1295 9250 14.00% 3377 9250 36.51%
Pattern 3 2684 9250 29.02% 1597 9250 17.26%

3 GHz 3.5 GHz
Successes Total Percentage Successes Total Percentage

Pattern 1 621 9250 6.71% 3002 9250 32.45%
Pattern 2 555 9250 6.00% 3042 9250 32.89%
Pattern 3 1353 9250 14.63% 2078 9250 22.46%

4 GHz 5 GHz
Successes Total Percentage Successes Total Percentage

Pattern 1 2011 9250 21.74% 0 9250 0.00%
Pattern 2 1125 9250 12.16% 1109 9250 11.99%
Pattern 3 1644 9250 17.77% 851 9250 9.20%

6.0 GHz
Successes Total Percentage

Pattern 1 3040 9250 32.86%
Pattern 2 2377 9250 25.70%
Pattern 3 3064 9250 33.12%

Table 6.3: Percentage of successful support recovery for various values of fi when B = 10
MHz, and the equalizer is not included in the AFE.

The lowest percentage of successful recovery occurs for 0.5 GHz, 3.5 GHz, and 5 GHz

when B = 80 MHz and 3 GHz and 5 GHz when B = 10 MHz. To gain some insight in

this phenomenon, it was necessary to perform simulations for each combination of fi and pi(t)

with a low SNR. In this scenario, all of the parameters are held constant, and only the noise

changes randomly on each iteration. Table 6.4 shows the number of successful support recover-

ies over 1000 trials when B = 80 MHz, and Table 6.5 shows the number of successful support

recoveries over 1000 trials when B = 10 MHz.

In Table 6.4, consider the data for 3.5 GHz and 5 GHz. These have a low percentage of

successful support recovery in a low-SNR scenario in simulation, and this is further illustrated

by the results for those frequencies in Table 6.2. Likewise, in Table 6.5, the simulation results

for 3 GHz and 5 GHz is indicative of the poor performance seen in the hardware implementa-

tion at those frequencies. Looking at the number of successful recoveries of a given pi(t) for

different input signal carrier frequencies appears to be an indicator of the failure of that pattern

52



at those frequencies in the hardware implementation. However, it does not always seem to be

as accurate at predicting the success a pattern will have in the hardware implementation.

0.5 GHz 2 GHz 3 GHz 3.5 GHz 4 GHz 5 GHz 6 GHz
Pattern 1 135 941 390 32 213 29 276
Pattern 2 309 489 512 144 997 170 997
Pattern 3 252 799 590 97 999 537 977

Table 6.4: Successful support recovery over 1000 runs for each fi and pi(t) when B = 80
MHz.

0.5 GHz 2 GHz 3 GHz 3.5 GHz 4 GHz 5 GHz 6 GHz
Pattern 1 997 985 252 999 962 8 992
Pattern 2 996 763 542 998 998 127 1000
Pattern 3 1000 897 436 995 1000 177 998

Table 6.5: Successful support recovery over 1000 runs for each fi and pi(t) when B = 10
MHz.

There are two main issues to address with regards to the MWC performance: its over-

all decreased performance compared to simulations and its decreased performance at some

frequencies. The overall decreased performance compared to the simulations can likely be at-

tributed to issues in the AFE. Chapters 5.1 and 5.2 make note of the output power limitation of

the AWGs used to generate these signals, and the beginning of this section demonstrated that

removing the equalizer (and its associated conversion loss) from the AFE improved the per-

formance of the MWC. It is possible that increasing the power level at the ADC inputs could

lead to further improvements in MWC performance. The mixer may also contribute to the loss

in performance. The LTC5552 mixer’s LO frequency range spans 1 to 20 GHz, and its RF

frequency range spans 3 to 20 GHz. The LTC5552 mixer was selected for its performance at

high frequencies, but the signals seen on the LO and RF ports may have information at lower

frequencies as well.

The results presented in this section demonstrate that the MWC has decreased performance

at some frequencies compared to others, particularly in a low-SNR scenario. This suggests that

the use of random pi(t) is not necessarily robust for all possible frequencies that the MWC is

designed to operate. A more exhaustive search to find a more successful choice of pi(t) may

be necessary to improve performance across all possible frequencies.

53



6.2 Future Work

There are many improvements that could be made to the MWC implementation presented in

this thesis, some of which have already been alluded to in this work. Section 5.2 revealed that

the power level of the periodic waveforms pi(t) are currently limited by the maximum Vpp of

the Tektronix AWG. Future iterations should look into amplifying the power of these pi(t). A

similar issue is encountered with the input signal x(t). The same solution could be applied

to the input signal, but modifying the AFE to be more robust to a wider range of input power

levels could be a more practical option.

Section 6.1 suggested that the frequency ranges on the LO and RF ports of the mixer

could be negatively impacting the performance of the MWC, and the mixer is one of the most

important components in the MWC. The MWC requires nonstandard use of its mixers, because

the RF input is mixed with the multiple sinusoids found in each pi(t) instead of a single sinusoid

[11]. As opposed to upmixing or downmixing a smaller subset of frequencies, the LO and RF

ports of the mixer must instead operate over a wide frequency range. Although it is challenging

to find a mixer that satisfies the specifications required by this implementation of the MWC,

future versions should consider trying other mixers that better match the frequency range for

this implementation.

Another possible performance bottleneck is the choice of random pi(t). Section 6.1

demonstrated that some choices of random pi(t) perform better than others, particularly in

low-SNR scenarios. A more exhaustive search for an appropriate pi(t) could improve per-

formance across all frequencies. One such search could involve generating random pi(t) and

testing it for multiple frequencies throughout the MWC operating range. Only those sequences

that had a high success rate across all frequencies would be used for the MWC. Another avenue

of investigation would be to consider using Maximal or Gold sequences, because they also have

high probability of satisfying the RIP and being suitable for the MWC [13].

For use as a testbed, generating the pi(t) from an AWG is an acceptable choice. However,

using an AWG is not practical in most real-world scenarios. Future versions of the MWC

should look into generating the pi(t) from a high-rate shift register or an FPGA [7].

54



The MWC performance could also be improved by calibrating the matrix A. Although the

relationship between the original input signal and low-rate sampled sequences is well-defined

by the matrix A in simulation, it may be less effective in a hardware implementation due to the

non-ideal behavior present in the analog components [14]. The calibration algorithm presented

in [14] proposes to compensate for the non-ideal behavior of the components in the AFE to

improve performance.

Although originally this MWC implementation was designed to sense up to two simulta-

neous transmissions, issues with some of the hardware components initiated a design change

that reduced the number of input transmissions to one. Future iterations of the MWC would

benefit from being modified to sense multiple transmissions simultaneously. This would likely

involve additional physical channels. The modular design of this implementation of this MWC

lends itself to the addition of physical channels for further testing. Because the individual com-

ponents in the AFE are on their own development boards, adding additional components will

not require modifications to the portions of the design that are already present. The modular de-

sign also allows different parts to be substituted into the AFE to determine their performance.

However, a practical implementation of the MWC would benefit from being integrated on a

single board to save on physical size.

6.3 Conclusion

CR technologies seek to promote spectrum sharing through opportunistic spectrum access in

an effort to mitigate the spectrum scarcity problem [1]. The fixed frequency allocation scheme

creates temporal and spatial spectrum holes, because the primary user of a band may be using

its allocated spectrum infrequently [1]. Thus, opportunistic spectrum access provides a means

of increasing the efficiency of spectrum use. In order to take advantage of spectrum holes, it is

necessary to identify, characterize, and geolocate nearby transmitters.

This thesis presented a design and hardware implementation of a spectrum awareness

testbed intended as a proof of concept for spectrum sensing in the 5G FR1 range (400 MHz-

7.125 GHz) that does not rely on a priori information. It is designed to detect one transmission

55



that has a maximum bandwidth of 80 MHz. The targeted frequency range encompasses sev-

eral Gigahertz, which classifies it as a wideband spectrum sensing problem. One of the most

substantial challenges in wideband spectrum sensing is the sampling rate determined by the

Nyquist rate. Sampling at the Nyquist rate is generally infeasible for a wide frequency range,

but compressive sensing provides an avenue for reducing the sampling rate.

The MWC is a hardware implementation of a compressive sensing system and is the design

chosen for the testbed in this thesis. It splits the input signal into multiple channels, each of

which is mixed with a high-rate alternating sign pattern. The result of mixing is that the signal

is intentionally aliased such that different linear combinations of the original signal appear at

baseband. After lowpass filtering, the channels can be sampled with a low-rate ADC. The

alternating sign patterns relate the original input signal to the low-rate samples, allowing the

support of the original signal to be recovered using compressive sensing.

The MWC with the specified parameters was simulated in Matlab before constructing a

hardware implementation. Simulations found that the MWC could achieve a successful support

recovery percentage in excess of 90% when B = 80 MHz in high-SNR scenarios. In general,

the percentage of successful support recovery increases with decreasing signal bandwidth. The

performance difference is mostly noticeable in low-SNR scenarios, and the disparity becomes

negligible for larger SNRs.

A hardware version of the MWC with the specified parameters was implemented as a

modular design and tested for multiple carrier frequencies, bandwidths and sign patterns pi(t).

It has an estimated SNR of -5 dB. WhenB = 80 MHz the best percentage of successful support

recovery is 43.28% and occurs when fi = 2.0 GHz. WhenB = 10 MHz, the highest percentage

of successful support recovery is 36.86% and occurs when fi = 2.0 GHz. However, the MWC

had overall better performance across the tested input signal carrier frequencies when B = 10

MHz compared to B = 80 MHz.

The performance of the MWC hardware implementation does not meet the performance

of the simulations. The degradation of performance is likely caused by hardware issues such

as low input signal power levels, the frequency range of the chosen mixer, and general analog

component inaccuracies that cause the relationship between the input signal and the low-rate

56



samples to be inaccurate compared to the theoretical value. Section 6.2 suggests avenues for

improvements to the MWC implementation that will hopefully increase performance. Despite

its lower success rate, this implementation of the MWC does succeed as a proof of concept for

wideband spectrum sensing in the 5G FR1 range, and the flexibility of the MWC design allows

it to be extended for additional capabilities.

57



References

[1] R. Umar and A. Sheikh, “A comparative study of spectrum awareness techniques for

cognitive radio oriented wireless networks,” Elsevier Physical Communications, vol. 9,

08 2012.

[2] Y. Arjoune and N. Kaabouch, “A comprehensive survey on spectrum sensing in cogni-

tive radio networks: Recent advances, new challenges, and future research directions,”

Sensors, vol. 19, no. 1, 2019.

[3] B. I. Ahmad, “A survey of wideband spectrum sensing algorithms for cognitive radio

networks and sub-nyquist approaches,” 2020.

[4] C. Shannon, “Communication in the presence of noise,” Proceedings of the IRE, vol. 37,

no. 1, pp. 10–21, 1949.

[5] E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal

Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008.

[6] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, “Beyond

nyquist: Efficient sampling of sparse bandlimited signals,” IEEE Transactions on Infor-

mation Theory, vol. 56, no. 1, pp. 520–544, 2010.

[7] M. Mishali and Y. C. Eldar, “From theory to practice: Sub-nyquist sampling of sparse

wideband analog signals,” CoRR, vol. abs/0902.4291, 2009.

[8] M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction: Compressed sensing

for analog signals,” IEEE Transactions on Signal Processing, vol. 57, no. 3, pp. 993–1009,

2009.

58



[9] Y. C. Eldar, Sampling Theory: Beyond Bandlimited Systems. USA: Cambridge University

Press, 1st ed., 2015.

[10] R. Baraniuk, M. A. Davenport, R. A. DeVore, and M. B. Wakin, “A simple proof of the

restricted isometry property for random matrices,” Constructive Approximation, vol. 28,

pp. 253–263, 2008.

[11] M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: Analog to digital

at sub-nyquist rates,” 2009.

[12] P. Podder, M. M. Hasan, M. R. Islam, and M. Sayeed, “Design and implementation of

butterworth, chebyshev-i and elliptic filter for speech signal analysis.,” arXiv: Signal Pro-

cessing, 2020.

[13] M. Mishali and Y. C. Eldar, “Expected rip: Conditioning of the modulated wideband

converter,” 2009.

[14] E. Israeli, S. Tsiper, D. Cohen, E. Shoshan, R. Hilgendorf, A. Reysenson, and Y. C.

Eldar, “Hardware calibration of the modulated wideband converter,” in 2014 IEEE Global

Communications Conference, pp. 948–953, 2014.

59



Appendices

60



Appendix A

MWC System with Iterations

breaklines

1 % S i m u l a t i o n model ing o p e r a t i o n o f t h e Modula ted Wideband C o n v e r t e r (MWC)

2 % The n e c e s s a r y sys tem p a r a m e t e r s a r e d e f i n e d a t t h e top , and t h e r e s t

3 % of t h e s i m u l a t i o n i s d i v i d e d i n t o t h e f o l l o w i n g s e c t i o n s :

4 % − S i g n a l G e n e r a t i o n

5 % − Mixing

6 % − Analog Lowpass F i l t e r i n g and Sampl ing

7 % − D i g i t a l Expander

8 % − C o n t i n u o u s t o F i n i t e (CTF) Block

9 % Thi s program i s c u r r e n t l y c o n f i g u r e d t o t e s t d i f f e r e n t SNR v a l u e s

10 % b u t can be m o d i f i e d t o e v a l u a t e p e r f o r m a n c e o f o t h e r p a r a m e t e r

11 % o p t i o n s , such as q o r B .

12 s u c c e s s e s = 0 ;

13 s u c c e s s e s t a b l e = z e r o s ( 1 , 9 ) ;

14 r = 1 ;

15 p i t = r e a d m a t r i x ( ’ Succes sPa t t e rn HW Tes t1 m2 . csv ’ ) ;

16 f o r s n r = −10:5 :25

17 s u c c e s s e s = 0 ;

18 f o r z =1:1000

19 %% S i g n a l P a r a m e t e r s

20

21 N = 2 ; % Number o f bands ( i n c l u d i n g c o n j u g a t e s )

22 B = 80 e6 ; % BW of each band

23 fmin = 410 e6 ; % Minimum c a r r i e r f r e q u e n c y

24 fmax = 7 .125 e9 ; % Maximum c a r r i e r f r e q u e n c y

25 fnyq = 14 .355 e9 ; % N y q u i s t f r e q u e n c y

26 Tnyq = 1 / fnyq ; % N y q u i s t p e r i o d

27 Ei = [1 2 ] ; % Energy of t h e i t h band

28

29 q = 7 ; % Expans ion f a c t o r ( must be odd )

30

31 l e n = 9 1 ; % Length o f t h e s i g n a l

32 zp = 1 0 ; % Save room f o r zero − padd ing

33 L = 165 ; % A l i a s i n g r a t e

34 tRes = Tnyq / q ; % Time a x i s r e s o l u t i o n

35

36 o b s P e r i o d = [0 L*q* len −1 L*q *( l e n +zp ) −1]* tRes ;% O b s e r v a t i o n window

37 Taui = [ 0 . 4 0 . 7 ] * max ( o b s P e r i o d ) ; % O f f s e t o f t h e i t h band

38

39 %% Sampl ing P a r a m e t e r s

40

41 M = L ; % Length o f t h e s i g n p a t t e r n s ,

61



42 % s e t t o M=L f o r s i m p l i c i t y

43 fp = fnyq / L ; % Frequency of t h e s i g n p a t t e r n s

44 f s = q* fp ; % Sampl ing r a t e a t each channe l ,

45 % use f s =qfp , w i th odd q

46 m = c e i l ( ( 4 *N ) / q ) ; % Number o f c h a n n e l s

47

48 L0 = f l o o r (M/ 2 ) ; % L = 2L0 + 1

49

50 % G e n e r a t e random s i g n p a t t e r n s f o r p i ( t )

51 p i t = r a n d s r c (m,M) ;

52

53 %% G e n e r a t e I n p u t S i g n a l x ( t )

54

55 t i m eA x i s = o b s P e r i o d ( 1 ) : tRes : o b s P e r i o d ( end ) ; % Time a x i s

56 t i m e A x i s S h o r t = o b s P e r i o d ( 1 ) : tRes : o b s P e r i o d ( 2 ) ; % Withou t padd ing

57

58 % Choose random c a r r i e r s from [ fmin , fmax ]

59 f i = ( fmax −fmin ) . * r and ( 1 ,N/ 2 ) + fmin ;

60

61 % C a l c u l a t e x

62 n = 1 : (N / 2 ) ;

63 x = sum ( s q r t ( Ei ( n ) ’ ) * s q r t (B ) . * s i n c (B*( t i m e A x i s S h o r t − Taui ( n ) ’ ) ) . * . . .

64 cos (2* p i * f i ( n ) ’ . * ( t i m e A x i s S h o r t − Taui ( n ) ’ ) ) , 1 ) ;

65

66 % Add a Hann window f o r smooth ing

67 hannWin = hann ( l e n g t h ( x ) ) ’ ; % Hann window

68 x = [ x . * hannWin , z e r o s ( 1 , q* zp *L ) ] ; % Zero padd ing

69

70 % C a l c u l a t e t h e o r i g i n a l s u p p o r t s e t

71 supp = [ ] ;

72 f o r i = 1 : (N/ 2 )

73 supp = [ supp i n d i c e s c a l c ( L0 , f i ( i ) , fp , B ) ] ;

74 end

75 supp = s o r t ( un i qu e ( supp ) ) ;

76

77 %% Mixing

78

79 % Mix t h e i n p u t s i g n a l x wi th t h e s i g n p a t t e r n o f each c h a n n e l .

80 % For q > 1 , e n s u r e t h a t t h e s i g n p a t t e r n i s expanded a p p r o p r i a t e l y

81 ch = 1 :m;

82 r e p e a t = l e n g t h ( x ) / (M*q ) ;

83

84 % F i r s t t e rm : S p l i t i n t o m c h a n n e l s

85 % Second te rm : Expand S i g n P a t t e r n s f o r q > 1 , t h e n expand t o f i l l

86 % t h e f u l l l e n g t h o f x

87 mixedChanne ls = repmat ( x , m, 1 ) . * . . .

88 repmat ( r epe l em ( p i t ( ch , : ) , 1 , q ) , 1 , r e p e a t ) ;

89

90 %% Analog Lowpass F i l t e r i n g and Sampl ing

91

92 % Mock of a n a l o g LPF wi th c u t o f f f s / 2

93 w = ( f s / 2 / fnyq / q ) * 2 ;

94 k = (w* p i * l e n g t h ( t im e A x i s ) ) / ( 2 * p i ) ;

95 wp = f l o o r ( k ) ;

96 H = [ ones ( 1 , wp+1 ) , z e r o s ( 1 , l e n g t h ( t i m e A x i s ) −2*wp−1) ones ( 1 , wp ) ] ;

97 l p f A n a l o g = repmat ( i f f t (H) , m, 1 ) ;

98

99 % Mock t h e a n a l o g f i l t e r i n g and s a m p l in g

100 % NOTE: f f t and downsample do t h i n g s by columns , so t h e s i g n a l s must

62



101 % be t r a n s p o s e d b e f o r e p e r f o r m i n g t h o s e o p e r a t i o n s

102 d igSamples = downsample ( i f f t ( f f t ( mixedChanne ls . ’ ) . * . . .

103 f f t ( l p f A n a l o g . ’ ) ) , L ) . ’ ;

104 digLen = l e n g t h ( d igSamples ( 1 , : ) ) ;

105

106 %% D i g i t a l Expander

107

108 % D i g i t a l LPF wi th c u t o f f fp / 2

109 w = ( fp / 2 / f s ) * 2 ;

110 k = (w* p i * digLen ) / ( 2 * p i ) ;

111 wp = f l o o r ( k ) ;

112 H = [ ones ( 1 , wp+1 ) , z e r o s ( 1 , digLen −2*wp−1) ones ( 1 , wp ) ] ;

113 l p f D i g = repmat ( i f f t (H) , m*q , 1 ) ; % R e p l i c a t e f o r f r e q u e n c y s h i f t i n g

114

115 n = repmat ( 0 : digLen −1 , m*q , 1 ) ; % R e p l i c a t e f o r f r e q u e n c y s h i f t i n g

116

117 % Frequency S h i f t f o r k=[ −q ’ , q ’ ] , where q = 2q ’ + 1

118 k = repmat ( − f l o o r ( q / 2 ) : 1 : f l o o r ( q / 2 ) , 1 , m) ;

119 f r e q S h i f t = repe l em ( digSamples , q , 1 ) . * exp ( −1 j *(2* p i ) . * ( k . ’ / q ) . * n ) ;

120

121 % D i g i t a l f i l t e r i n g and s a m p l in g

122 % NOTE: f f t and downsample do t h i n g s by columns , so t h e s i g n a l s must

123 % be t r a n s p o s e d b e f o r e p e r f o r m i n g t h o s e o p e r a t i o n s

124 expande rSamples = downsample ( i f f t ( f f t ( f r e q S h i f t . ’ ) . * . . .

125 f f t ( l p f D i g . ’ ) ) , q ) . ’ ;

126

127 %% C o n t i n u o u s t o F i n i t e (CTF) Block f o r S u p p o r t Recovery

128

129 % De f i n e m a t r i x A w i t h o u t e x p a n s i o n

130 S = p i t ;

131 t h e t a = exp ( − j *2* p i / L ) ;

132 F = t h e t a . ˆ ( [ 0 : L−1] ’*[ − L0 : L0 ] ) ;

133 pos = 1 : L0 ;

134 neg = ( −L0 ) : − 1 ;

135

136 d = [(1 − t h e t a . ˆ neg ) . / ( 2 * j * p i * neg ) 1 / L (1 − t h e t a . ˆ pos ) . / ( 2 * j * p i * pos ) ] ;

137 D = d i a g ( d ) ;

138 A = S*F*D;

139 A = c o n j (A ) ;

140

141

142 % Expand A by s h i f t i n g ( a p p a r e n t l y a loop i s f a s t e r h e r e )

143 i f q > 1

144 expandedA = z e r o s ( q*m, 2*L0 + 1 ) ;

145

146 A = repe l em (A, q , 1 ) ; % go ahead and expand

147 k = repmat ( − f l o o r ( q / 2 ) : f l o o r ( q / 2 ) , 1 , m) ; % t o a v o i d a second loop

148

149 % S h i f t each row of A by t h e v a l u e g i v e n i n k

150 f o r i =1 :m*q

151 expandedA ( i , : ) = c i r c s h i f t (A( i , : ) , L+k ( i ) ) ;

152 end

153 e l s e

154 expandedA = A;

155 end

156 % Add n o i s e t o t h e s i g n a l a t t h e s p e c i f i e d SNR

157 expande rNo i sySamples = awgn ( expanderSamples , sn r , ’ measured ’ ) ;

158

159 [ r e c o v e r e d S u p p ] = S p e c t r u m B l i n d R e c o n s t r u c t i o n 4 ( expanderNoisySamples , . . .

63



160 expandedA , N, supp ) ;

161

162 % Check i f t h e s u p p o r t r e c o v e r y was s u c c e s s f u l and t r a c k t h e

163 % number o f s u c c e s s e s

164 i f ( l e n g t h ( i n t e r s e c t ( supp , r e c o v e r e d S u p p ) )== l e n g t h ( supp ) && . . .

165 ( r ank ( expandedA ( : , r e c o v e r e d S u p p ) ) == l e n g t h ( r e c o v e r e d S u p p ) ) )

166 f p r i n t f ( ’ f i =%d GHz\n ’ , f i ( 1 ) / 1 0 ˆ 9 ) ;

167 s u c c e s s e s = s u c c e s s e s + 1 ;

168 e l s e

169 f p r i n t f ( ’ F a i l e d r e c o v e r y f i =%d GHz\n ’ , f i ( 1 ) / 1 0 ˆ 9 ) ;

170 end

171

172 end

173 % Record number o f s u c c e s s f u l s u p p o r t r e c o v e r i e s f o r each SNR v a l u e

174 s u c c e s s e s t a b l e ( 1 , r ) = s u c c e s s e s ;

175 r = r + 1 ;

176 end

64



Appendix B

Input Signal Indices Calculation

breaklines

1 f u n c t i o n [ Supp ] = i n d i c e s c a l c ( L0 , f i , fp , B)

2 % C a l c u l a t e t h e s l i c e i n d i c e s f o r a g i v e n c a r r i e r f r e q u e n c y f i and

3 % bandwid th B , where t h e r e a r e 2L0+1 s l i c e s o f wid th fp .

4

5 L = 2*L0 +1;

6 j = 0 : ( L0 − 1 ) ;

7 % B u i l d a m a t r i x wi th t h e p o s i t i v e s l i c e b o u n d a r i e s

8 s u p p r e f = z e r o s ( 1 , L0 + 1 ) ;

9 s u p p r e f ( 1 , 1 : L0 +1)=[0 fp * ( 1 / 2 + j ) ] ;

10 % Find t h e i n d e x t h a t i s c l o s e s t t o t h e l e f t edge o f f i

11 [m1 , i 1 ] = min ( abs ( repmat ( f i −B/ 2 , 1 , L0 +1) − s u p p r e f ) ) ;

12 % Find t h e a c t u a l i n d e x of t h e l e f t − s l i c e

13 i f ( f i −B/ 2 > s u p p r e f ( i1 −1) && f i −B/ 2 < s u p p r e f ( i 1 ) )

14 S t a r t P o s = L0 + i1 −1;

15 e l s e i f ( f i −B/ 2 > s u p p r e f ( i 1 ) && i 1 == l e n g t h ( s u p p r e f ) )

16 S t a r t P o s = L0 + i 1 ;

17 e l s e i f ( f i −B/ 2 > s u p p r e f ( i 1 ) && f i −B/ 2 < s u p p r e f ( i 1 + 1 ) )

18 S t a r t P o s = L0 + i 1 ;

19 end

20

21 % Find t h e a c t u a l i n d e x of t h e r i g h t − s l i c e

22 [m2 , i 2 ] = min ( abs ( repmat ( f i +B/ 2 , 1 , L0 +1) − s u p p r e f ) ) ;

23 % Find t h e i n d e x t h a t i s c l o s e s t t o t h e r i g h t edge o f f i

24 i f ( f i +B/ 2 > s u p p r e f ( i2 −1) && f i +B/ 2 < s u p p r e f ( i 2 ) )

25 EndPos = L0 + i2 −1;

26 e l s e i f ( f i +B/ 2 > s u p p r e f ( i 2 ) && ( i 2 == l e n g t h ( s u p p r e f ) ) )

27 EndPos = L0 + i 2 ;

28 e l s e i f ( f i +B/ 2 > s u p p r e f ( i 2 ) && f i +B/ 2 < s u p p r e f ( i 2 + 1 ) )

29 EndPos = L0 + i 2 ;

30 end

31

32 % R e t u r n t h e p o s i t i v e and n e g a t i v e s u p p o r t i n d i c e s

33 Supp = [ L+1− S t a r t P o s L+1−EndPos S t a r t P o s EndPos ] ;

34 end

65



Appendix C

Spectrum Blind Reconstruction 4

breaklines

1

2 f u n c t i o n r e c o v e r e d S u p p = S p e c t r u m B l i n d R e c o n s t r u c t i o n 4 ( y , A, N, OrigSupp )

3 % S p e c t r u m B l i n d R e c o n s t r u c t i o n 4 implemen t s t h e SBR4 a l g o r i t h m p r e s e n t e d

4 % i n ” B l i n d Mul t i band S i g n a l R e c o n s t r u c t i o n : Compressed S e n s i n g f o r

5 % Analog S i g n a l s ” .

6 %

7 % I t c o n s t r u c t s a f rame V from t h e v e c t o r o f n o i s y measurements y , t h e n

8 % s o l v e s t h e compressed s e n s i n g problem V=AU, where t h e r e c o v e r e d U

9 % i s t h e s u p p o r t o f t h e measurements y .

10

11 % Form t h e c o r r e l a t i o n m a t r i x Q

12 Q = y*y ’ ;

13 [ V i n i t , D i n i t ] = e i g (Q ) ;

14 d = d i a g ( D i n i t ) ;

15 numNonZeroEigVals = sum ( abs ( d i a g ( D i n i t ) > 1 e4 ) ) ;

16

17 % Now i s o l a t e t h e l a r g e s t e i g e n v e c t o r s from t h e r e s t

18 [ dSor t ed , i n d ] = s o r t ( d ) ;

19 numNonZeroEigVals = min ( numNonZeroEigVals , 2*N ) ;

20 d S h o r t = d S o r t e d ( i n d ( l e n g t h ( i n d ) − numNonZeroEigVals +1: l e n g t h ( i n d ) ) ) ;

21 VShort = V i n i t ( : , i n d ( l e n g t h ( i n d ) − numNonZeroEigVals +1: l e n g t h ( i n d ) ) ) ;

22

23 % C o n s t r u c t t h e f rame from t h e s h o r t l i s t o f e i g e n v a l u e s and

24 % e i g e n v e c t o r s

25 VFrame = VShort * d i a g ( s q r t ( d S h o r t ) ) ;

26

27 % Recover t h e s u p p o r t o f t h e s i g n a l v i a O r t h o g o n a l Matching P u r s u i t

28 r e c o v e r e d S u p p = OMP( VFrame , A, l e n g t h ( OrigSupp ) / 2 ) ;

29

30 % R e t u r n t h e r e c o v e r e d s u p p o r t

31 r e c o v e r e d S u p p = s o r t ( un i qu e ( r e c o v e r e d S u p p ) ) ;

32 end

66



Appendix D

Orthogonal Matching Pursuit

breaklines

1 f u n c t i o n U = OMP(V, A, N)

2 % S i m u l t a n e o u s O r t h o g o n a l Matching P u r s u i t (OMP) a l g o r i t h m

3 % S o l v e s t h e compressed s e n s i n g problem V=AU by f i n d i n g t h e s p a r s e s t

4 % s u p p o r t s e t U.

5

6 R = V; % The r e s i d u a l

7 U = [ ] ; % Recovered s u p p o r t s e t

8 normColsA = vecnorm (A ) . ’ ;

9 f o r i =1 :N

10 b1 = A’ * R ; % Form r e s i d u a l s i g n a l e s t i m a t e

11 b = vecnorm ( b1 . ’ ) . ’ . / normColsA ;

12

13 [ maxVal , maxPos ] = max ( b ) ;

14

15 % Add t h e new p o s i t i v e and n e g a t i v e f r e q u e n c y s l i c e i n d i c e s t o t h e

16 % e x i s t i n g s u p p o r t s e t

17 L = l e n g t h (A ) ;

18 U = [U maxPos L+1−maxPos ] ; % Add p o s i t i v e and n e g a t i v e f r e q u e n c i e s

19

20 % Update t h e r e s i d u a l b e f o r e t h e n e x t i t e r a t i o n

21 s o l n = p inv (A ( : , U) ) *V;

22 R = V − A ( : , U)* s o l n ;

23 end

24 end

67



Appendix E

Input Signal Generation

breaklines

1 %% i n p u t g e n .m

2 % S c r i p t t o g e n e r a t e a CSV f i l e f o r an i n p u t s i g n a l t o t h e MWC, t a r g e t e d

3 % t o t h e K e y s i g h t M8196A AWG. The p a r a m e t e r s unde r ” S i g n a l P a r a m e t e r s ”

4 % s h o u l d be a p p r o p r i a t e l y s p e c i f i e d , and t h e o u t p u t w i l l be saved t o a

5 % CSV f i l e .

6 %

7 %% S i g n a l P a r a m e t e r s

8

9 N = 2 ; % Number o f bands ( i n c l u d i n g c o n j u g a t e s )

10 B = 80 e6 ; % BW of each band

11 fnyq = 14 .355 e9 ; % N y q u i s t f r e q u e n c y

12 Tnyq = 1 / fnyq ; % N y q u i s t p e r i o d

13 Ei = [1 2 ] ; % Energy of t h e i t h band

14

15 q = 7 ; % Expans ion f a c t o r ( must be odd )

16

17 l e n = 9 1 ; % Length o f t h e s i g n a l

18 zp = 1 0 ; % Save room f o r zero − padd ing

19 L = 165 ; % A l i a s i n g r a t e

20 tRes = Tnyq / q ; % Time a x i s r e s o l u t i o n

21

22 o b s P e r i o d = [0 L*q* len −1 L*q *( l e n +zp ) −1]* tRes ;% O b s e r v a t i o n window

23 Taui = [ 0 . 4 0 . 7 ] * max ( o b s P e r i o d ) ; % O f f s e t o f t h e i t h bandz

24

25 %% G e n e r a t e I n p u t S i g n a l x ( t )

26 t i m e A x i s S h o r t = o b s P e r i o d ( 1 ) : tRes : o b s P e r i o d ( 2 ) ; % Withou t padd ing

27

28 % Choose random c a r r i e r s from [ fmin , fmax ]

29 f i = 5 . 0 e9 ;

30

31 % C a l c u l a t e x

32 n = 1 : (N / 2 ) ;

33 x = sum ( s q r t ( Ei ( n ) ’ ) * s q r t (B ) . * s i n c (B*( t i m e A x i s S h o r t − Taui ( n ) ’ ) ) . * . . .

34 cos (2* p i * f i ( n ) ’ . * ( t i m e A x i s S h o r t − Taui ( n ) ’ ) ) , 1 ) ;

35

36 % Add a Hann window f o r smooth ing

37 hannWin = hann ( l e n g t h ( x ) ) ’ ; % Hann window

38 x = [ x . * hannWin , z e r o s ( 1 , q* zp *L ) ] ; % Zero padd ing

39

40 x = downsample ( x , q ) ;

41

68



42 %% Save t h e s i g n a l t o a CSV f i l e

43 o u t p u t d a t a = z e r o s ( l e n g t h ( x ) , 3 ) ; % Two e x t r a columns f o r marke r s ( unused )

44 o u t p u t d a t a ( : , 1 ) = x ( 1 , : ) ’ ;

45 f i l e n a m e = s p r i n t f ( ’ i n p u t s i g n a l B 2 0 M H z %dGHz . csv ’ , f i / 1 0 ˆ 9 ) ;

46 w r i t e m a t r i x ( o u t p u t d a t a , f i l e n a m e ) ;

69



Appendix F

pi(t) Generation

breaklines

1 %% p i t g e n .m

2 % Read i n a CSV f i l e c o n t a i n i n g a s e t o f p i ( t ) , t h e n w r i t e i t t o a MAT

3 % f i l e i n t h e f o r m a t e x p e c t e d by t h e T e k t r o n i x AWG 70002B .

4 p a t t e r n s = r e a d m a t r i x ( ’ Succes sPa t t e rn HW Tes t1 m2 . csv ’ ) ;

5 i n d = s i z e ( p a t t e r n s ) ;

6 f o r i =1 : i n d ( 1 )

7 baseWfm = p a t t e r n s ( i , : ) ;

8 baseWfm = repmat ( baseWfm , 1 , 1 0 ) ;

9 Waveform Name 1 = s p r i n t f ( ’%d t e s t ’ , i ) ;

10 Waveform Data 1 = baseWfm ;

11 % Save as a MAT f i l e

12 save ( Waveform Name 1 , ’ * 1 ’ , ’−v7 . 3 ’ ) ; % MAT 7 . 3 Can save > 2GB

13 end

70



Appendix G

Data Capture.py

1 from ctypes import *
2 import os
3

4

5 ’’’***** Loading the HSDCPro Automation DLL *****
6 Python Script to capture data from a compatible TI ADC
7 Evaluation Module using a TI Data Capture Board though
8 the HSDC Pro software.
9 The pertinent parameters are:

10 - Board serial number
11 - ADC device
12 - ADC sampling rate
13 - # samples to capture
14 - # samples per channel
15 - Timeout
16 -
17 ’’’
18

19 if’PROGRAMFILES(X86)’ in os.environ:
20 dll_path = "C:\\Program Files (x86)\\Texas Instruments\\" \
21 "High Speed Data Converter Pro\\" \
22 "HSDCPro Automation " \
23 "DLL\\32Bit DLL\\HSDCProAutomation.dll "
24 else:
25 dll_path = "C:\\Program Files\\Texas Instruments\\" \
26 "High Speed Data Converter Pro\\" \
27 "HSDCPro Automation DLL" \
28 "\\32Bit\\DLL\\HSDCProAutomation.dll "
29 HSDC_Pro = cdll.LoadLibrary(dll_path)
30

31

32 ’’’*******************************************’’’
33 ’’’*****ADC Configuration Settings*****’’’
34 ’’’*******************************************’’’
35

36

71



37 Boardsno = "T05BKLDk(10AX115)" # Board serial number
38 Devicename = "ADC12QJxx00_JMODE0" # ADC device (matches HSDC Pro)
39

40

41 Datarate = 1218000000 # ADC output Data Rate
42 SamplesForAnalysis = 262144 # ADC Analysis Window Length
43 ChannelIndex = 0 # 0-Based Select ADC Channel
44 PNGChannelIndex = 0 # 0-Based For Saving FFT as PNG
45 ImageFormat = 2 # 0-BMP 1-JPEG 2-PNG
46

47

48 # FFT Window Notching
49 FFTSettingsType = 0 # 0-Rectangular 1-Other Windows
50 NumberOfCustomFreq = 0
51 NoofHarmonics = 5
52 BinsToRemove = 0
53 BinsToRemoveDC = 1
54 BinsToRemoveFund = 0
55 CustomNotchFrequeancies = (c_double*NumberOfCustomFreq)()
56 BinsToRemove = (c_ulonglong*NumberOfCustomFreq)()
57 enableFsby2MinusFinNotching = 0 # 0-Disable 1-Enable
58 binsToRemoveOnEitherSideOfFsby2 = 0
59

60

61 # Trigger Options
62 TriggerOption = 0 # 0-Normal Capture 1-SW Trigger 2-HW Trigger
63

64

65 NoofChannels = 4
66

67

68 # Enable or Disable Capture to File Option
69 FileCapEn = 1
70

71

72 # Get Array of Capture Data
73 SamplesPerChannel = 262144
74 OffsetSamplePerChannel = 0
75 Capture_Data_Array_Len = NoofChannels * SamplesPerChannel
76 CaptureData_16bits = (c_ulong*Capture_Data_Array_Len)()
77

78

79 TimeoutinMs = 30000 # 30 seconds
80 ADC_Average = 0
81 Num_Captures = 0
82 take_screenshots = 0
83

84

85 ’’’**********************************************************’’’
86 ’’’** The actual call to the function contained in the dll **’’’

72



87 ’’’**********************************************************’’’
88

89

90 # Connecting to board
91 Err_Status = HSDC_Pro.Connect_Board(Boardsno, TimeoutinMs)
92 if Err_Status != 0:
93 print "Error Status = " + str(Err_Status)
94 quit()
95

96

97 # Select the ADC device and automatically download its FW.
98 Err_Status = HSDC_Pro.Select_ADC_Device(Devicename, 120000)
99 if Err_Status != 0:

100 print "Error Status = " + str(Err_Status)
101 quit()
102

103

104 # Reloading Device INI..."
105 Err_Status = HSDC_Pro.Reload_Device_INI(TimeoutinMs)
106 if Err_Status != 0:
107 print "Error Status = " + str(Err_Status)
108 quit()
109

110

111 # Using HSDC Ready function to check if the GUI is Ready...
112 Err_Status = HSDC_Pro.HSDC_Ready(120000)
113 if Err_Status != 0:
114 print "Error Status = " + str(Err_Status)
115 quit()
116

117

118 # Passing ADC Output Data Rate
119 Err_Status = HSDC_Pro.Pass_ADC_Output_Data_Rate(c_double(Datarate),
120 TimeoutinMs)
121 if Err_Status != 0:
122 print "Error Status = " + str(Err_Status)
123 quit()
124

125

126 # Setting No of Samples
127 Err_Status = \
128 HSDC_Pro.Set_Number_of_Samples(c_ulonglong(SamplesPerChannel),
129 TimeoutinMs)
130 if Err_Status != 0:
131 print "Error Status = " + str(Err_Status)
132 quit()
133

134

135 # Setting ADC Analysis Window Length
136 Err_Status = \

73



137 HSDC_Pro.ADC_Analysis_Window_Length(c_ulong(SamplesForAnalysis),
138 TimeoutinMs)
139 if Err_Status != 0:
140 print "Error Status = " + str(Err_Status)
141 quit()
142

143

144 # FFT Window Notching...
145 Err_Status = \
146 HSDC_Pro.FFT_Window_Notching(c_ulong(FFTSettingsType),
147 c_ulonglong(NoofHarmonics),
148 c_ulonglong(BinsToRemove),
149 c_ulonglong(BinsToRemoveDC),
150 c_ulonglong(BinsToRemoveFund),
151 CustomNotchFrequeancies,
152 BinsToRemove,
153 c_ulonglong(NumberOfCustomFreq),
154 enableFsby2MinusFinNotching,
155 binsToRemoveOnEitherSideOfFsby2,
156 TimeoutinMs)
157 if Err_Status != 0:
158 print "Error Status = " + str(Err_Status)
159 quit()
160

161

162 # Setting Enable Capture to File
163 Err_Status = \
164 HSDC_Pro.Set_Write_Capture_to_File(c_ubyte(FileCapEn),
165 TimeoutinMs)
166 if Err_Status != 0:
167 print "Error Status = " + str(Err_Status)
168 quit()
169

170

171 # Take 50 data captures
172 for x in range(1, 51):
173 CSVData = "C:/Users/aew0056/OneDrive - Auburn University/" \
174 "Spectrum Awareness/CFRdemo/11_11/" \
175 "6GHz_pi6/6GHz_2Ch_" \
176 + "Test" + str(x) + ".csv"
177

178 if TriggerOption == 0:
179 TriggerModeEnable = 0
180 SoftwareTriggerEnable = 0
181 ArmOnNextCaptureButtonPress = 0
182 TriggerCLKDelays = 0
183

184 # Setting Normal Capture...
185 Err_Status = \
186 HSDC_Pro.Trigger_Option(TriggerModeEnable,

74



187 SoftwareTriggerEnable,
188 ArmOnNextCaptureButtonPress,
189 c_ubyte(TriggerCLKDelays),
190 TimeoutinMs)
191 if Err_Status != 0:
192 print "Error Status = " + str(Err_Status)
193 quit()
194

195 # Setting ADC Average Settings...
196 Err_Status = HSDC_Pro.ADC_Average_Settings(ADC_Average,
197 Num_Captures,
198 TimeoutinMs)
199 if Err_Status != 0:
200 print "Error Status = " + str(Err_Status)
201 quit()
202

203 # Starting normal capture...
204 Err_Status = HSDC_Pro.Pass_Capture_Event(TimeoutinMs)
205 if Err_Status != 0:
206 print "Error Status = " + str(Err_Status)
207 quit()
208

209 # Getting an array of Capture Data in 16 bits...
210 Err_Status = \
211 HSDC_Pro.Get_Capture_Data_16bits(SamplesPerChannel,
212 OffsetSamplePerChannel,
213 CaptureData_16bits,
214 Capture_Data_Array_Len,
215 TimeoutinMs)
216 if Err_Status != 0:
217 print "Error Status = " + str(Err_Status)
218 quit()
219

220 # Saving ADC Codes and Measurement as CSV File...
221 Err_Status = \
222 HSDC_Pro.Save_ADC_Codes_And_Measurements_As_CSV(CSVData,
223 TimeoutinMs)
224 if Err_Status != 0:
225 print "Error Status = " + str(Err_Status)
226 quit()
227

228 if take_screenshots != 0:
229 for y in range(2):
230 FFTPNGFilePathWithName = \
231 "C:/Users/aew0056/OneDrive - Auburn University/" \
232 "Spectrum Awareness/CFRdemo/11_11/" \
233 "screenshots/0.5GHz_2Ch_FFT_Test" \
234 + str(x) + "_Ch" + str(y + 1) + ".png"
235

236 # Saving FFT as PNG File...

75



237 Err_Status = \
238 HSDC_Pro.Save_FFT_As_PNG(c_ulong(y),
239 FFTPNGFilePathWithName,
240 TimeoutinMs)
241 if Err_Status != 0:
242 print "Error Status = " + str(Err_Status)
243 quit()
244

245 # Disconnecting from the board
246 Err_Status = HSDC_Pro.Disconnect_Board(30000)
247 if Err_Status != 0:
248 quit()

76



Appendix H

MWC Hardware Data Processing

breaklines

1 %% Modula ted Wideband C o n v e r t e r (MWC) Data P r o c e s s i n g from ADC

2 %

3 % P r o c e s s d a t a and pe r fo rm s u p p o r t r e c o v e r y f o r a c t u a l samples

4 % from an MWC sys tem .

5 % The n e c e s s a r y sys tem p a r a m e t e r s a r e d e f i n e d a t t h e top , and t h e r e s t

6 % of t h e program i s d i v i d e d i n t o t h e f o l l o w i n g s e c t i o n s :

7 % − Analog LPF c l e a n u p

8 % − D i g i t a l Expander

9 % − C o n t i n u o u s t o F i n i t e (CTF) Block

10 % Thi s program i s c u r r e n t l y c o n f i g u r e d t o pe r fo rm s u p p o r t r e c o v e r y on

11 % 50 CSV f i l e s i n a s i n g l e f o l d e r . The f i l e n a m e f o r t h e CSV f i l e

12 % c o n t a i n i n g t h e c o r r e c t p i ( t ) and t h e f o l d e r l o c a t i o n o f t h e d a t a

13 % CSV f i l e s a r e r e q u i r e d . For 50 CSV f i l e s wi th 262 ,144 samples , a

14 % t o t a l o f 9 ,250 t r i a l s a r e run . The number o f s u c c e s s f u l s u p p o r t

15 % r e c o v e r i e s i s saved and p r i n t e d a t t h e end .

16 s u c c e s s e s = 0 ;

17 t o t a l = 0 ;

18 p i t = r e a d m a t r i x ( ’ S u c c e s s P a t t e r n s H W T e s t 6 m 2 . csv ’ ) ;

19

20 f o r z =1:50

21 %% P a r a m e t e r s

22 N = 2 ; % Number o f bands ( i n c l . c o n j u g a t e s )

23 B = 10 e6 ; % BW of each band

24 fnyq = 14 .355 e9 ; % N y q u i s t f r e q u e n c y

25 Tnyq = 1 / fnyq ; % N y q u i s t p e r i o d

26

27 q = 7 ; % Expans ion f a c t o r ( must be odd )

28 L = 165 ; % A l i a s i n g r a t e

29 M = L ; % Length o f t h e s i g n p a t t e r n s

30 L0 = f l o o r (M/ 2 ) ; % L = 2L0 + 1

31

32 fp = fnyq / L ; % Frequency of t h e s i g n p a t t e r n s

33 f s = q* fp ; % Sampl ing r a t e a t each channe l ,

34 % use f s =qfp , w i th odd q

35 fs hw = 2* f s ; % Sampl ing r a t e i n HW i s 2* f s t o a l l o w t h e c u t o f f

36 % of t h e a n a l o g LPF t o be c l e a n e d up

37

38 m = c e i l ( ( 4 *N ) / q ) ; % Number o f c h a n n e l s

39 numSamples = 1414 ; % Number o f samples p e r t e s t p e r s u p p o r t r e c o v e r y

40

41 f i = [ 3 . 5 e9 ] ; % The e x p e c t e d c a r r i e r f r e q u e n c i e s from t h e

77



42 % r e c o v e r e d s i g n a l

43

44 % C a l c u l a t e t h e o r i g i n a l s u p p o r t s e t

45 supp = [ ] ;

46 f o r i = 1 : (N/ 2 )

47 supp = [ supp i n d i c e s c a l c 2 ( L0 , f i ( i ) , fp , B ) ] ;

48 end

49 supp = s o r t ( un i qu e ( supp ) ) ;

50

51 % P o i n t t o t h e f o l d e r where t h e CSV f i l e s f o r a s i n g l e f r e q u e n c y and

52 % s i g n p a t t e r n a r e l o c a t e d

53 f i l e n a m e = s p r i n t f ( ’ 11 11 B10MHz\\3.5 GHz pi6\\3.5 GHz 2Ch Test%d . csv ’ , z ) ;

54 x1 = r e a d m a t r i x ( f i l e n a m e ) ;

55 x1 = x1 ( 1 : f l o o r ( l e n g t h ( x1 ) / numSamples )* numSamples , 1 :m) ;

56

57 % Recover t h e s u p p o r t f o r e v e r y s u b s e t o f samples w i t h i n a s i n g l e f i l e

58 f o r u =1: f l o o r ( l e n g t h ( x1 ) / numSamples )

59 %% S e l e c t a s u b s e t o f samples , f i l t e r and downsample

60 t o t a l = t o t a l + 1 ;

61 % Clean up f o r t h e a n a l o g LPF u s i n g a d i g i t a l LPF wi th c u t o f f

62 % f s / 2

63 w = ( f s / 2 / f s hw ) * 2 ;

64 k = (w* p i * numSamples ) / ( 2 * p i ) ;

65 wp = f l o o r ( k ) ;

66 H = [ ones ( 1 , wp+1 ) , z e r o s ( 1 , numSamples −2*wp−1) ones ( 1 , wp ) ] ;

67

68 % S e l e c t a s u b s e t o f samples from t h e long s i g n a l

69 x = x1 ( ( ( u −1)* numSamples ) + 1 : ( u )* numSamples , 1 :m) ;

70 % Apply LPF t o each c h a n n e l

71 lpfHW = repmat ( i f f t (H) , m, 1 ) ;

72 d igSamples = downsample ( i f f t ( f f t ( x ) . * f f t ( lpfHW . ’ ) ) , 2 ) . ’ ;

73 digLen = l e n g t h ( d igSamples ( 1 , : ) ) ;

74

75

76 %% D i g i t a l Expander

77

78 % D i g i t a l LPF wi th c u t o f f fp / 2

79 w = ( fp / 2 / f s ) * 2 ;

80 k = (w* p i * digLen ) / ( 2 * p i ) ;

81 wp = f l o o r ( k ) ;

82 H = [ ones ( 1 , wp+1 ) , z e r o s ( 1 , digLen −2*wp−1) ones ( 1 , wp ) ] ;

83 l p f D i g = repmat ( i f f t (H) , m*q , 1 ) ; % R e p l i c a t e f o r f r e q s h i f t i n g

84

85 n = repmat ( 0 : digLen −1 , m*q , 1 ) ; % R e p l i c a t e f o r f r e q u e n c y s h i f t i n g

86

87 % Frequency S h i f t f o r k=[ −q ’ , q ’ ] , where q = 2q ’ + 1

88 k = repmat ( − f l o o r ( q / 2 ) : 1 : f l o o r ( q / 2 ) , 1 , m) ;

89 f r e q S h i f t = repe l em ( digSamples , q , 1 ) . * . . .

90 exp ( −1 j *(2* p i ) . * ( k . ’ / q ) . * n ) ;

91

92 % D i g i t a l f i l t e r i n g and s a m p l in g

93 % NOTE: f f t and downsample do t h i n g s by columns , so t h e s i g n a l s

94 % must be t r a n s p o s e d b e f o r e p e r f o r m i n g t h o s e o p e r a t i o n s

95 expande rSamples = downsample ( i f f t ( f f t ( f r e q S h i f t . ’ ) . * . . .

96 f f t ( l p f D i g . ’ ) ) , q ) . ’ ;

97

98

99 %% C o n t i n u o u s t o F i n i t e (CTF) Block f o r S u p p o r t Recovery

100 % De f i n e m a t r i x A w i t h o u t e x p a n s i o n

78



101 S = p i t ;

102 t h e t a = exp ( − j *2* p i / L ) ;

103 F = t h e t a . ˆ ( [ 0 : L−1] ’*[ − L0 : L0 ] ) ;

104 pos = 1 : L0 ;

105 neg = ( −L0 ) : − 1 ;

106

107 dn = [(1 − t h e t a . ˆ neg ) . / ( 2 * j * p i * neg ) 1 / L . . .

108 (1 − t h e t a . ˆ pos ) . / ( 2 * j * p i * pos ) ] ;

109 D = d i a g ( dn ) ;

110 A = S*F*D;

111 A = c o n j (A ) ;

112

113

114 % Expand A by s h i f t i n g ( a p p a r e n t l y a loop i s f a s t e r h e r e )

115 i f q > 1

116 expandedA = z e r o s ( q*m, 2*L0 + 1 ) ;

117

118 A = repe l em (A, q , 1 ) ; % go ahead and expand

119 k = repmat ( − f l o o r ( q / 2 ) : f l o o r ( q / 2 ) , 1 , 2 ) ; % t o a v o i d a 2nd loop

120

121 % S h i f t each row of A by t h e v a l u e g i v e n i n k

122 f o r i =1 :m*q

123 expandedA ( i , : ) = c i r c s h i f t (A( i , : ) , L+k ( i ) ) ;

124 end

125 e l s e

126 expandedA = A;

127 end

128

129 r e c o v e r e d S u p p = S p e c t r u m B l i n d R e c o n s t r u c t i o n 4 ( expanderSamples , . . .

130 expandedA , N, supp ) ;

131

132 % Check i f t h e s u p p o r t r e c o v e r y was s u c c e s s f u l and t r a c k t h e number

133 % of s u c c e s s e s

134 i f ( l e n g t h ( i n t e r s e c t ( supp , r e c o v e r e d S u p p ) )== l e n g t h ( supp ) && . . .

135 ( r ank ( expandedA ( : , r e c o v e r e d S u p p ) ) == l e n g t h ( r e c o v e r e d S u p p ) ) )

136 f p r i n t f ( ’ S u c c e s s f u l f i =%d GHz and T e s t %d , i t e r a t i o n %d\n ’ , . . .

137 f i ( 1 ) / 1 0 ˆ 9 , z , u ) ;%, f i ( 2 ) / 1 0 ˆ 9 ) ;

138 s u c c e s s e s = s u c c e s s e s + 1 ;

139 e l s e

140 f p r i n t f ( ’ F a i l e d f i =%d GHz and T e s t %d , i t e r a t i o n %d\n ’ , . . .

141 f i ( 1 ) / 1 0 ˆ 9 , z , u ) ;

142 end

143

144 end

145 end

146 s u c c e s s e s

79


