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Abstract

Impurity transport characterization and ultimately impurity control is critical to the future
prospects of magnetic confinement fusion energy. In particular for an optimized stellarator like
Wendelstein 7-X the characterization of impurity transport is vital for identifying potential ad-
vanced scenarios where ideally both screening near the edge and core flushing of impurities can
be realized. The experimental characterization of impurity transport in W7-X can be used to
validate neoclassical simulations and to compare with turbulent transport predictions. To that
end on- to off-axis ECRH scans held at comparable line-integrated densities (~ 6 x 10 m~2)
& comparable total input ECRH power were seeded with iron LBO injections in order to inves-
tigate the influence of the heating profile on impurity transport. Three total input ECRH power
levels (2.8, 3.5, and 4.9 MW), with on- to off-axis variation were measured in the standard
magnetic configuration (EJM) in W7-X.

Overall across the entire ECRH on- to off-axis dataset as either more ECRH power is
moved off-axis or less total ECRH power is deposited both the % and the 77 increases. As
ECRH was moved off-axis there was an increase in the % ratio for p < 0.6 due to the strong
electron temperature variation in the core, p < 0.4, with changes of as much as ~ 1.5 keV. This
strong core electron temperature flattening had a marginal effect on the observed iron impurity
transport time with 7; enhanced by at most 27% as core T, was decreased. On the other hand
even though the purely on-axis ECRH power scan from 4.9 to 2.8 MW reduced the core T, a
nearly identical amount as the 4.9 MW on- to off-axis dataset, the resulting global transport
time enhancement was substantially larger for the on-axis power scan. The combination of the
similar ~ 900 eV drop in core T, during the 4.9 MW on- to off-axis dataset, the larger enhance-
ment in the global transport time for the on-axis power scan, and the significant variation in the

ZIi ratio outside p > 0.6 for the on-axis power scan all indicate that the kinetic profiles’ mag-

T,
nitude/shape outside mid-radius has a greater impact on the observed iron impurity transport

than core T, variations.
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To better characterize these observational results a least squares minimization was per-
formed to infer the anomalous transport profiles that most accurately produces the measured
iron line emission using the transport code STRAHL. These experimentally observed iron spec-
tral signals could only be well-matched when the anomalous diffusion channel was included
within the least squares inference with this transport channel clearly dominating all other chan-
nels. The fact that an ordinary, charge-independent anomalous diffusion was necessary to
match the iron line emission in combination with the dominance of the anomalous diffusive
channel strongly suggests that turbulent transport is the main transport mechanism during these
W7-X plasma discharges in accordance with gyrokinetic simulations performed by [Garcia-
Regaia et al. [1]. Although the inferred anomalous diffusion profiles are still consistent with
the concomitant increase of global transport time (77) and the ion-to-electron temperature ra-
tio (%), the inferred profiles are only distinguishable in the on-axis ECRH power comparison
when the total uncertainties are considered.

Finally to give confidence to the aforementioned inferred anomalous diffusion profiles
numerous sensitivity studies were performed on the least squares minimization routine using
both synthetic and experimentally derived data. The synthetic sensitivity tests demonstrated
that for the inferred anomalous diffusion profile the 1-sigma T, profile shifts had minimal
impact on the inferred accuracy, the LBO injection timing & temporal shape had the largest
influences on the profile accuracy, and the STRAHL edge parameterization also induced a
large variation. These results from the synthetic sensitivity tests used to determine the accuracy
of the least squares fits and to estimate the uncertainty in the anomalous diffusion profile were

corroborated by the variational tests performed on experimental data.
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fits using the low and high 1-sigma electron temperature profiles. . . . . . . . .

The normalized line emission at 10 and 31 ms after the LBO injection are plot-
ted in (a) and (b) respectively with both the low and high 7, profile scenarios
shown in solid and dashed lines respectively. These distributions correspond to

the same inferences shown in figure 4.33b. . . . . . . . .. ... ... ...

The double injection as seen in figure 4.38 was used to generate the above

signals in blue, with the modeled fit showninred. . . . . . . .. ... .. ...

The neutral iron density at the outermost spatial position for the synthetic-data-
generating double injection shown in blue and the standard injection shape
shown in orange. The injection is a double LBO injection where the total num-
ber of particles injected is the same as the original, but has a 15 ms delayed

injection with 25% of the particles. . . . . . . . . .. ... ...

The inference of the anomalous diffusion profile, while using the incorrect sin-
gle LBO injection shape as seen in figure 4.38 for the initial stationary fit in (a)
and the 2nd fit including the moving spline-knots & LBO injection timing in
(b). Unfortunately the inferred diffusion profile is inaccurate with X3 < 1.7 in-
dicating that the true LBO injection temporal shape may be needed for accurate

INferences. . . . . . . . e e e e

The residuals between the anomalous diffusion profiles shown in figure 4.39
and the original synthetic-data-generating diffusion profile are shown in (a) and

(byrespectively. . . . . . . .

xXxii
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4.41

4.42

4.43

4.44

4.45

The signal X'2’s corresponding to the inferences performed in figure 4.39. The
signal X'3’s from the initial stationary fit are shown in (a), while the signal X3’s
from the 2nd fit including the moving spline-knots & LBO injection timing are

shownin(b). . . . . . . . ..

The double injection as seen in figure 4.38 was used to generate the above
signals in blue, with the modeled fit using the standard single injection shape
along with moving spline-knots & LBO injection timing shown in red (i.e. the
inferred diffusion profile from figure 4.39b). Overplotted on each subfigure
are vertical dashed lines indicating the 3, 10, 31, and 100 ms after the fit LBO

INJECtiON tIME. . . . . . . . . o i e e e e e e e e e e e e e e

The normalized line emission at 3, 10, 31, and 100 ms after the LBO injection
for the 2nd fit including the moving spline-knots & LBO injection timing using
the standard, incorrect single LBO injection. These distributions correspond to

the same inference shown in figure 4.39b). . . . . . .. .. ... ... ...

The neutral iron density at the outermost spatial position for the synthetic-data-
generating double injection shown in blue with the attempted single injections
overplotted for stationary and free LBO injection time in (a) and (b) respec-

tvely . o e e e e

The 2nd inferences of anomalous diffusion following the standard procedural
method while also utilizing the incorrect single extended duration LBO injec-
tion shapes as seen in figure 4.44 with the 4 ms injection in (a) while the 10 ms

injectionin (b). . . . . ..
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4.46

4.47

5.1

5.2

5.3

54

5.5

5.6

The residuals between the anomalous diffusion profiles shown in figure 4.45
and the original synthetic-data-generating diffusion profile are shown in (a) and

(b) respectively for the 4ms and 10 ms extended LBO injection scenarios.

The anomalous diffusion profile inferred for 20180919.037 1st LBO injection is
shown with the total calculated uncertainties from the realistic transport profile

synthetic sensitivity studies. . . . . . . . . . ..o L o

Graphic courtesy of Andreas Langenberg demonstrating the equivalence of the

radial definition either through toroidal flux or volume of said flux surface® . . .

The Photon emissivity coefficients at n, = 10?Y m ™3 for the iron spectral lines

used in this thesiswork . . . . . . . . . . . ..

The STRAHL modeled neutral energy was varied between 0.07 and 28 eV for
the third iron LBO injection in discharge 20180919.049 In (a) the anomalous
diffusion, line emission scale factors, and LBO injection time are the only free
parameters within the fit, while (b) included two radial position factors for the

interior spline-knots. . . . . . . . ... L

Difference on temporal shape between LBO injection timing as free parameter

(b) or held fixed (a) within [stsqs T RAH L rap . . . . . . . . .. ... ....

The 647.6 nm neutral iron line measured from the fast spectrometer for the first

iron LBO injection in discharge 20190919.045 . . . . . . . . . . .. ... ...

The Fe™'® and Fe™!? experimental spectral signals in blue are matched with the
STRAHL output signals in red from the first iron LBO injection in discharge

20190919.045 as seen in (a) and (b) respectively. . . . .. ... .. ... ...
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5.7

5.8

59

5.10

5.11

5.12

The STRAHL calculated iron impurity density from a [stsqsT RAH L,,rap fit

using the experimental signals from the 1st LBO injection in 20180919.045

The iron line emission for Fe™? from 20190919.046 1st LBO injection is
shown in (a) with the experimental signal in blue and the STRAHL modeled
fit in red. During the same LBO discharge the 647.6 nm neutral iron line was

measured from the fast spectrometer and is shownin(b) . . . . . . .. ... ..

The Fe*!® and Fe*!? line emission signals in blue are matched by the STRAHL
modeled signals in red with the nominal 2 ms trapezoidal shape injection in (a)

& (b) while an ad hoc triple injection signal match are plotted in (¢) & (d).

The STRAHL modeled LBO injection temporal shape was varied for the third
iron LBO injection in discharge 20180919.049 In (a) the anomalous diffusion,
line emission scale factors, and LBO injection time are the only free parameters
within the fit, while (b) included two radial position factors for the interior

spline-Knots. . . . . . . . L. e e e

Difference in neutral iron spatial distributions between LBO injection timing
as free parameter or held fixed in (a) and (b) respectively. Electron temperature
is included in (c) showing the ionization length is the same for the three cases
with the difference primarily stemming from the edge diffusion value in the

scrape-off-layer . . . . . . . ..o

The comparison of the radial electric fields for three iron LBO injections at
constant total input ECRH power of 3.5 MW, but with varying power directed
off-axis. More ECRH power is directed off-axis from (a) to (c) and (d) to (f).
Subfigures d to f who both the DKES calculated and the XICS determined

radial electric field . . . . . . . ...
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5.13

5.14

5.15

5.16

5.17

5.18

The comparison of the total convection velocity for three iron LBO injections at
constant total input ECRH power of 3.5 MW, but with varying power directed
off-axis. More ECRH power is directed off-axis from (a) to (c) and (d) to (f).
Subfigures (a) to (c) utilize a DKES calculated radial electric field, while (d) to

(f) utilize a measured radial electric field from XICS . . . . . . . . ... .. .. 158

The STRAHL modeled LBO injection temporal shape was varied for the third
iron LBO injection in discharge 20180919.049 In (a) the anomalous diffusion,
line emission scale factors, and LBO injection time are the only free parameters

within the fit, while (b) included two radial position factors for the interior

spline-Knots. . . . . . . .. e e e 159
DKES calculated normalized collisionality for the iron impurity chargestates

used in the least squares inference . . . . . . .. ... L. oL 160
SFINCS to XICS derived radial electric field comparison provided by Dr. Novimir
Pablant as detailed in [Pablantetal.l6]] . . . . . .. ... ... ... ...... 160
A sensitivity scan over the connections lengths were performed for the 3rd LBO

in plasma discharge 20180919.049. In (a) the anomalous diffusion, line emis-
sion scale factors, and LBO injection time are the only free parameters within

the fit, while (b) included two radial position factors for the interior spline-knots. 162

A sensitivity scan over the connections lengths were performed for the 3rd LBO
in plasma discharge 20180919.049. In (a) the anomalous diffusion, line emis-
sion scale factors, and LBO injection time are the only free parameters within

the fit, while (b) included two radial position factors for the interior spline-knots. 164
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5.19

5.20

5.21

5.22

5.23

The radial grid of the STRAHL calculation is shown in blue circles with the six
spline knots parameterizing the anomalous diffusion profile shown in different
color circles. The red and green triangles correspond to the extreme positions

of the respectively colored interior spline-knot. . . . . . ... ... ... ...

The normalized spectral emission’s modeled radial distributions for the mea-
sured spectral lines from the 3rd LBO in plasma discharge 20180919.049. In (a)
the inference includes two radial position fit parameters for the interior spline-
knots in addition to the LBO injection timing parameter, while (b) only includes

the LBO injection as an additional free fit parameter. . . . . . . . .. ... ..

The HEXOS sightline along with the center and edge sightline for the HR-XIS
detector is shown for (a), (b), and (c) respectively. The different colors represent

the extents of the fieldof view. . . . . . . . . . . . ... o

The same synthetic data with the same initialization for the least squares code
was used for the fit shown in 4.4a & 4.4b. The fractional abundance of the
iron chargestates that correspond to the spectral lines used in the inference are
plotted at 287 ms after the LBO injection which corresponds to a time when the
profile shapes are unchanging. Note in (b) the decreasing temperature used for

the X-aXIS . . . . . . e e e e

The helium-like iron spectrum is shown in a time integrated image of the HR-
XIS detector in (a). The total transmission for the HR-XIS detector is shown in
(b) where the incorrect crystal positioning has caused the bad vignetting pattern

observed . . . . . L e e
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5.24

5.25

5.26

5.27

5.28

Well after the plasma has ended, a second’s worth of data (i.e. one thousand
data points) was used to determine the negative offset as seen in (a) and to deter-
mine the background noise corresponding to any dark current or readout noise
present in the FeXXIII signal in (b). In particular the weighted residuals were
binned into a histogram and fit with a gaussian using the standard deviation to

make this estimation of background noise levels . . . . . . ... ... ... ..

The scaled FeXXIII signal has the background light levels estimated through
a simple linear least squares reduction before and after the iron LBO injection
in (a). The red points and line represent the linear fit to the background light,
while the blue data points is the scaled FeXXIII signal. In (b) the time window
before and after the LBO the residuals are binned and fit with a gaussian to

determine the appropriate « scale factor in equation (5.2) . . . . . . ... ...

The HR-XIS diagnostic’s central most line-of-sight for the w-line has the back-
ground light levels estimated through a simple linear least squares reduction
before and after the iron LBO injection in (a). The red points and line represent
the linear fit to the background light, while the blue data points is the scaled
w-line signal. In (b) the time window before and after the LBO are binned and

fit with a gaussian to determine the appropriate « scale factor in equation (5.2)

The HR-XIS diagnostic’s central most w-line sightline signal for the 1st iron
LBO in 180919043 is shown in (a). In (b) is the Fe™'? signal for the same iron

INJECHON . . . . . o vt et e e e e e e e e e e e e e

The residual for Fe™ line emission is shown in (a), while (b) depicts the cor-
responding estimated gain. Note that the variation in the residuals shown in
(a) leads to a change in an estimation for o, from the 50 point windowing,

ultimately resulting in non-stationary gains (see footnotet) . . . . .. ... ..
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5.29

5.30

5.31

5.32

5.33

5.34

The inferred anomalous diffusion profiles for the 3rd iron LBO injection in
180919049 are shown in (a) using the point-to-point, the ansatz scaling factors,
and the constant values for every HEXOS signal o y,. In (b) each individual
sightline’s spectral line emission’s X’ are plotted where ideally every signal

has X2 ~ 1 foraperfectfit. . ... .. .. ... ... .. ... ........

The inferred anomalous diffusion profiles for the 3rd iron LBO injection in
180919049 are shown with the LBO injection timing held at 3.5 ms early and
late compared to the nominal value. In addition to the moving spline-knot in-

ferences, a stationary LBO injection initialized at the nominal value is shown

First inferences from the least squares routine with only four unique diffusive
spline-knots and fifteen signal scale factors used as free parameters. These
three LBO injections all have roughly the same density profiles and total input

ECRH power, but with various degrees of that power deposited off-axis.

The same data is initialized from the ones shown in 5.31 and inferences are
performed with the LBO injection timing as a free parameter in (a), while both
the LBO timing and the horizontal position of the two interior spline-knots as

free parametersin (b) . . . . . . . ...

The anomalous diffusion profiles for the nominal procedural method and an
additional procedural method where all fit parameters are free from the start are
plotted in (a). The corresponding X3 values for each iron emission sightline

areplottedin(b) . . . . . . ...

The HEXOS iron line emission shown for an iron LBO injection with the

ECRH input power and line-integrated density overplotted . . . . . .. .. ..
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5.35 The nominal neutral profile for the 3rd iron LBO injection in discharge 20180919.049

5.36

5.37

5.38

5.39

5.40

is scaled up and down by an order of magnitude from the nominal profile. The
neutral profiles are shown in (a) with the corresponding inferred anomalous dif-
fusion profiles shown in (b) where the inferences do not include radially moving

interior spline-knots . . . . . .. Lo

The electron density and temperature for three consecutive time points around
the LBO injection time as measured by the thomson scattering system with
corresponding gaussian process regression fits overlaid for the on-axis case in

the3.5 MW dataset. . . . . . . . . . . e e

The inferred anomalous diffusion profiles are shown in (a) and (b) for variations
in electron density and electron temperature respectively. The fits are for the
3rd iron LBO injection in discharge 20180919.049 including the LBO injection
timing as fit a free parameter, but not the radial position of the two interior

spline-knots . . . . . . .. e e

The reduced least squares values for each signal in the T, variation inferences

shownin figure 5.37b. . . . . . . .. L

The modeled & measured signals for Fe™4 are shown for the nominal and low
T, scenarios in (a) and (b) respectively. These modeled signals are the results

from the inferences shown in figure 5.37b. . . . . .. .. ..o oL

The electron temperature profiles for the 3.5 MW on- to off-axis ECRH scan
are shown with the original gaussian process fit to the thomson data shown in
(a), while the shifted and equalized T, profiles shown in (b). The T, profiles are
all equalized from p = 1.0 to 1.22 with the on-axis case, 20180919.049, used

asthe standard. . . . . . . . . ...
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541

542

543

6.1

6.2

6.3

The electron and ion temperature profiles for the 3rd LBO injection in plasma
discharge 20180919.049 corresponding to the 3.5 MW on-axis ECRH scenario.
These are the electron and ion temperature profiles used in chapter 4 for the

synthetic datatesting. . . . . . . . . . . . . ...

The shifted ion temperature profile used in this chapter’s variational testing with
experimental data is shown in both (a) and (b). The electron temperature profile

is included to demonstrate the equalization of T; to T, from p ~ 0.7 to 1.22. . .

The shifted and equalized ion temperature profiles for the 3.5 MW on- to off-

axisSECRH scan. . . . . . . . . . . . e

The global transport times over the entire ECRH radial deposition position
scans at a constant 7, ~ 6 x 10 m~2 in the W7-X standard magnetic config-

UFAtION. . . . v v o e e e e e e e e e

The electron density, ion temperature, and the electron temperature radial pro-
files are plotted in (a), (b), and (c) respectively for the 3.5 MW input ECRH on-
to off-axis scan. Plasma discharge 20180919.049 in blue is completely on-axis
exemplified by the peaked electron temperature, while discharge 20180919.046

in green is the most off-axis case with the broader electron temperature profile.

For 3.5 MW iron impurity transport dataset, each gyrotron’s normalized radial
position of ECRH deposition versus input power is plotted at the time of iron

LBO injection with on-axis shown in (a), some off-axis in (b), and most off-axis
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6.4

6.5

6.6

6.7

6.8

The linear background fit on Fe™%’s 13.28 nm spectral line for the 3.5 MW
scenario’s most on-axis case. This linear background, determined from ~ 150
ms before and after the LBO signal, is included in the global transport time

estimate as fixed values withinthe fit. . . . . . . . .. .. ... ... .....

The HEXOS measured line emission for Fe*2* is shown versus time for each
ECRH deposition position. The global transport time is determined by an ex-
ponential fit to the line intensity starting ~ 65 ms after the maximum to ensure

that the shape of the iron density profileisrigid . . . . .. ... ... .. ...

A comparison of the 3.5 MW off-axis ECRH scan dataset’s XICS measured

radial electric fields in (a) and the DKES calculated radial electric fields in (b)

A comparison of the 3.5 MW off-axis ECRH scenario with a hollow versus flat
density profile shown in (a) with the electron & ion temperature shown in (b)
revealing the core impact to the radial electric field calculated from DKES in
(c). The ion temperature downshift is discussed in 5.2.3 and the reason why the

E, is different in the edge for the modifiedcase. . . . . . . ... ... .. ...

The sum of the neoclassical and classical diffusion coefficients for the vari-
ous iron chargestates used in the inference are shown for the on-axis (a), some
off-axis (b), and most off-axis (c) cases. These diffusion coefficients were cal-

culated using the radial electric field from DKES (see figure 6.6b) . . . . . ..
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6.9

6.10

6.11

6.12

6.13

The signals from the 3rd LBO in discharge 180919049 are shown in blue with
the attempted matching from the STRAHL inference are shown in red with
the weighted residuals plotted below. The inference is performed on the scale
parameters for the signals and the anomalous diffusion profile, as seen in (f),
with the classical & neoclassical transport profiles included. The classical &

neoclassical transport profiles are the same as the ones used in figure F.1 . . .

The inferred anomalous diffusion profiles included the LBO injection timing as
a free parameter and with the classical & neoclassical transport profiles taken
from the DKES calculated profiles in figure 5.13 and 6.8 for the convection
velocity and diffusion respectively. The inferences are performed with (a) and

without (b) the two interior spline-knots allowed to move radially. . . . . . ..

The inferred anomalous diffusion profiles included the LBO injection timing as
a free parameter and the classical & neoclassical transport profiles taken from
the DKES calculated profiles in figure 5.13 and 6.8 for the convection velocity
and diffusion respectively. The profiles are exactly the same except plotted with
the least squares returned uncertainty in (a) and the total uncertainty from the

synthetic sensitivity studiesin(b). . . . .. .. ... ... L L.

The electron density, ion temperature, and the electron temperature radial pro-
files are plotted in (a), (b), and (c) respectively for the 4.9 MW input ECRH on-
to off-axis scan. Plasma discharge 20180919.045 in blue is completely on-axis,

while discharge 20180919.039 in green is the most off-axis scenario. . . . . . .

For 4.9 MW iron impurity transport dataset, each gyrotron’s normalized radial
position of ECRH deposition versus input power is plotted at the time of iron

LBO injection with on-axis shown in (a), some off-axis in (b), and most off-axis
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6.14

6.15

6.16

6.17

The HEXOS measured line emission for Fe*2? is shown versus time for each
ECRH deposition position. The global transport time is determined by an ex-
ponential fit to the line intensity starting ~ 65 ms after the maximum to ensure

that the shape of the iron density profileisrigid . . . . .. ... ... ... ..

The inferred anomalous diffusion profiles are shown in (a) which included the
LBO injection timing as a free parameter and the classical & neoclassical trans-
port profiles taken from the DKES calculated profiles. There are two on-axis
inferences shown in (a) where the SGL used the standard LBO injection shape,
while the DBL used a 2nd LBO injection delayed by 40 ms from the first. In

(b) is the % ratio for the three ECRH scenarios. . . . . . . . ... ... ....

The inferred anomalous diffusion profiles shown in (a) include the LBO injec-
tion timing as a free parameter and have LBO parameterizations that correspond
to the standard LBO injection shape (labeled with SGL) and the standard injec-
tion shape with an additional LBO injection delayed by 40 ms from the first
(labeled with DBL). Next the STRAHL modeled line emission corresponding
to Fe™*%’s 13.28 nm line is shown for the on-axis scenario with the double
injection in (b) and the single injection in (c). The global transport time is de-
termined by an exponential fit to the line intensity starting ~ 65 ms after the

maximum to ensure that the shape of the iron density profile is rigid . . . . . .

The electron density, ion temperature, and the electron temperature radial pro-
files are plotted in (a), (b), and (c) respectively for the 2.8 MW input ECRH on-
to off-axis scan. Plasma discharge 20180919.044 in blue is completely on-axis
exemplified by the peaked electron temperature, while discharge 20180919.046

in orange is the most off-axis case with the broader electron temperature profile.
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6.18

6.19

6.20

6.21

6.22

For 2.8 MW iron impurity transport dataset, each gyrotron’s normalized radial
position of ECRH deposition versus input power is plotted at the time of iron
LBO injection with on-axis shown in (a) and most off-axis in (b). (See footnote

TONSPACING) &« v v v v e e e e e e e e e e e e e e e e e e e e e e

The HEXOS measured line emission for Fe*2* is shown versus time for each
ECRH deposition position. The global transport time is determined by an ex-
ponential fit to the line intensity starting ~ 65 ms after the maximum to ensure

that the shape of the iron density profile is rigid. (See footnote i on spacing) .

The inferred anomalous diffusion profile is shown in (a) which included the
LBO injection timing as a free parameter and the classical & neoclassical trans-
port profiles taken from the DKES calculated profiles. In (b) is the % ratio for

the two ECRH scenarios. . . . . . . . . . . . o v i e e

The 4.9, 3.5, and 2.8 MW ECRH on- to off-axis T, profiles are shown in (a-c)
with their corresponding % ratios shown in (d-f). For the electron temperature
profiles the respective difference from the on-axis case is plotted below to il-
lustrate the variations caused from the off-axis ECRH scan. Also note that the
global impurity iron transport time, i.e. 77, are included in the legend for each

heating scenario. . . . . . . . . . ... L e

The 4.9, 3.5, and 2.8 MW ECRH on-axis T, and T, profiles are shown in (a)
and (b) respectively with their corresponding % ratios shown in (c). For the
electron and ion temperature profiles the respective difference from the 4.9 MW
case is plotted below with horizontal dashed lines at 0 and 400 eV to illustrate
the variations caused from the ECRH power scan. Also note that the global
impurity iron transport time, i.e. 77, are included in the legend for each heating

SCENATIO. . . v v v v v e e e s,
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6.23

6.24

6.25

Al

A2

The 4.9 MW on-axis, 2.8 MW on-axis, and the 4.9 MW most of-axis scenarios
have their T, and T; profiles are shown in (a) and (b) respectively with their
corresponding % ratios shown in (c). For the electron and ion temperature
profiles the respective difference from the 4.9 MW on-axis case is plotted below
to illustrate the variations caused from either the ECRH power scan or the off-
axis deposition scan. Also note that the global impurity iron transport time, i.e.

71, are included in the legend for each heating scenario. . . . . . ... ... ..

The inferred anomalous diffusion profiles are shown for the on-axis scenarios

at4.9, 3.5, and 2.8 MW with their corresponding global transport time labeled .

The on-axis ECRH power scan demonstrating the scaling of the normalized ion

temperature gradient length with % at the radial positionof p =0.6 . . . . ..

The magnetic field lines in gray are displayed on the nested flux surfaces of
CTH during an ohmic discharge with the color indicating the normalized strength

of the magnetic field with red corresponding to higher levels of (|B]). . . . . .

A basic schematic of a thomson scattering diagnostic is shown with its two ma-
jor components: the laser beamline and the collection optics. The schematic
shows the imaging of a laser beamline interacting with a plasma column, indi-
cated by the dashed lines, with the dispersed thomson scattered signal mapped
onto a detector. Additionally the doppler broadening of the thomson signal
from an electron fluid is shown with the temperature derived from the width of

the wavelength shift. . . . . . . . ... ... .. ... .o
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A3

A4

A5

A6

A7

A8

A diagram demonstrating the basic thomson scattering process with a linearly
polarized plane wave k; at frequency w; incident on a charged particle ¢ mov-
ing at a velocity v, with a detector in the k, direction. The double doppler
shift is shown vectorially and in the equation below the diagram utilizing the

conservation of energy in the charged particle’s rest frame. . . . . . .. .. ..

A top down view of the CTH vacuum vessel showing the mid-plane extent (~
61 mm) from the inner wall to the outer port positions for a potential thomson

laser beamline. . . . . . . . .. e

The laser beamline layout on the laser table with the three turning mirrors is
shown in (a) and the vertical distance from the laser table to the vacuum vessel

mid-plane is shownin(b) (~3.88m) . ... ... ... ... ... ... ..

The vertical laser beamline path is shown in green as it intersects flux surfaces
at three different time points during a plasma discharge for CTH. Also the blue

circle represents the CTH vacuum vessel. . . . . . .. .. ... ... .....

The basic single lens diagram for a gaussian beam propagating through a lens
with a focal length f where the input beam has a beam waist w, at position s.
The output beam waist w; at the image location a distance s; from the lens but

defined in local coordinates at z = 0. . . . . . . . . . . .. ... ...

The focused beam diameter (2w;) contour is plotted as a function of distance
from the beam waist, i.e. distance from CTH mid-plane (z), and the single lens
distance from the laser head (s). This beam diameter contour was calculated
for a real gaussian beam using the parameters: wy = 6 mm, A = 7.895 m, and

ZRaleigh =26.67m . . ... e
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A.9 In (a) the custom Brewster window nipple showing the differentially pumped
double o-ring grooves without the 4” fused silica window installed. Also note
the bleed valve installed on the nipple body and the rotatable flange attaching
the nipple to a gate valve. In (b) the bottom/exit Brewster window nipple is
installed on CTH showing the clearance from the concrete floor is enough for
the ISO flange for differential pumping and an inclusion of a turning mirror for

future beamdump. . . . . .. Lo

A.10 Brewster window diagram where 6; is the angle of incidence, 6, is the angle of
refraction, d is the thickness of the window, L’ is the distance that would have
been traveled by the light ray if the window was not there, L is the distance the
light ray traveled inside the window, and X 1is the beam displacement once it

has passed completely through the window. . . . . . ... ... ... .....

A.11 The beam diameter as a function of distance along the beamline is shown for
the gaussian beam calculation (blue line), the simple geometrical estimation
(purple line), and the measured diameters from laser burns (brown circles) for
a single f = 2.0 m lens. The key locations and the predicted gaussian beam
diameters are noted for the Brewster window (red box & dashed line), the pri-
mary baffle aperture (green box & dashed line), and the extent of the poloidal
cross section (black box & dashed line). Note that the green diamond repre-
sents a measured diameter from an in situ laser burn at the Brewster window
surface. Also note the diameter measurements as estimated from the burns are

not exact and can easily have + 0.5 mm errorbars. . . . . . . . ... ... ...
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with the thomson scattering geometry is shown with all of the thomson vacuum
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A.16 Top view of CTH vacuum vessel with 18” reentrant thomson scattering flange
shown. The red lines depict the measured position of the center of the top 10”
port where the beamline 1s located. Note that this measured position of the
beamline location is not the nominal center of the 10” port. The black arrows
show the laser polarization, which has ~ 86° angle with the vector perpendic-
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A.20 The output of the 1” usb camera is shown for three different image plane dis-
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Chapter 1

Introduction

This chapter is structured first to cover the basics of fusion energy going into the challenges
and giving context on the difficulty of achieving practical fusion energy on earth. Next a brief
overview on magnetic confinement is presented as an introduction to the Wendelstein 7-X (W7-
X) experiment where all of the iron impurity transport experiments were performed. After the
introduction of W7-X as an optimized stellarator there is a discussion on the basics of parti-
cle transport theory. The particle transport discussion is meant to provide an overview of the
transport types and relevant regimes pertinent for iron impurity transport in an optimized stel-
larator like Wendelstein 7-X. The particle transport definitions and their importance to the iron
impurity transport studies performed for this thesis will be discussed. Finally the specific iron
impurity transport studies with on- to off-axis Electron Cyclotron Resonant Heating (ECRH)
scans are presented and given context as to why these studies are relevant in a neoclassically

optimized stellarator like W7-X.

1.1 Fusion energy and magnetic confinement

e The difficulties of achieving a sustained fusion reaction can be estimated by the Lawson
criterion where a high density (10?° m~3), high temperature (10 keV), and long con-
finement time (1 sec) are necessary. In particular a 10 keV temperature indicates that a
reactor relevant device would need good confinement for a one second translating into
a distance traveled of ~ 620 miles underscoring the difficulty of fusion-grade plasma

confinement.



e A purely toroidal magnetic field will not confine a hot plasma and therefore a magnetic
field in the poloidal direction is necessary to give the resultant magnetic field lines helical
paths around the torus. This “twistedness” can on average nullify the deleterious effects

of the drifts induced from the toroidal magnetic geometry

Creating energy in a safe yet reliable way has been the impetus for developing both fission
and fusion reactors since the discovery of the nuclear force in the mid 1930s. The rapid success
of the research and development of the fission process is remarkable and unprecedented in
modern science. In a little over ten years scientists went from first discovery of the neutron as
a subatomic particle to the development of the first fission reactor, the Chicago Pile 1, in 1942
by Enrico Fermi. The reason so much effort was put into the research into nuclear physics was
that scientists recognized the amazing energy density stored in nuclear matter. In fact to give
some perspective on the enormity of the energy density a quick calculation of how much fuel
(in grams) is equivalent to one barrel of oil (42 gallons) can be preformed, where it is important
to note that one barrel of oil is equivalent to 6 x 10° Joules. For a typical fusion reaction of
deuterium and tritium, as shown in equation (1.1), only 0.018 grams of fuel (*D and 3T) is

necessary to produce the equivalent energy of a single barrel of oil.

D4+3T — a+n (1.1)

For both fission and fusion that’s six order of magnitudes less fuel (by mass) to produce the
same amount of energy. From these simple calculations, we can start to see that the potential
for utilizing the energy stored in an atom is enormous and why scientists would be interested
in utilizing a fusion process like the one shown in (1.1) for energy production.

After understanding the huge potential energy density offered by fusion, the question be-
comes why has a fusion power plant not already been built, especially considering the fast
development of fission reactors. To motivate the difficulty of achieving an energy-generating
sustainable fusion process, even a quick examination of the necessary parameters for fusion to
occur can reveal the depth of the challenge. The first aspect to note is that although there is

a huge amount of energy stored in the nucleus, the strong nuclear force holding the nucleus
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together only generates meaningful amounts of force at extremely short distances. In fact the
attractive nuclear force’s distance which it can start to overcome the coulomb repulsive force is
~ 3 x 107% or roughly 3 femtometers. Meaning for two protons to fuse a simple estimation of

the energy necessary to overcome the coulomb repulsive force is shown in the equation (1.2).

r Z2e2
V. =V, = / dr V.o 7.7x 107 or 4.8 x 10°%V (1.2)

~ 4megr?

A more intuitive way of understanding this huge amount of energy necessary to achieve fusion
between two protons is to convert this into a temperature: 480 keV/ is equivalent to 5.5 x 109K
or ~ 5 billion degrees. Thankfully due to quantum tunneling two ions (e.g. two protons)
can fuse at much lower temperatures and in fact most proposed fusion reactor designs have
temperatures at ~ 10 keV'. However even at this lower temperature, the ions will still need
to be heated to ~ 100 million degrees. At these temperatures all particles will be ionized
leaving a fluid of electrons and positive ions that generally form the fourth state of matter called
a plasma.? To achieve these extremely high temperatures requires very high power heating
sources and the plasma itself can make this task more complicated due to the potential for fluid
velocity differences leading to currents & self-perturbing magnetic fields which can disturb the
confinement. Therefore the challenge is not only achieving the high energies needed for fusing
two ions together, but also the nontrivial method of sustainably heating those particles up to the
necessary temperatures.

Unfortunately the basic challenges of achieving viable fusion do not stop there and to
understand another aspect of the challenge the collision between energetic ions should be re-
visited. An important consideration is the cross section for a nuclear reaction to occur since
energetic ions, even if they have the adequate energies for fusion, will never fuse if they don’t
collide. In our simple model for calculating the necessary temperature to achieve fusion we
made the inherent assumption that the ions had the exact velocities to be on a collision course.
To examine a more realistic case we must relax this assumption and take into account that there

is a finite area (i.e. cross section) for a fusion reaction to occur. In the classical model, where

#To be precise, a plasma has to have a critical number density and have collective behavior otherwise it is just
an ionized gas.



the ions are modeled as hard spheres, we can actually use the known diameter of an ion to
calculate this cross section. Based purely on flux arguments a probability per path length can
be derived and leveraged into a basic estimate of the necessary ion density to achieve a realistic
fusion power density.” Using the specifications for a typical proposed fusion reactor, 2000 MW

with a plasma volume of 400 m?3, the necessary fusion power density is roughly ~ 5 x 106%.

Fusion power density = En?a’u (1.3)

Then using the energy per 2D & *T fusion event (E ~ 2 x 10~'2J), the fusion event cross
section (0 ~ 1x 107**m?), and the ion velocity at fusion relevant temperatures (v ~ 1 x 10°2)
the resultant ion density required is shown through equation (1.3) to be n; ~ 1.5 x 10%.
Converting this into a pressure roughly results in P ~ 2.4 x 10° Pa where standard air pressure
at sea level is 1.01 x 10°Pa. At face value this magnitude with over double air pressure at sea
level doesn’t seem extraordinarily large, until the realization that this ion pressure level needs
to be maintained at extraordinary particle energies. In fact such a density of high-temperature
plasma begins to show why confinement is so important since even small amounts of flux to
the reactor walls have the potential to quickly disperse the plasma and even melt the walls.
Therefore for any serious sustainable fusion process a high density of particles is necessary to
get enough fusion reactions per unit volume and this density needs to be maintained over time
for any hope of an operational fusion reactor.

In addition to the already outlined high density and high temperature challenges for a
fusion reactor, a third major difficulty arises from the confinement necessary for these highly
energetic particles to fuse. A rough estimate for what the confinement time can be estimated
by using the probability per path length, the ion’s thermal velocity, and the general size of a
proposed reactor (R = 5 m). The first step is to utilize Probability per path length = on; ~
1.5x1078m 1! to estimate the necessary distance the particle must travel to have any significant

probability for a fusion event, where anything > 1% is considered significant.® Therefore the

®Note that the probability per path length is the inverse of the mean free path, which is defined as the average
distance traveled before a collision occurs.
“See footnote b.



ions must travel ~ 10° meters to yield any significant probability of undergoing a fusion event,
which for a toroidal reactor with major radius of 5 m corresponds to ~ 32,000 orbits around the
torus. With these parameters the time an ion needs to be confined for a ~ 1.5% probability of a
fusion event to occur can be estimated, time ~ 1186% = 1 second. From the shear distance that
the particle needs to be confined (~ 620 miles) to have a small (but finite) chance of fusing, the
difficulty of confinement is made quite clear. Even in the more feasible toroidal reactor, the hot
ions need to make over 30,000 orbits without hitting the wall of the chamber and without its
density dropping.

Therefore creating an energy-generating sustainable fusion reactor has a multitude of dif-
ficulties to over-come before the fusion reactor can become a reality. More specifically the
deuterium tritium fuel must be superheated to achieve the high temperatures and the high den-
sities necessary all the while keeping the formed plasma in a contained equilibrium. Thus the
problems of building a fusion reactor stem from three main aspects: temperature, density, and
confinement. This is most famously detailed in Lawson’s criterion, which is just the product of

density (n) and energy confinement (7z).!!

12k, T

14
(ov)eq — 41 Zess (ka)0'5 14

Lawson criterion = nt =

This equation is important because it is a special form of the ignition condition which tells us
the values of density, confinement time, and temperature necessary for a more realistic fusion
process to occur. More specifically the ignition condition is really an equation describing the
power balance of « particle heating with energy losses stemming from thermal conduction and
Bremsstrahlung, the emission of radiation as the particles are accelerated/decelerated during
their orbits. In fact these parts can still be seen in the Lawson criterion where 4c; Z. ¢ (k:bT)O'5
is the term associated with the energy loss of the plasma due to Bremsstrahlung, (ov)e, is
the term associated with the energy from the alpha particles, and 12k;,7" is the term associated
with the internal energy of the plasma that is lost over a confinement time. Therefore the

Lawson criterion is an important measuring stick to evaluate the more realistic values of density,

confinement time, and temperature to achieve a self-sustaining fusion process (i.e. ignition),



which for a 2D & ®T fusion process requires a triple product of (n7T") > 3.5 x 10215;“1—2‘/. This
is very useful for a first order approximation of the conditions necessary to achieve fusion. For
example, with 7' =15 keV and 7 = 1 sec a density of n; = 2.3 x10?°m =3 to achieve fusion.
From the Lawson criterion it is evident that the long confinement times necessary for a fusion
reactor is most likely the hardest to achieve since doubling the confinement time means our
density just decreases by half, but is still in the x10%°m =3 range.? This partially explains why
properly containing & sustaining fusion reactions in a hot plasma is extremely difficult since
it necessitates the simultaneous creation of high temperatures & high densities in a plasma
required to keep the hot ions within its bulk for at least one second.

In general there are many different methods and types of devices that have been developed
for fusion energy, but historically magnetic confinement fusion has received the majority of
development and research causing it to be the leading method for achieving fusion energy.
The basic idea of magnetic confinement is to leverage a sufficiently strong magnetic field to
control the ionized particle orbits via the lorentz force, F = q (E + U X E) . This immediately
creates an anisotropy for the plasma with directions parallel and perpendicular to the magnetic
field experiencing very different particle motion. As will be discussed in section 1.2.1, in
a straight field geometry this leads to classical transport due to Coulomb collisions, but in
the absence of Coulomb collisions between different plasma species leads to no net particle
losses perpendicular to the magnetic field. In a straight magnetic field particles can free-stream
parallel to this field meaning they would easily escape any finite plasma.® Therefore to prevent
these end-losses the magnetic field can be wrapped in on itself to form a torus. As shown
in figure 1.1 the toroidal direction (¢) corresponds to the long way around the torus, while
the poloidal direction (#) corresponds to the short way around the torus. Although this torodial
structure is the most common shape for magnetic confinement devices, a pure toroidal magnetic
field does not provide adequ<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>