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Abstract

This dissertation investigates approaches to achieve optimal pooling of renewable energy

sources through risk-averse portfolio optimization methods. The first chapter aims at evaluating

the potential for an approach targeted at addressing the issue of limited predictability of wind en-

ergy generation, as opposed to intermittency, which has been previously considered in the literature.

Specifically, a portfolio optimization model for intelligently constructing a wind energy portfolio

for a given harvesting region with the goal of reducing the prediction error is proposed. The math-

ematical model, based on Conditional Value-at-Risk (CVaR) optimization methodology, is used to

evaluate potential improvement in (day ahead) generation predictability for a collection of loca-

tions in the USA. The study concludes that pooling indeed can significantly reduce wind energy

generation forecasting error, with the effect largely dependent on the size of the harvesting region.

Further, if advanced optimization techniques are used, it is possible to balance this reduction with

average generation output.

The second chapter aims to evaluate the impact of reducing limited predictability on battery

sizing through creating a ’proof-of-concept’ experiment. In particular, a heuristic approach is pro-

posed to the problem of simultaneous optimization of generation portfolio and battery sizing. The

mathematical models is a bi-level problem, based on conditional risk value (CVaR) optimization

methodology on the first level, and a operational planning problem to evaluate installed battery

capacity on the second. The study concludes that the heuristic approach with pooling significantly

reduces required battery capacity according to operational plans, and the effect varies on the size

of the harvesting region or the degree of the technology combination. Further, it is possible to

diversify the pooling leading to overall operational cost reduction. Consequently, the results imply
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that the positive effect of pooling diverse wind resources can be an important factor in planning for

generation expansion projects.

Lastly, the third chapter considers a similar multilevel modeling approach, but solves it ex-

actly. The mathematical model is used to evaluate potential cost improvement in a Virtual Power

Plant (VPP). In particular, at the first level, Mean conditional risk value (Mean-CVaR) optimiza-

tion model is used to create an optimal portfolio for minimizing intermittency. The second level

of the optimization procedure is based on linear programming for operation planning to minimize

the total operation cost. The bi-level problem is solved by employing optimality conditions. The

study shows that the multilevel model leads to significant savings in total operation cost compared

to the benchmark (heuristic methodology). Further, the total cost is also significantly decreased

as the pooling region is increased. This improvement is directly related to the size of the harvest-

ing region. Consequently, this research contributes to the operational planning in VPPs through a

multilevel model that advanced pooling approaches.
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Chapter 1

Introduction

Generation output variability is often cited as a significant drawback of many renewable energy

sources, particularly, wind and solar [1]. Two facets of variability that are often considered are

intermittency and (limited) predictability. Intermittency usually refers to the extent to which a

power source is unintentionally stopped or partially unavailable (due to the underlying weather

factors in the case of wind and solar power). Predictability refers to the ability of the operator to

accurately estimate ahead of time the amount of electricity that can be generated in the future. By

definition, an energy source can be intermittent but predictable, or vice versa. In the case of wind

energy, both issues can be significant factors. The amount of electricity produced at any given point

in time by a given wind plant will depend on wind speeds and air density both of which can rapidly

change, resulting in intermittency [2]. Both, while variable, can be highly predictable in the short

term. At the same time, over longer periods, e.g., a day ahead, wind speed forecasting, in particular,

can be poor [3]. While employing portfolio-based approach for reducing renewables’ intermittency

has been studied in the literature, similar effect on forecasting error has not been widely explored.

Consequently, the first research direction, considered in this dissertation considers modern portfolio

optimization techniques as a way to address this gap.

Renewable energy is a valuable supplement or even (in the near future) a replacement to con-

ventional energy sources fuelled by growing concerns about the environmental impacts of the elec-

tricity sector. There has been an increasing interest to invest in renewable energy. For example,
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60.4 GW of wind energy capacity was installed globally in 2019, a 19% increase from installa-

tions in 2018, the second-best year for wind historically ([4]). At the same time, the maximum

penetration of renewable energy is limited by the variability nature of the energy input. Moreover,

it is important to note that both this effect and generation potential are dependant on characteris-

tics of the region. As a result, the grid system needs to prepare more ancillary services and build

infrastructure, such as energy storage systems to address the issue of variability. Therefore, it is

important for policymakers to be aware of the best strategies for efficient installation of such ancil-

lary services and for building energy storage systems since the associated cost may not be trivial

([5]). The size of an ESS is one of the most important factors, which can be even more important

for microgrids since the cost of batteries may constitute a sizable portion of the overall investment

in this case. Therefore, downsizing an energy storage system is desirable. To this end, we secondly

propose a heuristic approach for accounting for the presence of storage capacity and demand, and

investigate to which extent pooling can be helpful in this case. We specifically concentrate on the

question of whether pooling from geographically large areas may be beneficial. Note that even

if the customer is not distributed over a large area, it may still be possible to take advantage of

geographical pooling. For instance, the TransWest Project in the United States seeks to build a

new grid infrastructure to balance renewable energy by supplying renewable energy produced in

Wyoming to the southwest [6].

Virtual power plants (VPPs) are a special type of agent, that is particularly suitable for taking

advantage of pooling, as investigated here. VPPs integrate a number of distributed energy resources

in different areas and, aim to exhibit coordinated dispatching through the networks of distributed

energy resources and energy management system (EMS) ([7]). They can be relatively flexible in

constructing the energy portfolios and so can more easily take advantage of optimization techniques

([8]). At the same time, the importance of renewable energy within the smart grid is increasing due

to the problems caused by the excessive use of fossil fuels ([9]). For example, European Union (EU)

has a goal to achieve zero net emissions of greenhouse gases for all EU member states by 2050, in
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response to climate change process ([10]). However, renewable power uncertainty (intermittency)

is still recognized as a disadvantage. Even in the case of wind energy, the volatility of production

is high depending on climate conditions (wind speed, air density), etc. Indeed, high intermittency

results in requirement to increase either the installed wind facility or backup generations in order

to be able to meet demand. To mitigate high intermittency, it is widely accepted that by combining

together resources from varied geographical locations it is possible to reduce the severity of issues

related to intermittency [11]. Hence, it is clear that aiming to diversify the portfolio of renewable

energy reduces the uncertainty in the energy management system. Apart from renewable power

uncertainty, load demand and market price are also common uncertainties in VPPs optimization

problems. On the other hand, VPPs can explicitly optimize the generation portfolio, since they are

not restricted by capital investment constraints. Consequently, the final chapter of this research ef-

fort investigates the effect of simultaneous optimisation of generation portfolio, storage investment

and operational performance, resulting in combined optimization problem. While the previous

chapter, this problem was solved heuristically (by splitting the stages), in the final chapter we find

exact optimal solution by employing optimality conditions.

The contributions of the modeling approach from the optimization perceptive are as follows. In

the first topic, we develop an optimization framework for designing wind energy portfolios for re-

ducing forecasting error based on the mean-CVaR portfolio design problem that minimizes the risk

associated with forecasting error, while ensuring satisfactory average performance. The problem

is formulated as an LP and follows from the usual risk-averse stochastic optimization framework.

In the next topic, we proposed a two stage optimization problem, where on the first stage the gen-

eration portfolio is selected, and then on the second stage, an ESS sizing problem is solved. Due

to computational challenges, we also investigate a heuristic approach to solving it, whereby the

stages are separated and solved one after the other. In the last topic, we design a multilevel model

optimization problem for optimizing a wind energy portfolio and optimization of operation plan-

ning at the same time, this time solved exactly. This approach is more comprehensive compared to
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the two-stage model by allowing to optimization of the total cost over both operation planning and

portfolio simultaneously, by employing optimality conditions for the lower-level problem.

The remainder of the dissertation is organized as follows. Chapter 2 provides a research result

of Reducing forecasting error by optimally pooling wind energy generation sources through port-

folio optimization. Chapter 3 presents the research result of optimizing the energy storage capacity

through portfolio optimization in a smart grid system. Chapter 4 discusses the research result of the

Multilevel modeling with a risk-averse model for renewable energy management in virtual power

plants. Finally, the conclusion part concludes the discussion, limitation and outlines some ideas for

future research.
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Chapter 2

Reducing forecasting error by optimally pooling wind energy generation sources through portfolio
optimization

2.1 Introduction

It is widely accepted that reduction of variability can have a direct benefit to competitiveness

of renewable energy. Naturally, high intermittency results in the need to increase either the installed

renewable energy capacity or backup conventional generation in order to be able to satisfy demand

during the periods of low renewable generation. Similarly, an increase in generation predictability

can significantly simplify and/or increase efficiency of planning and operation of the energy grid,

for example in the case unit commitment problems, which often rely on day-ahead generation fore-

casts and are often formulated as stochastic programs. Note though that variability of an energy

source can have smaller effect on the overall system if either renewable sources penetration is low,

or ample storage is available. At the same time the former condition is not desirable due to the en-

vironmental considerations, while the latter can require prohibitively expensive investment levels.

Even if relatively large-scale storage is feasible, it is still beneficial to reduce source variability,

since it can result in improved overall system efficiency. This then means that, if possible, sig-

nificant reduction in variability has the potential to make renewable energy more competitive, and

hence, enable its wider use.

It is well-established in the literature that by combining together resources from varied ge-

ographical locations and/or technologies it is possible to reduce severity of issues related to in-

termittency. This can be easily understood by noting that any time two uncorrelated (as well as
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poorly or negatively correlated) signals are combined, the overall variance is reduced, resulting in

a phenomenon often referred to as risk reduction through diversification. While the weather (wind

speed or solar irradiation) changes very little over a small area, it can vary significantly over larger

regions, making it possible to take advantage of diversification. Multiple researchers have pointed

out ways to exploit this effect and outlined potential benefits. For example, [12] noted that: “high

frequency variability of wind-generated power can be significantly reduced by coupling outputs

from 5 to 10 wind farms distributed uniformly over a ten state region of the Central US. More than

95% of the remaining variability of the coupled system is concentrated at time scales longer than

a day, allowing operators to take advantage of multi-day weather forecasts in scheduling projected

contributions from wind”. More examples and some conclusions are reviewed in Section 2.2.

This work focuses on two issues related to geographically pooling renewable energy sources

(wind generation in this case), that are not widely studied in the literature. First, the same mecha-

nism that results in reduction in intermittency with geographical pooling also applies to forecasting

error. Indeed, it is natural to expect that the difference between the actual and predicted wind

generation will be strongly correlated over smaller regions and only weakly correlated over the

larger ones. Hence, it is surmised that it may be possible to simultaneously reduce severity of

both intermittency and unpredictability of renewable generation. At the same time, this aspect of

the effect of geographical pooling of generation sources has not received as much attention. Sec-

ondly, most of the existing research claiming benefits due to pooling does not focus on the best

strategies for such pooling. In other words, most of these results are based on simple, often naive,

approaches to designing geographically diverse energy portfolios (usually, by simply combining

equally sized production sites). At the same time, it is also clear that by applying more advanced

diversification tools it may be possible to further improve on pooling benefits. For example, the

covariance structure between geographically diverse generation sites (and corresponding forecasts)

may be complicated with some pairs of generation profiles less correlated than others, which can

be exploited through intelligent overarching planning.
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Consequently, the goal of this effort is to consider the following three research questions:

1. to what extent is it possible to reduce the forecasting error in wind energy generation by

pooling together geographically diverse sources;

2. how much is such pooling efficiency dependent on considering advanced portfolio optimiza-

tion techniques;

3. how large of an area is required in order to take advantage of improved forecasting accuracy

due to pooling.

To this end, we design a simulation study, based on realized and foretasted (day ahead) wind gen-

eration data for a collection of states in the US. This paper uses risk-reward portfolio optimization

with Conditional-Value-at-Risk (CVaR) as the underlying pooling technique due to its popularity in

stochastic optimization research. One year worth of historical observations (training data) is used

to construct a collection of optimized wind generation portfolios as well as benchmark options, and

then evaluate their performance in terms of average generation and forecasting error for a series of

test regions, ranging from county-level to state-level.

The contributions of the effort are as follows. First, this paper develops an optimization frame-

work for designing wind energy portfolio with the goal of reducing forecasting error based on

mean-CVaR portfolio design problem, i.e., a problem that minimizes the risk associated with fore-

casting error (measured by CVaR), while ensuring satisfactory average performance. Secondly, by

employing the model in a case study, it can be observed that the forecasting error in wind gen-

eration on a state-level can be significantly reduced for all six states tested, with the scale of this

improvement dependent on the size of the harvesting area. We observe that, while it is possible to

reduce forecasting error by straightforward approaches without portfolio optimization, employing

advanced analytical approach allows for careful balancing of average generation and forecasting

error. Furthermore, significant reduction in error can be observed with relatively few generation lo-

cations pooled. The study also quantifies the effect of distance on pooling efficiency, which varies
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from 1% to 4% reduction in relative forecasting error per 100km of diameter. Finally, we also

illustrate how the proposed portfolio can lead to an increase in use of renewables by considering

a battery sizing problem. Specifically, for the example instance considered, the pooled sources

allow for a significantly higher proportion of energy from renewable used compared to non-pooled

portfolios.

The proposed model and the conclusions can be used in a number of settings related to plan-

ning of renewable energy expansion. Virtual power plant (VPP) design and operation can be an

example particularly suitable for such analysis. VPPs are service providers acting as an interme-

diary between distributed energy sources and the wholesale power market. As such, they can be

relatively flexible in constructing the energy portfolios and so can more easily take advantage of

optimization techniques. See [8] for a detailed discussion of VPPs, their role in energy markets and

their effect on integration of renewables.

This research also has a direct relevance to the very broad set of research topics related to

design of electricity markets in the presence of large proportion of renewable generation and coali-

tion building in smart grids, see for example, [13, 14] among many others. While these are not

directly discussed here, since the considered modeling approach by design relaxes many practical

considerations in order to specifically consider the effect of pooling on forecasting error only, the

conclusions made can be relevant in informing the potential benefits of expanding geographical

diversity of renewable generation sites.

The remainder of the paper is organized as follows. Section 2.2 provides a review of relevant

literature. Section 2.3 presents the proposed risk-averse optimization model with mathematical for-

mulation and the corresponding methodology used to organize the case study. Section 2.4 discusses

the results of the case study. Finally, Section 2.5 concludes the discussion and outlines some ideas

for future research.
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2.2 Literature Review

The idea of reducing generation output variability through pooling intermittent energy sources

together is not novel and has been widely accepted in the literature. A number of approaches

looking to describe this effect from different perspectives have been proposed so far and a thorough

review of some of these can be found in [15]. Since most of the relevant literature deals with

intermittency aspect of renewables variability, we first briefly review results related to the effect

of pooling geographically or technologically diverse generation sources for smoothing the output

profile. We then move on to reviewing the limited literature on wind energy forecasting as related

to variability reduction. We also briefly discuss the problem of wind generation forecasting itself.

We conclude with an overview of (stochastic) optimization methods that have been applied to

renewable energy portfolio design.

Reducing intermittency through pooling The underlying principle of risk reduction through

diversification relies on the possibility of combining weakly correlated (or negatively correlated)

output signals together. A number of studies have presented evidence of weak negative correlation

between wind and solar generation profiles for a wide variety of countries and climates. For exam-

ple, [16] found that solar and wind power are negatively correlated on all time scales, from hourly

to annual, but that the correlation is strongest for monthly totals in Sweden. Other examples can

be found in [17, 18]. Similarly, even in the absence of technological diversity, i.e., if, for example,

only wind energy sources are considered, very weak output correlations can be observed as long

as harvesting area is large enough, as observed in, among others, [19] and [20]. The authors of

[21] found an 87% reduction of the variability of a single wind plant is obtained by interconnecting

4 wind plants located over 500 km apart. Consequently, we can conclude that there exists clear

evidence that larger harvesting areas can contain locations with diverse generation profiles, which,

if combined into portfolios, may lead to reduction of variability.
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A number of studies have attempted to evaluate the effect of such reduction under specific

practical applications. This can be achieved by considering either a practical power systems setting

or applied investment problem. Examples of the former include [22], which proposed a risk-averse

model with technical power constraints for an energy portfolio; and [23], in which the authors stud-

ied the integration of RES into a distribution network with power system constraints to optimize

the framework. A typical example of the latter case is [24], which considers the problem of con-

structing a virtual power plant by pooling different real solar and wind plants together. In [25], the

authors proposed an economic model for minimizing investment risk and maximizing the internal

rate of return (IRR) of a portfolio of renewable in the Spanish electricity market. The research in

[26] presents an investment timing and capacity selection plan based on Real Options analysis for

renewable energy assets. The authors of [27] quantified the geographic smoothing effect of large-

scale wind energy deployment (1300 wind farms) over various spatial and temporal scales using

a variance minimizing algorithm. Finally, [28] presented Monte Carlo simulations model for the

benefits of geographic diversity of wind generation and investigated upper bounds on the degree of

achievable smoothing according to the number of plants and on the size of the geographic area.

Wind generation forecasting and pooling Predictability problem is distinguished from inter-

mittency (variability) and both are closely related to decision-making in operations and markets

[29]. Majority of the existing studies described above explicitly focus on exploiting reduction in

intermittency (i.e., smoothing of energy generation). At the same time, as already noted, it is nat-

ural to surmise that similar approaches can be viable for the purpose of reducing forecasting error.

Indeed, a number of studies have investigated the correlation structure between solar and wind or

between a collection of wind or solar sources, which generally confirm existence of weak nega-

tive correlations between wind and solar error, as well as weak correlation in forecasting error of

geographically distant wind outputs. For example, [30] found that the smallest forecast error is

obtained by combining 30% solar and 70% wind resources for Brazil’s Northeast region.
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Note that the problem of wind (or solar) energy generation output prediction is in itself very

challenging and, depending on the forecasting approach, pooling may result in different outcomes.

Most efforts focused on either a physical or statistical modeling using meteorological data to im-

prove the accuracy of generation forecast [31]. For example, [32] proposed artificial neural network

(ANN) model for a short term wind power generation forecast, while [5] focused on meteorological

aspects (solar irradiance, wind speed, etc.) to improve an artificial neural network (ANN) model.

Other examples of such an approach can be found in [33, 34]. For our purposes, this study uses al-

ready generated forecasted wind generation data openly available through the National Renewable

Energy Laboratory (NREL) [35]. It uses the Weather Research and Forecasting Model (WRF) run

on a 2-km grid over the continental United States at a 5-min resolution. A detailed description of

the underlying models is available in [36, 37].

It is worth emphasizing that many of the studies cited above that are explicitly looking at the

effect of pooling do not in fact employ any advanced risk optimization methodology and instead

rely on naive diversification. Advanced stochastic optimization models have been used in a number

of similar settings and are usually focusing on capital planning, operation cost minimization, plant

profit maximization, etc. Some of these studies are reviewed in the remainder of this section.

Optimization methods for renewables portfolio design From the optimization methodology

perspective, most approaches widely used in financial portfolio design have also been used in

energy portfolios, e.g., Markowitz mean-variance, real options analysis, Internal Rate of Return

(IRR), Value-at-Risk (VaR), and Conditional-Value-at-Risk. For example, [38] studied risk analy-

sis for the solar and wind financial planning of investment cost by implementing VaR and Expected

VaR in the simulations conducted. This methodology was also applied in [39] to evaluate proposed

roadmaps for solar PV and wind-onshore energy. The research presented here employs mean-CVaR

optimization methodology, and consequently in the remainder of this section we focus on CVaR

optimization models.
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Originally proposed for financial portfolio optimization in [40, 41], CVaR is a measure of risk

that represents the average losses over a number of worst cases. Naturally, it can be used to limit the

risk and is often considered as the standard approach in many stochastic optimization applications,

including energy portfolio design. CVaR, by definition, can be used to assess the effect of the tail

of the loss distribution, and so is particularly relevant for the applications involving heavy-tailed

distributions. In the case of energy planning, these often include wind and/or solar generation,

market prices and energy demand, or more long term risks, such as effect of climate change or

policy decisions. Further, as is the case with financial applications, risk-aware decision making can

be important on different time scales, as long as the underlying process can be sensitive to sudden

changes in the stochastic parameters.

In the case of a long-term planning horizon, capital planning problems are often considered.

For example, the authors of [42] combined real options analysis and CVaR portfolio optimization

theory to assist investors with capacity planning in power generation assets under uncertain climate

policy, while [43] suggested a CVaR model to evaluate the risk-reward characteristics in U.S. listed

infrastructure index returns. Research efforts that can be characterized as medium-term planning

include, among others, [44], which developed a generation company model that applies market

price forecasts to the risk-constrained stochastic price-based unit commitment (PBUC) in energy

and ancillary services markets, as well as [45], which proposed a stochastic mixed-integer linear

model for maximizing the joint profit of wind and hydro units.

CVaR has also been employed in addressing uncertainty related to immediate volatility of

either renewable energy generation or market electricity prices. To list a few notable examples,

the authors of [46] studied a CVaR model for identifying bidding strategies in short-term energy

markets for a wind power producer that enable a significant decrease in the risk of profit variability

for a comparatively small reduction in expected profit. In [47], the authors proposed a risk averse

scheduling model for the next 24 hours with a minimum CVaR objective for maximum operation

revenue. The authors of [48] developed a CVaR-based algorithm for two different short-term (a
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time horizon of 1 week) problems, where the decision-makers are exposed to high volatility of

electricity spot market price. Other similar examples of such a short-term approach can be found

in [49] and [50].

A comprehensive review of advantages and disadvantages of different risk-averse approaches

to decision making under uncertainty from the perspective of stochastic optimization can be found

in [51]. Primarily following the discussion there, we chose to use CVaR as the basis for the opti-

mization problem in this effort for the following reasons. First, as evidenced by the review above,

it has been extensively used in decision making related to electricity generation before, including

in similar circumstances. Secondly, when employed in an optimization framework (as is the case

in this study), it allows for an efficient implementation as a linear program. It must be emphasized

that some other approaches, e.g., VaR, chance constraints or variance-based analysis, can lead to

significantly more challenging formulations from the numerical perspective, while the use of CVaR

allows us to solve relatively large-scale instances (1 year worth of hourly generation scenarios). Fi-

nally, CVaR is a coherent measure of risk and has been shown to conform to a number of intuitive

requirements for a decision making under uncertainty criterion.

The approach used in the current research effort is most similar to the models presented in

[24] and [15]. The former, considers an energy portfolio optimization problem for virtual power

plant with the goal of reducing the risk due to volatile wind and solar generation and constructs

stochastic scenarios based on hourly records. In contrast, here we focus on quantifying the effect of

pooling rather than operational planning. The latter, also employs hourly wind and solar generation

volatility to illustrate the ability of portfolio optimization techniques to reduce renewable energy

intermittency. The research presented here employs a similar framework but focuses on effect of

pooling on forecasting error.
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2.3 Research methodology

The study is organized as a series of simulation experiments. A collection of diverse ge-

ographical areas (from county to state-sized) is selected for the analysis. For each region, this

study chooses a subset of wind generation sites available through NREL [35]. We then apply the

procedure depicted in Figure 2.1. We first download historical data on hourly wind energy gener-

ation and (hourly) day-ahead forecast for the selected collection of sites. Years 2008–2012 were

selected for the analysis based on data availability. After data pre-processing, a portfolio optimiza-

tion tool (mean-CVaR) is applied to obtain a family of optimal generation portfolios with the goal

of minimizing the forecasting error over training period of one year (2008). We then compare their

performance (over the testing period of 2009–2012) against benchmark approaches.

It is worth noting here that, while the total of five years worth of data is available, in the re-

mainder of this manuscript only the first year is used for training (solving the optimization problem)

and the rest for testing (evaluating portfolio generation profile). First, naturally, one year worth of

data is the minimum duration that is still able to account for seasonality, which coupled with the

need to reduce the size of the testing set for the sake of computational efficiency is the primary

reason for this choice. Secondly, in a preliminary analysis it was established that optimal portfolios

obtained based on more than one year of training data do not significantly differ from the base case

used here, which was not the case for training sets smaller than one year. We do not report on these

results in detail here for the sake of brevity.

2.3.1 Data sources description

We collected actual and forecast generation data provided by National Renewable Energy

Laboratory (NREL) from DR POWER [35]. The database provides observations on actual and

forecasted wind energy generation for wind sites installed in the U.S. Specifically, the data is de-

rived from the Wind Integration National Dataset (WIND) Toolkit [52]. Meteorological data is
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Figure 2.1: Diagram of the overall case study framework.

reported for measurements at 100m above ground level at 5-minute resolution and supplemented

with computed wind power (MW/h) assuming a 100m standard hub height. Forecast wind gen-

eration data is generated as hour or day ahead. For our case study, we only use the calculated

wind generation values down-sampled to hourly observations (to match with the forecast data) and

day-ahead forecast. Finally, we scale the generation and forecasted values by applying Levelized

Cost of Electricity (LCOE) as a normalization parameter, since it is a commonly used in renewable

energy studies [53, 54, 55]. Note that for our purposes here scaling is, in fact not important, since

the CVaR minimization problem is scale-independent.
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2.3.2 Modeling assumptions

The proposed portfolio design model makes the following important simplifying assumptions.

• We concentrate on wind generation only. Note that a similar study could be conducted for

solar energy. We do not include solar in the current study since no similar forecasted data has

been available to the authors with sufficient time and spacial resolution.

• We assume that portfolio selection problem consists of two decisions: selection of genera-

tion sites and their corresponding investment levels. Further, investment in each location is

independent from the rest of the system (only bounded by the overall budget).

• Generation observed from each site is linearly proportional to the investment level. In other

words, any discrete or nonlinear dependency between investment and generation capacity are

ignored.

• Considerations related to storage and transmission costs are also ignored. Note that in prac-

tice pooling efforts are closely related to expansion of the transmission system and energy

storage infrastructure. However, to avoid confounding the pooling effects with transmission

or energy storage effects, we purposely eliminate the power engineering constraints in this

paper.

These assumptions, while making the model less practical, allow us to construct computationally

tractable mathematical model, and hence, evaluate the potential effect of pooling on wind energy

generation and forecasting error, as detailed with the research questions identified above.

2.3.3 Data sources description

Actual and forecast generation data is available through National Renewable Energy Labo-

ratory (NREL) and DR POWER database [35]. It provides observations on actual and forecasted
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wind energy generation for wind sites installed in the U.S. Specifically, the data is derived from

the Wind Integration National Dataset (WIND) Toolkit [52]. Meteorological data is reported for

measurements at 100m above ground level at 5-minute resolution and supplemented with computed

wind power (MW/h) assuming a 100m standard hub height. For our case study only the calculated

wind generation values down-sampled to hourly observations are used to match with the forecast

data which is only available with hourly resolution. Note that while both hour-ahead or day-ahead

forecasts are provided (both with hourly resolution), only the day-ahead series are employed for

the case study. It can be expected that hour-ahead forecasts are relatively accurate, which naturally

severely bounds the potential effect of pooling on reducing that particular error. Further, day-ahead

forecasts are widely used in planning, for example, unit commitment problems [56].

2.3.4 Risk-averse optimization model

Our portfolio construction methodology is based on risk-averse stochastic optimization, mean-

Conditional Value-at-Risk (mean-CVaR). A detailed review of risk-averse stochastic optimization

literature is beyond the scope of this discussion. The reader is advised to consider [40, 41] for

a discussion of CVaR, as well as [51] for a comprehensive survey of risk optimization methods.

Approach similar to ours has been previously considered in [15]. Note though, that there the model

is used for balancing intermittency in energy generation (by minimizing CVaR of the observed

energy output). Since the goal here is in minimizing the forecasting error, the model should be

amended accordingly. Specifically, the constructed optimization problem minimizes the CVaR of

relative forecasting error over the training set, which, by design can translate into more favorable

error profile over the testing set.

Consider the problem of constructing the optimal energy portfolio, by pooling n pre-identified

potential generation sites. Denote as A and F random vectors representing the actual and (day-

ahead) forecasted generation from the selected sites. These can be modeled as taking values ac-

cording to one of equiprobable scenarios based on historical observations, i.e., Aij and Fij give the
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actual and forecasted generation at site i under scenario j, where j corresponds to all hour-long

periods in the training set (total of m records).

The problem is then to select portfolio weights xi for each site i, so that the obtained generation

profile exhibits desired properties. Specifically, in a mean-CVaR framework, the portfolio such that

it guarantees a level of average generation and minimizes the risk of forecasting error (measured

by its CVaR) is selected. In this case, the average generation from portfolio x can be evaluated

as
∑n

i Āixi, where Āi is the average generation at site i. Forecasting error (random vector ε(x))

under scenario j is given by εj =
∣∣∣∑n

i=1(Aij − Fij)xi

∣∣∣. Then define the problem of minimizing

the CVaR of the forecasting error, while maintaining target average generation as

min
x∈Rn

{
CVaR

(
ε(x)

) ∣∣∣∣ n∑
i

xi = 1, E(ATx) ≥ A0, x ≥ 0

}
, (2.1)

where A0 denotes the target average generation and α gives the tail parameter in CVaR. Using stan-

dard optimization problem formulation for CVaR (see more details in [51]) it can be reformulated

as the following linear program, by introducing auxiliary variables w and η.

min
η∈R,w∈Rm,x∈Rn

η +
1

(1− α)m

m∑
j

wj

n∑
i

xi = 1

n∑
i

Āixi ≥ A0

wj ≥ −
∣∣∣ n∑
i=1

(Aij − Fij)xi

∣∣∣− η

x,w ≥ 0.

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

The problem is a linear program, which can be solved with standard optimization approaches. The

solutions obtained for a collection of values of α and A0 then give a family of optimal portfolios.
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Varying A0 balances the trade-off between the average generation and forecasting error, while α is

a technical parameter responsible for defining risk tolerance.

2.3.5 Case study procedure

(a) Alabama (b) Arizona (c) Ohio

(d) Oklahoma (e) South Dakota (f) Washington

Figure 2.2: Regions used for analyzing the effect of pooling

Step 1 Select a harvesting state. For this case study we arbitrarily picked six states spread across

the continental US: Washington, South Dakota, Ohio, Arizona, Oklahoma and Alabama. These

were selected as large representatives of different US geographical regions. We chose not to per-

form the analysis for all states, in order to allow for presenting results for each separately.

Step 2 Split the harvesting state into harvesting regions of varied size. Specifically, we use the

following procedure, illustrated in Figure 2.2. First, the state in itself represents a harvesting area,

labeled whole. It is then split vertically in half, creating two half areas. Each half area is then split
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vertically in two resulting in two quarter areas (four in total). Each quarter is then split in half

horizontally creating four medium areas, which are finally split in half for four small areas. This

allows us to test the connection between the harvesting area size and the effect of pooling across

different geographical regions.

Step 3 Select generation sites. For the selected harvesting area, we identify wind generating

locations. Figure 2.3 shows selected wind sites in each state. The generation sites are sampled

from the ones available in the NREL dataset. Note that we chose not to use all of the locations

for computational tractability. Instead we sample from the list of given sites so that the resulting

generation sites are distributed across the whole state as uniformly as possible. As a way to illustrate
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Figure 2.3: Wind sites used for in the case study.
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the properties of the generation profiles in the selected sites, Figure 2.4 depicts the average and

standard deviation of hourly generation for each site in each state. We can observe that most exhibit

relatively large variance, and hence can be characterized as highly intermittent. The average (over

each state locations) relative day ahead forecasting error varies from 32% (Oklahoma) to 52%

(Arizona).

Figure 2.4: Average and standard deviation of hourly generation of all selected sites.

Step 4 Find a set of optimal generation portfolios for the selected harvesting area. The optimal

portfolios are identified by solving the optimization problem described above. Parameters, α and

A0 are set as α = 0.1, 0.5, 0.9, and A0 = γmaxi∈1...n Āi, with γ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9,

0.95, 0.99. Naturally, this way of selecting A0 allows for varying the optimal portfolio average gen-

eration from the best possible (maxi∈1...n Āi) to the worst. For example, γ = 0.9 will result in a

portfolio that on average produces at least 90% as much as the location with the highest average

generation. All underlying linear programming optimization problems are solved with IBM ILOG

CPLEX Version 12.7.1 [57], on a desktop computer with Intel Core i5 processor and 8GB of RAM.

Each run required approximately 180 seconds per portfolio.
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Step 5 Evaluate generation profile for each optimal portfolio in each harvesting region. Each

optimal portfolio generation is then evaluated over the testing time period. The relative forecasting

error δ is defined as the ratio between portfolio forecasting error (εj) and its generation, averaged

over the testing period.

2.4 Results of the case study and discussion

The obtained optimal portfolios are compared against two benchmarks: individual generation

sites, and equal weight portfolio. Each individual location can be viewed as a (non-pooled) portfo-

lio with xi0 = 1, xi = 0,∀i ̸= i0 for the corresponding i0. In this context the difference between the

generation profiles from the single-location portfolios and the optimal CVaR portfolios provides

evidence for the effect of pooling. Equal weight portfolio is defined as xi = 1
n

, where n is the

number of wind generation locations in the area. This approach can be viewed as representing

unplanned development, where each available location is considered independently, without over-

arching design. Comparing the profile of equal weight approach to the optimal CVaR portfolios

allows for evaluating how much of the pooling effect can be increased by intelligent planning, as

opposed to a naturally occurring outcome.

2.4.1 Effect of pooling

Figure 2.5 summarises the effects observed on the state level. Specifically, it depicts the per-

formance of the three types of portfolios (optimal CVaR in blue, equal-weight in red and no-pooling

in green) in terms of the average generation and relative forecasting error δ for each of the studied

states. Note that for the pooled cases (CVaR and equal-weight) the values observed in each testing

year (2009-2012) separately are plotted. The metrics for the no-pooling cases (individual gener-

ation locations) are evaluated over the whole testing period (4 years) in order to avoid having to
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Figure 2.5: Results comparing the optimal portfolio performance for the six states considered.

plot too many observations on the graphs. Observations corresponding to the optimal CVaR portfo-

lios are also supplemented with approximating lines (one for each testing year), obtained by fitting

polynomial regression. These can be viewed as depicting the trade-off between forecasting error

and average generation. Naturally, the value of parameter γ explicitly determines the position of a

CVaR portfolio on this curve. Table A.2 in the Appendix provides the same information, focusing

on average, minimum and maximum δ in each state across the portfolio types. In the table the min-

imum, maximum and average errors for the high-generation CVaR optimized portfolios (γ = 90%)

are reported separately.

First, observe that in all states and all testing years the lowest error is achieved by one of

the CVaR-optimized portfolios. While this is not surprising in itself (the portfolios are designed

to have the smallest possible error albeit over the training set), it is worth emphasizing that in all

states tested the improvement compared to non-pooled cases is substantial, with optimization being
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able to reduce the minimum forecasting error up to two times (or more). Further, while, naturally,

pooling reduces the maximum possible expected generation (due to mixing high-producing and

low-producing locations together), most of the improvement in forecasting error can be achieved

by sacrificing only 10% of average generation (compare portfolios corresponding to γ = 0.9 with

the best performing individual locations in Table A.2). Depending on the practical case in question

10% may or may not be an acceptable loss. In contrast, if γ is 0.99, δ are almost the same as that of

the facility with the maximum output since pooling is severely limited in this case. Consequently, it

must be emphasized that reduction in average generation compared to the best-performing location

is an unavoidable consequence of pooling.

Considering the equal-weight portfolio it can be observed that even this naive approach is

capable of substantially reducing the forecasting error by itself. At the same time, it is worth

emphasizing that optimized portfolios may retain two important advantages. First, observe that in

some cases, e.g., Ohio and South Dakota, equal weight approach remains competitive in terms of

average generation. On the other hand, in the case of Arizona and Washington these result in very

low average generation values, which can be unacceptable. Most importantly, the optimization-

based approach enables the decision maker to balance forecasting error and average generation,

which is impossible in the case of unplanned development. Secondly, it must be noted that CVaR

optimization naturally restricts the number of sites that need to be invested in order to reduce the

error. Table 2.1 reports the average proportion of candidate locations that are included in the optimal

portfolios. While for smaller regions with limited diversification options almost all of the locations

are used, in all state-wide examples not more than 23% are needed. On the other hand, an equal

weights portfolio requires investment in all candidate locations. The number of candidate locations

is naturally related to capital investment costs, and hence, this could be viewed as a potentially

significant benefit of portfolio optimization approach.
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State Region 1 Region 2 Region 3 Region4 State Region 1 Region 2 Region 3 Region4

Alabama

small 96.0(5) 93.3(6) 90.0(4) 100.0(2)

Arizona

small 62.9(7) 50.0(6) 100.0(1) 60.6(8)
medium 81.7(9) 75.0(12) 76.7(9) 81.9(8) medium 63.1(8) 47.8(9) 45.6(9) 25.8(18)
quarter 62.3(15) 51.7(21) 55.9(17) 61.6(16) quarter 45.9(16) 29.8(22) 28.9(31) 24.8(25)

half 41.7(36) 39.5(33) half 28.0(38) 18.9(56)
whole 21.5(69) whole 16.5(94)

Ohio

small 76.0(5) 78.6(7) 90.0(6) 86.7(6)

Oklahoma

small -(0) 85.8(6) 67.8(9) 86.3(4)
medium 57.8(9) 71.4(11) 61.0(15) 56.7(12) medium 73.0(5) 53.3(12) 48.8(13) 77.2(9)
quarter 47.7(15) 49.2(24) 46.1(28) 46.4(21) quarter 67.5(6) 52.8(18) 43.2(19) 50.6(17)

half 28.6(39) 26.1(49) half 35.8(24) 31.8(36)
whole 19.5(88) whole 23.0(60)

South Dakota

small 70.0(8) 38.8(17) 71.4(7) 81.0(5)

Washington

small 64.3(7) 67.5(4) 95.0(4) 93.3(3)
medium 22.7(24) 25.7(29) 40.7(14) 69.2(6) medium 49.3(14) 50.6(8) 72.8(9) 68.9(9)
quarter 25.9(33) 26.6(35) 34.0(21) 70.0(9) quarter 42.7(22) 31.1(18) 69.6(13) 43.1(21)

half 17.5(68) 33.2(30) half 27.8(40) 39.0(34)
whole 15.1(98) whole 21.2(74)

Table 2.1: The average proportion of facilities pooled among the available locations in optimal portfolios.
The values are reported in percent and the total number of potential locations is given in parenthesis.
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Figure 2.6: Effect of harvesting region size on the achieved forecasting error. All pooled and non-pooled
portfolios are evaluated in terms of average generation and relative forecasting error.

2.4.2 Effect of harvesting area size on benefits due to pooling

As discussed above, smaller regions should generally correspond to more correlated outputs,

and hence tend to have less potential for effective pooling. It is important to note that each area
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has different intrinsic potential for wind energy generation, and our focus is on identifying states

that are particularly promising in terms of reducing the forecasting error and not necessarily the

actual generation. First, consider Figure 2.6 and the corresponding Table A.3. Similarly to Figure

2.5 above here the observed forecasting error (δ) and average generation for the optimized and

no-pooling portfolios are depicted. To avoid overcrowding the graphs, here we only depict the

portfolios designed to achieve 90%, 50% and 10% of the maximum average generation and the

corresponding regression lines. The observations are grouped (and colored) according to the size

of the harvesting regions.

Most importantly, in all tested states it can be observed that a larger harvesting region directly

leads to lower forecasting error. This is evidenced by monotone decreasing values for the minimum,

maximum and average delta for almost all states and testing years as we move from small areas,

to medium, to quarter, to half and to whole states in Table A.3 and in the corresponding regression

lines in Figure 2.6. In some states (particularly, Arizona and Washington), the difference between

the pooling effect on different scales is especially pronounced. For example, by expanding the

harvesting region from a small (county-size) area to the whole state, the minimum forecasting error

in Washington (in 2009) reduces from 40% to just 19% (the effect is similar in the other testing

years). On the other hand, in some states, this effect is less important (see, for example, Ohio).

This then suggests that different geographical areas respond differently to the size of the pooling

region.

The observations above are further supported by Figure 2.7 and the corresponding Table 2.2.

Here the minimum forecasting error achieved by the optimized portfolios on each of the harvesting

regions is plotted against the size of the region (measured as the maximum distance between two

generation locations) along with the fitted linear regression lines. The regression coefficient and

its p-value as well correlation coefficient are also reported. All slopes observed are negative with

the corresponding p << 0.05. The regression slope can be naturally interpreted as the expected

reduction in average forecasting error after an expansion of the diameter of the harvesting region
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by 1km. In other words, according to our experiments, 100km expansion of the diameter of the

harvesting region reduces the relative forecasting error by 4% in Washington; by 2% in Alabama,

Arizona, South Dakota and Oklahoma; and by 1% in Ohio.
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Figure 2.7: The minimum achieved forecasting error in optimal portfolios plotted against the harvesting
area diameter (measured as maximum distance between generation sites) with fitted linear regression trend.

State Trend line equation State Trend line equation
Alabama Error = 34.13 - 0.02 Diameter Oklahoma Error = 26.69 - 0.01 Diameter
Arizona Error = 42.00 - 0.02 Diameter South Dakota Error = 28.82 - 0.01 Diameter

Ohio Error = 28.13 - 0.01 Diameter Washington Error = 40.27 - 0.04 Diameter

Table 2.2: Summary of the linear regression trend lines on Figure 2.7
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2.4.3 Application to battery sizing problem

To better illustrate the potential for practical significance of forecasting error reduction we also

include a small-scale “proof-of-concept” experiment, aimed at outlining the effect of forecasting

error reduction on a simple generation planning problem. It should be emphasized that this discus-

sion is presented as an illustration and a more comprehensive evaluation of the effect of variability

reduction on electricity generation is beyond the scope of the current effort and should be a topic

of a future study.

We derive the optimal generation portfolio from the proposed mean-CVaR model based on his-

torical data similarly to the results discussed above. Here we randomly select 10 on-shore locations

in the State of California. The optimal portfolio or one of the 10 individual locations’ portfolio

generation profiles are then fed into a typical cost minimization problem for a microgrid. The

microgrid is assumed to be connected to the external grid and the corresponding optimization prob-

lem is concerned with sizing a battery storage with the goal of minimizing operation cost, while

satisfying demand with either renewable generation or from the external grid. We use a simple

generation planing problem, presented in detail in A.1, with realistic but simplified assumptions on

model parameters. The model and parameter values are selected closely following the experiments

presented in [58, 59]. Specifically, the microgrid is assumed to consist of a collection of residential

houses, each with typical demand pattern as given in [60]. The number of households is selected

to match the total average demand with the average renewable generation (i.e., on average the total

annual demand is equal to the total annual generation). Batteries used are assumed to be household

batteries with parameters as described in [61]. To simplify the model we further assume constant

sale and purchase price on the external grid, estimated following the average values reported in

[60]. Note that this implies that here the microgrid cannot profit from buying external energy dur-

ing low cost periods to store and then sell it during high cost periods, i.e., batteries can only be
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Portfolio Total Cost ($) Battery modules
Wind energy (Kw/year)

(including Battery energy) Grid energy (Kw/year)

pooled 135,286 1,518 29,200,673 7,376,417
location 1 only 364,580 638 16,293,486 20,021,275
location 2 only 320,953 3 18,127,702 18,216,809
location 3 only 368,542 3 15,626,303 20,668,178
location 4 only 258,494 1,806 21,757,547 14,671,676
location 5 only 263,129 1,861 21,313,381 15,110,254
location 6 only 457,719 337 11,488,490 24,724,990
location 7 only 299,016 1,943 20,610,147 15,797,622
location 8 only 391,247 3 14,656,091 21,618,985
location 9 only 169,891 358 25,168,309 11,320,370

location 10 only 291,154 3 19,367,532 17,001,766

Table 2.3: Result of battery sizing experiment for pooled and 10 non-pooled cases.

profitably used to store renewable energy. The renewable generation data used is from the same

source as the main experiment. For completeness, relevant parameter values are given in A.1.

Figure 2.8 and Table 2.3 summarize the results obtained. Figure 2.8 depicts a week (during

the testing period) of the generation from the 10 renewable locations, the generation from the

optimal portfolio (α = 0.9 and A0 selected as the average demand level) and the total demand.

Table 2.3 reports the optimal size of the battery selected (measured in the number of standard

modules), total cost and the split between renewable and grid energy used to satisfy the demand for

each of the individual locations and the optimal portfolio. Most importantly, observe that indeed

the optimized portfolio uses the least amount of grid energy and achieves the lowest total cost.

Somewhat counter-intuitively, it also requires a significant investment into battery capacity, but this

observation can be explained by noting that due to the lower overall variability it is able to use the

available battery resources more efficiently, and hence the additional investment is justified by the

lower cost of grid exchange. It should be emphasized that this experiment does not constitute a

comprehensive evidence for the benefits due to reduced variability, and instead we only present it

here for illustration purposes.

2.5 Concluding discussion

The study introduces a new modeling approach aimed at evaluating the effect of pooling ge-

ographically diverse wind generation locations in order to reduce forecasting error. The model,
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Figure 2.8: Demand and generation profiles for 1 week of testing period for the optimal portfolio and
individual locations.

constructed as a mean-CVaR optimization problem, provides a family of optimal generation port-

folios for a pre-determined harvesting region, which are designed to take advantage of the correla-

tion structure in the generation and forecasting profiles in order to reduce the overall error, while

maintaining satisfactory expected generation. It is then used to evaluate the potential effect of such

a technique in a case study based on real data from US states.

Most importantly, the results have shown that pooling can substantially reduce the forecast-

ing error of wind energy generation, up to 50% when pooled across a whole state compared to no

pooling. While the scale of this reduction is different in different states considered, in all cases it is

substantial. Consequently, we conclude that while for majority of individual wind generation loca-

tions generation may be hard to predict, the forecasting error can always be significantly reduced

by pooling from geographically distant sources. The approach allows for quantifying the effect

of geographical size of the harvesting region on error reduction. On average, 100km increase in
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area diameter results in 1%–4% of reduction in average relative forecasting error, depending on the

region studied.

It is also observed that a significant portion on this improvement can be realized even without

advanced optimization tools. Particularly, equal weight portfolios, aimed at simulating unplanned

development, in most cases exhibit significant reduction in forecasting error. At the same time,

the proposed optimization approach outlines the underlying trade-off between average generation

and forecasting error. Intuitively, the highest average generation can be achieved if investment is

concentrated in a handful of most productive locations, while in order to reduce the forecasting

error the decision maker should spread the investment across a diverse set of generation profiles.

It is demonstrated that any time many geographically distant locations are pooled together, the

forecasting error is reduced (the equal weight portfolios in the case study), yet this approach may

result in significant loss in average generation potential. The proposed model illustrates that with

a carefully designed optimization problem it is possible to achieve the same or better forecasting

error, while managing average generation at the same time.

The outcomes of the case study serve to highlight the important role that pooling plays in

forecasting error magnitude in wind generation. The primary driving factor of this effect is the size

of the geographical area used for harvesting. While significant error reduction happens naturally as

geographically diverse locations are pooled together, it may be further beneficial to incorporate a

more advanced portfolio optimization approach, such as the one proposed here, since it can allow

for balancing the average generation and forecast, in addition to achieving diversification with a

fewer number of pooled locations by proactively taking advantage of the underlying correlation

structure. These considerations are important in capital planning and generation expansion prob-

lems. Particularly, it can be adapted for design problems related to virtual power plants (VPPs),

since these can explicitly consider energy portfolios and rebalance them relatively often. Addi-

tionally, our proposed approach can be closely relevant to battery sizing problems since the lower

overall forecast error can directly translate to either lower capacity requirement or its more efficient
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use, and hence better return on the investment, and ultimately, wider use of renewables. Further, the

observations made can be relevant for research into innovative ways to integrate renewable energy

generation as a significant part of the overall portfolio, such as wind farm coalitions, cooperation

between microgrids, or smart grid design.

A number of the study limitations and directions for future research must be emphasized. First,

observe that transmission considerations pose a significant factor directly relevant to practicality of

pooling. Naturally, pooling from a larger harvesting region can require transmission over longer

distances, leading to transmission losses, which, in turn, reduces the overall system efficiency. Fur-

ther, and potentially more importantly, the transmission network structure can significantly reduce

feasibility of pooling from the technical implementation perspective. For example, generation and

demand balancing may be administered per each transmission node separately through directly

connected parties severely restricting pooling options. Transmission factors are not included into

our model, and consequently, the presented results can be viewed as measuring the potential bene-

fits due to pooling, which may not be fully realizable in a practical system. This modeling choice is

made to allow for computational tractability as well more streamlined interpretation of the results

without making additional assumptions on the transmission network. Note that the effect of these

factors significantly depends on the particular system design. For example, a VPP may be less sen-

sitive to them due to its virtual nature. A careful analysis of the effect of pooling, given a particular

transmission system design and the interests of all demand balancing parties (retailers, aggregators,

generators, etc) could be a topic of a future study. An example of a research effort in this direc-

tion, which considers a simplified transmission network is given in [62], albeit concentrating on

reduction in intermittency.

A careful economic cost-benefit analysis of explicitly considering forecasting error reduction

techniques in capital planning or VPP investment problems is beyond the scope of what can be done

with the proposed model directly. At the same time, the proposed approach can be incorporated into
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such an analysis, which would take into account the design of a particular transmission network,

energy market conditions and polices, storage availability, etc.

Furthermore, a similar set of experiments could be performed with solar generation or any

other variable energy source. Given the diversity in the underlying technology, and hence relative

independence of both average generation and forecasting error, including solar into the mix can

only increase the benefit of pooling. The extent of this improvement can be evaluated in a future

study.

Finally, an interesting question not considered here is the interaction of the effects that pooling

diverse energy sources has on intermittency and predictability. As discussed in the introduction,

both are important factors limiting applicability of renewables. At the same time, both are affected

by the same mechanism of risk reduction through diversification when pooled from geographically

diverse areas. Consequently, a study into the extent to which both can be improved at the same

time through careful planning is needed.
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Chapter 3

Optimize the energy storage capacity through portfolio optimization in micro grid system

3.1 Introduction

Energy storage is the most readily apparent tool for mitigating wind power intermittency and

load mismatches when renewable energy is integrated in a microgrid. Specifically, the Energy Stor-

age System (ESS) plays important role in mitigating wind power intermittencies through charging

and discharging the energy to satisfy the demand in a microgrid to match the time periods when en-

ergy is needed with time periods when it is produced. Further, ESS can provide reliability (consis-

tently delivering high-quality power), resilience (maintaining critical function and quick recovery),

and flexibility for remote communities and targeted microgrid solutions ([63]). At the same time,

due to significant cost of the hardware involved, the sizing of ESS to enable these benefits remains

a significant problem to be solved when designing a microgrid.

It is natural to expect that reducing both intermittency and unpredictability of renewable gen-

eration through pooling may directly lead to a reduction in the battery capacity requirement. In

this chapter, we propose a heuristic approach to reduce the energy storage capacity through port-

folio optimization of wind energy composition used to power the system. Specifically, a proposed

heuristic approach is a series of procedures that derive portfolios that minimize forecasting errors

through risk-averse models (following the approach proposed in the previous chapter) and then

optimize battery capacity and total operating costs given the output of this optimized portfolio.
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We then investigate the impact on battery size and operation planning costs, and different types of

wind energy portfolios (onshore, offshore) and geographical regions (California and Wyoming in

this case) on the benefits due to pooling in a numerical case study.

A number of algorithms and methodologies have been proposed to optimize ESS capacity in

microgrids given either deterministic or stochastic model for renewable generation. For example,

[58] used a dynamic programming algorithm to maximize the expected profit over the schedul-

ing period by determining the optimal energy exchange with the market for a specified scheduling

period with a properly sized energy storage. In [64], the tabu search (TS) methodology is used

to maximize the benefits of the power supply-side. A thermal unit commitment program consid-

ered the demand response system to satisfy the transmission constraints and included the goal of

reducing energy storage system (BESS) capacity. In [65], the authors used a mixed-integer lin-

ear programming method to minimize the total cost by optimally sizing an ESS to be integrated

with a grid-connected microgrid. In [66], a self-adaptive hybrid optimization algorithm is used to

minimize the operating cost of EV charging stations integrated with PV and ESS. Quadratic pro-

gramming (QP) was used in [67] in order to improve integration of renewables into the electricity

grid and an optimal design of a storage system is performed. Specifically, two ways of increasing

the integration of wind and solar energy into the electricity grid through energy storage were ana-

lyzed. The first service to the electricity grid is related to a smoothed and hourly scheduled daily

production while the second one concerns a constant and guaranteed minimal production. The au-

thored of [68] used model predictive control (MPC) methodology which considers the future wind

power predictions and state of charge (SOC) of BESS to implicitly to minimize the operation cost.

In [69], particle swarm optimization is used to maximize the system energy production and meet

the load demand with minimum cost and highest reliability. The authors employed demand profiles

using load shifting-based load priority which is either High (fixed scheduling requirements) or Low

(flexible scheduling requirements). In [70], the authors used Integer Nelder-Mead algorithm and

simplex method to find a local minimum to determine a cost-efficient solution to sizing the PV
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system with maximizing the operation of higher priority appliances. However, most of the existing

research does not focus on renewable energy supply part to reduce the storage capacity but rather

recognizes it as uncertain but fixed.

In contrast, this chapter assumes that the renewable energy composition sometimes can be

considered as a decision variable, i.e., it is possible to adjust the renewables generation profile by

mixing together the generation from disparate sources. Consequently, we investigate to what extent

optimization of this portfolio can be helpful in reducing investment and/or operational costs. Note

that the assumption described may be particularly suitable in two cases: a VPP or a microgrid. As

was discussed in Chapter 1, VPPs are often able to frequently rebalance their generation portfolios,

and hence can naturally take advantage of any pooling effect as studied here. Similarly, a microgrid

may be able to contract with multiple disparate generation sources to create its energy portfolio.

While we will concentrate on a VPP as a use case in the next chapter, in this chapter we will assume

a microgrid case.

From the methodological perspective the proposed model is a two-stage optimization problem,

where on the first stage the generation portfolio is selected, and then on the second stage an ESS

sizing problem similar to the ones discussed above is solved. Naturally, this can be a challenging

problem computationally, and consequently, first we investigate a heuristic approach to solving it,

whereby the stages are separated and solved one after the other.

Consequently, the goal of this effort is to consider the following two research questions:

• What is the impact of an optimized pooled portfolio for smart grid system reliability;

• How much is it possible to reduce the energy storage system size through the optimal portfo-

lio;
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To this end, we design a simulation study, based on risk-averse portfolio optimization with

Conditional-Value-at-Risk(CVaR) and mixed-integer linear programming model. We obtain opti-

mal pooling results using mean-CVaR model and then derive optimal operation planning (battery

size, total cost, etc.) in MILP utilizing pooling results as input.

The contributions of the research effort are as follows:

• we propose a general two-stage model for optimized energy portfolio selection and battery

sizing;

• we then consider a heuristic approach to solving the two stage model;

• we finally employ the model and solution approach to conducting numerical experiments

demonstrating the extent to which optimized pooling can reduce the costs associated with

ESS investment.

The remainder of the chapter is organized as follows. Section 3.2 describes the proposed

microgrid system. Section 3.3 presents the proposed risk-averse optimization and MILP model

with the mathematical formulation. Section 3.4 explains the system data for case study. Section 3.5

discusses the case study and the results. Finally, Section 3.6 concludes the discussion and outlines

some ideas for future research.

3.2 Microgrid system description

Figure 3.1 describes the scheme of the microgrid and proposed management system for re-

ducing the battery capacity. We assume that a microgrid is composed of a portfolio of wind power

plants (onshore and/or offshore) as integrated renewable energy sources, storage, external grid,

market, and energy consumed by residential buildings. In other words, the microgrid is assumed

to be connected to the external grid and the corresponding optimization problem is concerned with
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sizing battery storage with the goal of minimizing operational cost while satisfying demand with

either renewable generation or external grid.

Figure 3.1: Scheme of the assumed microgrid.

3.2.1 Wind power plant

It is assumed that wind facilities generate energy as renewable energy sources. We include

both onshore and offshore options to be able to compare their relative effect. We further consider

onshore facilities, producing according to generation patterns found in two separate geographic

areas (California and Wyoming), to investigate the effect of geographical diversity. We do not

include solar energy since no forecasted data has been available to the authors with sufficient time

and spatial resolution.

3.2.2 Energy storage system

Renewable technologies require energy storage to facilitate intermittency and ensure safe de-

livery. We assumed residential lithium-ion battery as storage to complement intermittency since it

is the cheapest and most widely used [71]. The battery supplies stored energy to meet the demanded

load when the available wind energy is insufficient.
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3.2.3 Customer

We assumed that customers are represented by a group of households, consuming wind energy

hourly from either the wind farm, storage or external grid to meet the demanded load.

3.2.4 External grid

It is assumed that the microgrid is connected to the external grid for delivering electricity to

consumers or selling the excess energy to the market. For simplicity, we assume that there is no

energy lost due to transfers.

Indices capadchr maximum discharging power (%)
i house (i = 1...I) IOC initial SOC in the battery (%)
t time (t = 1...T ) SOCmin minimum state of charge (%)

SOCmax maximum state of charge (%)
Parameters
AECbat annual equivalent cost of battery (cent) Variables
P grid
i,t grid cost in house i during period t (cent) xbat integer variable to indicate the Number of the battery

Sprice wholesale wind energy price (cent) Egrid
i,t used grid energy in house i during period t (kwh)

Ewind
t wind energy output during period t (kwh) Esell

t selling wind energy during period t (kwh)
Dhouse

i,t energy consumption in house i during period t (kwh) ErewH
i,t used wind energy in house i during period t (kwh)

INV rate Invereter efficiency (%) Echr
t charge energy in the batter during period t (kwh)

Elimit
t limited selling energy during period t (kwh) Edchr

i,t Discharge energy in the batter to house i during period t (kwh)
dchrrate self-discharging efficiency (%) Ebat

t available energy in the battery during period t (kwh)
chrrate charging efficiency (%) ychrt binary variable variable to indicate charging state during t
Cbat capacity of single battery module (kwh) ydchrt binary variable variable to indicate discharging state during t
capachr maximum charging power (%)

Table 3.1: Nomenclature for the proposed operational planning model

3.3 Research methodology

The study proposes a heuristic approach to reduce battery capacity and system total cost

through selection of both renewable energy portfolio and operational controls. Figure 3.2 and

Figure 3.3 describe the approach and flowchart of the heuristic methodology based on similar

mean-CVaR model as in the previous chapter. Specifically, first we find the optimal renewable

energy portfolios from risk-averse optimization model based on the expected demand load. Next,
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we evaluate the system cost through operational planning problem using an optimal generation pro-

file created from mean-CVaR model for a year (8764 hours). Detailed formulations and methods

will be described in the following section.

Figure 3.2: Proposed optimization framework

3.3.1 Risk-averse optimization model

The portfolio construction methodology is based on risk-averse stochastic optimization, mean-

Conditional Value-at-Risk (mean-CVaR), and the training-test framework as discuss in Section

2.3.4 in Chapter 2, restated here for the sake of completeness as follows.

min
η∈R,w∈Rm,x∈Rn

η +
1

(1− α)m

m∑
j

wj

n∑
i

xi = 1

n∑
i

Āixi ≥ A0

wj ≥ −
∣∣∣ n∑
i=1

(Aij − Fij)xi

∣∣∣− η

x,w ≥ 0

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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Figure 3.3: Flowchart of the proposed heuristic method for solving the bi-level problem.

Recall that A0 denotes the target average generation. Naturally this parameter is related to the

expected hourly demand and so is set accordingly in our case study.

3.3.2 Operation planning model for energy management

The operational planning model describes the interaction between storage (battery), customer

(demand) and external grid (market). The decision making problem here is to select the size of the

battery that minimizes the total annual cost, which consists of the battery investment and opera-

tional costs. The operational costs consist of the energy bought (and sold) on the market under the

realized renewable generation scenarios.
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Objective function The goal of the optimization model is to minimize the total cost (C), which

consists of two components: annualized battery investment cost and the balance between purchas-

ing and selling the energy to the market. The objective then can be expressed as follows.

minC = AECbat × xbat +
I∑

i=1

T∑
t=1

(
Egrid

i,t × P grid
i,t −

T∑
t=1

Esell
i,t × Sprice

i,t

)
(3.6)

Here, AECbat is the annual equivalent cost of battery, integer variable xbat represents the number

of the battery modules purchased, P grid
i,t and variable Egrid

i,t represent the external grid price and

consumed external grid energy in house i in time t respectively, and finally parameter Sprice
i,t and

variable Esell
j represent wholesale price and quantity sold to market.

Renewable energy usage The outcome of the first stage calculation is the optimized generation

portfolio. Consequently, Ewind
t , defined as the total renewable generation from the selected portfo-

lio, serves as an input parameter for the second stage model considered here. Specifically, Ewind
t

defines the amount of power that can be used for satisfying demand (ErewH
i,t ), charging the battery

(Echr
t ) and selling on the market (Esell

t ). The following constraint expresses this requirement.

Ewind
t =

I∑
i=1

ErewH
i,t + Echr

t + Esell
t (3.7)

Balancing demand The demand is satisfied by wind energy generated (ErewH
i,t ), the energy dis-

charged from the battery (Edchr
i,t ) and the external grid energy purchased (Egrid

i,t ) at time t, as given

in (3.8). Parameter INV rate corresponds to to the inverter efficiency.

Dhouse
i,t = (ErewH

i,t + Edchr
i,t )× INV rate + Egrid

i,t (3.8)

Foretasted market sales For the operational level problem considered here, we assume that the

decision maker has the day-ahead foretasted renewable energy production available, and hence,

42



we assume that the amount that can be sold on the market, that has to be committed in advance,

is limited by the foretasted surplus. Consequently, we define Elimit
t as the difference between the

expected renewable generation and demand, as the upper limit on the amount that can be sold to

the external grid the day of generation. Note that here we assume that demand is known a priory

in order to concentrate on the uncertainty due to renewable generation (and hence the effect of

reducing forecasting error). We define Elimit
t = max{foretasted generationt − demandt, 0}, where

foretasted generationt =
∑n

i Fixi and then consider constraint

Esell
t ≤ Elimit

t . (3.9)

Battery charge/discharge constraint We define constraints describing the battery dynamics fol-

lowing [59]. Specifically, these ensure balancing the state of charge, that the state of charge is

within specified limits and that battery is not charged and discharged at the same time.

Ebat
t = Ebat

t−1 × (1− dchrrate) + Echr
t × chrrate −

I∑
i=1

Edchr
i,t

SOCmin × Cbat × xbat ≤ Ebat
t ≤ SOCmax × Cbat × xbat

ychrt + ydchrt ≤ 1

Echr
t ≤ capachr × ychrt

T∑
t=1

Edchr
i,t ≤ capadchr × ydchrt

xbat, E
grid
i,t , Esell

i,t , Erew
i,t , Echr

t , Edchr
i,t , Ebat

t ≥ 0 ∀i, t

ychrt , ydchrt ∈ 0, 1 ∀t

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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3.4 Case study data

3.4.1 Wind generation profile

We have selected two states as the basis for the numerical experiments. California is selected

as a representative example of an area that is suitable for both on- and off-shore wind energy

generation. We also select Wyoming, since it has potential to serve as a source for exported wind

energy, as it has significant wind energy reserves and relatively low in-state demand. Figure 3.4

shows randomly selected wind sites in each state. Note that we chose not to use all of the locations

for the sake of computational tractability. Instead, we sample from the list of the available sites

so that the resulting generation locations are distributed across the whole state as uniformly as

possible.

We use the actual and forecasted (day ahead) wind generation data provided by National Re-

newable Energy Laboratory (NREL) through DR POWER dataset ([35]). The database provides

observations on actual and forecasted wind energy generation for wind sites in the U.S. The data is

derived from the Wind Integration National Dataset (WIND) Toolkit ([52]).
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Figure 3.4: Generation sites used in the study.
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3.4.2 Demand data

Since the selected generation cites correspond to California and Wyoming, we try to define

demand profile as representing the typical residential demand from the two states. Specifically, we

assume that the microgrid in question consists of the equal number of typical houses from either

of the states, such that the average demand for each house is consistent with the 2019 Average

Monthly Bill (Residential) [60]. Further, we scale the total demand in such a way that the average

total demand is equal to the average generation from a single wind facility given in the NREL

dataset (i.e., on average the demand of the selected microgrid can be matched by the average wind

generation) by increasing the number of typical houses used. Table 3.2 provides the resulting

values. Finally, in order to reflect the seasonality in the energy demand, we apply the seasonal

pattern extracted from the historical grid-level demand data of the corresponding operator (CISO

for CA and PACE for WY) [72]. Figure 3.5 presents the resulting demand profile used in the case

study accounting for the seasonal factors.

State Average consumption(Kw/h) Number of households Total energy consumption(Kw/h)
CA 17.7 116 3340.8
WY 28.8 116 2053.2

Table 3.2: Sumamry of demand parameters
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Figure 3.5: Normalized household demand profile used in the case study.
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3.4.3 Battery data

Storage units used for the model are assumed to be household batteries with parameters as

described in [70]. The specifications are listed in Table 3.3.

Parameter Value Description
AECbat 269.57(USD) AEC of single battery module
Capabat 3.3(kwh) Capacity of single battery module
SOCmin 5% Minimum state of charge
SOCmax 95% Maximum state of charge
chrrate 99% Charging efficiency
dchrrate 0.139% Self-discharging efficiency
capachr 51% Maximum charging power
capadchr 51% Maximum discharging power

IOC 30% Initial SOC in the battery

Table 3.3: Assumed battery specifications.

3.4.4 Grid and market price

To simplify the model and concentrate on the effect of pooling renewable resources, we as-

sume constant sale and purchasing market electricity prices. For the purchasing price we use the

average grid price for each state, following [60]. The wholesale price used is the average wholesale

price of wind energy to market according to [73]. The values are reported in Table 3.4. Note that

due to the price structure assumption, the microgrid cannot benefit from buying external energy

during low-cost periods to store and then sell it during high-cost periods, i.e., any benefit from

storage is due to the ability to use more renewable energy.

Parameter Value Description

P grid
i,t

WY: 11.18(cent) Average grid price in Wyoming state

CA: 19.15(cent) Average grid price in California state

Sprice 1.3(cent) Average wholesale price of wind energy to market

Table 3.4: Summary of assumed market prices.
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3.5 Results of the case study and discussion

Table 3.5 summarizes the scenarios used in the case study to investigate the proposed effect

of pooling. Specifically, we consider four pooling cases (no pooling, on-shore, off-shore, and

combined). For each onshore case, we separately consider each of the two individual states and

the two states together. Finally, in each case, we also consider two operation versions: as a grid-

connected or grid-disconnected cases. In the no-pooling case we consider generation from each

individual location separately, and then report the results averaged over all sites.

Pooling case Symbol Location Operation scenario

No pooling
Onshore(No pooling) California, Wyoming Connected / Disconnected grid
Offshore(No pooling) Offshore Connected / Disconnected grid

Onshore Onshore(CA) California Connected / Disconnected grid
Onshore(WY) Wyoming Connected / Disconnected grid
Onshore(both) California, Wyoming Connected / Disconnected grid

Offshore Offshore Offshore Connected / Disconnected grid

Combined Combined California, Wyoming, Offshore Connected / Disconnected grid

Table 3.5: Case study scenarios.

All underlying optimization problems are solved with Pyomo version 6.2 ([74]) with Gurobi

version 9.0, on a desktop computer with an Intel Core i5 processor and 8GB of RAM. Each scenario

approximately takes 1 hour to obtain the solution.

3.5.1 Results for grid-connected operation scenarios

First, we consider the model under all pooling cases in the grid-connected operation scenario.

In addition, we also consider three levels for the battery cost in order to investigate the sensitivity

of the model to this parameter. We set the battery cost following scenarios identified by National

Renewable Energy Laboratory (defined as high, mid, and low) for battery cost reduction through

2030 and 2050 [75], which results in the values used.
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Battery cost Pooling Battery module Discharge energy (Kw) Charge energy (Kw) SOC deviation

$269.57 Combined 1 794.84 803.20 27.56
Onshore(No Pooling) 1274.65 503,506.16 512,150.48 25.39

Onshore(CA) 1 1,112.42 1,124.14 30.86
Onshore(WY) 1 1,201.12 1,213.67 28.27
Onshore(Both) 1 971.36 981.55 28.23

Offshore(No Pooling) 1.1 606.79 613.12 15.27
Offshore 1 729.76 737.39 25.23

$99.74 Combined 1 797.12 805.51 27.58
Onshore(No Pooling) 1578.55 811,734.28 823,843.39 26.51

Onshore(CA) 321 304,372.68 307,795.48 30.60
Onshore(WY) 179 184,627.14 186,659.51 28.07
Onshore(Both) 66 60,258.06 60,925.18 28.29

Offshore(No Pooling) 72.1 64,226.91 64,939.08 19.53
Offshore 1 729.50 737.13 25.23

$59.30 Combined 341 219641.20 222,175.30 27.56
Onshore(No Pooling) 1955.15 1034465.16 1,049,326.62 26.58

Onshore(CA) 930 710861.50 719,171.00 30.86
Onshore(WY) 533 404365.90 409,007.40 28.27
Onshore(Both) 526 373435.30 377,744.30 28.23

Offshore(No Pooling) 302.9 199266.76 201,584.10 24.38
Offshore 172 106025.40 107235.80 25.23

Battery cost Pooling Total Cost (cent) Used Renewable energy (Kw) Used Grid energy (Kw) Selling energy (Kw)

$269.57 Combined 91,501,471 39,080,189 9,081,532 10,103,789
Onshore(No Pooling) 302,445,910 25,311,475 22,082,214 22,168,604

Onshore(CA) 132,335,747 35,930,754 12,167,667 11,432,592
Onshore(WY) 126,552,166 36,318,980 11,787,119 13,936,821
Onshore(Both) 94,814,600 38,956,464 9,202,610 9,989,876

Offshore(No Pooling) 236,839,246 27,574,825 20,356,973 28,336,193
Offshore 129,458,254 35,834,465 12,262,405 15,471,024

$99.74 Combined 91,484,468 39,080,189 9,081,530 10,103,787
Onshore(No Pooling) 279,614,500 25,259,180 21,831,400 21,909,207

Onshore(CA) 131,776,775 35,895,011 11,905,500 11,161,664
Onshore(WY) 126,218,738 36,281,606 11,643,988 13,788,748
Onshore(Both) 94,759,229 38,949,236 9,151,592 9,937,160

Offshore(No Pooling) 236,708,125 27,556,572 20,312,513 28,290,120
Offshore 129,441,274 35,834,465 12,262,405 15,471,024

$59.30 Combined 91,202,053 39,045,868 8,900,697 9,916,738
Onshore(No Pooling) 272,597,194 25,243,618 21,628,375 21,699,286

Onshore(CA) 129,573,147 35,887,330 11,514,668 10,757,969
Onshore(WY) 124,991,661 36,257,744 11,452,029 13,590,263
Onshore(Both) 93,720,405 38,916,962 8,876,307 9,652,615

Offshore(No Pooling) 236,005,146 27,530,263 20,205,957 28,179,784
Offshore 129,304,013 35,804,454 12,188,626 15,394,537

Table 3.6: Results of the base case of the case study.

Table 3.6 summarises the main results. Here we report the summary of the performance of

the system, as well as relevant costs. Specifically, we report: number of battery units purchased,

total charge and discharge energy, SOC (State of Charge) deviation defined a variability of battery
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energy for period, total system cost, amount of each source of energy used (renewables vs grid) and

amount of energy sold on the market. Note that in the case of no-pooling, the reported results are

averaged between each of the individual generation locations.

First, observe that in all cases either the combined pooling or onshore (both) scenario achieves

the lowest operational cost, the highest level of renewable energy use, and the lowest level of grid

energy used. Naturally, these three metrics are directly related, since, as defined, renewable gen-

eration is free (i.e., the cost is fixed), and hence higher use of renewables (lower grid use) directly

translates into the lower total cost. In most cases, the combined pooling case outperforms the on-

shore only case. Both significantly outperform pooling cases, when the two states are separated,

as well as off-shore only cases. Most importantly, all pooled portfolios result is substantially lower

costs compared to no pooling cases (up to two times). We can also observe that pooling renewable

energy results in a significant reduction in the need for energy storage. For example, for the low-

cost case, pooling generation across onshore locations in CA results in 54% reduction in battery

units, and 72% reduction in case of WY. Note that this reduction is accompanied by the signifi-

cant increase in the use of renewable generation (as opposed to grid energy), and hence directly

translates into lowering emissions both during generation and battery unit production (since fewer

batteries are needed). Interestingly, the change in battery cost, while having a significant effect on

the number of units used, does not have a large effect on the total cost. The conclusions are further

supported by Figure 3.6, which depicts the relative proportion of renewable vs grid energy used

in each scenario. Here we can observe that the batteries, while employed to some extent, in fact

did not play a substantial role in the system, i.e., most of the benefits in this case follow directly

from the reduction in forecasting error and/or intermittency. Overall, we can conclude that pool-

ing geographically diverse wind generation can significantly reduce the dependence of the external

grid.
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(c) Battery Cost: $59.30

Figure 3.6: Energy sources by type for each of the portfolios.
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Figure 3.7: Result of the sensitivity analysis with respect to battery cost.

Focusing on the effect of battery cost, Figures 3.7 and 3.7a depict the change in the number of

units purchased as well as total cost in each scenario as a function of unit cost. Once again observe

that the pooling over large region (i.e., combined pooling vs onshore over both states, vs offshore

or onshore separated by state) is significantly more efficient. The cost of a battery has a large effect

on the number of units used and a smaller effect on increasing the total cost.

3.5.2 Result of grid-disconnected operation scenario

Next, we consider the grid-disconnected case. Naturally, in this case, it may be impossible to

meet the demand with renewable generation only given the way that the experiment is set up. To
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account for this, we assume infinite battery capacity. We also report the amount of unmet demand,

which serves as the primary comparison criterion in this case.

Table 3.7 and Figure 3.8 summarize the results in this case. As before, in this case, more

efficient pooling directly translates into improved solutions, both in terms of cost and unmet de-

mand, i.e., combined pooling portfolios result in lower cost and less unmet demand, compared to

single-state pooled cases (or off-shore only), which in turn, outperform no-pooling cases.

Pooling Total Cost(cent) Discharge energy(kw) Selling energy(kw) Total unmet demand quantity(kw)
Combined 249,902,241 335,967 9,763,031 8,752,940
Onshore(No pooling) 643,213,094 142,225 22,515,343 22,415,902
Onshore(CA) 342,256,062 282,865 11,147,216 11,891,382
Onshore(WY) 328,011,366 267,635 13,666,614 11,525,733
Onshore(Both) 254,313,217 313,647 9,672,881 8,896,066
Offshore(No pooling) 572,062,164 64,987 28,270,583 20,293,698
Offshore 340,535,311 258,002 15,209,231 12,010,044

Table 3.7: Results for the grid-disconnected case.
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Figure 3.8: Total dissatisfied energy in the grid disconnected case by portfolio type.

3.5.3 Effect of demand on grid-connected operation scenario

In addition, we also consider the effect of demand level. Specifically, we consider four cases

with different average demand levels, corresponding to up to 30% change compared to the base

case. Figures 3.9 and 3.9a summarize the results comparing the four demand levels and five pooled
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portfolios. Naturally, higher demand results in more battery requirements and higher costs. Note

though, that most importantly for our purposes, the relative performance of the portfolios by pool-

ing type does not change, i.e., we can conclude that the observations made above do not seem to be

significantly sensitive to demand level.

0

500

1000

1500

3776Kw/h 4585Kw/h 6203Kw/h 7012Kw/h

Demand

B
a
tt

e
ry

 m
o

d
u

le

Combined

Onshore(CA)

Onshore(WY)

Onshore(Both)

Offshore

(a) number of battery modules required

0

5000

10000

15000

Combined Offshore Onshore(Both) Onshore(CA) Onshore(WY)

Pooling case

T
o

ta
l 

C
o

s
t 

($
1

,0
0

0
)

3776Kw/h

4585Kw/h

6203Kw/h

7012Kw/h

(b) total cost

Figure 3.9: Result of sensitivity analysis with respect to demand level.

3.6 Conclusion

The study proposes a heuristic approach aimed at simultaneous optimization of wind energy

portfolio (to reduce variability) and battery requirenment/operational costs in a microgrid. Specifi-

cally, we investigate whether the benefits identified in the previous effort (reduction in variability)

will translate into a reduction of operational costs in capital investment problems, e.g., a battery

sizing problem. A heuristic approach to the two-stage sizing problem is constructed. A mean-

CVaR optimization model provides a family of optimal generation portfolios for a pre-determined

harvesting region based on real data from US states, which is designed to take advantage of the

correlation structure in the generation and forecasting profiles in order to reduce the overall error
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while maintaining satisfactory expected generation. Next, the operation planning model optimizes

the assignment of wind , battery and grid energy to achieve the demand load. We evaluate the

pooling effect on the battery size and total cost in different scenarios such as geographically and/or

technologically diverse wind generation locations.

Most importantly, the results have shown that pooled portfolios always outperform no-pooling

case. More specifically, if the generation capacity is optimally spread over a single state, it can

lead to lower operational cost and lower storage requirement, compared to a microgrid power by

generation from a single location. Further, if generation can be spread across multiple states and/or

includes both on- and off-shore sites, it further significantly increases system efficiency. For ex-

ample, geographically pooling in California only can result in 52% reduction in battery modules

needed, as well as 52% reduction in the total cost compared to no pooling cases. It is important

that our approach can achieve a significant pooling effect even in the same interconnect area al-

ready constructed transmission network. Polling across both CA and WY and off-shore locations

further reduce the numbers by 73%, 91% reduction in battery module needed, as well as 66%, 53%

reduction in the total cost respectively compared to no pooling cases.

The outcomes of the sensitivity analysis serve to highlight the robustness of the observed

results in the base case. Specifically, pooling significantly reduces the battery requirement and the

total cost in all tested scenarios, including different battery cost and demand levels as well as grid-

connected or grid-disconnected cases. Similarly, pooling across multiple states and including both

on- and off-shore sources further reduce the incurred operational costs. Consequently, we conclude

that, whenever possible, intelligent planning for pooling geographically diverse renewable energy

sources can serve as an important tool for overcoming generation variability challenges.

A number of limitations and directions for future research of the study must be emphasized.

First, we did not consider the transmission cost in geographical pooling. The cost of energy being

transported through the different regions is clearly one of the operating costs that would reduce the

realized benefits. Secondly, the obtained operation planning results may not be optimized since we
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evaluated the effect of pooling on battery sizing through operation plans. It is necessary to optimize

the results and operational planning of pooling together with the multi-stage model in future work.
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Chapter 4

Multilevel modeling with risk-averse model for renewable energy management in virtual power
plant

4.1 Introduction

Renewable energy systems are projected to observe rapid development through distribution,

networking, and intelligence [76, 77]. The high permeability of renewable energy requires inte-

gration of information and energy flows, which provides advantages such as flexibility of power

systems without further investment in infrastructure [78]. Virtual power plants (VPPs) are one of

the important technologies to balance grids with renewable generators and make smart grid distri-

bution networks more intelligent [79] compared to conventional microgrid. It has the capabilities

of heterogeneous distributed energy resources (DER) to increase power generation, as well as to

trade or sell electricity on an open market [80].

As a result, this work focuses on modeling for simultaneous optimization of wind energy port-

folios related to geographically pooling wind energy sources and energy management planning in

smart grid systems with VPPs. Note that operation planning model is focused on ancillary services

such as reserve energy, selling energy instead of battery capacity, as was the case in the previous

chapter since it is a critical role of VPPS to control the distributed sources. In other words, we make

the model more comprehensive by allowing to optimize over both operation planning and portfolio

at the same time while the previous chapter 3 optimizes the wind energy portfolio and operation
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planning (focused on battery capacity) separately. To this end, we propose multilevel modeling

to optimize risk-averse portfolio and operation planning for energy management. Specifically, the

same mechanism that results in a reduction in intermittency instead of forecasting error with geo-

graphical pooling also applies to the current risk-averse portfolio at the first level [15]. Moreover,

the optimal portfolios obtained by risk-averse portfolios can be adjusted to optimize the operation

planning at the second level. Most importantly, it is clear that by applying multilevel modeling it

may be possible to further improve on energy management.

Moreover, we investigate the effect of multilevel modeling on operation planning compared

to a heuristic approach considered in the previous chapter. We also broadly examine the effect

of geographical pooling on the multilevel model and change to the variable in the model such as

battery capacity, risk tolerance, and reserve energy cost. Consequently, the goal of this effort is to

consider the following three research questions:

• What is the impact of multilevel modeling in energy management in different areas and

achieving coordinated energy generation;

• To what extent is it possible to increase the reliability for VPPs by pooling together geo-

graphically diverse sources;

• How much cost can be reduced in the smart grid through the multilevel modeling;

To this end, we design a simulation study, based on historical wind generation data (day-ahead

forecast) for the State of California. This chapter again uses risk-averse portfolio optimization with

Conditional-Value-at-Risk (CVaR) as the underlying pooling technique due to its popularity in

stochastic optimization research. We also use a linear programming model for operation planning

in multilevel modeling. Three months’ worth of historical observations (Winter, Summer) is used

to construct a collection of optimized wind generation portfolios, and then evaluate its performance

in terms of total operating cost in a smart grid for a series of test regions, ranging from county-level

to state-level.
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The contributions of the effort are as follows. First, this paper proposes a multilevel model

for designing a wind energy portfolio and optimization of operation planning, with the goal of

minimizing the total operation cost in smart grid associated with intermittency (measured by CVaR)

and while ensuring satisfactory demand load. Secondly, by applying the multilevel model in a

case study, it can be observed that the total operation cost in a smart grid can be significantly

decreased compared to a benchmark (heuristic approach). We observe that, while it is possible to

reduce the operation cost by a heuristic approach that represented optimizing wind energy portfolio

and operation planning separately instead of multilevel modeling, employing a multilevel model

allows for better renewable management. Finally, this study obtain the result that the scale of this

improvement depends on the size of the harvesting area.

The remainder of the chapter is organized as follows. Section 4.2 provides a problem de-

scription. Section 4.3 presents the proposed multilevel model with mathematical formulation and

the corresponding methodology used to organize the case study. Section 4.4 describes a scenario

of case study and system data for simulation. Section 4.5 discusses the results of the case study.

Finally, Section 4.6 concludes the discussion and outlines some ideas for future research.

4.2 Description of smart grid system

Figure 4.1 describes the overall scheme of the smart grid system, which is generally similar to

the one used in the previous chapter. We assume that a virtual power plant management system is

connected with a number of wind facilities (onshore) as integrated renewable sources, storage, and

markets to sell/purchase the energy for balancing with demand. We also assumed the wind energy

is consumed by a set of households. See more details in section 3.2.

At the same time, it is worth emphasizing that the reserve energy is used to supply the extra

energy to achieve the demand under uncertainty. Specifically, the reserve energy is prepared to

reduce optimal operation planning and system costs by supplementing the optimal portfolio through

57



limited predictive capabilities [81]. Reserve energy is an efficient means of supplementing energy

intermittency. We assume that there are two types of reserve energy (reserve, emergency reserve).

Furthermore, the emergency reserve energy is only used for the situation that the system can not

achieve the household demand. Moreover, too much reserve energy can affect the capacity of the

energy system and makes the energy system uneconomical. At the same time, too small reserve

energy may not meet uncertain demand, resulting in loss of energy cost. Therefore, a virtual power

plant management system simultaneously optimize wind facilities portfolio and operation planning

(battery energy, selling energy, reserve energy).

Wind facilities

Renewable Energy Sources

Customer

Storage

Reserve energy

Market

VPP management

Wind facilities

Figure 4.1: Virtual Power Plant scheme

4.3 Research methodology

The study proposes a multilevel optimization problem to allow to optimize over both operation

and portfolio at the same time. It is noted that multilevel optimization problems are mathematical

programs that have a subset of their variables constrained to be an optimal solution of other pro-

grams parameterized by their remaining variables [82, 83]. Figure 4.2 describes a problem-solving

approach for a multilevel model with a mean-CVaR model. In detail, in the first level, we derive

optimal wind energy portfolios from a risk-averse optimization model. At the second level, we
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Indices Variables
h house (h = 1...H) Eres

t reserve energy during period t (kwh)
t time (t = 1...T ) Ewind

t wind energy output during period t (kwh)
i facility (i = 1...I) ErewH

h,t used wind energy in house h during period t (kwh)
j scenario (j = 1...J) Ereserve

t total expected reserve energy during period t(kwh)
EresH

h,t used reserve energy in house h during period t (kwh)
Parameters Eem

h,t used emergency reserve energy in house h during period t (kwh)
do expected average demand load per hour Esell

t selling wind energy during period t (kwh)
F̄i average forcasted generation in facility i Echr

t charge energy in the batter during period t (kwh)
xbat number of the battery Edchr

h,t discharge energy in the batter to house h during period t (kwh)
P res price of reserve energy Ebat

t available energy in the battery during period t (kwh)
P em
t emergency reserve cost during period t (cent) ychrt binary variable variable to indicate charging state during t

P sell
t wholesale wind energy price during period t (cent) ydchrt binary variable variable to indicate discharging state during t

Dhouse
i,t energy consumption in house i during period t (kwh) xi optimal investment level at facility i

INV rate invereter efficiency (%) wj auxiliary variable
dchrrate self-discharging efficiency (%)} η Value at risk (VaR)
chrrate charging efficiency (%) uj dual variable corresponding to the inequality wt

Cbat capacity of single battery module (kwh) u0 dual variable target equation A0

capachr maximum charging power (%) ξ Dual variable corresponding to the budget equation
capadchr maximum discharging power (%)
IOC initial SOC in the battery (%)
SOCmin minimum state of charge (%)
SOCmax maximum state of charge (%)

Table 4.1: Nomenclature used

optimize operation planning (reserve energy, battery energy, selling energy) by adjusting the opti-

mal wind portfolio simultaneously. It is worth emphasizing that this approach is different from the

previous heuristic approach whereby the stages are separated and solved one after the other.

Day-ahead generation data
(Expected demand, Forecast generation)

Optimized RES portfolio
(Minimized intermittency)

Optimal generation profiles

Optimal generation profiles Output data
(Reserve energy, total cost, etc.)Optimize operation planning

Operation planning model

<Upper level>

VPP Operation control

<Lower level>

Mean-CVaR optimization model

Figure 4.2: Proposed optimization framework.
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4.3.1 Mean-CVaR model

At the first level (lower level), our portfolio construction methodology is based on risk-averse

stochastic optimization, Mean-Conditional Value-at-Risk (Mean-CVaR). In formulating this prob-

lem we follow the standard approach used in CVaR optimization.

Primal model We consider a portfolio optimization model, aimed at minimizing the risk (as

measured by CVaR) of underproduction subject to budget constraints by pooling n pre-identified

potential generation sites, with underproduction defined as ℓ = max{d−FTx, 0}. In other words,

our model tries to minimize the difference between demand and forecasted generation. We define

as Fi the vectors representing day-ahead forecasted generation from the selected sites. Fij gives the

forecasted generation at site i under scenario j. We assume that there are n candidate locations and

m historical scenarios based on seasonality. Finally, the underlying portfolio design optimization

problem Eq. (4.1) – (4.5) can be formulated as a linear program (LP) as follows and see all detail

of equation and parameter value in previous chapter 2.

min
η∈R,w∈Rm,x∈Rn

η +
1

(1− α)m

m∑
j

wj

n∑
i

xi = 1

n∑
i

F̄ixi ≥ Ao

wj ≥ (do −
n∑

i=1

Fijxi)− η

x, w ≥ 0

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)
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Dual model To enable an exact solution to the bi-level problem, we will employ the dual model

based on the strong duality [84]. For more context in formulating dual problems for CVaR op-

timization, see [85]. A dual model for the CVaR portfolio optimization problem above can be

formulated as follows.

max
ξ,u0

ξ + A0u0

ξ + Āiu0 + (do −
J∑

j=1

Fijuj) ≤ 0

J∑
j

uj = 1

uj ≤
1

(1− α)m

u ≥ 0

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

Here, dual variable ξ corresponds to the primal Eq. (4.1), variable u0 corresponds to the inequality

primal constraint Eq. (4.2), and uj corresponds to inequality (4.3).

4.3.2 Operation planning model

At the second level (upper level), the operational planning model provides the interaction

between the selected generation portfolio and operation planning. Specifically, the decision-making

problem here is to minimize the total cost (due to reserve, battery and market interaction) given the

realized renewable generation. The model is a binary (linear) optimization problem and given in

Eq.(4.11) – (4.23).
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min
H∑

h=1

T∑
t=1

Eem
h,t × P em +

T∑
t=1

Ereserved
t × P res −

T∑
t=1

Esell
t × P sell

t

Ewind
t =

n∑
i=1

Fij × xi

Ereserved
t =

∣∣∣∣∣do −
n∑

i=1

(Fijxi)

∣∣∣∣∣
Ewind

t =
H∑

h=1

ErewH
h,t + Echr

t + Eunused
t

Ereserved
t =

H∑
h=1

EresH
h,t + Echr

t + Eunused
t

Dhouse
h,t = (ErewH

h,t + EresH
h,t + Eem

h,t + Edchr
h,t )× INV rate

Ebat
t = Ebat

t−1 × (1− dchrrate) + Echr
t × chrrate −

H∑
h=1

Edchr
h,t

SOCmin ∗ Cbat × xbat ≤ Ebat
t ≤ SOCmax × Cbat × xbat

ychrt + ydchrt ≤ 1

Echr
t ≤ capachr × ychrt

T∑
t=1

Edchr
h,t ≤ capadchr × ydchrt

Eem
h,t , E

reserved
t , Esell

h,t , E
rew
h,t , E

chr
t , Edchr

h,t , Ebat
t ≥ 0 ∀h, t

ychrt , ydchrt ∈ 0, 1 ∀t

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

In Eq. (4.11), the objective of the model is to minimize the total operation cost. Variable

reserve energy(Ereserved
t ) and emergency reserve energy (Eem

h,t ) ensure that the amount of wind

energy is equal to the demand. The price of reserve energy (P res), emergency reserve energy

(P em) and selling energy (P sell
t ) respectively, are known parameters. Eq. (4.12) calculates the

amount of wind energy from the first level model. Eq. (4.13) defines the amount of reserve energy

at the optimal portfolio. It is noted that emergency reserve energy is only used in extreme cases
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where demand cannot be satisfied. Eq. (4.14) – (4.15) represents energy equivalent constraints.

Eq. (4.16) ensures that household demands are achieved by wind, battery, and each of the reserves.

Eq. (4.17) calculates available energy in the battery. Eq. (4.18) guarantees a durable life of the

battery that state of charge(SOC) must be between the minimum and maximum range of SOC. In

the Eq. (4.19), the binary variables (ychrt ,ydchrt ) prevent charging or discharging simultaneously in

the battery. Eq. (4.20) – (4.21) enforced the charged/discharged energy at time t must be less than

or equal to the maximum charging/discharging energy capacity (capachr/capadchr). Finally, Eqs.

(4.22) – (4.23) restrict seven non-negative continuous variables and two binary variables.

4.3.3 Multilevel model mathematical formulation

By employing optimality conditions we can rewrite the bi-level optimization problem as a

single-level LP as follows.

min
I∑

i=1

T∑
t=1

Eem
i,t × P em +

T∑
t=1

Ereserved
t × P res −

T∑
t=1

Esell
t × P sell

t

n∑
i

xi = 1

n∑
i

Āixi ≥ Ao

wj ≥ (do −
n∑

i=1

Fijxi)− η

ξ + Āiu0 + (do −
J∑

j=1

Fijuj) ≤ 0

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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J∑
j

uj = 1

uj ≤
1

(1− α)m

η +
1

(1− α)m

m∑
t

wt = ξ + A0u0

Ewind
t =

n∑
i=1

Fij × xi

Ereserved
t =

∣∣∣∣∣do −
n∑

i=1

(Fijxi)

∣∣∣∣∣
Ewind

t =
H∑

h=1

ErewH
h,t + Echr

t + Eunused
t

Ereserved
t =

H∑
h=1

EresH
h,t + Echr

t + Eunused
t

Dhouse
h,t = (ErewH

h,t + EresH
h,t + Eem

h,t + Edchr
h,t )× INV rate

Ebat
t = Ebat

t−1 × (1− dchrrate) + Echr
t × chrrate −

H∑
h=1

Edchr
h,t

SOCmin ∗ Cbat × xbat ≤ Ebat
t ≤ SOCmax × Cbat × xbat

ychrt + ydchrt ≤ 1

Echr
t ≤ capachr × ychrt

T∑
t=1

Edchr
h,t ≤ capadchr × ydchrt

Eem
h,t , E

reserved
t , Esell

h,t , E
rew
h,t , E

chr
t , Edchr

h,t , Ebat
t ≥ 0 ∀h, t

ychrt , ydchrt ∈ 0, 1 ∀t

x, w ≥ 0

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

Eq. (4.31) represents primal-dual optimality condition based on strong duality.
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4.4 Case study data

4.4.1 Wind generation profile

In order to investigate the model performance, we conduct a series of numerical experiments,

using the State of California as the basis. Figure 4.3 demonstrates randomly selected wind sites

with regions in the state. In detail, we split the state vertically, creating whole, half, and quarter

areas. We then sample from the list of given sites so that the resulting generation sites are distributed

across the whole state as uniformly as possible. We obtained historical wind forecast generation

data (hourly resolution) provided by National Renewable Energy Laboratory (NREL) from DR

POWER ([35]) in the same way as in Chapter 3.
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Figure 4.3: Location of wind generation sites used.

4.4.2 Household demand data

Similarly to the previous chapter (see Section 3.4.2), we try to define demand profile as rep-

resenting the typical residential demand from the state, on average 17.7 Kw/h per household (2019

Average Monthly Bill for Residents in California [60]) and apply seasonal adjustment. Table 4.2

summarizes relevant demand parameters.
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Data Value Unit

Average household consumption 17.7 Kw/h
Number of households 232
Winter average demand 3,820 Kw/h

Summer average demand 4,772 Kw/h

Table 4.2: Assumed demand parameters.

In this chapter we only consider winter (December to February) and summer (June to August)

seasons for the case study to reduce the computational burden. The winter and summer periods

consist of 2160 and 2208 hours respectively. Figure 4.4 shows the seasonal factor and the variability

in each season respectively. Note that household demand is larger in summer than in winter.
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Figure 4.4: Normalized household demand profile.
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4.4.3 Battery data

The battery used for the model is based on LG residential battery which has 3.3 kWh capacity

[86]. We assume that the smart grid system has 5 batteries as described in the specification in Table

4.3.

Parameter Value Description
Capabat 3.3(Kwh) Capacity of battery
xbat 5 Total number of battery
SOCmin 5% Minimum state of charge
SOCmax 95% Maximum state of charge
chrrate 99% Charging efficiency
dchrrate 0.139% Self-discharging efficiency
capachr 51% Maximum charging power
capadchr 51% Maximum discharging power
IOC 30% Initial SOC in the battery

Table 4.3: Assumed battery specifications.

4.4.4 Reserve energy and market price

To define the reserve cost, we assume that it is equal to California grid cost ([60]) as shown

in Table 4.4 because one way to purchase it, is from an external grid market [87]. At the same

time, we assume that emergency reserve cost is the value of lost load caused by the unbalance with

demand load in the smart grid system ([81]). Moreover, we assume constant reserve and emergency

reserve costs. Note that these two simplifying assumptions make our model focus on the multilevel

model effect, avoiding the confounding effect of reserve energy bid strategy.

Parameter Value (cent) Description

P reserve 19.15 Average grid price in CA
P em 100,000 Cost for Value of lost load

Table 4.4: Assumed reserve prices.
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We also assume that the wholesale price is the average wholesale price (1.3 cents) of wind

energy to market according to [73]. We normalized the wholesales (market) price as below Fig

4.5 assuming the standard deviation of 0.3 cents for including the benefit from selling extra energy

during high-cost periods instead of storing the energy in the battery.

Figure 4.5: Histogram for normalized selling price

4.5 Results of the case study and discussion

Table 4.5 describes the 6 different scenarios denoted according to the season (winter, summer)

and pooling region (whole, half, quarter). For example, the winter season in the whole region

pooling is denoted as Win-W.

Scenario Season Region Number of Wind facilities
Win-W Winter Whole 40
Win-H Winter Half 14
Win-Q Winter Quarter 8
Sum-W Summer Whole 40
Sum-H Summer Half 14
Sum-Q Summer Quarter 8

Table 4.5: Scenarios used in the case study
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The obtained optimal results are compared against the heuristic approach, which was proposed

in Chapter 4. It is worth emphasizing that comparing the multilevel model to the heuristic model

allows us to evaluate how much operation planning can be improved through optimal pooling by

the multilevel method, as opposed to an occurring pooling outcome separately. At the same time,

we estimate how the different sizes of RES harvesting regions affect the improvement in operation

planning due to pooling. Thus, we conduct a sensitivity analysis of the varied battery capacity, risk

tolerance, and reserve energy cost.

All underlying linear programming optimization problems are solved with the optimization

package Python Pyomo 6.2 ([74]) with Gurobi version 9.0, on a desktop computer with an Intel

Core i5 processor and 32GB of RAM. Each scenario approximately takes 10 minutes to obtain the

optimal solution.

4.5.1 Effect of the proposed multilevel model in smart grid system operation

Table 4.6 reports on the performance of the system, as well as relevant costs for the different

optimal pooling approaches. We describe total system cost, cost of reserve energy used, and rev-

enue of energy sold on the market. It is noted that we obtained results by separating two seasons in

the whole region to account for seasonality.

Season Methodology Total cost ($) Reserve cost ($) Selling revenue ($)

Winter
Heuristic - 60,191 32,436 92,627
Multilevel - 67,269 30,993 98,262

Summer
Heuristic 54,383 148,492 94,109
Multilevel 51,623 147,388 95,765

Table 4.6: Case study results for teh base case

First, observe that multilevel model results in smaller total cost compared to heuristic method-

ology in both seasons. Specifically, in winter it results in 10.5% reduction in total cost, and 5.1%
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reduction in summer. While this is not surprising in itself, it is worth emphasizing that the im-

provement of reserve energy cost and selling revenue compared to heuristic is substantial, with

optimization being able to adjust the optimal pooling profile to serve household demand more ef-

ficiently. Table B.1 in the Appendix reports the absolute difference (%) of the optimal portfolio

by the multilevel model compared to the heuristic approach. Overall, the portfolio difference is af-

fected by seasonality. However, it shows that the multilevel model adjusts optimal pooling results

by 34.04% and 2.25% respectively to optimize the operation planning at the second level.

Fig 4.6 compares the generation profiles from each of the individual sites and the two optimal

portfolios in terms of the proportion of demand met on average (i.e., the ratio between average

generation and demand) and standard deviation. Both optimal portfolios significantly outperform

most individual locations in at least one of the two metrics.
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Figure 4.6: Average generation and standard deviation by portfolio.

4.5.2 Effect of geographical pooling in smart grid system

The next set of experiments focuses on estimating how the different sizes of RES harvesting

regions affect the improvement of operation planning in multilevel modeling. Note that smaller

regions should generally correspond to more correlated outputs, and hence tend to have less po-

tential for effective pooling [11]. We specifically investigate whether this trend is observed in the
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multilevel model when we move from quarter (roughly county-level) to large (state-wide) pooling.

The relevant results are summarized in Fig 4.7 and Tables 4.7.

First, similarly to Figure 4.6 above, in Figure 4.7 the observed average generation ratio of

production satisfy the demand, and the standard deviation is smaller than individual wind sites in

all regions. At the same time, in all tested seasons, it can be observed that a larger harvesting region

directly leads to a lower standard deviation. As a result, the whole pooling case (denoted as a purple

dot) can be expected to be less prone to suffer from the negative effects of generation variability.
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Figure 4.7: Average generation and standard deviation of optimal portfolios by geographical region.

Table 4.7 reports specific optimal operation results through the different optimal pooling re-

gions. Most importantly, it is observed that the total cost is significantly reduced as the pooling

region is increased. For example, winter whole pooling (denoted as Win-W) reduces the total cost

by up to 10 times ($ 60,744) compared to half pooling (denoted as Win-H) region scenario.

Scenario Total cost ($) Reserve cost ($) Selling revenue ($) Total charge energy (Kw)
Win-Q 22,611 116,309 93,695 6,556
Win-H - 6,525 93,051 99,576 6,689
Win-W - 67,269 30,993 98,262 7,088
Sum-Q 264,726 314,997 50,271 5,627
Sum-H 263,420 314,802 51,382 5,491
Sum-W 51,623 147,388 95,765 6,244

Table 4.7: Results of optimal portfolio performance by geographical region.
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4.5.3 Sensitivity analysis

We performed a sensitivity analysis by changing battery capacity, risk tolerance parameter,

and reserve energy cost.

Effect of battery capacity To investigate the effect of the battery capacity on pooling by the

region, we have increased battery capacity from 9.9kw to 66kw. Table 4.8 reports the capacity of

the battery modules and total cost, reserve cost, and charge energy.

Naturally, the results show that increasing battery capacity can reduce the total cost in the sys-

tem when pooled across a quarter, half, and whole scenarios. Further, the reserve cost is decreased

as the battery capacity is increased. At the same time, charge energy is increased as the battery

capacity is increased. Note that in all cases relative performance of the harvesting regions does not

change indicating that the conclusions made earlier are not sensitive to battery capacity.

Effect of risk tolerance To evaluate the effect of risk tolerance, we change parameter α from

0.2 to 0.99. α = 0.99 corresponds to very low risk tolerance, while lower values of α represent

more risk-neutral preference. Naturally, lower α allows for less focus on intermittency, and hence

should result in higher generation on average. Table 4.9 and Figure 4.8 summarize the effect of

risk tolerance. Table 4.9 shows that average generation (and hence amount sold on the market) are

consistent with the interpretation above.

At the same time, the outcomes of the Figure 4.8 serve to highlight the important role that

decreased risk tolerance plays in reducing intermittency. Both very high and very low risk tolerance

can result in higher total cost, since the former restricts average generation, while the latter allows

for too much intermittency.
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Battery capacity(Kw) Scenario Total cost($) Reserve cost($) Charge energy(Kw)

9.9

Win-Q 22,730 116,424 3,934
Win-H -6,431 93,139 4,013
Win-W -67,210 31,042 4,227
Sum-Q 264,913 315,189 3,344
Sum-H 263,590 314,974 3,301
Sum-W 51,719 147,481 3,734

16.5

Win-Q 22,611 116,309 6,556
Win-H -6,525 93,051 6,689
Win-W -67,269 30,993 7,088
Sum-Q 264,726 314,997 5,627
Sum-H 263,420 314,802 5,491
Sum-W 51,623 147,388 6,244

33

Win-Q 22,321 116,026 13,087
Win-H -6,760 92,833 13,387
Win-W -67,405 30,882 14,146
Sum-Q 264,276 314,537 11,254
Sum-H 262,985 314,357 11,056
Sum-W 51,388 147,164 12,479

49.5

Win-Q 22,032 115,747 19,609
Win-H -6,988 92,632 20,031
Win-W -67,541 30,777 21,172
Sum-Q 263,829 314,080 16,917
Sum-H 262,553 313,915 16,613
Sum-W 51,156 146,943 18,732

66

Win-Q 21,748 115,473 26,117
Win-H -7,211 92,462 26,696
Win-W -67,675 30,662 28,266
Sum-Q 263,388 313,630 22,503
Sum-H 262,131 313,484 22,154
Sum-W 50,928 146,726 24,951

Table 4.8: Results of sensitivity analysis with respect to battery capacity.

Effect of reserve energy cost To assess the effect of reserve energy cost, we have increased it

from 19.15 cents to 145.45 cents. Figure 4.9 depicts total cost changes by different reserve energy

unit costs.

The total cost naturally increases as the unit reserve cost is increased in all cases. However, it

is important to note that the total cost of the quarter case has a more shapely increase than half and

73



Scenario Risk tolerance (α) Average wind generation(Mw/h) Selling revenue ($)

Win-W

0.2 8,292 128,893
0.3 8,144 123,098
0.5 7,835 113,260
0.7 7,628 106,889
0.9 7,328 98,262
0.99 6,733 82,915

Sum-W

0.2 9,106 133,388
0.3 9,066 131,376
0.5 8,888 124,312
0.7 8,858 123,427
0.9 7,864 95,765
0.99 6,077 49,122

Table 4.9: Results of sensitivity analysis with respect to risk tolerance (generation profile).
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Figure 4.8: Results of sensitivity analysis with respect to risk tolerance (total cost).
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Figure 4.9: Results of sensitivity analysis with respect to reserve energy cost.

whole cases, i.e., less diverse portfolios are more prone to the negative effect of reserve energy cost

increase.

4.6 Conclusion

The study proposes a multilevel modeling with a risk-averse model aimed at optimizing oper-

ation planning in a virtual power plant. Specifically, on the first level, a mean-CVaR optimization

model provides a family of optimal generation portfolios that achieves low intermittency based on

historical forecast generation data. On the second level, the operation planning model optimizes
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the scheduling which consists of distributed energy sources such as wind energy and battery en-

ergy. Finally, we evaluate the performance of multilevel modeling in different scenarios such as

geographically diverse wind generation locations.

Most importantly, the results have shown that multilevel model results in smaller total cost

than the benchmark (heuristic methodology) in all cases. Furthermore, the outcomes of the effect

of geographical pooling serve to highlight the important role that advanced pooling technique may

play in VPPs design. It is observed that the total cost is significantly reduced as the pooling region

is increased. It is explained by fact that a larger harvesting region (whole) directly leads to lower

intermittency in the generation profile. At the same time, the total cost of the quarter case has a

more shapely increase than half and whole cases as the reserve energy cost are increased or battery

capacity is decreased. Consequently, the proposed model illustrates that with a multilevel modeling

problem it is possible to save a total cost while managing the intermittency of generation profile at

the same time.

A number of limitations and directions for future research of the study must be emphasized.

First, the current study used day-ahead forecast generation data. It can be extended as a real-time

dispatch tool to efficiently address distributed energy sources and load consumption uncertainty

in future work. Next, research on the multilevel model effect on cost with various dispatchable

energy sources such as a dispatchable battery, solar, a diesel generator is also needed. Finally, the

incorporation of transmission constraints into the proposed strategy will be the focus of our future

research to improve geographical pooling.
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Chapter 5

Conclusions

The dissertation aims to propose optimization modeling approaches for optimal pooling of

renewable energy sources through risk-averse portfolio methods. In the first stage, a portfolio

optimization model for intelligently constructing a wind energy portfolio for a given harvesting

region with the goal of reducing prediction error is proposed. The results showed that pooling can

significantly reduce wind energy generation forecasting error, with the effect largely dependent on

the size of the harvesting region. Pooling can substantially reduce the forecasting error of wind

energy generation, up to 50% when pooled across a whole state compared to no pooling. On

average, a 100km increase in area diameter results in a 1%–4% of reduction in average relative

forecasting error, depending on the region studied. Further, if advanced optimization techniques

are used, it is possible to balance this reduction with average generation output. Consequently,

the results indicate that pooling has direct benefits for the renewable (wind) generation. In the

remainder of the dissertation we evaluate whether these theoretical benefits can translate to cost

reduction (or increase in efficiency) in a more practical setting.

The second research effort evaluates the effect of pooling on battery requirement for a residen-

tial microgrid. We proposed a two stage model with a corresponding heuristic solution approach

to building a renewable energy portfolio, such that is optimizes operational cost and generation

variability. The results of numerical experiments showed that the heuristic approach with pooling

significantly reduces battery capacity required according to operation plans, and the effect varies
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on the size of the harvest region and technology used (on-shore vs off-shore). For instance, polling

across both CA and WY and off-shore locations reduces the number of battery modules requested

by 73% with a similar reductiin in total operational cost. In the sensitivity analysis, we can observe

that pooling significantly reduces the battery requirement and the total cost in all tested scenarios,

including different levels of battery cost and demand as well as grid-connected or grid-disconnected

cases. Consequently, we conclude that the proposed two stage model can reduce both the overall

cost of the system and battery cost through the optimal portfolio model. Intelligent planning for

pooling geographically diverse renewable energy sources can serve as an important tool for over-

coming generation variability challenges.

In the final chapter, we again consider simultaneous optimization of portfolio generation pro-

file and operational costs as a bi-level problem (this time with a virtual power plant as the intended

use case). We then propose an exact solution approach based on KKT conditions. We then per-

formed a comparison of the exact and heuristic solutions in a case study, demonstrating that the

proposed exact solution is able to significantly reduce the operational costs by tailoring the gener-

ation profile to the intended demand pattern.

A number of directions for future research of the study must be emphasized. First, research

on the pooling effect of various renewable energy sources such as solar power is also needed.

Secondly, the current study disregards transmission constraints. Both transmission cost (energy

loss in transit) as well as network congestion effects have potential to reduce the extent to which the

befits due to pooling can be realized in practice. Consequently, a study considering these factors

is needed. Similarly, a study that considers a more practical setting for the economic analysis,

including various renewable energy investment realities and considerations could further expand

on practical significance of the effect of pooling that has been established in the dissertation. While

we pose that the benefits due to pooling should be considered in renewable energy capital planning,

a more through review of all relevant costs is required.
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Appendix A

Chapter 2

A.1 Model formulation for battery sizing problem

We assume that the microgrid system is composed of a battery, external grid, and residential

buildings consuming energy. The problem is constructed by directly following [58, 59, 61]. Opti-

mization problem formulation is given below, followed by a summary of nomenclature. Parameter

values used are listed in Table A.1.

Parameter Value Description

P grid
i,t 19.15cent Average purchasing price

Sprice 1.3cent Average wholesale price
AECbat 59.30 (USD) Annual Equivalent Cost (AEC) of single battery module
Capabat 3.3 (kwh) Capacity of single battery module
SOCmin 5% Minimum state of charge
SOCmax 95% Maximum state of charge
chrrate 99% Charging efficiency
dchrrate 0.139% Self-discharging efficiency
capachr 51% Maximum charging power
capadchr 51% Maximum discharging power
IOC 30% Initial State Of Charge of the battery

Table A.1: Parameter values
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min
xbat,E

grid
i,t

AECbatxbat +
I∑

i=1

T∑
t=1

Egrid
i,t P grid

i,t −
T∑
t=1

Esell
i,t Sprice

Etotal
t =

I∑
i=1

Erew
i,t + Echr

t + Esell
t

Dhouse
i,t = (Erew

i,t + Edchr
i,t )INV rate + Egrid

i,t

Ebat
t = Ebat

t−1(1− dchrrate) + Echr
t chrrate −

I∑
i=1

Edchr
i,t

SOCminCbatxbat ≤ Ebat
t ≤ SOCmaxCbatxbat

ychrt + ydchrt ≤ 1

Echr
t ≤ capachrychrt

T∑
t=1

Edchr
i,t ≤ capadchrydchrt

xbat, E
grid
i,t , Esell

i,t , Erew
i,t , Echr

t , Edchr
i,t , Ebat

t ≥ 0 ∀i, t

ychrt , ydchrt ∈ 0, 1 ∀t

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

Equation (A.1) defines the objective, which is to minimize the total cost of battery and ex-

change with the external grid. Equation (A.2) balances the energy generation, storage and pur-

chase/sale. Equation (A.3) guarantees that the energy demand is satisfied. In equations (A.4)–

(A.8) the battery operational constraints are defined. Equations (A.4) and (A.5) describe the state

of charge of the battery. Equations (A.6)–(A.8) impose limits on battery charging and discharging.
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Nomenclature

Indices

i house (i = 1 . . . I)

t time (t = 1 . . . T )

Parameters

AECbat annual equivalent cost of battery (cent)

Cbat capacity of single battery module (kwh)

capachr maximum charging power (%)

capadchr maximum discharging power (%)

chrrate charging efficiency (%)

Dhouse
i,j energy consumption in house i during period t (kwh)

dchrrate self-discharging efficiency (%)

Etotal
t wind energy output during period t (kwh)

INV rate invereter efficiency (%)

IOC initial SOC in the battery (%)

P grid
i,t grid cost for house i during period t (cent)

Sprice wholesale wind energy price (cent)
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SOCmax Maximum state of charge(%)

SOCmin Minimum state of charge(%)

Variables

xbat integer variable to indicate the number of the batteries

Egrid
i,t used grid energy in house i during period t (kwh)

Esell
t energy sold during period t (kwh)

Erew
i,t energy used in house i during period t (kwh)

Echr
t charge energy in the battery during period t (kwh)

Edchr
i,t discharge energy in the battery to house i during period t (kwh)

Ebat
t available energy in the battery during period t (kwh)

ychrt binary variable indicating charging state during period t

ydchrt binary variable indicating discharging state during period t

A.2 Supplementary tables for the case study discussion
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State Year Case Average Min Max State Year Case Average Min Max

Alabama

2009

No-pooling 0.38 0.30 0.44

Oklahoma

2009

No-pooling 0.32 0.28 0.39
W-CVaR 0.24 0.20 0.29 W-CVaR 0.19 0.17 0.24

W-CVaR(γ = 0.9) 0.21 0.21 0.22 W-CVaR(γ = 0.9) 0.17 0.17 0.18
Equal weight 0.22 Equal weight 0.18

2010

No-pooling 0.41 0.33 0.47

2010

No-pooling 0.31 0.27 0.38
W-CVaR 0.25 0.22 0.31 W-CVaR 0.18 0.16 0.24

W-CVaR(γ = 0.9) 0.24 0.23 0.24 W-CVaR(γ = 0.9) 0.17 0.17 0.17
Equal weight 0.24 Equal weight 0.18

2011

No-pooling 0.39 0.30 0.46

2011

No-pooling 0.30 0.26 0.39
W-CVaR 0.24 0.21 0.28 W-CVaR 0.18 0.16 0.24

W-CVaR(γ = 0.9) 0.22 0.22 0.22 W-CVaR(γ = 0.9) 0.17 0.16 0.17
Equal weight 0.24 Equal weight 0.17

2012

No-pooling 0.42 0.32 0.49

2012

No-pooling 0.32 0.27 0.37
W-CVaR 0.26 0.22 0.31 W-CVaR 0.19 0.17 0.24

W-CVaR(γ = 0.9) 0.23 0.23 0.24 W-CVaR(γ = 0.9) 0.18 0.17 0.18
Equal weight 0.25 Equal weight 0.18

Arizona

2009

No-pooling 0.53 0.32 0.71

South Dakota

2009

No-pooling 0.35 0.28 0.60
W-CVaR 0.22 0.18 0.30 W-CVaR 0.21 0.18 0.39

W-CVaR(γ = 0.9) 0.21 0.20 0.21 W-CVaR(γ = 0.9) 0.19 0.19 0.19
Equal weight 0.21 Equal weight 0.21

2010

No-pooling 0.50 0.27 0.70

2010

No-pooling 0.35 0.29 0.61
W-CVaR 0.19 0.16 0.28 W-CVaR 0.22 0.19 0.38

W-CVaR(γ = 0.9) 0.18 0.18 0.19 W-CVaR(γ = 0.9) 0.19 0.19 0.20
Equal weight 0.19 Equal weight 0.21

2011

No-pooling 0.51 0.29 0.70

2011

No-pooling 0.35 0.28 0.56
W-CVaR 0.21 0.17 0.30 W-CVaR 0.21 0.18 0.38

W-CVaR(γ = 0.9) 0.20 0.19 0.20 W-CVaR(γ = 0.9) 0.19 0.19 0.19
Equal weight 0.20 Equal weight 0.21

2012

No-pooling 0.55 0.32 0.76

2012

No-pooling 0.36 0.29 0.57
W-CVaR 0.22 0.18 0.30 W-CVaR 0.21 0.18 0.38

W-CVaR(γ = 0.9) 0.21 0.21 0.22 W-CVaR(γ = 0.9) 0.19 0.18 0.19
Equal weight 0.22 Equal weight 0.21

Ohio

2009

No-pooling 0.33 0.30 0.41

Washington

2009

No-pooling 0.52 0.30 1.18
W-CVaR 0.22 0.20 0.25 W-CVaR 0.20 0.15 0.29

W-CVaR(γ = 0.9) 0.21 0.21 0.21 W-CVaR(γ = 0.9) 0.23 0.22 0.23
Equal weight 0.22 Equal weight 0.20

2010

No-pooling 0.35 0.30 0.43

2010

No-pooling 0.49 0.28 1.13
W-CVaR 0.22 0.21 0.26 W-CVaR 0.17 0.13 0.21

W-CVaR(γ = 0.9) 0.21 0.21 0.22 W-CVaR(γ = 0.9) 0.21 0.21 0.21
Equal weight 0.22 Equal weight 0.17

2011

No-pooling 0.34 0.31 0.41

2011

No-pooling 0.49 0.30 0.97
W-CVaR 0.21 0.20 0.25 W-CVaR 0.19 0.14 0.30

W-CVaR(γ = 0.9) 0.20 0.20 0.21 W-CVaR(γ = 0.9) 0.22 0.22 0.22
Equal weight 0.21 Equal weight 0.18

2012

No-pooling 0.34 0.31 0.42

2012

No-pooling 0.49 0.30 1.00
W-CVaR 0.22 0.21 0.26 W-CVaR 0.19 0.14 0.28

W-CVaR(γ = 0.9) 0.22 0.21 0.22 W-CVaR(γ = 0.9) 0.21 0.20 0.21
Equal weight 0.23 Equal weight 0.18

Table A.2: Obtained forecasting error (δ) in the considered portfolios (no pooling, optimal pooling, optimal
pooling at 90% of max generation and equal weight) for state-wide pooling cases.
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State Year Region Average Min Max Year Region Average Min Max Year Region Average Min Max Year Region Average Min Max

Alabama 2009

small 0.33 0.29 0.35

2010

small 0.34 0.31 0.35

2011

small 0.33 0.31 0.35

2012

small 0.36 0.32 0.38
medium 0.29 0.26 0.32 medium 0.30 0.28 0.34 medium 0.30 0.27 0.34 medium 0.32 0.28 0.35
quarter 0.27 0.25 0.32 quarter 0.29 0.26 0.33 quarter 0.28 0.25 0.32 quarter 0.30 0.27 0.36

half 0.25 0.23 0.29 half 0.27 0.25 0.30 half 0.26 0.24 0.29 half 0.28 0.25 0.32
whole 0.23 0.21 0.25 whole 0.25 0.23 0.26 whole 0.24 0.22 0.25 whole 0.25 0.23 0.27

Arizona 2009

small 0.40 0.32 0.66

2010

small 0.36 0.28 0.64

2011

small 0.36 0.29 0.60

2012

small 0.39 0.32 0.63
medium 0.39 0.33 0.66 medium 0.36 0.29 0.64 medium 0.37 0.31 0.60 medium 0.39 0.33 0.63
quarter 0.33 0.23 0.57 quarter 0.31 0.20 0.55 quarter 0.32 0.22 0.52 quarter 0.34 0.23 0.55

half 0.29 0.21 0.46 half 0.27 0.19 0.44 half 0.28 0.20 0.43 half 0.29 0.21 0.45
whole 0.23 0.18 0.30 whole 0.21 0.16 0.28 whole 0.22 0.17 0.30 whole 0.23 0.18 0.30

Ohio 2009

small 0.26 0.24 0.30

2010

small 0.27 0.24 0.32

2011

small 0.26 0.24 0.30

2012

small 0.27 0.24 0.31
medium 0.26 0.23 0.31 medium 0.27 0.23 0.31 medium 0.26 0.22 0.31 medium 0.27 0.23 0.32
quarter 0.24 0.23 0.29 quarter 0.25 0.23 0.31 quarter 0.24 0.22 0.30 quarter 0.25 0.23 0.31

half 0.24 0.21 0.26 half 0.24 0.21 0.27 half 0.23 0.21 0.26 half 0.24 0.22 0.27
whole 0.22 0.20 0.24 whole 0.22 0.21 0.24 whole 0.21 0.20 0.24 whole 0.22 0.21 0.25

Oklahoma 2009

small 0.25 0.24 0.31

2010

small 0.25 0.23 0.31

2011

small 0.24 0.22 0.30

2012

small 0.26 0.23 0.31
medium 0.25 0.21 0.32 medium 0.25 0.21 0.31 medium 0.23 0.20 0.30 medium 0.25 0.21 0.33
quarter 0.24 0.19 0.32 quarter 0.23 0.19 0.31 quarter 0.22 0.18 0.30 quarter 0.24 0.19 0.33

half 0.23 0.18 0.32 half 0.22 0.17 0.31 half 0.21 0.17 0.28 half 0.23 0.17 0.33
whole 0.19 0.17 0.24 whole 0.19 0.16 0.24 whole 0.18 0.16 0.22 whole 0.19 0.17 0.24

South Dakota 2009

small 0.28 0.27 0.31

2010

small 0.28 0.27 0.32

2011

small 0.28 0.27 0.32

2012

small 0.28 0.26 0.30
medium 0.25 0.23 0.28 medium 0.25 0.23 0.28 medium 0.26 0.24 0.29 medium 0.25 0.23 0.27
quarter 0.24 0.21 0.40 quarter 0.24 0.22 0.40 quarter 0.24 0.21 0.40 quarter 0.23 0.21 0.40

half 0.24 0.20 0.40 half 0.24 0.21 0.40 half 0.24 0.21 0.40 half 0.24 0.20 0.40
whole 0.24 0.19 0.39 whole 0.24 0.19 0.38 whole 0.24 0.19 0.38 whole 0.24 0.18 0.38

Washington 2009

small 0.40 0.31 0.52

2010

small 0.40 0.32 0.55

2011

small 0.36 0.29 0.44

2012

small 0.36 0.30 0.47
medium 0.30 0.25 0.34 medium 0.29 0.24 0.34 medium 0.28 0.23 0.31 medium 0.28 0.23 0.33
quarter 0.24 0.21 0.30 quarter 0.22 0.18 0.28 quarter 0.22 0.19 0.28 quarter 0.22 0.19 0.28

half 0.21 0.18 0.26 half 0.19 0.16 0.24 half 0.20 0.16 0.24 half 0.19 0.16 0.24
whole 0.19 0.15 0.23 whole 0.17 0.13 0.21 whole 0.18 0.14 0.22 whole 0.17 0.14 0.21

Table A.3: Effect of harvesting region size on the achieved forecasting error. Relative error δ is reported for
all testing states, subareas and years.
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Appendix B

Chapter 4

B.1 Supplementary tables for the case study discussion

Winter Summer

Wind site Hueristic Multilevel Absolute difference Hueristic Multilevel Absolute different
1 14.05% 15.27% 1.22% 0.00% 0.00% 0.00%
2 3.83% 4.48% 0.65% 25.56% 26.03% 0.47%
3 21.30% 29.42% 8.12% 0.00% 0.00% 0.00%
4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
7 9.42% 0.00% 9.42% 0.00% 0.00% 0.00%
8 0.00% 0.00% 0.00% 7.34% 6.54% 0.80%
9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
11 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
12 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
13 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
14 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
15 23.69% 22.99% 0.71% 0.00% 0.00% 0.00%
16 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
17 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
18 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
19 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
21 0.00% 0.00% 0.00% 54.57% 55.16% 0.58%
22 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
23 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
24 0.00% 0.00% 0.00% 5.03% 5.07% 0.03%
25 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
26 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
27 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
28 0.00% 0.00% 0.00% 0.24% 0.30% 0.06%
29 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
30 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
31 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
32 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
33 0.00% 2.99% 2.99% 0.00% 0.00% 0.00%
34 7.98% 9.90% 1.92% 4.19% 4.31% 0.12%
35 9.07% 11.18% 2.11% 0.79% 0.55% 0.24%
36 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
37 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
38 8.31% 3.38% 4.92% 0.00% 0.00% 0.00%
39 2.35% 0.38% 1.97% 2.27% 2.05% 0.22%
40 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Total absolute difference of investment level 34.04% Total absolute difference of investment level 2.52%

Table B.1: Comparison of the two optimal portfolios.
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