
Investigation of Precise Relative Positioning through Varying Equipment Grades

by

Christian J. Campos-Vega

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 07, 2022

Keywords: Ambiguity Resolution, Relative Navigation, RTK, DRTK

Copyright 2022 by Christian J. Campos-Vega

Approved by

Scott M. Martin, Chair, Assistant Professor of Mechanical Engineering
David M. Bevly, Bill and Lana McNair Distinguished Professor

Mark A. Hoffman, Assistant Professor of Mechanical Engineering



Abstract

In this thesis, three methodologies are investigated in order to provide precise relative posi-

tioning knowledge between two dynamic platforms as equipment grade is varied. Two methods

are integrated into the real-time kinematic (RTK) algorithm using differential GPS techniques

to aid the ambiguity resolution of static and dynamic baselines. Lastly, with the introduction of

modern GNSS signals, the benefits of integrating single-frequency (SF) observables from GPS,

Galileo (GAL), and the BeiDou (BDS) constellations into a single RTK algorithm is explored.

The first method uses an adaptive extended Kalman Filter (EKF) to estimate stochastic proper-

ties of single-differenced (SD) GPS combinations. This technique improves the resolution of

the carrier-phase ambiguities allowing for precise relative navigation and improved time-to-first

fix (TTFF). Secondly, a tightly-coupled RTK algorithm is demonstrated which combines ultra-

wideband radio (UWB) observables with SD GPS combinations. This is shown to improve

TTFF and increase the robustness of the fixed integer solution. An overview of the estimation

techniques is provided, and errors observed in diagnostic assessment tools are explained.

To better evaluate the robustness of the presented algorithms, they are applied to exper-

imental data collected with equipment of varying grade. Survey-grade equipment is heavily

used in RTK research or in applications with a need for precise relative positioning between a

base and rover platform. This equipment can be costly and not applicable to many emerging

modular technologies. Low-cost sensor suites have been shown to create noisier observables

due to the instabilities of their internal oscillators. In addition, low-cost antennas exhibit irreg-

ular gain patterns and poor multi-path suppression which obscure the ambiguity search space

leading to longer TTFF and higher chances of incorrectly fixing integers. Thus, it is of in-

terest to evaluate the effects of equipment grade on the ambiguity search space for on-the-fly

ambiguity estimation.

The investigation of the search space is first assessed using a zero-baseline test. This

test provides insight into the observability of the carrier phase ambiguity since no geometric
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range is embedded in the observables. The study then continues by evaluating the search space

during a static baseline test. Measurement innovations are monitored and a unique integer

validation scheme is shown to improve the percentage of correct integer fixes for all utilized

equipment. Lastly, the RTK algorithm is extended to consider dynamic baselines under the

pretense that both the base and rover platforms are mobile. This breaks several assumptions

of the nominal RTK algorithm and allows it to be considered a Dynamic-Real Time Kinematic

(DRTK) algorithm.
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Chapter 1

Introduction

The demand for precise relative positioning has increased as vehicle-to-vehicle (V2V) and

vehicle-to-infrastructure (V2I) autonomous technologies become integrated into the commer-

cial, industrial, and military sectors. This transition to cooperative or complete autonomous

task completion has led researchers and engineers to explore system configurations with vary-

ing sensor suites and equipment grades. With this considered, mission parameters such as

power consumption, weight, cost, mission objectives and operational limits can influence the

selection of sensors.

When relative position information between platforms or between a platform and an en-

vironment of interest is desired, a few sensors exist capable of providing this information.

Cameras and laser sensors are capable of providing the needed accuracy, but can increase the

cost, computing cost and complexity of the holistic system. Furthermore, they are operationally

limited to perform only when needed information can be extracted from the perceived environ-

ment. Ultra Wide-Band (UWB) radios have been proven to be cheap yet robust sensors through

many environments. Their ability to provide ranging measurements within line-of-sight (LoS)

at varying baselines has been acknowledged and can be furthered observed in [12][15]. In

[7][9][15], their incorporation into V2V and V2I relative positioning has been shown to provide

robust localization in indoor and outdoor environments. However, these localization schemes

are susceptible to radio dropouts and are limited to the perceptional range of the utilized radios.

Global Navigation Satellite Systems (GNSS) utilizing differential techniques or DGPS

techniques are also capable of providing the desired relative sensing information. This ma-

ture technology is attractive due to the availability of the solution and the precision of carrier

phase-based approaches [We need a reference!]. In addition, GNSS equipment can vary in size
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and cost making it adaptable to variety of applications. This makes GNSS-based positioning

methods ideal in many scenarios.

1.1 Prior Art

GPS-based relative positioning has been studied for many years. Researchers and engineers

have developed many methodologies for maintaining an accurate solution through a variety of

environments and scenarios. Sensor fusion approaches couple information from different sen-

sors to improve the availability of the desired solution. Stochastic approaches aim at modeling

uncertainties to improve the accuracy of the solution under certain conditions. Lastly, with

the introduction of new constellations, GNSS based relative positioning has been the focus of

recent years. Prominent results of each of these methods will be summarized in the subsequent

sections.

1.1.1 Multi-GNSS

With the completion of the new BeiDou-3 era of Chinese GNSS satellites and the European

Galileo constellation, precise relative navigation with low-cost equipment is not only achiev-

able but available in many environments where GPS alone would fail. With these new capa-

bilities, researchers have been busy integrating these new sources of information into a single

navigation algorithm. The coupling of regional BDS-2 and GPS observables for a combination

of low-cost receivers with high-grade antennas is explored in [2]. It demonstrated improved

ambiguity resolution (AR) for not only dual frequency cases, but also when the filter is limited

to single frequency observables. [3] couples BDS-3 with GPS observables, but also takes this

a step further by evaluating the effects of varying equipment grade. It demonstrates an increase

in measurement uncertainty corresponding to decreasing antenna grade. This is explained to be

caused by the inherent gain patterns and poor multipath suppression. Through modeling sensor

covariances via Least Squares variance component estimation (LC-VCE), the proposed algo-

rithm is capable of coupling GPS-BDS observables to achieve a fixed integer precision RTK

solution.
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1.1.2 Adaptive Estimation

Survey grade receivers provide robust tracking algorithms giving precise observables to any

user. In addition, survey grade antennas not only provide multi-frequency perception but sup-

press the effects of multipath on the receivers’ tracking loops, further improving the quality

of the provided observables. There exist scenarios and circumstances where this equipment

may not be feasible or applicable to the platform(s) of interest. In these situations, the use

of low-grade equipment is unavoidable. These have been shown to be less precise and more

susceptible to multipath making it difficult to seamlessly place observables from these sensors

into algorithms expecting survey level information. Stochastic methods for better modeling of

sensor uncertainty is not a new technique. In the application of satellite relative positioning,

[4] introduces an adaptive EKF formulation which allows for centimeter-level positioning accu-

racy. These satellites have poor LoS to GPS SVs, causing poor observability of the ambiguities.

Stochastic methods are also used to improve the AR of low-grade equipment in [3].

1.1.3 Sensor Fusion

GNSS-based approaches to navigation work well in open-sky conditions, but degrade in cities

due to LoS obstructions and in hostile environments where the satellite signals may become

compromised. In these situations, information from additional sensors can constrain the naviga-

tion solution during GNSS outages to limit positional errors. DGPS/INS is a common technique

to constrain positioning errors during GNSS outages. This has been demonstrated in a variety

of architectures and further studied in [5][6]. In situations where the quality of observables is

poor, however, INS can not improve the AR of problem. In these circumstances, additional

observations of positional information can be beneficial. Camera and laser systems can pro-

vide this information, but as previously stated, increase the complexity and cost of the system.

As alluded, combining UWB and GPS sensing information has been of much interest recently.

The combination of UWB and DGPS is discussed in [4][5][6] to varying degree. [4] introduced

the aid provided by UWB measurements to ambiguity fixing through the C-Lambda method.

In that work, the UWB range measurement is used as an a priori baseline measurement during
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the LAMBDA method. It demonstrated an improvement to the time-to-fix of the navigation

problem when the baseline error between the distinct sensor phase centers is less than a 5 cm

threshold. In [5], a tightly-coupled UWB/RTK algorithm was introduced with real data. The

data was gathered in the context of an RTK surveyor who has augmented the work site with

3 other static UWB radios. UWB biases were added to the state vector and estimated while

GPS was available, then relied on when the GPS solution was degraded or unavailable. [6]

validated a tightly-coupled formulation between IR-UWBs and single-differenced (SD) GPS

observables in simulation. The aim was to evaluate the performance of the aided navigation so-

lution through increasing magnitudes of error sources such as multi-path, a prominent problem

in aerial vehicle navigation.

1.2 Objectives and Contributions

The focus of the research presented in this thesis is the evaluation of the ambiguity resolution

for platforms with varying grade equipment. In addition, we assume that both platforms are

mobile, breaking a key aspect of standard RTK methods. To that end, the following contribu-

tions are made:

• A combination of three commercially available GNSS receivers and antennas are tested.

They are evaluated based on their ability to achieve fixed integer precision in zero, static,

and dynamic baselines.

• Two carrier-phase DGPS methods are discussed which utilize GPS L1 only; and GPS L1,

Galileo E1b, and BeiDou B1. The algorithms are compared based on time-to-fix, integer

validation metrics, and consistency of their computed high-precision results in various

operational scenarios.

• The second method tightly-couples DGPS observables and UWB observables for precise

relative navigation between UAVs and UGVs. This formulation aims to experimentally

validate the tightly-couple algorithm when low-cost equipment on platforms experienc-

ing high dynamics.
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• The probability of correct integer fixing is examined by comparing the true ambiguity

values to the estimate set at every epoch. The time-to-first-fix (TTFF) is calculated and

the time-to-fix (TTF) is computed for the remaining data set to assess the AR for each

scenario.

1.3 Thesis Outline

Chapter 2 discusses the GNSS systems under consideration while describing the unique char-

acteristics of each. Chapter 3 introduces the differential GPS technique known as RTK and

distinguishes it from its dynamic counter part DRTK. Chapter 3 also demonstrates the capa-

bilities and weaknesses of DRTK for three cases. Chapter 4 presents the tests used to assess

the performance of the equipment and presented algorithms in various operational scenarios.

Finally, Chapter 5 provides conclusions from the work presented here and provides direction

for future work in the field of carrier-based relative positioning.
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Chapter 2

Global Navigation Satellite Systems

GNSS is the collective term for all satellite navigation systems providing position, velocity,

and timing (PVT) capabilities. At this point, GPS, Glonass, Galileo and Beidou are all capable

of providing this functionality to commercial, civilian, and military users. A GNSS consists

three main segments: the space segment, which consists of the satellites; the control segment,

which is responsible for proper operation of the system; and the user segment, which includes

the GNSS receivers providing the PVT solution to users. For this work, only GPS, Galileo, and

BeiDou are discussed. GLONASS is excluded due to its unique frequency division multiple

access (FDMA) multiplexing technique. This technique creates biases across channels since

each is transmitted at a distinct carrier frequency. These biases must be estimated and removed

to provide the precise relative navigation solution of interest in this work []. While these pro-

cesses are well researched [], they can add obscurity to other variables of interest and thus are

not included in this work.

2.1 Space Segment

The main functions of the space segments are to generate and transmit code and carrier phase

signals, and to store and broadcast the navigation message uploaded by the control segment.

These transmissions are controlled by a highly stable atomic clocks allowing accurate tim-

ing knowledge to the nanosecond. Each constellation, has unique characteristics and will be

discussed in the following sections to explain parameters and necessary knowledge needed to

utilize their transmitted information.
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2.1.1 GPS

The GPS satellites are arranged in six equally spaced orbital planes surrounding Earth, each

with four “slots” occupied by baseline satellites. This 24-slot arrangement ensures there are at

least four satellites in view at any point in time around the planet. The satellites are placed in

Medium Earth Orbit (MEO) at an altitude of 20,200km and a nominal period of 11 hours, 58

minutes and 2 seconds.

GPS satellites are grouped by sets, or Blocks, launched within a specific time interval. The

evolution of the technology is illustrated in figure 2.1 and is discussed in detail in the following

passage

Figure 2.1: GPS Space Segment Evolution

Block I consisted of eleven satellites launched between 1978 and 1985. They had an av-

erage lifespan of 4.5 years and were capable of providing positioning services for three or four

days without any contact with the control center. Block II consisted of 28 satellites launched

from 1989 to 1990. They had an average lifespan of 6.5 years and could supply positioning

services for 180 days without contact from the control segment. Block IIR were produced to

replace Block II/IIA as they reached their life expectancy. These satellites were capable of

determining their orbits and generating navigation messages internally. They could operate

for half a year without support from the control segment with no degradation of ephemeris

accuracy. Block IIR-M are the upgraded versions of the IIR block. They included a new mil-

itary signal and the more robust L2C signal. The first Block IIR-M satellite was launched on
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September 26, 2005. The first member of the Block IIF was launch on May 28, 2010. These

satellites expanded on the existing capabilities by adding the L5 civil signal in a frequency band

protected for safety-of-life applications. Lastly, Block III will introduce significant improve-

ments in navigation capabilities by improving interoperability and jam resistance. They will

also provide the fourth civil signal L1C on the L1 band.

2.1.2 Galileo

The Galileo constellation in Full Operational Capability (FOC) consists of 27 operational and 3

spare MEO satellites at an altitude of 2322km with an eccentricity of 0.002. Ten satellites will

occupy each of the three orbital planes inclined at an angle of 56 degrees with respect to the

equator. The satellites will be spread around each plane and will take about 14 hours, 4 minutes

and 45 seconds to orbit the Earth. This constellation guarantees a minimum of six satellites in

view from any point in time around the planet. The evolution of the Galileo space segment is

illustrated in figure 2.2.

Figure 2.2: Galileo Space Segment Evolution

Two experimental satellites were launched between 2005 and 2008: the Galileo In-Orbit

Validation (GIOVE) satellites GIOVE-A and GIOVE-B. GIOVE-A was launched on December

28, 2005. It has two redundant small-size rubidium atomic clocks with a stability of about 10ns

a day. GIOVE-B was launched on April 27, 2008 with a more advanced payload. It uses

4 redundant clocks: two small rubidium atomic clocks with a stability of 10ns a day, and
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two passive hydrogen master clocks with a higher stability of about 1ns a day. Two phases

followed the experimental satellites: Galileo IOV and FOC phase. The IOV phase aimed at

qualifying the Galileo space, ground and user segments through extensive in-orbit/on-ground

tests. During this phase, four operational satellites complement the two experimental satellites

already in orbit. The first two operational IOV satellites were launched on October 21, 2011

and placed in the first orbital plane. The next two were launched on October 12, 2012 in the

second orbital plane. They combine two rubidium and two passive hydrogen master clocks

with a powerful transmitter to broadcast precise navigation data. The FOC phase was reached

in 2020 with a constellation of 27 operational satellites plus 3 spares.

2.1.3 BeiDou

The BeiDou constellation consists of 35 satellites including 5 Geostationary Orbit (GEO) satel-

lites and 30 non-GEO satellites in a nearly circular orbit. The non-GEO satellites include three

Inclined Geosynchronous Satellite Orbit (IGSO) pieces with an inclination of about 55 degrees

and with an orbital period of about 12 hours and 53 minutes. The GEO satellites, orbiting at

an altitude of about 35786km recently entered service in 2020. The general timeline of the

BeiDou constellation is shown in 2.3.

Figure 2.3: BeiDou Space Segment Evolution

There are three variants of BeiDou satellites: the geostationary BeiDou-G, the geosyn-

chronous BeiDou-IGSO and the MEO BeiDou-M. They have a lifetime of eight years and are
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based on the three-axis-stabilised DFH-3 platform []. The first BeiDou Phase II satellite in orbit

was the experimental BeiDou-M satellite launched on April 14, 2007. By late December 2011,

China had put four BeiDou-G and five BeiDou-IGSO satellites into orbit. By the end of 2012,

there were five GEO, four MEO and five IGSO navigation satellites in orbit. The constellation

of 35 satellites was completed in 2020.

2.2 Control Segment

The control segment is responsible for the proper operation of the GNSS. Its basic functions

are:

• To control and maintain the status and configuration of the satellite constellation

• To predict ephemeris and satellite clock evolution

• To keep the corresponding GNSS time scale

• To update the navigation messages for all satellites

Again, each constellation is uniquely controlled and will be discussed individually.

2.2.1 GPS

The GPS control segment is composed of a network of Monitoring Stations (MS), a Mas-

ter Control Station (MCS) and the Ground Antennas (GA). The MCS, located in Colorado

Springs, USA is the core of the control segment. It is responsible for operating the system and

providing command, control and maintenance services to the space segment. Recently, a new

full functional backup station, known as the Alternate Master Control Station (AMCS), was set

up as part of a modernization plan at Vandenberg Air Force Base.

The MS are distributed around the world. They are equipped with atomic clock standards

and continuously log data for all the satellites in view. The collected data are sent to the MCS

where they are processed to estimate satellite orbits, clock errors and to generate the navigation

message. Originally, the MS network consisted of five stations located in Hawaii, Colorado

Springs, Ascension Island, Diego Garcia, Kwajalein with Cape Canaveral being incorporated
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in 2001. These stations were controlled and operated by the United States Air Force (USAF).

In 2005, the modernization program expanded this network to include six new MS operated by

the National Geospatial-Intelligence Agency (NGA) of the US Department of Defense (DoD).

These were located in Adelaide, Australia; Buenos Aires, Argentina; Hermitage, United King-

dom; Manama, Bahrain; Quito, Ecuador; and Washington, DC. Five more stations were added

in 2006 found in Fairbanks, Alaska; Osan, South Korea; Papeete, French Polynesia; Pretoria,

South Africa; and Wellington, New Zealand. With this final addition, each satellite is seen from

at least three MS improving system accuracy. Lastly, the GA uplink data to the satellites via

S-band radio signals. This includes parameters estimated by the MCS in addition to command

telemetry for each satellite to maintain its correct orbit.

2.2.2 Galileo

The Galileo ground segment controls the entire satellite constellation, the navigation system

facilities and the dissemination services. The Full Operational Capabilities (FOC) involves

two Ground Control Centre (GCC), five Telemetry, Tracking and Control (TTC) stations, nine

Mission Uplink Stations (ULS) and a world-wide network Galileo Sensor Stations (GSS). The

Ground Control Segment (GCS) is responsible for the constellation control and management

of Galileo satellites. It provides the TTC function for the whole satellite constellation. Its

functional elements are deployed within the GCC and the globally distributed TTC stations.

The TTC stations use S-band frequency to provide a secure exchange of data between the

control centers and satellites. The Ground Mission Segment (GMS) is responsible for the

determination and uplink of the navigation and integrity data messages needed to provide the

navigation and Universal Time Coordinate (UTC) time transfer service. The GMS includes

a worldwide network of GSS continuously collecting data to be processed by the GCC for

determining Galileo navigation and integrity data messages. The GCCs constitute the core of

the control segment. They are located in Fucino, Italy and Oberpafaffenhofen, Germany and

the main functions are as follows:

• Orbit determination and synchronization
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• Control of all Galileo satellites and uploading navigation data messages

• Monitoring, maintenance and control of satellites and ground segment elements

• Computation of Galileo System Time (GST) and provision of a reliable and stable coor-

dinated time reference for the Galileo System

2.2.3 BeiDou

The BeiDou Control consists of a single Master Control Station (MCS) responsible for satel-

lite constellation control and processing measurements sent by the Monitoring Stations (MS)

for parameter estimation. Upload stations (US) are in charge of uploading the orbital correc-

tions and the navigation message to the satellites. Lastly, the MS collect observables from the

BeiDou satellites in view from their locations.

2.3 User Segment

GNSS receivers compose the user segment. Their primary purpose is to receive GNSS signals,

determine observables, and solve navigation equations to obtain position and velocity infor-

mation of the user at a precise time. GNSS satellites continuously transmit signals at two or

more frequencies in the L band. Each constellation accomplishes this feat in unique ways,

and thus the following sections will further discuss the signal characteristics for each of the

aforementioned constellations.

2.3.1 GPS Signals

The legacy GPS signals are transmitted on two radio frequencies in the L band referred to as

Link 1 (L1) and Link 2 (L2). They are right-hand circularly polarized and their frequency

is derived from a fundamental frequency of 10.23MHz generated by on-board atomic clocks.

The GPS uses the CDMA technique to send different signals on the same radio frequency, and

the modulation method used is Binary Phase Shift Keying (BPSK). Modernization of the GPS

system began in 2005 with the launch of the first IIR-M satellite. This satellite supported the

new military M signal and the second civil signal L2C. The L2C signal is modulated onto the

12



L2 Carrier frequency and broadcasted at higher effective power level than the original L1 C/A

signal. This, coupled with its powerful cross-corrrelation properties, facilitates tracking with

large signal-level variations from satellite to satellite, making reception easier in high multipath

environments. The GPS modernization plan continued with the launch of the Block IIF satel-

lites which introduced the third civil signal on the L5 band. This signal has two components,

both modulated via BPSK onto the carrier. This signal has improved code/carrier tracking loop

and high transmit power which provides further robustness to interference. Lastly, its higher

chipping rate than the L1 C/A code provides superior multipath performance. The next step

in modernization involves the Block III satellites which will provide the fourth civil signal on

the L1 band (L1C). This signal uses Multiplexed Binary Offset Carrier (MBOC) modulation to

improve reception in cities and other challenging environments. Characteristics of signals of

interest are shown in table 2.1.

Link Carrier Freq. (MHz) PRN Code Modulation Type Data Rate (bps) Service
L1 1575.420 C/A BPSK(1) 50 Civil
L2 1227.6 P BPSK(10) 50 Military
L5 1176.450 L5-I BPSL(10) 50 Civil

Table 2.1: Studied GPS Signal Characteristics

For the navigation piece of information transmitted by GPS satellites, the Keplerian pa-

rameters are with respect to the space vehicle’s (SV) antenna phase center in the WGS 84

ECEF coordinate system defined at the SV’s local estimate of GPS time. The WGS 84 model

is comprised of estimated planetary parameters describing the eccentricity, diameter, and rota-

tional rates of the Earth. GPS time runs parallel to Coordinated Universal Time (UTC) which

is based on Greenwich Median Time (GMT) with the exception that GPS time is a continuous

time scale. It is expressed in GPS weeks and GPS seconds with the start date acknowledged at

January 6, 1980. Ellipsoidal parameters for WGS 84 are provided in Table 2.2.

2.3.2 Galileo Signals

In the FOC phase, each satellite in the constellation will transmit 10 navigation signals in the

frequency bands E1, E6, E4a, and E5b, each right-hand circularly polarized and transmitted
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Semi-major axis of the ellipse a 6378137.0m
Flattening Factor f 1/298,257233563
Earth’s Angular Velocity wE 7292115.0*10−11rad/s
Gravitational Constant µ 3986004.418*108m3/s2

Speed of Light in Vacuum c 2.99792458*108m/s

Table 2.2: WGS 84 Ellipsoidal Parameters

using the CDMA technique. For this work, only the Open Service (OS) signals are discussed.

The other signals, Public Regulated Service (PRS) and Commercial Service (CS), are intended

for authorized users only. They provide improved robustness to jamming and spoofing or ad-

ditional observables for more consistent position and velocity information. E1-B and E1-C are

OS signals with unencrypted ranging codes. The MBOC modulation is used for the E1-B and

E1-C signals which is implemented by the Composite Binary Offset Carrier (CBOC). E51 is an

OS signal and includes two signal components: a data channel, E5a-I and a pilot channel E5a-

Q. The E5a signal has unencrypted ranging codes and navigation data which is accessible to all

users. This signal shares the frequency space with GPS L5, BeiDou B2a and future GLONASS

L5 signals. E5b is a OS signal and similarly, consists of a E5b-I data channel and E5b-Q pilot

channel. Its shares a frequency space with BeiDou B2b and GLONASS G3. Interestingly, the

E5a and E5b signals are modulated onto a single E5 carrier frequency at 1191.795 MHz using

a technique known as Alternate Binary Offset Carrier (AltBOC). When assessed correctly, the

E5 single can be processed as a single large-bandwidth signal which results in a low-multipath

and tracking noise signal.

Band Carrier Freq. (MHz) PRN Code Modulation Type Data Rate (bps) Service
E1 1575.420 E1-B BOCcos(15,2.5) 125 OS,CS,SoL
E5a 1176.45 E5a-I BPSK(10) 50 OS
E5b 1207.14 E5b-I BPSK(10) 50 OS,CS,SoL

Table 2.3: Studied Galileo Signal Characteristics

In the IOV phase, the initial coordinates for the reference stations were in the WGS 84 ref-

erence frame. But as the Galileo constellation matured and entered it FOC phase, the Galileo

Terrestrial Reference Frame (GTRF) was already being validated and made compatible to the
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International Terrestrial Reference Frame (ITRF). The ITRF was introduced by the Interna-

tional Earth Rotation and Reference Systems Service (IERS) and is updated every year. The

GTRF, along with all other terrestrial reference frames, must agree with the ITRF to within 3cm

(2σ). Conveniently, the newest realization of WGS 84 based on GPS data set G1762 adopted

the ITRF2008 coordinates for more than half of the reference stations and velocities of nearby

stations. This made the conversion between ITRF and WGS 84 agree at the centimeter level;

which by default make GTRF and WGS 84 coincident as well. Thus, they share the same

geodetic parameters. Similar to GPST, Galileo System Time (GST) is a continuous time scale

and is synchronised to the International Atomic Time (TAI) with a nominal offset below 50 ns.

The GST start epoch was on August 22, 1999.

2.3.3 BeiDou Signals

BeiDou Phase II/III satellites will transmit right-hand circularly polarized signals centered on

three radio frequencies in the L band referred to as B1, B2, and B3 bands. Similar to Galileo,

the BeiDou constellation has encrypted signal for authorized users which provide more robust

position and velocity information. Again, only the OS signals will be discussed here. Like

GPS, Galileo or the new GLONASS signals, BeiDou ranging signals are based on the CDMA

technique. The B1-I signal is modulated onto a 1561.098MHz carrier frequency. Its modulated

using the QPSK technique. A B1-Q signal exists but only authorized users can use its informa-

tion. The B2-I, or B2b signal is sent on a 1207.14MHz signal and modulated using the BPSK

technique. Similarly, a B2-Q signal exists but its availability is limited to authorized users.

Band Carrier Freq. (MHz) PRN Code Modulation Type Service
B1 1561.098 B1-I QPSK(2) Open
B2 1207.14 B2-I BPSK(10) Open

Table 2.4: Studied BeiDou Signal Characteristics

The BDS adopts the BeiDou Coordinate System (BDCS) whose definition complies with

the standards of the International Earth Rotation and Reference (IERS). The definition is also

consistent with that of the China Geodetic Coordinate System 2000 (CGCS2000). BDS and

CGCS2000 have the same reference ellipsoid parameters. The origin is located at the Earth’s
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center of mass. The Z-axis is the direction of the IERS Reference Pole (IRP). The X-axis is the

intersection of the IERS Reference Meridian (IRM) and the plane passing through the origin

and normal to the Z-axis. The Y-axis, together with Z-axis and X-axis, constitutes a right-

handed orthogonal coordinate system. BeiDou Time (BDT) is also a continuous time scale. It

is synced to UTC within 100ns and started on Jaunuary 1, 2006.

Semi-major axis of the ellipse a 6378137.0m
Flattening Factor f 1/298.257222101
Earth’s Angular Velocity wE 7292115.0*10−11rad/s
Gravitational Constant µ 3986004.418*108m3/s2

Speed of Light in Vacuum c 2.99792458*108m/s

Table 2.5: CGCS2000 Ellipsoidal Parameters
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Chapter 3

Real-Time Kinematic

Studying the user segment furthermore, we can begin processing the observables from each

satellite in view in order to compute position and velocity information. For this work, the

pseudoranges and carrierphase measurements from satellites in view of two GNSS receivers

are used to construct the ambiguity search space. The ambiguities present in the carrierphase

measurements must be resolved to provide the most precise relative navigation solution. The

use of differential techniques with the carrierphase observable is coined real-time kinematic

(RTK) positioning. RTK considers the observables between two GNSS receivers: a static base

station with accurate knowledge of its own position and a kinematic rover unit. Since the base

station can acknowledge errors in perceived observables from accurate knowledge of its own

position. These errors can be sent to rover units as corrections to account for atmospheric

and satellite clock errors. This method of RTK positioning can achieve sub-meter absolute

positioning accuracy, but there are some limitations. First, the rover units must be able to

receive the corrections at all times of interest meaning that an internet connection or radio

communication is required. Secondly, if a problem occurs at the base station (i.e. maintenance,

equipment damage, etc..) corrections can not be sent to the rover units. Lastly, base stations

are not always in range (within the 25km radius of effectiveness). While RTK positioning is an

effective method for precise positioning, its limitations can be troublesome. In 2003 however,

a new method was developed that improved the reliability of RTK while maintaining the high

level of precision expected when using the carrierphase observables [1]. This technique was

called Dynamic Real-Time Kinematic positioning. It still relied on two GNSS systems but

removed the static constraint on the base station. Furthermore, since the base station’s absolute
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position was no longer well known, this technique relied on specific observable combinations

that removed common modes of error from the system observables. In doing so, the problem

no longer considers the absolute position of the rover but its relative position with respect

to the mobile base station. This technique is discussed in detail in this chapter while also

demonstrating its capabilities in a variety of settings.

3.1 DRTK

The Dynamic Real-Time Kinematic (DRTK) algorithm was originally developed in [1]. Its

utility comes from its ability to provide centimeter level accurate relative positioning between

two platforms with shared communications. It is a multi-stage process but for simplicity, its

more critical stages are illustrated in figure 3.1.

Figure 3.1: DRTK Block Diagram

The configuration section syncs measurements across platforms and forms necessary mea-

surement combinations from the shared observables. This necessary combination is discussed

in section 3.1.2 and is used by a discrete extended Kalman filter in the estimation section of

the algorithm. The formulation and initialization of this filter is discussed in section 3.1.3 and
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3.1.4. The double difference operation is the final stage before a relative navigation solution

can be provided. At this stage, two solution are available to the user and are discussed in section

3.1.5. The LAMBDA method is critical in providing the most accurate solution and is the final

step in resolving the AR of the problem. The integer validation metrics are discussed in detail

in section 3.1.6. The calculation of the high precision (HP) RPV is discussed in 3.1.7.

3.1.1 Un-Differenced Measurement Models

The mathematical model for the code and carrier based range measurements are shown below

in Equation 3.1.


ρ̃ja = | ρja|+ c(δta − δtj) + T j + Ij +Mρ + ηj,DLLa

ψ̃ja = |ρja|+ c(δta − δtj) + T j − Ij + λN j
a +Mψ + ηj,PLLab

(3.1)

Where ρ̃ja is the measured range from receiver a to satellite j, ψ̃ja is the carrierphase from

receiver a to satellite j, c is the speed of light, |ρja| is the true range from receiver a to satellite

j, T is the troposhperic delay, I is the Ionospheric advancement or delay, δta is the receiver

clock errors, δtj is the satellite clock errors, λN j
a is the integer ambiguity or phase bias, M

are the multipath effects, and η is the measurement noise. For this work, the carrierphase

measurement is of interest due to its precision and multipath resistance. However, several steps

must be taken before the carrierphase observables can be used to estimate relative position. This

includes forming specific observable combinations to improve the observability of the integer

ambiguities, estimating float-level ambiguity estimates, and fixing the float estimates to their

correct integer value.

3.1.2 Single Difference Measurement Models

The integer ambiguity is better observed in specific combinations of the GNSS observables.

A specific combination, called the Single Difference (SD) measurement, is able to remove

common modes of error between observables from satellites in view to both receivers. The

geometric interpretation of the single difference measurement is shown in Equation 3.2.
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∆ρjab = |ρjab|+ cba,b + ηj,DLLab

∆ψjab = |ρjab|+ cba,b + ∆N j
ab + ηj,PLLab

(3.2)

Where ρjab is the baseline between the GPS antennas, cbab is the relative clock bias, and

∆N j
ab are the SD ambiguities present in the carrierphase observable. The non-deterministic

term (η) is a function of CNO and receiver characteristics. These terms can be statistically

quantified by determining the accuracy of the delay-lock loop (DLL) and phase-lock loops

(PLL). Standard formulations for DLL and PLL can be seen in [1]. Assessing Equation 3.2, the

atmospheric errors and satellite clock bias are removed. This is due to strong spatial and tempo-

ral correlation between measurements. Another artifact of this combination is the summation of

the receiver clock bias and the conversion of the geometric range to the relative range between

the phase centers of the two antenna. The remaining deterministic term is the SD ambiguity

term in the carrierphase model. Note that it is more isolated especially when considering that

the remaining deterministic terms are already observed in the SD pseudorange model. It should

be noted, that while we take a step towards removing the ambiguity term from the carrierphase

measurement; the statistical uncertainty associated with each measurement is increased. This

is due to differencing or summing independent Gaussian random variables which sums the

uncertainty of both terms in the operation.

3.1.3 Kalman Filter Floating Point Ambiguity Resolution

In this methodology, a recursive estimation process can be used to take advantage of the con-

stant nature of the ambiguity present in the carrierphase. Here, we use a discrete Extended

Kalman Filter (EKF). Recursive estimation of these constant integers coupled with the sym-

metric nature of the covariance matrix allows this to be an effective method for estimating

integer ambiguities.The state vector is demonstrated in 3.3.
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~x =



∆X

∆Y

∆Z

cbjab

∆N1
ab

...

∆N j
ab



(3.3)

Where ∆X , ∆Y , ∆Z are the relative positions states in the Earth centered Earth Fixed refer-

ence frame, cbjab is the relative clock bias and ∆N j
ab are the SD ambiguities for each tracked

channel used in the filter. The measurements used by the filter are the SD observables. These

are organized as shown in Equation 3.7.

~z =

~yρ
~yψ

 (3.4)

~yρ =


∆ρ1

k, GPS

...

∆ρik, GPS

 (3.5a)

~yφ =


∆ψ1

k, GPS

...

∆ψik, GPS

 (3.5b)

The measurement model used in the filter must fit the form:

~z(t) = h(x(t)) + wm(t) (3.6)

Where h(x(t)) is a nonlinear function of the state vector and wm(t) is the statistical uncertainty

of the measurements. In GNSS applications, this nonlinear function is procedurally computed

at every observation period and is known as the geometry matrix []. The geometry matrix
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consists of unit vectors whose origin is about the phase center of the ground antenna and points

to the phase center of the satellite antenna with respect to the X,Y,Z axis of the ECEF coordinate

frame []. The last common term is the relative receiver clock bias. It should be noted that for

multi-constellation applications, the clock bias term will be unique for each constellation. The

ambiguity term is unique to the carrierphase observables and thus will populate the lower right

diagonal of the holistic geometry matrix. The complete geometry matrix is shown below:

H =

HGPS
x,y,z 1 0nxm

HGPS
x,y,z 1 λL1Inxm

 (3.7)

wm(t) is the statistical uncertainty associated with the system inputs. The matrix is pop-

ulated along its diagonal with the calculated accuracy from ηj,DLLab and ηj,PLLab and is shown in

equation 3.6. It should be noted that for this algorithm, thermal noise is the considered noise

source which is characterized with wm(t) ∼ (σDLL,PLLab , 0).

R =



σ1,DLL
ab 0 0 0 0 0

0
. . . 0 0 0 0

0 0 σj,DLLab 0 0 0

0 0 0 σ1,PLL
ab 0 0

0 0 0 0
. . . 0

0 0 0 0 0 σj,PLLab


(3.8)

Note the repetition of positional unit vectors and clock biases in the left most section of

Equation 3.5. This symmetry allows us to rewrite Equation 3.4 in a vector/matrix format.

Z(t) = H2mx4

 ~rAB

cδtAB

+

 0mxm

λImxm

∆Nmx1 (3.9)

As stated before, the goal of the observer is to estimate SD ambiguities. Thus, the position,

receiver clock biases and geometry are unnecessary and only add computational load to the

algorithm. The left null space of H2mx4 can be used to uncouple the unneeded information
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from the measurements, geometry matrix and measurement weighting matrix which is later

defined. This has been used rigorously in [4,5,6,7]. The left null space is defined as:

LH̄2mx4 = 0 (3.10)

Applying the left null space to Equation 3.9 gives the simplified expression:

LZ(t) = L

 0mxm

λImxm

∆Nmx1 (3.11)

Hinteger = L

 0mxm

λImxm

 (3.12)

The state vector, now consisting only of the SD ambiguity estimates are mapped to the

measurement domain using Hinteger shown in 3.12. R is also altered becoming:

R = LRLT (3.13)

With these matrices and vectors updated, the measurement update within the Kalman filter

can be completed. For completeness, the calculation of the Kalman gain, state a posteriori

update and state covariance update are defined below:

K = P−k H
T (HP−k H

T +R)−1 (3.14)

x̂+
k = x̂−k +K(z −Hx̂−k ) (3.15)

P+
k = (I −KH)P−k (3.16)

The ambiguities found in the carrierphase are constant assuming no cycle slips occur be-

tween observation periods. This makes defining the time update relatively simple since no

23



dynamic exist to be modeled and the process noise is uncorrelated among the distinct channels.

The state transition matrix can thus be defined with an identity matrix:

Φ = Imxm (3.17)

The process noise dictates the size of the search space assessed in the measurement update.

If we assume that little uncertainty is added to the system after the time update, then we can

apply small values along the diagonal to prevent the filter from “going to sleep”. But as will

later be seen in the paper, there are platforms which benefit from increasing the process noise

values from their standard values used in prior work [4,5,6,7]. It is defined as:

Q = GP∆tImxm (3.18)

Where GP is a constant value typically set to a very small number 1e−6 <= Gp <=

100e−6, and ∆t is the sampling time. With these defined, the time update can propagate the

state vector and estimated state uncertainty forward in time while respecting system dynamics

and uncertainty associated with the considered states.

x̂−k = Φx̂+
k−1 (3.19)

P−k = ΦP+
k−1ΦT +Q (3.20)

There exist moments in time where the covariance matrix can become non-symmetric due

to constellation changes or excessive tuning to filter parameters [4,5,6]. A simple operation can

be computed should this error occur and is defined as follows:

P =
1

2
(P + P T ) (3.21)

24



3.1.4 Initialization

For this work, the SD ambiguity estimates are initialized by differencing SD pseudoranges by

SD carrierphase observables and converting these values to units of cycles. This is expressed

below:

~x+
k−1

=


(∆ρ1

k −∆ψ1
k)/λ,GPS

...

(∆ρik −∆ψik)/λ,GPS

 (3.22)

As stated previously, the covariance matrix is initialized based on the user knowledge of

uncertainty in estimated state initialization. Cross correlation is ignored at this stage and it was

found that for high grade equipment, that a standard deviation of half a cycle was sufficient. For

low grade equipment, higher values up to 5 cycles were needed to acknowledge the increase in

state uncertainty caused by lower grade internal oscillators.

3.1.5 Double Difference

The previous section discusses the utilization of SD observables to help isolate and subse-

quently estimate SD ambiguities. But, a common mode of error across channels still obscures

the ambiguity search space preventing complete isolation of the ambiguity. The culprit, the rel-

ative receiver clock bias, can be removed by the double difference operation. A single channel,

preferably the highest in elevation, can be chosen as the base satellite. The satellite highest

in elevation is chosen since it travels through the least amount of atmosphere and thus con-

tains minimal amounts of atmospheric distortion to obscure the ambiguity information. The

remaining channel observables and geometric information is differenced from the base satel-

lite’s equivalent information to form the double difference observables and geometry matrix.

These are defined below:


∇∆ρjab = |ρjab|+ ηj,DLL∇,ab

∇∆ψjab = |ρjab|+∇∆N j
ab + ηj,PLL∇,ab

(3.23)
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The double difference operation is a linear operation and assuming the first satellite is

highest on the horizon, the resulting matrix operator is shown below:

D =



1 −1 0 0 0

1 0 −1 0 0

1 0 0 −1 0

1 0 0 0 −1


(3.24)

The DD operation is performed on the SD ambiguity estimates and the error covariance

matrix.

N̂Z = D∆N (3.25)

P̂Z = DP+
k D

T (3.26)

3.1.6 Integer Validation

The double differenced float ambiguity estimates need to be rounded to their correct integer

value to achieve the highest possible precision. Because of the high correlation between states

and error covariances, simple rounding schemes or boot-strapping approaches are not sufficient

to consistently integerize the float estimates to their correct values. The LAMBDA method was

introduced in [2] and has been experimentally validated for many years. LAMBDA stands for

Least-squares AMBiguity Decorrelation Adjustment. It is a two stage process that considers

the DD estimates and the error covariance matrix after the measurement update. The first stage

is the decorrelation of the ambiguities by means of the Z-transform to create new ambiguities

and error covariances.

z = Za∇∆ (3.27)

ẑ = Zâ∇∆ (3.28)
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Qẑ = ZPâ∇∆
Z (3.29)

Where z are the true transformed ambiguities, Z is the transformation matrix, a∇∆ are the true

DD differenced ambiguities, ẑ are the transformed estimated ambiguities, â∇∆ are the DD float

ambiguities, Qẑ is the transformed covariance matrix, and Pâ∇∆
is the DD covariance matrix.

This step improves the efficiency of the search step in the LAMBDA method. It also allows the

new ambiguities to retain their integer characteristics shown in Equation 3.28 and maintain the

volume search space of the original problem [2]. The next step is searching the transformed

search space for the real valued solution. This is considered through the integer least-squares

(ILS) problem:

min. (ẑ − z̃)Q−1
ẑ (ẑ − z̃) withz ∈ Zn (3.30)

The search must yield the grid point that is nearest to the real valued estimate, with near-

ness measured in the metric of the variance-covariance matrix [2]. For this work, MATLABs

LAMBDA function was used to conduct this stage in the DRTK algorithm [35]. The Integer

Least Squares with integrated ratio validation was used for the work. The ratio test is a discrim-

ination test: it tests the closeness of the float solution to the optimal integer solution compared

to the other integer candidates [35]. It is defined in Equation 3.31.

F (â)

F (â′)
≤ µ (3.31)

Where µ is the threshold value which holds for 0 ≤ µ ≤ 1. â′ is the integer vector that returns

the second smallest cost expressed in Equation 3.30 and â is the integer set that returns the

smallest cost expressed in Equation 3.30. Even with these internal validation metrics, it is still

possible for the ILS to converge to the incorrect integer set. With this in mind, a common

method for consistency is to apply an additional ratio which takes the form :

(ẑ2 − z̃)Q−1
ẑ (ẑ2 − z̃)

(ẑ1 − z̃)Q−1
ẑ (ẑ1 − z̃)

≤ κ (3.32)

27



It is the inverse of Equation 3.31 and so the threshold is valid for 1 ≤ κ ≤ ∞ . A threshold

of 3 is typically considered as a validation metric when using the ratio test [1]. Again, this test

evaluates the closeness of the candidate set to the float solution. An additional metric known as

the Ambiguity Dilution of Precision (ADOP) was introduced in [4]. It is an easy-to-compute

diagnostic value that measures the intrinsic model strength for successful ambiguity resolution

[8]. The ADOP is defined as:

ADOP =
√
|Qââ|

1
n (3.33)

With n being the number of DD ambiguities, Qââ is the ambiguity variance matrix and |·|

denotes the determinant. The ADOP has several properties that make it an important diagnostic

tool. First, it is invariant against the choice of ambiguity parametrization. All admissible

ambiguity transformations can be shown to have a determinant of one, thus the ADOP does not

change when one changes the definition of the ambiguities. Secondly, it measures the volume

of the ambiguity confidence ellipsoid. And third, the ADOP equals the geometric mean of

the standard deviations of the ambiguities when the ambiguities are completely decorrelated.

Since the LAMBDA method produces ambiguities that are largely decorrelated, the ADOP

approximates the average precision of the transformed ambiguities [8]. Since the ADOP gives

a good approximation to the ILS ambiguity success rate, we can define pADOP to evaluate

the candidate set covariance. It has been shown that ADOP values smaller than 0.12 cycles

corresponds to an ambiguity success rate greater than 0.999 [8].

PADOP ≈ [2Φ
1

2ADOP
− 1]n (3.34)

Where n is the number of DD ambiguities and Φ is the standard normal cumulative distribution.

Figures showing PADOP as a function of ADOP can be found in [8]. Lastly, should a candidate

set of integers pass LAMBDA’s thresholds and the secondary ratio test; a valid candidate set

is only chosen if the the same candidate set is found for a series of consecutive observation

periods. This is a form of integrity monitoring to ensure only the correct integer set is chosen

and used in the RPV calculation. This consecutive counter threshold is termed the consecutive
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ambiguity counter (CAC). For the results discussed in this thesis, a CAC threshold of 10 was

used. This value was chosen due to its consistency across equipment grade and data sets and is

further discussed in appendix section A.1.

3.1.7 High Precision RPV Estimation

A weighted least squares (WLS) operation is used to determine the a precise RPV once a set of

candidate integer estimates have been selected. The geometric expression is shown below:

rAB = [GT
∇∆R

−1
∇∆ΦG∇∆]−1GT

∇∆R
−1
∇∆ψ(∇∆ψAB − λI∇∆Ñ) (3.35)

Where rAB is the estimated RPV,G∇∆ is the DD geometry matrix,R∇∆ is the DD measurement

uncertainty This expression can be used to provide the float level solution and the much nosier

DD pseudorange RPV solution. Where ∇∆Ñ is replaced with the float estimates and where

(∇∆ΨAB − λI∇∆Ñ) is replaced with the DD pseudorange observables.

3.2 DRTK: Good Performance

The DRTK algorithm was developed for GPS only dual frequency scenarios. With this in mind,

this section demonstrates the capabilities of algorithm during a zero-baseline test while using

survey-to-mid grade equipment. Three points will be made by demonstrating key aspects of the

filter and its performance. The experiment set-up can be seen in figure 3.2. The zero-baseline

experiment used a Novatel PWRPAK 7 GNSS receiver and a Piksi Multi evaluation receiver

receiving RF signal from a dual frequency, multi-GNSS antenna.
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Figure 3.2: Zero-Baseline Test with Survey-Grade Antenna: Experiment Set-Up

First, lets consider the accuracy of the fixed integer solution. This is shown by plotting

the time series of the estimated RPV of a zero-baseline test in figure 3.3. This type of exper-

iment helps demonstrate the quality of the carrierphase measurements since no relative range

information is contained within the inputs.
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(a)

Figure 3.3: Zero-Baseline with Survey-Grade Antenna: Estimated HP-RPV

Millimeter level accuracy is maintained for the entirety of the 10 minute experiment. The

time to first fix (TTFF) was approximately 10 seconds into the data set. The importance of

correctly fixing the ambiguity estimates can be easily instilled by observing the float level

solution and the noisier pseudorange solution shown in figure 3.4.
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(a)

Figure 3.4: Zero-Baseline with Survey-Grade Antenna: DD-PSR and Float RPV

Note the variance of the DD-PSR solution. This is not only attributed to the accumulation

of uncertainty collected through the SD and DD operations but also by the high levels of noise

inherent to the pseudorange measurements. Also note that the float estimates, while more

accurate and precise than the PSR solution, is still incorrect and even biased in every axis.

The last aspect of interest is the algorithms integer validation stage. To study this piece,

we can first look at the inputs to the RPV estimation stage of the algorithm. The insight this

provides is unique to the zero-baseline tests since the signal, at this point in the algorithm,

contains only the DD integer ambiguities with Gaussian noise.
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(a)

Figure 3.5: Zero-Baseline Test with Survey-Grade Antenna: Integer Monitoring Metrics

The integer ambiguity corrupting the DD carrierphase observable can be clearly identified

as 4 cycles from the time series alone. The filter has extended periods of confidence in its

candidate sets but fails to pass the threshold for the entire data set.

A notable change in filter performance can be observed however by only considering L1

measurements. The resulting HP-RPV estimates are shown in 3.4. It should be noted that while

TTFF did increase by nearly 400 seconds, the precision of the estimated RPV was maintained.
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Figure 3.6: Zero-Baseline with Low-Cost Antenna: Fixed RPV

A significant change can be observed in the float and pseudorange solutions in figure 4.2.

The float solution is seen to be bias but slowly converge to the truth. More notable however

is the increase in the pseudorange solution variance. This is due to less measurements being

available to be weighted and thus reduce error in the resulting LS RPV estimation.
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Figure 3.7: Zero-Baseline with Low-Cost Antenna: DD-PSR and Float RPV

Lastly, our integer monitoring can be inspected by observing the time series of the the DD

observables and ratio test. Again, the DD ambiguities can be observed within the carrierphase

measurements. In addition, the confidence of the DD ambiguity estimates is significantly lower

for the single frequency case.
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Figure 3.8: Zero-Baseline with Low-Cost Antenna: Integer Monitoring Metrics

3.3 DRTK: Mid Performance

This section uses the same GNSS receivers discussed in the previous section but changes the

survey grade antenna to a low-cost Ublox patch antenna. Again, the DRTK algorithm attempts

to resolve the integer ambiguities in order to provide the HP-RPV. The experiment set-up is

shown in figure 3.9.
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Figure 3.9: Zero-Baseline Test with Low Cost Antenna: Experiment Set-up

The Ublox patch antenna is a single frequency multi-GNSS antenna however, similar per-

formance metrics are not observed when compared to the single frequency case from the previ-

ous section. This phenomenon is discussed in greater detail in the adaptive estimation section

of the thesis but the results of the ratio test are shown in 3.10 to demonstrate the significant dif-

ference made by the antenna change. The filter only momentarily passes the ratio test showing

a significant lack of confidence in the ambiguity estimates.
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Figure 3.10: Zero-Baseline Test with Low Cost Antenna: Experiment Set-up

Another artifact of the inaccurate ambiguity estimates are the periods in which no candi-

dates sets are provided by the LAMBDA method. These periods exist during 0 to 200 seconds

and 225 to 425 seconds in figure 3.10.

3.4 DRTK: Poor Performance

For this section, we continue using the patch antenna but switch the Piksi Evaluation board

with a low-cost Ublox EVK-M8T receiver. This receiver uses a TCXO internal oscillator which

causes high levels of noise to be present in its computed measurements [29]. This can make

it almost impossible to resolve the integer ambiguities for on-the-fly AR. Researchers have

utilized stochastic methods for improving the AR in these conditions but require large amounts

of data and does not ensure correct integer fixing. Using the traditional DRTK algorithm, the

filter is unable to correctly fix integers. It is still able to provide the float and pseudorange

solution but again, fixed integer precision is desired. The time series of the measurements are

seen in figure 4.4:
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Figure 3.11: DD Observables from a Low-Cost Receiver

The affects of the clock error are easily observed in the DD carrierphase time series. This

drift, in addition to the high level of uncertainty present in the pseudorange observables, prevent

the DRTK algorithm from providing high precision capabilities.

This chapter of the thesis discusses the DRTK algorithm and demonstrates its capabilities

in unique scenarios. It is important to understand how algorithms respond in ideal and non-ideal

circumstances involving expected measurements and used equipment. While the algorithm

works well when using survey-to-mid grade equipment, it loses its ability to provide HP-RPV

solution when using low-cost equipment. This needs to be investigated to determine whether

precise relative positioning is achievable under these low-cost sensor suite constraints.

The need for precise relative positioning is greater now more then ever. With that in mind,

it is important to understand how the algorithm behaves under non-ideal circumstances (i.e.

when survey-grade equipment is not available). The next chapter discusses advancements to

the DRTK algorithm that allows for improved performance under multiple considered sensor

suites.
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Chapter 4

Advancements in DRTK

This chapter begins exploring how improvements can be made to the DRTK algorithm allow-

ing it to provide HP-RPV estimates in several use cases where it has been previously shown

incapable to do so. The investigation begins by augmenting the nominal DRTK architecture

to include single frequency information from GPS, Galileo, and BeiDou constellations. Next,

adaptive estimation of measurement uncertainty is integrated to the DRTK algorithm to im-

prove the AR when using low-cost antennas. Lastly, a tightly-coupled DGPS/UWB algorithm

is demonstrated to provide HP-RPV estimates when using low-cost receivers and antennas.

Each method is studied by comparing filter performance and integer validation metrics.

4.1 Multi-GNSS DRTK

GPS, while accurate in open-sky environments, is prone to intermittent dropouts and degraded

accuracy due to satellite availability. Multi-GNSS aims to solve this consistency issue by in-

corporating multiple constellations into a single architecture. This increases the number of

observables available and thus, the availability of GNSS positioning.

4.1.1 Filter Design

To demonstrate the augmentation of the Galileo and BeiDou constellations into the DRTK

algorithm, a single frequency example is considered. The states for the multi-GNSS DRTK

filter are given in Equation 4.1.
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~x =



∆X

∆Y

∆Z

cbjab,GPS

cbjab,GAL

cbjab,BDS

∆N1
ab,GPS

...

∆N j
ab,GPS

∆N1
ab,GAL

...

∆N j
ab,GAL

∆N1
ab,BDS

...

∆N j
ab,BDS



(4.1)

These states are mapped to the measurement domain with the following observation matrix:

H =



HGPS
x,y,z 1 0 0 0nxm 0nxm 0nxm

HGAL
x,y,z 0 1 0 0nxm 0nxm 0nxm

HBDS
x,y,z 0 0 1 0nxm 0nxm 0nxm

HGPS
x,y,z 1 0 0 λL1Inxm 0nxm 0nxm

HGAL
x,y,z 0 1 0 0 λE1Inxm 0nxm

HBDS
x,y,z 0 0 1 0 0nxm λB1Inxm


(4.2)

It should be noted that dual and even triple frequency implementations can be considered

by designing the filter with a similar formulation as [1]. This is generalized in Equation 4.3.
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H =



HGPS,L1
x,y,z,cb 0nxm 0nxm 0nxm 0nxm 0nxm 0nxm

HGAL,E1
x,y,z,cb 0nxm 0nxm 0nxm 0nxm 0nxm 0nxm

HBDS,B1
x,y,z,cb 0nxm 0nxm 0nxm 0nxm 0nxm 0nxm

HGPS,L2
x,y,z,cb 0nxm 0nxm 0nxm 0nxm 0nxm 0nxm

HGAL,E2
x,y,z,cb 0nxm 0nxm 0nxm 0nxm 0nxm 0nxm

HBDS,B2
x,y,z,cb 0nxm 0nxm 0nxm 0nxm 0nxm 0nxm

HGPS,L1
x,y,z,cb λL1Inxm 0nxm 0nxm 0nxm 0nxm 0nxm

HGAL,E1
x,y,z,cb 0nxm λE1Inxm 0nxm 0nxm 0nxm 0nxm

HGPS,B1
x,y,z,cb 0nxm 0nxm λB1Inxm 0nxm 0nxm 0nxm

HGPS,L2
x,y,z,cb 0nxm 0nxm 0nxm λL2Inxm 0nxm 0nxm

HGAL,E2
x,y,z,cb 0nxm 0nxm 0nxm 0nxm λE2Inxm 0nxm

HGPS,B2
x,y,z,cb 0nxm 0nxm 0nxm 0nxm 0nxm λB2Inxm



(4.3)

Lastly, the inputs provided to the filter from each constellation and are organized below:

~x =

~yρ
~yφ

 (4.4)

~yρ =



∆ρ1
k, GPS

...

∆ρik, GPS

∆ρ1
k, GAL

...

∆ρik, GAL

∆ρ1
k, BDS

...

∆ρik, BDS



(4.5a)
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~yφ =



∆φ1
k, GPS

...

∆φik, GPS

∆φ1
k, GAL

...

∆φik, GAL

∆φ1
k, BDS

...

∆φik, BDS



(4.5b)

Similar to Equation 3.9, the left null space of Equation 4.2 can be used to extract the non-

essential information from matrices and vectors of interest. The operation from the nominal

DRTK algorithm is thus used here to consider only the SD ambiguity estimates.

4.1.2 Experimental Results

As shown previously, the quality of the signal perceived by the receiver affects the ability to

estimate the high-precision RPVs. This quality is not only affected by equipment grade but

by platform dynamics. Thus, we assess the improvement to performance for both static and

dynamic baselines when utilizing the multi-GNSS DRTK algorithm and compare it to stand

alone GPS only equivalent implementations.

4.1.2.1 Static Baseline

The static test show-cases the ability of the filter to extract ambiguity information when the

geometric range between antennas is non-zero and static. Some features that provide insight to

signal quality and observability of the ambiguities include the Carrier-to-Noise Desnity Ratio

(CNO) value and ambiguity resolution index (ARI). The CNO ratio is defined as the ratio of

the received modulated carrier signal power to the received noise power [8]. The ARI value is a
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diagnostic tool for assessing the observability of the integer ambiguities embedded in the carri-

erphase observables. It is the difference between consecutive measurements across observation

periods and is described in Equation 4.6.

ARIjk = (ρjk − ρ
j
k−1)− λ(ψjk − ψ

j
k−1) (4.6)

Where ρjk and ψjk are the pseudorange and carrierphase observable for the current sampling

epoch in cycles.

To compare GPS only to multi-GNSS DRTK, a short static baseline is examined. The

experiment setup is shown in Figure 4.1

Figure 4.1: Static-Baseline Test with Survey-Grade Antenna: Experiment Set-Up
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The ’base’ module is a Novatel PWRPAK7 with a Trimble survey-grade antenna. The

rover consisted of a Piksi Evaluation Board with a survey-grade Novatel Pinwheel antenna.

The CNO ratios are depicted below for all visible satellites:

Figure 4.2: Static Baseline Test with Survey-Grade Antennas: CNO Ratios
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Figure 4.3: Static Baseline Test with Survey-Grade Antennas: ARI Values

The difference in GNSS system quality between platforms is clearly seen from the diag-

nostic figures above. Note the difference in magnitude of each platform’s ARI value. This can

be attributed to the receiver and antenna quality on each platform. During this test, no cycle

slips were reported by the receiver or observed in the measured ARI values of any channel.

Another key element to note is the ARI precision across constellations. It shows that the bottle

neck for many RTK or DRTK applications is the equipment. Research has shown that a benefit

from multi-GNSS solution comes from the improvement in dilution of precision (DOP) from

incorporating different constellations [8]. This can be assessed by comparing the various DOP

parameters for the GPS only and multi-GNSS implementations with a 0 degree mask angle.

This comparison is shown below:

Configuration @ 0◦ HDOP PDOP VDOP
GPS only 1.5781 1.8555 0.9760

Multi GNSS 1.1457 1.4095 0.8209

Table 4.1: Multi-GNSS DOP Comparison
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A 0 degree elevation mask angle was used since two of the BeiDou satellites were low

on the horizon and triple constellation was desired. This improved geometry provides a slight

benefit to the SD ambiguity estimation since the positional information can be more easily

distinguished from the floating point ambiguity estimates. To demonstrate this, the residual

error from the Kalman filter can be observed. The residual error can be thought of as the error

between a set of measurements and our state estimates mapped to the measurement domain,

and is given in Equation 4.7.

ξk = z − Cxkapriori (4.7)

Where z is the set of observables used in the measurement update, C is the observation matrix

detailed in Equation 4.2, and xkapriori is the set of current best state estimates before the mea-

surement update. The SD residual error for the GPS only implementation and the multi-GNSS

implementation can be seen in the Figures below:

Figure 4.4: Static Baseline Test with Survey-Grade Antennas: GPS only Residuals (cycles)
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Figure 4.5: Static Baseline Test with Survey-Grade Antennas: Multi-GNSS Residuals (cycles)

Note that the additional constellations do not improve the magnitude of the residual error

across all channels in the filter, and that spikes seen in the GPS only implementation can be

observed across constellations. This suggests that the dynamics seen in these time series are

attributed to a common error source such multi-path. This would explain the preference of

residual error to a single slide of the error axis. However, the strength of multi-GNSS RTK

comes from the additional DD estimates and covariances provided to the LAMBDA method.

As stated in section 3.1.6, the LAMBDA method decorrelates the ambiguity estimates and

respective covariances to reduce and more efficiently explore the search space for viable integer

sets. The effects of correct information decorrelation can be seen below:
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Figure 4.6: Correlated DD Covariance Values

Note the non-uniqueness of the covariance uncertainty for the DD ambiguity estimates.

The disjointed characteristics can be attributed to how the Kalman couples information across

measurements to better observe states of interest. The same covariance knowledge is shown

below after correct decorrelation:

Figure 4.7: Decorrelated DD Covariance Values

Note that a majority of the information is stored along the diagonal, suggesting that state

estimates are independent and have little-to-no impact on other states. This step is crucial due to
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the strong correlation built during the recursive estimation and double differencing operations

across states.

To investigate the proficiency of the LAMBDA method, the results of the ratio test are

studied for both the GPS only and multi-GNSS architectures and can be seen in Figure 4.8.

Figure 4.8: Static Baseline Test with Survey-Grade Antennas: Ratio Test Comparison

The difference in magnitude between the left and right plots demonstrates the improve-

ment in the estimated integer confidence. The multi-GNSS filter is able to confidently estimate

the correct integer set from the first epoch as seen by its high ratio value. The GPS only filter

however, momentarily passes the threshold test momentarily near the 125s and 150s into the

data set but doesn’t pass the consecutive counter threshold until nearly 250s into the data set.

The estimated RPVs are shown one at a time below. First, the HP-RPV is shown once the

consecutive threshold passes a valid integer set:

50



Figure 4.9: Static Baseline Test with Survey-Grade Antennas: GPS only Fixed RPV

The RPV is rotated to a local ENU frame centered about the base antenna to better inter-

pret the RPV elements. One weakness that is well discussed in literature is the challenge of SF

RTK/DRTK algorithms in kinematic platforms [1]. Here, the GPS only architecture is disad-

vantageous due to its long TTFF of about 250s. In scenarios where receiver LOS is depreciated,

such as urban environments, a navigation filter must be able to converge to the correct set of

integer estimates rapidly even in the presence of limited perceivable satellites. To conclude the

study of SF GPS-only DRTK, the norm of each estimated RPVs is shown in Figure 4.10.
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Figure 4.10: Static Baseline Test with Survey-Grade Antennas: GPS only Estimated RPV
Norm

The HP-RPV provides the most stable navigation solution between antennas and is easily

observed after the finding the norm of the estimated vectors. Note the noisiness of the PSR

based solution. While this is the easiest solution to obtain, the accuracy of its results should be

considered when using it in autonomous applications.

The HP-RPV solution for the multi-GNSS implementation is shown in 4.11.

Figure 4.11: Static Baseline Test with Survey-Grade Antennas: Multi-GNSS Fixed RPV
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The multi-GNSS implementation is able to find the correct integer set from the first epoch

but the since the consecutive counter threshold must be passed, the HP-RPV solution is first

provided 10s into the data set. Lastly, the norm of the estimated vectors are computed and can

be seen below:

Figure 4.12: Static Baseline Test with Survey-Grade Antennas: Multi-GNSS Estimated RPV
Norm

4.1.2.2 Dynamic Baseline

This test demonstrates how the algorithm is able to effectively estimate the ambiguity biases

while the geometric relative range changes between platforms. For this work, the base was

a Lincoln MKZ equipped with a Piksi Multi Evaluation Board and a Novatel Propak V3 for

truth. The receivers were fed RF signal from a Trimble Survey-Grade Antenna. The rover

vehicle was equipped with a Novatel ProPak OEM7 and a Novatel Propak V3 for truth. The

receivers were provided RF signal by a Novatel Pinwheel Antenna. The experiment setup can

be seen in Figure 4.13.
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Figure 4.13: Dynamic Baseline Test with Survey-Grade Antennas: Experiment Setup

The test consisted of an initial static period, followed by a dynamic sequence from both

vehicles driving circles around the NCAT skidpad in Auburn, Alabama.

Figure 4.14: Dynamic Baseline RTK Trajectories

The vehicles were driven at a maximum of 10 MPH. There trajectories on the skidpad can

also be visualized in Figure 4.14. The CNO ratios and ARI values can be plotted and used to

assess the quality and observability of the GNSS observables.
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Figure 4.15: Dynamic Baseline Test with Survey-Grade Antennas: CNO Values

Similar behavior can be seen during the static portions of this test when assessing the

diagnostic information. An obvious distinction can be made in the CNO values when both

platforms begin moving near 700 seconds. It should be noted that the ARI values are more

consistent for both static and dynamic periods of the test.

Figure 4.16: Dynamic Baseline Test with Survey-Grade Antennas: ARI Values

The residual error for the GPS only consideration is shown below for the complete data

set. Similar magnitudes of residual error are seen during the static portions as seen in Figure 4.4
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and Figure 4.5. However, a notable decrease in magnitude is seen during the dynamic portion

of the run from 700 to 900 seconds.

Figure 4.17: Dynamic Baseline Test with Survey-Grade Antennas: GPS only SD Residual
Error

Again, the accuracy of the floating point ambiguity estimates are not improved with the

addition of multiple constellations. This can be observed in 4.18 where channels belonging to

the Galileo and BeiDou constellations share dynamics and similar levels of error.

Figure 4.18: Dynamic Baseline Test with Survey-Grade Antennas: Multi-GNSS SD Residual
Error
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It should be noted that to ensure the affects of platforms dynamics were evaluated, the

filter is initialized at the start of platform dynamics. Similar levels of integer validation metrics

were observed between the static and dynamic baseline tests. The ratio test computed at every

observation period is provided for both the GPS only and Multi-GNSS implementations.

Figure 4.19: Dynamic Baseline Test with Survey-Grade Antennas: Ratio Tests

The ratio values are unaffected by the platform dynamics. Again, the values from the

multi-GNSS and GPS only implementations have magnitudes consistent with the static base-

line test and so high levels of estimated integer confidence is seen from the multi-GNSS ar-

chitecture. The GPS only architecture initially experiences low confidence with its estimated

integer sets but, eventually finds a valid integer set near 880 seconds. The ADOP, discussed

in [8], are consistent with 100% confident integer sets for both architectures as seen in Figure

4.20. The empty space seen in the multi-GNSS ADOP values from 420 to 560 seconds was

due to a BDS satellite dropout which caused the BDS relative clock bias to be unobservable.

The time series for the complete data set is shown in

57



Figure 4.20: Dynamic Baseline Test with Survey-Grade Antennas: Ambiguity DOP

These validation metrics coupled with valid integer sets passing the consecutive threshold

were found and used to compute the HP RPV estimate. To assess the accuracy of the DRTK

solution, RTK positions of each platform were computed using a commercial software known

as GraftNav and differenced to form the relative position truth.

Figure 4.21: Dynamic Baseline Test with Survey-Grade Antennas: Estimated RPV
comparison

The multi-GNSS architecture finds the correct integer set 10 seconds into the experiment.

The GPS only architecture finds the correct integer set 74 seconds into the experiment. A 64

second improvement to the TTFF is observed by the new multi-GNSS architecture. Since both
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architectures observe the relative range between phase centers, the HP-RPV of both are seen

to track the truth accurately. To assess to accuracy of the DRTK HP-RPV solution, the DRTK

RPV solution is differenced from the true RPV to compute RTK level metrics. These metrics

can be seen for every acis in Figure 4.22.

Figure 4.22: Dynamic Baseline Test with Survey-Grade Antennas: RTK Error Metrics

Centimeter level accuracy can be discerned by investigating the RTK metrics in Figure

4.22. There is a slight loss in accuracy during the dynamic portion of the data as seen by the

orange time series. These are attributed to higher levels of phase center variations due to the

platform dynamics.

4.2 Adaptive Extended Kalman Filter

In surveying applications, the antennas and receivers are of high quality. This allows accurate

measurements to be made internally while mitigating the effects of errors such as multi-path

through appropriate gain patterns. The use of a low-cost antenna pair with a survey-grade

antenna can reduce performance aspects of the nominal algorithm described in the previous

section. This impairment is due to biases present in specific channels which are poorly per-

ceived by the antenna. These biases are unique to the single patch antenna and thus not re-

moved through differential techniques. These biases, since not modeled, add obscurity to the

ambiguities and prevent fast TTFF. One method for improving the TTFF for these scenarios
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is to attempt to adaptively estimate the sensor and process noises acting on the system. These

estimates improve the weighting applied to the measurements to more accurately depict their

uncertainty due to hardware biases or multi-path.

For the adaptive DRTK algorithm, all steps are identical the the previously discussed

DRTK algorithm with the exception of the float point ambiguity resolution step discussed in

section 3.1.3. Here, an adaptive filter is used which identifies values of Rk or Qk.

4.2.1 Process Noise

Process noise describes the uncertainty in the modeled state dynamics. For this approach, the

noise is assumed to be Gaussian with characteristics such that wk~ η(0,Qk). The implementa-

tion used here was derived in [17]. It uses a Method of Maximum Likelihood (MMLE) within

the framework of a Kalman Filter. The MMLE uses the residual between the a priori and a

posteriori state estimates to update the estimate of Qk. The update equation is shown below:

Q∗ = ∆xk∆x
T
k + P−k − P

+
k − Q̂

−
k (4.8)

where

∆xk = x̂+
k − x̂

−
k (4.9)

and Q∗ is the process noise covariance update, ∆xk is the state estimate residual, x̂+
k is the

a posteriori state estimate, x̂−k is the priori state estimate, P+
k is the a posteriori covariance

estimate, P−k is the a priori state covariance estimate, and Q̂−k is the current expected process

noise covariance. The term ∆xk is the measured state residual, and represents the difference

between the state estimate before and after the measurement update. If this residual is large,

this is an indication that the filter is not predicting the future state very well. This is because

there is a large jump in the expected state when the measurements are applied. As the filter

converges, this residual should decrease as its ability to predict the next state is expected to

improve.
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The second half of the equation P−k −P
+
k −Q̂

−
k is a measure of the predicted state residual,

and represents the expected change in the state covariance. The process noise update, Q*, is

then combined with the current value of Q̂k in a running-average filter:

Q̂+
k = Q̂−k +

1

LQ
(Q ∗ −Q̂−k ) (4.10)

In the equation 4.33, LQ is the window size.

4.2.2 Measurement Noise

Measurement noise describes the accuracy of the observables used in the measurement update.

This noise is typically described as vk~ η(0,Rk). In the geometric model, the non-deterministic

term in the equation is assumed to be uncorrelated Gaussian white noise. However it should

be noted that there are some assumptions made from the original measurement model shown

in Equation 3.1 and the considered SD measurement model seen in Equation 3.1. These as-

sumptions suggest that the hardware biases and multipath effects are considered negligible and

assumed to be lumped in the noise term [63]. This assumption holds in most cases, but there ex-

ists scenarios where equipment, platform dynamics, or environment can make this less accurate

[64,52,41].

The sensor noise present is observed by the residual between the expected and actual

measurements. The sensor noise update equation is shown below:

R∗ = ∆yk∆y
T
k −HkP

+
k H

T
k (4.11)

Where

∆yk = yk − ŷ+
k (4.12)

and where Hk and yk are the observation matrix and measurements at time k. This routine

is run after the measurement update, thus, ŷ+
k is defined as:
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ŷ+
k = Hx̂+

k (4.13)

The second term HkP
+
k H

T
k cancels expected measurement error due to the state uncer-

tainty. Similar to the process noise estimation, the update is applied to the R̂k
k through a similar

low-pass filter:

R̂+
k = R̂−k +

1

LR
(R ∗ −R̂−k ) (4.14)

The capabilities of this algorithm has been shown in simulations where both platforms are

dynamic and signal quality is poor due to the environment of interest [52]. This works aims

to experimentally validate the capabilities of this algorithm when signal quality is poor due to

antenna grade and platform dynamics.

4.2.3 Experimental Results

4.2.3.1 Static Baseline

For ambiguity estimation, uncertainty in the time update can be held constant since the inte-

ger ambiguity remains constant. This allows us to estimate measurement uncertainty without

relying on receiver provided values which can be over optimistic in many situations. To demon-

strate the improvement to the AR a static baseline experiment was conducted using a Novatel

PWRPAK7 receiver with Trimble Antenna for the base unit. The rover unit consisted of the

Piksi Evaluation Board and a Ublox Patch Antenna. The Ublox patch antenna is a single

frequency antenna and has poor gain patterns low on the horizon. This is demonstrated and

discussed in [43].
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Figure 4.23: Static Baseline Test with Low-Cost Antennas: Experiment Setup

The same equipment was used for the base so similar diagnostic measures were observed

as seen in the multi-GNSS sections. However, the Novatel Pinwheel used by the Piksi Evalua-

tion board was switch with a low-cost Ublox patch antenna. The rover’s sensor suite is seen in

Figure 4.23.
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(a)

Figure 4.24: Static Baseline Test with Low-Cost Antennas: CNO Ratios

Figure 4.24 compares the CNO ratios between the base and rover. A notable difference

can be seen in CNO magnitude can be seen due to the patch antenna. This degradation in signal

quality can also be observed by an increase in ambiguity obscurity as shown by the ARI values

in Figure 4.25.

(a)

Figure 4.25: Static Baseline Test with Low-Cost Antennas: ARI Values
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An obvious increase in ARI magnitude can be seen across all channels. This suggests

increased obscurity when attempting to estimate the ambiguities. Furthermore, an additional

layer of degradation is seen to occur when using the patch antenna. This is due to less than

4 SVs being visible for the Galileo and BeiDou constellations. In addition, the observed GPS

satellites are limited and are seen to periodically dropout mid-run. All satellites seen by the

Piksi during this ten minute data run can be seen below:

Figure 4.26: Satellites Viewed with Low-Cost Antenna

Multi-GNSS based approaches are not applicable in this experiment since less than four

satellites are in view for the Galileo and BeiDou constellations. Instead, a single frequency

GPS only implementation must be utilized. As demonstrated in section 3.3, this approach has

poor performance characteristics. For this work, up to 6 GPS satellites are seen for the total

data set. PRN 8 and 16 are low on the horizon and exhibit poor SD residual error. Using the

nominal algorithm, fixed integer precision is not achievable due to the geometry and limited

observables. While the time series of the SD residual error is similar for both the nominal

and adaptive algorithms, the state uncertainty for the SD ambiguity estimates differ. First, we

consider the estimated measurement noise trajectories for the used channels. This weighting

matrix is initialized with the receiver’s reported measurement uncertainty. This is done to accu-

rately assess the uncertainty of the used observables after extracting positional and clock bias

information from the carrierphase. Below are the time series for the estimated uncertainties:
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Figure 4.27: Static Baseline test with Low-Cost Antenna: Estimated Measurement
Trajectories

For this study, the process noise was kept constant at 100e-06. The state covariance, a

recursive value tracking state uncertainty, can be affected by both the measurement and process

noise. The state covariances of the estimated SD ambiguities are shown in Figure 4.28 and seen

not to converge to a steady state value.

Figure 4.28: Static Baseline test with Low-Cost Antenna: Nominal SD Ambiguity Covariance

Due to the very low process noise, a slow convergence to steady state covariance values is

seen in Figure 4.29. The over-optimistic measurement noise creates a hesitancy in the filter to
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correct it states estimates. The resulting state covariances from the adaptive EKF is shown in

4.29.

Figure 4.29: Static Baseline test with Low-Cost Antenna: Adaptive SD Ambiguity Covariance

Steady-state dynamics suggest a local or absolute extrema has been found by the filter

indicating improved ambiguity resolution and the potential of finding a valid integer set. The

resulting ratio values from the adaptive EKF and LAMBDA method is shown in Figure 4.30.

Figure 4.30: Static Baseline test with Low-Cost Antenna: Adaptive Ratio Test

The LAMBDA method has trouble finding valid integer sets throughout the data set as

seen during 225 to 260 seconds and 335 to 475 seconds. These periods of invalidity cause the
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empty spaces of ratio values seen in 4.30. With a consecutive threshold of 10, the first valid set

of integer values were found near 200s. The resulting HP-RPVs are shown below:

Figure 4.31: Static Baseline test with Low-Cost Antenna: Fixed RPV

Centimeter level precision is observed in the estimated HP-RPV. To compare the stability

of the HP-RPV to the other solutions availble in the DRTK algorithm the magintude of each of

the RPVs are plotted in Figure 4.32.

Figure 4.32: Static Baseline test with Low-Cost Antenna: Estimated RPV Norm
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High levels of noise are seen in the DD-PSR solution making it undesirable for navigation.

The LP-RPV is more stable but experiences some dynamics due to error in the float ambiguity

estimates. Lastly, we see the expected long term stability of the HP-RPV.

4.2.3.2 Dynamic Baseline

The dynamic baseline experiment aims to experimentally validate the adaptive EKF formula-

tion as a viable method for precise relative positioning. Again, the base used a Novatel Pow-

erPAK7 and a Novatel Propak V3 for truth. The receivers were fed RF signal from a Trimble

Survey-Grade antenna. The rover vehicle was equipped with a Piksi Evaluation Board and a

Novatel Propak V3 for truth. The receivers were provided RF signal by a Ublox patch antenna.
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Figure 4.33: Dynamic Baseline Test with Low-Cost Antennas: CNO Values

Similarly, the test consisted of an initial static period, followed by a dynamic sequence

from both vehicles driving circles around the NCAT skidpad.

The vehicles were driven at a maximum of 10 MPH. Again the CNO ratios and ARI values

can be plotted and used to assess the quality and observability of the GNSS observables.
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Figure 4.34: Dynamic Baseline Test with Low-Cost Antennas: CNO Values

Similar behavior can be seen during the static portions of this test when assessing the

diagnostic information. An obvious distinction can be made in the CNO values when both

platforms begin moving as seen in Figure 4.34. Again, we see higher levels of ambiguity

obscurity as observed by the ARI values in Figure 4.35.

Figure 4.35: Dynamic Baseline Test with Low-Cost Antennas: ARI Values

Lastly, we can observe the common fifteen channels tracked by both receivers. These are

visualized by constellation in Figure 4.36.
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Figure 4.36: Dynamic Baseline Test with Low-Cost Antennas: Viewed Satellites

The patch antenna has trouble perceiving BDS satellites but sufficient Galileo satellites are

in view to be integrated into the filter. However, due to the quality of measurements, Galileo

was not included in the study. It should be noted that at times upwards of nine GPS SVs are

viewed by the antenna. This allows for higher chances of correct ambiguity fixing. To better

demonstrate the affects of total SVs used in the filter on ambiguity resolution the ADOP value

is plotted in Figure 4.37 while varying this number.

Figure 4.37: Dynamic Baseline Test with Low-Cost Antennas: ADOP Values
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Note that after less than six satellites are used in the filter the chance for correctly fixing

integers is very low. While the ADOP values were used as an additional validation metric

during analysis, they were not integrated as a form of validating a candidate integer set.

The residual error for the GPS-only architecture is shown in Figure 4.38 for the complete

data set. Similar magnitudes of residual error are seen during the static portions as seen in 4.4

and 4.5. The high levels of error observed during the static portions are attributed to multi-path

cause by foliage near the starting and ending locations of the vehicles. This is verified by the

more consistent residual error experienced during the dynamic portion of the data set.

Figure 4.38: Dynamic Baseline Test with Low-Cost Antennas: GPS-only SD Residual Error

Again, the adaptive EKF is initialized during the dynamic portion to evaluate the effects of

changing geometric range while attempting to estimate measurement uncertainty. Similar error

dynamics can be seen across Figures 4.37 and 4.39 suggesting no significant improvement to

floating point ambiguity resolution can be expected when using the adaptive EKF. The benefits

of the adaptive EKF however can be seen as the integer validation section of the algorithm is

assessed.
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Figure 4.39: Dynamic Baseline Test with Survey-Grade Antennas: Adaptive SD Residual
Error

Similar levels of integer validation metrics were observed but the adaptive filter is able

to consistently achieve ratio values above the desired threshold. From Equation 3.32, the best

candidate integer set is in the denominator of the fraction. Thus, as the float ambiguity set

converges to the true ambiguity values, the difference between the float and optimal sets is

small thus increasing the ratio value. This suggests that the float DD ambiguity estimates are

able to be fixed more accurately through the adaptive EKF. The ratio test computed at every

observation period is provided for both the GPS only and adaptive implementations in Figure

4.40.
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Figure 4.40: Dynamic Baseline Test with Survey-Grade Antennas: Multi-GNSS SD Residual
Error

The ratio values are unaffected by the platform dynamics. Again, the values from the adap-

tive and nominal implementations have magnitudes consistent with the static baseline test. The

ratio test resulting from the adaptive EKF however, is able to sustain high level of confidence in

its candidate integer sets allowing it to pass the consecutive ambiguity counter threshold. The

ADOP can also be used here to demonstrate the improvement to the AR of the problem.

Figure 4.41: Dynamic Baseline Test with Survey-Grade Antennas: Ambiguity DOP

Both the nominal and adaptive EKF formulations obtain to 100% integer fixing rate due

to the number of Svs used in the filter. However, the resulting candidate sets from the nominal

75



EKF formulation can be seen to cause instability in the estimated HP-RPV proving that they

are incorrect. These validation metrics, coupled with valid integer sets passing the consecu-

tive threshold, were found and used to compute the HP RPV. To assess the accuracy of the

DRTK solution, RTK positions of each platform were computed and differenced across plat-

forms to form the relative position truth. This was compared against the nominal and adaptive

implementations.

Figure 4.42: Dynamic Baseline Test with Survey-Grade Antennas: Relative Positions

An item of interest is the quality of the truth solution provided by GraftNAV. When using

the patch antenna the software is only able to provide a float level solution, which as stated

earlier, can be biased and drift from the true solution. This can be easily observed in the Up

direction in 4.42 as truth is seen to drift several centimeters after the vehicles have stopped mov-

ing. This level solution depreciates the value of comparing the truth to DRTK solution since

we lose the certainty of centimeter level accuracy. The solutions of both architectures are still

compared to truth as reference for solution precision. Both the nominal and adaptive EKF for-

mulations can achieve the HP-RPV estimates but only after the vehicles have stopped moving.

While both can provide the HP-RPV, the difference in quality of the solution can be observed

by comparing the Up-direction between formulations. The solution provided by the nominal

EKF formulation is seen to drift by close to 10 centimeters in the Up direction. Centimeter level

precision is expected from the HP-RPV estimate suggesting that the chosen candidate set was
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incorrect. The adaptive formulation is observed to be more stable than its nominal counterpart

as its Up-direction does not drift. Again, due to the float solution provided by GraftNAV, the

accuracy between both formulations cannot reliably be assessed but for completion the RTK

metrics are shown in Figure 4.43.

Figure 4.43: Dynamic Baseline Test with Survey-Grade Antennas: Position Errors

The effects of the drift can be observed in all directions by both formulations. A noticeable

bias can be seen in the North error of the nominal solution where the adaptive solution is seen

to more closely follow the truth.

4.3 Tightly-Coupled DGPS/UWB Filter

For specific applications, constraints on power consumption, cost, and weight can cause the

navigation system to be comprised of a low-cost sensor suite. In this section, a low-cost antenna

and low-cost receiver is used by the rover further degrading the AR of the relative positioning

problem. Low-cost receivers, besides being less accurate, are typically single frequency and

are known to require longer periods before fixing integers [25,68]. In addition, they are typ-

ically equipped with a TXCO internal oscillator which can suffer from aggressive clock bias

drift in short periods. This can make maintaining fixed integer accuracy difficult to sustain.

As discussed in [8] several techniques exist that statistically account for this drift and added

uncertainty to the observables.
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Another demonstrated technique for improving the AR for this scenario was demonstrated

in [12,68]. In this thesis, the SD ambiguities are constrained by UWB ranging measurements

which allows for improved TTFF and improved integer monitoring metrics for sustained accu-

racy.

4.3.1 UWB Measurement Model

The tightly-coupled algorithm uses the same SD GNSS measurement models as used in Sec-

tion 3.1.2. The UWB measurement model has been studied before and information regarding

its background can be found in [24]. In this work, the UWB measurements are treated as a

precise SD pseudorange observable. The motivation for this is to improve the resolution of the

ambiguity search space by the UWB precision. This is important due to the high levels of noise

found in the pseudorange measurements created by low-cost equipment. Thus, we consider the

following measurement model:

ricd = |ρicd|+ ηicd (4.15)

Where ρicd is the geometric range between the two UWB modules and ηicd is the Gaussian

noise modeled into the measurement. As discussed in [10], the uncertainty of apriori baseline

knowledge plays a critical role in the ambiguity resolution problem. Excessive trust in this

measurement will devalue the SD GNSS observables, and prevent the SD ambiguity estimates

from converging to their correct value. Too little trust in the UWB measurement will cause the

filter to behave like the nominal DRTK algorithm, and thus, not take advantage of the precise

ranging information provided by the UWB [11].

The architecture of the considered navigation filter is complex, a holistic block diagram is

demonstrated in Figure 4.44 depicting all stages of the filter.

GNSS measurements are first synced across platforms. UWB measurements are stored in

a vector with their respective UNIX time stamps. The UWB measurement closest in time to the

current synced GNSS measured are used as measurements to a discrete EKF. SD ambiguities

estimates are recursively corrected and the DD operation is applied to the necessary matrices
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Figure 4.44: DGPS/UWB Navigation Filter Architecture

and vectors. For this algorithm, the left null space is not used since the geometry matrix is

no longer symmetric with the inclusion of the UWB measurement. Similar integer monitoring

metrics are used and the HP-RPV estimate is computed when a valid integer set is found. The

following section discusses the formulation of the discrete EKF used for this thesis.

4.3.2 Discrete Extended Kalman Filter

Both sets of measurements have the ability to provide high-accuracy range measurements, but

the difference in respective baselines should be considered. For this work, the UWB radios are

assumed to be co-axial with the GPS antennas. This allows for the same relative position states

to apply to both DGPS and UWB measurements. The state vector used in this filter is shown in

Equation 4.16.
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~x =



∆X

∆Y

∆Z

cbjab

ċb
j

ab

∆N1
ab

...

∆N j
ab



(4.16)

Where ∆X , ∆Y , ∆Z are the relative positions states in the Earth centered Earth Fixed

reference frame, cbjab and ċb
j

ab are the relative clock bias and relative clock bias drift respectively

and ∆N j
ab are the SD ambiguities for each tracked channel used in the filter. The considered

measurements for the system are shown in Equation 4.17.

~yk =



∆ρ1
k, GPS

...

∆ρik, GPS

∆φ1
k, GPS

...

∆φik, GPS

rUWB
k



(4.17)

4.3.2.1 Process Model

The process model for the position states is simply the identity matrix. This is because the goal

of the filter is not to track position states but to estimate the SD integer ambiguities found in the

carrierphase measurements. Due to the disparity between each platform’s internal oscillator,

a second order process model was used to properly estimate the clock process dynamics. The

power spectral density coefficients found in [1] were used to compute the receiver clock process

model shown below:
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Qcb =

Sf∆t+ Sg
∆t3

3
Sg

∆t2

2

Sg
∆t2

2
Sg∆t

 (4.18)

In addition, the process gains for the ambiguity states were given low values since they are

constant and will not change unless a cycle slip occurs. The overall process model can be seen

below:

Q =


Qx,y,zI3x3 03x2 03xm

02x3 2Qcb 02xm

0mx3 0mx2 QNImxm

 (4.19)

4.3.2.2 Observation Matrix

The observation matrix can be created by computing the Jacobian of the aforementioned mea-

surement models and state vector. Note that this mapping from state to measurement domain

assumes that the measurements contain the same baseline information, i.e. they are co-axial.

Thus, the lever-arm between sensors should be minimized for actual implementation. This is

further discussed in the experiment set-up section. The observation matrix is shown below:

C =


Hx,y,z 1 0 0nxm

Hx,y,z 1 0 Inxn

HUWB
x,y,z 0 0 01xn

 (4.20)

The geometry matrix corresponding to the UWB measurement is unique and is created

using relative position information computed from a DGPS W.L.S. The formulation of these

unit vectors is expressed in Equation 4.21.

HUWB
x,y,z

=

[
∆X
rUWB
k

, ∆Y
rUWB
k

, ∆Z
rUWB
k

]
(4.21)
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4.3.2.3 Measurement Weighting

As discussed earlier, the statistical variance of the individual measurements were quantified

using a thermal noise model [1]. These were summed between receivers to account for the

single difference operation, and summed again for the double difference operation standard in

RTK/D-RTK algorithms. These values populated the first 2nx2n diagonal of the R matrix. The

UWB stochastic term was tuned until attractive integer fixing results were obtained. Considera-

tions were taken to ensure the uncertainty for the measurements masked the bimodal separation

seen in the observables.

4.3.3 Experiment Setup

For this section, each platform is identified and followed by a specifications overview for the

sensor suite under consideration. The static baseline test used a Trimble survey-grade antenna, a

Novatel Pinwheel antenna, a Ublox EVK-M8T receiver/antenna kit, and two Novatel Propaks

V3s. Novatel’s GraftNav software was unable to maintain a fixed level solution when using

the patch antenna and thus, the Novatel Pinwheel antenna was used to create the RTK truth

solution. For the dynamic tests, a 2008 Subaru Outback XT was used as the ground vehicle

(GV) while a Tarot meter class octacopter served as the aerial platform. The GV was equipped

with a Novatel Propak V3, a Trimble Survey-Grade Antenna, and a single UWB module. The

multirotor UAV was outfitted with a Ublox EVK-M8T receiver/antenna kit, a Novatel OEMstar

board receiver, a MiniCircuits power splitter, and a single UWB module. A portion of the sensor

suite specifications can be seen in Table 1. The full specifications for each product can be found

in [19],[20],[21]. The data sets discussed in this work was taken on 09-10-2021 and 06-15-

2021 at the Auburn NCAT Testing Facility on the skidpad respectively. This area has open-sky

conditions and thus ideal for testing GNSS based navigation filters. A pulse integration index

(PII) of 9 was used to allow for longer perceived baselines for dynamic testing. The Robotic

Operating System (ROS) interpretation of Unix time was used to sync observables from both

sensors in post process.
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GNSS Receiver Osscilator Code Acc. Phase Acc. Hacc(RMS)
Novatel OEMstar VCTCXO 5cm 0.6mm 1.5m
Ublox EVK-M8T TCXO N/A N/A 2.5m

Novatel Propak V3 VCTCXO 4cm 0.5mm 1.2m

Table 4.2: GNSS Receiver Specifications

As can be seen in the images below, the baseline between phase centers of each sensor

is non negligible. The baseline error on the UAV platform was 2.5 inches for both tests while

the baseline error on the GV was 3.75 and 4.2 inches respectively. This totals to 15.9cm and

16.2cm in baseline error which is much greater than the 5cm maximum suggested by Broshears

for consistent integer fixing. While this baseline requirement holds true for high grade receivers

capable of sub-meter code-based ranging, this may be more flexible for the considered low cost

receiver which experienced greater than 3m measurement variance for its code ranges. This

allows the UWB range measurement to provide highly accurate ranging information, which

constrains the SD ambiguity estimates. This baseline error was seen to cause erroneous ambi-

guity fixes as predicted by [4]. This is further discussed in a later section. To better assess the

benefits of the tight-coupling, the static baseline test was used to establish a baseline of perfor-

mance for the algorithm. For comparative analysis, the tightly-coupled algorithm is compared

to its unaided counterpart. Results from both algorithms are compared to truth computed using

Novatel’s GraftNav software.
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Figure 4.45: Static Baseline Setup

The second test assessed the effects of high dynamics on the ambiguity resolution and

evaluated the aid provided by the UWB measurements. The same metrics of evaluation used

for the static test are used here. Due to a connection issue with the Novatel OEMstar board,

it was unable to log observables needed for truth. Thus, the dynamic data set will only be

assessed relative to the stand-alone RTK algorithm. Images of all platforms and sensor suite

can be seen in Figures 4.45, 4.46, 4.47 and 4.48. While not shown, the location of the patch

antenna for the static baseline test is noted.
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(a) UAV GNSS Equipment (b) GV GNSS Antenna

Figure 4.46: Outfitted Sensor Packages

Figure 4.47: GV GNSS Receiver Figure 4.48: UAV GNSS Receiver

4.3.4 Experimental Validation

The results are organized as follows: first, diagnostic information for the data sets are discussed,

more specifically, the CNO value and ambiguity resolution index (ARI) are used to assess the

quality of GNSS observables perceived by each platform. Secondly, estimator performance

is quantified by observing the residual error of the SD ambiguity estimates. Next, our DD

ambiguity estimates are evaluated for correctness using the ratio test, a common metric used to

determine if the set of integer ambiguity estimates are correct. A ratio threshold of 3 was used
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for this work. Lastly, the computed RPV estimates are assessed and compared to GraftNav

truth when available in a local ENU reference frame.

4.3.4.1 Static Baseline Test

The patch antenna was placed on the blue tape above the rover UWB sensor module in Figure

4.45. Thus, while a small offset would exist in the RPV solution and truth, the errors would be

constant if the correct set of integer estimates were chosen. Figures 4.49 and 4.50 depict the

diagnostic information regarding the data set.

Figure 4.49: C/NO ratios tracked channels

Figure 4.50: Ambiguity Resolution Index (m)
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The difference in GNSS system quality between platforms is clearly seen from the diag-

nostic figures above. A difference of 5-10db/Hz is seen across all channel. This is attributed

to the used equipment for the experiment. Note the difference in magnitude of each platform’s

ARI value. This can be attributed to the receiver and antenna quality on each platform. During

this test, no cycle slips were reported by the receiver or observed in the measured ARI values

of any channel. The residual error from the SD ambiguity estimates can be seen below:

Figure 4.51: Ambiguity Resolution Index (m)

Figure 4.52: SD Ambiguity Estimates (cycles)
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The usefulness of the UWB measurement constraint to the ambiguity search space is

clearly seen in Figure 4.51. Channel 15 experiences the highest magnitudes of residual er-

ror as it is the lowest satellite along the horizon. Thus, we can expect high levels of error in

its observables, particularly in the pseudoranges which are more susceptible to errors. This

approach to ambiguity estimation uses a combination of SD pseudorange and SD carrier phase

measurements. Thus, an increase in uncertainty in the pseudoranges can result in obscurity

of the ambiguities within the carrier phase. The standard deviation for channel 15 was 3.29m

for the nominal and 1.06m for the aided algorithm. A reduction in standard deviation was

seen across all channels for the aided algorithm. To show the difference in floating point SD

ambiguity estimates, Figure 4.52 illustrates the estimates of both the nominal and fusion ar-

chitectures for a few channels. A double difference operation is applied to the SD ambiguity

estimates and state covariances. These are provided to the LAMBDA method for integer fixing

and validation. The DD ambiguity estimates for two channels are demonstrated below along

with the computed ratio test value for both implementations:

Figure 4.53: DD Ambiguity Time Series with Ratio Test

The aided implementation found a valid set of integers 4.6s into the data set. The unaided

implementation found a valid set 23.2s into the data set. To avoid erroneous integer sets, an

integer set was required to be observed for 10 consecutive epochs in addition to passing the

ratio test. Even with this integer validation strategy, convergence to a constant was not seen
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in either implementation. This can be seen in Figure 4.53 where both formulations are seen to

jump between valid integer sets. This sporadic jumping is attributed to the noisy pseudorange

measurements used by the filter.

Utilizing the passing integer sets, the time series for the resulting RPV in the ENU frame

is shown below:

Figure 4.54: Estimated RPV in local ENU Frame

The computed HP-RPV estimates were differenced by the truth RPV provided by Graft-

Nav. These metrics can be seen below:

Figure 4.55: Ambiguity Resolution Index (m)
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The aided implementation is seen to more consistently depict the RPV estimate. To better

assess the accuracy of each method, the mean error of each direction is shown in Table 4.3.

Direction Nominal Aided
East -7.60cm 10.3cm

North 36.1cm 12.3cm
Up -65.0cm -6.0cm

Table 4.3: Static Baseline RTK Metrics

4.3.4.2 Dynamic Baseline Test

The dynamic baseline test was split in three parts, a static portion lasting about 90 seconds, a

dynamic portion where the UAV moved routinely around the skidpad, and lastly a static ending

period. To observe the affects of high dynamics on the ambiguity resolution of the problem,

only the dynamic portion is discussed. Using MAVROS, way-points were created around the

skidpad at a 30 meter altitude ceiling. MAVROS is a interface between platforms and various

autopilot programs within the ROS environment. This knowledge is later used to assess both

algorithms. Figure 4.56 depicts the C/NO values and computed ARI values seen in the tracked

channels during this data set:

Figure 4.56: C/NO ratios tracked channels
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Figure 4.57: Ambiguity Resolution Index (m)

The effects of UAV dynamics can be seen in both figures. These periods of degraded

GNSS quality can make it difficult to accurately estimate the SD ambiguity values. Further-

more, these periods heighten the probability of channels experiencing cycle-slips which are

typically predicted when the ARI values exceeds a threshold of 1. Because of the Ublox’s

attempts of ambiguity removal [20], a threshold of 1 was too stringent of a filter for the chan-

nels. A threshold of 6 was used for this work while also relying on the receiver’s locktime

information to avoid using channels which had undergone a cycle-slip. The residual error from

our SD ambiguity estimates can be seen below. The precise baseline constraint provided by

the UWB is seen to reduce error in the ambiguity estimates during the static portions and also

during the dynamic portions where the ambiguities are obscured due to increased measurement

uncertainty.

91



Figure 4.58: SD Residual Error (m)

A double difference operation is performed to remove the remaining modes of error in

the GNSS observables. These DD ambiguity estimates, and their respective covariances from

the EKF, are used in the LAMBDA method to attempt to fix the integer ambiguities. The time

series of two resulting ambiguities are demonstrated below in addition to the ratio test at every

measurement update:

Figure 4.59: DD Ambiguity Time Series with Ratio Test

The aided algorithm finds a valid integer set 52 seconds into the dynamic data. Its unaided

counterpart finds its first fix 65 seconds into the data. Unlike the static baseline case, the integer

estimates for the aided algorithm do not experience the sporadic jumps between valid sets. The

rover receiver lost lock of channel 2 61 seconds into the data. The resulting integer set found
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by the aided solution is converged to for the remainder of the data. Since truth was unable to be

computed, the resulting HP-RPV estimates are compared to the DD-PSR RPV. The resulting

RPV in the ENU frame is depicted below:

Figure 4.60: Estimated RPV in local ENU Frame

To further validate the HP-RPV solution, the norm of the baseline is compared to the UWB

ranging measurements. This comparison is shown below:

Figure 4.61: Estimated RPV Norm

The UWB modules were seen to experience dropouts during the dynamic portion of the

test. An example of this can be seen near 20 seconds into the data set. This would cause issues
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in the tightly-coupled formulation since the UWB range measurement would not accurately

describe the current baseline between GPS antennas. While not an accurate reference to the

trajectory taken by the UAV, the HP-RPV estimates are compared to the DD-PSR RPV to

better assess their accuracy. Knowledge of the 30m ceiling is used to evaluate the accuracy of

the estimated RPV in the Up direction. Sub-decimeter level accuracy is seen after the second

set of valid integers is found for the aided implementation. These metrics can be seen in Figure

4.62

Figure 4.62: RTK Error Metrics

An improvement to the TTFF was seen in both the static and dynamic baseline exper-

iments for the aided algorithm when compared to its nominal counterpart. An increase in

HP-RPV availability was seen when using the tightly-coupled formulation. With the lack of

high precision truth for the dynamic tests, the aided algorithm still out-performed the nominal

formulation when assessing the Up-direction. The aided solution is seen to find the correct

integer set near 78 seconds where a reduction in Up error is seen to occur.
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Chapter 5

Conclusion

This thesis presented three DGPS techniques capable of providing a RTK level accurate rela-

tive navigation solution. It is shown that these algorithms work with varying equipment grade

where the nominal DRTK algorithm fails. Chapter 2 describes the GNSS constellations consid-

ered in this work. Chapter 3 distinguishes the subtleties between RTK and DRTK positioning

algorithms and discusses the nominal DRTK algorithm. It also demonstrates the baseline per-

formance metrics of the standard DRTK algorithm given three unique circumstances. Chapter

4 provides the architecture of the navigation filters that are capable of remedying the problems

highlighted in Chapter 3.

The Multi-GNSS DRTK algorithm was shown to effectively improve the AR of static and

dynamic baselines when using a survey-grade antenna. The equipment provided good signal

reception and accurate observables. Considering GPS, Galileo, and BeiDou constellations al-

lowed for a significant improvement to time-to-first-fix when limited to a single frequency.

Through this test, it was shown that robust integer fixing is possible when ARI values are

greater than 3 cycles. Centimeter level accuracy was maintained for both the static and dy-

namic baseline test.

The adaptive DRTK algorithm was shown to allow for a high-precision navigation solu-

tion to be computed when using a low-cost patch antenna. This trend is seen for both static

and dynamic baselines. The nominal DRTK algorithm and Novatel GraftNAV software was

incapable of providing the same level solution as the proposed algorithm. The differences be-

tween the used equipment is seen through diagnostic information. It is shown that by more

accurately weighing the inputs to the filter, the LAMBDA method is able to more effectively
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decorrelate the recursive covariance knowledge leading to fixed integer precision. Centimeter

level accuracy was seen for both the static and dynamic baselines.

The advantages of coupling UWB range measurements with low cost SD GPS observables

was demonstrated through the tightly-coupled EKF formulation. The UWB range measurement

acts as precise baseline constraint when estimating the SD float ambiguity values. This con-

straint improves the resolution of the DD ambiguity estimates and allows for rapid fixing to a

valid integer set. An improvement to time-to-fix was seen in both tests for the aided algorithm

when compared to its nominal counterpart. In addition, the aided algorithm was found to more

accurately depict the RPV for the static baseline. The resulting RTK metrics demonstrated a

24cm improvement in the North direction and 59cm improvement in the Up direction. The

aided algorithm was also found to converge to a set of valid integer sets 68 seconds into the

dynamic test. Its nominal counterpart failed to converge to a valid integer set for the entire

period of interest.

5.1 Future Work

This work can be extended for future work in several ways. A few possibilities are listed below.

1. The multi GNSS implementation only considers the single frequency scenario. While it

had promising results, the filter should be extended to consider dual-frequency observ-

ables from available constellations. This will increase the robustness of the integer fixing

piece of the algorithm. The computational load from dual-frequency multi constellation

should be considered before real-time use on autonomous systems. A real-time imple-

mentation of the algorithm should be made to allow for precise relative navigation in

GNSS limited environments.

2. The adaptive implementation was shown to work when initialized with static or dynamic

baselines. However, valid integer fixing still needs to be explored for fully dynamic sce-

narios since the time-to-first-fix did not occur until after the dynamic period ended. In

addition, longer of intervals data should be considered to further inspect the estimated
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measurement trajectories to the receiver reported trajectories. A real-time implementa-

tion of the algorithm should be made allowing for precise relative navigation of smaller

platforms such as UAVs.

3. The tightly-coupled implementation was demonstrated to perform well for static and

dynamic baselines. The addition of multiple constellations into the filter needs to be

explored. Further testing is needed to validate the HP-RPV estimates found during high

dynamic maneuvering. In addition, a method for filtering the sporadic jumps in valid

integer sets is still needed for static cases. A moving average filter could alleviate some

of this variance while adding minimal complexity to the algorithm. The erroneous sets

could also be alleviated by minimizing the phase center baseline error between sensors.

Lastly, while the effects of rover dynamics on the ambiguity resolution were evaluated,

the combination of base/rover dynamics must be assessed. A real-time implementation

of the algorithm should be made allowing for precise relative navigation of a cost-limited

UAV-UGV team.
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Appendix A

Consecutive Ambiguity Counter Analysis

The results discussed in Chapters 3 and 4 used a CAC threshold of 10. This value was chosen
based on results where the CAC threshold was varied and the accuracy of the resulting HP-
RPV solution was compared to truth. This section explains the formulations used to evaluate
the success rate and results of these tests.

A key metric used to assess integer correctness is the integer success rate. Its formulation
can be seen in Equation A.1.

P i
int =

intCounter

(totalSamples− TTFF/Ts)
(A.1)

Where intCounter is the number of observation periods where the resulting normalized HP-
RPV was within 10 centimeters of the normalized truth.The totalSamples variable is the total
number of observation periods considered for any given run. TTFF is the time-to-first-fix for
a given run and Ts is the sample time for a given data set. The success rate and time-to-first-fix
are compared for the static baseline tests for each experiment setup.

The high-grade equipment setup is studied first. Tables A.1 and A.2 shows the perfor-
mance metrics for the GPS only and multi-GNSS algorithms respectively.

CAC 1 3 5 7 10 20 50
TTFF (sec) 285 376 379 381 384 450 N/A
PiINT (%) 88.2 91.6 100 100 100 100 N/A

Table A.1: Static Baseline Test: High-Grade Antenna (GPS Only)

CAC 1 3 5 7 10 20 50
TTFF (sec) 5 6 8 10 14 25 59
PiINT (%) 99.3 99.3 99.4 99.4 100 100 100

Table A.2: Static Baseline Test: High-Grade Antenna (Multi-GNSS)

The robustness of the integer fixing strategy is observed to improve with an increasing CAC
threshold. This is true for both algorithms but is clearly observed in the GPS only case who
experiences less then 90% success rate when using a CAC threshold of 1. A 100% success rate
is achieved by both algorithms with a CAC threshold of 10. It should be noted that at a CAC
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threshold of 50, only the multi-GNSS algorithm achieves 100% success rate. This stems from
the length of the data set used for the study. The GPS only algorithm can achieve a HP-RPV
solution but is incapable of satisfying the CAC threshold and thus the HP-RPV solution is never
computed by the algorithm. Thus, while the CAC threshold is observed to improve robustness
of the integer monitoring portion of the algorithm, the strictness of the threshold should be
considered to prevent the HP-RPV solution from being avoided. Important parameters used by
each of the algorithms are listed in Table A.3.

GPS only Multi GNSS
Ts(sec) 1 1

Po(cycles) 0.5 0.5
Qo(cycles) 100e-06 100e-06

Table A.3: Variables of Interest

The high-grade receivers with low-grade antenna experiment set-up is studied next. The
CAC threshold was varied for both the nominal and adaptive EKF algorithms. The same per-
formance metrics were assessed and are demonstrated in Tables A.4 and A.5.

CAC 1 3 5 7 10 20 50
TTFF (sec) N/A N/A N/A N/A N/A N/A N/A
PiINT (%) N/A N/A N/A N/A N/A N/A N/A

Table A.4: Static Baseline Test: Low-Grade Antenna (Patch)

CAC 1 3 5 7 10 20 50
TTFF (sec) 447 448 451 453 456 470 N/A
PiINT (%) 88.2 91.2 100 100 100 100 N/A

Table A.5: Static Baseline Test: Low-Grade Antenna (Adaptive Patch)

The nominal EKF algorithm is unable to achieve a HP-RPV solution regardless of the CAC
threshold. The adaptive EKF however, experiences an improvement to integer fixing robustness
with increasing CAC threshold. A similar cut-off point for HP-RPV availability is observed
with a CAC threshold of 50. Important variables used by the filters can observed in Table A.6.

GPS only Multi GNSS
Ts(sec) 1 1

Po(cycles) 0.5 0.5
Qo(cycles) 100e-06 1000e-06

LR N/A 10

Table A.6: Variables of Interest

Lastly, the low-grade equipment with low-cost antenna is studied. Again, the same perfor-
mance metrics were used to assess the effects of varying the CAC threshold. The results can be
seen in Tables A.7 and A.8 for the nominal and aided algorithms respectively.
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CAC 1 10 25 50 100 150 200
TTFF (sec) 5.2 23.4 109.2 212.0 N/A N/A N/A
PiINT (%) 0 0 0 0 N/A N/A N/A

Table A.7: Static Baseline Test: Low-Grade Antenna (Ublox/Patch)

CAC 1 10 25 50 100 150 200
TTFF (sec) 4.2 5.8 12.2 79.0 95.6 109.0 N/A
PiINT (%) 30.0 39.4 39.6 86.9 90.2 100 N/A

Table A.8: Static Baseline Test: Low-Grade Antenna (Aided Ublox/Patch)

The nominal EKF is able to achieve a HP-RPV solution and these occurrences are acknowl-
edged with their corresponding CAC value. The resulting HP-RPV however, is not within the
15 centimeter threshold and so the success rate is marked as zero. On the contrary, the aided
algorithm observes a steady increase in integer fixing robustness with increasing CAC value.
At a CAC value of 50, a nearly 87% success rate is observed. 100% success rate is observed
at a CAC value of 150! Again, we see a cut-off for the HP-RPV availability at a CAC value of
200. Variables of interest for these tests are shown in Table A.9.

Nominal Aided
Ts(sec) 0.2 0.2

Po(cycles) 10 10
Q (cycles) 1e-05 1e-05
RUWB(m) N/A 0.05

Table A.9: Variables of Interest

In conclusion, the CAC threshold has measurable impact on the robustness of the provided
HP-RPV solution. It filters erroneous integer sets for high-grade equipment when GNSS avail-
ability is limited ensuring consistent HP-RPV solutions. Little to no impact is observed when
varying the CAC threshold with multi-GNSS availability. This is because the algorithm can
confidently fix integer sets as observed by the high ratio values. When using low-cost antennas,
the CAC threshold can improve the probability that only the correct integer set is chosen. Most
interestingly however, is the impact the CAC threshold has on the integer selection scheme
when using a low-cost antenna and receiver. The CAC threshold is observed to remedy the
indecisiveness of the aided algorithm by filtering erroneous integer sets that are temporarily
calculated by the filter allowing for centimeter level precision for the low-cost sensor suite.
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