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Abstract 

Stresses in electronic packages due to thermal and mechanical loadings can cause 

premature mechanical failures such as fracture of die, severing of connections, die bond 

failure, solder fatigue, and encapsulant cracking. Therefore, there is a desire to have some 

type of non-intrusive measurement device compatible with current processing techniques 

to effectively detect and measure the stresses in electronic packages. Stress sensors 

integrated on silicon ICs represent a powerful tool for experimental evaluation of die stress 

distributions, but silicon’s upper temperature range is limited by its relatively low bandgap 

energy. Stress sensors made with wide bandgap semiconductor such as 4H silicon carbide 

(4H-SiC) offer the advantage of much higher temperature operation and can be utilized to 

monitor stresses in high-voltage, high-power SiC devices and have applications in deep 

well drilling, geothermal plants, and automotive and aerospace systems, to name a few.  

In this work, the basics of piezoresistive effect have been reviewed to help the 

understanding of the semiconductor stress sensors and the piezoresistive behavior of 4H-

SiC material has been studied. The general expressions for the stress dependence of 

resistors and van der Pauw devices on standard 4H-SiC wafers have been established. The 

theoretical results delineate similarities and differences of sensor rosettes on 4H-SiC with 

respect to those commonly utilized on silicon. Stress sensors were proposed to detect in-

plane normal stresses, shear stress and out-of-plane normal stress.  

The lateral and transverse piezoresistive coefficients were calibrated using four-

point bending method. Four-terminal van der Pauw devices have been demonstrated to be 

excellent vehicles for calibration of those piezoresistive coefficients of 4H-SiC, and 

experimental results for the coefficients of both p- and n-type 4H-SiC at various 
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temperatures have been presented. The calibration results of in-plane piezoresistive 

coefficients from resistors were also shown in this study. The out-of-plane piezoresistive 

coefficients were measured using the combination of four-point bending method and 

hydrostatic method. In general, measurements of the basic piezoresistive coefficients of the 

various resistive structures are relatively small (<100/TPa).  

The theory for the stress dependence of NMOS transistors on 4H-SiC was 

developed. The stress model for NMOSFETs includes the classic mobility terms plus a 

new term describing changes in threshold voltage. The longitudinal and transverse 

piezoresistive coefficients for NMOSFETs were calibrated. It has been found that the 

developed model agrees well with the measurements. 

Since the devices are usually fabricated on the tilted 4H-SiC wafer plane, this study 

also evaluated the impact of the off-axis wafer plane on 4H-SiC and silicon stress sensors. 

The off-axis angle of our test chips was measured with EBSD analysis, according to which 

the piezoresistive coefficients were developed for tilted wafer planes using coordinate 

transformation. The errors induced by such off-axis wafer were found to be highly 

dependent on the magnitude of fundamental piezoresistive coefficients and stress 

distributions on chips. A case study was performed to better illustrate the concept.  

A study on elastic properties of 4H-SiC was conducted and 4H-SiC was confirmed 

to be a transversely isotropic material. The in-plane elastic modulus E1, Poisson’s ratio ν12 

were characterized using strain gauge method, and the out-of-plane elastic modulus E3 

were measured with nanoindentation technique. The experimental results were compared 

with other studies.  
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Finally, the designed piezoresistive stress sensors were used to characterize the 

stresses on the die surface and finite element simulation was performed. 
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INTRODUCTION 

Silicon carbide (SiC) as a wide band gap semiconductor material is perfectly suited 

for power applications, thanks to its superior physical and electronic properties including 

higher thermal conductivity, lower leakage current, higher breakdown electric field, and 

higher operating frequency and temperature, etc. Having considered these advantages, 

much attention has been given to SiC [1].  To date, SiC power devices are widely and 

commercially available and they have been used in many areas, such as automotive, 

aerospace, and renewable energy industries [4]. 

 SiC based electronics technology always tends to be higher power density, higher 

efficiency, lower cost, and more integrated systems [5]. Recent studies discuss the future 

of 3D packaging and integration of silicon carbide power modules and eliminating wire 

bonds for lower parasitics leads to a reduction in size of electronic components [7]. 

However, with continually shrinking of the component size and increasing power density, 

the structural reliability has become a concern.   

During normal operation, power devices are expected to operate at high 

temperature and each power cycle (ON and OFF) will cause large variation of temperatures. 

Due to direct contact of materials with different coefficients of thermal expansion (CTE), 

the elements of packing are subjected to thermomechanical stresses. Because of thermal 

and mechanical loads, stresses in electronic packages may not only cause premature 

mechanical failures but also alteration of the function of the semiconductor devices. The 
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common stress related problems are fracture of the die, die bond failure, solder fatigue, 

severing of connections, and encapsulant cracking. Additionally, thermally induced 

stresses can be produced during packaging procedures such as encapsulant and die 

attachment, as well as during the application of the package in a thermally changing 

environment. Therefore, to better understand the failure mechanism and improve the 

reliability, stress analysis is of crucial importance in electronic industry.  

Stress analysis of electronic packages can be conducted by using analytical, 

numerical, and experimental methods. Analytical approaches involve constructing well-

understood equations and providing exact solutions, but it becomes hard to use for complex 

problems. Numerical methods often refer to finite element analysis and they are used for 

sophisticated situations. Although numerical solutions are approximate, in most cases, they 

have sufficient accuracy for engineering purposes. Experimental methods, giving real 

information about the behavior of structure, have included the use of test chips 

incorporating piezoresistive stress sensors (semiconductor strain gauges), and the use of 

optical techniques such as holographic interferometry, moiré interferometry, and photo 

elasticity [8],[9].  

Piezoresistive stress sensors are a powerful tool for experimental structural analysis 

of electronic packages. Fig. 1.1 illustrates the basic application concepts. The structures of 

interest are semiconductor chips which are incorporated in electronic packages. The 

sensors are resistors that are conveniently fabricated into the surface of the die. Therefore, 

embedded sensors are not affected by the external environments like chemical, moisture, 

and contamination. Due to the piezoresistive effect, the stress induced resistance change 
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can be measured. If the piezoresistive sensors are calibrated over a wide temperature range, 

thermally induced stress range may be measured.  

 

 

Figure 1.1: Piezoresistive Sensor Concept 

In the past, silicon based piezoresistive stress sensors were widely utilized for 

qualifying of manufacturing processes, guiding material selection, and evaluating 

reliability. For instance, a full-field mapping of the stress distribution over the surface of a 

die can be obtained using specially designed test chips, which can be used to measure 

processing induced die stress as a function of various manufacturing variables. In this role, 

test chips can be used to guide material selection processes (e.g., encapsulants) [10],[11]. 

Additionally, embedded sensors can perform in-situ monitoring of stress at critical 

locations even within encapsulated packages, and can be useful for Prognostics and Health 

Monitoring (PHM) systems. PHM is a set of algorithms based on in-situ stress 

measurements, which can provide different level of prognostics, including failure detection, 
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diagnostics, and life-time prediction [12],[13]. Thus, for power electronics, stress sensors 

directly integrated on SiC chips are a promising tool for stress analysis and failure 

prediction.  

In the microelectromechanical systems (MEMS) industry, comparing with other 

types of sensors, the piezoresistive sensor is cheaper and more durable, because of its 

simple structure. The linear resistance change with strain is critical for preventing distortion 

of output signal and makes the readout circuit very simple. Therefore, silicon 

piezoresistance has been extensively studied and used for various sensors such as pressure 

sensors, accelerometers, strain gauges, etc. However, when it comes to the harsh 

environments (high temperature, pressure, voltage, radiation, shock, moisture, corrosion, 

contamination), silicon piezoresistive sensors are ill-suited based on its material properties. 

For example, high temperature can cause p-n junction failure and current leakage for 

silicon-based devices. Also, degradation of mechanical properties such as lose of elasticity 

and plastic deformations have been reported for silicon exposed to extreme conditions [14]. 

In this case, the use of wide band-gap materials as sensors has raised a great deal 

of attention. With high elastic modulus, high breakdown voltage, high radiation, hardness, 

high chemical inertness, SiC is a promising candidate for developing MEMS devices for 

extreme conditions [15]-[17]. 

SiC exists in more than 200 different crystal structures, called polytypes. Most of 

the research and development has focused on three types: 3C, 4H and 6H. Among the 

polytypes, 4H polytype is the most common for electronic devices because of its excellent 
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material properties [18]. For instance, the band gap of 3C (2.3eV) and 6H (3.0eV) 

polytypes are significantly lower than that of 4H (3.23eV), which enables 4H-SiC to 

operate at higher temperature without breakdown [19]. The carrier mobility of 4H-SiC is 

higher than the others. In terms of MEMS applications, 4H-SiC possesses high 

chemical/oxidation resistance, high hardness, high elastic modulus, and large thermal 

conductivity, which are important for harsh environment applications.  

In this work, the design and calibration of piezoresistive stress sensors on 4H-SiC 

are discussed. The stress sensors investigated in this research are resistors, van der Pauw 

structures (VDP), and field-effect transistors (FETs). Due to the fabrication limitations, the 

electronic devices are fabricated on the off-axis wafer plane of the 4H-SiC. The impact of 

such off-axis effect on the stress sensors are investigated. For subsequent stress analysis in 

electronic packaging, the mechanical properties such as elastic modulus and Poisson’s ratio 

of 4H-SiC are characterized using strain gauge and nanoindentation methods. Finally, an 

example of stress analysis using stress sensors is presented.  
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THEORETICAL BACKGROUND AND LITERATURE REVIEW 

2.1 Piezoresistive effect 

2.1.1 History 

The word “piezoresistive” contains two words of different linguistic origin: “piezo” 

comes from Greek words meaning “to press, to squeeze” and “resistive” is derived from 

Latin words which means “to stop”. The piezoresistive effect is a change in electrical 

resistance of a metal or semiconductor when the material is stressed. The change of 

resistance in metal due to applied stress was first discovered by William Thomson (Lord 

Kelvin) in 1856 [20], followed by a vast number of studies.  In 1876, Tomlinson measured 

direction dependent conductivity of metals under mechanical loads [21],[22]. Because of 

low sensitivity, the applications of piezoresistance in metals are very limited. In 1950, 

around a hundred years after the discovery of piezoresistance, Bardeen and Shockley 

proposed the theoretical formulation of deformation potentials and predicted large 

conductivity changes with strain in single crystal semiconductors [23]. In 1954, C. S. 

Smith, a researcher who was visiting Bell Laboratories, performed experimental 

measurements of the piezoresistive effect in silicon and germanium and reported 

‘exceptionally large’ piezoresistive shear coefficients [24]. Since then, the piezoresistive 

effect in semiconductors has been intensively investigated. 
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Silicon strain gauges, with sensitivity more than fifty times higher than 

conventional metal strain gauges, were first reported by Mason and Thurston in 1957 [25]. 

With the advance of the micro fabrication technologies, especially after the invention of 

the ‘planar’ transistor in 1960 [26], mass production of silicon piezoresistive sensors was 

further developed.  

Nowadays, many researchers have studied piezoresistive coefficients of silicon 

both analytically and experimentally, as a function of doping concentration and 

temperature and performance of piezoresistive sensors, including sensitivity, resolution, 

and bandwidth, are significantly improved by the modern fabrication processes and 

techniques. 

2.1.2 Piezoresistive Fundamentals 

The piezoresistive effect refers to the change of resistance due to mechanical stress 

or strain. The electrical resistance of an isotropic structure is a function of its dimensions 

and resistivity [27]: 

 
L

R
Wt

=   (2.1) 

Where ρ is the resistivity, L is the length, W is the width, t is the thickness of the resistor. 

Under an applied stress, the resistance changes because of the dimension and resistance 

changes: 

 
2 2

L L L
R L w t

Wt Wt W t Wt

  
 = +  −  −   (2.2) 

The normalized resistance change can be obtained: 
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L

R L W t

R L W t

(1 2 )

    
= − − +




=  +  +



 (2.3) 

Where 𝜀𝐿 is the longitudinal strain, and ν is the Poisson’s ratio. 

The piezoresistive effect can be represented by the gauge factor (GF): 

 
L L

R / R /
GF (1 2 )

  
= = +  +

 
 (2.4) 

In metal strain sensors, the change of geometry dominates the GF, and the second term 

which presents resistivity change is negligible. Therefore, the GF for metals becomes 

 
L

R / R
GF (1 2 )


= + 


 (2.5) 

However, for semiconductor sensors, the GF is primarily due to the resistivity changes 

which are related to the change in the number of free electrons and the change in mobility 

induced by the lattice deformation. Hence, the GF for semiconductors is 

 
L L

R / R /
GF

  
=

 
 (2.6) 

The resistance change ∂R/R can also be expressed in terms of stress 

 l l

R

R

 
=  


 (2.7) 

Where 𝜋𝑙  and 𝜎𝑙  represent the piezoresistive coefficient and stress along longitudinal 

direction, respectively. Therefore, the relationship between the GF and piezoresistive 

coefficient can be given based on the Hook's law: 

 lGF E=  (2.8) 
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Where E is the elastic modulus. 

2.1.3 Piezoresistive Tensor 

In semiconductors, the piezoresistivity exhibits a large anisotropy, which means the 

change of resistivity depends on the orientation of electric field and mechanical loadings. 

In a cartesian coordinate system, the relationship between electric field Ef
⃗⃗  ⃗ and current 

density J  is 

 

1 11 12 13 f1

2 12 22 23 f 2

3 13 23 33 f 3

J E

J E

J E

       
     

=   
     
            

 (2.9) 

The resistivity tensor ρ is a second rank tensor. Since ρ is symmetric, there are only six 

independent components.  

The applied stresses will change the value of resistivity components, which can be 

modeled using the series expansion [28]. 

 
0

ij ij ijkl kl ijklmn kl mn = +  +   +  (2.10) 

Where σkl represent stress components, ρij
0 are the resistivity components for the stress free 

material and Πijkl  and Λijklmn , etc. are components for fourth, sixth, and higher order 

tensors which characterize the stress induced resistivity change. For sufficiently small 

stress levels, this relation is typically truncated so that the resistivity components are 

linearly related to the stress components 

 

0

ij ij ijkl kl

ij ijkl kl

 =  + 

 =  

 (2.11) 
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The relation in the above equation can be simplified by recognizing that the resistivity and 

stress tensors are symmetric( ρij = ρji , σij = σji), therefore, the following relations are 

given 

 
ijkl jikl

ijkl jilk

 =

 =
 (2.12) 

To reduce the complexities of the index labels, the index pairs are replaced by single indices 

as 

  
4

11 1    22 2  33 3

13    23 5  12 6
 (2.13) 

Hence, the expressions in Eq. 2.11 can be rewritten in indicial notations as 

 
0

    =  + 
 (2.14) 

Where Greek indices take on the values 1,2, …, 6. Note that when β ≤ 3, Παβ = Πijkl and 

if β > 3, Παβ = 2Πijkl (i.e., Π11 = Π1111 , Π16 = 2Π1112), and more details can be found 

in [28]. A further notation simplification can be obtained by introduction of the so-called 

piezoresistive coefficients. They are defined by 

 






 =

  (2.15) 

where 𝜌̅ is the mean unstressed resistivity 

 

0 0 0

11 22 33

3

 + +
 =  (2.16) 

Hence, Eq. 2.14 becomes  
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 
 


=  


 (2.17) 

As we discussed previously, the resistance changes induced by geometry are 

negligible for semiconductors. Therefore, the relationship between resistance and stress is 

shown in Eq. 2.18 and the stress components can be evaluated by measuring resistance 

with known piezoresistive coefficients. 

 
R

R


 


=  


 (2.18) 

2.2 Piezoresistive Stress Sensors 

2.2.1 Resistive Rosettes 

Piezoresistive stress sensors embedded on the die surface can characterize complex 

stresses developed in electronic packages. These sensors are mainly resistor sensors which 

are implanted or diffused in the surface of the die in suitable locations on the surface as 

shown in Fig. 2.1 [29]. In early 1980s, Texas instrument first reported characterization of 

silicon lattice stress in plastic encapsulated packages by using "diffused strain gauges" 

[30]-[32]. Two-element sensor rosettes with 0-90° orientations, capable of measuring in-

plane normal stress on die surface on (100) silicon were used few researchers such as 

Spencer et al. [32], Edward et al. [31], Beaty et al. [33]. Four-element sensor rosettes with 

0-±45°-90°, which can measure all three in-plane stress components, were studied by 

Natarajan et al. [34] on (100) silicon and Gee et al. [35],[36] on (111) silicon. The Suhling 

and Jaeger group have extensively studied embedded stress sensors and discovered 

optimized sensor rosette on the (111) silicon which can measure complete three-
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dimensional (3D) state of stress. Fig 2.2 shows the top view of a 3D stress sensor, both n- 

and p-type sensing elements in 0-±45°-90° configuration are used, and the serpentine 

pattern of each element provides an acceptable resistance level for measurement [28].  

 

 

Figure 2.1: Top and Side View of a Resistor Sensor. Reprinted from [29]. 
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Figure 2.2: Photomicrograph of Eight Elements Resistive Rosettes. Reprinted from [28] 

 

Figure 2.3: Photomicrograph of Ten Elements Resistive Rosettes. Reprinted from [39] 
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Tufte et al. [37],[38] discovered that the shear piezoresistive coefficient 𝜋44  of n-type 

silicon remains almost constant over most of the doping concentration range but starts to 

change rapidly at a concentration above 1 × 1020 cm−3 . By using such concentration-

dependent piezoresistive properties, Gharib et al. [39] introduced ten-element 

piezoresistive rosette which is able to measure 3D state of stress with temperature 

compensation.  

2.2.2 Van der Pauw Stress Sensors 

To achieve an acceptable unstressed reference resistance, the resistors are typically 

made using long serpentine conduction paths and cover a relatively large area on the die 

surface. Thus, they can only measure the average stresses over the region covered by all of 

the rosette elements. For critical areas such as near the corner of the die, the resistor rosettes 

are not optimal because of relatively large size. Another issue induced by large size is high 

leakage currents in p-n junction between the resistors and base. To overcome such 

limitations, an alternative approach for sensing rosettes was developed by Mian et al. [40] 

using Van der Pauw (VDP) structures. These structures are commonly used as test 

structures to measure sheet resistance. The VDP structure requires only one square of 

material (Fig. 2.4), and its characteristics are also size independent. Therefore, they can 

capture the stress in a small area without loss of sensitivity. If several VDP structure are 

arranged along proper orientations, 3D stress components can be extracted. In Fig. 2.5, 

four-element VDP rosette, containing both n- and p-type structures on (111) silicon, is 

capable of measuring all six stress components and four temperature compensated stress 
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components can be extracted. Moreover, VDP stress sensors can provide more than three 

times sensitivity than traditional resistor rosettes.  

 

 

Figure 2.4: n-type VDP Structure in a p-well.  

 

Figure 2.5: Schematic of a Four Element VDP Rosette on (111) Silicon. Reprinted from 

[40]. 
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2.2.3 MOSFET Stress Sensors 

In size limited applications, metal-oxide-semiconductor field-effect transistors 

(MOSFET) are excellent stress sensors because of their advantages of smaller size, high 

sensitivity due to lighter doping, operable in wide temperature range over the traditional 

resistor sensors. When a MOSFET is biased in either linear or saturation region of 

operation, its drain current is inversely proportional to its channel resistance. In this case, 

the MOSFET can be treated as a resistor whose resistance is a function of gate voltage. The 

application of stress can change the resistance of channel region and the piezoresistive 

behavior of MOS is similar to that of a resistor along the channel region [41],[42]. Hence, 

MOSFET sensor rosettes were developed as an alternative to the (100) sensing rosettes. 

Conceptual layout of the optimized PMOS and NMOS stress senor rosettes appear in Fig. 

2.6 where the PMOS transistor pair measures the difference in the in-plane normal stress, 

and the NMOS pair measures in-plane shear stress [43]. Also, Bradley et al. showed that 

the stress sensitivity of the FET channel does not depend on the channel length and parasitic 

resistance is the reason for the observed reduction in piezoresistive coefficients of short-

channel devices. Hussain et al. reported that the piezoresistive coefficients of PMOS and 

NMOS devices vary significantly with choice of operating point and are strongly correlated 

with the underlying value of channel mobility [44]. The stress sensitivity of the PMOS 

devices was demonstrated to be linearly dependent on both operating current and mobility, 

whereas the NMOS sensitivity increased more rapidly as the current was reduced and 

exhibited a quadratic relation to electron mobility. Jaeger et al. [45] proposed a simplified 

model which provides a continuous description of the MOSFET stress behavior from weak 
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though strong inversion in their recent work. They pointed out that the stress responses of 

individual NMOS and PMOS transistors are strongly affected by stress dependent changes 

in threshold voltage, particularly in moderate and weak inversion region.  

 

 

Figure 2.6: Conceptual Layout of 0-90° PMOS and ±45° NMOS Stress Sensors on (100) 

Silicon. Reprinted from [43] 

Traditional MOSFET stress sensors measure two in-plane stress components ( 𝜎11 −

𝜎22, 𝜎12). Baumann et al. developed a MOSFET stress sensors that can extract three more 

stress components (𝜎13, 𝜎23,𝜎Σ =
𝜎11+𝜎22

2
− 𝛽𝜎33). In Fig. 2.7, the vertical shear stress 

components can be obtained by using pseudo-hall contacts and the vertical resistance 

sensor can extract the sum of the three normal stresses in a temperature compensated 

manner [46].  
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Figure 2.7: (a) p-type Out-of-plane Shear Stress Sensor and (b) the Device Sensitive to 

Out-of-plane Normal Stress. Reprinted from [46]. 

2.3 Physical Properties of 4H-SiC  

2.3.1 Crystal Structure of SiC 

Silicon carbide (SiC) exists in many different crystal structures, called polytypes. 

The polytypes are characterized by stacking consequence of atom layers [47]-[50]. For 

example, consider a hexagonal closed-packed system, shown in Fig. 2.8 [51]. If there are 

three possible sites (A,B, and C) and each site cannot directly stack on itself (the next top 

layer of "A" can only be "B" or "C"), there are infinite possible sequences in principle. For 

most materials, only one stacking structure is usually stable. However, SiC has more than 

200 polytypes. Among these polytypes, only a few are used as electronic semiconductor 
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materials, including 3C-SiC, 4H-SiC, 6H-SiC, and 15R-SiC. Polytypes are represented by 

the number of bilayers in the unit cell and crystal system. As shown in Fig. 2.9, 3C-SiC is 

described by repeating sequence of ABC. Similarly, 4H- and 6H-SiC can be described by 

ABCB and ABCACB, respectively. "C", "H", "R" stands for cubic, hexagonal, and 

rhombohedral crystal structures. 3C-SiC is also called β-SiC, and other polytypes are called 

α-SiC. Fig. 2.10 shows the primitive cells and fundamental translation vectors of cubic and 

hexagonal SiC. 

 

 

Figure 2.8: Occupation Sites in Hexagonal Closed-packed System, Borrowed from [51]. 
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Figure 2.9: Schematic Structure of Popular Polytypes: (a) 3C-SiC, (b) 4H-SiC and (c) 

6H-SiC, Borrowed from [51]. 

 

Figure 2.10: Crystal Structure of cubic and hexagonal SiC 

 

2.3.2 Physical Properties of SiC 

From Table 2.1 [52]-[56], silicon carbide polytypes have much higher bandgap and 

breakdown voltage than that of silicon whereas silicon has higher carrier mobility. 4H-SiC 
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possess the highest breakdown voltage and carrier mobility among these polytypes, which 

makes it an ideal material for electronic devices and high temperature applications. Also, 

silicon carbide polytypes possess higher hardness, stiffness, wear resistance and melting 

temperature, which are important for devices operating in harsh environment. 

 

 

Table 2.1: Physical Properties of Si and SiC at Room Temperature 

 

2.3.3 Piezoresistive Effect of 4H-SiC 

The fundamental piezoresistive coefficients or gauge factors (GFs) were studied 

experimentally and analytically by several groups. Nakamura et al. simulated the 

piezoresistivity of n-type SiC nano sheets using density functional theory [57]. As shown 

Properties Si 3C-SiC 4H-SiC 6H-SiC

Bandgap (eV) 1.12 2.36 3.26 3.02

Breakdown Voltage (MV/cm) 0.3 1.4 2.2-2.8 1.7-3.0

Electron Mobility (cm^2/Vs) 1400 1000 1000-1200 100-450

Hole Mobility (cm^2/Vs) 470 40 120 100

Elastic Modulus (GPa) 130-170 330-384 400-550 440-500

Density (g/cm^3) 2.33 3.21 3.21 3.21

Mohs Hardness 6.5 9.2-9.3 9.2-9.3 9.2-9.3

Melting Point (K) 1690 3103 3103 3103

Thermal Conductivity (W/cmK) 1.3 3.6 4.9 4.9
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in Fig. 2.11, The results show that the fundamental longitudinal and transverse GFs have 

similar magnitude but opposite sign and the sensitivity is decreasing with increasing 

temperature.  

 

Figure 2.11:Gauge Factors vs. Temperatures. Reprinted From [57]. 

The experimental study on n-type 4H-SiC at room temperature were performed by 

Akiyama et al [58]. In Fig 2.12, the n-type piezoresistors were fabricated on p-type epilayer 

and cut from 4° off-axis wafers and stress were introduced by deflecting the free end of the 

cantilever. The results showed that the longitudinal GF is 5 to 20 and transverse GF is -5 

to -10 depending on piezoresistor's width and length.  
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Figure 2.12: Cantilever beam for Piezoresistance Characterization, Reprinted From [58]. 

 

 

Figure 2.13: Gauge Factors as a Function of Piezoresistor's Widths and Lengths. 

Reprinted From [58]. 

Okojie et al. [59] discovered that the n-type 4H-SiC pressure sensors start to recover its 

sensitivity at 400 ℃ and reaches values that are nearly equal to the temperature values at 

800 ℃, which provides the promise of delivering room-temperature level sensitivity at the 

extremely high temperatures. 

Nguyen et al. investigated the piezoresistivity of p-type 4H-SiC in their recent studies [60]-

[61]. In Fig. 2.14, the GFs of 100 μm, 200 μm and 300 μm p-type piezoresistors were 
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characterized and the longitudinal and transverse GFs are around 31 and -27, respectively. 

The GFs at various temperatures (up to 600℃) were also characterized and they found that 

the longitudinal GF of p-type resistor at 600℃ decreases about 30% in comparison with 

the GF at room temperature (Fig. 2.15).  

 

 

Figure 2.14: Schematic Sketch of the Cantilever Beam Bending Experiment and the 

Gauge Factors. Reprinted From [60]. 
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Figure 2. 15: Schematic Sketch of the Cantilever Beam Bending Experiment and the 

Gauge factors. Reprinted From [61]. 
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DESIGN AND CALIBRATION OF RESISTIVE STRESS SENSORS ON 4H-SIC 

3.1 Design of Resistive Sensors 

3.1.1 Introduction 

Silicon has been one of the main materials used in piezoresistive stress sensors. 

However, Si based sensors are not capable of operating at high temperature due to its 

relatively low bandgap energy (1.12 eV). On the other hand, the bandgap of 4H-SiC is 3.23 

eV, which can effectively reduce the number of electron-hole pairs generated in high 

temperature across the bandgap and improve the high temperature stability of SiC sensors. 

Therefore, 4H-SiC based stress sensors are capable of monitoring stress related “health 

issues” in packaged high-voltage, high power SiC devices, as well as applications including 

automotive and aerospace systems, deep well drilling, and geothermal applications, for 

example. 

In this work, general expressions for the stress dependence of resistors and van der 

Pauw devices on 4H-SiC are established and the design of resistive rosettes and van der 

Pauw sensors are discussed. The fundamental piezoresistive coefficients of 4H-SiC were 

calibrated by using four points bending and hydrostatic method.  

3.1.2 Piezoresistive Coefficients and Coordinate Systems for 4H-SiC Chip 

As discussed in Chapter 2, the 4H-SiC has a hexagonal crystal structure. In Fig. 3.1, the 

top plane of the hexagonal structure ((0001) plane) is show on the right side and the a1-a2-

a3 represent the crystallographic axes of the 4H-SiC material. By using the symmetric 
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properties of crystals [62], the Cartesian coordinate system or conventional coordinate 

system x1-x2-x3 are defined, so that the physic properties can be written in a concise form. 

The fundamental piezoresistive coefficient tensor in the conventional coordinate system is 

shown in Eq. 3.1. It can be seen that, there are six unique fundamental piezoresistive 

coefficients (i.e., π11, π22, π33 π13, π31 and π44) for 4H-SiC.  

 

Figure 3.1: Crystal Structure and Conventional Coordinate System For 4H-SiC 
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 (3.1) 

As shown in Fig. 3.2, the wafer coordinate system is defined: the surface of the wafer 

is a (0001) plane, and the x2
,
 and x1

,
 axes are parallel and perpendicular to the primary 

wafer flat, and x3
,
, x3 and c axes are coincident and perpendicular to the wafer plane. These 
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axes are chosen so that the individual normal stresses are resolved in direction parallel to 

the edge of standard IC chips, and they also correspond to the orientation of most resistors 

and transistors in integrated circuits. In order to obtain the piezoresistive coefficient tensor 

in the wafer coordinate system, a coordinate transformation must be performed.  

 

 

Figure 3.2: Coordinate Systems on (0001) Plane 

The piezoresistive coefficient tensor in wafer (primed) coordinate system depends 

on the fundamental piezoresistive coefficient tensor and the angle between primed and 

unprimed coordinate systems as shown by Eq. 3.2. 
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where [T] is the transformation matrix and l, m, and n are the direction cosines of two 

coordinate systems. 
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 (3.3) 

It has been found that the elements of piezoresistive coefficient tensor are identical 

([π]=[π′]) for rotations within the basal plane. Therefore, 4H-SiC is a transversely isotropic 

material. All the calculations have been performed symbolically using the mathematical 

software MATLAB®. 

3.1.3 Resistive Rosettes 

An arbitrarily orientated resistor on (0001) surface of the 4H-SiC is shown in Fig. 

3.3. The angle between the resistor and 𝑥1
,
 axis is ϕ.  

 

 

Figure 3.3: Resistor Arbitrarily Orientated with Respect to the Wafer Axes 
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For a given angle ϕ, the normalized change in resistance can be expressed in terms of the 

primed stress components (stress components in wafer coordinate system) using  

 
2 2

1 2

2
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   +    +   +   + 

 (3.4) 

where π1α
′ , π2α

′ , and  π6α
′  ( α = 1,2,… 6 ) are temperature dependent piezoresistive 

coefficients in the wafer coordinate system, α1, α2 , … are temperature coefficients of 

resistance, ∆T  is the difference between the measurement temperature and reference 

temperature where the unstressed reference value of resistance R(0,0) is measured.  

Since the transformed piezoresistive coefficients are equal to the fundamental 

piezoresistive coefficients, substitution of the unprimed values into Eq. 3.4 yields 
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2
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cos sin

R
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




   =   +   +   +   

   +   +   +   +  + 

 (3.5) 

It can be seen that resistors on (0001) planes respond to only four of the six components of 

the stress state similar to the case for (100) silicon [28],[29]. Typical sensor rosettes similar 

to those on silicon consist of two or more resistors aligned at various angles relative to the 

primed axes as indicated in the four-element rosettes in Fig. 3.4. 
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Figure 3.4: Four-element Rosette for In-plane Stress Measurement 

Resistor change equations are found by expanding Eq. 3.5 for angles of 0, 90, +45 and -45 

degrees as in Eq. 3.6. 

 


    =   +   +   +   +   + 


    =   +   +   +   +   + 

  +   + 
  =  +  +  

  +  +   +   + 

  +   + 
 =  + 

21
11 11 12 22 13 33 1 2

1

22
12 11 11 22 13 33 1 2

2

3 11 12 11 12
11 22 13 33

3

2

D 12 1 2

4 11 12 11 12
11 22

4

R
T T

R

R
T T

R

R
( ) ( )

R 2 2

T T

R
( ) ( )

R 2 2
+  

  −  +   +   + 

13 33

2

D 12 1 2T T

 (3.6) 



32 
 

The four-element rosette is most often utilized because of the temperature compensation 

advantages (i.e., the αΔT terms cancel) that occur when subtracting the resistor changes 

from pairs of orthogonal resistors as demonstrated in Eq. 3.7.  

 

 
 − =   −

 
− =  

 =  − 

1 2
D 11 22

1 2

3 4
D 12

3 4

D 11 12

R R
( )

R R

R R
2

R R
 (3.7) 

Two temperature compensated quantities, the normal stress difference (σ11
′ − σ22

′ ) and 

shear stress σ12
′ , can be extracted using above equation.  Note that the out-of-plane normal 

stress terms, π33σ33
′ , also cancel in Eq. 3.7 so that a free surface is not required for the 

stress extractions. 

For the specific case of a free top surface (σ33
′ = 0) and careful control of temperature 

(ΔT= 0), the two individual normal stresses can be measured using either of the sum terms 

in Eq. 3.8 with Eq. 3.7.  

 
31 2 4

S 11 22

1 2 3 4

S 11 12

RR R R
( )

R R R R

  
 + = + =   +

 =  + 

 (3.8) 

Therefore, 
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 (3.9) 

In order to extract the in-plane stresses from the resistor change equations, we need values 

for π11  and π12  (πS  and πD  are sum and difference of π11  and π12  ), which can be 

measured by using four-point bending method. Two in-plane piezoresistive coefficients 

π′11  and π′12  are often referred to as the longitudinal ( πL ) and transverse ( πT ) 

piezoresistive coefficients. 

Now, three out of four stress components can be extracted by using the four-

element single-polarity (either n-type or p-type) rosette. The out of plane normal stress σ33
′  

can be obtained by using dual-polarity (both n-type and p-type) rosettes because the 

piezoresistive coefficients of the n-type and p-type are different.  
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Figure 3.5: Four-element Rosette for Out-of-Plane Stress Measurement 

The rosette contains a pair of n-type and a pair of p-type resistors directed at 0 and 90 

degrees with respect to the x1
′ -axis. Application of Eq. 3.5 to four orientations gives 

relations between resistance changes and the stresses at the rosette site (The second and 

higher order temperature terms are ignored). 
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 (3.10) 

Direct combination of the expressions in Eq. 3.10 leads to the following resistance-stress 

expressions and the out-of-plane normal stress σ33
′  can be obtained. 
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 (3.11) 

Evaluation of σ33
′  requires measurement of the normalized resistance changes of the 

sensors and temperature change ΔT experienced by the sensing elements. The temperature 

coefficients of resistance (𝛼) and piezoresistive coefficients (πs and π13) must also be 

known for each doping type. The value of π13 can be extracted by combining four-point 

bending and hydrostatic pressure method, which will be discussed with more details in 

later sections. 

To increase the unstressed reference resistance value for measurement, the resistor 

rosettes are typically made using long serpentine conduction paths. Therefore, they are 

fairly large and they are not optimal for use in measuring stresses in critical areas such as 

near the corner of a die. To overcome the size limitation, alternate sensors such as van der 

Pauw and FET stress sensors are developed. 

3.1.4 Van der Pauw Devices 

The four-terminal resistive van der Pauw (VDP) device in Fig. 3.6 (a), commonly 

utilized for sheet resistance characterization, can also be used as a stress sensor 

[40][63][64]. The VDP structure requires only one square of material, and its 

characteristics are also size independent. Thus, such sensors can be made small enough to 

capture stress variation in a small area without any loss of sensitivity. Additionally, the 
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VDP measurements require four probes, ensuring Kelvin type measurements, thus 

nullifying the effect of probe-contact resistances. Moreover, the VDP stress sensors on 

silicon provides 3.16 times sensitivity than that of resistor rosette sensors.  

 

Figure 3.6: 0° and 45° VDP Devices 

In Fig. 3.6 (a), the VDP sample has uniform thickness, and no isolated holes. The four 

electrical contacts 1,2,3, and 4 are located at four corners of the sample. Van der Pauw 

defined the resistance (R12,34) of the sample as the potential difference V4-V3 between the 

contacts 4 and 3 per unit current through contacts 1 and 2. In this case, current enters the 

sample through contact 1 and leaves the sample through contact 2 and directs along x1
,
 

direction, so that R12,34 is defined as R0 because angle between current direction and x1
,
 

axis is 0 degree. Similarly, if the current directs along x2
,
 and the voltage between contacts 

4 and 2 is measured, R90 can be calculated. For a symmetric structure in Fig. 3.6, the sheet 

resistance (RS) is defined based on van der Pauw’s theorem, so that  
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R45 and R-45 requires another VDP device oriented at 45 degrees with respect to x1
,
 axis as 

in Fig. 3.6 (b).  

According to Eq. 2.14, for fixed environmental conditions (i.e., temperature), the 

relationship between in-plane components of resistivity and stress is given by 

 

11 0 11 11 12 22 13 33

22 0 12 11 11 22 13 33

12 0 D 12
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(1 )

( )
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    =  +   +  + 

  =   

 (3.13) 

where ραβ
,

 are resistivity components in primed coordinate system.  

When there is no stress applied, R0= R90 for such a symmetric structure. Based on Eq. 3.13, 

the normalized resistance change in each direction can be obtained and difference of 

resistance change is shown in Eq. 3.14. More details can be found in [40].  
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 (3.14) 

The VDP sensor exhibits similarities to resistive rosettes but provides a 3.157x greater 

sensitivity to the stress difference (𝜎11
′ − 𝜎22

′ ) and shear stress 𝜎12
′ . The sum of resistance 

changes can be used to exact the two individual in-plane normal stress in case of free top 

surface and well controlled temperature. Note that the important enhanced VDP sensitivity 

factors (3.157) appear in the difference, but not the sum, expressions. To measure the 
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temperature compensated stresses, four measurements are required to extract the difference 

of the resistance change. However, it has been proven that diagonal mode operation can 

yield the same results with only two measurements by using z-parameter analysis [64].  
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 (3.15) 

For the diagonal measurement, current is applied across one diagonal and voltage measured 

across another. (i.e. For 0-degree VDP, current enters the sample through contact 3 and 

leaves the sample through 2 and the voltage between contact 1 and 4 are measured.) The 

VDP structure can be any arbitrary shape, as long as the sample is two dimensional and 

solid (no holes), so that 0° and 45° VDP can be replaced by an eight-terminal square or 

round VDP.  

Just like the resistive rosettes, the evaluation of out-of-plane normal stress 𝜎33
′  

requires dual-polarity VDP rosette as in Fig. 3.7 and the normalized resistance changes in 

each device can be obtained (Eq. 3.16). 
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Figure 3.7: p and n VDP Device 
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 (3.16) 

Combining the expressions in Eq. 3.16 yields Eq. 3.17,  
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 (3.17) 

It can be seen that resistive rosettes and VDP sensors have the same resistance-stress 

expressions when it comes to out-of-plane normal stress measurement. 
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3.2 Calibration Method  

3.2.1 Introduction  

To extract the stress state from the resistance changes measured with a sensor 

rosette, it is necessary to have accurate values of the piezoresistive coefficients. As 

discussed in previous sections, the values of π11, π12 and π13 are required. These material 

constants relating the resistivity components to the stress components can be measured 

using controlled experiments where the resistance versus stress behavior is monitored. In 

this work, four-point bending and pressure vessel testing have been used to generate the 

uniaxial and triaxial calibration loadings. The in-plane piezoresistive coefficients π11 and 

𝜋12 are measured using four-point bending method and the out-of-plane component π13 is 

extracted using hydrostatic pressure. 

3.2.2 Four-point Bending Method 

In general, there are two methods to apply uniaxial stress to the test sample: 

cantilever bending method and four-point bending method. For piezoresistive 

characterization, the cantilever method is not optimal when the actual size of the resistor is 

taken into account. For instance, the longitudinal resistor must extend over some finite 

length along the cantilever and the stress along the piezoresistor is not uniform as shown 

in Fig. 3.8.  
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Figure 3.8: Cantilever Beam Setup 

The four-point bending method, on the other hand, provides a constant bending 

moment or stress between two inner loading supports. In Fig. 3.9, a rectangular strip 

containing a row of chips is cut from a wafer and placed between the loading supports. By 

controlling the micrometer, the bottom supports move up and generate uniaxial stress. The 

reaction force F can be calculated from the output of the load-cell. The devices are probed 

through an opening in the top of the fixture, and the top surface of the strip represents a 

free surface (ignoring small probe forces). An HP-4146B semiconductor parameter 

analyzer connected to the probes is used to record the data. 
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Figure 3.9: Actual Four-point Bending Fixture with an Example Test Strip in Place 

The normal stress induced at points on the top surface of the strip that are between 

the bottom supports is given by 

 
−

 =
2

3F(L d)

t b
 (3.18) 

Where F is the applied force, L is the distance between two top supports, L is the distance 

between two bottom supports, b and t are the width and thickness of the specimen, 

respectively. 
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Figure 3.10: Schematic Sketch of Four-point Bending Method 

The four-point bending setup mentioned above can make measurement at room 

temperature. For temperature dependent measurement, such four-point bending apparatus 

needs to be integrated into the environmental chamber. As shown in Fig. 3.11, by 

controlling the micrometer, force is applied to the bottom supports of the fixture through a 

low heat conductive ceramic rod penetrating the bottom side of the chamber. During 

experiments, the strip needs to be placed on the bottom supports inside the chamber and 

the traditional probing approach is not suitable in this case. Thus, a flex circuit approach 

shown in Fig. 3.12. is applied. The flexible circuit is attached to the center of the wafer 

strip with a thin and small piece of high-temperature double-sided tape to ensure good 

attachment under high-temperature and minimize stresses caused by CTE mismatch. 

Electrical connections between the strip and board utilize wire-bonding between bond pads 

on the strip and gold-plated copper trances on the flex. The tail of the flex circuit is inserted 

in a connector which is attached to an interface board connected to an interface box. HP 
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4146B semiconductor parameter analyzer connected to the interface box is used to record 

the data. 

 

 

Figure 3.11: Four-point Bending System in an Environmental Chamber 
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Chamber

4PB Fixture



45 
 

 

Figure 3.12: Flexible Circuit Approach 

Compare to manual probing approach, the flex circuit approach can provide higher 

accuracy because it eliminates undesirable stresses induced by probes but it also requires 

wire-bonding for each device.  

3.2.3 Hydrostatic Pressure Calibration  

As mentioned earlier, the four-point bending method is able to calibrate two in-plane 

piezoresistive coefficients (π11  and π12 ) by applying the in-plane normal stress. The 

hydrostatic pressure calibration method can evaluate the out-of-plane piezoresistive 

coefficient 𝜋13 by using triaxial normal stresses. In this work, the VDP device is used to 

evaluate the out-of-plane piezoresistive coefficients. 

Interface Board

Flex Edge Connector

Strip Connected to the Flex 

Traces Through Wirebonding

Strip Attached Flex



46 
 

Fig. 3.13 shows the hydrostatic calibration system which includes following parts: pressure 

vessel, pumping unit, pressure transducer, electrical connector, and a thermistor. The high-

capacity pressure vessel was used to subject a single die to triaxial compression, and the 

temperature and pressure changes were monitored during the test. The maximum operating 

pressure was designed to be 14 MPa (2000 psi). The limits were mainly determined by the 

pressure limit of the commercially available connector used to provide electrical access to 

the inside of the vessel.  

 

Figure 3.13: Hydrostatic Calibration System 

The test sample (Chip on Board) was inserted into the connector inside the vessel. The test 

sample is shown in Fig. 3.14. The upper-left corner of the 4H-SiC test chip was attached 

to a specially designed printed circuit board using a small drop of die attachment adhesive 

(ME 525) in order to satisfy the isotropic compressive stress for the hydrostatic tests. The 
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square VDP sensor on the chip is wire-bonded to the pads on the PCB to get an electrical 

access. The PCB was connected to the HP-4156B semiconductor analyzer for resistance 

measurement. It has been observed experimentally in this study that the hydraulic fluid 

temperature changes due to a 14 MPa pressure change is around 0.7 ℃. The pressure 

coefficients are small compared to the temperature coefficient of resistance. Thus, accurate 

determination of the TCR of the sensor elements must be done prior to pressure application 

and the temperature effects can be removed from the hydrostatic results. 

 

Figure 3.14: A Wire-bonded Chip on Board for TCR and Hydrostatic Test 
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3.3 Calibration Results 

3.3.1 In-plane Piezoresistive Coefficients of Resistor 

When there is only one uniaxial stress applied (σ11
′ = σ), based upon Eq. 3.6, the resistance 

for R1 and R2 becomes  
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2
12

2

R
T

R
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R

 (3.19) 

If the temperature is well-controlled, the piezoresistive coefficients can be measured by 

using a resistor pair. In this work, two resistors along the longitudinal and transverse 

orientations (Fig. 3.15) are used to extract π11 and π12, respectively. The probing approach 

was used to extract the coefficients in room temperature. 

 

 

Figure 3.15: 4H-SiC Strip with Resistors 
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Examples of the stress-induced changes in a n+- and p+-type resistor along the transverse 

direction appear in Fig. 3.16 and Fig. 3.17, corresponding to changes in electron mobility 

in the material. 

 

Figure 3.16: Normalized Resistance Change vs. Transverse Stress for a n+ Resistor 

 

Figure 3.17: Normalized Resistance Change vs. Transverse Stress for a p+ Resistor 
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Table 3.1: Measured Values of Piezoresistive Coefficients at Room Temperature 

The mean and standard deviation of the extracted coefficients for 5 sets of measurements 

on two types of resistors appear in Table 3.1. Gauge factors measured by Nguyen et al. [60] 

for p type material, together with SiC stiffness coefficients, give π11= 66/TPa and π12 =

−57/TPa. The mismatch of results could be caused by different measurement temperature, 

doping level, and loading method, etc. In their work, uniaxial stress was applied to an 

epitaxial piezoresistor by utilizing cantilever bending method. However, in this work, 

diffused resistor and four-point bending method are used. The simulation results of 

Nakamuara et al. [57] predict that, for n type material, the longitudinal and transverse 

piezoresistive coefficients have similar magnitude and opposite sign, which matches well 

with our results. 

3.3.2 In-plane Piezoresistive Coefficients of VDP device 

According to Eq. 3.14, it can be seen that only one combined piezoresistive coefficient πD 

is required for temperature compensated stress measurements. In this work, the values of 

Specimen# (/TPa) (/TPa)

1 99 -80 -49 42

2 84 -86 -30 40

3 70 -87 -35 41

4 68 -70 -58 50

5 85 -53 -42 52

Average 81 -75 -43 45

Std. Dev. 12.7 14.3 10.9 5.5
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piezoresistive coefficients under different temperatures were determined and data were 

collected every 30 ℃  from 23 – 180 ℃ . Since samples need to be placed into an 

environmental chamber, the flex circuit approach was utilized. As mentioned earlier, the 

VDP device connects to the flex traces through wire-bonding. To check the bonding quality, 

sheet resistance is measured and compared with standard values on a specification sheet. 

Four-wire VDP measurements help eliminate the inherent resistance of the wires 

connecting the measurement instrument to the VDP device being measured. Input and 

output currents are monitored to ensure the leakage current is not significant.  

Three measurements are utilized. Zero-degree, ninety-degree and diagonal measurements 

yield the value of R0 , R90 and RDiag
0/90

. During calibration, only σ11 = σ is applied and other 

stress components are zero, so the equations for VDP become: 

 

0/90

Diag0 90
D

0 90 S

0 90
S

0 90

RR R
3.157

R R R

R R
2 T 

R R

 
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 
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 (3.20) 

Piezoresistive coefficients πD and πS can be calculated from the difference and sum of the 

R0 and R90 without changing the directions of applied stress. A diagonal measurement is 

used to validate the results of the extracted value of πD. The VDP device and test strip 

appear in Fig. 3.18. 
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Figure 3.18: 4H-SiC Strip with VDP Device 

Fig. 3.19 and Fig. 3.20 show examples of the stress-induced resistance change in a 

n+- type VDP stress sensor at 60 ℃. A typical set of results for the variations of R0 and R90 

under uniaxial stress appear in Fig. 3.19 as well as the sum and difference of the two 

measurements. The slope of normalized resistance change of R0 and R90 are defined as π0 

and π90, respectively. In this case, the measurement results for R0 yields π0 = −121 /TPa 

and R90 yields π90 = 114 /TPa . Fig. 3.20 depicts the results from the diagonal 

measurements and the slope is defined as πDiag which is -229 /TPa and very close to the 

difference measurements (-235/ TPa) in Fig. 3.19. The good linearity is achieved thanks to 

the high accuracy of flex circuit approach.  



4H-SiC Strip

Contact

Square ResistorVDP Device
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Figure 3.19: Normalized Resistance Changes vs. Stress at 60 ℃ 

 

Figure 3.20: Diagonal Measurement Results at 60 ℃ 

Tables 3.2 and 3.3 present mean and standard deviations of extracted coefficients 

for 5 sets of measurements on two types of VDP devices. The results show that the sheet 
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resistance and magnitudes of the coefficient πD decrease monotonically with increasing 

temperature for both p- and n-type devices, which agree well with other reports [57][61]. 

Relative to πD, πS values are small but found in non-temperature compensated mode, so 

that the standard deviations are relatively large. Theoretically, the diagonal measurement 

is equivalent to difference measurement and yields the same results. To validate the 

difference measurement, πDiag are reported and compared with π0 − π90. The results for 

coefficient πD at different temperature are presented in Fig. 3.21 and Fig. 3.22. Evidently, 

the temperature compensated piezoresistive coefficient πD  exhibited good linearity at 

temperature ranging from 23 to 180 ℃.  

 

 

Table 3.2: Measured Values of Piezoresistive Coefficients for p+- type VDP 

Piezoresistive Values for p+-type VDP  -- Averages and Standard Deviations [1/TPa]

Temperature
Sheet Resistance 

RS [kΩ]

23 20.8 510.6(2.4) 512.4(1.8) 161.7(0.8) 19.4(4.9) 90.5(2.8) -71.2(2.1)

60 14.3 484.1(10.0) 484.1(6.3) 153.3(3.2) 11.2(11.9) 82.2(6.9) -71.1(5.4)

90 10.9 460.3(9.7) 459(3.5) 145.8(3.1) 9.1(8.4) 77.5(4.8) -68.3(4.1)

120 8.7 437.4(12.3) 434.7(4) 138.5(3.9) 19(6.5) 78.8(3.6) -59.8(4)

150 7.1 414.8(5.3) 409.9(4.8) 131.4(1.7) 13.5(5.9) 72.4(2.4) -58.9(3.7)

180 6 377.4(18.4) 377.5(17) 119.5(5.8) -1(3.8) 59.3(1.2) -60.3(4.8)
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Table 3.3: Measured Values of Piezoresistive Coefficients for n+- type VDP 

 

 

Figure 3.21: Coefficient πD for p+-type VDP vs. Temperature 

Piezoresistive Values for n+-type VDP  -- Averages and Standard Deviations [1/TPa]
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23 1177 -239.8(4.1) -238.2(7.5) -75.9(1.3) -8.8(9.6) -42.4(4.3) 33.5(5.3)

60 1093 -231.1(5.1) -227.5(5.5) -73.2(1.6) 5.9(22.6) -33.6(12.1) 39.5(10.5)

90 1033 -224.6(9.4) -218.8(10.6) -71.2(2.9) -0.6(9.4) -35.9(5.4) 35.3(4.4)

120 990 -215.8(4.7) -213.7(4.2) -68.4(1.5) 15.6(15.2) -26.4(7.9) 41.9(7.4)

150 959 -203.8(7.5) -202.3(5.9) -64.6(2.4) -3.4(33.9) -34.0(17.9) 30.6(16.0)

180 948 -194.6(2.6) -196.3(3.2) -61.6(0.8) 22.2(14.2) -19.7(6.8) 41.9(7.5)
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Figure 3.22: Coefficient πD for n+-type VDP vs. Temperature 

3.3.3 Out-of-plane Piezoresistive Coefficients of VDP device 

As shown in Eq. 3.17, the out-of-plane stress measurements require an additional 

piezoresistive coefficients π13 , which can be determined by the hydrostatic pressure 

method. If a VDP sensor is subjected to hydrostatic pressure (σ11
, = σ22

, = σ33
, = −p), the 

relations in Eq. 3.17 yields the change in resistivity: 
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where the combined piezoresistive coefficient −(πS + π13) is defined as the piezoresistive 

“pressure coefficient” πP . Once πP  is obtained through the hydrostatic test, π13  can be 

calculated by combining the results from four-point bending test. As discussed earlier, the 

TCR of the sensor elements must be determined prior to pressure application. The 

resistance R(σ,T) of the VDP is a function of applied stress σ and temperature T. If no 

stress is applied and the reference temperature is 25 ℃, the normalized resistance change 

becomes: 

 

0/90

0/90

N

(N)

2 3

1 2 3

R R(0,T) R(0,25)

R R(0,25)

T

T T T ...

 −
=

=  

=   +   +   +

  (3.23) 

The TCR( α ) can be extracted by measuring the resistance change versus 

temperature change of a sensor in a temperature chamber. During the TCR measurements, 

the oven temperature was varied from 10 ℃ to 100 ℃ with a step size 5 ℃. Fig. 3.23 and 

3.24 show typical plot of the resistance change versus temperature change for unstressed 

p+ and n+ VDP. Since the shape of the curve is slightly parabolic, the resistance change 

cannot be modeled by a linear term but first and second order terms are required. Table 3.4 

represents the TCR results for both p+ and n+ type resistors.  
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Figure 3.23: Normalized Resistance Change of p+-type VDP vs. Temperature 

 

Figure 3.24: Normalized Resistance Change of n+-type VDP vs. Temperature 
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Table 3.4: Measured Values of Piezoresistive Coefficients for n+ VDP 

As shown in Fig. 3.23 and Fig. 3.24, the resistance decreases with increasing temperature 

for heavily doped p- and n-type 4H-SiC in this temperature range. Elevating the 

temperature decreases mobility because of enhanced phonon scattering. However, it is 

compensated by increase of carrier concentration, leading to a decrease of resistivity [65]. 

For p+ 4H-SiC, the resistance reduced more than 40% from 25 ℃ to 100 ℃, which agrees 

with the results in the literature [66].  

Before the hydrostatic tests, the TCR for each sample is carefully measured as there 

is always sample to sample variation. Once TCR measurements are finished, the chips are 

subjected to hydrostatic pressure using the hydrostatic pressure test setup. The resistance 

and the fluid temperature are recorded at every load step. During the hydrostatic test, the 

temperature rises with increasing pressure, so that the measured resistance change is caused 

by both pressure and temperature change. To determine the pressure coefficient, the effect 

of temperature must be removed by subtracting the temperature induced resistance change 

from the total change. In Fig.3.25, the upper curve shows the total resistance change due 

to pressure and temperature. Since the temperature was recorded at each load step, the 

α1 α2

p+-type
Average -1.11E-02 6.32E-5

Std. Dev 0.04E-02 0.64E-5

n+-type
Average -2.54E-03 9.62E-6

Std. Dev 0.03E-03 1.68E-6
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temperature induced resistance change can be plotted (lower curve). The subtraction of two 

curves is presented in Fig. 3.26, which is the normalized resistance change due to pressure, 

and the slope of the linear fitted line corresponds to the piezoresistive coefficient πp. By 

using the in-plane piezoresistive coefficients (πS) from the four-point bending test and Eq. 

3.22, the π13 at the room temperature can be calculated. Table 3.5 shows the values of three 

fundamental piezoresistive coefficients of p-type resistor obtained by combining four-point 

bending and hydrostatic test. 

 

Figure 3.25: An Example of Total and Temperature Induced ∆R/R for p-type VDP 
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Figure 3.26: An Example of Pressure Induced ∆R/R vs. Pressure For p+-type VDP 

 

 

Table 3.5: Fundamental Piezoresistive Coefficients of p- type 4H-SiC 

It has been found that the resistance for the n+ VDP is quite small which makes the 

pressure induced resistance change difficult to measure. Therefore, the more lightly doped 
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reported because of large variation. 
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3.4 Summary 

Silicon carbide offers the advantage of much higher temperature sensor operation 

than silicon with potential use in a wide range of applications. The present work has 

established general expressions for the stress dependence of resistors and van der Pauw 

devices on standard 4H-SiC wafers.  

The resistive stress sensors fabricated on the (0001) plane of 4H-SiC, exhibit 

similarities to those on silicon, and can respond to only four of the six components of the 

stress state. The difference between two in-plane normal stresses (σ11
′ − σ22

′ ) and shear 

stress (σ12
′ )  can be measured in temperature compensated mode and only one 

piezoresistive coefficient πD is required for such measurement. If the temperature is well 

controlled and the top surface is stress-free, the individual values of 𝜎11
′  and 𝜎22

′  can be 

obtained. Four-terminal VDP devices can provide more than three times sensitivity than 

that of multi-element resistor rosettes. The experimental results confirmed the theory: the 

diagonal measurement is equivalent to the differential measurement for VDP devices. 

To measure the out-of-plane normal stress component 𝜎33
′ , dual-polarity (both n-

type and p-type) rosettes are needed but the extraction is not temperature compensated. 

Also, such measurement devices require knowledge of an additional piezoresistive 

coefficient π13. 

The isotropic piezoresistance in the (0001) plane of 4H-SiC was found by the 

coordinate transformation. The in-plane piezoresistive coefficients (π11 and π12, or also 

referred to as πL and πT) of both p- and n-type resistors are calibrated by using the four-
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point bending method at the room temperature. The measured piezoresistive coefficients 

are relatively small (< 100 /TPa) comparing to silicon. 

The VDP devices are utilized to find the in-plane piezoresistive coefficients at 

various temperatures and out-of-plane piezoresistive coefficient at room temperature. The 

results show that piezoresistivity decreases as the temperature rises. The coefficient πD is 

measured with good linearity and stability at different temperatures from 23 to 180 ℃. The 

out-of-plane piezoresistive coefficient π13 can be evaluated by combining the four-point 

bending and hydrostatic test, and TCR measurements must be performed before hydrostatic 

test since the temperature changes with the applied stress. The hydrostatic pressure 

piezoresistive coefficient πpwas found to be 60.9/TPa for p+ VDP. The piezoresistive 

coefficient π13 were further calculated with a known πS ,which is evaluated with four-

point bending method. The extracted π13 is -80.3 /TPa, which is around 15% higher than 

π12 . Due to the relatively low reference resistance for n+ VDP, the pressure induced 

resistance change is not observable. Therefore, the more lightly doped n-type resistor is 

required for out-of-plane stress sensor. 
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MECHANICAL STRESS EFFECTS ON NMOS FETs  

4.1 Introduction 

Metal-oxide-semiconductor field-effect transistors (MOS FETs) are excellent 

stress sensors because of their advantages of smaller size, high sensitivity due to lighter 

doping, and operable in wide temperature range over the traditional resistor sensors [67]. 

The piezoresistive behavior of MOS transistors on silicon has been studied by numerous 

researchers [68]-[77], whereas few have investigated the stress effect on 4H-SiC MOS 

transistors. Stress sensors on silicon carbide offer the potential for much higher temperature 

operation than with silicon. Moreover, fabrication-induced stress has been utilized in 

silicon to enhance the mobility of CMOS devices [78],[79] and might have potential 

application to silicon carbide devices.  

Previous characterization of stress response of CMOS devices on silicon have 

assumed that the transistors are operating in strong inversion where the normalized current 

change (∆ID/ID) is dominated by mobility variations. Recently, Jaeger et al. has presented 

large changes in ∆ID/ID  as transistor approaches moderate inversion and below and 

concluded that the change of threshold voltage due to stress must be considered in the 

subthreshold case [45].  

In this work, stress dependent properties and modeling of lateral enhancement-

mode NMOS FETs on 4H-SiC are described for a wide range of bias conditions. In addition 

to the expected mobility components, the piezoresistive response of the FETs is shown to 
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have a strong threshold voltage component. The design of a four-element NMOS stress 

sensor rosette is also discussed.  

4.2 Review of MOSFET Characteristics 

Fig. 4.1 depicts a schematic of a n-channel enhancement-type MOSFET where S is 

the source, D is the drain, G is the gate, and B is the substrate of the transistor. A gate 

terminal is separated by a thin insulator (Gate Oxide) from the substrate, and the potential 

on the gate terminal controls the surface potential (ψs) of the substrate and the conducting 

status of the device channel. For this NMOS FET, the source is the relative low potential 

terminal where carriers, or electrons, come from, and the carriers then go to the other 

terminal (drain) which has higher potential. When the potential applied to the gate is lower 

than the threshold voltage (VTN), the MOSFET is commonly assumed to be “turned off”. 

However, this is not the case in reality. In Fig. 4.1, it can be seen that, near the surface of 

the NMOS transistor structure, the n+ source, p substrate and n+ drain form an npn bipolar 

transistor. Below threshold, electrons still enter the p-region from the source and then 

diffuse to the drain, just as in a BJT.  
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Figure 4.1: MOS FET Structure 

Assuming source and substrate are grounded, Eq. 4.1 depicts the relationship between the 

electron concentration at the surface and the surface potential [80]. 
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Here nsurface is the electron concentration at the surface (under the insulator), NA is the 

acceptor concentration of the p type substrate, ψs is the surface potential, ϕF is the fermi 

potential of the substrate, and VT is the thermal voltage. Eq. 4.1 is plotted in Fig. 4.2 where 

we can observe that the inversion layer forms at ψs = ϕF, so the nsurface becomes equal to 
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the intrinsic concentration. With the increment of ψs  above ϕF , nsurface increases 

significantly. At ψs = 2ϕF, the electron concentration near the surface equals the doping 

concentration in p substrate.  

 

Figure 4.2: Electron Concentration at the Surface vs. Surface Potential. Axes are Linear. 

The working region of the device can be defined in terms of surface potential ψs: 

 

s F

F s F

F s F T

F T s

Depletion :                         

Weak inversion:                2

Moderate inversion:          2 2 6V

Strong inversion:              2 6V

  

    

     +

 +  

 (4.2) 

The gate-source voltage can be expressed as a function of surface potential: 
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where VFB is the flat band voltage, 𝛾 is the body effect coefficient. Since VFB, 𝛾, ϕF, and 

ϕt do not change with applied voltage, the surface potential increases with gate-source 

nsurface

Depletion Inversion
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voltage. The gate voltage VGS for each working region can be readily obtained by 

substituting the surface potentials in Eq. 4.2 to Eq. 4.3.  

The drain current versus gate-source voltage is plotted in Fig. 4.3 and the "region of 

constant slope" can be modeled according to bipolar transistor: 

 

GS TN

T

V V
( )

nV
D D0

2
D0 T

I I e

I 2nV Kn

−

=

=
 (4.4) 

where VT is the thermal voltage (kT/q ≈ 26mV at room temperature), and Kn is the 

transconductance parameter. The value of n depends on the relative magnitude of fixed 

oxide capacitance and the voltage dependent depletion-layer capacitance, and its value 

typically ranges between 1 and 2.  

 

Figure 4.3: Subthreshold Conduction in an NMOS Transistor with VTN = 0.8V. Reprinted 

from [81]. 
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At very low gate-source voltages, the drain current is very small due to drain-bulk diode 

leakage. And as the VGS increases, the device gets to weak and moderate inversion region, 

and the drain current increases exponentially for values of VGS less than VTN. Once the 

strong inversion is achieved, the MOSFET is “turned on” (VGS>VTN). 

For an FET operating in the strong inversion, two distinct regions of operation can 

be identified on its output characteristics, namely, the linear and the saturation regions. The 

behavior in the linear and the saturation regions are described by the follow relationships: 

Linear region (when VGS> VTN, and VDS< VGS-VTN): 

 

ox DS
D n GS TN DS

DS
n GS TN DS
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n n ox n n
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 
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 (4.5) 

Saturation region (when VGS> VTN, and VDS≥ VGS-VTN): 

 ( ) ( )
2ox

D n GS TN n DS

C W
I V V 1 V

2L


=  − +  (4.6) 

where µn is the mobility of the carriers in the channel, Cox
′′  is the capacitance per unit area 

of the gate oxide, W and L are the width and length of the channel respectively.kn
′  and kn 

are called transconductance parameters. λn  is the channel-length modulation parameter. 

An example of two regions is plotted below. 
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Figure 4.4: Typical Set of Output Characteristics for an n-channel Enhancement Type 

FET. 

4.3 Piezoresistive Theory of FETs 

The piezoresistive theory of MOSFET was developed by Mikoshiba [82]. The 

relationship governing the behavior of FETs in the linear region is 
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 (4.7) 

Where QC is the carrier charge density in the channel region. When a uniaxial stress is 

applied, the relative drain current change due to the stress can be expressed  
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Where the unstressed value of the respective quantities appears in the denominator. As 

mentioned in previous chapter, for semiconductor materials, the piezoresistive coefficients 

that characterize the stress induced changes in carrier mobility are typically an order or two 

larger in magnitude than the coefficients that quantify the stress induced by dimensional 

changes. Thus, the dimensional changes are neglected in Eq. 4.8 and yielding  

 
CD

D C

QI

I Q

 
= +


 (4.9) 

For silicon, the second term ΔQC/QC0 changes with surface potential and becomes small 

and negligible for strong inversion. For weak and moderate inversion, it can't be neglected 

because its value is similar to the mobility term [41].  

Similar results can be obtained by using the drain current equations (Eq. 4.5), and Eq. 4.10 

shows the normalized drain current change due to mechanical stress. The applied stresses 

not only change the mobility but also alter semiconductor band gap, due to the different 

shift of conduction and valence band by stress, which leads to a shift of the intrinsic Fermi 

level or intrinsic carrier concentration, and to a threshold voltage shift [83]. Therefore, the 

current change is considered as a function of mobility and threshold variations (ID =

f(μ, VTN)).  



72 
 

 

D D
D TN

TN

D D m
TN TN

D D TN D

m

DSD Strong Inversion
GS TN

I I
I V

V

I I g1
V V

I I V I

g 1

VI
V V

2

 
 =  + 

 

  
= +  = − 

  

=

− −

 (4.10) 

In Eq. 4.10, the threshold variations are multiplied by the normalized transconductance of 

the transistor that is relatively small at large gate drive but grows rapidly as exits strong 

inversion. Note that in a group of transistors as in a sensor rosette for example, the ΔVTN is 

common to all devices for a given stress, whereas the mobility terms are dependent upon 

the orientations of the channel. The normalized transconductance gm/ID  plays an 

important role in amplifying the overall contribution of the threshold term, particularly at 

low gate drive. The value of gm/ID for subthreshold region can be obtained by using Eq. 

4.4: 

 
m D

D D GS TWeak Inversion

g I1 1 q

I I V nV nkT


= = =


 (4.11) 

Now, expressions for the stress dependence of mobility and threshold voltage can be 

developed as follows. 

A. NMOS mobility model  

Mobility variations due to stress in the wafer coordinate system for 4H-SiC are 

expressed in terms of piezoresistive coefficients of FETs in Eq. 3.5. For MOSFETs, the 

piezoresistive coefficients are represented by Π′s instead of π′s [41]. 
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 (4.12) 

where ϕ represents the direction of current relative to the 𝑥1
′  direction as shown in Fig. 3.3.  

B. Threshold Voltage Model 

As mentioned above, the threshold voltage changes due to the intrinsic carrier 

concentration variations ( Δni ). Prior research [84]-[87] demonstrated that ΔVTN  is 

proportional to Δni
2/ni

2 which is a quadratic function of stress. Thus, the overall threshold 

voltage change can be written: 

 
2

TN 1 2V k k = +   (4.13) 

where k1 and k2 depend upon the direction of stress and the semiconductor materials. 

Substitution of Eq. 4.13 in Eq. 4.10 predicts the presence of both first- and second-order 

piezoresistive coefficients.  

4.4 Four-Element Sensor Rosette 

The resistive rosette is relatively large and not optimal for use in measuring stresses 

in critical areas, whereas FETs can be made very small and offer higher stress sensitivity 

than the heavily-doped resistors. In order to make quality stress measurements, it is best to 

use differential measurements to eliminate the ΔT and ΔVTN. Similar to resistive rosettes, 

typical FET sensor rosettes consist of two or more FETs aligned at various angles relative 

to the primed axes as indicated in Fig. 4.5.  
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Figure 4.5: NMOS Drain Current Orientations in a Four-Element Rosette 

Drain current change equations are found by expanding Eq. 4.12 for angles of 0, 

90, +45 -45 degrees (The higher order temperature terms are ignored).  
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 (4.14) 

The temperature compensated measurements are made by subtracting the normalized drain 

current terms of pairs of orthogonal transistors as demonstrated in Eq. 4.15.  

Gate 

Drain Source 

D0I

D 45I +
D 45I −

D90I
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D45 D 45
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2

I I

−

−

 
 − = −  −

 
− = −  

 (4.15) 

Like the resistive rosettes, two compensated quantities, the normal stress difference and 

shear stress can be extracted, and a free surface is not required because the out-of-place 

normal stress terms cancel out. For the specific case of a free top surface, careful control 

of temperature, and ∆VTN correction, the two individual normal stresses can be measured 

by combining the sum terms in Eq. 4.16 with Eq. 4.15. 

 

D0 D90 m
S 11 22 TN 1
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D45 D 45 m
S 11 22 TN 1

D45 D 45 D

I I g
( ) 2 V 2 T

I I I

I I g
( ) 2 V 2 T

I I I

−

−

 
 + = −  + −  +  

 
 + = −  + −  +  

 (4.16) 

 

For strong inversion case, the stress induced threshold voltage variations are negligible and 

the drain current change is mainly due to the mobility change, thus, Eq. 3.30 to 3.32 are 

also valid if the (gm ID⁄ )∆VTN terms are removed and the same stress components can be 

measured.  

4.5 Experimental Method 

Fig. 4.6 displays the layout of 10/1 lateral NMOS test devices utilized in this work 

where the x1
,
 and x2

,
 directions correspond to applied longitudinal and transverse stresses 

relative to the drain current directed in x1
,
 direction. The four-point bending method (Fig. 

3.8) was used to apply stress and the NMOS devices are probed through a hole in top of 
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the fixture. Since the four-point bending method generates uniaxial stress along the beam, 

SiC strips cut along x1
,
 and x2

,
 directions are utilized. Measurements to be presented in this 

work are made in the linear operation of the transistor with a drain-source voltage of 50 -

100mV. All measurements utilized an Agilent Semiconductor Parameter Analyzer  

 

Figure 4.6: Layout of the 10/1 Lateral NMOS Transistor 

4.6 Experimental Results 

4.6.1 NMOS Device Characteristics 

SiC MOSFETs are well known to have large trap densities at the SiC/SiO2 interface 

[88],[89]. Changes in the charge state of these interface traps affect the threshold voltage 

of the transistor, and the additional capacitance alters the relationship between gate voltage 

and surface potential. Fig. 4.7 and 4.8 presents examples of the impact of these effects.  

 

ID

Drain Source

Gate
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Figure 4.7: Semi-logarithmic Graph of the Turn-on Characteristic 

 

Figure 4.8: Threshold Voltage versus Gate-source Voltage Extracted from Linear Region 

Measurements with VDS = 100 mV 

 

Fig. 4.7 depicts the turn-on characteristic in which the subthreshold slope never 

reaches a limit as the gate voltage sweeps the surface potential down through the bandgap 
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changing the state of the interface traps. The threshold voltage extracted from linear region 

extrapolation appears in Fig. 4.8 and increases rapidly from less than 1 V to a plateau of 

approximately 9.6 V as the trap levels become saturated for high gate voltage. 

According to the turn-on characteristic, the normalized transconductance from 

direct measurements can be found using Eq .4.17. 

 m D

D D GS

g I1

I I V


=


 (4.17) 

And the theory in Eq. 4.10 gives the following relation  

 m

DSD Strong Inversion
GS TN

g 1

VI
V V

2

=

− −

 (4.18) 

where the VTH changes with VGS as shown in Fig. 4.8. 

Fig. 4.9 shows the comparison of measured results with theory for normalized 

transconductance gm/ID versus gate-source voltage in the linear region of the NMOS 

transistor. 



79 
 

 

Figure 4.9: Comparison of Measurements with Theory for Normalized Transconductance 

4.6.2 NMOS Stress Characterization 

The current changes with applied uniaxial stress and examples of the overall stress-

induced changes in the NMOS transfer characteristic appear in Fig. 4.10 and Fig. 4.11. The 

results exhibit approximately a 1.3% decrease in drain current per 100 MPa increase in 

uniaxial stress corresponding to an overall piezoresistive coefficient of 130 /TPa. 
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Figure 4.10: A Linear Region Turn-on Characteristics for Three Levels of Uniaxial Stress 

(VDS=0.25V) 

 

Figure 4.11: Expansion of the Region Between 15 and 20 Volts. 
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Applying the results from Eq. 4.14, the overall stress response of the individual 

NMOS transistor to uniaxial stress is described by 4.19 in which temperature is assumed 

to be well-controlled. 

 11

22
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11 11 11 11 TN0

D0 D0

0

D0 m
12 22 12 22 TN0

D0 D0

I g
V

I I

I g
V

I I

=

=


 =   = −  − 


 =   = −  − 

 (4.19) 

where Ξij represent the overall piezoresistive coefficients which include both the mobility 

and threshold voltage terms. gm
0 /ID0

0  is the initial unstressed values but remain functions 

of VGS. Based upon Eq. 4.13, the overall piezoresistive coefficients can be written as 

 

0

m
11 11 10

D0

0

m
12 12 10

D0

D 11 12

g
K

I

g
K

I

 = − −

 = − −

 =  −

 (4.20) 

where k1 is treated as fitting parameter (ΔVTN = K1σ). In this work, the second-order term 

(K2σ
2) is not considered since substantial curvature has not been observed in our stress 

characteristics measured at relatively low levels of stress. 

The following figures show the examples of stress dependent results for NMOS 

devices operating in the linear region. Linear region conductance was measured by 

sweeping VDS from 0 to 100 mV. The slope of each curve represents a single value of Ξ12.  
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Figure 4.12: Example of Normalized Change in NMOS Channel Conductance vs. 

Applied Stress at VGS= 2.5 V Yielding Ξ12 = −868 /TPa 

 

Figure 4.13: Example of Normalized Change in NMOS Channel Conductance vs. 

Applied Stress at VGS= 5 V Yielding Ξ12 = −394 /TPa 
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Figure 4.14: Example of Normalized Change in NMOS Channel Conductance vs. 

Applied Stress at VGS= 7.5 V Yielding Ξ12 = −263 /TPa 

 

Figure 4.15: Example of Normalized Change in NMOS Channel Conductance vs. 

Applied Stress at VGS= 10 V Yielding Ξ12 = −201 /TPa 
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Figure 4.16: Example of Normalized Change in NMOS Channel Conductance vs. 

Applied Stress at VGS= 12.5 V Yielding Ξ12 = −169 /TPa 

 

Figure 4.17: Example of Normalized Change in NMOS Channel Conductance vs. 

Applied Stress at VGS= 15 V Yielding Ξ12 = −151 /TPa 
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Figure 4.18: Example of Normalized Change in NMOS Channel Conductance vs. 

Applied Stress at VGS= 17.5 V Yielding Ξ12 = −137 /TPa 

 

Figure 4.19: Example of Normalized Change in NMOS Channel Conductance vs. 

Applied Stress at VGS= 20 V Yielding Ξ12 = −126 /TPa 
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Figure 4.20: Example of Normalized Change in NMOS Channel Conductance vs. 

Applied Stress at VGS= 22.5 V Yielding Ξ12 = −118 /TPa 

 

Figure 4.21: Example of Normalized Change in NMOS Channel Conductance vs. 

Applied Stress at VGS= 25 V Yielding Ξ12 = −112 /TPa 
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Complete measurement results appear in Table 4.1 in which each table element represents 

the average of data sets for 10 individual transistors.  

 

 

Table 4.1: Piezoresistive Coefficient Results 

Fig. 4.22 presents comparisons between graphs of Eq. 4.20 and the result of the 

measurements of the individual NMOS devices. The two lower pairs of curves represent 

Ξ11 and Ξ12, whereas the upper pair of curves are for the difference ΞD. The plot of the 

theory in Fig. 4.22 represents a simultaneous least square fit to the data using measured 

values of gm
0 /ID0

0  for the individual transistor and a single value of K1 for both Ξ11 and Ξ12.  

Piezoresistive Coefficients Results

VGS (V) (1/Tpa)

2.5 -488 -823 335

5 -185 -374 189

7.5 -107 -261 154

10 -66.3 -200 134

12.5 -45.6 -167 121

15 -38.6 -145 106

17.5 -24.8 -132 107

20 -17.4 -123 106

22.5 -11.6 -115 103

25 -11.4 -110 98.6
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Figure 4.22: Comparison Between the Measured Values of First-Order Coefficients and 

the Theory in Eq. 4.20. 

Note the unexpected upturns in Fig. 4.22 for the extracted data for ΞD at low bias voltage, 

whereas the ideal theory is constant. It is caused by the non-zero initial offset current of 

the device pairs. At high gate drive the initial current mismatch is small but grows rapidly 

as (VGS-VTN) decreases, and this effect causes the turn up in the effective value of ΞD. 

 

Table 4.2: Results of a Simultaneous Least Square Fit to Table 4.1 Data  

(/TPa) (/TPa) (/TPa)

-14 98 -112 290
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Overall, the magnitude of the piezoresistive coefficients is not large compared to 

silicon. There is clearly a sensitivity advantage by operating the devices at low gate 

voltages approaching threshold in stress sensor applications, but the increased sensitivity 

comes with a greater sensitivity to operating point variations at low gate drive. Substantial 

improvement can be achieved by implementing NMOS rosettes as a multi-terminal 

inversion layer device [90]-[91], and an eight-terminal inversion layer van der Pauw 

structure should provide a 3.16X improvement in stress sensitivity to both (σ11
, − σ22

, ) and 

σ12
,

. 

4.7 Summary 

This chapter review the piezoresistive effects on NMOS FET devices and 

developed theory for the stress dependence of NMOS transistors on 4H-SiC. The stress 

model for NMOS FETs contains the classic mobility terms plus a new term describing 

changes in threshold voltage. The threshold voltage term is strongly dependent on 

operating point, particularly at low values of gate drive. 

Measurement results were presented for the longitudinal and transverse 

piezoresistive coefficients for 4H-SiC transistors. The developed model agrees closely with 

both sets of measurements.  

In general, the measured piezoresistive coefficients of the various devices are 

relatively small at high gate drives, but can become significant at low gate drives 

approaching moderate inversion and below since the gm/ID term cannot be neglected. 

The coefficients reported are relatively small for large gate drive, so little 

improvement in mobility would be expected with low values of built-in stress. Much higher 
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levels of stress similar to those as used in silicon (i.e. GPa), would probably produce more 

significant changes and would be required to enhance the overall mobilities of silicon 

carbide in a manner similar to that done in silicon [78][79]. 

Similar to resistive sensors, a four-element NMOS stress sensor rosette was 

proposed that can measure two important temperature compensated stress quantities and 

requires only a single value of piezoresistive coefficient ΠD. The transistor sensors can be 

directly implemented with a multi-terminal inversion-layer van der Paus test structure with 

its 3.16 times higher sensitivity. 
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EVALUATION OF IMPACT OF FOUR-DEGREE OFF-AXIS WAFERS ON 4H-

SiC STRESS SENSORS 

5.1 Introduction  

As discussed earlier, the piezoresistive stress sensors have been shown to represent 

a powerful tool for experimental evaluation of the die stress distributions. Successful 

application of these piezoresistive sensors for stress measurement requires both properly 

designed sensors and accurately calibrated values of the piezoresistive coefficients. In the 

past, the analysis and design of stress sensors on silicon carbide have assumed that the 

wafer surface is aligned with the crystallographic axes. However, 4H silicon carbide wafers 

are produced with an off-axis cut to ensure high-quality homoepitaxial growth. Thus, the 

existing “on-axis” theory based on perfect alignment of the device surface with the 

crystallographic axes is an approximation, and modifications are necessary to improve the 

accuracy of the formulation. 

In this work, fundamental aspects for the hexagonal silicon carbide homoepitaxial 

growth are described and the off-axis angle for our sample is determined by electron 

backscattering diffraction analysis (EBSD). The theory and extraction of piezoresistive 

coefficients for 4H-SiC silicon carbide materials in the presence of off-axis starting wafers 

are discussed. It has been found that many of the elements of the ideal on-axis π-matrix are 

zero, while the off-axis π-matrix is filled with non-zero values indicating additional 
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coupling between the sensor resistances and the six stress components. Examples of the 

overall impact of these new terms on calibration are discussed. 

The impact of off-axis wafers on stress measurements depends on the value of 

piezoresistive coefficients and the stress distribution. Accurate calculation of errors 

requires the values for all fundamental piezoresistive coefficients, which are still not 

available in the literatures to date.  

5.2 Epitaxial Growth of SiC  

Epitaxy is a process of growing a crystal on top of another crystal, which is essential 

to produce active layers with designed doping density and thickness. There are several 

epitaxy techniques to deposit films, such as molecular beam epitaxy (MBE), epitaxial 

chemical vapor deposition (CVD), or liquid phase epitaxy (LPE), etc. Early epitaxial 

growth of α-SiC was performed by LPE which produces uniform epilayer thickness and 

impurity doping, but also suffers from polytype mixing. [92],[93]. Nowadays, 

homoepitaxial growth technology by CVD has shown remarkable progress and has become 

standard technology for SiC device development [94]-[96]. Homoepitaxial growth of 6H-

SiC with smooth surface was achieved by using step-flow growth on 2-6° off-axis 6H-SiC. 

In the same manner, high quality homoepitaxial CVD growth of 4H-SiC requires off-axis 

substrates. When the off-axis is introduced, the [0001] axis is tilted several degrees 

(typically 4°) toward [1̅1̅20], as shown in Fig .5.1 [51][97]-[102].  
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Figure 5.1: Off-axis SiC Wafer Cutting Orientation. 

 

Figure 5.2: Schematic Illustration of Growth Modes and Stacking Sequences of SiC Layers 

Grown on (a) on-axis 6H-SiC (0001) and (b) off-axis 6H-SiC (0001). (c) Bond 

Configuration Near an Atomic Step and on the (0001) Terrace. Borrowed from [51]. 

SiC Boule
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In Fig. 5.2 (a), the step density is very low, and the crystal growth may initially 

occur on terraces. This leads to the growth of 3C-SiC, which is stable at low temperature. 

The growing 3C-SiC can take two possible stacking orders of ABCABC and ACBACB. 

On the other hand, on off-axis (0001) surface in Fig. 5.2 (b), the step density is high, and 

the incorporate site (A, B, C) is uniquely determined by bonds form the step, as shown in 

Fig. 5.2 (c).  

Therefore, the CVD growth process usually consists of in-situ etching and main 

epitaxial growth. The purpose of in situ etching is to remove the subsurface damage and to 

obtain regular step structure (Fig.5.2(b)). Immediately after the etching, the main growth 

of SiC is performed.  

5.3 Off-axis Angle Measurement  

In this work, the off-axis angle of our specimen is determined by EBSD analysis, 

which is a common tool to measure crystal orientations. The experimental procedure is 

presented in Fig. 5.3. 

The 4H-SiC sensor chip was carefully cleaned with deionized water and mounted 

on the holder with conductive adhesives. To ensure the measurement accuracy, an “on-

axis” (100) chip is used as a reference sample and placed with an SiC chip side by side. 

The specimen is usually tilted around 70° from the horizontal plane for better EBSD results. 

A scanning electron microscope (ZEISS Crossbeam 550) was utilized in this work, and the 

specimen was placed into the instrument chamber for EBSD analysis. When a focused 

electron beam impinges on the sample, a Kikuchi pattern is formed by diffraction of 

backscattered electrons. The geometry of a Kikuchi is unique for the crystal structure and 
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the crystal lattice orientation under the beam [103]. Once the pattern is extracted, the Eurler 

angles can be determined by commercial EBSD software (Aztec Crystal). 

 

 

Figure 5.3: – Flow Chart of Experimental Procedure (Including ZEISS Crossbeam 550) 

Fig. 5.4 shows a typical result for the reference sample ((100) silicon chip). For 

each crystallographic axis, the off-axis angles caused by inevitable experimental errors are 

EBSD Analysis

Sample Preparation SEM Imaging

EBSD Detector

SEM

o70

Si

SiC
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presented below the miller indices. The average off-axis angle for [001] axis is 0.22°. Thus, 

the experimental errors for EBSD measurement are expected to be around 0.22°. 

 

 

Figure 5.4: Typical EBSD Result for (100) Silicon 

For 4H-SiC, 10 different areas (more than 50 thousand data points) on the die 

surface were probed and the average and standard deviation of the off-axis angle are 4.11° 

and 0.09°, respectively. Thus, this work will discuss the 4 degrees off-axis case.  

5.4 Impact of Off-axis Wafers on Calibration 

Fig. 5.5 shows the coordinate systems for the “on-axis” theory. As discussed in 

Chapter 3, the unprimed coordinate system x1-x2-x3 represents the conventional coordinate 

system which corresponds to the fundamental piezoresistive matrix. The primed coordinate 

system is the wafer coordinate system which is formed by rotating the unprimed 

crystallographic axes 30 degrees about the x3 axis, so that the x1
′  and x2

′  axes are oriented 

 100

 010

 001

( )0.2

( )0.19

( )0.12
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in the directions parallel and perpendicular to the primary wafer flat, while the x3 and x3
′  

axes are coincident and normal to the wafer surface. 

 

 

Figure 5.5: Untilted wafer plane 

For the 4 degrees off-axis wafer, we introduce a new wafer coordinate system x1
∗-

x2
∗ -x3

∗  and the wafer surface is no longer aligned with (0001) plane. In Fig. 5.6, the x1
∗  and 

x2
∗  axes are oriented along the directions parallel and perpendicular to the wafer flat of a 

tilted wafer, whereas the x3
∗  direction is normal to the tilted wafer plane. 

SiC Wafer
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Figure 5.6: Tilted wafer plane 

The x1
∗ − x2

∗ − x3
∗  axes are obtained from the unprimed axes by first rotating about 

the x3 axis through an angle of 30 degrees and then rotating about the x2
′  through an angle 

of 4 degrees. Therefore, piezoresistive matrix of the tilted wafer coordinate system can be 

calculated by performing the coordinate transformation two times: 

 

1
1 1

1*
2 2

T T

T T

−

−

 =               

   =             

 (5.1) 

Where T1 and T2 are the transformation matrix of 30 degrees and 4 degrees rotation, 

respectively. From Chapter 3, we know that [π] = [π′] because (0001) plane is isotropic. 

The direction cosines for 4 degrees rotation are shown in Eq. 5.2. 

 

1 1 1

ij 2 2 2

3 3 3

l m n cos(4 ) 0 cos(86 )

a l m n 0 1 0

l m n cos(94 ) 0 cos(4 )

  
    = =     
     

 (5.2) 

(0001) Plane
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Substitution of Eq. 5.2 into Eq. 3.3 leads to transformation matrix [T2] and the calculated 

piezoresistive coefficients [π∗] in tilted wafer plane are listed in Eq. 5.3. 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
π11

∗

π12
∗

π13
∗

π14
∗

π15
∗

π16
∗

π21
∗

π22
∗

π23
∗

π24
∗

π25
∗

π26
∗

π31
∗

π32
∗

π33
∗

π34
∗

π35
∗

π36
∗

π41
∗

π42
∗

π43
∗

π44
∗

π45
∗

π46
∗

π51
∗

π52
∗

π53
∗

π54
∗

π55
∗

π56
∗

π61
∗

π62
∗

π63
∗

π64
∗

π65
∗

π66
∗ ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.99 0 4.8 × 10−3 4.8 × 10−3 2.4 × 10−5 9.7 × 10−3

0 0.99 0 4.9 × 10−3 0 0
4.8 × 10−3 0 0.99 2.4 × 10−5 4.8 × 10−3 −9.7 × 10−3

−0.14 0 0.14 −6.8 × 10−4 6.8 × 10−4 0.14
0 0 0 0 0 0
0 0 0 0 0 0
0 0.99 4.9 × 10−3 0 0 0
1 0 0 0 0 0
0 4.9 × 10−3 0.99 0 0 0
0 −0.14 0.14 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

4.8 × 10−3 0 2.4 × 10−5 0.99 4.8 × 10−3 −9.6 × 10−3

0 4.9 × 10−3 0 0.99 0 0
2.4 × 10−5 0 4.8 × 10−3 4.8 × 10−3 0.99 9.7 × 10−3

−6.8 × 10−4 0 6.8 × 10−4 −0.14 0.14 −0.14
0 0 0 0 0 0
0 0 0 0 0 0

−6.9 × 10−2 0 −3.3 × 10−4 6.9 × 10−2 3.3 × 10−4 6.9 × 10−2

0 −6.9 × 10−2 0 6.9 × 10−2 0 0
−3.4 × 10−4 0 −6.9 × 10−2 3.4 × 10−4 6.9 × 10−2 −6.9 × 10−2

9.7 × 10−3 0 −9.6 × 10−3 −9.6 × 10−3 9.6 × 10−3 0.98
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

4.9 × 10−3 −4.9 × 10−3 0 0 0 0.99
−7.0 × 10−2 7.0 × 10−2 0 0 0 7.0 × 10−2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−7.0 × 10−2 7.0 × 10−2 0 0 0 7.0 × 10−2

0.99 −0.99 0 0 0 4.9 × 10−3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
π11

π12

π13

π31

π33

π44]
 
 
 
 
 

 

           (5.3) 

 

Comparing the π-matrix in the untilted (Eq. 3.1) and tilted cases (Eq. 5.3), it can be 

observed that many of the elements of the ideal on-axis π-matrix are zero, whereas in the 
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off-axis version all the original matrix elements are modified and a number of additional 

elements are no longer zero.  

In Chapter 3, we calibrated the fundamental piezoresistive coefficients π11 and π12 

with both resistor and VDP sensors, and π13 with only VDP sensors. Here, we discuss the 

impact of 4 degrees off-axis wafer on our calibration. 

For resistor sensors, the fundamental piezoresistive coefficients are extracted 

readily using uniaxial stress according to the “on-axis” theory (Eq. 3.19): 

 


=  


=  

1
11 11

1

2
12 11

2

R

R

R

R

 (5.4) 

Since the devices are fabricated on the off-axis wafer plane, the πij we calibrated 

are the apparent values. Substitution of π11
∗  and π12

∗  into Eq. 5.4 yields: 

 

( )

( )

( )

*1
11 11 11 11apparent

1

3

11 13 31

11 5 3

33 44 Actual

*2
12 11 12 11apparent

2

3

11 12 12 13
Actual

R

R

0.99 4.8 10 ( )

2.4 10 9.7 10

R

R

0.005 4.9 10

−

− −

−


 =   =  

  +   + 
=   
 +   +   


 =   =  

=   −  +  

 (5.5) 
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Therefore,  

 

( )

( ) ( )

3

11 13 31

11 Apparent 5 3

33 44 Actual

3

12 12 12 13Apparent Actual

0.99 4.8 10 ( )

2.4 10 9.7 10

0.005 4.9 10

−

− −

−

  +   + 
 =  

 +   +   

 =  −  +  

 (5.6) 

In the above equation, the piezoresistive coefficient that we intend to extract from the 

calibration are defined as apparent coefficient which is expressed as a function of actual 

piezoresistive coefficients. The difference between the apparent and actual values are the 

errors induced by the off-axis wafer.  

 

( ) ( ) ( )

( ) ( ) ( )

( )

11 11 11Error Apparent Actual

3

11 13 31

5 3

33 44 Actual

12 12 12Error Apparent Actual

3

12 13
Actual

0.01 4.8 10 ( )

2.4 10 9.7 10

0.005 4.9 10

−

− −

−

 =  − 

 −  +   + 
=  
 +   +   

 =  − 

+ −  +  

 (5.7) 

For VDP sensors, the fundamental piezoresistive coefficients are calculated based 

on sum and difference between R0 and R90. Based on the “on-axis” theory, we have 

 

( )

( )

0 90

11 12 11

0 90

0 90

11 12 11

0 90

R R
3.157

R R

R R

R R

 
− =  −  

 
+ =  +  

 (5.8) 

Similarly, the piezoresistive coefficients we extracted from the experiment are the apparent 

values.  
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( )

( )

0 90 0 90

*0 90 0 90
11 11 11 11Apparent

0 90 0 90

*0 90 0 90
12 11 12 11Apparent

R R R R
( ) 3.157( )

R R R R

6.314

R R R R
3.157( ) ( )

R R R R

6.314

   
− + +

 =   =  

   
+ − −

 =   =  


 (5.9) 

Substitution of π11
∗  and π12

∗  into Eq. 5.9 leads to 

 

( ) ( ) ( )

( ) ( ) ( )

( )

11 11 11Error Apparent Actual

3

11 13 31

5 3

33 44 Actual

12 12 12Error Apparent Actual

3

12 13
Actual

0.01 4.8 10 ( )

2.4 10 9.7 10

0.005 4.9 10

−

− −

−

 =  − 

 −  +   + 
=  
 +   +   

 =  − 

+ −  +  

 (5.10) 

Likewise, the impact of the tilted wafer plane on hydrostatic calibration can be evaluated. 

When the triaxial stress (-p) is applied to the VDP, the normalized resistance change is  

 
0

11 12 13

0

R
p( )

R


= −  +  +   (5.11) 

For the tilted wafer plane,  

 ( ) ( )0

13 11 12Apparent Apparent
0 off axis

R1

p R
−

 
 = − −  + 

 
 (5.12) 

Thus, 

 

( ) ( ) ( )13 13 13Error Apparent Actual

3 5

11 13 31

3 3

33 44 Actual

4.8 10 0.005 2.4 10

4.8 10 9.7 10

− −

− −

 =  − 

   −  +  
=  
 +   −   

 (5.13) 
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It can be seen that the errors induced by off-axis wafer are highly dependent on the 

piezoresistive coefficient values. If all the piezoresistive coefficients are in the same size, 

the difference between apparent and actual values should be negligible as the coefficients 

of all additional terms are pretty small. Comparing Eq. 5.7 and Eq. 5.10, the off-axis wafers 

have the exactly same impact on resistor rosettes and VDP device during the calibration, 

even though the VDP sensors provides a more than three times higher sensitivity than 

resistor rosettes. 

5.5 Impact of Off-axis Wafers on Measurements 

The tilted wafer plane can also affect the accuracy of the stress measurement. Based 

upon Eq. 5.3, the tilted case indicates additional coupling, particularly from the shear 

stresses and more fundamental piezoresistive coefficients will be involved in resistance 

change equations. Take four-element resistor rosettes (Fig. 3.4) as an example, the 

normalized resistance change of the “off-axis” resistive sensors can be calculated by 

expanding Eq. 3.5: 


     =   +   +   +   +   +   + 


     =   +   +   +   +   +   + 


 =  +  +   +  +  +   +  +  + 

* * * * * *1
11 11 12 22 13 33 14 13 15 23 16 12

1

* * * * * *2
21 11 22 22 23 33 24 13 25 23 26 12

2

* * * * * * * *3
11 21 61 11 12 22 62 22 13 23 63

3

R
T

R

R
T

R

R 1 1 1 1 1 1
( ) ( ) (

R 2 2 2 2 2 2


  +  +  +   +  +  +   +  +  +   + 


  =  +  −   +  +  −   +  +  −  

+  +  −   +  +

*

33

* * * * * * * * *

14 24 64 13 15 25 65 23 16 26 66 12

* * * * * * * * *4
11 21 61 11 12 22 62 22 13 23 63 33

4

* * * *

14 24 64 13 15

)

1 1 1 1 1 1
( ) ( ) ( ) T
2 2 2 2 2 2

R 1 1 1 1 1 1
( ) ( ) ( )

R 2 2 2 2 2 2

1 1 1 1
( ) (
2 2 2

  −   +  +  −   + * * * * *

25 65 23 16 26 66 12

1 1
) ( ) T

2 2 2

 (5.14) 
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Eq. 5.15 compares the normalized resistance change of “on-axis” and “off-axis” 

resistive sensors. It can be seen that the stress sensors fabricated on the tilted wafer plane 

are sensitive to more stress components, especially the shear stresses. The resistors R1 and 

R2 are sensitive to out-of-plane shear stress σ′13 and R3 and R4 are sensitive to all shear 

stress components. As shown in Eq. 5.16, the normalized resistance change equations for 

off-axis case can be rewritten as the sum of the on-axis terms and additional correction 

terms which are generated by the tilted wafer plane. For the untilted case, only π11 and π12 

are required to measure the normal stress difference (σ′11 − σ′22) and shear stress σ′12 as 

other terms can be cancelled by combining the resistor changes. In contrast for the tilted 

case, all six fundamental piezoresistive coefficients are present and can’t be cancelled. 

Additionally, the magnitudes of errors are not only dependent on the values of 

piezoresistive coefficients but also on the stress distributions. It is possible to evaluate the 

measurement errors induced by the tilted wafer plane with finite element method if all 

fundamental piezoresistive coefficients are known. For 4H-SiC, not all fundamental 

piezoresistive coefficients are measured and available in literatures. But even so, we can 

still roughly estimate the errors from the resistance change equations.  
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 (5.16) 

In Eq. 5.16, The coefficients of correction terms are very small except the red ones for the 

shear stress components σ′13 and σ′23. Considering the in-plane piezoresistive coefficients 

π11 and π12 have similar magnitude and opposite sign, the red correction terms are mainly 

determined by the value of π44  and the shear stress level. In most high-temperature 

electronic packages (hermetically sealed ceramic packages for example), the top surface of 

the chip is the free surface which means all out-of-plane stress components are zero and 

the overall magnitude of the error terms are expected to be relatively small. However, the 

overall accuracy of measurements is dependent on the piezoresistive coefficient values 

(doping dependent) and stress distributions which depends on packing technique and 

operation environment. Even though piezoresistive coefficients π31, π33 and π44 are not 

required for stress measurements, it is still worth to explore their values in order to 

more accurately evaluate the off-axis wafer induced errors.  
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5.5 Summary 

In this chapter, errors in piezoresistive coefficients caused by a 4° off-axis wafer 

plane has been discussed. We developed expressions and compared the piezoresistive 

coefficients changes introduced by tilted wafer plane. Calibration errors for resistive rosette 

and VDP device were discussed. Calibration errors for resistor rosette and van der Pauw 

device were discussed. It has been found that even if the VDP sensors can provide more 

than three times sensitivity to the (σ′11 − σ′
12) and σ′12 stress terms than resistive rosette, 

the error values are exactly same for both sensors during the calibration. piezoresistive 

coefficient changes introduced by tilted wafer plane. The resistance change equations for 

a four-element rosette on the tilted wafer plane are developed. It has been demonstrated 

that the accuracy of the measurement is strongly dependent on the piezoresistive coefficient 

values (doping dependent) and stress distributions in the SiC die. The coefficients of 

additional correction terms are relatively small which makes the measurement errors tend 

to be small as well. If the five fundamental piezoresistive coefficients are in the same size, 

the errors induced by tilted wafer plane would not be significant to stress measurement and 

calibration. More accurate error evaluation requires values for all fundamental 

piezoresistive coefficients. 

 

 



108 
 

  

EVALUATION OF IMPACT OF FOUR-DEGREE OFF-AXIS WAFERS ON 

SILICON STRESS SENSORS 

6.1 Introduction 

Not only 4H-SiC but also silicon wafers are produced by cutting an on-axis crystal 

at an appropriate angle [104]-[106]. Since silicon wafers do not have the polytype mixing 

issue, the major reason is that high quality III-V semiconductor materials can be directly 

grown on the off-axis wafers. Therefore, the III-V devices can be integrated on silicon 

substrate and it would tremendously increase the functionality of the chip [107]-[110]. 

Silicon wafers with misorientation angle of 4 to 6 degrees are mostly used to reduce the 

mismatch between silicon and III-V lattices.  

This section will discuss the theory and review the coordinate transformation for 

the piezoresistive coefficients of silicon. The piezoresistive coefficients for the 4 degrees 

off-axis wafer plane are evaluated and compared with the on-axis case. Since all 

piezoresistive coefficients of silicon are known, a case study is conducted to evaluate the 

error values by using the finite element simulation. 

 

6.2 Review of Basic Equations 

(a) (100) Silicon 

As depicted in Fig. 6.1, the surface of the wafer is a (100) plane, and the unprimed 

axes are the crystallographic axes of the silicon. It is more convenient to work in a chip 
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coordinate system, thus, an off-axis primed wafer coordinate system was defined where 

the x′2 and x′1 axes are parallel and perpendicular to the primary wafer flat [29]. 

 

Figure 6.1: Wafer Coordinate System on the (001) Silicon 

Eq. 6.1 is the piezoresistive coefficient matrix in an unprimed crystallographic 

coordinate system. To work in a wafer coordinate system, the 36 off-axis piezoresistive 

coefficients must be evaluated using coordinate transformation. For (100) silicon, the 

primed wafer coordinate system is 45° from the principal crystallographic axes as shown 

in Fig. 6.1, and the corresponding direction cosines are shown in Eq. 6.2. Since silicon has 

cubic crystal structure, based upon crystal symmetry, it only has 3 independent 

piezoresistive coefficients as shown in Eq. 6.1. From Eq. 6.1 and Eq. 6.2, the piezoresistive 

coefficients in the wafer coordinate system can be obtained, and substitution of these off-
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axis coefficients into Eq. 3.5 yields Eq. 6.3 which can be used to evaluate normalized 

resistance change in any in-plane directions. 

 

11 12 12

12 11 12
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44
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 
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 (6.1) 
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   
 
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    

 +  +  −  +

 (6.3) 

where ϕ is the angle between the x′1 axis and the resistor orientation. 

(b) (111) Silicon 

Fig. 6.2 shows a general (111) silicon wafer. The surface of the wafer is a (111) plane, 

and the [111] direction is normal to the wafer plane. The principal crystallographic axes 

are not indicated as they no longer lie in the wafer plane. The off-axis primed wafer 
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coordinate system is defined in a manner similar to (100) silicon. The underlying 

piezoresistive coefficients in Eq. 6.1 are still valid for (111) silicon and the piezoresistive 

coefficients in the primed wafer coordinate system can be evaluated by using the same 

coordinate transformation method but with different direction cosines. In this case, the 

appropriate direction cosines for the primed coordinate directions with respect to unprimed 

coordinate directions are shown in Eq. 6.4. Substitution of the piezoresistive coefficients 

into Eq. 3.5 yields Eq. 6.5 [29]. 
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 (6.5) 

where ϕ is the angle between the x′1 axis and the resistor orientation. B1, B2 and B3 are 

combined piezoresistive parameters as shown in Eq. 6.6. 
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For both (001) and (111) silicon, the piezoresistive coefficients in wafer coordinate system 

(Untilted wafer plane) appear in Fig. 6.7. 

 

Figure 6.2: Wafer Coordinate System on the (111) Silicon 

6.3 Off-axis Wafer Plane Errors 

In the above analyses, the wafer surface was assumed to be perfectly aligned with 

the crystallographic axes, whereas it is often tilted several degrees from its intended 
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orientation. Thus, errors will be present in the utilized theoretical equations. In this study, 

the four-degree off-axis wafers are discussed. 

(a) (100) Silicon 

For (100) silicon, the untilted and tilted wafer planes are shown in Fig. 6.3 and Fig. 6.4. In 

Fig. 6.3, the primed wafer coordinate system is formed by rotating the unprimed 

crystallographic axes 45 degrees about the x3 axis, so that the x′1 and x′2 axes are oriented 

in the directions parallel and perpendicular to the primary wafer flat, while the x′3 and x3 

axes are coincident and normal to the wafer surface. Fig. 6.2 offers the 2D view of primed 

and unprimed coordinate systems. 

In the tilted wafer plane (Fig. 6.4), the x1
∗  and x2

∗  axes are oriented along the directions 

parallel and perpendicular to the wafer flat of a tilted wafer, whereas the x3
∗  direction is 

normal to the tilted wafer plane. The x1
∗ − x2

∗ − x3
∗  axes are obtained from the unprimed 

axes by first rotating about the x3 axis through an angle of 45 degrees and then rotating 

about the x′2 through an angle of 4 degrees. Therefore, the piezoresistive coefficients in 

tilted wafer coordinate system (x1
∗ − x2

∗ − x3
∗) can be evaluated using transformation with 

respect to π'-matrix and the appropriate direction cosines: 

 

1 1 1

ij 2 2 2

3 3 3

l m n cos(4 ) 0 cos(86 )

a l m n 0 1 0

l m n cos(94 ) 0 cos(4 )

  
    = =     
     

 (6.7) 
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Substitution of Eq. 6.4 and Eq. 6.7 into Eq. 3.3 leads to the transformation matrices 

[T] and [T*]. The piezoresistive coefficients in the tilted wafer plane [π*] can be expressed 

using: 

 

 

   

1
* * *

11* *

T T

T T T T

−

−−

      =      

   =    

 (6.8) 

 

 

Figure 6.3: Untilted Wafer Plane for (100) Silicon 

Si Wafer

(100) Plane
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Figure 6.4: Tilted Wafer Plane for (100) Silicon 

(b) (111) Silicon 

Fig. 6.5 and Fig. 6.6 display the untilted and tilted wafer planes. The unprimed 

crystallographic axes and primed wafer coordinate system are shown in Fig. 6.5. Again, 

the tilted wafer coordinate system is obtained from the primed axes by rotating x′2 axis 

through an angle of 4 degrees. In this case, the piezoresisitive coefficients in the tilted wafer 

coordinate system ([π*]-matrix) can be calculated by substituting the [π']-matrix for (111) 

silicon into Eq. 6.8, and the direction cosines for the untilted and tilted wafer coordinate 

system are in Eq. 6.7. For both (100) and (111), the calculated piezoresistive coefficients 

matrices for tilted and untilted wafer planes appear in Fig. 6.7.  

(100) Plane

Off-Orientation Wafer
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Comparing the π matrix in the untilted and tilted cases in Fig. 6.7 for the (100) case, 

it can be observed that many of the elements of the ideal on-axis -matrices are zero, whereas 

in the off-axis version all the original matrix elements are modified and a number of 

additional elements are no longer zero. For the (111) case, all of the original coefficients 

are changed and there are no longer any zero valued elements. The tilted cases both indicate 

additional coupling, particularly from shear stresses.  

For these non-zero on-axis [π'] elements, the corresponding elements in [π*] matrix 

have more fundamental piezoresistive coefficients πij involved. It is hard to evaluate the 

impact of off-axis wafer by comparing the coefficients in [π'] and [π*] directly as the 

difference of each element would be highly dependent on the individual values of 

fundamental piezoresistive coefficients πij. For example, πD = π11 − π12 is large for n-

type material whereas π44 is large for p-type silicon. Thus, a case study on plastic ball grid 

array (PBGA) package is conducted to better illustrate the impact of the off-axis wafer on 

stress measurements. 
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Figure 6.5: Untilted Wafer Plane for (111) Silicon 

 

Figure 6.6: Tilted Wafer Plane for (111) Silicon 

Si Wafer

(111) Plane

(111) Plane

Off-Orientation Wafer
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Figure 6.7: Piezoresistive Coefficients Matrices for Untilted and Tilted wafer plane. 
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6.4 A Case Study on Four-element Rosette on (100) Silicon 

A four-element dual-polarity sensor rosette on (100) is shown in Fig. 6.8. The 

rosette contains a 0-90° p-type resistor pair and a ±45° n-type resistor pair. This choice of 

sensor orientations minimized thermally induced errors as well as those due to resistor 

misalignment relative to the true compensated measurement of the value of the in-plane 

normal stress difference (σ′11 − σ′22) and the in-plane shear stress σ′12 [111]. 

 

 

Figure 6.8: Four-Element Rosette on (100) Silicon 
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For untilted case, the application of Eq. 6.3 gives the following relations between 

the resistance changes and the stresses at the rosette site: 

 

p p p p p p
p p1 11 12 44 11 12 44
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 (6.9) 

Where superscripts n and p are used to denote the piezoresistive coefficients of the n-type 

and p-type resistors, respectively. Direct combination of the expressions in Eq. 6.9 also 

leads to the following two temperature compensated resistance stress expressions: 

 

1 2
11 22 p

44 1 2

3 4
12 n

D 3 4

R R1
[ ]

R R

R R1
[ ]

2 R R

 
  − = −



 
 = −



 (6.10) 

The piezoresistive coefficients needed to solve for the stress components can be measured 

using a combination of uniaxial and hydrostatic pressure calibration testing. The choice of 

the n-and p-type material for the four resistors is based upon the values of 𝜋44
𝑝

 and 𝜋𝐷
𝑛 in 

Table 6.1.  
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Table 6.1: Typical Piezoresistive Coefficient Values for Lightly Doped Silicon (TPa)-1 

Application of [π*] to the Eq. 3.5 gives the normalized resistance changes in the 

tilted wafer plane. Eq. 6.11 shows the normalized resistance change equations for both 

untilted (on-axis) and tilted (off-axis) cases and classic fundamental piezoresistive 

coefficient values (Table 6.1) at room temperature [24] are used.  
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The combination of the expressions in Eq. 6.11 leads to the following resistance-

stress expressions. 

 

( ) ( )

( ) ( )
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11 22
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1 2
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 (6.12) 

As shown above, for the untilted case, stress components (σ′11 − σ′22) and σ′12 

can be extracted readily in temperature compensated mode if the resistance changes are 

measured. On the other hand, for the tilted case, these stress components can’t be extracted 

directly in the presence of the shear stresses. In order to evaluate the error induced by tilted 

wafer plane, the difference between apparent and actual stress are calculated and discussed. 

Take (σ′11 − σ′22) as an example, the measured resistance change was assumed to be 

1381(σ′11 − σ′22) which is defined as the apparent stress. In fact, the measured resistance 

changes are affected by more stress components as shown in Eq. 6.13 in which apparent 

(untilted case) and actual stresses (tilted case) are compared. 
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 (6.13) 
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Based upon Eq. 6.13, the relationship between apparent and actual stresses can be found in 

Eq. 6.14 and the measurement errors can be expressed using actual stresses as shown in 

Eq. 6.15.  

 ( )
( ) ( )( )11 22 11 22 33 13 actual

11 22 apparent

1381 3 6 2

1381

      − +  + −  − 
  − =  (6.14) 
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 (6.15) 

Similarly, the measurement error for (σ′12) can be defined 
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14 196
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=

−

 (6.16) 

It can be observed that the measurement error values can be defined using actual stresses 

and highly dependent on the actual stress distributions. Also, it can be predicted that errors 

should not be significant from equations above. In Eq. 6.15, the coefficients of each stress 

component is very small so that the value of error tends to be small compared with (σ′11 −

σ′22). In Eq. 6.16, even though the coefficient of σ′23 is relatively big, σ′23 is usually lower 

than σ′12  which also generates small errors. To verify our predictions, simulation is 

performed to further explore the measurement errors induced by tilted wafer. 
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Figure 6.9: Plastic Ball Grid Array Package Model 

In Fig. 6.9, a meshed quarter model of plastic ball grid array package is constructed 

including mold compound, die, die attach, and BT substrate. The material properties are 

all considered to be linear elastic and isotropic as shown in Table 6.2. Ansys® was used to 

obtain the stress distribution over the surface of the die resulting from cooling the die from 

its assumed stress-free state at 155℃ to the room temperature of 25℃. The finite element 

stress predictions can be combined with the error estimation formulas to generate plots of 

the errors over the die surface. 
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Table 6.2: Material Properties 

The resulting stress distributions of (σ′11 − σ′22) and σ′12 over the die surface are shown 

in Fig. 6.10 and Fig. 6.11 and the errors for these stresses are also plotted as shown in Fig. 

6.12 and Fig. 6.13. 

 

Figure 6.10: Simulated Stress Distribution of (σ′11 − σ′22) 

E(GPa) CTE(

Chip

Mold Compound 33.5 0.25

BT substrate 17.9 0.39

Die Attach 6.7 0.35
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Figure 6.11: Simulated Stress Distribution of σ′12 

 

Figure 6.12: Calculated Errors Plot for (σ′11 − σ′22) Using Eq. 6.15 
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Figure 6.13: Calculated Errors Plot for σ′12 Using Eq. 6.16 

In Fig. 6.10 and Fig.6 11, we can observe that values of (σ′11 − σ′22) and σ′12 range 

from around -130MPa to 130MPa. In contrast, the maximum error values for (σ′11 − σ′22) 

and σ′12 are 1.3MPa and 3.8MPa, respectively, so errors induced by tilted wafer plane are 

not significant. It is worth noting that the simulation in this study is just one example, and 

the piezoresistive coefficients are dependent upon the doping level which leads to different 

errors. 

6.5 Summary and Conclusion 

This chapter discussed methods to evaluate the impact of off-axis wafer planes on 

stress sensors fabricated on (100) and (111) silicon. The work reviewed coordinate 

transformations for the piezoresistive coefficients, and then developed expressions and 
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compared the piezoresistive coefficient changes introduced by a 4° off-axis tilt of the wafer 

plane. We found that many zero elements in ideal on-axis [π'] become non-zero for the off-

axis case indicating additional coupling, particularly from shear stresses. For many non-

zero elements in on-axis [π'], the corresponding elements in off-axis [π*] have more 

fundamental piezoresistive coefficients involved. 

To better illustrate the impact of off-axis wafer planes, error equations for a four-

element rosette were developed using typical piezoresistive coefficients. Stress simulation 

results were utilized to estimate stress extraction errors for an example of a die encapsulated 

in a PBGA for (100) silicon. The magnitude and importance of the error terms will be a 

strong function of the (doping dependent) piezoresistive coefficient values and the stress 

distributions in the silicon die. Thus, significant differences should be expected among the 

wide range of packaging technologies utilized by the semiconductor industry. 
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STRESS-STRAIN RELATIONS OF 4H-SIC 

7.1 Introduction  

The elastic modulus and Poisson's ratio are the key parameters for design and 

application of semiconductor sensors. For example, once stress distribution of the chip is 

measured with piezoresistive stress sensors and the strain distribution can be evaluated 

from the stresses according to elastic constants. In the field of MEMS, the elastic properties 

are required to predict the deformation/displacement of the moving elements (e.g., 

cantilever beam). In addition, finite element simulations on sensor design needs accurate 

value of elastic constants.  

4H-SiC is an anisotropic material whose material properties are dependent on the 

orientation relative to the crystal lattice. Thus, a matrix of elastic constants is needed to 

describe the mechanical properties of 4H-SiC. Many techniques are available to measure 

such elastic properties. The direct measurement of strain as a function of stress can be 

performed using strain gauges. In ultrasonic measurements, the elastic constants are 

evaluated by measuring the propagation velocity of the acoustic waves (typically MHz) 

[112]. In Brillouin scattering study, the incident laser light is scattered by the target material 

and the frequency shift of laser light is detected to determine the phonon energies, from 

which the full elastic tensor can be calculated [113]. It is also possible to determine the 

elastic constants using computational studies, such as ab-initio calculation which is based 

on density functional theory (DFT) [114]. The elastic tensor of 4H-SiC had been studied 
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by serval groups using different methods, but the difference of the measured calculated 

elastic constants are relatively large [114][122]-[124]. The variations could come from 

different fabrication process of the material or experimental methods. 

In this study, the elastic properties of 4H-SiC chips are determined by four-point 

bending and nano-indentation method. Strain gauges were also used for validation of 

elastic modulus and measurement of the Poisson’s ratio. The elastic stiffness coefficients 

for 4H-SiC available in the literature were compared with our data. 

7.2 Stress-Strain Relations of 4H-SiC 

4H-SiC exhibits linear elastic material behavior which is described by the Hooke's 

law [115]: 
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 (7.1) 

where [C] is a 9 × 9 matrix of elastic constants having 81 components. The first two 

subscripts on the elastic constants correspond to those of the stress, whereas the last two 

subscripts correspond to those of strain. Since both stresses and strains are symmetric, there 

are only six independent stress components and six independent strain components. Thus, 

the elastic constants must be symmetric with respect to the first two subscripts and with 
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respect to the last two subscripts (Cijkl=Cjikl and Cjikl=Cijlk). And the number of non-zero 

elastic constants is now reduced to 36. These simplifications lead to reduced index 

notation:  
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 (7.2) 

With this reduced notation, the generalized Hook’s law can now be written as 

 i ij jC       i,j= 1,2,...,6 =   (7.3) 

In a matrix form  

     C =   (7.4) 

Where the elastic constant matrix or stiffness [C] is a 6 × 6 with 36 components and the 

stresses [σ] and strain [ε] are column vectors. Alternatively, the generalized Hook’s law 

relating strains to stresses can be written as  

 i ij jS       i,j= 1,2,...,6 =   (7.5) 

Or in a matrix form  

     S =   (7.6) 
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Where [S] is the compliance matrix, which is the inverse of the stiffness matrix 

([S] = [C]−1).  

The generalized anisotropic Hook’s law can be simplified using various symmetry 

conditions. The first symmetric condition is a result of the existence of a strain energy 

density function, so that it has nothing to do with the material symmetry. The strain energy 

density function for a linear elastic material is  

 i j ij i j

1 1
w C

2 2
=   =    (7.7) 

The stress can be derived according to the equation: 

 i ij j

i

w
C


 = = 


 (7.8) 

By taking a second derivative of W, we have 

 

2

i ij

i j

w
C


 = =

 
 (7.9) 

By reversing the order of differentiation, we have 

 

2

i ji

j i

w
C


 = =

 
 (7.10) 

Since the result must be the same regardless of the order of the differentiation, the stiffness 

matrix is symmetric (Cij= Cji). Similarly, W can be expressed in terms of compliance 
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matrix, and by taking two derivatives with respect to stresses, it can be shown that Sij= Sji. 

Thus, the compliance matrix is also symmetric. The point group of 4H-SiC is 6mm, which 

has one six-fold rotation and six mirror planes with no inversion. The elastic properties of 

6mm group material is [116] 
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 (7.11) 

Therefore, there are five unique elastic constants (C11, C12, C13, C33, C44) for 4H-SiC.  

7.3 General Coordinate Transformations 

As mentioned earlier, it is more convenient to work in the wafer coordinate system. 

Before the experiment, we must understand how the elastic matrix changes in different 

coordinate systems. As shown in Fig. 7.1, two coordinate systems x1 − x2 − x3 and x′1 −

x′2 − x′3 rotated arbitrarily with each other.  
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Figure 7.1: Rotated Cartesian Coordinate System 

The components of the tensorial strain and stress are transformed from one coordinate 

system to another using the standard tensor transformation rules: 

 
     

     

T

T

' a a

' a a
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 = 
 (7.12) 

where [ε]  and [σ]  are 3 × 3  strain and stress matrix and [a] is a 3 × 3  transformation 

matrix. Expanding the above equation gives: 

1x

2x

3x

1x

2x

3x
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where 
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The li, mi, and ni are direction cosines between two coordinate systems. Substitution of Eq. 

7.14 into Eq. 7.13 gives the strain matrix in primed coordinate system: 
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  (7.15) 

Similarly, the stress matrix in the primed coordinate system can be expressed as  
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  (7.16) 

Note that the transformation matrix [T] for stress and strain in the above equation is also 

valid for resistivity [ρ] (Eq. 2.9).  

The generalized Hooke’s law is usually written in Voigt notation, in which 

engineering strains are applied. The stress-strain relationship for the unprimed coordinate 

system is shown in Eq. 7.17 and is also valid for the rotated orthogonal (x′1 − x′2 − x′3) 

coordinate system. 

 
    

    

C e

' C' e '

 =

 =
 (7.17) 

where [C] and [C’] are the elastic matrix in unprimed and primed coordinate systems, 

respectively, and [e] is the engineering strain matrix. To use Eq. 7.17, the transformation 

matrix for engineering strain must be determined. From Eq. 7.15, the transformation 

equation can be expressed as: 
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where [Te] is the transformation matrix for engineering strain. Substitution of Eq. 7.16 and 

Eq. 7.18 into Eq. 7.17 leads to 
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The relationship between [C] and [C’] can be obtained 
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Since the energy density of the system is the same, we can have 
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And the relationship between [T] and [Te] is  
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According to Eq. 7.20, the coordination transformation equation can be expressed in terms 

of [T]. 

      
T

C' T C T=  (7.23) 

Note that the coordination transformation equation for the piezoresistive matrix is 

expressed in a different form ([π′] = [T][π′][T]−1), the reason is that the engineering shear 

strains (γij) are used in the stress-strain relationship.  

7.4 Elastic Properties on (0001) Plane  

Figure 7.2 shows the hexagonal crystal structure of 4H-SiC and the coordinate 

system definitions for the (0001) surface. a1-a2-a3-c represent the crystallographic axes of 

the 4H-SiC material, whereas x1-x2-x3 axes are the orthogonal axes corresponding to the 

underlying elastic constants as shown in Eq. 7.11. The c and x3 axes are coincident and 

perpendicular to the page. Considering a primed coordinate system x1
′ -x2

′ -x3
′  rotated θ 

degrees about the x3 axis (rotation within the basal plane), the elastic constants in the 

primed coordinate system can be found using Eq. 7.23 with appropriate direction cosines. 

Eq. 7.24 shows the direction cosines of the xi
′  axis with respect to the x1, x2, x3 axes, 

respectively. It has been found that the elements of elastic matrix are identical ([C]= [C']) 
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for rotations within the basal plane. Therefore, 4H-SiC is a transversely isotropic material. 

All the calculations have been performed symbolically using the mathematical software 

MATLAB®. 

 

Figure 7.2: Coordinate Systems for (0001) 4H-SiC Wafers 
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Eq. 7.11 can be inverted to get the compliance matrix by introducing the elastic constants 

E, 𝜈 and G in place of the Sij. 
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where Ei is the elastic modulus of the material in direction i = 1, 2, 3, νij  are the Poisson’s 

ratio, and Gij are the shear moduli. There are six parameters in the [S] matrix, but only five 

of them are independent. The reason is that [S] matrix must be symmetric, thereby, 

ν13 E1⁄ = ν31 E3⁄ . The stiffness matrix can be also expressed in terms of E, νij and Gij. 
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7.5 Four Point Bending Method 

The four-point bending system illustrated in Fig. 3.9 is used to determine the elastic 

modulus E1. In Fig. 7.3, the test strips cut from SiC wafer are in [112̅0] direction and the 

top surface of the wafer is an (0001) plane. The elastic constants are identical within the 

basal plane ([C] = [C']) which means elastic properties are the same in both primed wafer 

coordinate system and unprimed coordinate system, thus, coordinate transformation is not 

necessary. During experiments, the test strip is placed on the bottom supports of the four-

point-bending fixture. Force generated by a vertical translation stage is applied in the four-

point bending fixture and measured by a load cell. Deflection 𝛿  is measured by a 

micrometer. 

 

Figure 7.3: Test Strip Cut from SiC Wafer 

SiC Wafer 

SiC Strip

1x  1 1 2 0 
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(0001) Plane
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Figure 7.4: Deflection of a Beam in a Four-Point Bending Fixture 

In Fig. 7.4, “L” is the distance between the two top supports, “a” is the distance between 

the top support to the adjacent bottom support, and “δ” is the displacement of bottom 

supports. “F” is the applied force. Note that the measured force from the transducer is the 

total force from the bottom support, which is 2F. in Fig. According to the Euler-Bernoulli 

beam theory, the elastic modulus can be evaluated using Eq. 7.27. 
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In Eq. 7.27, the elastic modulus can be written as  
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 (7.28) 

The moment of inertia I is defined as bh3/12 in which b is the width and h is the 

thickness of the strip. The beam theory expressions in Eqs. 7.27-7.28 are valid for 

a a

F F


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anisotropic materials such as SiC, as long as the length of the beam is directed along one 

of the material symmetry directions and the value of E is the directional modulus along the 

length of the beam [117]. 

 

Figure 7.5: F’ vs. Displacement 

A typical measurement results appears in Fig. 7.5 where E1 is the slope of F’ with respect 

to δ. The mean and standard deviation of the extracted elastic modulus E1 are listed in 

Table 7.1. 
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Table 7.1: Extracted Elastic Modulus E1 From 4PB method 

7.6 Strain Gauge Method 

In this work, a strain gauge technique was used to measure Poisson’s ratio and 

validate the results from the four-point bending method. Specimen strips are cut from the 

SiC wafer along the [112̅0] direction. 

 

Figure 7.6: Strain Gauges on SiC Strip 

Sample Number Elastic Modulus (GPa)

1 496.6

2 497.2

3 495.3

4 503.9

5 506.6

6 506.2

7 494.7

8 497.2

9 494.9

10 502.5

11 499.2

12 500.2

13 497.6

14 496.8

15 497.1

Average 499.1

Standard Deviation 3.9

SiC Strip Strain Gauges

1x  1 1 2 0 
 

2x  1 1 0 0 
 
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Poisson’s ratio can be evaluated readily with two strain gauges using Eq. 7.29. To measure 

strains in longitudinal and transverse directions, we mounted strain gauges on each 

specimen in two directions, one on the top surface and one on the bottom surface as shown 

in Fig. 7.6. Again, the four-point-bending fixture is used to apply an uniaxial stress σ to the 

strips. Hence, only σ′11 = σ is applied, and other stress components are zero. Based upon 

the beam theory and Hooke’s law, the elastic modulus can be found as in Eq. 7.30. 

 2
12

1


 = −


 (7.29) 

 1 2

1 1

6Fa
E

bh


= =

  
 (7.30) 

Where ν12 is Poisson’s ratio, ε′i is the strain in the i direction and all other parameters in 

Eq. 7.30 have been defined earlier in Eq. 7.28. 

 

Figure 7.7: Uniaxial Stress vs. Axial Strain 
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Figure 7.8: Transverse Strain vs. Axial Strain 

Typical strain gauge data for elastic modulus E1 and Poisson’s ratio ν12 are shown 

in Fig. 7.7 and Fig. 7.8. The extracted material properties for 10 sets of measurements are 

listed in Table 7.2. 
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Table 7.2: Material Properties Extracted by Strain Gauge Method 

The elastic modulus E1 evaluated by four-point bending and strain gauge method are quite 

close to each other, with the difference by 2%. Such difference may result from the wide-

beam effect [118] and the results from strain gauge method are believed to be more 

accurate. 

7.6 Nanoindentation Method 

Depth-sensing indentation has been widely used for determining mechanical 

properties of small specimens. The Oliver and Pharr method [119] has been the most 

common method to determine the elastic modulus from its unloading curves. The analysis 

method provides the elastic modulus using Eq. 7.31 with the assumption that the elastic 

modulus is the value in the indentation direction. 

Sample Number Elastic Modulus (GPa) Poisson’s Ratio

1 513.2 0.174

2 511.8 0.176

3 511.1 0.177

4 506.9 0.182

5 505.7 0.179

6 507.0 0.181

7 513.9 0.183

8 515.7 0.181

9 508.5 0.178

10 508.4 0.179

Average 510.2 0.179

Standard Deviation 3.4 0.003
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( ) ( )2 2

s i

r s i

1 11

E E E

− −
= +  (7.31) 

In the above equation, E and ν represent the elastic modulus and the Poisson’s ratio, 

respectively.  Subscripts i and s denote indenter tip and specimen. For a diamond tip, Ei 

and νi are 1140 GPa and 0.07. The reduced modulus Er is calculated by: 

 r

C

S
E

2 A


=


 (7.32) 

S is the unloading contact stiffness, AC is the projected contact area, and β is the indenter 

tip shape factor. Fig. 7.9 shows the typical load-displacement curve and the unloading 

contact stiffness (S) is the slope of the unloading curve.  

 

 

Figure 7.9: Typical Load-displacement Curve of Nanoindentation 
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Note that Eqs. 7.31-7.32 are applicable for isotropic materials and 4H-SiC is a transversely 

isotropic material. Even though some effect from other directions exist in transversely 

isotropic case, it is possible to estimate the elastic constants in the indentation direction 

with these equations [120]-[121]. 

In this study, square specimens are cut from SiC strip and the primed wafer 

coordinate system is shown in Fig. 7.10. Specimen faces are carefully polished to remove 

damages and residual stress induced by cutting. For 4H-SiC, the (0001) plane is the 

isotropic plane, so that indentation experiments are carried out only on this plane using a 

Berkovich pyramidal diamond indenter. 

 

Figure 7.10: SiC Chip Cut from the Strip  

SiC Strip

1x  1 1 2 0 
 

2x  1 1 0 0 
 
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Figure 7.11: SiC Chip Embedded in Resins 

Fig. 7.11 shows the nanoindentation load displacement curve for SiC chips. A 

maximum load of 20000 µN was applied with a loading rate of 3 mN/s. Then a holding 

time of 2 seconds was applied followed by the unloading at the same rate of 3 mN/s. From 

the unloading curve, the reduced modulus and corresponding elastic modulus was 

calculated using the Oliver and Pharr method. Table 7.3 shows the value of reduced 

modulus and elastic modulus value for SiC chip. 
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Figure 7.12: Nanoindentation Load-Displacement Curve for 4H-SiC 

 

Table 7.3: Modulus of 4H-SiC Extracted from Nanoindentation 

Displacement, h (nm)

0 20 40 60 80 100 120 140 160 180

L
o

a
d

, 
P

 (
N

)

0

5000

10000

15000

20000

25000

Sample Number Reduced Modulus Er (GPa) Elastic Modulus E3 (GPa)

1 379.9 551.9

2 380.8 553.8

3 381.3 555.0

4 379.9 551.9

5 381.8 556.1

6 384.7 562.5

7 381.4 555.2

Average 382 555

Standard Deviation 1.55 3.5
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7.7 Elastic Properties Comparison 

The elastic constants of 4H-SiC available in the literature are listed in Table 7.4. These 

constants are converted into elastic modulus and Poisson’s ratio values by comparing Eq. 

7.10 and Eq. 7.24, and then compared with our experimental data as shown in Table 7.5. 

 

Table 7.4: Elastic Constants (Cij in GPa) 

 

Table 7.5: Elastic Modulus (Eij in GPa) and Poisson's Ratio [114] [122]-[124] 

4H-SiC is described by 5 independent elastic constants which differ significantly between 

different methods. In Table 7.5, the comparison shows that the elastic properties extracted 

by our study are in well agreement with results in [114]. Especially for elastic modulus E1 

, the value is underestimated by 0.5%. Even though the value of Poisson’s ratio ν12 is 

slightly higher than results in [114] and closer to [124], the elastic modulus E1 and E3 in 

498 91 52 535 159

501 111 52 553 163

503 92 48 533 161

534 96 50 574 171

11C 12C 13C 33C 44CReference

Pizzagalli [122]

Kamitani [123]

Nuruzzaman [124]

Iuga [114]   

478 526 0.174 0.080 159

473 544 0.214 0.074 163

483 525 0.180 0.074 161

514 566 0.173 0.072 171

510 555 0.179

3E 12 13 13GReference

Pizzagalli [122]

Kamitani [123]

Nuruzzaman [124]

Iuga [114]

This Work

1E
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[124] are much lower than our results. Overall, results reported in [114] best match our 

results. It is hard to measure ν13 and G13 with thin 4H-SiC specimens, so that they are not 

discussed in this study.  

7.8 Summary and Conclusion 

In this study, we reviewed the coordinate transformations of engineering strain, tensorial 

strain, stress, and stiffness matrices. For 4H-SiC, the (0001) plane was found to be an 

isotropic plane so that coordinate transformation is not necessary before the experiment. 

Unlike many acoustic experiments or simulation studies, the elastic properties were 

extracted by traditional methods. The four-point bending and strain gauge methods were 

used to extract the elastic modulus E1 which is 510 GPa from our measurement. The 

Poisson’s ratio ν12 was measured with two strain gauges and getting the value of 0.179. 

The elastic modulus in [0001] direction E3 was found to be 555 GPa using the 

nanoindentation method.  

The elastic stiffness coefficients available in the literature were converted into 

elastic modulus and Poisson’s ratios values, and then compared with our data. The elastic 

properties evaluated by Iuga et al. [114] agree best with our results. 
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DIE STRESS MEASUREMENT IN CERAMIC DIP PACKAGE USING VDP 

SENSORS 

8.1 Experimental Procedure 

Due to the mismatch of coefficient of thermal expansion (CTE) of the various 

materials in electronic packaging, high temperature stresses can be induced during and 

after packaging process. In this section, the VDP device has been used to characterize the 

variation of die stress after the encapsulant process.  

As shown in Fig. 8.1, an 7.22 mm × 4.54 mm test chip was first attached to a 

ceramic dual in-line package (DIP) using an epoxy underfill material (ME525). Gold wires 

were then used to provide the interconnections from the die bond pads to the metal traces 

on the DIP. Before encapsulation, the initial resistance of the sensor was recorded every 

25℃ from 25 - 125 ℃. To achieve a stable uniform temperature of the sample, the oven 

remained at each temperature for an hour before measurement. And then, the liquid 

encapsulant (ME525) were applied and the samples were cured in an oven for 30 minutes 

at 150℃ per vendor instructions (Figs. 8.2, 8.3). After removal from the cure oven, the 

samples were cooled to a room temperature environment of 25 ℃, after which the samples 

were placed in the oven again and the resistance of the sensor was monitored from 25 to 

125℃. According to measured resistance changes, the stresses at the VDP device on the 

die surface were calculated. In this work, results for temperature compensated stress 
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component (σ′11 − σ′22) is presented. Fig. 8.4 indicates the locations of VDP sensors and 

the chip coordinate system (primed coordinate system). 

 

Figure 8.1: Ceramic DIP Before Encapsulation  

 

Figure 8.2: Ceramic DIP After Encapsulation  

 

Figure 8.3: Schematic of the Encapsulated DIP (Cross Section) 

DIP SiC Chip

Ceramic 

SiC ChipME 525 Wires
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Figure 8.4: VDP Sensor Locations  

8.2 Experimental Results 

The resistance changes before and after encapsulation from 25-125 ℃ are collected 

and the in-plane normal stress difference (σ′11 − σ′22) is calculated using Eq. 3.14. Since 

the piezoresistive coefficient πD is a function of temperature, the πD value used for this 

study is calculated from the fitted function in Fig. 3.12 and Fig. 3.22. The measured values 

of the in-plane normal stress difference (σ′11 − σ′22) for p+ VDP at various temperatures 

are shown in Table 8.1 and Fig. 8.5.  

p+ VDP

n+ VDP

1x

2x
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Figure 8.5: Normal Stress Difference vs. Temperature for p+ VDP 

 

Table 8.1: Normal Stress Difference vs. Temperature Data 

The assembly is considered to be stress free above 135 ℃, which is the glass 

transition temperature of the encapsulant material. During the cooling, the encapsulant 
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becomes stiffer and would like to contract more than other components (SiC and ceramic). 

Therefore, individual stress components (σ11 and σ22) are expected to be increasing as 

temperature decreases. However, the change of the combined stress component 

(σ′11 − σ′22) is hard to predict directly due to the complexity of material properties and 

encapsulant shape. 

Fig. 8.5 presents the results of measured stress difference (σ′11 − σ′22) at different 

temperatures for p+ VDP and the error bar shows the upper and lower limit of the measured 

data. It can be seen that the stress difference is small at 125 ℃ and increases linearly with 

the decreasing temperature and reaches maximum at 25 ℃. The standard deviations in 

Table. 8.1 is relatively large due to several factors. First, the piezoresistive coefficients πD 

at various temperatures are average values (Fig. 3.12) and were assumed to be the same for 

each specimen. However, they are different from specimen to specimen. Since the SiC chip 

is attached on the DIP manually, the location and angle of the SiC chip is not identical for 

each specimen. Additionally, the thickness of the die attachment is difficult to control. 

More accurate and stable results require better consistency of packaging process and 

accurate piezoresistive coefficient of each sample.  
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Figure 8.6: Normal Stress Difference vs. Temperature for n+ VDP 

The results for n+ VDP measurement present in Fig. 8.6. It can be observed that the 

stress difference is around 2.5 MPa at 25℃ and starts to fluctuate near 0 MPa. Also, the 

sign of stress is changing and there is no obvious trend of the stress change.  

8.3 FEA Simulation 

The finite element simulation was performed using ANSYS 18.2. Fig. 8.7 shows 

the quarter model of the ceramic DIP package with encapsulated SiC chip. A schematic 

drawing of the package is shown in Fig. 8.8 with dimensions of all the components. Fig. 

8.9 shows the developed mesh and finer mesh is applied to the volume of interest (near the 

SiC chip) as shown in Fig, 8.10.  
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Figure 8.7: Quarter Model of Ceramic DIP 

 

Figure 8.8: Dimensions of DIP in Millimeters  

Ceramic

Encapsulant(ME525) 
SiC Chip 

Central line
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Figure 8.9: Meshed Quarter Model 

 

Figure 8.10: Detailed View of Mesh Near the Chip 

To perform the simulation, elastic modulus, Poisson’s ratio and the coefficient of 

thermal expansion (CTE) of each component are required. 
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As discussed in Chapter 7, the SiC is a transversely isotropic material and the elastic 

constants used for this study are from [114], which are shown in Table 7.5. The CTE of 

4H-SiC is temperature and orientation dependent according to Li [125]. The CTE of 4H-

SiC along a-axis (in-plane) and c-axis(out-of-plane) (Fig. 3.1) are expressed by the second-

order polynomials:  

 
6 9 12 2

11a 3.21 10 3.56 10 T 1.62 10 T  (1/ C)− − −=  +  −   (8.1) 

for the a-axis, and  

 
6 9 12 2

33a 3.09 10 2.63 10 T 1.08 10 T  (1/ C)− − −=  +  −   (8.2) 

for the c-axis. They are illustrated in Fig. 8.11. 

 

Figure 8. 11: The CTE of 4H-SiC, Reprinted From [125]. 

Chang [126] measured the elastic modulus change with temperature from 25 to 125 ℃. 

Fig. 8.12 shows the measured data and fitted curve and equation.  
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Figure 8.12: Elastic Modulus of Encapsulant at Different Temperatures 

Poisson’s ratio of ME525 is assumed to be 0.3 and temperature independent in this 

study. Chang also measured the CTE of the ME525 and the results are shown in Fig. 8.13. 

The glass transition temperature marks the boundary between the two regions, and CTE is 

18.59 ppm/℃ and 72.61 ppm/℃, respectively, when the temperature is below and above 

the Tg. 
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Figure 8.13: TMA Test Results for ME 525, Borrowed From [126]. 

The ceramic is considered to be an isotropic material and the elastic modulus and 

Poisson’s ratio are 295 GPa and 0.23, respective. Comparing to ME525, ceramic has a 

much lower CTE of 5 ppm/℃. 

Once the material properties are defined, a nonlinear FEA simulation is performed. 

The package is cooling from stress-free state at 150 ℃ to the room temperature at 25 ℃. 

Fig. 8.14-Fig. 8.18 shows the thermal stress developed on the die surface. In order to 

illustrate the stress change with decreasing temperature, the scale for each plot stays the 

same.  



165 
 

 

Figure 8.14: Simulation Results for σ′11 and σ′22 at 125 ℃ 

 

Figure 8.15: Simulation Results for σ′11 and σ′22 at 100 ℃ 
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Figure 8.16: Simulation Results for σ′11 and σ′22 at 75 ℃ 

 

Figure 8.17: Simulation Results for σ′11 and σ′22 at 50 ℃ 
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Figure 8.18: Simulation Results for σ′11 and σ′22 at 25 ℃ 
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Figure 8.19: Stress Difference (σ′11 − σ′22) Correlations at 125 ℃ 

 

Figure 8.20: Stress Difference (σ′11 − σ′22) Correlations at 100 ℃ 
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Figure 8.21: Stress Difference (σ′11 − σ′22) Correlations at 75 ℃ 

 

Figure 8.22: Stress Difference (σ′11 − σ′22) Correlations at 50 ℃ 
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Figure 8.23: Stress Difference (σ′11 − σ′22) Correlations at 25 ℃ 

Fig. 8.24 and Fig. 8.25 compare the simulated stress values at sensor locations and 

experimental results. Note that only the experimental results have the error bar, which 

shows upper and lower limits of the measured stress. It can be seen that the stress difference 

changes almost linearly with the temperature based on the simulation results. The finite 

element predictions for the normal stress difference are in good agreement with the 

experimental results of p+ VDP sensors. Even though the standard deviations are relatively 

large, the averages of the measurements still provide good results, especially at 25 ℃.  
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Figure 8.24: Comparison Between Simulation and Experimental Results for p+ VDP 

 

Figure 8.25: Comparison Between Simulation and Experimental Results for n+ VDP 
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The simulation shows that the stress difference values at the n+ VDP location are small and 

positive and keep decreasing with increasing temperature. However, the average values of 

the measured stress fluctuate and change signs during the experiment. The stress sensors 

may have reached the resolution limit of the experimental method. Another reason could 

be that the n+ sensor is positioned on the boundary between positive and negative stresses. 

In Fig. 8.26, the green square shows the position of n+ sensor on the die surface and non-

uniform stress contours are applied to better present the stress values near the sensor. A 

slight change of position makes a large difference in stress values.  

 

Figure 8.26: Stress Distributions near the n+ Sensor at 25℃ 
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chapters. Five sets of measurement were performed and the results from p+ VDP sensor 

show that the stress difference (σ′11 − σ′22)  increased linearity with decreasing 

temperature. Also, relatively large standard deviations between samples were observed 

because of piezoresistive coefficients variations and the manually controlled packaging 

process. If each sensor was carefully calibrated prior to experiment and packaging process 

was well controlled, better accuracy should be achieved. The measured stress values from 

the n+ sensor are small and very sensitive to exact positions of the sensors. 

Three-dimensional nonlinear finite element simulation was also performed. The 

results show that the normal stress difference (σ′11 − σ′22) has a negative value near the 

top and bottom edges of the chip and positive value near the side edges. The experimental 

stress results from p+ sensors were in good agreement with the finite element predictions. 

At 25 ℃, the simulated stress value for the n+ sensor is 5 MPa, which is relatively low and 

might approach the resolution limits of the SiC sensors. Also, the n+ sensor is located in 

the “changing sign” region and small misalignment of the assembly may cause changes in 

signs. 
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SUMMARY AND FUTURE WORK 

9.1 Summary 

This work has developed general expressions for the stress dependence of resistors 

and van der Pauw devices on standard 4H-SiC wafer. The theoretical results present the 

similarities and differences relative to the stress sensors on (100) silicon: only four of the 

six components of the stress state can be measured; a four-element element rosette design 

exists for measuring the in-plane stress components; two stress quantities can be measured 

in a temperature compensated manner. However, the piezoresistance of 4H-SiC in (0001) 

plane is isotropic and only one combined coefficient is required for temperature 

compensated stress measurements. For a free top surface, the three individual in-plane 

stresses can also be resolved, but the extraction is no longer temperature independent. The 

VDP devices exhibit the expected 3.16 times higher stress sensitivity than standard resistor 

rosettes.  

A four-point-bending technique has been used to calibrate the basic lateral and 

transverse piezoresistance coefficients at different temperatures. It has been found that the 

sensitivity goes down linearly with increasing temperature from 25 to 180 ℃. Compared 

to silicon, 4H-SiC possesses smaller piezoresistive coefficients. However, with excellent 

mechanical strength, thermal stability and electrical conductivity, 4H-SiC sensors are still 

promising for harsh environment applications.  
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The out-of-plane normal stress can be measured with a resistive rosette, which 

requires out-of-plane piezoresistive coefficients π13  for both n and p type resistors. 

hydrostatic calibration was used to obtain π13 in this study. Prior to the calibration, the 

TCR values were characterized. The extracted π13 is -80 /TPa for p+ VDP, but the pressure 

induced resistance change for n+ VDP is not observable, due to its low reference resistance. 

The theory for stress dependence of NMOS transistors on 4H-SiC was developed. 

The stress model considers both mobility and threshold voltage changes. At low values of 

gate drive, the threshold voltage terms in the stress model becomes significant and can no 

longer be ignored. The measured piezoresistive coefficients are relatively small but can 

become large at low gate drives. Similar to resistive sensors, a four-element NMOS stress 

sensor was proposed that can measure two temperature compensated stress quantities.  

The impact of tilted wafer plane on the sensor calibration was discussed. The 4 

degree tilted angle for our samples was determined by electron backscattering diffraction 

analysis. The errors induced by the tilted wafer plane are found to be small if all 

piezoresistive coefficients for 4H-SiC have similar values. The off-axis effect on silicon 

sensors was also studied and a case study was performed. The theoretical results show that 

the errors are highly dependent on the off-axis angle and the stress distributions.  

Since the mechanical properties may change after the micro-electronical fabrication 

process (e.g., annealing after ion implantation), we also investigate the elastic properties of 

4H-SiC using four-point bending, strain gauge, and nano-indentation methods. Using the 

coordination transformation, we found the elastic property within the (0001) plane is 
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identical, which means 4H-SiC is a transversely isotropic material. The measured elastic 

modulus and Poisson’s ratio are eventually compared with other studies.  

Finally, SiC chips were encapsulated in a ceramic dual-in line package and the 

thermal stress was monitored with VDP sensors. A non-linear finite-element analysis was 

performed. Good agreement was achieved between the experiment and the simulation.  

9.2 Recommendations for Future Work 

The current study discussed the basic theory for embedded 4H-SiC piezoresistive stress 

sensors and there are several opportunities for future work: 

The calibration temperature range for the current study is limited by the flex circuit. If a 

test strip can be redesigned using zero-insertion force (ZIF) connectors [39], calibration at much 

higher temperature can be achieved.  

The off-axis errors are strongly dependent on the value of basic piezoresistive coefficients. 

Hence, it is worth to discover all fundamental piezoresistive coefficients, based on which new stress 

sensors can be developed. Additionally, it can help optimizing the current MEMS sensors by using 

higher piezoresistive components. Also, we can explore whether other isotropic planes exist in 4H-

SiC.  

The coefficients of NMOS reported in this study are relatively small for large gate drive. 

To achieve higher sensitivity, the transistor sensors can be directly implemented with a multi-

terminal inversion-layer van der Pauw structure. The out-of-plane piezoresistive coefficients of 

NMOS can be extracted using the hydrostatic calibration. Also, the piezoresistive effects on PMOS 

have not been investigated.  

In this work, we only measured the normal stress difference at two locations. By placing 

different stress sensors at different locations on the die surface, more stress components at more 
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positions can be measured. The stress distribution on packaged chips can be monitored in harsh 

environments using a well-designed test chip.  
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