
New Statistical Learning for Next-Generation Functional Data and Spatial Data

by

Shuoyang Wang

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 7, 2022

Keywords: Deep neural network, Empirical likelihood, Functional data analysis, Functional
data classification, Geo data, Nonparametric regression

Copyright 2022 by Shuoyang Wang

Approved by

Guanqun Cao, Chair, Associate Professor of Mathematics and Statistics
Ash Abebe, Professor of Mathematics and Statistics

Nedret Billor, Professor of Mathematics and Statistics
Peng Zeng, Associate Professor of Mathematics and Statistics

Bo Liu, Assistant Professor of Computer Science and Software Engineering

Abstract

Advancements of modern technology have enabled the collection of sophisticated, high-

dimensional data sets, such as 3D images, high dimensional data and other objects living in

a functional space. As such, boosting the investigation of function data, and functional data

analysis (FDA) has become one of the most active fields of research in statistics during the last

decades. Nevertheless, although estimations and classifications of FDA using non-parametric

methods such as kernels, splines, and wavelets, are already well investigated, most of ap-

proaches still focus on 1D functional data.

With the rapid growth of modern techonology, many large-scale imaging studies have

been or are being conducted to collect massive datasets with large volumes of imaging data,

thus boosting the investigation of “next-generation” functional data. Beyond first-generation

functional data such as random curves, it is natural to expand the concept of functional data to

higher dimension and view the data as smooth surfaces, or hypersurfaces evaluated at a finite

subset of some intervals in multi-dimension (e.g., some range of pixels or voxels and so on).

Deep learning allows computational models that are composed of multiple processing

layers to learn from the data with multiple levels of abstraction. Many applications of deep

learning use feedforward neural network architectures. For example, deep neural networks

(DNNs) contain many hidden layers of neurons between the input and output layers, and have

been found to exhibit superior performance across a variety of contexts. The specific structure

of DNNs has turned out to be very good at discovering intricate structures in high-dimensional

data. Although considerable advances have been achieved in deep learning research, from the

statistical perspective its application and theoretical research is still in its infancy. There are

many technical challenges left for statisticians.

In Chapter 2, we propose a DNNs based method to perform nonparametric regression

for multi-dimensional functional data. This work has been published in [118]. The proposed

estimators are based on sparsely connected DNNs with ReLU activation function. We provide

ii

the convergence rate of the proposed DNNs estimator in terms of the empirical norm. We

discuss how to properly select of the architecture parameters by cross-validation. Through

Monte Carlo simulation studies we examine the finite-sample performance of the proposed

method. Finally, the proposed method is applied to analyze positron emission tomography

images of patients with Alzheimer disease obtained from the Alzheimer Disease Neuroimaging

Initiative (ADNI) database.

In Chapter 3, we propose a robust estimator for the location function from multi-dimensional

functional data. The proposed estimators are based on the DNNs with ReLU activation func-

tion. At the meanwhile, the estimators are less susceptible to outlying observations and model-

misspecification. For any multi-dimensional functional data, we provide the uniform conver-

gence rates for the proposed robust DNNs estimators. Simulation studies illustrate the compet-

itive performance of the robust DNN estimators on regular data and their superior performance

on data that contain anomalies. The proposed method is also applied to analyze 2D and 3D

images of patients with Alzheimer’s disease obtained from the ADNI database.

In Chapter 4, we exploit the optimal classification problem when data functions are Gaus-

sian processes. Sharp nonasymptotic convergence rates for minimax excess misclassification

risk are derived in both settings that data functions are fully observed and discretely observed.

We explore two easily implementable classifiers based on discriminant analysis and DNN, re-

spectively, which are both proven to achieve optimality in Gaussian setting. Our DNN classifier

is new in literature which demonstrates outstanding performance even when data functions are

non-Gaussian. In case of discretely observed data, we discover a novel critical sampling fre-

quency that governs the sharp convergence rates. The proposed classifiers perform favorably

in finite-sample applications, as we demonstrate through comparisons with other functional

classifiers in simulations and one real data application.

In Chapter 5, we exploit the optimal functional data classification problem via DNNs in a

more general framework. A sharp non-asymptotic estimation error bound on the excess mis-

classification risk is established which achieves the minimax rates of convergence. In contrast

to existing literature, the proposed DNN classifier is proven to achieve optimality without the

iii

knowledge of likelihood functions. This framework is further extended to accommodate gen-

eral multi-dimensional functional data classification problems. We demonstrate the favorable

finite sample performance of the proposed classifiers in various simulations and two real data

applications, including the speech recognition data and the brain imaging data.

In Chapter 6, varying-coefficient models for spatial data distributed over two-dimensional

domains are investigated and our work has been published in [120]. First, we approximate the

univariate components and the geographical component in the model using univariate polyno-

mial splines and bivariate penalized splines over triangulation, respectively. The spline esti-

mators of the univariate and bivariate functions are consistent, and their convergence rates are

also established. Second, we propose empirical likelihood-based test procedures to conduct

both pointwise and simultaneous inferences for the varying-coefficient functions. We derive

the asymptotic distributions of the test statistics under the null and local alternative hypothe-

ses. The proposed methods perform favorably in finite-sample applications, as we show in

simulations and an application to adult obesity prevalence data in the United States.

iv

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor Professor

Guanqun Cao. I could never have reached the heights without her generous help, tremendous

support and patient guidance. Her prompt inspirations, timely suggestions and infectious en-

thusiasm have enabled me to complete every challenging projects, including this thesis. There

would never be a better advisor, mentor and friend for my life at AU.

I would like to thank my dissertation committee: Professor Ash Abebe, Professor Nedret

Billor, and Professor Peng Zeng for sparing their precious time to serve on my committee and

giving valuable comments and suggestions.

I would like to express my gratitude to Professor Zuofeng Shang from New Jersey Institute

of Technology, for offering invaluable assistance and guidance. His profundity of knowledge

and unlimited zeal have been motivating me through my graduate study. I also wish to ex-

press my gratitude to Professor Honglang Wang from Indiana University–Purdue University

Indianapolis, for his voluminous knowledge and generous help. This thesis could not be com-

pleted without his immense support. My great thanks to Professor Yingru Li from University

of Central Florida, for generously sharing adult obesity prevalence data, which is one of pivotal

motivations for spatial data analysis in this thesis.

Besides that, I am grateful to the entire faculty and staff in the Department of Mathematics

and Statistics who have taught me and assisted me during my study at AU. My special thanks

go to Professor Dmitry Glotov for his interesting course and valuable support.

Thanks to the College of Sciences and Mathematics and the Department of Mathematics

and Statistics who provided me with the COSAM Travel award, Emily Haynsworth Endowed

Mathematics Fellowship and Baskervill Endowed Mathematics Fellowship for working on the

dissertation. This dissertation is also supported in part by NSF award DMS 1736470.

Finally and most importantly, I would express my deepest gratitude to my beloved wife

Wanyu Zhang, my parents Wei Wang and Pei Yang, and my grandparents Naizhi Yang and

v

Huanzhi Wang, for their everlasting love, endless support and unbreakable faith in me in all of

my endeavors.

vi

Table of Contents

Abstract . ii

Acknowledgments . v

1 Introduction . 1

1.1 Functional data analysis . 1

1.1.1 First-generation functional data . 1

1.1.2 Next-generation functional data . 2

1.1.3 Functional regression model . 3

1.1.4 Functional data classification . 4

1.2 Deep neural networks . 5

1.3 Complex spatial data . 5

2 Estimation of the Mean Function of Functional Data via Deep Neural Networks . . . 8

2.1 Introduction . 8

2.2 The model and the deep neural network estimator 11

2.2.1 FDA model . 11

2.2.2 Deep Neural Networks . 12

2.2.3 Deep neural network estimator . 14

2.3 Implementation . 15

2.3.1 Neural network’s architecture selection 15

2.3.2 Training neural networks . 16

2.4 Theoretical properties of the DNN estimator 17

vii

2.5 Simulation . 18

2.5.1 2D simulation . 18

2.5.2 3D simulation . 22

2.6 Real data analysis . 22

2.7 Discussion . 24

3 Robust Deep Neural Network Estimation for Multi-Dimensional Functional Data . . 28

3.1 Introduction . 28

3.2 The model and the robust deep neural network estimator 30

3.2.1 FDA model . 30

3.2.2 Robust deep neural network estimator 31

3.3 Theoretical properties of the RDNN estimator 33

3.3.1 Definitions and notations . 33

3.3.2 Assumptions . 34

3.3.3 Unified rate of convergence . 35

3.4 Implementation . 36

3.4.1 Neural network’s architecture selection 36

3.4.2 Training neural networks . 36

3.5 Simulation . 37

3.5.1 2D simulation . 37

3.5.2 3D simulation . 42

3.6 Real data analysis . 44

3.7 Discussion . 45

4 Optimal Classification for Functional Data . 51

4.1 Introduction . 51

4.2 Model assumptions and functional quadratic discriminant analysis 54

viii

4.2.1 Model assumptions and oracle QDA 54

4.2.2 FQDA for fully observed functional data 55

4.2.3 FQDA for discretely observed functional data 56

4.3 Theoretical properties . 57

4.3.1 Fully observed case . 58

4.3.2 Discretely observed case . 60

4.4 Simulation . 63

4.5 Real data analysis . 64

4.6 Discussion . 65

5 Functional Classification via Deep Neural Networks 68

5.1 Introduction . 68

5.2 Functional Bayes classifier under non-Gaussianity 70

5.3 Functional deep neural network classifier . 71

5.4 Minimax optimality of FDNN . 73

5.5 Examples . 77

5.5.1 Gaussian functional data with independent coefficients 78

5.5.2 Student’s t functional data with independent coefficients 78

5.5.3 Student’s t functional data with dependent coefficients 78

5.6 Simulation . 79

5.7 Real data analysis . 81

5.7.1 TIMIT database . 81

5.8 Discussion . 83

6 Empirical Likelihood Ratio Tests for Varying Coefficient Geo Models 86

6.1 Introduction . 86

6.2 Univariate and bivariate spline estimations . 89

ix

6.2.1 Setup . 89

6.2.2 Penalized least-squares estimators . 90

6.3 Empirical likelihood ratio tests for varying coefficients 94

6.4 Implementation . 98

6.4.1 Selection of tuning parameters . 98

6.4.2 Bandwidth selection . 100

6.5 Simulation . 100

6.6 Real data analysis . 105

6.7 Discussion . 108

References . 109

Appendices . 122

A Estimation of the Mean Function of Functional Data via Deep Neural Networks . . . 123

A.1 Examples . 123

A.1.1 Example 1 . 123

A.1.2 Example 2 . 124

A.1.3 Implementation of Example 1 . 125

A.2 Technical lemmas and proofs . 128

A.2.1 Definition . 128

A.3 Proof of Theorem 2.1 . 136

B Robust Deep Neural Network Estimation for Multi-dimensional Functional Data . . . 138

B.1 Technical lemmas . 138

B.2 Proof of Theorem 3.1 . 139

C Optimal Classification for Functional Data . 146

x

C.1 Technical lemmas . 146

C.2 Proof of Theorem 4.1 . 162

C.3 Proof of Proposition 4.1 . 162

C.4 Proof of Theorem 4.2 . 163

C.5 Proof of Theorem 4.3 . 168

C.6 Proof of Theorem 4.4 . 168

C.7 Proof of Proposition 4.2 . 168

D Functional Classification via Deep Neural Networks 169

D.1 Proofs of Theorem 5.1 . 169

D.1.1 Preliminary . 169

D.1.2 Proof of Theorem 5.1 (i) . 169

D.1.3 Proof of Theorem 5.1 (ii) . 171

D.2 Technical lemmas . 173

D.2.1 Proof of Proposition D.1 . 188

D.2.2 Proof of Proposition D.2 . 189

D.2.3 Extension to independent t distribution 189

E Empirical Likelihood Ratio Tests for Varying Coefficient Geo Models 195

E.1 Regularity assumptions . 195

E.2 Preliminaries . 197

E.3 Proof of Theorem 6.1 . 198

E.4 Proof of Proposition 6.1 . 202

E.5 Proof of Theorem 6.2 . 206

E.6 Proof of Theorem 6.3 . 211

xi

List of Figures

2.1 2D simulation. Left: from the top to bottom, they are true function f0 (Case 1)
and its estimators f̂DNN and f̂BS . Right: from the top to bottom, they are true
function f0 (Case 2) and its estimators f̂DNN and f̂BS . (n = 200, N = 625 and
σ = 1) . 21

2.2 Two different angles (Left and Right panels) to view the true mean function and
the DNN estimator in 3D simulation case. (n = 200, N = 4, 500, σ = 1) . . . 23

2.3 From top to bottom are averaged images {Y ·j}7505j=1 , recovered images f̂(x1j, x2j′),
j = 1, . . . , 79, j′ = 1, . . . , 95, recovered high resolution (128 × 128) images
f̂(x1j, x2j), j = 1, . . . , 128 and recovered images from 3D image. Left: The
20-th slices; Middle: The 40-th slices; Right: The 60-th slices. 25

2.4 Recovered higher resolutions of selected nine slices in 3D case. 26

3.1 2D simulation for mixed Cauchy and mixed Slash distribution. The first row:
true function f0; The second row to forth row present the contaminated data
Y O, DNN estimations , RDNN estimations. From left to right, the observed
data are generated from Case 1 (i) and (ii), Case 2 (i) and (ii). 40

3.2 2D simulation for mixed Cauchy and mixed Slash distribution. The first row:
true function f0; The second row to forth row present the contaminated data
Y O, DNN estimations , RDNN estimations. From left to right, the observed
data are generated from Case 3 (i) and (ii), Case 4 (i) and (ii). 41

3.3 The first row are the averaged images for 20-th, 30-th, 40-th and 50-th slices
across all patients. The rest are some abnormal data for each slices from some
patients. 46

3.4 2D quantile esimators with 79× 95 pixels. From the left to the right: the 20-th,
30-th, 40-th, and 50-th slices. From the top to the bottom: (10% , 30% , 50% ,
70%, 90%)-quantiles. 47

3.5 2D quantile esimators with 128 × 128 pixels. From the left to the right: the
20-th, 30-th, 40-th, and 50-th slices. From the top to the bottom: (10% , 30% ,
50% , 70%, 90%)-quantiles. 48

3.6 3D quantile estimators with 79×95 pixels. From the left to the right: the 20-th,
30-th, 40-th, and 50-th slices. From the top to the bottom: (10% , 30% , 50% ,
70%, 90%)-quantiles. 49

xii

3.7 3D quantile estimators with 128 × 128 pixels. From the left to the right: the
20-th, 30-th, 40-th, and 50-th slices. From the top to the bottom: (10% , 30% ,
50% , 70%, 90%)-quantiles. 50

4.1 A sample of 10 log-periodograms per class 67

5.1 A sample of 10 log-periodograms per class 81

5.2 Averaged images of the 5-th, the 10-th, the 15-th, the 20-th and the 25-th slices
of EMCI (left column) group and AD group (right column). 84

5.3 Grouped boxplot of misclassification rates for the 5-th, the 10-th, the 15-th, the
20-th , the 25-th slices and 3D data of the first 25 slices between EMCI and AD
groups. 85

6.1 Contour maps of the true function α0(·) (first column) and the estimators (sec-
ond colmun) over the square region (first row) and the horseshoe region (second
row). 101

6.2 Mean squared error of the spline estimators. First column: the square region;
Second column: the horseshoe region. 102

6.3 Empirical size and power for the pointwise test H0 : β1(z) = β2(z) at the 5%
nominal level. : n = 500; : n = 1, 000; : n = 2, 000. First column:
square region; Second column: horseshoe region. 103

6.4 95% pointwise confidence bands for β0 (top left), β1 (top right), and β1 (bottom
left) (: maximum empirical likelihood estimator β̌; : zero line), and the
penalized bivariate spline estimator α̂ (bottom right). 107

xiii

List of Tables

2.1 The average empirical L2 risk and their standard deviations of f0 (Case 1)
across 100 simulation runs (2D case). 20

2.2 The average empirical L2 risk and their standard deviations of f0 (Case 2)
across 100 simulation runs (2D case). 20

2.3 The average empirical L2 risk and their standard deviations of f0 across 100
simulation runs (3D case). 23

3.1 Empirical L2 risk of 2D uncontaminated data with standard errors in brackets. . 39

3.2 Empirical L2 risk of 2D contaminated data in Cases 1 and 2 with standard errors
in brackets. 42

3.3 Empirical L2 risk of 2D contaminated data in Cases 3 and 4 with standard errors
in brackets. 42

3.4 Empirical L2 risk of 3D uncontaminated data with standard errors in brackets. . 44

3.5 Empirical L2 risk of 3D contaminated data for cases 5 with standard errors in
brackets. 44

3.6 Empirical L2 risk of 3D contaminated data for cases 6 and 7 with standard
errors in brackets. 44

4.1 Misclassification rates (%) with standard errors in brackets for Model 1 with
η1(t) = 3t. 64

4.2 Misclassification rates (%) with standard errors in brackets for Model 1 with
η1(t) = t. 65

4.3 Misclassification rates (%) with standard errors in brackets for Model 2 with
η1(t) = 3t. 66

4.4 Misclassification rates (%) with standard errors in brackets for Model 2 with
η1(t) = t. 66

4.5 Misclassification rates (%) with standard errors in brackets for Speech Recog-
nition data (“aa” vs “iy”). 66

5.1 Misclassification rates (%) with standard errors in brackets for DGP1 and DGP2 80

xiv

5.2 Misclassification rates (%) with standard errors in brackets for DGP3 and DGP4 80

5.3 Misclassification rates (%) with standard errors in brackets for Speech Recog-
nition data. 82

6.1 Coverage rate and average length (in parentheses) of confidence intervals. . . . 104

6.2 Empirical size and power for the simultaneous test H0 : β1(·) = β2(·). 104

xv

Chapter 1

Introduction

1.1 Functional data analysis

1.1.1 First-generation functional data

Functional data analysis (FDA) deals with the analysis of data which has function forms, and it

was first introduced by [87]. Functional data are intrinsically infinite dimension, which brings

challenges for both theory and computation. First-generation functional data typically consist

of a random sample of independent real-valued functions X1(t) . . . , Xn(t), on a compact in-

terval T on the real line, which can be treated as a one-dimensional stochastic process. These

functions are often assumed to be in a Hilbert space L2(T), such that E
(∫

T X
2(t)dt <∞

)
,

with mean and covariance functions µ(t) = EX(t) and G (t, t′) = Cov (X(t), X(t′)). Mer-

cer’s theorem implies the spectral decomposition of the symmetric and non-negative definite

G (t, t′), such that G (t, t′) =
∑∞

j=1 λjψj(t)ψj(t
′), where λj are the eigenvalues satisfying

λ1 ≥ λ2 ≥ . . . ≥ 0 and ψj are the corresponding orthogonal eigenfunctions. In FDA problems,

estimation of mean functions is the fundamental first step; see [22, 88, 41] for example. Various

methods exist that allow to estimate the regression function nonparametrically. [88] adopted

the mixed effect models where the mean function and the eigenfunctions were represented

with B-splines and the spline coefficients were estimated by the EM algorithm; [126] applied

the local linear smoothers to estimate the mean and the covariance functions. [79] generalized

the linear mixed model to the functional mixed model framework, with model fitting done by

using a Bayesian wavelet-based approach. In [21], a polynomial spline estimator is proposed

for the mean function of functional data together with a simultaneous confidence band. These

1

nonparametric methods apply the pre-specified basis expansion, e.g., polynomial spline, lo-

cal linear smoother, wavelet and so on, to fit the unknown mean function. The convergence

rates achieve either optimal nonparametric rate or parametric rate dependents on how dense of

the observed points for each subject. Another popular method is functional principal compo-

nent analysis (FPCA) which is an extension of multivariate principal component analysis, see

[43, 127] for example.

1.1.2 Next-generation functional data

With the rapid growth of modern techonology, many large-scale imaging studies have been or

are being conducted to collect massive datasets with large volumes of imaging data, thus boost-

ing the investigation of “next-generation” functional data. Beyond first-generation functional

data such as random curves, it is natural to expand the concept of functional data to higher

dimension and view the data as smooth surfaces, or hypersurfaces evaluated at a finite subset

of some intervals in multi-dimension (e.g., some range of pixels or voxels and so on). Without

loss of generality, d-dimension functional data consist of a random sample of independent real-

valued functions X1(t) . . . , Xn(t), on a hypercube [0, 1]d. In light of Mercer’s decomposition,

the ith subject among all samples can be decomposed as Xi(t) = µ(t) + η(t) + ϵi(t), such

that EXi(t) = µ(t), Cov (X(t), X(t′)) = Cov (η(t), η(t′)), ϵi(t) are independent random hy-

persurfaces. Even though FDA has received considerable attention over the last decade, most

approaches still focus on 1D functional data. There are few existing work for estimation of

mean functions µ(t) when the data for each variable are viewed on multi-dimension. Recently,

several attempts have been made to extend these nonparametric methods for spatial and im-

age data. [121] used bivariate splines over triangulations to handle an irregular domain of the

images that is common in brain imaging studies. The proposed spline estimators of the mean

functions are shown to be consistent and asymptotically normal. However, the triangularized

bivariate splines are designed for 2D functions only. Extending spline basis functions for gen-

eral d-dimensional data observed on an irregular domain is very sophisticated and becomes

extremely complex as d increases. [113] proposed a regularized Haar wavelet-based approach

for the analysis of 3D brain image data in the framework of functional linear regression model.

2

For FPCA, [131] proposed a smooth FPCA for 2D functions on irregular planar domains; their

approach is based on a mixed effects model that specifies the principal component functions as

bivariate splines on triangulations and the principal component scores as random effects. [64]

proposed a FPCA model that can handle real functions observable on a 2D manifold. [25] ex-

tended it to analyze functional/longitudinal data observed on a general d-dimensional domain.

When applying FPCA, how to choose the number of eigenfunctions is an important practical

issue without a satisfactory theoretical solution. Presumably, the larger the number of eigen-

functions, the more flexible the approximation would be, and hence, the closer to the true curve.

However, a large number of eigenfunctions always result in a complex model which introduces

difficulties to follow-up analysis.

1.1.3 Functional regression model

In FDA problems, estimation of mean functions is the fundamental first step. There are in-

creasing needs for estimations of high dimensional functions with data in function forms. For

instance, when analyzing positron emission tomography images with Alzheimer Disease Neu-

roimaging Initiative (ADNI), one is always interested in estimating the underlying regression

function. We consider the classical functional regression model:

Yij = f0(Xj) + η(Xj) + ϵi(Xj), i = 1, 2, . . . , n, j = 1, 2, . . . , N,

where Xj ∈ Rd, f0 : Rd → R, E(Yij) = f0(Xj) and for the i-th subject, there are N observa-

tions. η(·) is a random process with mean zero and Cov(η(Xj), η(Xj′)) := G(Xj,Xj′). ϵi(·)

is a centered measurement error function.

The challenges of the problem are, on the one hand, it is well known that when the ob-

served points come from a hypercube, that is [0, 1]d, d = 3 for 3D imaging study, the non-

parametric convergence rates are slower than the optimal non-parametric rate. On the other

hand, even though some existing works such as B-splines over triangulation are able to handle

2D or 3D functional regression problem, there is no existing method which can estimate the

above function in a uniform way.

3

In Chapter 2 and Chapter 3, under different scenarios, we propose a uniform deep neural

networks (DNNs) estimator with favorable convergence rate. By borrowing the advantage

from the deep learning domain, both convergence rates do not depend on the dimension d,

and the proposed DNNs estimator is unified for any dimensional functional data implicating

broader and more flexible applications. Moreover, instead of assuming additional or complex

structure for the true mean function, we only assume it is constructed in a modular form and

the modularity of the system can be fairly complex thus resolving the misspecification issue.

1.1.4 Functional data classification

Another fundamental problem in FDA is to classify a data function based on training samples.

For instance, in the speech recognition data extracted from the TIMIT database, the training

samples are digitized speech curves of American English speakers from different phoneme

groups, and the task is to predict the phoneme of a new speech curve. Classic multivariate anal-

ysis techniques such as logistic regression or discriminant analysis are not directly applicable,

since functional data are intrinsically infinite-dimensional.

Despite the impressive performances of the existing methods for functional data classifica-

tion, one is often interested in knowing whether and which of these approaches are statistically

optimal, and if not, how to construct an optimal functional classifier with better performances.

The term “optimality” refers to minimizing the excess misclassification risk relative to the ora-

cle Bayes rule, which provides a theoretical understanding on the nature of the problem as well

as a benchmark to measure the performance of various classifiers. In other words, minimax

theory helps us to understand how the “best” functional classifier looks, as well as provides a

guidance to find the “best” classifiers.

Even though it has been investigated in multivariate settings, optimal classification in func-

tional setting is more challenging due to the infinite-dimensional characteristic of the data. In

Chapters 4 and 5, we explore the optimal functional data classification problems and propose

the optimal classifiers for both one-dimensional and multi-dimensional functional data.

4

1.2 Deep neural networks

With the development of modern technology and increasing demands for big data, the use of

neural networks has been one of the most promising approaches in connection with applica-

tions related to estimation of multivariate functions (see, e.g., [4, 89]) and classification of

multi-dimension data (see, e.g., [52]). The corresponding techniques of multilayer neural net-

works are called deep learning. Recently, it has been proved by [92] and [70] that the L2 risk of

the least squares neural network regression estimator achieves the same minimax rate of con-

vergence (up to a logarithmic factor) as proposed in [101]. Furthermore, this neural network

estimator does not suffer the curse-of-dimensionality which is a classical drawback in the tra-

ditional nonparametric regression framework. At almost the same time, [52] shows that neural

network classifiers under three cases achieve fast convergence rates, and the convergence rate

in smooth conditional class probability case is minimax optimal (up to a logarithmic factor) as

proposed in [7]. Although considerable advances have been achieved in deep learning research,

from the statistical perspective its application and theoretical research is still in its infancy stage.

There are many technical challenges left for statisticians. For example, the availability of scal-

able computing and stochastic optimization techniques are challenge for developing statistical

asymptotic properties.

From Chapters 2 to 5, we propose novel DNNs-based methodologies to investigate a large

scale of FDA problems, including functional regressions and functional classifications.

1.3 Complex spatial data

The unequal food retail environment (FRE) has been recognized as a critical contextual factor

contributing to geographic disparities in obesity. However, there is no clear conclusion on the

relationship between the FRE and obesity, owing to diverse measures of the FRE and socioeco-

nomic disparities. In order to resolve this challenge, multiple types of food stores, restaurants,

and Supplemental Nutrition Assistance Program (SNAP) stores are considered to assess the

FRE from two important perspectives: X1, availability, and X2, healthfulness. In particular,

X1 is a composite index of the densities of food stores, restaurants, and SNAP stores, and X2

5

is a composite index of the ratios of healthy to unhealthy food stores, full service restaurants

to fast food restaurants, and healthy to unhealthy SNAP stores. Data are collected from 3, 091

counties in the United States in 2018. For each county, Si = (Si1, Si2) is their geographical

location, and Zi is their median household income.

Based on this data set, socioeconomists attempt to disentangle how county-level associa-

tions between the food environment and obesity rates change with median household income

levels. This leads to modeling the effect of food retail environments as functions of household

income levels. However, owing to the geographic dependence, the classical varying coefficient

model (VCM) is not sufficient. To address this issue, we propose the varying-coefficient geo

model (VCGM), and model the county-level obesity rate (Y) as the following:

Yi = β0(Zi) +Xi1β1(Zi) +Xi2β2(Zi) + α(Si) + ϵi, i = 1, · · · , 3, 091.

In Chapter 6, we apply bivariate splines over triangulations [56] for estimating α(·), be-

cause they can handle irregular 2D domains with complex boundaries and they are computa-

tionally efficient. In addition, we propose both pointwise (at a specific z) and simultaneous (for

all z ∈ [a, b]) testing procedures for the following hypothesis:

H0 : H{β0(z)} = 0 v.s. H1 : H{β0(z)} ≠ 0,

where H(b) is a q-dimensional function of b = (b1, . . . , bp) ∈ Rp, such that C(b) :=

∂H(b)/∂b⊤ is a q × p full-rank matrix (q ≤ p), for all b. The above hypothesis is very

general, owing to the choice flexibility of H(b). It includes many interesting hypotheses as

special cases, for instance, H0 : β0,k(z) = 0 for all k if H(b) = b, a test for any arbitrary linear

constraints on β0 if H(b) = Λb− c0 for a q × p known matrix Λ and a known vector c0, and

even tests with nonlinear constraints. See [6] for explicit examples of nonlinear hypotheses.

Both tests are based on the empirical likelihood (EL), which is a nonparametric likelihood, in-

troduced by [82, 83]. In spite of its nonparametric construction based on observed data points,

6

the EL shares some convenient merits of the parametric likelihood, and has many desirable

advantages in deriving confidence sets for unknown parameters.

7

Chapter 2

Estimation of the Mean Function of Functional Data via Deep Neural Networks

2.1 Introduction

Functional data refer to curves or functions, i.e. the data for each variable are viewed as smooth

curves, surfaces, or hypersurfaces evaluated at a finite subset of some interval in 1D and 2D

(e.g., some period of time, some range of pixels or voxels and so on). Functional data means

intrinsically infinite-dimensional but are usually measured discretely. The high intrinsic di-

mensionality of these data poses challenges both for theory and computation. Functional data

analysis (FDA) has been a topic of increasing interest in the statistics community for recent

decades. [87] and [115] gave a comprehensive overview of FDA.

In FDA problems, estimation of mean functions is the fundamental first step; see [22, 88,

41] for example. Various methods exist that allow to estimate the regression function nonpara-

metrically. [88] adopted the mixed effect models where the mean function and the eigenfunc-

tions were represented with B-splines and the spline coefficients were estimated by the EM

algorithm; [126] applied the local linear smoothers to estimate the mean and the covariance

functions. [79] generalized the linear mixed model to the functional mixed model framework,

with model fitting done by using a Bayesian wavelet-based approach. In [21], a polynomial

spline estimator is proposed for the mean function of functional data together with a simulta-

neous confidence band. These nonparametric methods apply the pre-specified basis expansion,

e.g., polynomial spline, local linear smoother, wavelet and so on, to fit the unknown mean

function. The convergence rates achieve either optimal nonparametric rate or parametric rate

dependents on how dense of the observed points for each subject.

8

Even though FDA has received considerable attention over the last decade, most ap-

proaches still focus on 1D functional data. The high intrinsic dimensionality of these data

poses challenges both for theory and computation; these challenges vary with how the func-

tional data were sampled. Hence, few are developed for general multi-dimensional functional

data. Recently, several attempts have been made to extend these nonparametric methods for

spatial and image data. [121] used bivariate splines over triangulations to handle an irregular

domain of the images that is common in brain imaging studies. The proposed spline estima-

tors of the mean functions are shown to be consistent and asymptotically normal. However,

the triangularized bivariate splines are designed for 2D functions only. Extending spline basis

functions for general d-dimensional data observed on an irregular domain is very sophisticated

and becomes extremely complex as d increases. [113] proposed a regularized Haar wavelet-

based approach for the analysis of 3D brain image data in the framework of functional linear

regression model.

Another popular method is functional principal component analysis (FPCA) which is an

extension of multivariate principal component analysis, see [43, 127] for example. Recently,

there are a few studies on 2D FDA. [131] proposed a smooth FPCA for 2D functions on irregu-

lar planar domains; their approach is based on a mixed effects model that specifies the principal

component functions as bivariate splines on triangulations and the principal component scores

as random effects. [64] proposed a FPCA model that can handle real functions observable on

a 2D manifold. [25] extended it to analyze functional/longitudinal data observed on a general

d-dimensional domain. When applying FPCA, how to choose the number of eigenfunctions is

an important practical issue without a satisfactory theoretical solution. Presumably, the larger

the number of eigenfunctions, the more flexible the approximation would be, and hence, the

closer to the true curve. However, a large number of eigenfunctions always result in a complex

model which introduces difficulties to follow-up analysis.

For many years, the use of neural networks has been one of the most promising approaches

in connection with applications related to approximation and estimation of multivariate func-

tions (see, e.g., [4, 89]). Recently, the focus is on multilayer neural networks, which use many

9

hidden layers, and the corresponding techniques are called deep learning. Under the nonpara-

metric regression model, via sparsely connected deep neural networks, [92] and [70] showed

that the L2 risk of the least squares neural network regression estimator achieves the same min-

imax rate of convergence (up to a logarithmic factor) as proposed in [101]. Furthermore, this

neural network estimator does not suffer the curse-of-dimensionality which is a classical draw-

back in the traditional nonparametric regression framework. [11] has also obtained the similar

results under deep learning framework via a different activation function. [69] further removed

the logarithmic factors to achieve exact optimal nonparametric rate.

Although considerable advances have been achieved in deep learning research, from the

statistical perspective its application and theoretical research is still in its infancy stage [35].

There are many technical challenges left for statisticians. For example, the availability of scal-

able computing and stochastic optimization techniques are challenge for developing statistical

asymptotic properties. Recently, there are some works proposed for deep learning algorithms

from statistical point of view [104, 105]. Motivated by these desiderata, the main goal of this

article is to provide a novel method of FDA in the neural network framework.

The contributions of this work are three-fold. First, to our best knowledge, this is the

first work on proposing deep neural networks (DNN) based estimator for FDA. An R pack-

age “FDADNN” has been developed and is available from GitHub website. Second, we de-

velop the convergence rate (in empirical norm) of the proposed neural networks estimator. It is

well-known that when the observed points come from a hypercube, i.e., [0, 1]d, d = 3 for 3D

imaging study, the nonparametric convergence rates are slower than the optimal nonparamet-

ric rate. This means that no statistical procedure can perfectly recover the signal pointwisely.

However, by borrowing the advantage from the deep learning domain, the convergence rate

of the proposed DNN estimator does not depend on the dimension d. Finally, we do not as-

sume additional or complex structure for the true mean function, for example, additive models

or single-index models. As in the deep learning domain, the true regression functions are as-

sumed to be constructed in a modular form and the modularity of the system can be fairly

complex, which resolve the misspecification issue.

10

Different from the existing neural network literature on nonparametric regression [11],

[92] and [70] which only handle i.i.d. data, we focus on FDA, where each subject is a random

curve in a hypercube. Because of this special data structure, the major challenge becomes to

deal with the correlation among the N evaluation points in the framework of neural network,

which has not been achieved in the existing works. It is not surprising that the convergence rate

decreases with n (number of subjects) as well as N .

This chapter is structured as follows. Section 2.2 provides the model setting in FDA and

introduces multilayer feed-forward artificial neural networks and discusses mathematical mod-

eling. The implementation on hyperparameter selections also be included in Section 2.2. The

theoretical properties of the proposed DNN estimator can be found in Section 2.4. In Section

2.5, it is shown that the finite sample performance of proposed neural network estimator. The

proposed method is applied to the spatially normalized positron emission tomography (PET)

data from Alzheimer Disease Neuroimaging Initiative (ADNI) in Section 2.6 and make some

concluding remarks in Section 2.7. The proof of the main result together with additional dis-

cussion can be found in Appendix.

2.2 The model and the deep neural network estimator

2.2.1 FDA model

Denote by Yij the j-th observation of the random curve ξi(·) at grid points Xij , 1 ≤ i ≤

n, 1 ≤ j ≤ Ni. For simple notations, we examine the equally spaced design, in other words,

Xij = Xj = j/N . The main results can be extended to irregularly spaced design. Without

loss of generality, let Xj = (Xj1, . . . , Xjd) ∈ [0, 1]d. For the i-th subject, its sample path

{Xj, Yij} consists of the noisy realization of the Gaussian process ξi(X) in the sense that Yij =

ξi (Xj)+ϵi(Xj), and
{
ξi(X),X ∈ [0, 1]d

}
are i.i.d. copies of the process

{
ξ(X),X ∈ [0, 1]d

}
which is L2, i.e., E

∫
[0,1]d

ξ2(X)dX < +∞. The error term ϵi(Xj) has mean zero and finite

variance.

11

In this work, we consider the following classical FDA model:

Yij = ξi (Xj) + ϵi (Xj)

= f0 (Xj) + η (Xj) + ϵi (Xj) , i = 1, 2, . . . , n, j = 1, 2, . . . , N, (2.1)

where f0 : Rd → R, E(Yij) = f0 (Xj), η(·) is a Gaussian process characterizing individ-

ual curve variations from f0 (·) with mean zero and Cov(η(Xj), η(Xj′)) := G(Xj,Xj′). Let

ϵi (Xj) = τ (Xj) εij , where εij’s are independent normal random variables and τ(X) is the

standard deviation function bounded above zero for any X ∈ [0, 1]d. By Mercer’s Theorem,

covariance function G(X,X′) has the following spectrum decomposition

G(X,X′) =
∞∑
k=1

λkψk(X)ψk(X
′),

where {λk}∞k=1 and {ψk(X)}∞k=1 are the eigenvalues and eigenfunctions of G(X,X′), and

{ψk(X)}∞k=1 are orthonormal bases in L2([0, 1]
d).

2.2.2 Deep Neural Networks

Before conducting the estimation of the mean function f0 in (2.1) via the DNN, let us briefly

introduce the necessary notations and terminologies used in the neural networks. From the

high level, typical DNN use a composition of a series of simple nonlinear functions to model

nonlinearity, i.e.,

hL = gL ◦ gL−1 ◦ . . . ◦ g1(x), x ∈ Rd, (2.2)

where ◦ denotes composition of two functions and L is called the number of hidden layers or

depth of a DNN model. One can define hl = gl(hl−1) for each 1 ≤ l ≤ L recursively and

h0 = x. “Deep” in deep neural networks refers to the use of multiple layers in the network.

In the feed-forward neural network, the information moves in only one direction-forward-from

the input layers, through the hidden layers and to the output nodes layers. In this kind of

neural nets, there is a specific choice of gl: gl(hl−1) = σ(Wlhl−1), l = 1, . . . , L, where Wl

is a pl × pl+1 weight matrix in the l-th layer and p = (p0, . . . , pL+1) is the width vector. The

12

nonlinear functionσ is called the activation function. Here, we study the popular rectifier linear

unit (ReLU) activation function applied element-wise [σ(x)]j = max(xj, 0), j = 1, . . . , d. For

any vector v = (v1, . . . , vd) ∈ Rd, define the shifted activation function σv : Rd → Rd as:

[σv(x)]j = σ(xj − vj), j = 1, . . . , d. We call v the activation vector. The DNN model is then

any function of the form is defined as f : Rp0 → RpL+1 ,

f(x) = WLσVL
WL−1σVL−1

. . .W1σV1W0x. (2.3)

To fit networks with data generated from the d-dimensional hypercube functional data model,

we must have p0 = d and pL+1 = 1. Without loss of generality, we assume for any f ∈ F , its

empirical norm is bounded, i.e., ∥f∥N =
(

1
N

∑N
j=1 f

2(xj)
)1/2

≤ Cf <∞.

Although the depth and width of the neural nets can be extremely deep and wide, over-

fitting and computational burden are serious problems in such networks. To overcome these

issues, the networks are modeled by assuming that each unit will be active only for a small

fraction of the data to avoid overfitting. Smaller weights in a neural network can result in a

model that is more stable and less likely to overfit the training dataset, in turn having better

performance when making a prediction on new data [99]. Therefore, we assume that there

are only few non-zero network parameters. Equivalently, we define the sparse neural networks

and add constrains on the maximum-entry norm and non-zero entries of weight matrix Wl and

activation vector vl. The sparse neural networks for our functional data model are given by

F(L,p, s) (2.4)

=

{
f(·) of the form (2.3) : max

l=0,...,L
∥Wl∥∞ + ∥vl∥∞ ≤ 1,

L∑
l=0

∥Wl∥0 + ∥vl∥0 ≤ s

}
,

where s > 0, ∥·∥∞ denotes the maximum-entry norm and ∥·∥0 denotes the number of non-zero

entries, respectively. Let v0 be a zero vector for simply notation. The selecting procedures of

unknown tuning parameters (L,p, s) shall be given in the Section 2.3.

13

2.2.3 Deep neural network estimator

In the functional data regression model, the common objective is to find an optimal estimator

by least-square loss function. In the neural network setting, this coincides with training neural

networks by minimizing the empirical risk over all the training data. In particularly, given the

networks in (2.4) and denote F = F(L,p, s), the proposed DNN estimator is defined as

f̂ = argmin
f∈F

1

N

N∑
j=1

{
Y ·j − f (Xj)

}2
, (2.5)

where Y ·j = 1
n

∑n
j=1 Yij . Different from classical nonparametric estimators, f̂ has no ana-

lytical expression or basis expansion expression. Hence, to better understand the reasons that

this DNN estimator has excellent performance, we first project f0 onto the network space F ,

namely, f ∗ := argminf∈F ∥f0− f∥∞. In other words, f ∗ is the best possible approximation of

f0 in F . Note that

1

N

N∑
j=1

(
Y ·j − f̂(Xj)

)2
≤ 1

N

N∑
j=1

(
Y ·j − f ∗(Xj)

)2
,

which is equivalent to

1

N

N∑
j=1

(
f0(Xj)− f̂(Xj) + ρ·j

)2
≤ 1

N

N∑
j=1

(
f0(Xj)− f ∗(Xj) + ρ·j

)2
,

where ρ·j = 1
n

∑n
i=1 ρij = 1

n

∑n
i=1 ηi (Xj) +

1
n

∑n
i=1 ϵi (Xj). Hence, we follow the conven-

tional approximation-estimation decomposition (or bias-variance tradeoff) to decompose the

empirical norm ∥f̂ − f0∥N = 1
N

∑N
j=1

(
f̂(Xj)− f0(Xj)

)2
as

∥f̂ − f0∥N ≤ 1

N

N∑
j=1

(f ∗(Xj)− f0(Xj))
2

︸ ︷︷ ︸
approximation error

+
2

N

N∑
j=1

(
f̂(Xj)− f ∗(Xj)

)
ρ·j︸ ︷︷ ︸

estimation error

. (2.6)

The above equation indicates that the empirical norm of the estimator is bounded by two items.

The first item is the approximation error and essentially determined by the distance between the

14

network class F and true function class f0, which can be arbitrarily small according to [128].

From statistical point of view, the second item is the estimation error and is a weighted average

of a random process. It is affected by the parameters in F , true mean function class, and the

characteristic of the error terms.

2.3 Implementation

In this section, we discuss the detailed computational procedure for the proposed DNN esti-

mator in (2.5). The following proposed computational procedure can be easily realized via

R package “FDADNN” which is available at https://github.com/FDASTATAUBURN/

FDADNN .

2.3.1 Neural network’s architecture selection

Tuning parameters are crucial as they control the overall behavior of the proposed estimator

and the learning process. In machine learning, those parameters are called network architec-

ture parameters. A neural network’s architecture can simply be defined as the number of layers

L, and the number of hidden neurons within these layers p. In our considered sparse neural

network space F , sparse parameter s should also be carefully selected. Note that in the prac-

tice, it’s unrealistic to control the exact number of inactive nodes, so instead of using sparse

parameter s, we add an L1 penalty to control the number of active nodes in each layer during

optimization procedure. Denote ζ as the L1 regularization factor. In the following, we utilize

ζ to replace sparse parameter s in the numerical analysis. The ultimate goal is to find an op-

timal combination of (L,p, ζ) that minimizes a pre-defined loss function to give better results.

There are fairly large numbers of literature discussing the optimization selection, such as grid

search, random search, and Bayesian optimization. Considering the computational efficiency

and statistical properties, we recommend the following data-adaptive selection procedure in

the practical application. The further justification of the optimization algorithm is beyond the

scope of this work and shall be anther interesting and challenge topic for the future work.

We set the same neuron numbers for each layer for simplicity, i.e. p = (p, . . . , p), and we

follow the rule that p is increasing as n and N are increasing. We use K-fold cross-validation

15

to choose (L, p, ζ), i.e.,

(Lopt, popt, ζopt) = arg min
(L,p,s)∈Θ

K∑
k=1

N∑
j=1

(
Ŷ

(−k)

·j (L, p, ζ)− Y
(k)

·j

)2

,

where Θ is a architecture parameter space which contains pre-selected choices of (L, p, ζ).

Typically, K = 5 or 10. For the k-th cross-validation, at the j-th grid point, Ŷ
(−k)

·j (L, p, ζ)

denotes the estimated output given (L, p, ζ) and Y
(k)

·j is the average of observations.

2.3.2 Training neural networks

The minimization in (2.5) is usually done via stochastic gradient descent (SDG). In a way

similar to gradient descent, in each update, a small sub-sample called a batch which is typically

of size B = 32 to 512, is randomly drawn and the gradient calculation is only on the sub-

sample instead of the whole training dataset. This saves considerably the computational cost in

calculation of gradient. By the law of large numbers, this stochastic gradient should be close

to the full sample one, albeit with some random fluctuations. We choose B = 32 or 64 batches

depending on the performance of convergence. A pass of the whole training set is called an

epoch. Typical choices of epochs are 200, 300 and 500. The number of epochs which defines

the number times that the learning algorithm works through the entire training data set.

There are certainly some challenges for SGD to train DNN. For example, albeit good the-

oretical guarantees for well-behaved problems, SGD might converge very slowly; the learning

rates are difficult to tune [2]. To address these challenges, several variants gradient-based op-

timization algorithms are introduced, such as Adam, RMSprop and Adadelta. Instead of

the classical SGD procedure, Adam is a method for efficient stochastic optimization that only

requires first-order gradients with little memory requirement. Hence, it is well suited for prob-

lems when there are large sample size and parameters [53]. In our numerical studies, Adam

provides the best results and is the most computationally efficient among these candidates. We

recommend Adam in the real life applications for FDA.

16

2.4 Theoretical properties of the DNN estimator

In this section, we develop the convergence rate of the proposed DNN estimator in (2.5). For

simple notations, log means the logarithmic function with base 2. For sequences (an)n and

(bn)n, an ≍ bn means an ≤ c1bn and an ≥ c2bn where c1 and c2 are absolute constants for any

n. Let CN = [G(Xj,Xj′)/N]Nj,j′=1 be the N × N kernel matrix corresponding to covariance

function G. We now introduce the main assumptions:

(A1) The true regression function f0 ∈ G (q,d, t,β,K). (The definition of G (q,d, t,β,K) is

given in the Appendix.)

(A2) The standard deviation function τ(·) is bounded for any x ∈ [0, 1]d.

(A3) The eigenvalues of G(·, ·) satisfy λ1 ≥ λ2 ≥ . . . ≥ 0 and
∑∞

k=1 λk < ∞. Moreover, the

maximal eigenvalue of the kernel matrix CN satisfies λ1,N = O(N−ϱ) for some constant

ϱ ≥ 0.

(A4) The DNN estimator f̂ ∈ F(L,p, s), whereL ≍ log(nNϱ), s ≍ (nNϱ)
1

θ+1 , minl=1,...,L pl ≍

(nNϱ)
1

θ+1 , for θ = mini=0,...,q
2β∗

i

ti
.

Assumption (A1) is a natural definition for neural network, which is fairly flexible and

many well known function classes are contained in it. For example, the additive model f0(x) =∑d
i=1 fi(xi), can be written as a composition of two functions f0 = g1 ◦ g0, with g0(x) =

(f1(x1), . . . , fd(xd))
⊤ and g1(x) =

∑d
j=1 xj , such that g0 : [0, 1]d → Rd and g1 : Rd → R.

Here d = (d, d, 1) and t = (1, d). The generalized additive model f0(x) = h
(∑d

i=1 fi(xi)
)

,

it can be written as a composition of three functions f0 = g2 ◦ g1 ◦ g0, with g0, g1 described

above, and g2 = h.

Assumption (A2) is a standard assumption for the variance of measurement errors, which

requires the bounded variance of measurement error over the whole space. This assumption

has been widely used in functional data nonparametric regression literature, see [21, 126] for

example. Assumption (A3) is a standard eigenvalue assumption for Mercer kernel and it is

widely used assumption for covariance functions in FDA literature, see [20, 63] for example.

17

We also provide two examples to demonstrate (A3) is a reasonable assumption in the supple-

mentary file. By [16], Assumption (A3) trivially holds for ϱ = 0 (see Proposition A.1 and A.2),

and may even hold for some positive ϱ as revealed by Examples 1 in Section A.1. Assumption

(A4) depicts the architecture and parameters’ setting in the network space.

We assume a natural compositional function class for the true mean function f0:

f0 = gq ◦ gq−1 ◦ . . . ◦ g1 ◦ g0,

where gi : [ai, bi]
di → [ai+1, bi+1]

di+1 , gi = (gij)
⊤
j=1,...,di+1

, i = 1, . . . , q, with unknown param-

eters di and q.

The following theorem establishes the convergence rate of the DNN estimator f̂ under the

empirical norm. Its proof and some technical lemmas will be provided in the supplementary

file.

Theorem 2.1. Under Assumptions (A1)-(A4), with probability greater than (1− 2
nNϱ)

⌈log(nNϱ)⌉+1 →

1, we have

∥f̂ − f0∥2N ≤ c(nNϱ)−
θ

θ+1 log6(nNϱ), (2.7)

where ϱ ≥ 0, θ = mini=0,...,q
2β∗

i

ti
, c is a constant only depends on t, d, β which are defined in

(A1) in the Appendix.

2.5 Simulation

To illustrate how the introduced nonparametric regression estimators based on our proposed

neural networks method behave in case of finite sample sizes, we conduct substantial simula-

tions for both 2D and 3D functional data.

2.5.1 2D simulation

In this simulation, the 2D images are generated from the model:

Yij = f0 (Xj) + η (Xj) + ϵi (Xj) , (2.8)

18

where Xj = (X1j, X2j) = (j1/N2, j2/N2), 1 ≤ j1, j2 ≤ N2 are equally spaced grid points on

the [0, 1]2 and N2
2 = N . To demonstrate the practical performance of our theoretical results,

we consider the following two mean functions:

• Case 1 : f0(x1j, x2j) = −8

1+exp(cot(x21j) cos(2πx2j))
,

• Case 2 : f0(x1j, x2j) = log (sin(2πx1j) + 2| tan(2πx2j)|+ 2),

and the corresponding images are shown in the first row of Figure 2.1. To simulate the within-

subject dependence for each subject i, we generate ηi (·) from a Gaussian process, with mean

0, and covariance function G0 (xj,xj′) =
∑2

k=1 cos (2π(xkj − xkj′)), j, j′ = 1, . . . , N . We

generate ϵi (xj) = εij ∼i.i.d. N (0, σ2) for i = 1, . . . , n, j = 1, . . . , N . The noise level is set

to be σ = 1, 2. We consider sample size n = 50, 100, 200 and for each image, let N2 = 15

or 25, which means for each 2D image, the number of observational points (pixels) is set to

be N = N2
2 = 225 or 625. The neural network (2.5) is trained through optimizer Adam with

architecture parameters (L, p, ζ) selected from L ∈ {3, 4}, p ∈ {100, 300, 500, 1000, 2000},

ζ ∈ {10−4, 10−5, 10−6, 10−7}. 10-fold cross-validation method discussed in Section 2.3 is

applied to select the optimal architecture parameters in each Monte Calro simulation. Epochs

are selected from 300 to 500 and batch size is chosen as 32. We find the convergence of

algorithms is promising.

The alternative approach for 2D case we considered is a 2D regression spline method

(bivariate spline). With regard to the variety of modifications of this approach known in the

literature, we focus on the version for 2D FDA in [57]. Let B⊤(x) = {Bm(x)}m∈M be the

set of bivariate Bernstein basis polynomials, where M stands for an index set of Bernstein

basis polynomials. Then we can represent any bivariate function f(x) by f(x) ≈ B⊤(x)γ

where γ⊤ = (γm,m ∈ M) is the bivariate spline coefficient vector. The estimator f̂BS is

implemented by the R package BPST, which was developed by the authors of [57].

The second and the third rows in Figure 2.1 depicts the proposed neural network estimator

f̂DNN and bivariate spline estimator f̂BS when n = 200, N = 625 and σ = 1. Table 2.1

summarizes the empirical L2 risk and standard deviation of estimators f̂DNN and f̂BS under

100 simulations for two different noise levels. From the above figures and table, one can see

19

that our method and the bivariate spline method have fairly similar estimation performances.

As the bivariate spline estimator is able to achieve the optimal nonparametric convergence

rate [121], the comparable estimation results in Tables 2.1 and 2.2 also support the asymptotic

convergence rate of our proposed estimator f̂DNN in Theorem 2.1.

Table 2.1: The average empirical L2 risk and their standard deviations of f0 (Case 1) across
100 simulation runs (2D case).

f0(x1j, x2j) =
−8

1+exp(cot(x21j) cos(2πx2j))

σ N n
DNN bivariate spline

L2 risk SD L2 risk SD

1

50 0.1327 0.1905 0.6030 0.0418
225 100 0.0797 0.1244 0.5757 0.0249

200 0.0432 0.0574 0.5584 0.0120
50 0.0770 0.0497 0.1497 0.0462

625 100 0.0535 0.0368 0.1136 0.0214
200 0.0352 0.0295 0.0987 0.0098

2

50 0.1880 0.1521 0.6564 0.1009
225 100 0.0918 0.0793 0.6035 0.0619

200 0.0593 0.0529 0.5765 0.0316
50 0.1594 0.1555 0.2241 0.1218

625 100 0.0862 0.0755 0.1430 0.0557
200 0.0420 0.0412 0.1098 0.0232

Table 2.2: The average empirical L2 risk and their standard deviations of f0 (Case 2) across
100 simulation runs (2D case).

f0(x1j, x2j) = log (sin(2πx1j) + 2| tan(2πx2j)|+ 2)

σ N n
DNN bivariate spline

L2 risk SD L2 risk SD

1

50 0.0731 0.0446 0.0804 0.0382
225 100 0.0437 0.0249 0.0517 0.0186

200 0.0254 0.0217 0.0351 0.0100
50 0.0560 0.0206 0.0751 0.0351

625 100 0.0351 0.0128 0.0541 0.0254
200 0.0245 0.0085 0.0383 0.0110

2

50 0.1190 0.0975 0.1290 0.0950
225 100 0.0829 0.0681 0.0931 0.0597

200 0.0348 0.0276 0.0464 0.0251
50 0.0573 0.0264 0.1213 0.0859

625 100 0.0331 0.0132 0.0827 0.0630
200 0.0139 0.0059 0.0502 0.0251

20

Case 1 Case 2

f0

f̂DNN

f̂BS

Figure 2.1: 2D simulation. Left: from the top to bottom, they are true function f0 (Case 1) and
its estimators f̂DNN and f̂BS . Right: from the top to bottom, they are true function f0 (Case 2)
and its estimators f̂DNN and f̂BS . (n = 200, N = 625 and σ = 1)

21

2.5.2 3D simulation

For 3D simulation, the images are generated from the model (2.8) in 2D case. The true

mean function is f0(x1j, x2j, x3j) = exp
(
1
3
x1j +

1
3
x2j +

√
x3j + 0.1

)
, where (x1j, x2j, x3j) =(

j1
N3
, j2
N ′

3
, j3
N ′′

3

)
, 1 ≤ j1 ≤ N3, 1 ≤ j2 ≤ N ′

3, 1 ≤ j3 ≤ N ′′
3 are equally spaced grid points

in each dimension on [0, 1]3 and N3N
′
3N

′′
3 = N . Here, we mimic the number of voxels of

the real data, which usually have different values for N3, N ′
3 and N ′′

3 . For each subject, the

within-imaging dependence ηi (·) is generated from a Gaussian process with mean 0, and co-

variance function G0 (xj,xj′) =
∑3

k=1 cos (2π(xkj − xkj′)), j, j′ = 1, . . . , N . Measurement

errors ϵi (·) are generated the same as 2D case. We consider sample size n = 50, 100, 200

and N = 3, 000 (20 × 15 × 10) and 4, 500 (30 × 15 × 10). Results of each setting are

based on 100 simulations. The training of neural networks architecture (L, p, s) follows the

same procedures as in 2D case. Architecture parameters (L, p, ζ) selected from L ∈ {3, 4},

p ∈ {100, 300, 500, 1000, 2000, 5000}, ζ ∈ {10−4, 10−5, 10−6, 10−7}. The triangularized bi-

variate splines method proposed in [121] are designed for 2D functions only. Extending spline

basis functions for 3D functional data is very sophisticated and to our best knowledge, it is not

available for 3D FDA yet. Hence, we only conduct 3D numerical analysis with our proposed

DNN method. To exam the performance of the estimator f̂ , we also summarizes the empiri-

cal L2 risk and standard deviation of estimators f̂DNN in Table 2.3. It is clear to find that the

empirical risk decrease when sample sizes or observed voxels numbers increase for both noise

levels, which supports our theoretical findings. The mean function f0 and its DNN estimator

are presented in Figure 2.2. It is easy to conclude that the DNN estimator follows the the same

pattern as the true mean function.

2.6 Real data analysis

The dataset used in the preparation of this article were obtained from the ADNI database

(adni.loni.usc.edu). The ADNI is a longitudinal multicenter study designed to develop

clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of

AD. From this database, we collect PET data from 79 patients in AD group. This PET dataset

22

f0

f̂DNN

Figure 2.2: Two different angles (Left and Right panels) to view the true mean function and the
DNN estimator in 3D simulation case. (n = 200, N = 4, 500, σ = 1)

Table 2.3: The average empirical L2 risk and their standard deviations of f0 across 100 simula-
tion runs (3D case).

σ N n L2 risk SD

1

50 0.0028 0.0020
3000 100 0.0011 0.0006

200 0.0006 0.0004
50 0.0007 0.0007

4500 100 0.0005 0.0007
200 0.0003 0.0004

2

50 0.0030 0.0024
3000 100 0.0012 0.0007

200 0.0007 0.0005
50 0.0009 0.0007

4500 100 0.0005 0.0008
200 0.0003 0.0005

has been spatially normalized and post-processed. These AD patients have three to six times

doctor visits and we only select the PET scans obtained in the third visits. Patients’ age ranges

from 59 to 88 and average age is 76.49. There are 33 females and 46 males among these 79 sub-

jects. All scans were reoriented into 79×95×69 voxels, which means each patient has 69 sliced

2D images with 79× 95 pixels. For 2D case, it means each subject has N = 7, 505 = 79× 95

23

observed pixels for each selected image slice. For 3D case, the observed number of voxels for

each patient’s brain sample is N = 79× 95× 69, which is more than 0.5 million.

For 2D case, we select the 20-th, 40-th and 60-th slices from 69 slices for each patient. We

first take average across 79 patients for each slices (the first row in Figure 2.3). Then, based on

the averaged images, we obtain the proposed DNN estimators for each slice (the second row

in Figure 2.3). We also recover the image with higher resolutions 512 × 512 pixels, instead

of the original 95 × 69 pixels for each slice (the third row in Figure 2.3). The neural network

(2.5) is trained through optimizer Adam with architecture parameters (L, p, ζ) selected from

L ∈ {3, 4}, p ∈ {500, 1000}, ζ ∈ {10−5, 10−6, 10−7}. 10-fold cross-validation method selects

the optimal architecture parameters Lopt = 3, popt = 1000 and ζopt = 10−7. We used 300 to

500 epochs and 2 to 8 as batch size given different slices.

In 3D case, on 79 patients, and total 79 × 95 × 69 voxels. Same as 2D case, we first

average the total 79 3D scans into one 3D scan, and then perform neural network to train the

model based on the averaged 3D image. In the bottom row of Figure 2.3, we break down the

recovered 3D image and show the recovered 20-th, 40-th and 60-th slices. The neural network

(2.5) is trained through optimizer Adam with architecture parameters (L, p, ζ) selected from

L ∈ {3, 4}, p ∈ {1000, 1500}, ζ ∈ {10−5, 10−6, 10−7}. 10-fold cross-validation method

selects the optimal architecture parameters Lopt = 4, popt = 1500 and ζopt = 10−7. According

to our numerical experience, we find 300 epochs and 64 batch size providing the reasonable

well results.

In Figure 2.4, we also recover the image in higher resolutions 128 × 128 × 128 voxels,

which means instead of the original 79× 95× 69 voxels, we can provide the estimated image

slices with higher resolution (128 × 128 pixels, instead of the original 79 × 95 pixels) at finer

grid points (128 points, instead of the original 69 points).

2.7 Discussion

In this work, we resolve the model misspecification issue in multi-dimensional FDA via the

promising technique from the deep learning domain. By properly choosing network architec-

ture, our estimator achieves the optimal nonparametric convergence rate in empirical norm. To

24

20-th 40-th 60-th

Avg

Low

High

3D

Figure 2.3: From top to bottom are averaged images {Y ·j}7505j=1 , recovered images f̂(x1j, x2j′),
j = 1, . . . , 79, j′ = 1, . . . , 95, recovered high resolution (128 × 128) images f̂(x1j, x2j),
j = 1, . . . , 128 and recovered images from 3D image. Left: The 20-th slices; Middle: The
40-th slices; Right: The 60-th slices.

25

1-st 17-th 33-th

49-th 65-th 81-th

97-th 113-th 128-th

Figure 2.4: Recovered higher resolutions of selected nine slices in 3D case.

26

our best knowledge, this is the first piece of work in FDA, which yields attractive empirical

convergence rate for multi-dimensional FDA, and at meanwhile is free from model misspeci-

fication. Numerical analysis demonstrates that our approach is useful in recovering the signal

for imaging data. Some interesting future works may include the functional linear regression

model and classification problems in the framework of DNN.

27

Chapter 3

Robust Deep Neural Network Estimation for Multi-Dimensional Functional Data

3.1 Introduction

We consider the problem of robust estimation of the location function from a collection of

functional observations defined over Rd (d ≥ 1) a multi-dimensional domain. To be precise,

let ξ = {ξ(X) : X ∈ I} be a compactly supported random field, i.e., a real-valued second-

order stochastic process on a compact set I ⊂ Rd. Such data are nowadays commonly referred

to as functional data. In many applications, data are collected over one-dimensional domains

(i.e., d = 1) such as time-varying trajectories and relevant research has been enjoying con-

siderable popularity. The readers are referred to some monographs [87, 115, 54, 46] for a

comprehensive overview of functional data analysis (FDA). Thanks to the improved capabili-

ties of data recording and storage, as well as advances in scientific computing and data science,

many new forms of functional data have emerged. Instead of traditional unidimensional func-

tional data, multi-dimensional functional data becomes increasingly common in various fields,

such as geographical science and neuroscience. For example, for the early detection and track-

ing of Alzermer’s diease, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu) contains each individual’s 3D brain-scans. Despite the promising

of multi-dimensional functional data, statistical methods for such data are limited, except for

very few existing works, for example, [24, 131, 25].

A fundamental problem in FDA is the estimation of central tendency, yet most current

estimation procedures either lack robustness with respect to the many kinds of anomalies one

can encounter in the functional setting or only focus on the robustness for unidimensional

28

scenario. The fact that robust estimation has not been widely investigated for multi-dimensional

scenario is certainly not owing to lack of interesting applications, but to the greater technical

difficulty to handle such loss function for multi-dimensional functional data and establish their

theoretical properties.

To give some background on our proposed method for multi-dimensional functional data,

we first review several relevant robust FDA methods that have been developed for analyzing

unidimensional functional data. [9, 59] proposed robust estimators for the functional prin-

cipal components by adapting the projection pursuit approach and based on MM estimation,

respectively. [76] established a robust version of spline-based estimators for a linear functional

regression model. [96] proposed a robust procedure based on convex and non-convex loss func-

tions in functional linear regression models. Recently, [65, 66] proposed robust estimators and

associated simultaneous confidence bands for the mean function of functional data using least

absolute deviation and M-estimation, respectively.

We notice that there are few exiting works on robust methods for analyzing so-called

two-way functional data which consist of a data matrix whose row and column domains are

both structured, as when the data are time series collected at different locations in space. For

example, [130] develop a robust regularized singular value decomposition method for analyzing

such special type functional data. It is formulated as a penalized loss minimization problem and

a pre-decided two-way roughness penalty function is used to ensure smoothness along each of

the two functional domains. As this method is only designed for the special two-way functional

data, it can not be adopted to the general multi-dimensional FDA directly. Furthermore, a lack

of theoretical analysis provides inadequate assurance to robust methods practitioners.

To remedy these deficiencies, we introduce the first class of optimal robust location esti-

mators based on the deep neural network (DNN) method. DNN is one of the most promising

and vibrate areas in deep learning. DNN has been recently applied in various nonparametric

regression problems recently, they have been shown to successfully overcome the curse of di-

mensionality in nonparametric regression; see [92, 11, 69, 70]. There are also some works

proposed for deep learning algorithms for FDA from the statistical point of view [104]. Based

on the sparsely connected DNN, [118] proposed a DNN estimator for the mean function from

29

functional data based on the least squares neural network regression. However, none of them

works on the robust statistics, not to mention the proven theoretical results for robust FDA.

The contributions of this work are three-fold. First, to the best of our knowledge, this is

the first work on proposing DNN based robust estimator for FDA. We propose a broad class of

M-type RDNN (robust DNN) estimators to estimate location functions for multi-dimensional

functional data. Second, RDNN estimators come with theoretical guarantees. In particular,

we study the rate of convergence of the estimator under weak assumptions and show that the

estimator is rate-optimal even for any d-dimensional functional data. By borrowing the strength

from the DNN, the convergence rate of the proposed RDNN estimator does not depend on the

dimension d. Finally, our analyses are fully nonparametric. At the meanwhile, RDNN estimator

does not suffer the curse-of-dimensionality which is a classical drawback in the traditional

nonparametric regression framework.

This chapter is structured as follows. Section 3.2 provides the model setting in FDA and

introduces multilayer feed-forward artificial neural networks and discusses mathematical mod-

eling. The implementation on hyperparameter selections also be included in Section 3.2. The

theoretical properties of the proposed RDNN estimator can be found in Section 3.3. Section 3.4

provides the detailed implementation on neural network’s architecture selecting and training. In

Section 3.5, it is shown that the finite sample performance of proposed neural network estima-

tor. The proposed method is applied to the spatially normalized positron emission tomography

(PET) data from ADNI in Section 3.6 and make some concluding remarks in Section 3.7. Tech-

nical proofs are collected in the Appendix.

3.2 The model and the robust deep neural network estimator

3.2.1 FDA model

Let us first assume the process
{
ξ(X),X ∈ [0, 1]d

}
is L2, i.e., E

∫
[0,1]d

ξ2(X)dX < +∞. In

the classical FDA setting, d = 1 refers to the index variable as time. When d = 2, 3, it could

also be a spatial variable, such as in image or geoscience applications. We model the multi-

dimensional functional data as noisy sampled points from a collection of trajectories that are

30

assumed to be independent realizations of a smooth random function ξ(X), with unknown mean

function f0(X) = E{ξ (X)}. We consider a version of the model that incorporates uncorrelated

measurement errors. Let ξ1, . . . , ξn denote n independent and identically distributed (i.i.d.)

copies of ξ at points X = (X1, . . . , Xd), 1 ≤ i ≤ n. Our goal is to recover the mean function

f0(Xj) from the noisy observations of the discretized functional data:

Yij = ξi (Xj) + ei (Xj) , i = 1, 2, . . . , n, j = 1, 2, . . . , N, (3.1)

where ei (Xj) are random noise variables. In [126, 21, 20], it is assumed that the noise variables

ei (Xj) are independent of the ξi and i.i.d. with zero mean and finite variance. However, we

allow for correlated errors that are not necessarily independent of the functional curves.

In terms of mean-deviations, model (3.1) can be equivalently written as

Yij = f0 (Xj) + ϵi (Xj) , i = 1, 2, . . . , n, j = 1, 2, . . . , N, (3.2)

where ϵi(Xj) = ξi (Xj) − E{ξi (Xj)} + ei(Xj) denotes the error process associated with the

i-th response evaluated at Xj . The problem is thus reformulated as a regression problem with

repeated measurements and possibly correlated errors. In the following, for simple notations,

we consider the equally spaced design. The main results can be extended to irregular spaced

design.

3.2.2 Robust deep neural network estimator

We first briefly introduce the necessary notations and terminologies used in the neural networks.

Popular choice of activation functions includes rectified linear unit (ReLU), sigmoid, and tanh.

In this article, we will mainly focus on neural networks with the ReLU activation function, i.e.,

σ(x) = (x)+ for x ∈ R. For any real vector y = (y1, . . . , yr)
⊤, define the shift activation

function σ(y) = (σ(y1), . . . , σ(yr))
⊤. For an integer L ≥ 1 and p = (p0, p1, . . . , pL, pL+1) ∈

NL+2, let F(L,p) denote the class of DNN, with L hidden layers and pl nodes on hidden layer

l, for l = 1, . . . , L. We consider the feed-forward neural network class, and any f ∈ F(L,p)

31

has a composition structure, i.e.,

f(x) = WLσ (WL−1 . . . σ (W1σ (W0x+ u0) + u1) + . . .+ uL−1) + uL, x ∈ Rd, (3.3)

where Wl ∈ Rpl+1×pl are weight matrices and ul ∈ Rpl are shift vectors, for l = 1, . . . , L.

Owing to the large capacity of neural network class, it tends to overfit the training dataset easily.

To avoid the overfitting and reduce the computational burden, we train the robust estimator

using the following s-sparse ReLU DNN class:

F(L,p, s)

=

{
f ∈ F(L,p) :

L∑
l=0

∥Wl∥0 + ∥ul∥0 ≤ s, max
l=0,...,L

∥Wl∥∞ + ∥ul∥∞ ≤ 1,

∥f∥∞ ≤ 1} , (3.4)

where ∥ · ∥∞ denotes the maximum-entry norm of a matrix/vector or supnorm of a function,

∥ · ∥0 denotes the number of non-zero entries of a matrix or vector, s > 0 controls the number

of nonzero weights and shift. The selecting procedures of unknown tuning parameters (L,p, s)

shall be given in Section 3.4. To simplify the notations, we write F instead of F(L,p, s) in the

following.

In the regression model, the common objective is to find an optimal estimator by mini-

mizing a loss function. In the DNN setting, this coincides with training neural networks by

minimizing the empirical risk over all the training data. In particularly, given the networks in

(3.4), the proposed RDNN estimator is defined as

f̂ = argmin
f∈F

1

nN

n∑
i=1

N∑
j=1

ρ (Yij − f (Xj)) , (3.5)

where ρ is some convex nonnegative loss function satisfying ρ(0) = 0 and F is some function

class. This formulation is very general, allowing the flexibility in the choice of the loss function,

so that better resistance towards outlying observations is achieved. One of the well-known

examples of such loss functions is Huber’s loss function given by ρk(x) = x2/2I(|x| ≤ k) +

32

k(|x| − k/2)I(|x| > k), where I(·) is the indicator function, and k > 0 controls the blending

of square and absolute losses. Furthermore, the symmetry of the loss function in (3.5) is not

required, such versatile estimators may be readily incorporated into the present framework.

Indeed, to estimate conditional quantiles, one would only need to select the loss function as

ρ(x) = x(τ − I(x < 0)) for some τ ∈ (0, 1). Finally, the asymptotic properties of quantile

estimators are covered by the theory developed in Section 3.3.

3.3 Theoretical properties of the RDNN estimator

3.3.1 Definitions and notations

Define the ball of β-Hölder functions with radius K as

Cβd (D,K) = { f : D ⊂ Rd → R :∑
α:|α|<β

∥∂αf∥∞ +
∑

α:|α|=⌊β⌋

sup
x,y∈D,x̸=y

|∂αf(x)− ∂αf(y)|
|x− y|β−⌊β⌋

∞
≤ K

 ,

where ∂α = ∂α1 . . . ∂αd with α = (α1, . . . , αd) ∈ Nd and |α| := |α|1.

We assume the true location function f0 has the natural composition structure, i.e.,

f0 = gq ◦ gq−1 ◦ . . . ◦ g1 ◦ g0,

where gℓ : [aℓ, bℓ]
dℓ → [aℓ+1, bℓ+1]

dℓ+1 , gℓ = (gℓj)
⊤
j=1,...,dℓ+1

, ℓ = 1, . . . , q, with unknown

parameters dℓ and q. We assume each gℓj is βℓ-Hölder function with radius Kℓ. Let tℓ be the

maximal number of variables on which each of the gℓj depends on tℓ, and tℓ ≤ dℓ. Since gℓj is

also tℓ-variate, the true underlying function space becomes

G (q,d, t,β,K)

:= { f = gq ◦ . . . ◦ g0 : gℓ = (gℓj)j : [aℓ, bℓ]
dℓ → [aℓ+1, bℓ+1]

dℓ+1 ,

gℓj ∈ Cβℓtℓ
(
[aℓ, bℓ]

tℓ , Kℓ

)
, |aℓ|, |bℓ| ≤ Kℓ } , (3.6)

33

with d := (d0, . . . , dq+1), t := (t0, . . . , tq), β := (β0, . . . , βq), K := (K0, . . . , Kq) and β∗
ℓ :=

βℓ
∏q

k=ℓ+1(βk ∧ 1).

3.3.2 Assumptions

In this section, we develop the convergence rate of the proposed RDNN estimator in (3.5). For

simple notations, log denotes the logarithmic function with base 2. For sequences (an)n and

(bn)n, an ≍ bn means an ≤ c1bn and an ≥ c2bn where c1 and c2 are absolute constants for any

n.

We now introduce the main assumptions:

(A1) The true regression function f0 ∈ G (q,d, t,β,K).

(A2) The RDNN estimator f̂ ∈ F(L,p, s), whereL ≍ log(nNν), s ≍ (nN ν)
1

θ+1 , minl=1,...,L pl ≍

(nNν)
1

θ+1 , for θ = minℓ=0,...,q
2β∗

ℓ

tℓ
and ν ≥ 0.

(A3) The loss function ρ is an absolutely continuous convex function on R with derivative ψ

existing almost everywhere.

(A4) There exist finite constants κ and c1 such that for all x ∈ R and |x′| < κ, |ψ(x + x′) −

ψ(x)| < c1.

(A5) There exist a finite constant c2 such that supj≤N E{|ψ(ϵ1j + u) − ψ(ϵ1j)|2} < c2|u|, as

|u| → 0.

(A6) supj≤N E{(ψ(ϵ1j))2} = O(N−ν), for some constant ν ≥ 0, and E{ψ(ϵ1j)} = 0. There

exist finite constants δj , j = 1, . . . , N such that 0 < infj≤N δj ≤ supj≤N δj < ∞ and

supj≤N |E{ψ(ϵ1j + u)} − δju| = o(u), as |u| → 0.

Assumption (A1) is a natural definition for the neural network, which is fairly flexible and

many well known function classes are contained in it. For example, the generalized additive

model f0(x) = h
(∑d

i=1 fi(xi)
)

, can be written as a composition of three functions f0 =

g2 ◦g1 ◦g0, with g0(x1, . . . , xd) = (f1(x1), . . . , fd(xd)), g1(x1, . . . , xd) =
∑d

i=1 xi, and g2 = h.

Assumption (A2) depicts the architecture and parameters’ setting in the network space. To use

34

discontinuous score functions, Assumptions (A3)-(A6) impose some regularity on the error

process and its finite-dimensional distributions. In particularly, Assumptions (A3) guarantees

the existence of the solution of the optimization problem in (3.5). Most of the loss functions

chosen in practice satisfy this condition, such as the Huber loss function. Assumptions (A4)

and (A5) require boundedness and some regularity of the score function, which are standard

conditions for M-estimation procedures for FDA, see the similar conditions required in [65].

For the first part of Assumption (A6), when considering the classical L2 loss, it essentially

makes sure the largest element of the covariance function is finite and decreases when the

number of measurements increases. They are standard regularity conditions for the covariance

functions in FDA literature, see [20, 65, 118] for example. The second part of Assumption

(A6) essentially requires that for any j = 1, . . . , N , function hj(u) = E{ψ(ϵ1j + u)}, is

differentiable with strictly positive derivative at the origin. This is a necessary condition for the

minimum to be well-separated in the limit. Assumption (A6) on the score function ψ is also

standard conditions in M-estimation for functional data literature, see [65, 50]. It is also not

stringent assumptions for errors, for example, ϵij’s following a zero mean Gaussian process or

mixture Normal–Cauchy distribution. We provide more detailed examples for ϵij’s in Section

3.5.

3.3.3 Unified rate of convergence

The following theorem establishes the unified convergence rate of the RDNN estimator f̂ for

any multi-dimensional functional data under the empirical norm. Its proof and some technical

lemmas are provided in the Appendix.

Theorem 3.1. Under Assumptions (A1)-(A6), we have

∥f̂ − f0∥2N = Op(nN
ν)−

θ
θ+1 log6(nNν), (3.7)

where ν ≥ 0, θ = minℓ=0,...,q
2β∗

ℓ

tℓ
.

It is interesting to observe that Theorem 3.1 obtains the same rate of convergence derived

in non-robust estimation in [118].

35

3.4 Implementation

Different from classical nonparametric estimators, f̂ has no analytical expression or basis ex-

pansion expression. The proposed robust estimator is constructed using the neural network

class which is fully characterized by the architectures (L,p, s). In this section, we provide the

detailed computational procedure for the proposed RDNN estimator in (3.5).

3.4.1 Neural network’s architecture selection

In the DNNs’ computations, tuning parameters are crucial as they control the overall behav-

ior of the proposed estimator and the learning process. The tuning parameters are so-called

network architecture parameters, which include the number of layers L, the number of hidden

neurons within these layers p, and sparse parameter s. There are fairly rich literature discussing

the optimization selection, such as grid search, random search, and Bayesian optimization.

Nevertheless, the selection of network architecture parameters has been rarely discussed. In

practice, some model selection methods such as cross-validation may have good performances,

but with huge computational burdens. For this reason, considering both the computational effi-

ciency and the theoretical guarantee, we select architecture parameters based on Theorem 3.1.

Particularly, let ν = 1
2

and θ = 1
2

in Assumption (A2), and choose L = ⌈0.5 log(nN1/2)⌉,

pl = ⌈10n1/2N1/4⌉, s = ⌈5n1/2N1/4⌉L. The specific choice of ν and θ includes a large scope

of true function classes. Note that in our considered sparse neural network space F , the sparse

parameter s should be carefully selected. When designing the network architecture practically,

the dropout rate is suggested as ⌈5n1/2N1/4⌉(⌈10n1/2N1/4⌉)−1 in each layer during the opti-

mization procedure.

3.4.2 Training neural networks

The minimization in (3.5) is generally a computational cumbersome optimization problem ow-

ing to non-linearities and non-convexities. The most commonly used solution utilises stochastic

gradient descent (SGD) to train a neural network. SGD uses a batch of a specific size, that is,

a small subset of the data (typical size B = 22 to 210) is randomly drawn at each iteration

36

of optimization to evaluate the gradient, to alleviate the computation hurdle. Our input size

of network is nN , thus we choose relatively large batches B from 256 to 512 depending on

the performance of convergence. A pass of the whole training set is called an epoch. Typical

choices of epochs are 200, 300 and 500. The number of epochs defines the number of times

that the learning algorithm works through the entire training dataset. The step of the deriva-

tive at each epoch is controlled by the learning rate which is 0.001. The readers are referred to

recent monographs ([35]) for a general discussion of these numerical challenges. There are cer-

tainly some challenges for SGD to train DNN. For example, albeit good theoretical guarantees

for well-behaved problems, SGD might converge very slowly; the learning rates are difficult

to tune ([2]). To address these challenges, several variants gradient based optimization algo-

rithms are introduced, such as Adam, RMSprop and Adadelta. Instead of the classical SGD

procedure, Adam is a method for efficient stochastic optimization that only requires first-order

gradients with little memory requirement . Hence, it is well suited for problems when there

are large sample sizes and parameters ([53]), and is widely used in network training for func-

tional data, such as [118]. In our numerical studies, Adam provides the best results and is the

most computationally efficient among these candidates. We recommend Adam in the real-life

applications.

3.5 Simulation

To illustrate the finite sample performance of the introduced RDNN estimators based on our

proposed neural networks method, we conduct substantial simulations for both 2D and 3D func-

tional data. All experiments are conducted in R. We summarize R codes and examples for the

proposed RDNN algorithms on GitHub (https://github.com/FDASTATAUBURN/RDNN).

3.5.1 2D simulation

The 2D functional data are generated from the model:

Yij = f0 (Xj) + ϵij, (3.8)

37

where the true mean function f0(xj) = −8
[
1 + exp

{
cot(x21j) cos(2πx2j)

}]−1, and xj =

(j1/N2, j2/N2), 1 ≤ j1, j2 ≤ N2, are the equally spaced grid points on [0, 1]2, and N2
2 = N .

The error term is ϵij = η(Xj)+ eij , where η(·) is generated from a Guassian process, with zero

mean and covariance function G0(xj,xj′) =
∑2

k=1 cos(2π(xkj − xkj′)), j, j′ = 1, . . . , N . The

measurement errors eij’s are i.i.d. standard normal random variables.

Under the proposed functional model (3.5.1), we introduce outlier hyper-surfaces to the

generated functional sample by randomly contaminating a subset, Ro, of the original sample.

The contamination proportion r is chosen to be 0, 0.1 and 0.2. The similar simulation setting

has been considered in [65, 66]. We consider the following four types of outliers, i.e., two

surface outliers and two heavy-tailed distributed outliers. They mimic the types of noised data

usually encountered in the real dataset in Section 2.6.

Case 1: Stripe outliers To simulate outliers on a stripe in 2D regions, the contamination occurs

on a line segment a0 × I, that is,

Y o
ij∗ = Yij∗ + ϵoij∗ , i ∈ Ro, j∗1/N2 = a0, j∗2/N2 ∈ I,

where ϵoij∗ ∼ U (10, 20). In this simulation, a0 = 0.2, and we choose (i) I = ∪5
k=1

[
2k−2
10

, 2k−1
10

)
,

and (ii) I = [0, 1].

Case 2: Square outliers To simulate outliers on a consecutive 2D region, the contamination

occurs on a square [a0, a1]
2, that is,

Y o
ij∗ = Yij∗ + ϵoij∗ , i ∈ Ro, (j∗1/N2, j

∗
2/N2) ∈ [a0, a1]

2

where ϵoij∗ ∼ U (10, 20). In the simulation, we choose (i) [a0, a1]
2 = [0.1, 0.3]2, and (ii)

[a0, a1]
2 = [0.1, 0.5]2.

Case 3: Mixture Normal–Cauchy To simulate outliers with heavy-tailed distribution, the dis-

tribution of ϵoij∗’s follow a mixture of a normal distribution N(0, 1) and a Cauchy distri-

bution with location 0 and scale 0.5. The mixture rates are (i) 0.3, and (ii) 0.5.

38

Case 4: Mixture Normal–Slash Similar to previous case, but using a mixture of a normal dis-

tributionN(0, 1) and a Slash distribution with location 0 and scale 0.5. The mixture rates

are (i) 0.3, and (ii) 0.5.

We consider sample size n = 50, 100, 200. For each image, let N2 = 10, implicating the

number of observational points (pixels) is set to be N = N2
2 = 100. The network architecture

is determined in a data driven way as suggested in Section 3.4.1, and we use Huber’s loss

function with tuning parameter 1 for RDNN estimator in (2.5). The results of each setting

are based on 100 Monte Carlo simulations. Figures 3.1 presents heat maps of a typical set of

the true mean function and abnormal observations, along with the estimations of RDNN and

DNN estimators. From Table 3.1, we can see that when training the clean data, DNN method

has comparable L2 risks with RDNN estimators. These risks decrease as the sample size n

increases. However, when contamination is involved, Table 3.2 shows that the risks of DNN

estimators elevated drastically, while RDNN ones keep consistent results. In addition, although

increasing either contamination rate r or contamination areas on a stripe raises the risks, we

can see that RDNN estimators perform steady and remains relatively small L2 risks even given

20% data contain anomalies. From Table 3.2, we can also see that when contamination occurs

in a square region, the same trend is revealed, as previous discussion. It is worth mentioning

that when r = 0.2, for the contaminated region [0.1, 0.5]2, DNN estimators has extremely

large risks, which are more than 10 times of ones of RDNN. Similar findings can be concluded

from Table 3.3, where the random errors following non-Gaussian heavy-tail distributions. The

RDNN estimator best mitigates the effect of this contamination relative to its competitors.

Overall, the present simulation experiments suggest that RDNN perform well in clean data and

safeguard against outlying observations either in the form of outlying surfaces or heavy-tailed

measurement errors.

Table 3.1: Empirical L2 risk of 2D uncontaminated data with standard errors in brackets.
n RDNN DNN
50 0.114 (0.040) 0.125 (0.049)

100 0.059 (0.029) 0.055 (0.028)
200 0.034 (0.016) 0.031 (0.017)

39

f0

outliers

DNN

RDNN

Figure 3.1: 2D simulation for mixed Cauchy and mixed Slash distribution. The first row: true
function f0; The second row to forth row present the contaminated data Y O, DNN estimations
, RDNN estimations. From left to right, the observed data are generated from Case 1 (i) and
(ii), Case 2 (i) and (ii).

40

f0

outliers

DNN

RDNN

Figure 3.2: 2D simulation for mixed Cauchy and mixed Slash distribution. The first row: true
function f0; The second row to forth row present the contaminated data Y O, DNN estimations
, RDNN estimations. From left to right, the observed data are generated from Case 3 (i) and
(ii), Case 4 (i) and (ii).

41

Table 3.2: Empirical L2 risk of 2D contaminated data in Cases 1 and 2 with standard errors in
brackets.

contaminated regions n r = 0.1 r = 0.2
RDNN DNN RDNN DNN

stripe

50 0.115 (0.048) 0.179 (0.078) 0.128 (0.055) 0.329 (0.095)
∪5
k=1

[
2k−2
10

, 2k−1
10

)
100 0.055 (0.023) 0.102 (0.033) 0.065 (0.033) 0.252 (0.055)
200 0.032 (0.015) 0.081 (0.024) 0.041 (0.018) 0.257 (0.043)
50 0.137 (0.066) 0.311 (0.081) 0.151 (0.051) 0.864 (0.164)

[0, 1] 100 0.064 (0.027) 0.240 (0.055) 0.088 (0.029) 0.842 (0.112)
200 0.036 (0.015) 0.226 (0.032) 0.064 (0.023) 0.848 (0.084)

square

50 0.118 (0.048) 0.260 (0.093) 0.154 (0.071) 0.664 (0.170)
[0.1, 0.3]2 100 0.065 (0.033) 0.195 (0.059) 0.069 (0.025) 0.754 (0.107)

200 0.038 (0.019) 0.195 (0.042) 0.054 (0.022) 0.752 (0.091)
50 0.151 (0.060) 0.657 (0.159) 0.234 (0.080) 2.014 (0.297)

[0.1, 0.5]2 100 0.078 (0.042) 0.533 (0.111) 0.134 (0.063) 2.070 (0.248)
200 0.046 (0.023) 0.550 (0.091) 0.108 (0.042) 2.172 (0.191)

Table 3.3: Empirical L2 risk of 2D contaminated data in Cases 3 and 4 with standard errors in
brackets.

error types n mixture rate= 0.3 mixture rate= 0.5
RDNN DNN RDNN DNN

50 0.186 (0.069) 0.665 (0.959) 0.191 (0.069) 1.343 (3.193)
Cauchy 100 0.097 (0.044) 0.289 (0.265) 0.104 (0.586) 0.586 (0.799)

200 0.051 (0.029) 0.140 (0.175) 0.053 (0.024) 0.104 (0.066)
50 0.142 (0.065) 0.456 (0.686) 0.136 (0.071) 0.949 (2.022)

Slash 100 0.074 (0.033) 0.419 (0.948) 0.071 (0.033) 0.822 (1.533)
200 0.054 (0.027) 0.304 (0.617) 0.055 (0.029) 0.544 (1.004)

3.5.2 3D simulation

For 3D simulation, the functional data are generated from the model (3.8). The true mean func-

tion is f0(xj) = f0(x1j, x2j, x3j) = exp
(
1
3
x1j +

1
3
x2j +

√
x3j + 0.1

)
, where xj = (x1j, x2j, x3j) =

(j1/N3, j2/N3, j3/N3), 1 ≤ j1, j2, j3 ≤ N3, are equally spaced grid points in [0, 1]3 and

N = N3
3 = 53. Generate η(·) from a Guassian process, with zero mean and covariance function

G0(xj,xj′) =
∑3

k=1 cos(2π(xkj − xkj′)), j, j′ = 1, . . . , N , and the measurement errors eij’s

are i.i.d. random variables generated from standard normal distribution. To contaminate the

clean data, we apply the similar settings in Section 3.5.1.

42

Case 5 To simulate outliers on a consecutive 3D region, the contamination occurs on a square

[a0, a1]
3, that is,

Y o
ij∗ = Yij∗ + ϵoij∗ , i ∈ Ro, (j∗1/N3, j

∗
2/N3, j

∗
3/N3) ∈ [a0, a1]

3

where ϵoij∗ ∼ U (10, 20). In the simulation, we choose [a0, a1]
3 = [0.10, 0.20]3 and

[0.10, 0.30]3 for different contamination proportions.

Case 6 Mixture Normal–Cauchy Similar to case 3, the distribution of ϵoij∗’s follow a mixture

of a normal distribution N(0, 1) and a Cauchy distribution with location 0 and scale 0.5.

The mixture rates are (i) 0.3, and (ii) 0.5.

Case 7: Mixture Normal–Slash Similar to case 4, the distribution of ϵoij∗’s follow a mixture of

a normal distribution N(0, 1) and a Slash distribution with location 0 and scale 0.5. The

mixture rates are (i) 0.3, and (ii) 0.5.

The results of each setting are based on 100 Monte Carlo simulations for sample sizes

are 50, 100, and 200. For reference, Table 3.4 shows the average of empirical L2 risks for

clean data. We find that when data are clean, both of RDNN and DNN provide comparable

estimations results, and the empirical risk decreases as the sample size increases. Tables 3.5

and 3.6 report the average of empirical L2 risks for cases 6 and 7. As expected, non-robust

DNN estimator has explosive risks, which are around three times of those for uncontaminated

data. Similar to the 2D cases, either enlarging the contaminated region or the contamination

proportion increases risk with DNN estimators. The precision of the RDNN estimator is kept at

the same level as all outlier types and the clean dataset. This provides strong evidence that the

proposed RDNN estimator is less sensitive to the presence of outliers, maintaining precision.

In the worst case, the risks of RDNN estimator has increased no more than four times, however,

the non-robust one has increased around 20 times compared with the clean data scenarios.

43

Table 3.4: Empirical L2 risk of 3D uncontaminated data with standard errors in brackets.
n RDNN DNN
50 0.103 (0.050) 0.090 (0.045)

100 0.055 (0.033) 0.047 (0.023)
200 0.027 (0.013) 0.026 (0.018)

Table 3.5: Empirical L2 risk of 3D contaminated data for cases 5 with standard errors in brack-
ets.

Contaminated n r = 0.1 r = 0.2
regions RDNN DNN RDNN DNN

50 0.111 (0.049) 0.204 (0.066) 0.119 (0.052) 0.515 (0.107)
[0.10, 0.20]3 100 0.056 (0.028) 0.155 (0.041) 0.078 (0.033) 0.539 (0.067)

200 0.033 (0.018) 0.148 (0.029) 0.049 (0.017) 0.571 (0.058)
50 0.118 (0.060) 0.463 (0.104) 0.173 (0.055) 1.598 (0.212)

[0.10, 0.30]3 100 0.066 (0.032) 0.472 (0.092) 0.135 (0.052) 1.925 (0.160)
200 0.042 (0.017) 0.478 (0.077) 0.103 (0.033) 1.942 (0.156)

3.6 Real data analysis

The dataset used in the preparation of this article were obtained from the ADNI database

(adni.loni.usc.edu). The ADNI is a longitudinal multicenter study designed to develop

clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of

AD. From this database, we collect PET data from 85 patients in AD group. This PET dataset

has been spatially normalized and post-processed. These AD patients have three to six times

doctor visits and we only select the PET scans obtained in the third visits. Patients’ age ranges

from 59 to 88 and average age is 76.49. All scans were reoriented into 79 × 95 × 69 voxels,

Table 3.6: Empirical L2 risk of 3D contaminated data for cases 6 and 7 with standard errors in
brackets.

error types n mixture rate= 0.3 mixture rate= 0.5
RDNN DNN RDNN DNN

50 0.130 (0.072) 0.526 (1.421) 0.134 (0.073) 0.804 (2.805)
Cauchy 100 0.066 (0.035) 0.459 (0.953) 0.062 (0.036) 0.535 (1.295)

200 0.043 (0.023) 0.163 (0.267) 0.045 (0.026) 0.418 (0.907)
50 0.128 (0.062) 0.753 (2.220) 0.125 (0.057) 0.787 (1.938)

Slash 100 0.066 (0.042) 0.403 (0.887) 0.068 (0.049) 0.760 (1.458)
200 0.049 (0.036) 0.321 (0.771) 0.047 (0.030) 0.587 (1.312)

44

which means each patient has 69 sliced 2D images with 79×95 pixels. For 2D case, it indicates

that each subject has N = 7, 505 = 79× 95 observed pixels for each selected image slice.

In this imaging dataset, we observe that there exists a few abnormal observations, which

have different pattern from the majority of data. In Figure 3.3, the first row demonstrates the

averaged images of the 20-th, 30-th, 40-th, and 50-th slices across all patients. In the second

row, images are taken from different individuals, where extreme small values showing in certain

regions, which lead to blur boundaries. For the 2D case, we select the 20-th, 30-th, 40-th and

50-th slices from 69 slices for each patient, and apply the proposed RDNN for each slice,

respectively, with loss function ρτ (x) = x (τ − I(x < 0)) with τ = 0.1, 0.3, 0.5, 0.7, 0.9. The

neural network (2.5) is trained through optimizer Adam with architecture parameters (L, p, s)

selected as discussed in 3.4.1. We used 100 epochs and 128 as batch size given different data.

Based on the images, we obtain the proposed RDNN estimators for each slice, and also recover

the image with the original resolution 79 × 95 pixels and a higher resolution 128 × 128. To

visualize the estimates, Figures 3.4 provides the heat maps of the RDNN estimator of different

quantiles for all four slices in 2D scenario, Figure 3.5 depicts the same estimates but with a

finer resolution (128 × 128). For 3D scenario, we combine all the four slices together, hence,

the 3D data totally contains 79 × 95 × 4 voxels. We first obtain the RDNN estimators with

the original resolution and recover them also in a higher resolution 128 × 128 × 4. Figures

3.6 and 3.7 depict the RDNN estimators in the original resolution and higher resolution for

each slice and quantile, respectively. The estimated quantiles serve to confirm the suspected

multi-modality in this imaging data. According to the heat maps, in 20-th, 30-th, and 40-th

slices, higher quantiles significantly differ from lower ones in that there are much larger value

presenting in the bottom regions. In 50-th slice, higher quantiles can be easily distinguished

from lower ones in terms of overall larger values and wider boundaries.

3.7 Discussion

In this work, we resolve the robust estimation for functional data on multi-dimensional domains

via the promising technique from the deep learning. By properly choosing network architec-

ture, our estimator achieves the optimal nonparametric convergence rate in empirical norm. To

45

20-th 30-th 40-th 50-th

Average

Outliers

Figure 3.3: The first row are the averaged images for 20-th, 30-th, 40-th and 50-th slices across
all patients. The rest are some abnormal data for each slices from some patients.

the best of our knowledge, the present work is the first work on multi-dimensional functional

data robust estimation with provable guarantees. Numerical analysis demonstrates that our

approach is useful in recovering the signal for imaging data.

46

20-th 30-th 40-th 50-th

10%

30%

50%

70%

90%

Figure 3.4: 2D quantile esimators with 79 × 95 pixels. From the left to the right: the 20-th,
30-th, 40-th, and 50-th slices. From the top to the bottom: (10% , 30% , 50% , 70%, 90%)-
quantiles.

47

20-th 30-th 40-th 50-th

10%

30%

50%

70%

90%

Figure 3.5: 2D quantile esimators with 128 × 128 pixels. From the left to the right: the 20-th,
30-th, 40-th, and 50-th slices. From the top to the bottom: (10% , 30% , 50% , 70%, 90%)-
quantiles.

48

20-th 30-th 40-th 50-th

10%

30%

50%

70%

90%

Figure 3.6: 3D quantile estimators with 79 × 95 pixels. From the left to the right: the 20-th,
30-th, 40-th, and 50-th slices. From the top to the bottom: (10% , 30% , 50% , 70%, 90%)-
quantiles.

49

20-th 30-th 40-th 50-th

10%

30%

50%

70%

90%

Figure 3.7: 3D quantile estimators with 128× 128 pixels. From the left to the right: the 20-th,
30-th, 40-th, and 50-th slices. From the top to the bottom: (10% , 30% , 50% , 70%, 90%)-
quantiles.

50

Chapter 4

Optimal Classification for Functional Data

4.1 Introduction

Functional classification has applications in many areas such as machine learning, chemimet-

rics and artificial intelligence [98, 60, 90, 23]. A variety of functional classification techniques

have been proposed such as logistic regression [5], distance-based classifiers [40, 42], k-nearest

neighbor classifiers [13, 14], Bayesian classifiers [62, 30], data depth based classifiers [29, 93],

functional linear or quadratic discriminant analysis [95, 85], and projection-based methods

[28, 32]. Recent monographs by [80, 115] provide comprehensive and general discussions on

this topic.

Existing works on functional classification have been merely focusing on the construction

of classifiers that achieve perfect classification phenomenon in the sense that the probability

of misclassifying a new data function converges to zero asymptotically. For instance, [31]

established perfect classification of a linear centroid classifier and suggested a practical repre-

sentation using components obtained from functional principal component analysis and partial

least squares; [30] proposed to use density ratios of projections on a sequence of eigenfunc-

tions that are common to the two populations and showed the perfect classification property;

[33] studied perfect classification property when the data functions are observed on different

domains; [12] further clarified the near-perfect classification phenomenon in a reproducing ker-

nel Hilbert space framework for Gaussian processes. As revealed by [30], perfect classification

is only achievable when the two populations are sufficiently separated from each other in the

51

sense that the infinite series characterizing the distance between the mean functions or covari-

ance functions is divergent. When both series are convergent, perfect classification is no longer

achievable which we call it as the imperfect classification problem. In imperfect classifica-

tion, the risk of any classifier, including the optimal Bayes classifier, does not tend to zero.

Therefore, the theory of perfect classification is no longer valid.

In this chapter, we study functional classification problem through minimax optimality

which will address the above issue. Specifically, we derive sharp convergence rates of minimax

excess risk (MER) for classifying Gaussian functional data. MER framework is able to accom-

modate imperfect classification since it allows for nonvanishing classification risk. Moreover,

the derived optimal rates for MER may serve as a gold standard to evaluate the performance of

any functional classifiers.

Discriminant analysis is one of the most popular classification techniques in statistics and

machine learning due to its simplicity and effectiveness, therefore, it would be interesting to

investigate whether it is able to achieve minimax optimality. In low-dimensional regime, lin-

ear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) have been well

studied in both theoretical and applied aspects [3]. In high-dimensional regime, despite recent

methodological development, there has been relatively few fundamental studies on minimax

theory for discriminant analysis. Recently, [19, 18] developed minimax theory for LDA and

QDA in high-dimensional setting by imposing sparsity assumptions on discriminating direc-

tions. Extension of discriminant analysis to functional data appears to be challenging due to

the infinite-dimensional feature of the data. When data are fully observed, [42] proposed a

closely related functional quadratic method for discriminating two general Gaussian popula-

tions by making use of a suitably defined Mahalanobis distance for functional data, and [31]

considered Gaussian populations with equal covariance using functional linear discriminant.

However, minimax optimality of these techniques is unclear. The present chapter will demon-

strate the minimax optimality of discriminant analysis techniques in imperfect classification

where data are either fully or discretely observed. The latter scenario is practically meaningful,

since in real-world problems, functional data can only be observed at discrete sampling points.

52

We will investigate MER in both scenarios when data functions are Gaussian and propose com-

putationally efficient classifiers that achieve minimax optimality.

Our main idea is to project the functional data onto an orthogonal system that is common

in both populations, then to construct the so-called Functional Quadratic Discriminant Analysis

(FQDA) classifiers based on the projection scores. When data are fully observed, we derive an

explicit upper bound for the excess risk of the proposed FQDA classifiers. Moreover, we estab-

lish a lower bound for the MER which matches the upper bound, demonstrating the minimax

optimality of our method. We extend these results to the scenario of discretely observed data

in which the rate of MER demonstrates a phase transition phenomenon jointly characterized by

the number of data curves and sampling frequency. Our analysis reveals that when sampling

frequency is relatively small, the number of data curves has little effect on the rate of MER.

When sampling frequency is relatively large, the rate of MER more depends on the number of

data curves. In other words, there exists a critical sampling frequency that governs the perfor-

mance of the minimax optimal classifier. In functional data estimation, existence of a critical

sampling frequency has been discovered by [17]. The present work has made a relevant dis-

covery in functional data classification. Both simulation and real data studies are carried out to

demonstrate the performance of our FQDA classifiers

The rest of the chapter is organized as follows. Section 4.2 presents in detail the data-

driven classification procedure FQDA. Theoretical properties of FQDA are investigated in Sec-

tion 4.3. The upper and lower bounds together show that the FQDA rule achieves the optimal

rate in terms of the classification error. The corresponding classifier are investigated. Sim-

ulation studies are given in Section 4.4 where we compare the performance of the proposed

algorithms to other existing classification methods in the literature. In addition, the merits of

the FQDA and FQDA classifiers are illustrated through an analysis of the speech recognition

dataset in Section 4.5. We summarize the proposed methodology and discuss the future work in

Section 4.6. Major technical details for the proofs of main results are included in the Appendix.

Notation and Terminologies. We introduce basic notations and definitions that will be

used throughout the rest of the chapter and Chapter C.7. Vectors and matrices are denoted by

boldface letters. For a matrix A ∈ Rp×p, |A| is the determinant of A, and Ip is the p × p

53

identity matrix. For two sequences of positive numbers an and bn, an ≲ bn means that for some

constant c > 0, an ≤ cbn for all n, and an ≍ bn means an ≲ bn and bn ≲ an. an ≪ bn means

limn→∞ |an|/|bn| = 0. We also use c, c1, c2, . . . , C, C1, C2, . . . to denote absolute constants

whose values may vary from place to place.

4.2 Model assumptions and functional quadratic discriminant analysis

4.2.1 Model assumptions and oracle QDA

Let Z(t), t ∈ T be a random function defined on a compact interval T which belongs to

class k if Z ∼ GP(ηk,Ωk) for k = 1, 2, where GP(ηk,Ωk) is a Gaussian process model with

unknown mean function ηk(·) and unknown covariance function Ωk(·, ·). Let L(Z) denote

the class label of Z with probability distribution P (L(Z) = k) = πk, where πk ∈ (0, 1) are

unknown satisfying π1 + π2 = 1. When L(Z) = k, suppose that Z admits a basis expansion

Z(t) =
∑∞

j=1 ξ
(k)
j ψj(t), where {ψj}j≥1 is an orthonormal basis in L2(T) and ξ(k)j , j ≥ 1 are

uncorrelated projection scores. Hence,

ηk(t) =
∞∑
j=1

µkjψj(t) and Ωk(t, s) =
∞∑
j=1

λ
(k)
j ψj(t)ψj(s), t, s ∈ T ,

where µkj = Eξ
(k)
j is the j-th mean projection score and λ(k)j = V ar(ξ

(k)
j) is the j-th eigen-

value. For J ≥ 1 and k = 1, 2, let z = (z1, . . . , zJ)
⊤, µk = (µk1, . . . , µkJ)

⊤, Σk =

diag
(
λ
(k)
1 , . . . , λ

(k)
J

)
, and θ = (π1, π2,µ1,µ2,Σ1,Σ2). For predicting L(Z), the oracle QDA

classifier is defined by

G∗
θ(Z) =

 1, Q(z;θ) ≥ 0,

2, Q(z;θ) < 0,
(4.1)

where Q(z;θ) is the discriminant function defined by

Q(z;θ) = (z − µ1)
⊤D(z − µ1)− 2δ⊤Σ−1

2 (z − µ̄)− log(|Σ1|/|Σ2|) + 2 log (π1/π2) ,

with µ̄ = µ1+µ2

2
, δ = µ2 − µ1, and D = Σ−1

2 − Σ−1
1 . The performance of (4.1) depends on

the discriminating direction Σ
−1/2
2 δ and the differential graph D. The necessity of considering

54

the covariance difference for functional data analysis has been shown by [20]. If Σ1 = Σ2, the

quadratic classification boundary in (4.1) becomes linear, and (4.1) degenerates to LDA. In this

work, we focus on QDA for functional data which allows different covariances.

To obtain a consistent estimator for the oracle rule G∗
θ, we begin by noting an important

observation that log(|Σ1|/|Σ2|) = log(|DΣ1 + IJ |), and rewriting Q(z;θ) as

Q(z;θ) = (z − µ1)
⊤D(z − µ1)− 2β⊤(z − µ̄)− log(|DΣ1 + IJ |) + 2 log (π1/π2) , (4.2)

where β = Σ−1
2 δ. A simple but essential observation of (4.2) is that the first three quantities in

(4.2) depends on either D or β, and the fourth term log (π1/π2) represents the log odds ratio,

and all terms will be estimated in next sections.

4.2.2 FQDA for fully observed functional data

Suppose we observe a training sample {X(k)
i (t) : 1 ≤ i ≤ nk, k = 1, 2}, where nk is the sample

size for class k, X(k)
i (t)

i.i.d.∼ GP(ηk,Ωk) and all X(k)
i (t)’s and Z(t) are independent. We first

consider the ideal case where the entire function curves X(k)
i (t) are fully observed. Recall the

basis expansion X
(k)
i (t) =

∑∞
j=1 ξ

(k)
ij ψj(t) with E(ξ

(k)
ij) = µkj and V ar(ξ

(k)
ij) = λ

(k)
j . We

estimate the mean vector, differential graph and discriminant vector as follows:

µ̂k = (ξ̄
(k)
·1 , . . . , ξ̄

(k)
·J)⊤,

D̂ = Σ̂−1
2 − Σ̂−1

1 , (4.3)

β̂ = Σ̂−1
2 (µ̂1 − µ̂2), (4.4)

where ξ̄(k)·j = nk
−1
∑nk

i=1 ξ
(k)
ij , Σ̂k = diag

(
λ̂
(k)
1 , . . . , λ̂

(k)
J

)
, λ̂(k)j = n−1

k

∑nk

i=1(ξ
(k)
ij − ξ̄

(k)
·j)2. We

then propose the following classification rule, called as FQDA:

ĜFQDA
J (Z) =

 1, Q̂(z,θ) ≥ 0,

2, Q̂(z,θ) < 0,
(4.5)

55

where

Q̂(z,θ) := (z − µ̂1)
⊤D̂(z − µ̂1)− 2β̂⊤(z − ̂̄µ)− log

(
|D̂Σ̂1 + IJ |

)
+ 2 log (π̂1/π̂2) ,

̂̄µ = (µ̂1 + µ̂2)/2 and π̂k = nk/(n1 + n2) is the sample proportion of class k. The tuning

parameter J is chosen to minimize the cross-validation estimator of classification error [32]. In

Section 4.3, the desirable asymptotic property of (4.5) is presented.

4.2.3 FQDA for discretely observed functional data

Consider a more practical scenario where each data curve can only be observed on M evenly

spaced discrete sampling points {t1, t2, . . . , tM} ⊂ T . Choose 1 ≤ J ≤M and define

B =

ψ1(t1) ψ2(t1) · · · ψJ(t1)

ψ1(t2) ψ2(t2) · · · ψJ(t2)

...
...

...

ψ1(tM) ψ2(tM) · · · ψJ(tM)

.

Heuristically, when J is suitably large, the data vector X(k)
i = (X

(k)
i (t1), . . . , X

(k)
i (tM))⊤ has

an approximate expression X
(k)
i ≈ Bµk for i = 1, . . . , nk. For technical convenience, we focus

on the special case that ψj’s are Fourier basis or Haar wavelet basis so that B⊤B = IJ . This

leads to µk ≈ ζ(k)i := B⊤X
(k)
i . Therefore, we propose the following estimator of µk as well as

the estimators of the differential graph and the discriminating direction:

µ̂sk =
1

nk

nk∑
i=1

ζ
(k)
i ,

D̂s = Σ̂−1
s2 − Σ̂−1

s1 , (4.6)

β̂s = Σ̂−1
s2 (µ̂s2 − µ̂s1) , (4.7)

where Σ̂sk = diag
(
λ̂
(k)
s1 , . . . , λ̂

(k)
sJ

)
with λ̂(k)sj = n−1

k

∑nk

i=1

(
ζ
(k)
ij − ζ̄

(k)
·j

)2
, ζ̄(k)·j = n−1

k

∑nk

i=1 ζ
(k)
ij ,

and ζ(k)ij ’s are components of ζ(k)i . We then propose the following classification rule, called as

56

sampling FQDA (sFQDA):

ĜsFQDA
J (Z) =

 1, Q̂s(z,θ) ≥ 0,

2, Q̂s(z,θ) < 0,
(4.8)

where

Q̂s(z,θ) := (z − µ̂s1)⊤D̂s(z − µ̂s1)− 2β̂⊤
s (z − ̂̄µs)− log

(
|D̂sΣ̂s1 + IJ |

)
+ 2 log (π̂1/π̂2) ,

with ̂̄µs = (µ̂s1 + µ̂s2)/2. In the subsequent sections, we shall show that (4.8) has desirable

theoretical properties and finite-sample performance.

4.3 Theoretical properties

In this section, we derive sharp convergence rate for MER when data curves are either fully

observed or discretely observed. We also show that the proposed FQDA and sFQDA classifiers

are able to achieve the minimax optimal rates. All results are derived in imperfect classification

scenario.

With a slight abuse of notation, let θ = (π1, π2,µ1,µ2,Σ1,Σ2) in whichµk = (µk1, µk2, . . .)

is the infinite sequence of mean projection scores and Σk is a diagonal linear operator from

L2(T) to L2(T) satisfying Σkψj = λ
(k)
j ψj for j ≥ 1 and k = 1, 2. Given θ, it follows by

[12] and [106] that the optimal Bayes classification rule for classifying a new data function

Z ∈ L2(T) has an expression

G∗
θ(Z) =

1, Q∗(Z,θ) ≥ 0,

2, Q∗(Z,θ) < 0,

where

Q∗(Z,θ) = ⟨D(Z − η1), Z − η1⟩ − 2⟨Σ−1
2 (η2 − η1), Z − η̄⟩ − log det

(
Σ−1

2 Σ1

)
+ log

(
π1
π2

)
,

57

with η̄ = (η1 + η2)/2, D = Σ−1
2 −Σ−1

1 (difference of inverse operators), ⟨·, ·⟩ being the usual

L2 inner product, and

det
(
Σ−1

2 Σ1

)
= exp

{
∞∑
s=1

(−1)s−1

s
Tr
([
Σ−1

2 Σ1 − id
]s)}

being the infinite determinant of Σ−1
2 Σ1, often called the Plemelj’s formula (see [97]), and is

convergent if Tr(|Σ−1
2 Σ1 − id|) < ∞. Indeed, Q∗(Z,θ) is well-defined as long as both series∑∞

j=1 (µ1j − µ2j)
2/λ

(2)
j and

∑∞
j=1

(
λ
(1)
j /λ

(2)
j − 1

)2
are convergent (see Lemma 3 of [30]).

4.3.1 Fully observed case

Suppose that the data functions are fully observed as in Section 4.2.2. Consider the following

parameter space:

Θ =

{
θ :

∞∑
j=1

λ
(k)
j ≤ C0,

∞∑
j=1

µ2
kj ≤ C0,

∞∑
j=1

(µ1j − µ2j)
2/λ

(2)
j ≤ C1,

∞∑
j=1

(
λ
(1)
j /λ

(2)
j − 1

)2
≤ C2, C3 ≤ π1, π2 ≤ 1− C3

}
, (4.9)

where C0, C1, C2, C3 are absolute constants with C3 ∈ (0, 1/2). Let us provide some insights

on Θ. Assumption
∑∞

j=1 λ
(k)
j ≤ C0 implies that the covariance function Ωk is uniformly

bounded. Assumption
∑∞

j=1 µ
2
kj ≤ C0 implies ηk ∈ L2(T). Assumption

∑∞
j=1 (µ1j − µ2j)

2/λ
(2)
j ≤

C1 and
∑∞

j=1

(
λ
(1)
j /λ

(2)
j − 1

)2
≤ C2 characterizes the closeness of the two populations. Note

that in [30, 33], either of the two series is required being divergent so that the optimal Bayes

risk is asymptotically vanishing and perfect classification is achieved. They proposed classi-

fiers which are proven to achieve perfect classification. In our case, both series are convergent

implying that the two populations are much closer than the ones in [30, 33], therefore, optimal

Bayes risk does not go to zero and perfect classification is impossible. This imposes additional

challenge in finding correct classification.

For θ ∈ Θ and a generic classifier Ĝ, let Rθ(Ĝ) be the classification risk for Ĝ under θ:

Rθ(Ĝ) = Eθ[I{Ĝ(Z) ̸= L(Z)}].

58

For J ≥ 0, define

g(J ; Θ) = sup
θ∈Θ

{
∞∑

j=J+1

(µ1j − µ2j)
2

λ
(2)
j

+
∞∑

j=J+1

(
λ
(1)
j /λ

(2)
j − 1

)2}
.

Without loss of generality, assume g(J ; Θ) ≤ 1 for any J ≥ 0; otherwise one can scale g(J ; Θ)

by g(0;Θ). Let J∗ be the unique solution to J∗ logn
n

= g(J∗; Θ) with n := min{n1, n2}.

Theorem 4.1 provides an upper bound for excess risk of ĜFQDA
J when J = J∗.

Theorem 4.1. Consider the parameter space Θ. Then the proposed FQDA classifier (4.5)

satisfies

sup
θ∈Θ

E
[
Rθ(Ĝ

FQDA
J∗)−Rθ(G

∗
θ)
]
≲
J∗ log n

n
.

In the following theorem, we provide a lower bound for the MER which matches the above

upper bound, thus, the optimality of FQDA is verified.

Theorem 4.2. Consider the parameter space Θ. Then the MER over Θ satisfies

inf
Ĝ

sup
θ∈Θ

E
[
Rθ(Ĝ)−Rθ(G

∗
θ)
]
≳
J∗ log n

n
,

where the infimum is taken over all possible classifiers.

The results in Theorems 4.1 and 4.2 together garantee that ĜFQDA
J∗ is able to mimic G∗

θ

consistently over the parameter space Θ. Both of the lower and upper bounds show that the

proposed FQDA rule is optimal for classifying Gaussian functional data under mild regularity

conditions. No other method can achieve a faster MER rate than the proposed FQDA classifier.

To the best of our knowledge, they are the first theorems providing sharp convergence rate for

MER in imperfect classification.

In general, J∗ has no explicit expression so the rates in Theorems 4.1 and 4.2 are abstract.

To gain more insights, we consider a particular parameter space that enables us to derive a more

59

concrete result. Specifically, consider the following parameter space,

Θ(α) =

{
θ :

∞∑
j=1

λ
(k)
j ≤ C0,

∞∑
j=1

µ2
kj ≤ C0, C4j

−a ≤ (λ
(1)
j /λ

(2)
j − 1)2 ≤ C5j

−a,

C6j
−b ≤ (µj1 − µj2)

2/λ
(2)
j ≤ C7j

−b, a, b > α,C3 ≤ π1, π2 ≤ 1− C3

}
,

where α ≥ 1 characterizes the closeness of the two populations and C0, C4, C5, C6, C7 and

0 < C3 < 1/2 are absolute constants. Note that Θ(α) is a subset of Θ, and Proposition 4.1

below provides a concrete result under Θ(α).

Proposition 4.1. Consider the parameter space Θ(α).

i) The proposed FQDA classification rule in (4.5) satisfies

sup
θ∈Θ(α)

E
[
Rθ(Ĝ

FQDA
J∗)−Rθ(G

∗
θ)
]
≲

(
log n

n

)1−1/α

,

where J∗ =
(

n
logn

)1/α
.

ii) The MER over Θ(α) satisfies

inf
Ĝ

sup
θ∈Θ(α)

E
[
Rθ(Ĝ)−Rθ(G

∗
θ)
]
≳

(
log n

n

)1−1/α

,

where the infimum is taken over all possible classifiers.

4.3.2 Discretely observed case

Suppose that the data functions are discretely observed as in Section 4.2.3. For M ≥ 0, define

f1(M) = sup
θ∈Θ

[
∞∑

j=M+1

(µ2
1j ∨ µ2

2j)

]1/2
and f2(M) = sup

θ∈Θ

∞∑
j=M+1

(λ
(1)
j ∨ λ(2)j),

where Θ is provided in (4.9). Without loss of generality, assume f1(M) ≤ 1 and f2(M) ≤ 1

for any M ≥ 0; otherwise one can scale them by f1(0) and f2(0), respectively. Both f1(M)

and f2(M) are decreasing in M which depict the decay rate of µkj and λ(k)j .

60

We now show that when data are discretely observed, the proposed sFQDA classification

rule in (4.8) can mimic G∗
θ consistently over the parameter space Θ. Define M∗ as the unique

solution to logn
n

= f(M), where f(M) = f 2
1 (M) ∨ f 2

2 (M) for each M ≥ 1. When M ≤ M∗,

define J∗
1 ≡ J∗

1 (M,n) ≤ M to be the unique solution to f(M) = g(J ; Θ)/J , and when

M > M∗, define J∗
2 ≡ J∗

2 (M,n) ≤ M to be the unique solution to log n/n = g(J ; Θ)/J . We

shall show the existence and uniqueness of such J∗
1 and J∗

2 in Lemma C.16 of Appendix.

Theorem 4.3. Consider the parameter space Θ. The sFQDA in (4.8) satisfies the following.

i) When M ≤M∗,

sup
θ∈Θ

E
[
Rθ(Ĝ

sFQDA
J∗
1

)−Rθ(G
∗
θ)
]
≲ J∗

1f(M);

ii) When M > M∗,

sup
θ∈Θ

E
[
Rθ(Ĝ

sFQDA
J∗
2

)−Rθ(G
∗
θ)
]
≲
J∗
2 log n

n
.

Theorem 4.3 provides upper bounds for the MER of ĜsFQDA
J when J = J∗

1 and J = J∗
2

corresponding to M ≤ M∗ and M > M∗, respectively. The upper bounds are dramatically

different in the two regimes. In the following theorem, we obtain lower bounds for the MER

in both regimes which match the upper bounds given in Theorem 4.3. Therefore, the proposed

sFQDA classifier is proven minimax optimal.

Theorem 4.4. Consider the parameter space Θ. The MER over Θ satisfies

i) when M ≤M∗,

inf
Ĝ

sup
θ∈Θ

E
[
Rθ(Ĝ)−Rθ(G

∗
θ)
]
≳ J∗

1f(M);

ii) when M > M∗,

inf
Ĝ

sup
θ∈Θ

E
[
Rθ(Ĝ)−Rθ(G

∗
θ)
]
≳
J∗
2 log n

n
,

where the infimum is taken over all possible classifiers Ĝ.

61

To provide an explicit rate for the MER, we consider the following parameter space

Θ(c, d, α) =

{
θ :

∞∑
j=1

λ
(k)
j ≤ C0,

∞∑
j=1

µ2
kj ≤ C0, C4j

−a ≤ (λ
(1)
j /λ

(2)
j − 1)2 ≤ C5j

−a,

C6j
−b ≤ (µj1 − µj2)

2/λ
(2)
j ≤ C7j

−b, a, b > α, µ1j ∨ µ2j ≍ j−c
′
,

λ
(1)
j ∨ λ(2)j ≍ j−d

′
, c′ > c, d′ > d,C3 ≤ π1, π2 ≤ 1− C3

}
,

where c ≥ 1/2, d ≥ 1, α ≥ ς , such that ς = min(2c − 1, 2d − 2), C0, C4, C5, C6, C7 > 0

are constants, C3 ∈ (0, 1/2). Note that Θ(c, d, α) is a subset of Θ. When restricted to the

space Θ(c, d, α), we have the following more specific rate for the MER of sFQDA. Define

J∗ = M ς/αI(M < M∗) + (n/log n)1/α I(M ≥ M∗), where M∗ = (n/log n)1/ς and I(·) is the

indicator function.

Proposition 4.2. Consider the parameter space Θ(c, d, α). Then sFQDA in (4.8) satisfies

sup
θ∈Θ(c,d,α)

E
[
Rθ(Ĝ

sFQDA
J∗)−Rθ(G

∗
θ)
]
≲

(
log n

n
+

1

M ς

)1−1/α

,

and

inf
Ĝ

sup
θ∈Θ(c,d,α)

E
[
Rθ(Ĝ)−Rθ(G

∗
θ)
]
≳

(
log n

n
+

1

M ς

)1−1/α

,

where the infimum is taken over all possible classifiers.

By Proposition 4.2, the critical sampling frequency for the MER over the space Θ(c, d, α)

is M∗. When M > M∗, the MER is of rate (log n/n)1−1/α which is free of the sampling

frequency and is consistent with the rate derived in Proposition 4.1. In other words, when

M > M∗, increasing sampling frequency will not boost the performance of sFQDA, which

performs equally well as FQDA when data functions are fully observed. When M ≤ M∗, the

MER is of rate (M ς)1/α−1 which solely relies on the sampling frequency. Another interesting

finding is that the rate of MER relies on the smoothness degree c, d of the mean functions and

covariance functions, as well as the closeness degree α between the two populations. This

differs from the estimation problems in which the rate of MER only relies on the smoothness

degree of the mean function ([17]).

62

4.4 Simulation

In this section, we provide extensive numerical evidence to show the empirical performance of

FQDA by comparing with other functional classifiers, including quadratic discriminant method

(QD) proposed in [33] and the nonparametric Bayes classifier (NB) proposed in [30]. We

evaluate all methods via four synthetic datasets. In all simulations, we generate n = n1 =

n2 = 50, 100 training samples for each class, which indicates π1 = π2 = 0.5. The functional

data are generated from GP(ηk,Ωk), where k = 1, 2. The mean for class 1 is η1(t) = γt, γ = 1

or 3, and the mean for class 2 is set to be η2(t) = 0, t ∈ [0, 1]. We use the following two models

to generate covariance functions Ω1 and Ω2.

Model 1: Exponential covariance function: Assign Ω1(t, t
′) = exp (−|t− t′|), and

Ω2(t, t
′) = exp (−|t− t′|/ρ), where ρ = 0.75, 1.5.

Model 2: Matérn covariance function: Let Ω1(t, t
′) =

√
2

Γ(1/2)
|t − t′|1/2K1/2 (|t− t′|),

and Ω2(t, t
′) =

√
2

Γ(1/2)

(
|t−t′|
ρ

)1/2
K1/2

(
|t−t′|
ρ

)
, where K1/2(·) is the modified Bessel function

and ρ = 0.75, 1.5.

The random functions are sampled at M equally spaced sampling points from 0 to 1. We

choose M from {3, 5, 10, 20, 30, 40, 50} to detect how sampling frequency effects the classifi-

cation error, where we regard M = 50 as the full observation. In each scenario, the number of

repetition is set to be 100, and the classification errors are evaluated with 500 samples.

Tables 4.1 to 4.4 present the misclassification rates for three methods given the combina-

tions of two different covariance models and two mean functions. Nevertheless the proposed

FQDA classifiers have comparable performance with two competitors given different sample

sizes. As expected, when the discrepancy between mean and covariance functions are smaller,

e.g. γ = 1, ρ = 1.5, the misclassification rates for all three methods are larger. When the num-

ber of sampling pointsM and sample size n are increasing, misclassification rates of FQDA are

decreasing, which echoes the theoretical results in Section 4.3. Similar patterns can be found

for the other two methods. When the sampling points are extremely sparse, M = 3, FQDA has

significantly superior performance compared with QD and NB methods, about 10% smaller

63

than the other two classifiers. Given moderate sparse sampling points, M = 5, 10, 20, all meth-

ods have fairly comparable performance. When the sampling points are dense,M > 20, FQDA

outperforms two counterparts, although these two competitors also work reasonable well.

Table 4.1: Misclassification rates (%) with standard errors in brackets for Model 1 with η1(t) =
3t.

ρ = 1.5 ρ = 0.75
M n FQDA QD NB FQDA QD NB
50 50 6.35(0.01) 7.10(0.01) 7.37(0.02) 7.52(0.01) 7.91(0.01) 8.48(0.02)

100 5.70(0.01) 6.15(0.01) 6.36(0.02) 6.86(0.01) 7.38(0.01) 7.33(0.01)
40 50 6.30(0.01) 7.00(0.01) 7.32(0.02) 7.53(0.01) 7.96(0.01) 8.28(0.02)

100 6.02(0.01) 6.13(0.01) 6.46(0.01) 7.23(0.01) 7.20(0.01) 7.53(0.01)
30 50 6.64(0.01) 7.00(0.02) 6.98(0.02) 7.31(0.01) 7.94(0.01) 8.49(0.02)

100 6.10(0.01) 5.95(0.01) 6.13(0.01) 7.18(0.01) 7.02(0.01) 7.30(0.02)
20 50 6.66(0.01) 6.65(0.01) 6.91(0.02) 8.16(0.01) 7.77(0.01) 8.63(0.02)

100 6.40(0.01) 5.98(0.01) 5.97(0.01) 7.50(0.01) 6.93(0.01) 7.12(0.01)
10 50 8.31(0.01) 6.43(0.01) 6.68(0.02) 9.36(0.01) 7.67(0.02) 7.85(0.02)

100 7.99(0.01) 5.89(0.01) 5.71(0.01) 9.05(0.01) 7.15(0.01) 6.88(0.01)
5 50 9.14(0.01) 5.96(0.01) 6.33(0.01) 9.77(0.01) 7.36(0.01) 7.42(0.01)

100 9.13(0.01) 5.75(0.01) 5.92(0.01) 9.68(0.01) 7.00(0.01) 6.71(0.01)
3 50 9.60(0.01) 19.22(0.02) 20.10(0.03) 9.60(0.01) 18.28(0.03) 19.07(0.03)

100 9.36(0.01) 19.13(0.02) 19.71(0.02) 9.26(0.01) 17.60(0.01) 18.12(0.02)

4.5 Real data analysis

This benchmark data example was extracted from the TIMIT database (TIMIT Acoustic-Phonetic

Continuous Speech Corpus, NTIS, US Dept of Commerce) which is a widely used resource for

research in speech recognition and functional data classification [40]. The data set we use

was formed by selecting five phonemes for classification based on digitized speech from this

database. From each speech frame, a log-periodogram was used as transformation for casting

speech data in a form suitable for speech recognition. The five phonemes in this data set are

transcribed as follows: “sh” as in “she”, “dcl” as in “dark”, “iy” as the vowel in “she”, “aa” as

the vowel in “dark”, and “ao” as the first vowel in “water”. For illustration purpose, we focus

on the “aa”, “iy” and “ao” phoneme classes. Each speech frame is represented by n = 400 sam-

ples at a 16-kHz sampling rate; the first M = 150 frequencies from each subject are retained.

Figure 4.1 displays 10 log-periodograms for each class phoneme.

64

Table 4.2: Misclassification rates (%) with standard errors in brackets for Model 1 with η1(t) =
t.

ρ = 1.5 ρ = 0.75
M n FQDA QD NB FQDA QD NB
50 50 29.93(0.02) 33.26(0.03) 30.09(0.03) 31.99(0.02) 35.79(0.04) 35.25(0.03)

100 29.37(0.02) 32.10(0.02) 26.37(0.02) 30.49(0.02) 32.49(0.02) 31.54(0.03)
40 50 29.89(0.02) 33.40(0.03) 30.82(0.03) 31.68(0.02) 35.27(0.03) 34.47(0.03)

100 29.25(0.02) 31.36(0.02) 27.73(0.03) 30.66(0.02) 33.28(0.03) 32.56(0.03)
30 50 30.30(0.02) 33.49(0.03) 31.42(0.03) 32.19(0.02) 35.27(0.04) 35.07(0.03)

100 29.55(0.02) 31.99(0.03) 28.23(0.02) 31.39(0.02) 33.03(0.02) 32.00(0.02)
20 50 30.57(0.02) 32.90(0.03) 31.95(0.04) 32.56(0.01) 35.02(0.04) 35.13(0.04)

100 30.17(0.02) 31.24(0.02) 29.32(0.02) 31.61(0.02) 32.77(0.02) 32.93(0.03)
10 50 32.39(0.02) 32.59(0.03) 33.96(0.03) 33.72(0.02) 34.47(0.03) 35.59(0.03)

100 31.89(0.02) 31.09(0.02) 31.05(0.03) 32.96(0.02) 32.49(0.02) 33.12(0.03)
5 50 32.98(0.02) 31.81(0.03) 33.38(0.04) 33.61(0.02) 33.44(0.03) 34.42(0.03)

100 32.78(0.02) 30.15(0.02) 31.12(0.02) 33.10(0.02) 31.94(0.02) 32.24(0.02)
3 50 33.13(0.01) 39.10(0.02) 41.48(0.03) 33.54(0.02) 38.43(0.02) 40.80(0.04)

100 32.96(0.01) 38.68(0.02) 40.09(0.03) 33.43(0.02) 38.64(0.02) 39.41(0.03)

We randomly select training sample size n1 = n2 = 300 to train the classifiers of three

methods and the rest of 100 samples remained as the test samples. Table 4.5 report the mean

percentage (averaged over the 100 repetitions) of misclassified test curves. It can be seen that

NB classifier slightly outperforms FQDA when classifying “aa” and “iy” and FQDA remains

excellent when classifying “ao” and “iy”.

4.6 Discussion

We present a new minimax optimality viewpoint for solving functional classification problems

in imperfect classification scenario. In contrast to literature on perfect classification, our results

are able to deal with the more practical scenarios where the optimal Bayes risk is asymptotically

nonvanishing and the two populations are relatively close. Our contributions are twofold. First,

we provide sharp convergence rates for MER when data are either fully or discretely observed,

as well as a critical sampling frequency that governs the rate in the latter case. Second, we

propose classifiers based on FQDA which are proven to achieve minimax optimality.

65

Table 4.3: Misclassification rates (%) with standard errors in brackets for Model 2 with η1(t) =
3t.

ρ = 1.5 ρ = 0.75
M n FQDA QD NB FQDA QD NB
50 50 6.20(0.01) 6.88(0.01) 7.08(0.02) 7.52(0.01) 8.28(0.02) 8.69(0.02)

100 5.68(0.01) 6.02(0.01) 6.12(0.01) 6.98(0.01) 7.49(0.01) 7.43(0.01)
40 50 6.23(0.01) 6.80(0.01) 6.78(0.02) 7.54(0.01) 8.03(0.01) 8.76(0.02)

100 5.83(0.01) 6.22(0.01) 6.21(0.01) 7.07(0.01) 7.07(0.01) 7.23(0.02)
30 50 6.40(0.01) 6.60(0.01) 6.97(0.02) 7.57(0.01) 7.91(0.01) 8.47(0.02)

100 6.15(0.01) 6.23(0.01) 5.94(0.01) 7.34(0.01) 7.38(0.01) 7.58(0.02)
20 50 6.81(0.01) 6.97(0.02) 7.29(0.02) 8.15(0.01) 7.96(0.01) 8.31(0.02)

100 6.50(0.01) 5.96(0.01) 5.97(0.01) 7.60(0.01) 7.12(0.01) 7.09(0.01)
10 50 8.71(0.01) 6.50(0.01) 6.79(0.02) 9.27(0.01) 7.38(0.01) 8.02(0.02)

100 7.93(0.01) 6.02(0.01) 6.03(0.01) 9.15(0.01) 7.06(0.01) 6.94(0.01)
5 50 9.31(0.01) 5.93(0.01) 6.42(0.02) 9.84(0.01) 7.41(0.01) 7.68(0.02)

100 9.03(0.01) 5.80(0.01) 6.07(0.01) 9.40(0.01) 6.97(0.01) 6.81(0.01)
3 50 9.76(0.01) 19.06(0.02) 20.29(0.04) 9.51(0.01) 18.05(0.02) 18.91(0.04)

100 9.50(0.01) 19.07(0.02) 19.94(0.02) 9.27(0.01) 18.21(0.02) 18.72(0.02)

Table 4.4: Misclassification rates (%) with standard errors in brackets for Model 2 with η1(t) =
t.

ρ = 1.5 ρ = 0.75
M n FQDA QD NB FQDA QD NB
50 50 29.90(0.02) 33.71(0.03) 29.88(0.04) 31.62(0.02) 35.03(0.03) 34.90(0.02)

100 28.99(0.02) 31.96(0.02) 26.41(0.03) 30.66(0.02) 33.47(0.03) 31.92(0.02)
40 50 30.21(0.02) 33.64(0.04) 30.59(0.03) 31.55(0.02) 35.15(0.04) 34.90(0.03)

100 29.47(0.02) 31.62(0.02) 27.43(0.02) 30.82(0.02) 33.52(0.03) 32.31(0.03)
30 50 30.22(0.02) 33.80(0.04) 31.56(0.04) 31.78(0.02) 34.05(0.03) 34.82(0.03)

100 29.59(0.02) 32.14(0.03) 29.12(0.02) 31.35(0.02) 32.97(0.03) 32.06(0.02)
20 50 31.14(0.02) 33.45(0.03) 32.67(0.03) 32.74(0.02) 34.40(0.03) 35.24(0.03)

100 30.08(0.02) 31.52(0.02) 29.45(0.02) 31.90(0.02) 33.30(0.03) 33.16(0.03)
10 50 32.12(0.02) 32.47(0.03) 32.86(0.04) 34.06(0.02) 34.34(0.03) 35.99(0.04)

100 31.88(0.02) 31.55(0.02) 30.63(0.02) 32.73(0.02) 31.97(0.02) 32.94(0.02)
5 50 33.22(0.02) 31.77(0.03) 32.87(0.04) 33.90(0.02) 32.98(0.03) 35.10(0.04)

100 32.57(0.02) 30.50(0.02) 31.52(0.03) 33.35(0.02) 32.27(0.02) 32.49(0.03)
3 50 33.35(0.02) 39.11(0.02) 41.34(0.03) 33.40(0.02) 38.89(0.02) 40.39(0.04)

100 33.30(0.02) 39.08(0.02) 40.32(0.03) 33.13(0.02) 28.18(0.02) 39.22(0.03)

Table 4.5: Misclassification rates (%) with standard errors in brackets for Speech Recognition
data (“aa” vs “iy”).

Classes FQDA QD NB
“aa” vs “iy” 0.090(0.003) 0.185(0.003) 0.040(0.002)
“ao” vs “iy” 0.040(0.001) 0.330(0.005) 0.130(0.003)

66

Figure 4.1: A sample of 10 log-periodograms per class

67

Chapter 5

Functional Classification via Deep Neural Networks

5.1 Introduction

Due to modern advanced technology, complex functional data are ubiquitous. A fundamental

problem in functional data analysis is to classify a data function based on training samples.

A typical 1D example is the speech recognition data extracted from the TIMIT database, in

which the training samples are digitized speech curves of American English speakers from dif-

ferent phoneme groups, and the task is to predict the phoneme of a new speech curve. Typical

2D and 3D examples include the brain imaging data extracted from Early Mild Cognitive Im-

pairment (EMCI) or Alzeheimer’s Disease (AD), in which the training samples are digitized

brain images, and the task is to predict the stage of a new patient. Besides above examples,

functional data classification has wide applications in various fields such as machine learning,

genetics, agriculture, chemimetrics and artificial intelligence [98, 60, 90, 23]. Recent mono-

graphs [46, 54] provide comprehensive and general discussions on this field.

Classical multivariate analysis techniques such as logistic regression or discriminant anal-

ysis no longer work for functional data due to its intrinsically infinite dimensionality [115].

A mainstream technique in functional data classification is based on functional principle com-

ponent analysis (FPCA) such as functional discriminant analysis [95, 32, 31, 33, 42, 30, 12,

85, 1, 119]. Functional discriminant analysis requires data function being Gaussian process,

under which the decision boundary is characterized by a linear or quadratic polynomial so that

classic discriminant analysis approach can accurately recover the decision boundary. Gaussian

assumption is restrictive and often violated in practice. When data distributions are general

68

non-Gaussian, the resulting decision boundary is often complicated which cannot be accu-

rately recovered by existing approaches. Our aim is to construct a new functional classifier to

overcome this challenge.

In this paper, we propose a new approach, called as functional deep neural network (FDNN),

for multi-dimensional functional data classification. We start from FPCA to extract the func-

tional principle components of the data functions, and then train a DNN based on these FPCs as

well as their corresponding class labels. As demonstrated through numerical studies, our FDNN

approach performs well in classifying complex curve or imaging data. Moreover, our FDNN

has desirable theoretical properties. Intuitively, when the network architectures are suitably se-

lected, DNN shall have large expressive power (see [86, 128]) so that functional Bayes classifier

can be accurately recovered, even though data distributions are complex. Specifically, we show

that, when the log-ratio of the population densities demonstrates a locally connected functional

modular structure, our FDNN is proven minimax optimal. The proposed functional modular

structure is useful to overcome the infinite dimensionality of functional data, and is meaningful

as demonstrated in various examples (see Section 5.5). Relevant modular structures have been

recently adopted by researchers in nonparametric regression and classification to characterize

the local behavior of the multivariate input variables, based on which DNN approaches are

proven to overcome the “curse of dimensionality.” See [92, 11, 70, 73, 118, 61, 47, 52, 15].

The rest of this article is organized as follows. In Section 5.2 we review functional Bayes

classifier in general setting. In Section 5.3, we propose FDNN classifier. In Section 5.4, we

establish theoretical properties of FDNN under suitable technical assumptions. Section 5.5

provides three progressive examples to demonstrate the validity of these technical assumptions.

In Section 5.6, performances of FDNN and its competitors are demonstrated through simulation

studies. In Section 5.7, we apply FDNN to speech recognition data and Alzeheimer’s Disease

data. Section 5.8 summarizes the conclusions. Technical proofs are provided in Appendix and

a supplement document.

69

5.2 Functional Bayes classifier under non-Gaussianity

In this section, we review functional Bayes classifier for binary classification. Let X(s), s ∈

S := [0, 1]d be a random process with
∫
S EX(s)2ds < ∞, and Y ∈ {−1, 1} be a uniform ran-

dom class label such that, under Y = k, X(s) has unknown mean function µk(s) and unknown

covariance function Ωk(s, s
′), for s, s′ ∈ S . Suppose that Ωk satisfies a Karhunen–Loéve de-

composition:

Ωk(s, s
′) =

∞∑
j=1

λkjψkj(s)ψkj(s
′), s, s′ ∈ S, (5.1)

where ψkj, j ≥ 1 is an orthonormal basis of L2(S) with respect to the usual L2 inner product,

and λk1 ≥ λk2 ≥ · · · > 0 are nonincreasing positive eigenvalues. Notably, (5.1) requires

the covariance functions being decomposed in terms of the same eigenfunctions, which is a

common assumption in functional classification literature; see [31] and [30]. Further relaxation

of this assumption is discussed in Section .

Under Y = k, write X(s) =
∑∞

j=1 ξjψkj(s), where ξj’s are pairwise uncorrelated random

coefficients. Let ξ = (ξ1, ξ2, . . .) and hk(·) be the unknown conditional density of ξ under

Y = k. Define Q∗(·) as the log density ratio functional between the two classes:

Q∗(ξ) = log

(
h1(ξ)

h−1(ξ)

)
.

The functional Bayes rule for classifying a data function X ∈ L2(S) thus has an expression

G∗(X) =

1, Q∗(ξ) ≥ 0,

−1, Q∗(ξ) < 0.

(5.2)

Direct estimation of Q∗ is infeasible due to the infinite dimensionality of the input. A common

practice is to estimate its finite-dimensional truncation. For J ≥ 1, let ξJ = (ξ1, . . . , ξJ)
⊤ be

the leading J components of ξ and h(J)k (·) be the marginal density of ξJ under Y = k, for

70

k = ±1. Define the truncated log density ratio

Q∗
J(ξJ) = log

(
h
(J)
1 (ξJ)

h
(J)
−1 (ξJ)

)
,

which is the log density ratio of h(J)1 to h(J)−1 . The intuition is that, when J is large, h(J)k ap-

proaches hk so that Q∗
J is an accurate approximation of Q∗. Our aim is to design an efficient

method to estimate Q∗
J , which will in turn estimate Q∗.

5.3 Functional deep neural network classifier

Suppose we observe n i.i.d. training samples {(Xi(s), Yi) : 1 ≤ i ≤ n, s ∈ S}, which are

independent of X(s), s ∈ S to be classified. For k = ±1, define sample covariance function

Ω̂k(s, s
′) =

1

nk

∑
i∈Ik

(Xi(s)− X̄k(s))(Xi(s
′)− X̄k(s

′)), s, s′ ∈ S,

where Ik is the collection of i such that Yi = k, nk := |Ik| and X̄k(s) =
1
nk

∑
i∈Ik Xi(s) is the

sample mean function of class k. Perform Karhunen–Loéve decomposition for Ω̂k:

Ω̂k(s, s
′) =

∞∑
j=1

λ̂kjψ̂kj(s)ψ̂kj(s
′), s, s′ ∈ S,

and write the sample data function Xi, under Yi = k, as

Xi(s) =
∞∑
j=1

ξ̂ijψ̂kj(s), i = 1, . . . , n.

Intuitively, ξ̂(i) := (ξ̂i1, ξ̂i2, . . .) is an estimator of ξ(i) := (ξi1, ξi2, . . .), in which ξij are unob-

servable random coefficients of Xi with respect to the population basis ψkj . Hence, it is natural

to design classifiers based on ξ̂(i)’s.

Let ξ̂(i)J = (ξ̂i1, . . . , ξ̂iJ)
⊤ be the J-dimensional truncation of ξ̂(i) for i = 1, . . . , n. When

Xi’s are Gaussian processes, various classifiers have been proposed such as centroid classifier

([31]), QDA ([33]) and nonparametric Bayes classifier ([30]). When Xi’s are non-Gaussian,

71

one major challenge is the underlying complicated form of the conditional densities h1 and

h−1 so that estimation of Q∗
J is typically difficult. Inspired by the rich approximation power

of DNN, in this section, we propose a new classifier called FDNN (functional+DNN) that can

accurately estimate Bayes classifiers even when h1 and h−1 are non-Gaussian complicated.

We will train a DNN to estimate Q∗
J based on ξ̂(i)J ’s. In what follows, we will describe

our method in details. Let σ denote the rectifier linear unit (ReLU) activation function, i.e.,

σ(x) = (x)+ for x ∈ R. For any real vectors V = (v1, . . . , vw)
⊤ and y = (y1, . . . , yw)

⊤,

define the shift activation function σV (y) = (σ(y1 − v1), . . . , σ(yw − vw))
⊤. For L ≥ 1, p =

(p1, . . . , pL) ∈ NL, let F(L, J,p) denote the class of fully connected feedforward DNN with

J inputs, L hidden layers and, for l = 1, . . . , L, pl nodes on the lth hidden layer. Equivalently,

any f ∈ F(L, J,p) has an expression

f(x) = WLσVL
WL−1σVL−1

. . .W1σV1W0x, x ∈ RJ , (5.3)

where Wl ∈ Rpl+1×pl , for l = 0, . . . , L, are weight matrices, Vl ∈ Rpl , for l = 1, . . . , L, are

shift vectors. Here we adopt the convention that p0 = J and pL+1 = 1.

Due to the large capacity of F(L, J,p), training a DNN typically overfits the data, there-

fore, proper regularization is necessary. A common practice is to sparsify the network param-

eters by methods such as dropout; see [49]. Our approach follows [92, 15] to train a sparse

DNN. Specifically, consider the following class of sparse DNN:

F(L, J,p, B) =

{
f ∈ F(L, J,p) : max

0≤l≤L
∥Wl∥∞ ≤ B, max

1≤l≤L
∥vl∥∞ ≤ B

}
,

where ∥ · ∥∞ denotes the maximum-entry norm of a matrix/vector or supnorm of a function,

and B > 0 controls the largest weights and shifts.

Given the training data (ξ
(1)
J , Y1), . . . , (ξ

(n)
J , Yn), let

f̂ϕ(·) = argmin
f∈F(L,J,p,B)

1

n

n∑
i=1

ϕ(f(ξ̂
(i)
J)Yi), (5.4)

72

where ϕ(x) = max(1 − x, 0) denotes the hinge loss. We then propose the following FDNN

classifier: for X ∈ L2(S),

ĜFDNN(X) =

 1, f̂ϕ(ξJ) ≥ 0,

−1, f̂ϕ(ξJ) < 0.
(5.5)

In practice, we suggest the following data-splitting method for selecting (L, J,p, B):

• Step 1. Randomly divide the whole sample (ξ̂
(i)
J , Yi)’s into two subsets indexed by I1

and I2, respectively, with about |I1| = 0.8n and |I2| = 0.2n.

• Step 2. For each (L, J,p, B), we train a DNN f̂L,J,p,B using (5.4) based on subset I1,

and then calculate the testing error based on subset I2 as

err(L, J,p, B) =
1

|I2|
∑
i∈I2

I(f̂L,J,p,B(ξ̂
(i)
J)Yi < 0). (5.6)

• Step 3. Choose (L, J,p, B), possibly from a preselected set, to minimize err(L, J,p, B).

5.4 Minimax optimality of FDNN

For a generic functional classifier Ĝ, its excess misclassification risk is defined as Eh(Ĝ) :=

E[Rh(Ĝ) − Rh(G
∗)], where Rh(Ĝ) := Eh[I{Ĝ(X) ̸= Y }] is the misclassification risk of Ĝ

taken with respect to (X, Y) under h := {h1, h−1}, with Y the true class label of X . A central

task is to design Ĝ that achieves minimax excess misclassification risk (MEMR), i.e.,

max
h∈H

Eh(Ĝ) ≍ inf
Ĝ

max
h∈H

Eh(Ĝ), (5.7)

where H is a proper class of h to be described later and the infimum is taken over all classifiers

based on training samples. Classifiers satisfying (5.7) are called as minimax optimal.

There is a rich literature on construction of minimax optimal classifiers when data dimen-

sion is fixed or diverging. For instance, classic nonparametric approaches, such as ones directly

estimating Bayes classifier nonparametrically, are proven minimax optimal in fixed-dimension

73

regime; see [75, 107, 108, 58, 42, 39, 78, 47]. When data are high-dimensional Gaussian, dis-

criminant analysis approaches are proven minimax optimal; see [19, 18].On the other hand,

under functional Gaussian data, researchers have proposed various functional classifiers, in-

cluding functional quadratic discriminant analysis (FQDA); see [95, 32, 31, 33, 42, 30, 12, 85,

19, 18]. Gaussianity leads to a quadratic polynomial Q∗ which can be effectively estimated by

FQDA, based on which [119] showed that FQDA is minimax optimal. It is still unclear how to

design optimal functional classifiers when data are non-Gaussian, a gap that the present article

attempts to close.

In this section, we will establish minimax optimality of FDNN classifier under non-

Gaussian functional data. For technical convenience, assume that the two populations have

common known basis, i.e., ψ+1j(·) = ψ−1j(·). Therefore, we can train FDNN classifier based

on ξ(i)J := (ξi1, . . . , ξiJ)
⊤, for i = 1, . . . , n. We will first derive an upper bound for the excess

misclassification risk of our FDNN classifier, and then derive a lower bound for the MEMR

which matches the above upper bound. Therefore, our FDNN is able to achieve sharp rate of

MEMR. Extensions to general basis are possible but need more tedious technical arguments.

Before proceeding further, we introduce some technical assumptions. At high levels, our

assumptions are different from those proposed under Gaussian case. For instance, in either

high- or infinite-dimensional Gaussian data, it is well known that density ratio between two

Gaussian population densities has an explicit expression in terms of mean difference and vari-

ance ratio, which impacts the sharp rate of MEMR. More precisely, in high-dimensional Gaus-

sian data classification, the rate depends on the number of nonzero components of mean differ-

ence vector [19, 18]; in Gaussian functional data classification, the rate depends on the decay

orders of both mean difference series and variance ratio series [119]. Nonetheless, in general

non-Gaussian case, likelihood ratio doesn’t have an explicit expression, therefore, one cannot

simply use mean or variance discrepancy to characterize the sharp rate of MEMR.

In traditional non-Gaussian multivariate data classification, a common strategy is to as-

sume smooth density ratio and controllable noise, under which minimax optimal classifiers

were proposed; see [75], [107], [7], [52] and references therein. In functional data, the input

variable of Q∗ is infinite-dimensional, hence, the above strategy no longer works. We instead

74

propose a set of functional conditions on Q∗ under which minimax optimality shall be estab-

lished. Such conditions are viewed as infinite-dimensional extensions of [7, 92].

For t ≥ 1, a measurable subset D ⊂ Rt and constants β,K > 0, define

Cβ(D,K)

=

f : D 7→ R
∣∣ ∑
α:|α|<β

∥∂αf∥∞ +
∑

α:|α|=⌊β⌋

sup
x,x′∈D,x̸=x′

|∂αf(x)− ∂αf(x′)|
∥x− x′∥β−⌊β⌋

∞
≤ K

 ,

where ∂α = ∂α1 . . . ∂αt denotes the partial differential operator with multi-indexα = (α1, . . . , αt) ∈

Nt, |α| = α1 + · · · + αt. Equivalently, Cβ(D,K) is the ball of β-Hölder smooth functions on

D with radius K. A function f : Rt → R is said to be locally β-Hölder smooth if for any

a, b ∈ R, there exists a constant K (possibly depending on a, b) such that f ∈ Cβ([a, b]t, K).

For q ≥ 0, J ≥ 1, let d0 = J and dq+1 = 1. For d = (d1, . . . , dq) ∈ Nq
+, t = (t0, . . . , tq) ∈

Nq+1
+ with tu ≤ du for u = 0, . . . , q, β := (β0, . . . , βq) ∈ Rq+1

+ , let G(q, J,d, t,β) be the class

of functions g satisfying a modular expression

g(x) = gq ◦ · · · ◦ g0(x), ∀x ∈ Rd0 , (5.8)

where gu = (gu1, . . . , gudu+1) : Rdu 7→ Rdu+1 and guv : Rtu 7→ R are locally βu-Hölder

smooth. The du arguments of gu are locally connected in the sense that each component guv

only relies on tu(≤ du) arguments. Similar structures have been considered by [92] and [70] in

multivariate regression to overcome high-dimensionality. Generalized additive model [44] and

tensor product space ANOVA model [67] are special cases; see [70].

Let H∗ ≡ H∗ (q,d, t,β) be the class of population densities h = {h1, h−1} of ξ such that,

for any J ≥ 1, Q∗
J ∈ G (q, J,d, t,β). Equivalently, for any h ∈ H∗ and J ≥ 1, the corre-

sponding truncated log density ratio Q∗
J has a modular structure (5.8) with certain smoothness.

Although Q∗
J has J arguments, it involves at most t0d1 effective arguments, implying that the

two population densities differ by a small number of variables. Relevant conditions are nec-

essary for high-dimensional classification. For instance, in high-dimensional Gaussian data

classification, [19, 18] show that, to consistently estimate Bayes classifier, it is necessary that

75

the mean vectors differ at a small number of components. The modular structure holds for arbi-

trary J , which may be viewed as a functional extension of [92]. Note that the density class H∗

covers many popular models studied in literature, either Gaussian or non-Gaussian; see Section

5.5. Moreover, we introduce the following regularity conditions on Q∗.

Assumption 1. (Functional Tsybakov noise condition) There exist constants C > 0 and α ≥ 0

such that

P
(∣∣∣∣1− exp {−Q∗ (ξ)}

1 + exp {−Q∗ (ξ)}

∣∣∣∣ ≤ x

)
≤ Cxα, ∀x > 0. (5.9)

Assumption 2. (Approximation error of Q∗
J) There exist a constant J0 ≥ 1 and decreasing

functions ϵ(·) : [1,∞) → R+ and Γ(·) : [0,∞) → R+, with supJ≥1 J
ϱϵ(J) < ∞ for some

ϱ > 0 and
∫∞
0

Γ(x)dx <∞, such that for any J ≥ J0 and x > 0,

P (|Q∗(ξ)−Q∗
J(ξJ)| ≥ x) ≤ ϵ(J)Γ(x). (5.10)

Assumption 1 characterizes the discrepancy between Q∗ and random guess. Specifically,

it requires that the probability of Q∗ close to 0 by x is upper bounded by an order xα. Assump-

tion 1 is a functional extension of the classic Tsybakov noise condition, which is necessary in

establishing minimax classification in multivariate case (see [75] and [107]). Assumption 2

provides an upper bound on the probability of Q∗ differing from Q∗
J by at least x, which ap-

proaches zero if either J or x tends to infinity, implying that Q∗
J is an accurate approximation

of Q∗. Both assumptions can be verified in concrete examples; see Section 5.5.

Our MEMR results will be based on the following class of population densities of ξ:

H ≡ H (q,d, t,β, α, C, ϵ(·),Γ(·)) = {h ∈ H∗ : Q∗ satisfies both Assumptions 1 and 2} .

Finally, we introduce an assumption on the orders of L, J,p, B, under which the exact rate

of MEMR shall be established. Let

S0 = min
0≤u≤q

β∗
u(α + 1)

β∗
u(α + 2) + tu

, S1 = max
0≤u≤q

tu
β∗
u(α + 2) + tu

, S2 = min
0≤u≤q

1

β∗
u(α + 2) + tu

,

76

where β∗
u := βu

∏q
k=u+1(βk ∧ 1).

Assumption 3. The DNN class F(L, J,p, B) satisfies

(a) L ≍ log n;

(b)
(
n log−3 n

)S0/ρ ≲ J ≲ (n log−3 n)S1;

(c) max1≤ℓ≤L pℓ ≍ (n log−3 n)S1;

(d) B ≍ (n log−3 n)S2 .

Assumption 3 (a), (c) and (d) provide exact orders on L,p, B, respectively. Assumption

3 (b) provides a range on J . Notably, this condition implies ϱ ≥ S0/S1, i.e., the function ϵ(J)

rapidly converges to zero when J → ∞.

Theorem 5.1. There exist positive constants C1, C2, depending on q,d, t,β, α, C, ϵ(·),Γ(·),

such that the following results hold:

(i) infĜ suph∈H Eh(Ĝ) ≥ C1n
−S0 , where the infimum is taken over all classifiers Ĝ based

on training samples;

(ii) under Assumption 3, it holds that

sup
h∈H

Eh(ĜFDNN) ≤ C2

(
log3 n

n

)S0

.

Theorem 5.1 establishes a nonasymptotic rate for the MEMR which is of order n−S0 .

Moreover, the proposed FDNN classifier is able to achieve this rate up to a logarithmic factor,

and hence, is minimax optimal. Since S0 involves the intrinsic dimensions tu’s rather than

the original dimensions du’s, the rate of MEMR is typically fast, demonstrating the theoretical

advantage of our FDNN classifier.

5.5 Examples

The minimax results in Section 5.4 are based on parameter space H. In this section, we provide

some concrete examples to demonstrate the validity of such space.

77

5.5.1 Gaussian functional data with independent coefficients

Suppose that, under Y = k, the random coefficients ξj are independent Gaussian with mean

µkj and variance λkj . Define M = {j : µ1j ̸= µ−1j} and N = {j : λ1j ̸= λ−1j}. Assume

that M,N are mutually disjoint with common cardinality ω. It can be shown that, for any

J ≥ J0 := maxM ∪ N , Q∗
J(ξJ) = g1(g0(ξJ)), where g0 has components g0j(ξj) = ajξ

2
j +

bjξj + cj for some constants aj, bj, cj depending on µ1j , µ−1j , λ1j , λ−1j , and g1(g0(ξJ)) =∑
j∈M∪N g0j(ξj). Clearly, d0 = J and t0 = 1, and M ∪ N has cardinality 2ω, d1 = t1 = 2ω.

So Q∗
J ∈ G(1, J, 2ω, (1, 2ω), β) for any β > 0. Meanwhile, Assumption 1 holds for α = 1,

and Assumption 2 holds for J0, since Q∗
J = 0 for all J ≥ J0, and for any function ϵ(·) with

exponential tails and any density Γ(·).

5.5.2 Student’s t functional data with independent coefficients

Suppose that, under Y = k, ξj are independent Student’s t variables tνkj , where νkj ≥ 1 are

degrees of freedom of the t variables. Define M = {j : µ1j ̸= µ−1j} whose cardinality is ω. It

can be shown that, for any J ≥ J0 := J0 := maxM ∪N , Q∗
J(ξJ) = g1(g0(ξJ)), where g0 has

components

g0j(ξj) = log ej −
ν1j + 1

2
log

(
1 +

ξ2j
ν1j

)
+
ν−1j + 1

2
log

(
1 +

ξ2j
ν−1j

)
,

for some constant ej depending on νkj , and g1(g0(ξJ)) =
∑

j∈M∪N g0j(ξj). Similar to Section

5.5.1, we have Q∗
J ∈ G(1, J, 2ω, (1, 2ω), β) for any β > 0. Assumptions 1 and 2 can be

similarly verified as well.

5.5.3 Student’s t functional data with dependent coefficients

We consider an extension of Section 5.5.2 which involves dependent coefficients. Let p ≥ 1

and ν ≥ 2 be integers. Suppose that, under Y = k, ζj := (ξj, ξj+1, . . . , ξj+p−1)
⊤, j = 1, p +

1, 2p + 1, . . . are independent multivariate Student’s t vectors following tν(µkj,Σkj), where

µkj ∈ Rp and positive definite Σkj is p × p positive definite. Define M = {j : µ1j ̸= µ−1j}

and N = {j : Σ1j ̸= Σ−1j}. Assume M,N are mutually disjoint with common cardinality ω.

78

For any J ≥ J0 := J0 := maxM ∪N + p− 1, then it can be shown that

Q∗
J(ξJ)

=
∑

j∈M∪N

{
1

2
log

(
|Σ−1j|
|Σ1j|

)1/2

+
ν + p

2
log

(
1 + ν−1(ζj − µ−1j)

⊤Σ−1
−1j(ζj − µ−1j)

1 + ν−1(ζj − µ1j)⊤Σ
−1
1j (ζj − µ1j)

)}
.

Note that there are 2ω terms in the above sum. Similar to Sectoions 5.5.1, we have Q∗
J ∈

G(1, J, 2ω, (1, 2ω), β) for any β > 0. Assumptions 1 and 2 can be similarly verified as well.

5.6 Simulation

In this section, we examine the performances of FDNN and two competitors, quadratic dis-

criminant method (QD) proposed in [33] and the nonparametric Bayes classifier (NB) pro-

posed in [30], through simulation studies. Our studies involve both d = 1 and d = 2,

corresponding to 1D and 2D functional data, respectively. All experiments are conducted

in R. We summarize R codes and examples for the proposed FDNN algorithms on GitHub

(https://github.com/FDASTATAUBURN/fdnn-classification).

For 1D functional data, we considered two data generation processes (DGP).

• DGP1: Generate X(t) =
∑3

j=1 ξjψj(t), t ∈ [0, 1], where ψ1(t) = log(t + 2), ψ2(t) = t

and ψ3(t) = t3. Under class k, generate independently ξj ∼ N(µk,Σk), j = 1, 2, 3,

whereµ1 = (−1, 2,−3)⊤, Σ1 = diag
(
3
5
, 2
5
, 1
5

)
,µ−1 =

(
−1

2
, 5
2
,−5

2

)⊤, Σ−1 = diag
(

9
10
, 1
2
, 3
10

)
.

• DGP2: Generate X(t) =
∑3

j=1 ξjψj(t), t ∈ [0, 1], where ψj(t)’s are the same as in

DGP1. Under class 1, generate independently ξij ∼ N(µ1,Σ1), whereµ1 = (−1, 2,−3)⊤,

Σ1 = diag (3, 2, 1); under class −1, generate independently ξij ∼ t7−2j .

For 2D functional data, we considered two DGPs:

• DGP3: Generate X(s1, s2) =
∑4

j=1 ξijψj(s1, s2), 0 ≤ s1, s2 ≤ 1, where ψ1(s1, s2) =

s1s2, ψ2(s1, s2) = s1s
2
2, ψ3(s1, s2) = s21s2, ψ4(s1, s2) = s21s

2
2. Under class k, generate

independently ξj ∼ N(µk,Σk), j = 1, 2, 3, 4, where µ1 = (8,−6, 4,−2)⊤, Σ1 =

diag (8, 6, 4, 2), µ−1 =
(
−7

2
,−5

2
, 3
2
,−1

2

)⊤, Σ−1 = diag
(
9
2
, 7
2
, 5
2
, 3
2

)
.

79

n
DGP1 DGP2

FDNN QD NB FDNN QD NB
40 31.76(0.10) 38.58(0.02) 38.33(0.02) 16.69(0.04) 39.99(0.01) 39.26(0.03)
100 18.82(0.10) 37.91(0.02) 41.03(0.02) 13.20(0.01) 38.42(0.09) 40.27(0.03)
200 13.19(0.10) 37.35(0.02) 39.92(0.02) 12.29(0.01) 42.63(0.02) 39.84(0.04)
400 9.62(0.04) 36.75(0.02) 38.54(0.02) 12.40(0.01) 43.98(0.09) 38.51(0.04)

Table 5.1: Misclassification rates (%) with standard errors in brackets for DGP1 and DGP2

n
40 100 200 400

DGP 3 0.170(0.066) 0.148(0.055) 0.139(0.054) 0.127(0.040)
DGP 4 0.139(0.055) 0.127(0.014) 0.127(0.040) 0.123(0.011)

Table 5.2: Misclassification rates (%) with standard errors in brackets for DGP3 and DGP4

• DGP4: Generate X(s1, s2) =
∑4

j=1 ξijψj(s1, s2), 0 ≤ s1, s2 ≤ 1, where ψj(s1, s2)’s are

the same as in DGP3. Under class 1, generate independently ξj ∼ t2j(µ); under class

−1, generate independently ξj ∼ t2j+1(µ), with non-central parameter µ = (2, 3
2
, 1, 1

2
).

In each DGP, we generated n training data functions and 500 testing data functions, with

n = 40, 100, 200, 400. Each data function was sampled over 50 grid points in the respec-

tive domain. Misclassification errors were evaluated based on 100 replicated datasets. Network

parameters were selected based on training data using Steps 1-3 in Section 5.3. Tables 5.1

summarizes the misclassification rates when the functional data are either Gaussian or non-

Gaussian . The discrepancy is increasing with the sample size. Especially, when sample size

is large (over 100), the proposed FDNN still outperforms two counterparts. Table 5.2 sum-

marizes the misclassification rates for 2D-functional data classification. Only our proposed

FDNN method is applied, as there are no existing methods to compare with. From the table,

we observe that both misiclassification rates and the standard errors decrease as the sample size

increases, which supports the theoretical findings in Section 5.4.

80

Figure 5.1: A sample of 10 log-periodograms per class

5.7 Real data analysis

5.7.1 TIMIT database

This benchmark data example was extracted from the TIMIT database (https://catalog.

ldc.upenn.edu/LDC93s1), which is a widely used resource for research in speech recog-

nition and functional data classification. The data set we used was constructed by selecting four

phonemes for classification based on digitized speech from this database. From each speech

frame, a log-periodogram transformation is applied so as to cast the speech data in a form

suitable for speech recognition. The five phonemes in this data set are transcribed as follows:

“sh” as in “she”, “dcl” as in “dark”, “iy” as the vowel in “she”, “aa” as the vowel in “dark”,

and “ao” as the first vowel in “water”. For illustration purpose, we focus on the “aa”, “ao”,

“iy” and “dcl” phoneme classes. Each speech frame is represented by n = 400 samples at a

16-kHz sampling rate; the first M = 150 frequencies from each subject are retained. Figure

5.1 displays 10 log-periodograms for each class phoneme.

81

“aa” vs “ao” ‘aa” vs “iy” “ao” vs “iy” “ao” vs “dcl”
20.278(0.014) 0.196(0.001) 0.153(0.004) 0.270(0.003)

Table 5.3: Misclassification rates (%) with standard errors in brackets for Speech Recognition
data.

We randomly select training sample size n1 = n2 = 300 to train the classifiers of three

methods and the rest of 100 samples remained as the test samples. Network parameters were

selected based on training data using Steps 1-3 in Section 5.3. Table 5.3 reports the mean

percentage (averaged over the 100 repetitions) of misclassified test curves.

The dataset used in the preparation of this article were obtained from the ADNI database

(adni.loni.usc.edu). The ADNI is a longitudinal multicenter study designed to develop

clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of

AD. From this database, we collect PET data from 79 patients in AD group, and 45 patients

in EMCI group. This PET dataset has been spatially normalized and post-processed. These

AD patients have three to six times doctor visits and we select the PET scans obtained in the

third visits. People in EMCI group only have the second visit, and we select the PET scans

obtained in the second visits. For AD group, patients’ age ranges from 59 to 88 and average

age is 76.49, and there are 33 females and 46 males among these 79 subjects. For EMCI group,

patients’ age ranges from 57 to 89 and average age is 72.33, and there are 26 females and 19

males among these 45 subjects. All scans were reoriented into 79 × 95 × 68 voxels, which

means each patient has 68 sliced 2D images with 79 × 95 pixels. For 2D case, it means each

subject has N = 79× 95 = 7, 505 observed pixels for each selected image slice. For 3D case,

the observed number of voxels for each patient’s brain sample is N = 79× 95× 68.

It is well known that Alzheimer’s disease destroys neurons and their connections in hip-

pocampus, the entorhinal cortex, and the cerebral cortex. These parts are corresponding to the

first 25 slices. Therefore, for our 2D case study, we specifically select the 5-th, 10-th, 15-th,

20-th and 25-th slices from 68 slices for each patient. We aim to conduct classification based

on the information of those slices respectively; see [81]. Figure 5.2 shows the averaged 2D

images for two groups at each slice. For 3D case, we focus on the total 25 slices, so the 3D data

is observed on 79× 95× 25 points. Figure 5.3 demonstrates the misclassification rates for both

82

2D and 3D brain imaging data. There are several interesting finds. First, given a single slice

2D imaging data, the misclassification rates tend to be larger than using total 25 slices data (3D

data). It indicates that 3D data contains more helpful information to decrease the misclassifica-

tion risk. Second, the 20-th slice provides the lowest one among all 2D data. It is a promising

finding for neurologists, as this smallest risk indicates this particular slice presents useful in-

formation to distinguish the EMCI and AD groups. Further medical checkups are meaningful

for this special location in the brain.

5.8 Discussion

We present a novel FDNN classifier for solving functional classification problems. In compari-

son with the existing literature, our results are able to deal with non-Gaussian multi-dimensional

functional data. Our contributions are threefold. First, we provide sharp convergence rates for

EMR via DNNs when data are of functional type, and the result can be applied to a large scope

of functional data with complex density functions. Second, not only can our novel FDNN

classifier handle one dimensional functional data, but also can classify multi-dimensional func-

tional data. Third, we demonstrate via extensive simulations and real-data examples that

the proposed FDNN classifier has outstanding performances under either Gaussian or non-

Gaussian assumption.

83

AD EMCI

5-th

10-th

15-th

20-th

25-th

Figure 5.2: Averaged images of the 5-th, the 10-th, the 15-th, the 20-th and the 25-th slices of
EMCI (left column) group and AD group (right column).

84

Figure 5.3: Grouped boxplot of misclassification rates for the 5-th, the 10-th, the 15-th, the
20-th , the 25-th slices and 3D data of the first 25 slices between EMCI and AD groups.

85

Chapter 6

Empirical Likelihood Ratio Tests for Varying Coefficient Geo Models

6.1 Introduction

Varying-coefficient models (VCMs)’s introduced by [45], are regression models commonly ap-

plied to examine the interactive associations between a response and predictors. These models

are appealing because the regression coefficients are allowed to vary as a smooth function of

some variables of interest to detect nonlinear interactions. Because of their flexibility, VCMs

have been widely applied in many scientific areas. See [38] for a selective overview of the

major methodological and theoretical developments on VCMs. This study focuses on VCMs

for spatial data randomly distributed over an arbitrary geographical region.

Our work is motivated by inference problems examining the effects of the county-level

food retail environment on obesity rates in United States, with the effect varying over me-

dian household income. County food retail environments are measured by the availability and

healthfulness of their food retail stores. More detailed information of this data set is provided

in Section 6.6. Based on this data set, socioeconomists attempt to disentangle how county-level

associations between the food environment and obesity rates change with median household

income levels. This leads to modeling the effect of food retail environments as functions of

household income levels. However, owing to the geographic dependence, the classical VCM is

not sufficient.

In this work, we propose the varying-coefficient geo model (VCGM) to solve the moti-

vating application. Specifically, assume Si = (Si1, Si2)
⊤ is the location of the ith subject, for

i = 1, . . . , n. The location S ranges over a two-dimensional bounded domain Ω ∈ R2 of any

86

arbitrary shape. We observe data of the form {Yi, Zi,Xi,Si}, where Yi is a response variable,

Xi = (Xi1, . . . , Xip)
⊤ is a vector of scalar covariates, and Zi is a scalar predictor. Further-

more, {(Yi, Zi,Xi)}ni=1 are observed at location Si. Suppose that {(Yi, Zi,Xi,Si)}ni=1 satisfies

the following VCGM:

Yi = X⊤
i β(Zi) + α(Si) + εi, Si ∈ Ω, i = 1, . . . , n, (6.1)

where β(Z) = (β1(Z), . . . , βp(Z))
⊤, with each βk(·) as an unknown varying-coefficient func-

tion, α(Si) is an unknown smoothing bivariate function representing the spatial component,

and εi denotes independent and identically distributed (i.i.d.) random noise, with E(εi) = 0

and V ar(εi) = σ2 independent of (Zi,Xi,Si). Our primary interest is to estimate and conduct

an inference for β(·) and α(·) based on the given observations {(Yi, Zi,Xi,Si)}ni=1.

In the proposed VCGM, when the spatial component α(·) is ignored, the model becomes

the traditional VCM. Numerous studies have proposed methods for fitting the VCM, for exam-

ple, the local linear method [37], spline method [48], and two-stage methods [117, 71]. There

are also several methods for estimating bivariate functions defined over 2D domains. Within the

nonparametric framework, these include bivariate P-splines [77], thin plate splines [122], and

bivariate splines [116, 129]. Here, we apply bivariate splines over triangulations [56], because

they can handle irregular 2D domains with complex boundaries and they are computationally

efficient.

This study focuses on proposing pointwise (at a specific z) and simultaneous (for all z ∈

[a, b]) testing procedures for the following hypothesis under model (6.1):

H0 : H{β0(z)} = 0 v.s. H1 : H{β0(z)} ≠ 0, (6.2)

where H(b) is a q-dimensional function of b = (b1, . . . , bp) ∈ Rp, such that C(b) :=

∂H(b)/∂b⊤ is a q × p full-rank matrix (q ≤ p), for all b. The above hypothesis is very

general, owing to the choice flexibility of H(b). It includes many interesting hypotheses as

special cases, for instance, H0 : β0,k(z) = 0 for all k if H(b) = b, a test for any arbitrary linear

87

constraints on β0 if H(b) = Λb− c0 for a q × p known matrix Λ and a known vector c0, and

even tests with nonlinear constraints. See [6] for explicit examples of nonlinear hypotheses.

In contrast to estimation, few studies have examined inferences of varying-coefficient

functions. [48] proposed a goodness-of-fit test based on a comparison of the weighted resid-

ual sum of squares. This is a specific example of the generalized likelihood ratio studied by

[36]. More recently, [129] proposed a spline backfitted local polynomial to estimate and make

simultaneous inferences of the univariate components in a geo-additive model. Although the

above-mentioned methods seem useful, they are not applicable to the general hypothesis in

(6.2). Furthermore, the testing procedure involves a plug-in variance estimate, which leads to

an unstable asymptotic distribution of the test statistics.

In this chapter, we propose both pointwise and simultaneous tests for the hypothesis in

(6.2) based on the empirical likelihood (EL). The EL is a nonparametric likelihood, introduced

by [82, 83]. In spite of its nonparametric construction based on observed data points, the EL

shares some convenient merits of the parametric likelihood, and has many desirable advantages

in deriving confidence sets for unknown parameters. [84] and [26] provide an overview of

the EL method. The EL method has been extended to VCMs for various data types; see, for

example, [124], [123],[125] and [72]. Recently, [114] considered test procedures based on the

EL to conduct inferences for a class of functional concurrent linear models. However, when

they applied the method to Google flu trend data, they ignored the spatial information contained

in the data set. [10] and [111] considered the EL method for inference over a broad class of

spatial data exhibiting stochastic spatial patterns. However, they did not consider the flexible

VCGM, or the spatial information.

In contrast to existing VCMs, our proposed VCGM properly accounts for all covariates

and spatial information, which improves the model flexibility. The proposed EL-based infer-

ence has many advantages over normal approximation-based methods. First, it does not involve

a plug-in estimate for the limiting variance. Owing to the necessity of estimating the standard

errors, which is a typical challenge in nonparametric models, the Wald-type simultaneous infer-

ence is not stable in [72]. Second, as [34] proved, the EL is Bartlett correctable and, thus, has

88

an advantage over the bootstrap method. To the best of our knowledge, this is the first work to

propose a VCGM and conduct an EL ratio test for spatial data, which is a nontrivial extension.

The rest of the chapter is organized as follows. We propose spline estimators for both

univariate and bivariate functions and develop their asymptotic consistency in Section 6.2. The

pointwise and simultaneous EL tests are presented in Section 6.3, where we investigate the

asymptotic distributions of the test statistics under both the null hypothesis and local alterna-

tives. In Section 6.4, we address implementation issues such as triangulation, the number of

univariate spline knots, and the kernel bandwidth selection. Simulation studies are presented

in Section 6.5, followed by an analysis of a real-data example in Section 6.6. We summarize

the proposed methodology and discuss future work in Section 6.7. Major technical details are

included in the Supplementary Material.

6.2 Univariate and bivariate spline estimations

In the estimation stage, we approximate each varying coefficient using univariate polynomial

splines. The geographical function α(·) is approximated using bivariate penalized splines over

triangulation. First, we introduce some notation for univariate and bivariate splines.

6.2.1 Setup

Suppose that the covariate Z is distributed on a compact interval [a, b]. Owing to the simplicity

of the computation, we approximate the univariate components βk(z) in (6.1) using polynomial

splines. Define a partition of [a, b] with Jn interior knots as v = {a = v0 ≤ v1 ≤ . . . ≤

vJn+1 = b}. For some ϱ ≥ 1, the polynomial splines of order ϱ + 1 are polynomial functions

with ϱ-degree on intervals [vj, vj+1), for j = 0, . . . Jn − 1, and [vJn , vJn+1], and have ϱ − 1

continuous derivatives globally. Let U = U([a, b]) be the space of such polynomial splines. Let

Uj(z), for j = 1, . . . , Jn + ϱ + 1, be the original B-spline basis functions for the coefficient

functions. Suppose for z ∈ [a, b], βk(z) ≈
∑Jn+ϱ+1

j=1 ηkjUj(z) = U(z)⊤ηk, where U(z) =

(U1(z), . . . , UJn+ϱ+1(z))
⊤ and ηk = (η1k, . . . , ηJn+ϱ+1,k)

⊤.

89

It has been proved that the bivariate penalized splines method is efficient in dealing with

data distributed on irregular domains with complicated boundaries [129, 116]. In the follow-

ing, we briefly introduce the triangulation techniques and describe the bivariate penalized spline

smoothing method for the VCGM. See [56] and [116] for a detailed introduction of the trian-

gulation technique and how to construct the bivariate spline basis functions over triangulation.

According to [56], let τ = ⟨s1, s2, s3⟩ be a nonempty-area triangle with three vertices, s1,

s2, and s3. There is a unique representation in the form for any point s ∈ R2, s = b1s1 +

b2s2 + b3s3, with b1 + b2 + b3 = 1, and b1, b2, and b3 are the barycentric coordinates of the

point s relative to the triangle τ . We define the Bernstein polynomials of degree d relative

to triangle τ as Bτ,d
ijk(s) = d

i!j!k!
bi1b

j
2b
k
3. The spatial domain Ω is a polygon of arbitrary shape,

which can be partitioned into finitely many triangles. Let a collection △ = {τ1, . . . , τN}

of N triangles be a triangulation of Ω = ∪Ni=1τi, provided that any nonempty intersection

between a pair of triangles in △ is either a shared vertex or a shared edge. For any triangle

τ ∈ △, denote Tτ as the radius of the largest disk contained in τ . Let |τ | be the length of

the longest edge. Denote the size of △ as |△| = max{|τ | : τ ∈ △}. For any integer d ≥ 1

and triangle τ , let Pd(τ) be the space of all polynomials of degree less than or equal to d on

τ . Then, any polynomial ζ ∈ Pd(τ) can be uniquely written as ζ|τ =
∑

i+j+k=d γ
τ
ijkB

τ,d
ijk,

where the coefficients γτ = {γτijk, i + j + k = d} are called B-coefficients of ζ . For any

integer r ≥ 0, let Cr(Ω) be the collection of all rth continuously differentiable functions over

Ω. Given a triangulation △, define the spline space of degree d and smoothness r over △

as Srd(△) = {ζ ∈ Cr(Ω) : ζ|τ ∈ Pd(τ), τ ∈ △}. Let {Bm}m∈M be the set of bivariate

Bernstein basis polynomials for Srd(△), where M is an index set with cardinality |M| =

N(d + 1)(d + 2)/2. Then, we rewrite any function ζ ∈ Srd(△) using the basis expansion

ζ(s) =
∑

m∈MBm(s)γm = B(s)⊤γ, where s ∈ Ω and γ = (γm,m ∈ M)⊤ is the bivariate

spline coefficient vector.

6.2.2 Penalized least-squares estimators

In general, there are three approaches to conduct a spline estimation: smoothing splines, re-

gression splines, and penalized splines. Smoothing splines request as many parameters as the

90

number of observations. Regression splines need only a small number of knots, placed judi-

ciously, but appropriate algorithms are needed to select the knots. Penalized splines combine

the features of smoothing splines and regression splines. A roughness penalty is incorporated

with relatively large number of knots. [116] and [129] discuss the advantages and necessity of

penalized bivariate spline smoothing. Note that, given some suitable smoothness conditions,

βk(·) and α(·) can be well represented by a univariate spline basis expansion and the Bernstein

basis polynomials introduced in Section 6.2.1. It is well known that increasing the number

of triangles may overfit the data and increase the variance, while decreasing the number of

triangles may result in a rigid and restrictive function that has more bias. Consequently, to

improve the data fitting efficiency, reduce the computation complexity, and avoid over fitting,

we consider the following penalized least-squares problem:

n∑
i=1

{
Yi −

p∑
k=1

Jn+ϱ+1∑
j=1

ηjkUj(Zi)Xik −
∑
m∈M

Bm(s)γm

}2

+
λn
2
E(α), (6.3)

where

E(α) =
∑
τ∈△

∫
τ

∑
i+j=2

(
2

i

)
(∇i

s1
∇j
s2
α)2ds1ds2

is the roughness penalty for α(·), λn is the roughness penalty parameter, and ∇v
sq is the vth

order derivative in the direction sq at the point s, for q = 1, 2.

For a smooth join between two polynomials on adjoining triangles, we impose some linear

constraints on the spline coefficients γ : Ψγ = 0, where Ψ is the matrix that collects the

smoothness conditions across all the shared edges of triangles. An example of Ψ can be found

in [129]. Thus, the penalized least-squares problem (6.3) becomes

n∑
i=1

{
Yi −

p∑
k=1

Jn+ϱ+1∑
j=1

ηj,kUj(Zi)Xik −
∑
m∈M

Bm(s)γm

}2

+
1

2
λnγ

⊤Pγ, (6.4)

91

subject to Ψγ = 0, where P is the block diagonal penalty matrix satisfying γ⊤Pγ = E(Bγ).

In the following, let Y = (Y1, . . . , Yn)
⊤ be collections of Yi. Denote

W =

U(Z1)

⊤(X11) . . . U(Z1)
⊤(X1p)

.

U(Zn)
⊤(Xn1) . . . U(Zn)

⊤(Xnp)

as an n× p(Jn + ϱ+ 1) matrix. To solve the constrained minimization problem (6.4), we first

remove the constraint using a QR decomposition of the transpose of the constraint matrix Ψ.

Specifically, we have Ψ⊤ = QR =

(
Q1 Q2

)R1

0

, where Q is an orthogonal matrix, R

is an upper-triangle matrix, the submatrix Q1 is the first r columns of Q, where r is the rank

of the matrix Ψ, and 0 is a matrix of zeros. According to Lemma 1 in [116], the problem

(6.4) is now converted to the following conventional penalized regression problem without any

constraints:

min
η,θ

{
∥Y −Wη −BQ2θ∥2 + λn(Q2θ)

⊤P(Q2θ)
}
,

where η =
(
η11, . . . , ηp(Jn+ϱ+1)

)
and Q2θ = γ. For a fixed penalty parameter λn, we have

η̂
θ̂

 =

 W⊤W W⊤BQ2

Q⊤
2 B

⊤W Q⊤
2 B

⊤BQ2

+

0

λnQ
⊤
2 PQ2

−1 W⊤Y

Q⊤
2 B

⊤Y

 .

Define

V =

V11 V12

V21 V22

 =

 W⊤W W⊤BQ2

Q⊤
2 B

⊤W Q⊤
2 (B

⊤B+ λnP)Q2

 .

It follows from well-known block matrix forms of a matrix inverse that

V−1 := A =

A11 A12

A21 A22

 =

 A11 −A11V12V
−1
22

−A−1
22 V21V

−1
11 A22

 ,

92

where

A−1
11 = V11 −V12V

−1
22 V21 = W⊤[I−BQ2{Q⊤

2 (B
⊤B+ λnP)Q2}−1Q⊤

2 B
⊤]W

A−1
22 = V22 −V21V

−1
11 V12 = Q⊤

2 [B
⊤{I−W(W⊤W)−1W⊤}B+ λnP]Q2.

Hence, η̂ = A11W
⊤ {I−BQ2{Q⊤

2 (B
⊤B+ λnP)Q2}−1Q⊤

2 B
⊤}Y and θ̂ = A22Q

⊤
2 B

⊤{I−

W(W⊤W)−1W⊤}Y. Thus, the estimators of βk(·) and α(·) are

β̂k(z) = U(z)⊤η̂k and α̂(s) = B(s)⊤γ̂, respectively, where γ̂ = Q2θ̂. (6.5)

We now investigate the asymptotic properties of the spline estimates β̂k(z) and α̂(s). To

avoid confusion, let β0,k(·) and α0(·) be the true functions of βk(·) and α(·) in model (6.5).

For any Lebesgue measurable function ϕ(s) on a domain D, where D = [a, b] or Ω ⊆ R2, let

∥ϕ∥2L2
=
∫
D ϕ

2(s)ds.

Theorem 6.1 (Rate of Convergence). Suppose that Assumptions (A1)–(A6) in the Supplemen-

tary Material hold. Then the spline estimators β̂k and α̂ satisfy

∥α̂− α0∥L2

= Op

{
J−ϱ−1
n |△|+ n−1/2|△|−1 +

λn
n|△|3

+

(
1 +

λn
n|△|5

)
|△|d+1

}
,

p∑
k=1

∥β̂k − β0,k∥L2 = Op

(
n−1/2J1/2

n + n−1|△|−1 + J−ϱ−1
n

)
.

REMARK 1. This consistency result echoes similar phenomena discovered by other nonpara-

metric regression literature. In fact, when only spatial information is available and no other

scale covariates are included, the model (6.1) reduces to the same model in [57]. When

the varying coefficients reduce to linear coefficients, model (6.1) reduces to the same model

in [116]. In these two reduced models, the above convergence rate of α̂ is the same as

those given in [57] and [116], that is, Op

{
n−1/2|△|−1 + λn

n|△|3 +
(
1 + λn

n|△|5

)
|△|d+1

}
. When

the geo function α(·) is excluded from model (6.1), the convergence rate of β̂k reduces to

93

Op(n
−1/2J

1/2
n +J−ϱ−1

n). If β0,k have bounded second-order derivatives (ϱ = 1) and Jn ≍ n1/5,

we have ∥β̂k − β0,k∥L2 = Op(n
−2/5), achieving the optimal nonparametric rate [101].

Given these consistency results of the proposed univariate and bivariate spline estimators,

we can now build hypothesis testing statistics based on these estimators.

6.3 Empirical likelihood ratio tests for varying coefficients

It is challenging to derive the asymptotic distribution and the measure of variability for the

spline estimators introduced in Section 6.2. Similar findings have been discussed in [71] and

[129]. To investigate the uncertainty in the estimation of the varying effect of the covariates, we

propose an inference for hypothesis (6.2) using the EL method, with bivariate penalized spline

estimators plugged in for the geo function.

To test (6.2) and construct an EL ratio function for β(z), we first introduce an auxiliary

random vector

gi{β(z), α0} =
(
Yi − β(z)⊤Xi − α0(Si)

)
XiKh(Zi − z),

where K(·) stands for a continuous kernel function, h is a bandwidth, and Kh(·) = K(·/h)/h

is a rescaling of K. Note that Egi{β(z), α0} is close to zero if β(z) = β0(z). Hence, the

problem of testing whether β(z) is the true function β0(z) is equivalent to testing whether

Egi{β(z), α0} is close to zero, for i = 1, 2, . . . , n. According to [84], this can be done by

using the EL; that is, we can define the profile EL ratio function

R{β(z), α0} = max
pi:1≤i≤n

{
n∏
i=1

npi : 0 ≤ pi ≤ 1,
n∑
i=1

pi = 1,
n∑
i=1

pigi{β(z), α0} = 0

}
.

The rich EL literature has shown that −2 logR{β0(z), α0} is asymptotically chi-squared

with p degrees freedom. However, R{β(z), α0} cannot be used directly to make a statistical

inference on β(z), because R{β(z), α0} contains the unknown function α0(·). A natural way

94

is to replace α0(·) with the estimator α̂(Si) given in (6.5), that is,

gi{β(z)} := gi{β(z), α̂} =
(
Yi − β⊤(z)Xi − α̂(Si)

)
XiKh(Zi − z).

Note that the solution to
∑n

i=1 gi{β(z)} = 0 corresponds to the local constant estimator

β̌(z) =

{
n∑
i=1

XiX
⊤
i Kh(Zi − z)

}−1{ n∑
i=1

(Yi − α̂(Si))XiKh(Zi − z)

}
. (6.6)

After replacing the true function α0(·), we show that the discrepancy between gi{β0(z)} and

gi{β0(z), α0} is asymptotically negligible in the following proposition. Let µjj′ =
∫
uj

′
Kj(u)du

and Ω(z) = E(X1X
⊤
1 |Z = z).

Proposition 6.1. Under Assumptions (A1)—(A5), (A6′), (A7), and (A8) in the Supplementary

Material, we have

E[gi{β0(z)}] = O(h2)

and

V ar[gi{β0(z)}] = σ2Ω(z)f(z)µ20h
−1 {1 + o(1)} ,

where f(z) is the probability density function of Z.

REMARK 2. To investigate the EL tests for the geo spatial model, the key point is to check

the asymptotic property of gi{β0(z)}. More specifically, if the first and second moments

of gi{β0(z)} have the same orders as those of gi{β0(z), α0}, the asymptotic distribution of

−2 logR{β(z)} is similar to the common VCM cases. According to Theorem 6.1, we es-

tablish the orders of the first two moments for gi{β0(z)} as in Proposition 6.1 by bound-

ing E
{
XiX

⊤
i (β0(Zi)− β0(z))Kh(Zi − z)

}
and E {XiKh(Zi − z)(α0(Si)− α̂(Si))}, with

a careful choice of the lower bound of Jn and the upper bound of |△|. The details can be found

in the proof of Proposition 6.1 in the Supplementary Material.

With a slight abuse of notation, we define the EL function

L{β(z)} = max
pi:1≤i≤n

{
n∏
i=1

pi : 0 ≤ pi ≤ 1,
n∑
i=1

pi = 1,
n∑
i=1

pigi {β(z)} = 0

}
. (6.7)

95

We can maximize (6.7) using the Lagrange multiplier technique, which leads to the following

log-EL:

logL{β(z)} = −
n∑
i=1

log
{
1 + δ⊤(z)gi{β(z)}

}
− n log n,

where δ(z) is determined by the equation:
∑n

i=1 gi{β(z)}[1 + δ⊤(z)gi{β(z)}]−1 = 0. There-

fore, the negative log-EL ratio statistic for testing H0 : H{β0(z)} = 0 is

ℓ(z) := min
H{β(z)}=0

n∑
i=1

log
{
1 + δ⊤(z)gi{β(z)}

}
. (6.8)

To investigate the power of the tests, we consider the local alternatives H1 : H{β0(z)} =

bnd(z), where bn is a sequence of numbers converging to zero and d(z) ̸= 0 is a q-dimensional

function. For any fixed nonzero function d(z), bn depicts the order of signals that a test can

detect. The smallest order of bn is given in [27], who show that the EL method can detect

alternatives of order (nh)−1/2 for pointwise tests and order n−1/2h−1/4 for simultaneous tests.

Both orders are larger than the parametric rate n−1/2.

The following theorem summarizes the asymptotic distribution of 2ℓ(z) under both the

local alternative and the null hypothesis H0 for each fixed z.

Theorem 6.2. Under Assumptions (A1)—(A5), (A6′), (A7), and (A8) in the Supplementary Ma-

terial, and for each z ∈ [a, b] under the null hypothesis: H{β0(z)} = 0, we have 2ℓ(z)
d−→ χ2

q .

For each z ∈ [a, b] and any fixed real vector of function d(z), under the alternative hypothesis

H1 : H{β0(z)} = (nh)−1/2d(z), we have

2ℓ(z)
d→ χ2

q

(
d⊤(z)R(z)d(z)

)
,

where R(z) = σ2µ20f(z)
{
C(z)Ω(z)C⊤(z)

}−1 and

C(z) = C (β(z)) =
∂H (β(z))

∂β(z)⊤
.

According to the Theorem 6.2, we can construct a pointwise confidence interval for each

βj(z). The construction of the confidence interval is based on an asymptotic α-level test when

96

H{β(z)} = βj(z). We reject H0 at a fixed point z if 2ℓ(z) > χ2
1,α, where χ2

1,α is the upper

α-quantile of χ2
1, and a 100(1−α)% confidence interval for βj(z) is given by {βj(z) : 2ℓ(z) ≤

χ2
1,α} .

For the simultaneous test on H0 in (6.2), for all z ∈ [a, b], we consider the Cramér—von

Mises type test statistic. Because 2ℓ(z) can be viewed as the distance between H{β(z)} and

zero, we propose the following test statistic for H0:

Dn =

∫ b

a

2ℓ(z)w(z)dz, (6.9)

where w(z) is some probability weight function.

Theorem 6.3. Under Assumptions (A1)—(A5), (A6′), (A7), and (A8) in the Supplementary Ma-

terial, with the null hypothesis H0 : H{β0(·)} = 0, as n→ ∞, we have

h−1/2{Dn − q} d−→ N
(
0, qσ2

0

)
,

where σ2
0 = 2µ−2

20

∫ b
a
w2(t)dt

∫ 2

−2
{K(2)(u)}2du. When the alternative hypothesisH1 : H{β0(z)} =

n−1/2h−1/4d(z) holds, we have

h−1/2{Dn − q} d−→ N
(
µ0, qσ

2
0

)
,

where µ0 =
∫ b
a
d⊤(z)R(z)d(z)w(z)dz.

Although the above theorem guarantees the asymptotic normality of Dn, the convergence

rate is h−1/2. According to Assumption (A6′), the rate is o(n1/10), which is much slower than

the classical nonparametric rate n2/5. To obtain accurate type-I and type-II error probabilities

in practice, we suggest a bootstrap procedure to generate the empirical quantile and perform

the simultaneous testing. The distribution consistency of this method is discussed in [114]. The

proposed bootstrap procedure consists of the following steps:

Step 1. For each subject, calculate the residual ẽi = Yi − β̌(Zi)⊤Xi − α̂i(Si), with the local

constant estimator β̌(z) in (6.6). Compute the sample variance of ẽi, and denote it as σ̃2;

97

Step 2. For the bth bootstrapping, for b = 1, . . . , B, construct observation Y (b)
i = β̌(Zi)

⊤Xi +

α̂i(Si)+ϵ
(b)
i , where ϵ(b)i are independently generated from a normal distribution satisfying

E
(
ϵ
(b)
i

)
= 0 and V ar

(
ϵ
(b)
i

)
= σ̃2. Apply

{
Y

(b)
i

}n
i=1

as new observations, and compute

the bootstrapped version of Dn, denoted by D(b)
n ;

Step 3. Calculate the 100(1−α)% quantile of the bootstrap samples
{
D

(b)
n

}B
b=1

, and denote it as

d̂α. Reject the null hypothesis if Dn > d̂α.

REMARK 3. In step 1, β̌(z) is the solution to n−1
∑n

i=1 gi (β(z), α̂) = 0. We use β̌(z) instead

of the spline estimator β̂(z) to generate residuals, because β̌(z) is the maximum empirical

likelihood estimator involved in the construction of ℓ(z) and Dn.

The following proposition justifies the bootstrap procedure. The proof is similar to Theo-

rem 4 in [114]. Thus it is omitted.

Proposition 6.2. Let Xn = {(Yi, Zi,Xi,Si)}ni=1 be the original data, and L(Dn) be the asymp-

totic distribution of Dn under the null hypothesis. Under Assumptions (A1)—(A6), (A6′), (A7)

and (A8), the conditional distribution of D(b)
n given Xn, L

(
D

(b)
n |Xn

)
converges to L (Dn) al-

most surely.

6.4 Implementation

In extensive numerical studies, we find that the selections of the knots for the univariate spline,

triangulation, and the choice of bandwidth are crucial, especially for simultaneous tests. In the

following, we discuss the selection procedures one by one.

6.4.1 Selection of the tuning parameters in univariate and bivariate spline smoothing

In this work, we do not directly need the spline estimator β̂(z) for the inference of β(z).

However, α̂(s) is essential for constructing the EL ratio tests (6.8), and its estimating pro-

cedure involves β̂(z). Hence, we need to make sure that β(z) is estimated efficiently. For

univariate spline smoothing, we suggest applying knots on a grid of equally spaced sam-

ple quantiles. Assumption (A6′) in the Supplementary Material suggests that the number of

98

knots Jn needs to satisfy |△|1/(ϱ+1) n2/(5ϱ+5) ≪ Jn ≪ |△|2n log−1(n). Given the widely

used cubic splines, in practice, we suggest the rule-of-thumb number of interior knots Jn =

max
{
⌊c1n2/(5ϱ+5)⌋+ 1, 3

}
, where the tuning parameter c1 ∈ [1, 3]. A similar is considered in

[129]. We also compared the proposed knot selection method with other data-driven methods,

namely, the AIC and BIC. The well-selected parameters using the AIC and BIC are similar to

our proposed rule-of-thumb choices. Therefore, for the purpose of efficient computation, we

recommend the rule-of-thumb choices for practical applications.

When selecting the number of triangles, we need to balance the computational burden and

the approximation accuracy. According to [129] and Assumption (A6′), in practice, when the

boundary of the spatial domain is not extremely complicated, we suggest taking the number

of triangles as the following: N = min
{
⌊c2n4/(5d+5)⌋, n/4

}
+ 1, for some tuning parameter

c2. Typically, c2 ∈ [1, 5] and is chosen using cross-validation. When the boundary of the

spatial domain looks complicated, we suggestN to be much larger than n, and the triangulation

can approximate the complicated domain precisely. Once N is chosen, a typical triangulation

method, such as Delaunay triangulation, can be used to build the triangulated meshes. From

our numerical experience, when the smoothness r = 1, compared with the setting d = 2 or 3,

using d = 5 requires too much unnecessary computational time, because its improvement in

terms of accuracy is negligible. We suggest using r = 1 and d = 2 or 3 in practice, because

they provide enough accuracy for smooth functions and reduce the computational cost. Similar

settings are also found in [57], [129] and [51].

The generalized cross-validation (GCV) criterion is an efficient method for selecting the

smoothing parameters λn, and also has good theoretical properties [112]. The fitted values at

the n data points are Ŷ = Wη̂ +BQ2θ̂, and the smoothing matrix is

S(λn) = WA11W
⊤ {I−BQ2{Q⊤

2 (B
⊤B+ λnP)Q2}−1Q⊤

2 B
⊤}

+BQ2A22Q
⊤
2 B

⊤ {I−W(W⊤W)−1W⊤} .

99

We choose the smoothing parameter λn by minimizing

GCV (λn) = n∥Y − Ŷ∥2/ [n− tr {S(λn)}]2

over a grid of values of λn. We use a 10-point grid, where the values of log10(λn) are equally

spaced between −6 and 1 in our numerical studies. The aforementioned bivariate spline

smoothing methods are all implemented using the R package “BPST” developed by [116].

6.4.2 Bandwidth selection

The performance of the EL pointwise and simultaneous tests depends on the choice of the

bandwidth h. We apply the five-fold cross-validation criterion and choose the bandwidth h by

minimizing

CV (h) = 5−1

5∑
k=1

|Fk|−1
∑
i∈Fk

{
Yi − β̌(−k)(Zi)

⊤Xi − α̂(−k)(Si)
}2
,

where Fk denotes the subject index set for the kth folder and |Fk| denotes the cardinality

of Fk over a grid of values of h. In our numerical studies, we select the bandwidth h =

⌊c3n1/5⌋ + 0.02 for the pointwise tests, and h = ⌊c3n1/5⌋ for the simultaneous tests, where

c3 ∈ {0.1, 0.2, . . . , 0.9, 1}.

6.5 Simulation

In this section, we conduct simulation studies to evaluate the finite-sample performance of the

proposed methodology. We generate the data from the following VCGM:

Yi = Xi1β1(Zi) +Xi2β2(Zi) + α(Si) + ϵi, i = 1, · · · , n, (6.10)

where Xij and ϵi are independently generated from N(0, 1), and Zi follows Unif [0, 1] in-

dependently. In addition, we choose the Epanechnikov kernel K(x) = 3/4 (1− x2)+ for

the local linear estimation, where (a)+ = max(a, 0). The sample sizes are chosen to be

100

Figure 6.1: Contour maps of the true function α0(·) (first column) and the estimators (second
colmun) over the square region (first row) and the horseshoe region (second row).

n = 500, 1000, 2000. We consider two spatial domains for the bivariate function α(·) : 1)

a rectangular domain [0, 1]2; and 2) a modified horseshoe domain used by [91] and [116]. For

each Monte Carlo replication, we randomly sample n locations uniformly from the grid points

inside the two spatial domains. Under all scenarios, 1, 000 Monte Carlo replicates are con-

ducted. For all the univariate splines, we use cubic B-splines with ϱ = 3. For the bivariate

spline smoothing, we consider d = 3 and r = 1.

To check the accuracy of the proposed spline estimators, we compute the mean squared

error (MSE) for α, β1, and β2. Figure 6.1 shows the surface and the contour map of the true

bivariate function α(·) and the estimated one when the sample size n = 2, 000. The proposed

estimates look visually close to the true functions. Figure 6.2 shows the box plot of the MSEs of

the spline estimators for both regions, showing that the MSEs and the corresponding standard

deviations decrease as the sample size increases.

We first conduct pointwise hypothesis tests. Let H
{
(β1, β2)

⊤
}

= β1 − β2 to test H0 :

β1(z) = β2(z) versus H1 : β1(z) ̸= β2(z), where we set β1(z) = (2 + a) sin(2πz) and

β2(z) = 2 sin(2πz), for some nonnegative a in model (6.10), to evaluate the empirical size

(when a = 0) and power (when a > 0) at the 5% nominal level. Figure 6.3 shows the empirical

101

Figure 6.2: Mean squared error of the spline estimators. First column: the square region;
Second column: the horseshoe region.

102

size and power with two different domains of α(s) and different z ∈ {0.3, 0.4, 0.6, 0.7}. Given

each z, the empirical size is reasonably controlled around the nominal level of 5% for all sample

sizes, and the power increases with a until reaching one. As expected, a larger sample size leads

to greater power.

Figure 6.3: Empirical size and power for the pointwise test H0 : β1(z) = β2(z) at the 5%
nominal level. : n = 500; : n = 1, 000; : n = 2, 000. First column: square region;
Second column: horseshoe region.

Next, we set β1(z) = 1/2 sin(z), β2(z) = 2 sin(z + 1/2) in model (6.10), and apply

the procedure in Section 6.3 to construct pointwise confidence intervals for β1(z) at the 95%

nominal level. Table 6.1 summarizes the empirical coverage probability (as percentages) and

103

the average length of the confidence intervals (in parentheses) for β1(z) at z = 0.3, 0.4, 0.6, 0.7.

From the table, we see that for different z, the coverage rates increase with the sample size, and

are around 95% when n = 2, 000. Furthermore, the length of the confidence intervals decreases

as the sample size increases.

Finally, we consider simultaneous inference. We test H0 : β1(z) = β2(z) for all z ∈ [0, 1]

versus H1 : β1(z) ̸= β2(z), for some z, where we set β1(z) = (2 + a) sin(2πz) and β2(z) =

2 sin(2πz) for a ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6} in model (6.10). We evaluate the empirical

size (when a = 0) and power (when a > 0); the results are presented in Table 6.2. All tests are

under two scenarios of bivariate function regions. In the construction of the test statistics Dn,

we choose the weight function w(z) = 1 for z ∈ (0, 1), and w(z) = 0 otherwise. The critical

value of the test is estimated using 500 bootstrap samples in each simulation run. From Table

6.2, we find that the empirical size for each n is around the nominal level of 5%, and the trend

of the power is reasonably controlled.

Table 6.1: Coverage rate and average length (in parentheses) of confidence intervals.

n z = 0.3 z = 0.4 z = 0.6 z = 0.7

500 0.920 (0.265) 0.935 (0.260) 0.934 (0.308) 0.934 (0.262)
Square 1000 0.931 (0.234) 0.947 (0.233) 0.959 (0.225) 0.947 (0.224)

2000 0.949 (0.135) 0.944 (0.134) 0.950 (0.165) 0.959 (0.163)

500 0.938 (0.278) 0.942 (0.272) 0.948 (0.263) 0.945 (0.263)
Horseshoe 1000 0.940 (0.207) 0.951 (0.208) 0.948 (0.206) 0.949 (0.199)

2000 0.944 (0.156) 0.949 (0.154) 0.951(0.154) 0.949 (0.154)

Table 6.2: Empirical size and power for the simultaneous test H0 : β1(·) = β2(·).
n a = 0 a = 0.1 a = 0.2 a = 0.3 a = 0.4 a = 0.5 a = 0.6

500 0.045 0.091 0.274 0.604 0.868 0.984 1
Square 1000 0.045 0.136 0.572 0.927 0.997 1 1

2000 0.050 0.262 0.868 1 1 1 1

500 0.046 0.078 0.280 0.597 0.879 0.975 1
Horseshoe 1000 0.049 0.140 0.561 0.937 0.999 1 1

2000 0.052 0.256 0.889 0.999 1 1 1

104

6.6 Real data analysis

The unequal food retail environment (FRE) has been recognized as a critical contextual factor

contributing to geographic disparities in obesity. However, there is no clear conclusion on the

relationship between the FRE and obesity, owing to diverse measures of the FRE and socioeco-

nomic disparities. In order to resolve this challenge, we include multiple types of food stores,

restaurants, and Supplemental Nutrition Assistance Program (SNAP) stores to assess the FRE

from two important perspectives: X1, availability, and X2, healthfulness. In particular, X1 is

a composite index of the densities of food stores, restaurants, and SNAP stores, and X2 is a

composite index of the ratios of healthy to unhealthy food stores, full service restaurants to

fast food restaurants, and healthy to unhealthy SNAP stores. Data are collected from 3, 091

counties in the United States in 2018. For each county, Si = (Si1, Si2)
⊤ is their geographical

location, and Zi is their median household income. We model the county-level obesity rate (Y)

as the following VCGM:

Yi = β0(Zi) +Xi1β1(Zi) +Xi2β2(Zi) + α(Si) + ϵi, i = 1, · · · , 3, 091. (6.11)

To check whether the two covariates X1 and X2 are significant in model (6.11), we first

conduct two simultaneous tests H01 : β1(z) = 0 and H02 : β2(z) = 0, for all z. For the

simultaneous test H01, the test statistic is Dn = 28.888, and the 95% quantile of the bootstrap

samples is d̂0.05 = 11.666; for the simultaneous test H02, the test statistic is Dn = 85.060,

and the 95% quantile of the bootstrap samples is d̂0.05 = 11.696. Hence, both null hypotheses

are rejected, indicating that at least for some point z, β1(z) ̸= 0 and β2(z) ̸= 0. Next, we

investigate the pointwise properties for these varying-coefficient functions. Figure 6.4 shows

the 95% pointwise confidence bands and empirical maximum likelihood estimators for β0(·),

β1(·), β2(·), and the penalized bivariate spline estimator α̂(·). From the pointwise confidence

bands, we conclude that food availability (X1) and healthfulness (X2) have strong nonlinear

effects on reducing county obesity rates, given the higher household income level, especially

when the income value is larger than USD 100, 000. Interestingly, the pointwise confidence

105

bands and zero lines together indicate that for those counties with a median household income

less than about USD 75, 000, food availability (X1) has no significant impact on the obesity

rate. However, the composite index of healthfulness (X2) has significant negative impact on

the obesity rate of counties with a median household income less than about USD 100, 000.

This finding suggests that increasing the value of healthfulness can help to reduce adult obesity

rates in counties with a median household income of less than about USD 100, 000. Because

there are few counties with a household income greater than USD 100, 000, the confidence

bands are much wider in that region. Given the relatively large variation, food availability has a

negative effect , and the index of healthfulness has no significant impact on the obesity rate. As

expected, Figure 6.4 also indicates that the traditional deep-south states have a large positive

geo value α(·), suggesting that these states have higher obesity rates than others with similar

FRE values. This reflects that, in addition to the FRE, local food preference, culture, and other

factors also influenc county obesity rates.

Because social scientists doubt the association between FRE and obesity may differ with

county median household income, z0 = 56, 516. We perform the pointwise hypothesis test

H0P : β1(z0) = β2(z0) versus H1P : β1(z0) ̸= β2(z0) to test whether availability and healthful-

ness have the same contribution to obesity rates at z0. We use cubic B-splines for three univari-

ate splines, and consider d = 2 and r = 1 for the bivariate spline smoothing. The corresponding

pointwise test statistic based on the data is 0.137, which accepts H0P . Thus, we conclude that

availability and healthfulness do not have significantly different contributions to obesity rates at

the median household income point. For availability and healthfulness, we derive the pointwise

confidence intervals separately, which are [−0.552, 0.099] and [−0.356,−0.235], respectively.

This indicates that at the 95% significance level, we believe that at z0 = 56, 516, availabil-

ity has no contribution to obesity rates; however, healthfulness has a negative contribution to

obesity rates. The results reflect that, compared with availability, healthfulness is a more in-

fluential factor shaping the spatial pattern of obesity rates across counties. The associations

between obesity rates and both FRE indicators vary greatly with changes in the county median

household income and across space.

106

β0(income) β1(income)

β2(income)

Figure 6.4: 95% pointwise confidence bands for β0 (top left), β1 (top right), and β1 (bottom left)
(: maximum empirical likelihood estimator β̌; : zero line), and the penalized bivariate
spline estimator α̂ (bottom right).

107

6.7 Discussion

In this work, we have proposed both pointwise and simultaneous tests for a general hypothesis

in a spatial VCM. Compared with classical VCMs, the proposed VCGM is able to handle spa-

tial information in any regular or irregular 2D domains. Furthermore, regression coefficients

are allowed to vary systematically and smoothly in some variables. Owing to the advantages

over normal approximation-based methods, the EL method is proposed for conducting the in-

ference. We argue that the proposed hypothesis testing method for the VCGM has attractive

properties that have not been investigated.

108

References

[1] Jorge Adrover, Matias Salibian-Barrera, and Ruben Zamar. Globally robust inference

for the location and simple linear regression models. Journal of Statistical Planning and

Inference, 119(2):353–375, 2004.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning

via over-parameterization. Proceedings of the 36th International Conference on Machine

Learning, 97:242–252, 2019.

[3] T. W. Anderson. An Introduction To Multivariate Statistical Analysis 3rd Ed. Wiley-

Intersceince, New York, 2003.

[4] M. Anthony and P. Bartlett. Neural Network Learning. Cambridge University Press,

Cambridge, 2009.

[5] Yuko Araki, Sadanori Konishi, Shuichi Kawano, and Hidetoshi Matsui. Functional lo-

gistic discrimination via regularized basis expansions. Communications in Statistics.

Theory and Methods, 38(16-17):2944–2957, 2009.

[6] F. Gregory Ashby. Statistical Analysis of fMRI Data. MIT Press, Cambridge, 2011.

[7] Jean-Yves Audibert and Alexandre B. Tsybakov. Fast learning rates for plug-in classi-

fiers. The Annals of Statistics, 35(2):608–633, 2007.

[8] Martin Azizyan, Aarti Singh, and Larry Wasserman. Minimax theory for high-

dimensional gaussian mixtures with sparse mean separation. In Advances in Neural

Information Processing Systems, page 2139–2147, 2013.

109

[9] Juan Lucas Bali, Graciela Boente, David E Tyler, and Jane Ling Wang. Robust functional

principal components: A projection-pursuit approach. Annals of Statistics, 39(6):2852–

2882, 2011.

[10] Soutir Bandyopadhyay, Soumendra Lahiri, and Daniel Nordman. A frequency domain

empirical likelihood method for irregularly spaced spatial data. The Annals of Statistics,

25(2):519–545, 2015.

[11] B. Bauer and M. Kohler. On deep learning as a remedy for the curse of dimensionality

in nonparametric regression. The Annals of Statistics, 47:2261–2285, 2019.

[12] J. R. Berrendero, A. Cuevas, and J. L. Torrecilla. On the use of reproducing kernel

hilbert spaces in functional classification. Journal of the American Statistical Associa-

tion, 113(523):1210–1218, 2018.

[13] G. Biau, F. Bunea, and M. Wegkamp. Functional classification in hilbert spaces. IEEE

Trans. Info. Theory, 51:2163–2172, 2005.

[14] G. Biau, F. Cérou, and A. Guyader. Rates of convergence of the functional k-nearest

neighbor estimate. IEEE Trans. Info. Theory, 56:2034–2040, 2010.

[15] Thijs Bos and Johannes Schmidt-Hieber. Convergence rates of deep relu networks for

multiclass classification. arXiv:2108.00969, 2021.

[16] M. L. Braun. Accurate error bounds for the eigenvalues of the kernel matrix. Journal of

Machine Learning Research, 7:2303–2328, 2006.

[17] T. T. Cai and M. Yuan. Optimal estimation of the mean function based on discretely

sampled functional data: Phase transition. The Annals of Statistics, 39:2330–2355, 2011.

[18] T. Tony Cai and Linjun Zhang. A convex optimization approach to high-dimensional

sparse quadratic discriminant analysis. arXiv:1912.02872, 2019.

110

[19] T. Tony Cai and Linjun Zhang. High dimensional linear discriminant analysis: optimal-

ity, adaptive algorithm and missing data. Journal of the Royal Statistical Society. Series

B. Statistical Methodology, 81(4):675–705, 2019.

[20] G. Cao, L. Wang, Y. Li, and L. Yang. Oracle-efficient confidence envelopes for covari-

ance functions in dense functional data. Statistica Sinica, 26:359–383, 2016.

[21] G. Cao, L. Yang, and D. Todem. Simultaneous inference for the mean function of dense

functional data. Journal of Nonparametric Statistics, 24:359–377, 2012.

[22] Hervé Cardot. Nonparametric estimation of smoothed principal components analysis of

sampled noisy functions. Journal of Nonparametric Statistics, 12:503–538, 2000.

[23] F. Chamroukhi and H. Glotin. Mixture model-based functional discriminant analysis

for curve classification. Proceedings of the International Joint Conference on Neural

Networks (IJCNN), pages 1–8, 2012.

[24] K. Chen and H. G. Müller. Modeling repeated functional observations. Journal of the

American Statistical Association, 107:1599–1609, 2012.

[25] Lu-Hung Chen and Ci-Ren Jiang. Multi-dimensional functional principal component

analysis. Statistics and Computing, 27(5):1181–1192, 2017.

[26] Songxi Chen and Ingrid Van Keilegom. A review on empirical likelihood methods for

regression. TEST, 18(3):415—-447, 2009.

[27] Songxi Chen and Ping-shou Zhong. Anova for longitudinal data with missing values.

The Annals of Statistics, 36(6):3630–3659, 2010.

[28] Jeng-Min Chiou and Pai-Ling Li. Correlation-based functional clustering via subspace

projection. Journal of the American Statistical Association, 103(484):1684–1692, 2008.

[29] Antonio Cuevas, Manuel Febrero, and Ricardo Fraiman. Robust estimation and classifi-

cation for functional data via projection-based depth notions. Computational Statistics,

22(3):481–496, 2007.

111

[30] Xiongtao Dai, Hans-Georg Müller, and Fang Yao. Optimal Bayes classifiers for func-

tional data and density ratios. Biometrika, 104(3):545–560, 2017.

[31] A. Delaigle and P. Hall. Achieving near-perfect classification for functional data. Journal

of the Royal Statistical Society, Series B, 74:267–286, 2012.

[32] A. Delaigle, P. Hall, and N. Bathia. Componentwise classification and clustering of

functional data. Biometrika, 99(2):299–313, 2012.

[33] Aurore Delaigle and Peter Hall. Classification using censored functional data. Journal

of the American Statistical Association, 108(504):1269–1283, 2013.

[34] Thomas DiCiccio, Peter Hall, and Joseph Romano. Empirical likelihood is Bartlett-

correctable. The Annals of Statistics, 19(2):1053–1061, 1991.

[35] Jianqing Fan, Cong Ma, and Yiqiao Zhong. A selective overview of deep learning. arXiv

preprint arXiv:1904.05526, 2019.

[36] Jianqing Fan, Chunming Zhang, and Jian Zhang. Generalized likelihood ratio statistics

and Wilks phenomenon. The Annals of Statistics, 29(1):153–193, 2001.

[37] Jianqing Fan and Wenyang Zhang. Statistical estimation in varying coefficient models.

The Annals of Statistics, 27(5):1491–1518, 1999.

[38] Jianqing Fan and Wenyang Zhang. Statistical methods with varying coefficient models.

Statistics and its Interface, 1(1):179–195, 2008.

[39] Farzan Farnia and David Tse. A minimax approach to supervised learning. In Proceed-

ings of the 30th International Conference on Neural Information Processing Systems,

NIPS’16, page 4240–4248, Red Hook, NY, USA, 2016.

[40] F. Ferraty and P. Vieu. Curves discrimination: a nonparametric functional approach.

Computational Statistics & Data Analysis, 44(1-2):161–173, 2003.

[41] Frédéric Ferraty and Philippe Vieu. Nonparametric functional data analysis: Theory

and practice. Springer Series in Statistics. Springer, New York, 2006.

112

[42] Pedro Galeano, Esdras Joseph, and Rosa E. Lillo. The Mahalanobis distance for func-

tional data with applications to classification. Technometrics, 57(2):281–291, 2015.

[43] P. Hall, H. G. Müller, and J. L. Wang. Properties of principal component methods for

functional and longitudinal data analysis. The Annals of Statistics, 34:1493–1517, 2006.

[44] Travor J. Hastie and Robert J. Tibshirani. Generalized Additive Models. Chapman &

Hall/CRC, 1990.

[45] Trevor Hastie and Robert Tibshirani. Varying-coefficient models. Journal of the Royal

Statistical Society. Series B., 55(4):757–796, 1993.

[46] T. Hsing and R. Eubank. Theoretical foundations of functional data analysis, with an

introduction to linear operators. Wiley Series in Probability and Statistics. John Wiley

& Sons, Ltd., Chichester, 2015.

[47] Tianyang Hu, Zuofeng Shang, and Guang Cheng. Sharp rate of convergence for deep

neural network classifiers under the teacher-student setting. arXiv:2001.06892, 2020.

[48] Jianhua Z. Huang, Colin O. Wu, and Lan Zhou. Varying-coefficient models and ba-

sis function approximations for the analysis of repeated measurements. Biometrika,

89(1):111–128, 2002.

[49] Goodfellow Ian, Bengio Yoshua, and Courville Aaron. Deep learning. MIT Press, 2016.

[50] Ioannis Kalogrids. Asymptotics for m-type smoothing splines with non-smooth objec-

tive functions. arXiv, page https://arxiv.org/abs/2002.04898, 2020.

[51] Myungjin Kim, Li Wang, and Yuyu Zhou. Spatially varying coefficient models with

sign preservation of the coefficient functions. Journal of Agricultural, Biological and

Environmental Statistics, 26:367–386, 2021.

[52] Yongdai Kim, Ohn Ilsang, and Kim Dongha. Fast convergence rates of deep neural

networks for classification. Neural Networks, 138:179–197, 2021.

113

[53] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In the 3rd Interna-

tional Conference on Learning Representations (ICLR), 2015.

[54] P. Kokoszka and M. Reimherr. Introduction to functional data analysis. Texts in Statis-

tical Science Series. CRC Press, Boca Raton, FL, 2017.

[55] M. Kosorok. Introduction to empirical processes and semiparametric Inference.

Springer-Verlag, New York, 2008.

[56] Ming-Jun Lai and Larry L. Schumaker. Spline functions on triangulations, volume 110

of Encyclopedia of Mathematics and its Applications. Cambridge University Press,

Cambridge, 2007.

[57] Minjun Lai and Li. Wang. Bivariate penalized splines for regression. Statistica Sinica,

23:1399–1417, 2013.

[58] Guillaume Lecué. Classification with minimax fast rates for classes of Bayes rules with

sparse representation. Electronic Journal of Statistics, 2:741–773, 2008.

[59] Seokho Lee, Hyejin Shin, and Nedret Billor. M-type smoothing spline estimators for

principal functions. Computational Statistics & Data Analysis, 66:89–100, 2013.

[60] X. Leng and H.G. Müller. Classification using functional data analysis for temporal gene

expression data. Bioinformatics, 22:68–76, 2006.

[61] Kexuan Li, Fangfang Wang, Ruiqi Liu, Fan Yang, and Zuofeng Shang. Calibrating multi-

dimensional complex ode from noisy data via deep neural networks. arXiv:2106.03591,

2021.

[62] Xiuqi Li and Subhashis Ghosal. Bayesian classification of multiclass functional data.

Electronic Journal of Statistics, 12(2):4669–4696, 2018.

[63] Y. Li and T. Hsing. Uniform convergence rates for nonparametric regression and prin-

cipal component analysis in functional/longitudinal data. The Annals of Statistics,

38:3321–3351, 2010.

114

[64] E. Lila, J. A. D. Aston, and L. Sangalli. Smooth principal component analysis over

two-dimensional manifolds with an application to neuroimaging. The Annals of Applied

Statistics, 10(4):1854–1879, 2016.

[65] Italo R. Lima, Guanqun Cao, and Nedret Billor. M-based simultaneous inference for

the mean function of functional data. Annals of the Institute of Statistical Mathematics,

71:577–598, 2019.

[66] Italo R. Lima, Guanqun Cao, and Nedret Billor. Robust simultaneous inference for the

mean function of functional data. TEST, 28:785—-803, 2019.

[67] Yi Lin. Tensor product space anova models. The Annals of Statistics, 28:734 – 755,

2000.

[68] Huan Liu, Yongqiang Tang, and Helen Zhang. A new chi-square approximation to the

distribution of non-negative definite quadratic forms in non-central normal variables.

CSDA, 53:853–856, 2009.

[69] R. Liu, B. Boukai, and Z. Shang. Optimal nonparametric inference via deep neural

network. Preprint, 2019.

[70] R. Liu, Z. Shang, and G. Cheng. On deep instrumental variables estimate.

arXiv:2004.14954, 2021.

[71] Rong Liu, Lijian Yang, and Wolfgang K. Härdle. Oracally efficient two-step estima-

tion of generalized additive model. Journal of the American Statistical Association,

108(502):619–631, 2013.

[72] Rong Liu and Yichuan Zhao. Empirical likelihood inference for generalized additive

partially linear models. TEST, 30(3):569–585, 2021.

[73] Ruiqi Liu, Ben Boukai, and Zuofeng Shang. Optimal nonparametric inference via deep

neural network. Journal of Mathematical Analysis and Applications, 505:125561, 2022.

115

[74] Yudell L.Luke. Inequalities for generalized hypergeometric functions. Journal of Ap-

proximation Theory, 5:41–65, 1972.

[75] Enno Mammen and Alexandre B. Tsybakov. Smooth discrimination analysis. The An-

nals of Statistics, 27:1808–1829, 1999.

[76] Ricardo A Maronna and Victor J Yohai. Robust functional linear regression based on

splines. Computational Statistics & Data Analysis, 65:46–55, 2013.

[77] Brian D. Marx and Paul H. C. Eilers. Multidimensional penalized signal regression.

Technometrics, 47(1):13–22, 2005.

[78] Santiago Mazuelas, Andrea Zanoni, and Aritz Perez. Minimax classification with 0-1

loss and performance guarantees. arXiv:2010.07964, 2020.

[79] J. S. Morris and R. J. Carroll. Wavelet-based functional mixed models. Journal of the

Royal Statistical Society, Series B, 68:179–199, 2006.

[80] S. J. Morris. Spline estimators for semi-functional linear model. Annual Review of

Statistics and Its Application, 2:321–359, 2015.

[81] Yangling Mu and Fred H. Gage. Adult hippocampal neurogenesis and its role in

alzheimer’s disease. Mol Neurodegener., 2011.

[82] Art B. Owen. Empirical likelihood ratio confidence intervals for a single functional.

Biometrika, 75(2):237–249, 1988.

[83] Art B. Owen. Empirical likelihood ratio confidence regions. The Annals of Statistics,

18(1):90–120, 1990.

[84] Art B. Owen. Empirical likelihood. CRC Press, Boca Raton, 2001.

[85] Juhyun Park, Jeongyoun Ahn, and Yongho Jeon. Sparse functional linear discriminant

analysis. arXiv:2012.06488, 2020.

116

[86] Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth

functions using deep relu neural networks. Neural Networks, 108:296–330, 2018.

[87] J. O. Ramsay and B. W. Silverman. Functional Data Analysis, Second Edition. Springer

Series in Statistics, New York, 2005.

[88] J.A. Rice and C.O. Wu. Nonparametric mixed effects models for unequally sampled

noisy curves. Biometrics, 57:253–259, 2001.

[89] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press,

Cambridge, 2014.

[90] Fabric Rossi, Delannay Nicolas, Brieuc Conan-Guez, and Michel Verleysen. Represen-

tation of functional data in neural networks. Neurocomputing, 64:183–210, 2005.

[91] Laura M. Sangalli, James O. Ramsay, and Timothy O. Ramsay. Spatial spline regression

models. Journal of the Royal Statistical Society. Series B., 75(4):681–703, 2013.

[92] J. Schmidt-Hieber. Nonparametric regression using deep neural networks with relu acti-

vation function. arXiv:1708.06633, 2019.

[93] Carlo Sguera, Pedro Galeano, and Rosa Lillo. Spatial depth-based classification for

functional data. TEST, 23(4):725–750, 2014.

[94] Z. Shang and G. Cheng. Computational limits of a distributed algorithm for smoothing

spline. Journal of Machine Learning Research, 18:1–37, 2017.

[95] H. Shin. An extension of fisher’s discriminant analysis for stochastic processes. Journal

of Multivariate Analysis, 99:1191—-1216, 2008.

[96] Hyejin Shin and Seokho Lee. An RKHS approach to robust functional linear regression.

Statistica Sinica, 26:255–272, 2016.

[97] Barry Simon. Notes on infinite determinants of Hilbert space operators. Advances in

Mathematics, 24(3):244–273, 1977.

117

[98] J. Song, W. Deng, H. Lee, and D. Kwon. Optimal classification for time-course gene

expression data using functional data analysis. Biometrika, 103(1):147–159, 2016.

[99] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:

a simple way to prevent neural networks from overfitting. Journal of Machine Learning

Research, 15:1929–1958, 2014.

[100] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science

and Business Media, 2008.

[101] Charles J. Stone. Optimal global rates of convergence for nonparametric regression. The

Annals of Statistics, 10(4):1040–1053, 1982.

[102] Taiji Suzuki. Adaptivity of deep relu network for learning in besov and mixed

smooth besov spaces: optimal rate and curse of dimensionality. arXiv preprint

arXiv:1810.08033, 2018.

[103] J. Taylor. Lecture notes for stats 352: Spatial statistics. 2009.

[104] Barinder Thind, Kevin Multani, and Jiguo Cao. Deep learning with functional inputs.

arXiv preprint arXiv:2006.09590, 2020.

[105] Barinder Thind, Kevin Multani, and Jiguo Cao. Neural networks as functional classifiers.

arXiv preprint arXiv:2010.04305, 2020.

[106] J. L. Torrecilla, Carlos Ramos-Carreno, Manuel Sanchez-Montanes, and Suarez Al-

berto. Optimal classification of gaussian processes in homo- and heteroscedastic set-

tings. Statistics and Computing, 30:1091–1111, 2020.

[107] Alexandre B. Tsybakov. Optimal aggregation of classifiers in statistical learning. The

Annals of Statistics, 32:135–166, 2004.

[108] Alexandre B. Tsybakov. Introduction to nonparametric estimation. Springer Series in

Statistics. Springer, New York, 2009.

118

[109] A. W. van der Vaart. Asymptotic statistics, volume 3 of Cambridge Series in Statistical

and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998.

[110] Aad W. van der Vaart and Jon A. Wellner. Weak convergence and empirical processes.

Springer Series in Statistics. Springer-Verlag, New York, 1996. With applications to

statistics.

[111] Matthew Van Hala, Daniel Nordman, and Zhengyuan Zhu. Empirical likelihood for

irregularly located spatial data. Statistica Sinica, 25(2):1399–1420, 2015.

[112] G. Wahba. Spline models for observational data. SIAM CBMS-NSF Regional Conference

Series in Applied Mathematics, 59, 1990.

[113] B. Wang, B. Nan, J. Zhu, and R. Koeppe. Regulzarized 3d functional regression for brain

image data via haar wavelets. The Annals of Applied Statistics, 8:1045–1064, 2014.

[114] Honglang Wang, Ping-Shou Zhong, Yuehua Cui, and Yehua Li. Unified empirical likeli-

hood ratio tests for functional concurrent linear models and the phase transition from

sparse to dense functional data. Journal of the Royal Statistical Society. Series B.,

80(2):343–364, 2018.

[115] J.L. Wang, J. M. Chiou, and H. G. Müller. Functional data analysis. Annual Review of

Statistics and Its Application, 3:257–295, 2016.

[116] Li Wang, Guannan Wang, Minjun Lai, and Lei Gao. Efficient estimation of partially

linear models for data on complicated domains by bivariate penalized splines over trian-

gulations. Statistica Sinica, 30:347–369, 2020.

[117] Li Wang and Lijian Yang. Spline-backfitted kernel smoothing of nonlinear additive

autoregression model. The Annals of Statistics, 35(6):2474–2503, 2007.

[118] Shuoyang Wang, Guanqun Cao, and Zuofeng Shang. Estimation of the mean function

of functional data via deep neural networks. Stat, e393, 2021.

119

[119] Shuoyang Wang, Zuofeng Shang, Guanqun Cao, and Jun S. Liu. Optimal classification

for functional data. arXiv:2103.00569, 2021.

[120] Shuoyang Wang, Honglang Wang, Yichuan Zhao, Guanqun Cao, and Yingru Li. Em-

pirical likelihood ratio tests for varying coefficient geo models. Statistica Sinica, 33(4),

2021+.

[121] Y. Wang, G. Wang, L. Wang, and T. Ogden. Simultaneous confidence corridors for mean

functions in functional data analysis of imaging data. Biometrics, page In press, 2019.

[122] Simon N. Wood. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol.,

65(1):95–114, 2003.

[123] L. Xue and Q. Wang. Empirical likelihood for single-index varying-coefficient models.

Bernoulli, 18:836–856, 2012.

[124] Liugen Xue and Lixing Zhu. Empirical likelihood for a varying coefficient model with

longitudinal data. Journal of the American Statistical Association, 102(478):642–654,

2007.

[125] Yiping Yang, Gaorong Li, and Heng Peng. Empirical likelihood of varying coefficient

errors-in-variables models with longitudinal data. Journal of Multivariate Analysis,

127:1–18, 2014.

[126] F. Yao, H. G. Müller, and J. L. Wang. Functional data analysis for sparse longitudinal

data. Journal of the American Statistical Association, 100:577–590, 2005.

[127] F. Yao, H. G. Müller, and J. L. Wang. Functional linear regression analysis for longitu-

dinal data. The Annals of Statistics, 33:2873–2903, 2005.

[128] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural

Network, 94:103–114, 2021.

120

[129] Shan Yu, Guannan Wang, Li Wang, Chenhui Liu, and Lijian Yang. Estimation and

inference for generalized geoadditive models. J. Amer. Statist. Assoc., 115(530):761–

774, 2020.

[130] Lingsong Zhang, Haipeng Shen, and Jianhua Z. Huang. Robust regularized singular

value decomposition with application to mortality data. The Annals of Applied Statistics,

7(3):1540–1561, 2013.

[131] Lan Zhou and Huijun Pan. Principal component analysis of two-dimensional functional

data. Journal of Computational and Graphical Statistics, 23(3):779–801, 2014.

121

Appendices

122

Appendix A

Estimation of the Mean Function of Functional Data via Deep Neural Networks

A.1 Examples

A.1.1 Example 1

Let Xj = (j1/Nd, . . . , jd/Nd), 1 ≤ jk ≤ Nd for k = 1, . . . , d, be the evenly spaced grid

points of [0, 1]d, where Nd = N1/d, d ≥ 1. Consider a Bernoulli polynomial kernel func-

tion G0(x, x
′) = 2

∑∞
k=1

cos(2πk(x−x′))
(2πk)ϱd

, x, x′ ∈ [0, 1], where ϱ > 1. See [112] for an intro-

duction of such kernel. For k = 1, . . . , d, the kernel matrix on the k-th coordinate of Xj is

CN,k = {N−1G0(jk/Nd, j
′
k/Nd)}Nd

jk,j
′
k=1. Assume that the covariance matrix NCN has an ad-

ditive structure such that CN =
∑d

k=1CN,k. We require certain order of grid points by sorting

them based on the d-th coordinate values first, then by the (d− 1)-th coordinate values, and so

on, until we reach the first coordinate. Let ANd
be an Nd ×Nd matrix whose (ℓ, ℓ′)-th entry is

2N−1
d

∑∞
k=1

cos(2πk(ℓ−ℓ′)/Nd)
(2πk)ϱd

, ℓ, ℓ′ = 1, . . . , Nd, and 1Nd
be the all-ones Nd × Nd matrix. Then

we have the following relationship:

CN,1 = N1−d
d × 1Nd

⊗ 1Nd
⊗ . . .⊗ 1Nd

⊗ANd
,

CN,2 = N1−d
d × 1Nd

⊗ 1Nd
⊗ . . .⊗ANd

⊗ 1Nd
,

. ,

CN,d−1 = N1−d
d × 1Nd

⊗ANd
⊗ . . .⊗ 1Nd

⊗ 1Nd
,

CN,d = N1−d
d ×ANd

⊗ 1Nd
⊗ . . .⊗ 1Nd

⊗ 1Nd
,

123

where ⊗ is the kronecker product operator. According to equation (20) in [94], ANd
is a

circulant matrix whose eigenvalues have an explicit expression:

λ∗j =

2
∑∞

k=1
1

(2πkNd)ϱd
, j = 0∑∞

k=1
1

[2π(kNd−j)]ϱd
+
∑∞

k=0
1

[2π(kNd+j)]
ϱd , 1 ≤ j ≤ Nd − 1.

In the Appendix C, we have shown that maxj=1,...,Nd
λ∗j ≲ N−ϱd

d . Since the maximal eigen-

value of 1Nd
is Nd, by the property of Kronecker product, the maximal eigenvalue of CN,k

is O(N−ϱ). Consequently, the first largest eigenvalue for CN is λ1,N ≲ N−ϱ. According to

Assumption (A3), this ensures the better convergence rate in equation (2.7). When N ≫ n
1
ϱθ ,

the convergence rate of f̂ is faster than n−1.

A.1.2 Example 2

Define a cosine random process Λk(2πx) = ξk cos(2πx) + ξ′k sin(2πx), where ξk and ξ′k are

identically distributed and uncorrelated, with mean zero and covariance Eξ2. According to

[103], the covariance function for cosine process is given by

G0 (jk/Nd, j
′
k/Nd) = Eξ2 cos (2π (jk − j′k) /Nd)

and

G0(Xj,Xj′) = d−1Eξ2
d∑

k=1

cos (2π (jk − j′k) /Nd) ,

which is the (j, j′)-th entry in covariance matrix CN .

Therefore, CN can be written as CN =
∑d

k=1 CN,k, where CN,k is the kernel matrix

for the k-th coordinate of Xj , with (j, j′)-th entry N−1 cos (2π (jk − j′k) /Nd). Let BNd
be an

Nd × Nd matrix whose (ℓ, ℓ′)-th entry is N−1
d cos (2π (ℓ− ℓ′) /Nd), ℓ, ℓ′ = 1, . . . , Nd. Simi-

lar to Example 1, we require the certain order of the grid points and thus have the following

124

relationship:

CN,1 = N1−d
d × 1Nd

⊗ 1Nd
⊗ . . .⊗ 1Nd

⊗BNd
,

CN,2 = N1−d
d × 1Nd

⊗ 1Nd
⊗ . . .⊗BNd

⊗ 1Nd
,

. ,

CN,d−1 = N1−d
d × 1Nd

⊗BNd
⊗ . . .⊗ 1Nd

⊗ 1Nd
,

CN,d = N1−d
d ×BNd

⊗ 1Nd
⊗ . . .⊗ 1Nd

⊗ 1Nd
,

Since BNd
is a circulant matrix, its maximal eigenvalue λ∗1 can be explicitly written as

N−1
d

Nd−1∑
k=0

cos (2πk/Nd)ω
Nd−k,

where ω = exp
(
2π

√
−1/Nd

)
. By direct calculations, it can be shown that λ∗1 = Nd/2. Since

the maximal eigenvalue of N−1
d 1Nd

is 1, by the property of Kronecker product, it follows

that the maximal eigenvalue of CN,k is 1/2. Consequently, the maximal eigenvalue of CN is

λ1,N ≍ E(ξ2)/2 = O(1). According to the trivial case (ϱ = 0) in Assumption (A3), we have

the usual nonparametric convergence rate for ∥f̂ − f0∥2N as O(n− θ
θ+1 log6 n).

A.1.3 Implementation of Example 1

We first prove two facts regarding the eigenvalues λ∗0, λ∗1, . . ., λ
∗
Nd−1 of circulant kernel matrix

ANd
:

Fact 1: λ∗0 ≤ λ∗j = λ∗Nd−j for all j = 1, . . . , Nd − 1.

Fact 2: λ∗j ≤ λ∗1 = λ∗Nd−1 for all j = 2, . . . , Nd − 2.

For ϱ > 1 and d ≥ 1 according to equation (20) in [94], for 1 ≤ j ≤ Nd − 1, we have

λ∗j =
∞∑
k=1

1

[2π(kNd − j)]ϱd
+

∞∑
k=1

1

[2π(kNd − (Nd − j))]ϱd
.

125

It’s trivial that λ∗j = λ∗Nd−j . Denote λ̃j =
∑∞

k=1 [2π(kNd − j)]−ϱd +
∑∞

k=1 [2π(kNd + j)]−ϱd,

then λ̃j ≤ λ∗j . Let Fk(a) = (kNd − a)−ϱd + (kNd + a)−ϱd, where k ≥ 1, a ∈ [0, Nd − 1], then

λ̃j = (2π)−ϱd
∑∞

k=1 Fk(a) and more specifically, λ∗0 = (2π)−ϱd
∑∞

k=1 Fk(0).

Since F ′
k(a) = ϱd

[
(kNd − a)−ϱd−1 − (kNd + a)−ϱd−1

]
≥ 0, we conclude that Fk(0) ≤

Fk(j) for arbitrary k ≥ 1 and j = 0, 1, . . . , Nd − 1, which implies that λ∗0 ≤ λ̃j ≤ λ∗j . Thus

Fact 1 is proved.

Now denote

H(a) =
∞∑
k=1

1

[2π(kNd − a)]ϱd
+

∞∑
k=1

1

{2π[kNd − (Nd − a)]}ϱd
,

where a ∈ [1, Nd − 1]. Then we have

H ′(a) =
ϱd

(2π)ϱd

{
∞∑
k=1

1

(kNd − a)ϱd+1
+

∞∑
k=1

1

[kNd − (Nd − a)]ϱd+1

}

=
ϱd

(2π)ϱd

∞∑
k=1

(hk(a)− hk(Nd − a)),

where hk(a) is a monotone increasing function. For all k = 1, 2, . . ., hk(a)− hk(Nd − a) > 0

when a > Nd/2, hk(a) − hk(Nd − a) < 0 when a < Nd/2, thus we have a = Nd/2 is the

global maximum for a ∈ [1, Nd − 1]. By Fact 1, it’s easy to conclude that λ∗1 and λ∗Nd−1 are the

two largest eigenvalues among all λ∗j , j = 1, 2, . . . , Nd − 1. Fact 2 is proved.

Combining the above two facts, we can conclude that λ∗1 and λ∗Nd−1 are the two largest

eigenvalues among all j = 0, 1, . . . , Nd − 1.

126

Secondly, we show the upper bound for the the largest eigenvalues. Without loss general-

ity, when j = 1 and ϱd > 0, by equation (20) in [94], we have

max
j=1,...,Nd

λ∗j =
∞∑
k=1

1

[2π(kNd − 1)]ϱd
+

∞∑
k=0

1

[2π(kNd + 1)]ϱd

≤ 1

[2π(Nd − 1)]ϱd
+

1

(2π)ϱd
+

∞∑
k=2

1

[2π(kNd −Nd)]
ϱd

+
∞∑
k=1

1

(2πkNd)
ϱd

=
1

[2π(Nd − 1)]ϱd
+

1

(2π)ϱd
+ 2

∞∑
k=1

1

(2πkNd)
ϱd

≍ N−ϱd
d .

In the following two propositions, we introduce the relationship between eigenvalues of

Mercer kernel and eigenvalues of the corresponding kernel matrix. We follow the same no-

tations in [16]. Define a Mercer kernel as K(x, x′) =
∑∞

k=1 λkψk(x)ψk(x
′), and its corre-

sponding kernel matrix KN with (j, j′)-th entry as [KN]j,j′ = N−1K(Xj, Xj′). Denote the

eigenvalues of KN by ω1 ≥ ω2 ≥ . . . ≥ ωN ≥ 0. Given a truncation point κ, define the

decomposed kernel K[κ] and error function Eκ as:

K[κ](x, x
′) =

κ∑
k=1

λkψk(x)ψk(x
′), Eκ(x, x

′) = K(x, x′)−K[κ](x, x
′).

The kernel matrix induced by Eκ is denoted by Eκ,N . Let ψκ,N be the N × κ matrix and its

(j, l)-th entry [ψκ,N]j,l = N−1/2ψl(Xj). The following propositions provide the upper bound

of the difference between ωj and λj .

Proposition A.1. (Theorem 3 in [16]) Let K be a Mercer kernel with bounded eigenfunctions

|ψk(x)| ≤ M < ∞ for all k and x ∈ [0, 1]. Then, for 1 ≤ κ ≤ N , with probability larger than

1− ϵ,

∥Cκ,N∥ < M2κ
√
2N−1 log[ϵ−1κ(κ+ 1)], ∥Eκ,N∥ < M2

∞∑
k=κ+1

λk,

where Cκ,N = ψκ,N
⊤ψκ,N − Iκ and Iκ is a κ× κ identity matrix. Consequently,

|ωj − λj| = O

(
λjκ
√

log κN−1 +
∞∑

k=κ+1

λk

)
, 1 ≤ j ≤ N.

127

Proposition A.2. Covariance function G(·, ·) is a Mercer kernel. The j-th eigenvalue λj,N of

the kernel matrix CN from sample {Xj}1≤j≤N satisfies:

λj,N = O

{
λj

(
1 + κ

√
N−1 log κ+

∞∑
k=κ+1

λk

)}
.

Proof. The result is obtained from Proposition A.1 directly.

Proposition A.2 establishes the relation between eigenvalues of covariance matrix and

eigenvalues of its corresponding covariance function.

A.2 Technical lemmas and proofs

We first introduce some lemmas which is useful in the proof of Theorem 2.1. Without loss of

generality, we assume that the radii of the Hölder balls Ki satisfy Ki ≥ 1, i = 0, . . . , q. Let

h0j = 2−1
(
K−1

0 g0j(x) + 1
)
, hij(x) = 2−1

(
K−1
i gij(2Ki−1x−Ki−1) + 1

)
, i = 1, . . . , q − 1,

and hqj(x) = gqj(2Kq−1x − Kq−1), where Ki−1x = (Ki−1x1, . . . , Ki−1xdi+1
)⊤. It follows

that h0j ∈ Cβ0t0 ([0, 1]
t0 , 1), hij ∈ Cβiti ([0, 1]

ti , (2Ki−1)
βi) for i = 1, . . . , q − 1, and hqj ∈

Cβqtq ([0, 1]
tq , Kq(2Kq−1)

βq).

A.2.1 Definition

Let ti be the maximal number of variables on which each of the gij depends on, and ti ≤ di.

Define the ball of β-Hölder functions with radius K as

Cβd (D,K) = { f : D ⊂ Rd → R :∑
α:|α|<β

∥∂αf∥∞ +
∑

α:|α|=⌊β⌋

sup
x,y∈D,x̸=y

|∂αf(x)− ∂αf(y)|
|x− y|β−⌊β⌋

∞
≤ K } ,

where ∂α = ∂α1 . . . ∂αd with α = (α1, . . . , αd) ∈ Nd and |α| := |α|1. We assume each gij is

βi-Hölder function with radius Ki (the definition is given in the Appendix). Since gij is also

128

ti-variate, the true underlying function space becomes

G (q,d, t,β,K) := { f = gq ◦ . . . ◦ g0 : gi = (gij)j : [ai, bi]
di → [ai+1, bi+1]

di+1 ,

gij ∈ Cβiti
(
[ai, bi]

ti , Ki

)
, |ai|, |bi| ≤ Ki } ,(A1)

with d := (d0, . . . , dq+1), t := (t0, . . . , tq), β := (β0, . . . , βq), K := (K0, . . . , Kq) and β∗
i :=

βi
∏q

k=i+1(βk ∧ 1).

LEMMA A.1. For any function hij ∈ Cβiti ([0, 1]
ti , Ki), i = 0, 1, . . . , q, j = 1, . . . , di+1 and any

constant M ≥ maxi(βi + 1)ti ∨ (Ki + 1)eti , there exists a network

h̃ij ∈ F(L′
i, (ti, 6(ti + ⌈βi⌉)M, 6(ti + ⌈βi⌉)M, . . . , 1), si,∞)

with depth

L′
i = 8 + (D0 logM + 5)(1 + ⌈log(ti ∨ βi)⌉),

and numbers of parameters

si ≤ 141(ti + βi + 1)3+tiM(D0 logM + 6),

such that

∥h̃ij − hij∥L∞([0,1]ti) ≤ CiM
−βi

ti , (A2)

where D0 = 2maxi
ti+βi
βi

and Ci = 2
{
[(2Ki + 1)(1 + t2i + β2

i)6
ti] ∨ (Ki3

βi)
}

.

Proof. According to Theorem 5 in [92], as the approximation error is determined by (2Ki +

1)(1 + t2i + β2
i)6

tiM2−m +Ki3
βiM

−βi
ti , and we will choose the optimal m to achieve the best

overall error rate. When m = 2maxi
ti+βi
βi

logM , then M2−m ≤ M
−βi

ti for any i. Thus,

∥h̃ij − hij∥L∞([0,1]ti) ≤ CiM
−βi

ti for any i = 0, . . . , q and j = 1, . . . , di+1.

Lemma A.1 establishes a network with certain numbers of hidden layers and active param-

eters, which approximates each hij with the error rate free of sample size and number of design

points. For fixed M , when number of hidden layer and active parameters increases linearly, the

129

approximation error of the neural network decreases exponentially. Since M is only bounded

below, choosing a large enough M can ensure a satisfied approximation error.

LEMMA A.2. For any composite regression function in the class G(q,d, t,β,K) and large

M , such that M ≥ maxi=0,...,q {(βi + 1)ti ∨ (Ki + 1)eti}, there exists an estimator f ∗ ∈

F(L,p, s, F) such that

inf
f∗∈F

∥f ∗ − f0∥2∞ ≤ CIM
−θ, (A3)

where θ = mini=0,...,q
2β∗

i

ti
and CI is a constant. The parameters of the neural network f ∗

satisfies:

(i) L ≤ D0D1 logM − 1;

(ii) V 2 := {
∏L+1

l=0 (pl + 1)}2 ≤ 4(d+ 1)2(12rM)2D0D1 logM ;

(iii) s ≤ D0D2M logM − 1,

where D0 = 2maxi
ti+βi
βi

, D1 = 4maxi(1 + ⌈log(ti ∨ βi)⌉)(q + 1), D2 = 290
∑q

i=0 di+1(ti +

βi + 1)3+ti and r = maxi di+1(ti + ⌈βi⌉).

Proof. Define

h∗ij = 1− σ(1− h̃ij), 0 ≤ i < q,

where h̃ij is defined in (A2). In this step, h∗ij is obtained by adding another two hidden layers

on h̃ij . This procedure ensures that h∗ij is bounded by 1. Thus, the output σ(h∗ij) = (h∗ij∨0)∧1,

for all 0 ≤ i < q. Consequently, according to Lemma A.1, we have

∥σ(h∗ij)− hij∥L∞([0,1]ti) ≤ CiM
−βi

ti ,

For notation simplicity, define σ(hq) = hq. According to Lemma 3 in [92], the composite

network f ∗ = h∗q ◦ σ(h∗q−1) ◦ . . . ◦ σ(h∗0) satisfies

∥∥σ(h∗q) ◦ σ(h∗q−1) ◦ . . . ◦ σ(h∗0)− hq ◦ . . . ◦ h0
∥∥
L∞([0,1]d)

≤ Kq

q−1∏
l=0

(2Ki)
βl+1

q∑
i=0

∥∥∥|σ(h∗i)− h̃i|∞
∥∥∥∏q

l=i+1 βl+1

L∞[0,1]di
.

130

Thus, f ∗ has the approximation error

inf
f∗∈F(L,p,s,F)

∥f ∗ − f0∥2∞ ≤ CI max
i=0,...,q

M
− 2β∗i

ti ,

with some constant CI .

To ensure the above approximation error, we need to figure out the value of L, p and

s with respect to M . According to Lemma A.1 and equation (25) in [92], by the fact that

D0 logM ≥ 6, we have

L+ 1 = 3(q − 1) +

q∑
i=0

L′
i + 1

≤ 3(q + 1) + 8(q + 1) + max
i

{1 + ⌈log(ti + βi)⌉}(q + 1)(D0 logM + 5)

= 3(q + 1) + 8(q + 1) +D′
1(q + 1)(D0 logM + 5)

= {(D0 logM + 5)D′
1 + 11} (q + 1)

≤ 4D′
1(q + 1)D0 logM = D0D1 logM,

and s + 1 ≤ 145M(D0 logM + 6)
∑q

i=0 di+1(ti + βi + 1)3+ti ≤ D0D2M logM , and V :=∏L+1
l=0 (pl + 1) ≤ 2(d+ 1)(6rM + 1)L−1 ≤ 2(d+ 1)(12rM)D0D1 logM .

Lemma A.2 establishes the upper bound of the approximation error, which only depends

on M . This bound directly controls the first part in equation (2.6). According to Lemma

A.2, the approximation error between F(L,p, s, F) and G(q,d, t,β,K) can be bounded if we

choose proper L, s and p. For fixed M , the value of L, s and V can be exactly calculated.

Notice that the derived bounds for L, s and V in Lemma A.2 are just for simplicity, since we

want more clear forms connecting these network parameters with M . Obviously, there is no

harm to arbitrarily increase these values to achieve the same approximation error, therefore

we can substitute L, s and V by the bounds given in Lemma A.2. These bounds will directly

control the covering number of the network class in later proofs.

131

Under the normed space (F , ∥ · ∥N), the relation between covering number and packing

number is given by:

D(2δ,F , ∥ · ∥N) ≤ N (δ,F , ∥ · ∥N) ≤ D(δ,F , ∥ · ∥N). (A4)

For simplicity, denote N (δ) := N (δ,F , ∥ · ∥N) and D(δ) := D(δ,F , ∥ · ∥N) as the δ-covering

number and δ-packing number respectively, under the normed space (F , ∥ · ∥N).

LEMMA A.3. Under Assumptions (A2) and (A3), given some ϖ > 0, ϱ ≥ 0 and ϑ > ln 2, with

probability 1− 2e−ϑ, we have

sup
f,g∈F :∥f−g∥N≤δ

1

N

N∑
j=1

(f(Xj)− g(Xj)) ρ·j ≤ ϑ
√

9ϖ2δ2(nNϱ)−1 log(N (δ)). (A5)

Proof. Define Z(f) = 1
N

∑N
j=1 ρ·jf(Xj). Let NCN be the covariance matrix of (ηi1, . . . , ηiN)

and ΩN be the covariance matrix of (ϵi1, . . . , ϵiN), where i = 1, 2, . . . , n. Since Z(f)−Z(g) =
1
N

∑N
j=1 ρ·j(f − g) (Xj), and (ρ1, . . . , ρN)

⊤ ∼ N (0, NCN +ΩN), for ∀f, g ∈ F , define

∆2(f, g) = 1
N2

∑N
j,j′=1(f − g) (Xj) (f − g) (Xj′) Cov(ρ·j, ρ·j′), we have

Z(f)− Z(g) ∼ N
(
0,∆2(f, g)

)
.

Thus, we have

P (|Z(f)− Z(g)| ≥ x) = P

(
|Z(f)− Z(g)|

∆(f, g)
≥ x

∆(f, g)

)
≲ exp

(
− x2

2∆2(f, g)

)
.

Define γ⊤ = ((f − g) (X1) , (f − g) (X2) , . . . , (f − g) (XN)). By Assumption (A2), ∆2(f, g)

can be written as

∆2(f, g) = (nN2)−1γ⊤(NCN +ΩN)γ ≲ (nN)−1γ⊤CNγ ≤ λ1,N(nN)−1γ⊤γ.

132

By Assumption (A3), λ1,N = O(N−ϱ), where ϱ ≥ 0. Therefore,

∆2(f, g) ≲ N−ϱ(nN)−1γ⊤γ = (nNϱ)−1(N−1γ⊤γ) = (nNϱ)−1∥f − g∥2N .

By Lemma 8.1 in [55],

∥∥∥Z(f)− Z(g)
∥∥∥
ψ2

≲
√

∆2(f, g) = ∆(f, g) ≲ (nNϱ)−1/2∥f − g∥N ,

where ∥ · ∥ψ2 = inf {c > 0 : E [ψ2 (c
−1| · |)] ≤ 1} and ψ2(x) = exp(x2)− 1. Since f and g are

arbitrary, by Theorem 8.4 in [55], with semimetric ∥ · ∥N , we have for any δ > 0, there exits a

constant ϖ > 0 such that,

∥∥∥ sup
f,g∈F :∥f−g∥N≤δ

√
nNϱ|Z(f)− Z(g)|

∥∥∥
ψ2

≤ ϖ

[∫ δ

0

ψ−1
2 (D(ϵ))dϵ+ δψ−1

2 (D2(δ))

]
.

It follows Lemma 8.1 in [55] again, we have

Pr

(
sup

f,g∈F :∥f−g∥N≤δ

√
nNϱ|Z(f)− Z(g)| > x

)
≤ 2 exp

(
− x2

ϖ2J2(δ)

)
,

where J(δ) =
∫ δ
0

√
log((D(ϵ) + 1)dϵ+ δ

√
log(D2(δ) + 1), by equation (A4) and Lemma 5 in

[92], let ∆ = δ
2(L+1)V 2 , then we have the following:

∫ δ

0

√
log(D(ϵ) + 1)dϵ ≤

∫ δ

0

√
log(N (ϵ/2) + 1)dϵ ≤

√
2

∫ δ

0

√
log(N (ϵ/2))dϵ

≤ (L+ 1)V 2
√
2s+ 2

∫ ∆

0

√
log (ϵ−1)dϵ

≤ (L+ 1)V 2∆
√
2s+ 2

√
log (∆−1)

= δ
√

2−1(s+ 1) log (∆−1) = δ2−1/2
√
log(N (δ)),

133

and

δ
√

log(D2(δ) + 1) ≤ δ
√

2 log(D(δ)) ≤ δ
√

2 log(N (δ/2))

≤ δ
√
2(s+ 1) log (2(L+ 1)V 2δ−1)

= δ
√
2(s+ 1) log (∆−1) =

√
2δ
√

log(N (δ)).

Define Fδ = F(L,p, s, δ) in equation (2.4). Lemma A.3 establishes the upper bound for

the second item in equation (2.6) under network class Fδ, which contains the f̂−f ∗. The upper

bound depends on the sample size n, the number of design points N , covariance parameter ϱ

and covering number of Fδ. Especially, it depends on δ. Notice that if δ is getting smaller, the

upper bound is getting smaller for those functions in the space Fδ. We will use this property to

achieve a sharper convergence rate in Lemma A.4.

LEMMA A.4. Under Assumptions (A2) and (A3), after T iterations, with probability
(
1− 2e−ϑ

)T+1,

we have

sup
f,g∈F :∥f−g∥N≤δT

1

N

N∑
j=1

(f(Xj)− g(Xj)) ρ·j ≤ C1−2−T−1

n,N F 2−T

{
T∏
j=0

log(N (δj))

}2−T−1+j

,

where Cn,N = (nNϱ)−1144ϖ2ϑ2. More specifically, if T = ⌈log(nNϱ)⌉, ϑ = log(nNϱ), then

with probability (1− 2
nNϱ)

⌈log(nNϱ)⌉+1 goes to 1,

sup
f,g∈F :∥f−g∥N≤δT

1

N

N∑
j=1

(f(Xj)− g(Xj)) ρ·j ≤ CII

∏T
j=0 {log(N (δj))}2

−T−1+j

nNϱ
log3(nNϱ),

where CII = 288ϖ2ϑ2F 2−⌈log(nNϱ)⌉
.

Proof. Set the initial norm of the difference ∥f̂ − f ∗∥N ≤ δ0 = F , if we choose M discussed

in Lemma A.2 large enough, thus the approximation error (A3) is small enough. According to

equation (2.6), Lemma A.2 and equation (A5) in Lemma A.3, with probability 1 − 2e−ϑ we

134

have

∥f̂ − f ∗∥2N ≤ {Cn,N log(N (δ0))}1/2 δ0,

under the event set A0 = {∥f − f ∗∥2N ≤ δ20}.

The iteration is based on the conclusion in Lemma A.3. Notice that M can be chosen

extremely small, thus we can always assume that until the last step of iteration, the upper

bound for the first item is always smaller than the second item in equation (2.6).

Step 1 Let δ21 = {log(Cn,NN (δ0))}1/2 δ0, and δ1 ≤ δ0. Under event A1 = {∥f − f ∗∥2N ≤ δ21},

considering A1|0 = {∥f − f ∗∥2N ≤ δ21 | ∥f − f ∗∥2N ≤ δ20}, then with probability (1 −

2e−ϑ)2, we have

∥f̂ − f ∗∥2N ≤ {Cn,N log(N (δ1))}1/2 δ1

= C
3/4
n,N {log(N (δ1))}1/2 {log(N (δ0))}1/4 δ1/20

= C
3/4
n,N

1∏
j=0

{log(N (δj))}2
j−2

δ
1/2
0 .

Step 2 Let δ22 = C
3/4
n,N{log(N (δ1))}1/2{log(N (δ0))}1/4δ1/20 and δ2 ≤ δ1. Under event A2 =

{∥f − f ∗∥2N ≤ δ22}, considering A2|1 = {∥f − f ∗∥2N ≤ δ22 | ∥f − f ∗∥2N ≤ δ21}, then with

probability (1− 2e−ϑ)3, we have

∥f̂ − f ∗∥2N ≤ {Cn,N log(N (δ2))}1/2 δ2

= C
7/8
n,N {log(N (δ2))}1/2 {log(N (δ1))}1/4 {log(N (δ0))}1/8δ1/40

= C
7/8
n,N

2∏
j=0

{log(N (δj))}2
j−3

δ
1/4
0 .

.

Step t Let δ2t = C1−2−t

n,N

∏t−1
j=0 {log(N (δj))}2

−t+j

δ2
−t+1

0 , since δt ≤ δt−1. Under the event At =

{∥f − f ∗∥2N ≤ δ2t }, considering At|t−1 =
{
∥f − f ∗∥2N ≤ δ2t | ∥f − f ∗∥2N ≤ δ2t−1

}
, then

135

with probability (1− 2e−ϑ)t+1, we have

∥f̂ − f ∗∥2N ≤ C1−2−t−1

n,N

t∏
j=0

{log(N (δj))}2
−t−1+j

δ2
−t

0 .

.

Step T Let δ2T = C
1−(1

2
)T

n,N

∏T−1
j=0 {log(N (δj))}2

−T+j

δ2
−T+1

0 . As δT ≤ δT−1, under event AT =

{∥f − f ∗∥2N ≤ δ2T}, considering AT |T−1 =
{
∥f − f ∗∥2N ≤ δ2T | ∥f − f ∗∥2N ≤ δ2T−1

}
,

then with probability (1− 2e−ϑ)T+1, we have

∥f̂ − f ∗∥2N ≤ C1−2−T−1

n,N

T∏
j=0

{log(N (δj))}2
−T−1+j

δ2
−T

0 .

If choose T = ⌈log(nNϱ)⌉ and ϑ = log(nNϱ), then when n → ∞ and N → ∞ , (1 −
2

nNϱ)
⌈log(nNϱ)⌉+1 → 1 and (nNϱ)2

T+1 ≤ log(nNϱ). Hence, according to equation (A5),

sup
f,g∈F :∥f−g∥N≤δT

1

N

N∑
j=1

(f(Xj)− g(Xj)) ρ·j

≤ Cn,NF
2−⌈log(nNϱ)⌉

T∏
j=0

{log(N (δj))}2
−T−1+j

log3(nNϱ).

According to Lemma A.4, as δT < F , there exists a smaller network function class FδT ⊂

F , such that it contains f̂ − f ∗. This network rules out those functions with distance to f ∗

larger than δT and reduces the complexity of the original network class F . In another word, it

narrows down the scope of f̂ . Therefore, we only consider f̂ in a smaller space, and this gives

a narrower bound for the second item in (2.6).

A.3 Proof of Theorem 2.1

Proof. According to Lemma A.2 the first item on the right hand side of equation (2.6) is

bounded by CIM−θ. According to Lemma A.4, the upper bound of the second item of equation

136

(2.6) is

CII(nN
ϱ)−1

T∏
j=0

{log(N (δj))}(
1
2
)T+1−j

log3(nNϱ).

According to Lemma A.4, and log(N (δj)) is increasing as δj decreasing, we have

∥f̂ − f0∥2N ≤ CIM
−θ + CII(nN

ϱ)−1 log(N (δ⌈log(nNϱ)⌉)) log
3(nNϱ).

By the Lemmas 5 in [92] and the fact that ∀g, g∗ ∈ F , ∥g − g∗∥N ≤ ∥g − g∗∥∞, we have

N (δ,F , ∥ · ∥N) ≤ (s+ 1) log (2δ−1(L+ 1)V 2). Thus,

log(N (δ⌈log(nNϱ)⌉)) ≤ (s+ 1) log
(
2δ−1

⌈log(nNϱ)⌉(L+ 1)V 2
)
,

where δ⌈log(nNϱ)⌉ = C
1
2
I M

− θ
2 . According to Lemma A.2, such that

(s+ 1) log
(
2δ−1

⌈log(nNϱ)⌉(L+ 1)V 2
)

≤ (D0D2M logM) log(8(d+ 1)2C
− 1

2
I D0D1)

+ log(M
θ
2 logM) + 2D0D1 log(12r) logM + 2D0D1 log

2M ≤ (DD0D2)M log3M,

where D = 4
{
[log(8(d+ 1)2C

− 1
2

I D0D1)] ∨ θ+2
2

∨ (2D0D1 log(12r))
}

.

When M = (nNϱ)
1

θ+1 , the convergence rate for ∥f̂ − f0∥2N is c(nNϱ)−
θ

θ+1 log6(nNϱ),

where the constant c = 2 {CI ∨ [CIIDD0D2(θ + 1)3]}.

137

Appendix B

Robust Deep Neural Network Estimation for Multi-dimensional Functional Data

For any vectors a, b ∈ RN , define the scaled N -inner product ⟨a, b⟩N = N−1
∑N

j=1 ajbj and

the associated N -norm ∥a∥N =
√
N−1

∑N
j=1 a

2
j .

B.1 Technical lemmas

We first introduce some lemmas which are useful in the proof of Theorem 3.1.

LEMMA B.5. (Lemma A.2 of [118]) For any composite regression function in the class G(q,d, t,β,K)

and large M , such that M ≥ maxℓ=0,...,q {(βℓ + 1)tℓ ∨ (Kℓ + 1)etℓ}, there exists an estimator

f ∗ ∈ F such that

inf
f∗∈F

∥f ∗ − f0∥2∞ ≤ CIM
−θ, (B1)

where θ = minℓ=0,...,q
2β∗

ℓ

tℓ
and CI is a constant. The parameters of the neural network f ∗

satisfies:

(i) L ≤ D0D1 logM − 1;

(ii) V 2 := {
∏L+1

l=0 (pl + 1)}2 ≤ 4(d+ 1)2(12rM)2D0D1 logM ;

(iii) s ≤ D0D2M logM − 1,

whereD0 = 2maxℓ
tℓ+βℓ
βℓ

,D1 = 4maxℓ(1+⌈log(tℓ ∨ βℓ)⌉)(q+1),D2 = 290×
∑q

ℓ=0 dℓ+1(tℓ+

βℓ + 1)3+tℓ and r = maxℓ dℓ+1(tℓ + ⌈βℓ⌉).

LEMMA B.6. Consider Euclidean space RN endowed with inner product ⟨ , ⟩N and associated

norm ∥ · ∥N . Let L(·) : RN → R+ be a convex lower semicontinuous function. If L(0) <

138

inf∥a∥N=1 L(a) for a ∈ RN , then there exists an ã (may not be unique), such that ã =

infa∈RN L(a), and the minimizer is attained in the unit ball {a : ∥a∥N ≤ 1}.

Proof. Note that the given space is a Hilbert space. Let s = inf∥a∥N=1 L(a). Since L is

bounded below by 0, we have 0 ≤ s <∞. DenoteA = {a : L(a) ≤ s} andB = {a : ∥a∥N ≤ 1}.

We first prove A ⊂ B. Suppose ∃ ā ∈ A, and ā /∈ B, which implies L(ā) ≤ s and

∥ā∥N > 1. By convexity assumption,

L

(
ā

∥ā∥N

)
= L

(
1

∥ā∥N
ā+

∥ā∥N − 1

∥ā∥N
0

)
≤ 1

∥ā∥N
L (ā) +

∥ā∥N − 1

∥ā∥N
L(0) < s,

where the last inequality is obtained by assumption L(0) < s. Since ā
∥ā∥N

is on the unit ball,

this leads to the contradiction, which implies A ⊂ B.

We then prove A is a compact set. In particular, we only need to prove the boundedness

and closedness in the Euclidean space. Indeed, boundedness is implied by that fact thatA ⊂ B.

For any sequence {am}m≥1, define a∗ = limm→∞ am, by the lower semicontinuity of L,

L(a∗) ≤ lim infm→∞ L(am) ≤ s, which implies a∗ ∈ A. Thus, the closedness is proven.

Finally, we prove that there exists a vector ã ∈ A, such that ã = infa∈RN L(a), which

implies that the minimizer is attained in B. Since 0 ≤ infa∈RN L(a) ≤ s < ∞, there exists

{ãm}m≥1, such that limm→∞ L(ãm) = infa∈RN L(a). Without loss of generality, assume

L(ãm) ≤ s for all m, i.e. ãm ∈ A. Since A is compact, there exists a vector ã ∈ A, such that

∥am − ã∥N → 0. Thus, by the lower semicontinuity of L,

L(ã) ≤ lim inf
m→∞

L(ãm) = inf
a∈RN

L(a),

i.e. ã ∈ A ⊂ B is the minimzer of L.

B.2 Proof of Theorem 3.1

Proof. Let Ln(f) denote the objective function, that is,

Ln(f) =
1

nN

n∑
i=1

N∑
j=1

ρ(Yij − f(Xj)).

139

Let g(Xj) = f ∗(Xj) − f(Xj) and it is easy to see that minimizing Ln(f) is equivalent to

minimizing

Ln(g) =
1

nN

n∑
i=1

N∑
j=1

ρ(ϵij +Rj + g(Xj)).

where Rj = f0(Xj)− f ∗(Xj).

Denoting CnN = (nN ν)−
θ

θ+1 log6(nNν), we aim to show that for every ϵ > 0, there exists

a γϵ ≥ 1 (in the following we simply write γ instead of γϵ), such that

lim
n→∞

Pr

(
inf

∥g∥N=γ
Ln(C

1/2
nN g) > Ln(0)

)
≥ 1− ϵ. (B2)

We first show the convexity and lower semicontinuity of Ln on F∗ = {f − f ∗ : f ∈ F}. The

convexity follows from Assumption (A3) and the convexity of the map f → ∥f∥2N . The lower

semi-continuity can be derived from the Assumption (A3) that ρ is convex and continuous, thus

also lower semicontinuous.

We now establish (B2). To this end, we decompose

Ln(C
1/2
nN g)− Ln(0)

=
1

nN

n∑
i=1

N∑
j=1

ρ(ϵij +Rj + C
1/2
nN g(Xj))−

1

nN

n∑
i=1

N∑
j=1

ρ(ϵij +Rj)

= I1(g) + I2(g) + I3(g),

where

I1(g) =
1

nN

n∑
i=1

N∑
j=1

∫ Rj+C
1/2
nN g(Xj)

Rj

E{ψ(ϵij + u)}du

I2(g) =
1

nN

n∑
i=1

N∑
j=1

∫ Rj+C
1/2
nN g(Xj)

Rj

[{ψ(ϵij + u)− ψ(ϵij)}

−E{ψ(ϵij + u)− ψ(ϵij)}] du

I3(g) = C
1/2
nN

1

nN

n∑
i=1

N∑
j=1

ψ(ϵij)g(Xj).

140

By the superadditivity of the infimum we have the lower bound

inf
∥g∥N=γ

{
Ln(C

1/2
nN g)− Ln(0)

}
≥ inf

∥g∥N=γ
I1(g) + inf

∥g∥N=γ
I2(g) + inf

∥g∥N=γ
I3(g).

We need to determine the order of each one of the three terms.

By Schwarz Inequality, we obtain

|I3(g)| ≤
C

1/2
nN

n

 1

N

N∑
j=1

∣∣∣∣∣
n∑
i=1

ψ(ϵij)

∣∣∣∣∣
2

1/2{
1

N

N∑
j=1

|g(Xj)|2
}1/2

.

By Assumption (A6), we have

E

 1

N

N∑
j=1

∣∣∣∣∣
n∑
i=1

ψ(ϵij)

∣∣∣∣∣
2
 =

1

N

N∑
j=1

n∑
i=1

n∑
k=1

E{ψ(ϵij)ψ(ϵkj)}

=
n

N

N∑
j=1

E{|ψ(ϵij)|2} = O(1)nN−ν .

Using Markov’s inequality, we thus find
{

1
N

∑N
j=1 |

∑n
i=1 ψ(ϵij)|

2
}1/2

= Op(n
1/2N−ν/2). The

second factor is naturally bounded by γ. Combining these two bounds and note that (nNν)−1 ≪

CnN , we obtain

inf
∥g∥N=γ

|I3(g)| = C
1/2
nNOp(1) (nN

ν)−1/2 γ ≤ Op(1)γCnN . (B3)

When n is large enough, for all g ∈ F∗,

C
1/2
nN max

j≤N
|g(Xj)| ≤ 2C

1/2
nNF = o(1),

and by Lemma B.5,

max
j≤N

|Rj| ≤ ∥f0 − f ∗∥∞ ≤ CIM
−θ.

When M−θ = O(1)CnN , we have maxj≤N |Rj| = o(1) when n is large.

141

Applying Assumption (A6) yields, for large n

∫ Rj+C
1/2
nN g(Xj)

Rj

E{ψ(ϵij + u)}du

=

∫ Rj+C
1/2
nN g(Xj)

Rj

{δju+ o(u)}du

=
CnN
2
δj|g(Xj)|2{1 + o(1)}+ δjC

1/2
nNRjg(Xj){1 + o(1)}.

Hence,

1

N

N∑
j=1

∫ Rj+C
1/2
nN g(Xj)

Rj

E{ψ(ϵij + u)}du

=
CnN
2N

N∑
j=1

δj|g(Xj)|2{1 + o(1)}+ C
1/2
nN

N

N∑
j=1

δjRjg(Xj){1 + o(1)}

≥ I11(g) + I12(g),

where I11(g) := 1/2 infj δjCnN∥g∥2N and I12(g) := N−1C
1/2
nN

∑N
j=1 δjRj|g(Xj)|2{1 + o(1)}.

We find an upper bound for |I12(g)|. By the Schwarz inequality,

sup
∥g∥N=γ

|I12(g)| ≤ sup
∥g∥N=γ

(
sup
j
δj

)
C

1/2
nN

N

N∑
j=1

|g(Xj)||Rj|{1 + o(1)}

≲ C
1/2
nN ∥R∥N sup

∥g∥N=γ

∥g∥N{1 + o(1)}

≲ γCnN{1 + o(1)},

where the last inequality is derived by ∥R∥2N ≤ ∥f0 − f ∗∥∞ ≤M−θ ≍ CnN . Therefore,

inf
∥g∥N=γ

I11(g) + I12(g) = O(1)CnNγ
2{1 +O(γ−1) + o(1)}

for all g ∈ F .

In the following, we show that for every ϵ > 0,

lim
n→∞

Pr

(
sup

∥g∥N=γ

|I2(g)| ≥ ϵCnN

)
= 0. (B4)

142

Consider the class of real-valued functions hg : RN → R given by

hg(w) =
1

N

N∑
j=1

∫ Rj+C
1/2
nN g(Xj)

Rj

{ψ(wj + u)− ψ(wj)}du.

Let Pn be the empirical measure associated with (ϵi1, . . . , ϵiN), i = 1, . . . , n. We rewrite I2(g)

as I2(g) = (Pn − P)hg, where Phg is the expectation for hg. Let F∗ = {f − f ∗ : f ∈ F},

where F is the sparse neural network class defined in (2.4). By Markov’s inequality, we have

Pr

(
sup
g∈F∗

|(Pn − P)hg| > ϵCnN

)
≤

E{| supg∈F∗ n1/2|(Pn − P)hg|}
n1/2CnNϵ

. (B5)

Thus it suffices to show that the right-hand side of the above inequality tends to zero as n→ ∞.

Let N[](ϵ,G, L2(P)) be the ϵ-bracketing number for a set of functions G in the L2(P)-norm

and define the ϵ-bracketing integral,

J[](ϵ,G, L2(P)) =
∫ ϵ

0

{logN[](u,G, L2(P))}1/2du.

By Lemma 19.36 of [109], for any class of real-valued functions H such that E(|h|2) < δ2

and ∥h∥∞ < C3 for all h ∈ H, we have

E
(
sup
h∈H

n1/2|(Pn − P)h|
)

≤ c0J[](δ,H, L2(P))
(
1 +

J[](δ,H, L2(P))C3

δ2n1/2

)
.

Hence, in the following, we first determine a bound on the bracketing number and then we

estimate δ andC3. By our previous discussion, maxj≤N |Rj| → 0 andC1/2
nN × supg∈F∗ ∥g∥∞ →

0. Hence, for any (g1, g2) ∈ F∗ ×F∗, by Assumption (A4),

sup
w∈RN

|hg1(w)− hg2(w)| (B6)

= sup
w∈RN

∣∣∣∣∣ 1N
N∑
j=1

∫ Rj+C
1/2
nN g1(Xj)

Rj+C
1/2
nN g2(Xj)

{ψ(wj + u)− ψ(wj)}du

∣∣∣∣∣
≤ 2c1C

1/2
nN ∥g1 − g2∥∞. (B7)

143

Let N (ϵ,F∗, ∥ · ∥∞) denote the ϵ-covering number in the sup-norm. By (B6) and Theorem

2.7.11 of [110], we now have

N[](ϵ, {hg, g ∈ F∗}, L2(P)) (B8)

≤ N (ϵ/(4c1C
1/2
nN),F∗, ∥ · ∥∞). (B9)

By Lemma 5 of [92] and Lemma B.5, we have

logN (ϵ/(4c1C
1/2
nN),F∗, ∥ · ∥∞)

≤ (s+ 1) log(2ϵ−1(4c1C
1/2
nN)(L+ 1)V 2)

≍ O(1)M logM
{
log2M + log(C

1/2
nN ϵ

−1)
}
, (B10)

where the last inequality follows the conditions for L, s and V given in Lemma B.5.

Next, we estimate δ and C3. By the Schwarz inequality and Assumption (A5), we have

E{|hg|2} ≤ N−2E

∣∣∣∣∣
N∑
j=1

∫ Rj+C
1/2
nN g(Xj)

Rj

{ψ(ϵij + u)− ψ(ϵij)}du

∣∣∣∣∣
2

≤ N−1

N∑
j=1

E

∣∣∣∣∣
∫ Rj+C

1/2
nN g(Xj)

Rj

{ψ(ϵij + u)− ψ(ϵij)}du

∣∣∣∣∣
2

≤ N−1

N∑
j=1

C
1/2
nN |g(Xj)|E

{∫ Rj+C
1/2
nN g(Xj)

Rj

{ψ(ϵij + u)− ψ(ϵij)}2du

}

≤ C
1/2
nN max

j≤N
|g(Xj)|N−1

N∑
j=1

c2{|Rj|2 + CnN |g(Xj)|2}

≤ 2c2C
3/2
nN

where the last inequality follows by the definition of neural network space F in (2.4). Since

this estimate is uniform on F , we take δ2 = c0C
3/2
nN , where the constant c0 will be specified

later. In addition, by Assumption (A5) and Lemma B.5, we have

sup
g∈F∗

sup
w∈RN

|hg(w)| ≤ c1C
1/2
nN sup

g∈F∗

{
1

N

N∑
j=1

|g(Xj)|2
}1/2

≤ c1C
1/2
nN .

144

Let c0 = (2c2)∨ c1, then C3 = c0C
1/2
nN and C3/δ

2 = C−1
nN . With our estimate of δ and the bound

on the bracketing number implied by (B8)–(B10), when we take M−θ ≍ CnN , the bracketing

integral over n1/2CnN is bounded as follows

(n1/2CnN)
−1J(δ,F∗, L2(P))

≲ C
−1/4
nN n−1/2M1/2(log3/2M + (logM logC

−1/4
nN)1/2)

= O(1)
(
nθ/(4θ+4) log−3/2 n

)
n−1/2

(
n1/(2θ+2) log−3/θ n

)
log2 n

= O(1)n−θ/(4θ+4) log(θ−6)/(2θ) n = o(1),

which also implies C3(δ
2n1/2)−1J(δ,G, L2(P)) = o(1). Consequently, inequality (B5) entails

(B4). By the previous discussion, (B2) holds. Given the convexity and lower semicontinuity of

Ln on F , by Lemma B.6, inequality (B2) entails the existence of a minimize ĝ = f ∗ − f̂ , such

that ∥ĝ∥2N = Op(CnN). Using the one-to-one relation between g and f if (B2) holds, we obtain

∥f̂ − f ∗∥2N = Op(CnN). By Lemma B.5, we have

∥f̂ − f∥2N ≤ 2∥f̂ − f ∗∥2N + 2∥f ∗ − f∥2N = Op(CnN +M−θ)

= Op(CnN +M−θ) = Op(CnN).

which implies the Theorem 3.1.

145

Appendix C

Optimal Classification for Functional Data

We introduce additional notations and definitions that will be used throughout the rest of the

paper. 1p is a p-dimensional vector with elements being 1. For a vector u, ∥u∥2, ∥u∥∞ denote

the L2 norm and L∞ norm respectively. For a matrix A ∈ Rp×p, ∥A∥2, ∥A∥F denote the

spectral norm, Frobenius norm respectively.

We begin by collecting a few important technical lemmas that will be used in the proofs

of the minimax lower bounds.

C.1 Technical lemmas

We define an alternative risk function Lθ(Ĝ) as follows,

Lθ(Ĝ) = P
(
Ĝ(Z) ̸= G∗

θ(Z)
)
.

This loss function Lθ(Ĝ) is essentially the probability that Ĝ produces a different label than

G∗
θ, and satisfies the triangle inequality. The connection between Rθ(Ĝ)−Rθ(G

∗
θ) and Lθ(Ĝ)

is presented by the following lemma, which shows that it’s sufficient to provide a lower bound

for Lθ(Ĝ) to prove Theorem 4.1.

LEMMA C.7. ([8]) For any θ, θ̃ ∈ Θ and any classification rule Ĝ, recall thatG∗
θ̃

is the optimal

rule w.r.t. θ̃. If

Lθ(G
∗
θ̃
) + Lθ(Ĝ) +

√
KL(Pθ, Pθ̃)

2
≤ 1/2,

146

then

Lθ(G
∗
θ̃
)− Lθ(Ĝ)−

√
KL(Pθ, Pθ̃)

2
≤ Lθ̃(Ĝ) ≤ Lθ(G

∗
θ̃
) + Lθ(Ĝ) +

√
KL(Pθ, Pθ̃)

2
,

where the Kullback–Leibler (KL) divergence of two probability density functions Pθ1 and Pθ̃2

is defined by

KL(Pθ1 , Pθ̃2
) =

∫
Pθ1(z) log

Pθ1(z)

Pθ̃2
(z)

dz.

The following lemma gives a Fano’s type minimax lower bound.

LEMMA C.8. (Fano’s Lemma in [108]) Let N ≥ 0 and θ0,θ1, . . . ,θN , θ̃ ∈ Θ. For some

constants ϱ ∈ (0, 1/8), c > 0, and any classification rule Ĝ, if KL(Pθi , Pθ̃0
) ≥ ϱ logN/n

for all 1 ≤ i ≤ N , and Lθi(Ĝ) < c implies Lθi(Ĝ) ≥ c for all 0 ≤ i ̸= j ≤ N , then

inf supi=1,...,N Eθi [Lθi(Ĝ)] ≳ c.

We need a covering number argument, which is provided by the following lemma.

LEMMA C.9. ([108]) Define AJ,J∗ =
{
u : u ∈ {0, 1}J , ∥u∥0 = J∗

}
, where ∥ · ∥0 denotes the

number of non-zero entries. If J > 4J∗, then there exists a subset {u0,u1, . . . ,uN} ⊂ AJ,J∗ ,

such that u0 = (0, . . . , 0)⊤, ρH(ui,uj) ≥ J∗/2 and log(N + 1) ≥ J∗

5
log(J

J∗), where ρH the

Hamming distance.

LEMMA C.10. (Lemma 4.1 in [18]) Suppose θ ∈ Θ. There exists a constant c > 0, which

doesn’t depend on n, such that for any classification rule G, if Lθ(G) < c, then L2
θ(G) ≲

Pθ(G(Z) ̸= L(Z))− Pθ(Gθ(Z) ̸= L(Z)).

Based on Lemma C.10, we use Fano’s inequality on a carefully designed least favorable

multivariate normal distributions to complete the proof of Theorem 4.1. Without loss of gener-

ality, the following proofs assume that z is from class 1.

The following two lemmas show the consistency of the differential direction and graphical

direction. With a slight abuse of notation, D represents the matrix given in (4.1).

LEMMA C.11. The proposed estimators in (4.3) and (4.4) satisfy that, with probability at least

1− 3/n, ∥D̂−D∥F ≲
√

J logn
n

(∥DΣ1∥F + ∥DΣ2∥F), ∥β̂ − β∥2 ≲
√

J logn
n

∥β∥2.

147

Proof. Note that matrices Σ1, Σ2, D1 and D2 are diagonal matrices. Hence, ∥(D̂−D) (Σ1Σ2) (D̂−

D)∥F ≍ ∥D̂−D∥2F . Since we have the following decomposition

Σ1Σ2(D̂−D)

= Σ1Σ2D̂− (Σ1 −Σ2)

= Σ1Σ2D̂− Σ̂1Σ̂2D̂+ Σ̂1Σ̂2D̂− (Σ1 −Σ2)

= (Σ1Σ2 − Σ̂1Σ̂2)D̂+ (Σ̂1 −Σ1) + (Σ̂2 −Σ2)

= (Σ1Σ2 −Σ1Σ̂2 +Σ1Σ̂2 − Σ̂1Σ̂2)D̂+ (Σ̂1 −Σ1) + (Σ̂2 −Σ2)

=
{
Σ1(Σ2 − Σ̂2) + Σ̂2(Σ1 − Σ̂1)

}
D̂+ (Σ̂1 −Σ1) + (Σ̂2 −Σ2)

=
{
Σ1(Σ2 − Σ̂2) +Σ2(Σ1 − Σ̂1) + (Σ̂2 −Σ2)(Σ1 − Σ̂1)

}
D̂+ (Σ̂1 −Σ1) + (Σ̂2 −Σ2),

thus we have

∥(D̂−D)⊤ (Σ1Σ2) (D̂−D)∥F

=
∥∥∥(D̂−D)⊤

{
(Σ̂1 − Σ̂2)− (Σ1 −Σ2) + (Σ1 − Σ̂1)(D̂−D)Σ̂2

+ (Σ2 − Σ̂2)(D̂−D)Σ1 + (Σ1 − Σ̂1)DΣ̂2 + (Σ2 − Σ̂2)DΣ1

}∥∥∥
F

=
∥∥∥(D̂−D)⊤

{
(Σ̂1 − Σ̂2)− (Σ1 −Σ2) + (Σ1 − Σ̂1)(D̂−D)(Σ̂2 −Σ2)

+(Σ2 − Σ̂2)(D̂−D)Σ1 + (Σ1 − Σ̂1)D(Σ̂2 −Σ2) + (Σ2 − Σ̂2)DΣ1

+ (Σ1 − Σ̂1)(D̂−D)Σ2 + (Σ1 − Σ̂1)DΣ2

}∥∥∥
F

≤ 2

√
J log n

n
∥D̂−D∥F +

J log n

n
∥D̂−D∥2F + 2

√
J log n

n
∥D̂−D∥F

+

√
J log n

n
∥(DΣ1∥F +DΣ2∥F)∥D̂−D∥F +

J log n

n
∥DΣ1∥F∥D̂−D∥F

≲

√
J log n

n
∥D̂−D∥2F +

√
J log n

n
∥D̂−D∥F +

√
J log n

n
(∥DΣ1∥F + ∥DΣ2∥F)∥D̂−D∥F ,

where the first inequality is derived by Lemma 8.5 in [18]. In the above inequality, we divide

∥D̂−D∥F on both sides, and we have ∥D̂−D∥F ≲
√

J logn
n

(∥DΣ1∥F + ∥DΣ2∥F).

148

Similarly, we have |(β̂−β)⊤Σ2(β̂−β)| ≍ ∥β̂−β∥22. With probability at least 1−O(1/n),

we have

|(β̂ − β)⊤Σ2(β̂ − β)|

= |(β̂ − β)⊤(Σ2 − Σ̂2)β̂ + (β̂ − β)⊤(δ̂ − δ)|

= |(β̂ − β)⊤(Σ2 − Σ̂2)β + (β̂ − β)⊤(Σ2 − Σ̂2)(β̂ − β) + (β̂ − β)⊤(δ̂ − δ)|

≲

√
J log n

n
∥β̂ − β∥2∥β∥2 +

√
J log n

n
∥β̂ − β∥22 +

√
log n

n
∥β̂ − β∥2.

In the above inequality, we divide ∥β̂−β∥2 on both sides, and we have ∥β̂−β∥2 ≲
√

J logn
n

∥β∥2.

LEMMA C.12. The proposed estimators in (4.6) and (4.7) satisfy that, with probability at least

1−O(1/n),

∥D̂s −D∥F ≲

(√
J log n

n
+
√
Jf2(M)

)
(∥DΣ1∥F + ∥DΣ2∥F) ,

∥β̂s − β∥2 ≲

(√
J log n

n
+
√
Jf2(M)

)
∥β∥2 +

√
Jf1(M).

Proof. In the following we omit k for simplicity. Consider the parameter space Θ, we have

µ̂−µ = ξ̄−µ+B−1ϵ̄, where ξ̄ =
(
ξ̄·1, ξ̄·2, . . . , ξ̄·J

)⊤, ϵ̄ = 1
n

∑nk

i=1 ϵi, ϵi = (ϵi1, ϵi2, . . . , ϵiM)⊤

and ϵim =
∑∞

j=J+1 ξijψj(tm), m = 1, . . . ,M . For any M dimensional vector a and J ≤ M ,

define aJ as the vector of first J elements in a.

Since ϵ̄ =
(∑∞

j=M+1 ξ̄jψj(t1), . . . ,
∑∞

j=M+1 ξ̄jψj(tM)
)⊤

, we have

B−1ϵ̄ =

(
M∑
m=1

ψ1(tm)
∞∑

j=M+1

ξ̄jψj(tm), . . . ,
M∑
m=1

ψM(tm)
∞∑

j=M+1

ξ̄jψj(tm)

)

149

and ξ̄j ∼ N (µj, n
−1λj), hence for the first J elements, where J ≤M , we have

∥
(
B−1ϵ̄

)
J
∥22 =

J∑
k=1

{
∞∑

j=M+1

(
M∑
m=1

ψk(tm)ψj(tm)ξ̄j

)}2

≲
∞∑

j=M+1

J∑
k=1

{
M∑
m=1

ψk(tm)ψj(tm)

}2

(µ2
j + n−1 log nλj)

≲ Jf 2
1 (M) +

log n

n

(
∞∑

j=M+1

λj

)
≲ Jf 2

1 (M) +
log n

n

in probability 1−O(1/n), therefore

∥µ̂J − µJ∥2 ≤ ∥ξ̄J − µJ∥2 + ∥
(
B−1ϵ̄

)
J
∥2 ≲

√
log n

n
+
√
Jf1(M)

with probability 1 − O(1/n). In the following lemma, for any J × J square matrix A, let

Diag{A} denote a J×J diagonal matrix whose diagonal elements are the same as the diagonal

elements of A. We estimate the variance as λ̂j = 1
n

∑n
i=1 (µ̂ij − µ̂j)

2, i.e.

Σ̂ = Diag

{
1

n

n∑
i=1

(µ̂i − µ̂) (µ̂i − µ̂)⊤
}

= Diag

{
B−1

[
1

n

n∑
i=1

(
XiX

⊤
i − X̄X̄⊤)] (B−1

)⊤}

= Diag

{
1

n

n∑
i=1

(
ξiξ

⊤
i − ξ̄ξ̄⊤

)}
+Diag

{
2

n

n∑
i=1

(
ξiϵ

⊤
i − ξ̄ϵ̄⊤

) (
B−1

)⊤}

+Diag

{
1

n

n∑
i=1

B−1
(
ϵiϵ

⊤
i − ϵ̄ϵ̄⊤

) (
B−1

)⊤}
.

The estimation bias is

Σ̂−Σ = Diag

{
1

n

n∑
i=1

(
ξiξ

⊤
i − ξ̄ξ̄⊤

)}
−Σ+Diag

{
2

n

n∑
i=1

(
ξiϵ

⊤
i − ξ̄ϵ̄⊤

) (
B−1

)⊤}

+Diag

{
1

n

n∑
i=1

B−1
(
ϵiϵ

⊤
i − ϵ̄ϵ̄⊤

) (
B−1

)⊤}
,

150

Note that by Lemma 8.5 in [18],

∥∥∥∥∥Diag
{
1

n

n∑
i=1

(
ξiξ

⊤
i − ξ̄ξ̄⊤

)}
−Σ

∥∥∥∥∥
2

≲

√
log n

n
,

and

∥∥∥∥∥Diag
{
2

n

n∑
i=1

(
ξiϵ

⊤
i − ξ̄ϵ̄⊤

) (
B−1

)⊤}∥∥∥∥∥
2

≲

√
log n

n
sup
m

√√√√ M∑
j=1

λjψj(tm)ψj(tm) sup
m

√√√√ ∞∑
j=M+1

λjψj(tm)ψj(tm)

×
∥∥∥Diag {IM (B−1

)⊤}∥∥∥
2

and

∥∥∥∥∥Diag
{
1

n

n∑
i=1

B−1
(
ϵiϵ

⊤
i − ϵ̄ϵ̄⊤

) (
B−1

)⊤}∥∥∥∥∥
2

≤

(
1 +

√
log n

n

)
sup
m,m′

∞∑
j=M+1

λjψj(tm)ψj(tm′)
∥∥∥Diag {B−1IM

(
B−1

)⊤}∥∥∥
2

151

with probability at least 1− 1/n separately. Then we have

∥Σ̂−Σ∥2

≲

√
log n

n
+

√
log n

n
sup
m

√√√√ M∑
j=1

λjψj(tm)ψj(tm) sup
m

√√√√ ∞∑
j=M+1

λjψj(tm)ψj(tm)

×
∥∥∥Diag {IM (B−1

)⊤}∥∥∥
2

+

(
1 +

√
log n

n

)
sup
m,m′

∞∑
j=M+1

λjψj(tm)ψj(tm′)∥Diag
{
B−1IM

(
B−1

)⊤} ∥2

=

√
log n

n

1 + sup
m

√√√√ M∑
j=1

λjψj(tm)ψj(tm) sup
m

√√√√ ∞∑
j=M+1

λjψj(tm)ψj(tm)

× sup
1≤j≤M

M∑
m=1

ψj(tm)

)

+

(
1 +

√
log n

n

)
sup
m,m′

∞∑
j=M+1

λjψj(tm)ψj(tm′) sup
1≤j≤M

(
M∑
m=1

ψj(tm)

)2

,

with probability at least 1− 3/n.

Thus

∥Σ̂−Σ∥2 ≲

√
log n

n
+

√
log n

n

1√
M

√√√√ ∞∑
j=M+1

λj +

(
1 +

√
log n

n

)
∞∑

j=M+1

λj

≍
√

log n

n
+

∞∑
j=M+1

λj ≲

√
log n

n
+ f2(M),

with probability at least 1 − 3/n. Hence, the result can be easily derived from the proof of

Lemma C.11.

Let M(z) = Q(z;θ)− Q̂(z;θ) and ∆M(z) =
√

J logn
n

(∥D∥F + ∥β∥2).

LEMMA C.13. We have P
(
M(z) ≲ ∆M(z)

)
≥ 1−O(1/n).

152

Proof. Given the definition of Q(z;θ) in (4.2) and Q̂(z;θ), we have

M(z)

=
{
(z − µ1)

⊤D(z − µ1)− (z − µ̂1)
⊤D̂(z − µ̂1)

}
+
{
2β̂⊤(z − ̂̄µ)− 2β⊤(z − µ̄)

}
+ log |D̂Σ̂1 + IJ | − log |DΣ1 + IJ |) + 2 log (π1/π2)− 2 log (π̂1/π̂2)

=
{
(z − µ1)

⊤D(z − µ1)− (z − µ̂1)
⊤D̂(z − µ̂1)

}
− tr

(
Σ

1/2
1 (D̂−D)Σ

1/2
1

)
+
{
2β̂⊤(z − ̂̄µ)− 2β⊤(z − µ̄)

}
+ log |D̂Σ̂1 + IJ | − log |DΣ1 + IJ |) + tr

(
Σ

1/2
1 (D̂−D)Σ

1/2
1

)
+2 log (π1/π2)− 2 log (π̂1/π̂2)

= Ξ1 + Ξ2 + Ξ3 + Ξ4

Without loss of generality, assuming z ∼ N (µ1,Σ1). First, we shall bound Ξ1. Note that

(z − µ1)
⊤D(z − µ1)− (z − µ̂1)

⊤D̂(z − µ̂1)

= (z − µ1)
⊤D(z − µ1)− (z − µ̂1)

⊤D(z − µ̂1) + (z − µ̂1)
⊤(D̂−D)(z − µ̂1)

= 2(µ1 − µ̂1)Dz + (µ1 − µ̂1)
⊤D(µ1 − µ̂1) + (z − µ̂1)

⊤(D̂−D)(z − µ̂1)

≤ 2
√

(µ1 − µ̂1)⊤D(µ1 − µ̂1)
√
z⊤Dz + (µ1 − µ̂1)

⊤D(µ1 − µ̂1)

+(z − µ̂1)
⊤(D̂−D)(z − µ̂1)

= I1 + I2 + I3

According to Gaussian Chaos, since µ̂1 − µ1 ∼ N (0, 1
n
Σ1), E

{
(µ1 − µ̂1)

⊤D(µ1 − µ̂1)
}
=

n−1
∑J

j=1(ϵj − 1), and ϵj = λ
(1)
j /λ

(2)
j , we have

P

(
(µ1 − µ̂1)

⊤D(µ1 − µ̂1) > 2

∥∥∥∥ 1n(diag(ϵ1, . . . , ϵJ)− IJ)

∥∥∥∥
F

√
x

+2

∥∥∥∥ 1n(diag(ϵ1, . . . , ϵJ)− IJ)

∥∥∥∥
2

x+
J∑
j=1

ϵj − 1

n

)
≤ exp(−x)

153

Since ∥ 1
n
(diag(ϵ1, . . . , ϵJ) − IJ)∥F = 1

n

√∑J
j=1(ϵj − 1)2 and ∥ 1

n
(diag(ϵ1, . . . , ϵJ) − IJ)∥2 =

1
n
maxj (ϵj − 1). Therefore, take x = log n, we have

I2 (C1)

= (µ1 − µ̂1)
⊤D(µ1 − µ̂1) ≲

√
log n

n
∥DΣ1∥F +

log n

n
+

1

n
tr (DΣ1) ≲

√
J

n
∥DΣ1∥F

with probability at least 1− 1/n. Note that

z⊤Dz = (z − µ1)
⊤D(z − µ1) + 2µ⊤

1 D(z − µ1) + µ
⊤
1 Dµ1

Since z − µ1 ∼ N (0,Σ1), and we have E
{
(z − µ1)

⊤D(z − µ1)
}
=
∑J

j=1(ϵj − 1), Thus

(z − µ1)
⊤D(z − µ1) ≲

√
log n∥DΣ1∥F + log n+ tr (DΣ1) ≲

√
J∥DΣ1∥F

with probability at least 1− 1/n. Note that 2µ⊤
1 D(z − µ1) ∼ N (0, 4

∑J
j=1

µ21j

λ
(1)
j

(ϵj − 1)2), we

have µ⊤
1 D(z −µ1) ≲ ∥DΣ1∥F

√
log n with probability at least 1−O(1/n). Since µ⊤

1 Dµ1 ≤

∥Σ−1/2
1 µ∥24∥DΣ1∥F , we have z⊤Dz ≲

√
J∥DΣ1∥F with probability at least 1 − O(1/n).

Thus

I1 = 2
√

(µ1 − µ̂1)⊤D(µ1 − µ̂1)
√
z⊤Dz ≲

√
J

n
∥DΣ1∥F . (C2)

154

Denote the diagonal matrix Σ
1/2
1 (D̂−D)Σ

1/2
1 = diag(ρ1, . . . , ρJ), and z0 = (z01, . . . , z0J)

⊤

∼ N (0, IJ) are independent standard normally distributed random variables, then we have

I3 − tr
(
Σ

1/2
1 (D̂−D)Σ

1/2
1

)
= (z − µ̂1)

⊤(D̂−D)(z − µ̂1)− tr
(
Σ

1/2
1 (D̂−D)Σ

1/2
1

)
= (1 +

1

n
)z⊤0 (Σ

1/2
1 (D̂−D)Σ

1/2
1)z0 − tr

(
Σ

1/2
1 (D̂−D)Σ

1/2
1

)
= (1 +

1

n
)

J∑
j=1

ρj(z
2
0j − 1) +

1

n

J∑
j=1

ρj

≲ (1 +
1

n
)

√
J log n

n
+

1

n
∥D̂−D∥F∥Σ1∥2

≲

√
J log n

n
(∥DΣ1∥F + ∥DΣ2∥F)

with probability at least 1 − O(1/n), where the second last inequality comes from Gaussian

Chaos and the last inequality comes from Lemma C.11. Combining (C1), (C2) and (C3),

Ξ1 ≲

√
J log n

n
(∥DΣ1∥F + ∥DΣ2∥F). (C3)

Secondly, by Lemma C.11, with probability at least 1−O(1/n), we have

Ξ2 = |2β̂(z − ̂̄µ)− 2β(z − µ̄)| = |2(β̂ − β)(z − ̂̄µ)− β(̂̄µ− µ̄)|

≤ 2∥β̂ − β∥2∥z − ̂̄µ∥2 + ∥β∥2∥̂̄µ− µ̄∥2

≲

√
J log n

n
∥β∥2. (C4)

Thirdly, we have

log |DΣ1 + IJ | − log |D̂Σ̂1 + IJ |

≤ tr
{
(DΣ1 + IJ)

−1(DΣ1 − D̂Σ̂1)
}

= tr
{
−DΣ2(DΣ1 − D̂Σ̂1)

}
+ tr(DΣ1 − D̂Σ̂1)

≤ ∥DΣ2∥F∥DΣ1 − D̂Σ̂1∥F + tr(D̂Σ1 − D̂Σ̂1) + tr(DΣ1 − D̂Σ1).

155

Since with probability at least 1−O(1/n),

∥DΣ2∥F∥DΣ1 − D̂Σ̂1∥F

≤ ∥DΣ2∥F
(
∥(Σ1 − Σ̂1)D̂∥F + ∥Σ1(D̂−D)∥F

)
≤ ∥DΣ2∥F

(
∥(Σ1 − Σ̂1)(D̂−D)∥F + ∥(Σ1 − Σ̂1)D∥F + ∥Σ1(D̂−D)∥F

)
≲

√
J log n

n
(∥DΣ1∥F∥DΣ2∥F + ∥DΣ2∥2F)

and with probability at least 1−O(1/n),

tr(D̂Σ1 − D̂Σ̂1) ≤ ∥D̂Σ1∥F∥IJ − Σ̂1Σ
−1
1 ∥F

≤ ∥(D̂−D)Σ1∥F∥Σ1 − Σ̂1∥F + ∥DΣ1∥F∥Σ1 − Σ̂1∥F

≤ ∥D̂−D∥F∥Σ1∥∞∥Σ1 − Σ̂1∥F + ∥DΣ1∥F∥Σ1 − Σ̂1∥F

≲

√
J log n

n

{√
J log n

n
(∥DΣ1∥F + ∥DΣ2∥F) + ∥DΣ1∥F

}

≲

√
J log n

n
∥DΣ1∥F +

J log n

n
∥DΣ2∥F

and

tr(DΣ1 − D̂Σ1) ≤ ∥D− D̂∥F∥Σ1∥F ≲

√
J log n

n
(∥DΣ1∥F + ∥DΣ2∥F) .

Note that tr
(
Σ

1/2
1

(
D− D̂

)
Σ

1/2
1

)
= tr(DΣ1 − D̂Σ1), hence we have with probability at

least 1−O(1/n)

Ξ3 ≲

√
J log n

n
(∥DΣ1∥F + ∥DΣ2∥F) (C5)

Lastly, by Hoeffding inequality, we have π̂k − πk ≲
√

logn
n

with probability at least 1 −

O(1/n), k = 1, 2. Thus

Ξ4 =

∣∣∣∣log(π1π2
)
− log

(
π̂1
π̂2

)∣∣∣∣ ≲ | log(π̂1 − π1)|+ | log(π̂2 − π2)| ≲
√

log n

n
(C6)

in probability 1−O(1/n).

156

Combining (C3) to (C6), the lemma has been proved.

LEMMA C.14. Denote fQ(z)(t) the probability density function of Q(z). When ∆M(z) = o(1),

we have

∫ C∆M(z)

0

(1− e−t)fQ(z)(t)dt ≲ ∆M(z)

∫ C∆M(z)

0
fQ(z)(t)dt ≲ ∆2

M(z).

When ∆M(z) = O(1) or ∆M(z) = ∞, we have

∫ C∆M(z)

0

(1− e−t)fQ(z)(t)dt ≲
∫ C∆M(z)

0
fQ(z)(t)dt ≲ ∆M(z).

Proof. Without loss of generality, assuming z ∼ N (µ1,Σ1). By simple calculation, we have

Q(z) =
J∑
j=1

(ϵj − 1)χ2(δ2j)−
J∑
j=1

(µj1 − µj2)
2

λ
(2)
j

(ϵj − 1)−1 −
J∑
j=1

log ϵj, (C7)

where χ2(δ2j) = h2j , such that hj ∼ N (δj, 1), where δj =
µj1−µj2
(λ

(2)
j)1/2

ϵ
1/2
j

ϵj−1
. Denote qz =∑J

j=1(ϵj − 1)χ2
j(δj). To estimate the density of qz, without loss of generality, we assume

that ϵ1 − 1 ≥ ϵ2 − 1 ≥ · · · ≥ 0, otherwise, qz can always be represented as the subtraction of

two linear combinations of non-central chi-square random variables with positive coefficients,

whose density function can be derived by convolution, thus, the boundedness of the density can

be obtained by this simple case. As suggested in [68] , define

Ak =
J∑
j=1

{
(ϵj − 1)k + k(ϵj − 1)k−1 (µj1 − µj2)

2

λ
(2)
j

+ (ϵj − 1)k−2 (µj1 − µj2)
2

λ
(2)
j

}
,

then µq := E(qz) =
∑J

j=1

{
ϵj − 1 +

(µj1−µj2)2

λ
(2)
j

+
(µj1−µj2)2

λ
(2)
j

(ϵj − 1)−1

}
and

σq := SD(qz) =

√√√√2
J∑
j=1

{
(ϵj − 1)2 + 2

(µj1 − µj2)2

λ
(2)
j

ϵj

}
.

Define s21 = A2
3A

−3
2 and s2 = A4A

−2
2 .

157

i) When s21 > s2, define µχ =
s1−2

√
s21−s2

(s1−
√
s21−s2)3

, σχ =
√
2

s1−
√
s21−s2

, Dq = µχ
σχ
σq − µq and

Uq =

√
s21−s2

(s1−
√
s21−s2)3

. Denote γ =
s1−3

√
s21−s2

(s1−
√
s21−s2)3

. Then, the probability density function of qz

is approximately by noncentral chi-square distribution with noncentrality parameter Uq and

degree of freedom γ as following

fq(t) =
σχ
2σq

exp

(
−Kq + Uq

2

)(
Kq

Uq

)γ/4−1/2

I γ
2
−γ

(√
UqKq

)
,

where Kq =
σχ
σq
(t+Dq), Iγ/2−γ(·) is a modified Bessel function. Note that

fq(t) ≤ σχ
2σq

Uq
1/2−γ/4 exp

(
−Uq +Kq

2

)
Kγ/4−1/2
q

× (UqKq)
γ/4−1/2 exp

(√
UqKq

)
21−γ/2Γ−1(γ/2− 1)

≤ σχ

2
γ
2 σq

Γ−1 (γ/2− 1) exp
{
−(Uq +Kq)/2 +

√
UqKq

}
.

The second last inequality is obtained from [74] and Bessel function has the inequality 1 <

Γ(ν + 1)
(
2
x

)ν
Iν(x) < coshx ≤ ex, where ν > −1/2, x > 0. Here we can still find that fq(t)

has lower bound σχ

2
γ
2 σq

Γ−1(γ/2 − 1) exp {−(Uq +Kq)/2}, which will be used later. Then we

have

fQ(z)(t) ≤
σχ

2
γ
2 σq

Γ−1(γ/2− 1) exp

{
−σχLJ

2σq
− Kq + Uq

2
+

√
Uq

(
Kq +

σχ
σq
LJ

)}
,

where LJ =
∑J

j=1
(µj1−µj2)2

λ
(2)
j

(ϵj−1)−1+
∑J

j=1 log ϵj . The upper bound is a function increasing

when t < σq
σχ
Uq −Dq − LJ , and decreasing otherwise. When t = σq

σχ
Uq −Dq − LJ , the global

maximal value of density is σχ

2
γ
2 σq

Γ−1(γ/2− 1).

When ∆M(z) = o(1), then

∫ C∆M(z)

0

(1− e−t)fQ(z)(t)dt ≲ ∆M(z)

∫ C∆M(z)

0
fQ(z)(t)dt ≲ ∆2

M(z)
σχ
σq

1

2
γ
2 Γ(γ

2
−1)

,

158

otherwise

∫ C∆M(z)

0

(1− e−t)fQ(z)(t)dt ≲
∫ C∆M(z)

0
fQ(z)(t)dt ≲ ∆M(z)

σχ
σq

1

2
γ
2 Γ(γ

2
−1)

.

ii) When s21 ≤ s2, noncentrality parameter Uq = 0, γ = s−2
1 . The probability density

function of qz is

fq(t) =
σχ
σq

1

2γ/2Γ(γ/2)
exp (−Kq/2)K

γ/2−1
q .

Note that σχ
σq
(qz +Dq) ∼ χ2

γ . Given the parameter space Θ, scale parameter σχ/σq < ∞, thus

fq(t) <∞ when s21 ≤ s2.

Hence, when ∆M(z) → 0, we have

∫ C∆M(z)

0

(1− e−t)fQ(z)(t)dt ≲ ∆M(z)

∫ C∆M(z)

0

fQ(z)(t)dt ≲ ∆2
M(z)

σχ
σq

1√
4πγ

≲ ∆2
M(z),

otherwise we have

∫ C∆M(z)

0

(1− e−t)fQ(z)(t)dt ≲
∫ C∆M(z)

0

fQ(z)(t)dt ≲ ∆M(z)
σχ
σq

1√
4πγ

≲ ∆M(z).

LEMMA C.15. Consider parameter space Θ, we have

sup
θ∈Θ

E
[
Rθ(ĜJ)−Rθ(G

∗
θ)
]
≲
J log n

n
+ g(J ; Θ),

where ĜJ is the proposed classifier for first J scores. Thus we can easily conclude the least

upper bound

inf
Ĝ

sup
θ∈Θ

E
[
Rθ(Ĝ)−Rθ(G

∗
θ)
]
≲
J∗ log n

n
,

where J∗ satisfies J∗ logn
n

= g(J∗; Θ).

159

Proof. Without loss of generality, assuming z ∼ N (µ1,Σ1).

Rθ(ĜJ)−Rθ(G
∗
J)

=
1

2

∫
Q(z)>0

π1
(2π)p/2|Σ1|1/2

e−1/2(z−µ1)⊤Σ−1
1 (z−µ1)dz

+
1

2

∫
Q(z)≤0

π2
(2π)p/2|Σ2|1/2

e−1/2(z−µ2)⊤Σ−1
2 (z−µ2)dz

−1

2

∫
Q̂(z)>0

π1
(2π)p/2|Σ1|1/2

e−1/2(z−µ1)⊤Σ−1
1 (z−µ1)dz

−1

2

∫
Q̂(z)≤0

π2
(2π)p/2|Σ2|1/2

e−1/2(z−µ2)⊤Σ−1
2 (z−µ2)dz

=
1

2

∫
Q(z)>0

1

(2π)p/2|Σ1|1/2
e−1/2(z−µ1)⊤Σ−1

1 (z−µ1)−log |Σ1|/2
(
1− e−Q(z)

)
dz

−1

2

∫
Q̂(z)>0

1

(2π)p/2|Σ1|1/2
e−1/2(z−µ1)⊤Σ−1

1 (z−µ1)−log |Σ1|/2
(
1− e−Q(z)

)
dz

≤ 1

2

∫
Q(z)>0,Q̂(z)≤0

1

(2π)p/2|Σ1|1/2
e−1/2(z−µ1)⊤Σ−1

1 (z−µ1)−log |Σ1|/2
(
1− e−Q(z)

)
dz

=
1

2

∫
Q(z)>0,Q(z)≤Q(z)−Q̂(z)

1

(2π)p/2|Σ1|1/2
e−1/2(z−µ1)⊤Σ−1

1 (z−µ1)−log |Σ1|/2

×
(
1− e−Q(z)

)
dz

=
1

2
Ez∼N (µ1,Σ1)

{
(1− e−Q(z))I {0 < Q(z) ≤M(z)} I

(
M(z) ≲ ∆M(z)

)}
+
1

2
Ez∼N (µ1,Σ1)

{
(1− e−Q(z))I (0 < Q(z) ≤M(z)) I

(
M(z) ≳ ∆M(z)

)}
≲ Ez∼N (µ1,Σ1)

{
(1− e−Q(z))I

(
0 < Q(z) ≲ ∆M(z)

)}
+ n−1.

By Lemma C.13, we have P
{
M(z) ≲ ∆M(z)

}
= 1− O(1/n). Hence, Rθ(ĜJ)− Rθ(G

∗
J) ≲∫ C∆M(z)

0
(1− e−t)fQ(z)(t)dt+ n−1. By Lemma C.14 we have

Rθ(ĜJ)−Rθ(G
∗
J) ≲

J log n

n
. (C8)

Next, we approximate the first J scores and the whole process. Note that

Rθ(G
∗
J)−Rθ(G

∗
θ) ≍ P (Q∞(Z) > 0)− P (Q(z) > 0) =

∫ ∞

0

(f∞(t)− fQ(z)(t))dt,

160

where f∞ is the density function of Q∞. Denote

RJ = Q∞ −QJ =
∞∑

j=J+1

(ϵj − 1)χ2(δ2j)−
∞∑

j=J+1

(µj1 − µj2)
2

λ
(2)
j

(ϵj − 1)−1 −
∞∑

j=J+1

log ϵj.

Then we have

P (Q∞ > 0)− P (QJ > 0)

= P (Q∞ > 0)− P (Q∞ > RJ) = P (Q∞ > 0)− E [P (Q∞ > RJ |RJ)]

=

(
1−

∫ 0

−∞
f∞(t)dt

)
− E

(
1−

∫ RJ

−∞
f∞(t)dt

)
= E

(∫ 0

RJ

f∞(t)dt

)
.

When 0 < f∞(t) <∞, we have

E

(∫ RJ

0

f∞(t)dt

)
≍ E (RJ) .

Recall in (C7), χ2(δ2j) = h2j and hj ∼ N (δj, 1), we haveE (RJ) =
∑∞

j=J+1 (ϵj − 1− log ϵj)+∑∞
j=J+1

(µj1−µj2)2

λ
(2)
j

. Given parameter space Θ, ϵj’s are constants for any j ∈ N, we have

E (RJ) ≍
∑∞

j=J+1 (ϵj − 1)2 +
∑∞

j=J+1
(µj1−µj2)2

λ
(2)
j

. Hence, we have

Rθ(G
∗
J)−Rθ(G

∗
θ) ≍

∞∑
j=J+1

(ϵj − 1)2 +
∞∑

j=J+1

(µj1 − µj2)
2

λ
(2)
j

. (C9)

Hence, by (C8) and (C9), we have

inf
Ĝ

sup
θ∈Θ

E
[
Rθ(Ĝ)−Rθ(G

∗
θ)
]

= inf
Ĝ

sup
θ∈Θ

E
[
Rθ(Ĝ)−Rθ(G

∗
J)
]
+ sup

θ∈Θ
[Rθ(G

∗
J)−Rθ(G

∗
θ)] ≲

J log n

n
+ g(J ; Θ).

LEMMA C.16. For some n large enough and absolute constants C11 and C12,

i) When M ≤ M∗, there exists a J∗
1 ≡ J∗

1 (M,n) ≤ M being the unique solution of

C11f(M) = g(J ; Θ)/J , where f(M) = f 2
1 (M) ∨ f 2

2 (M) for each M ≥ 1;

161

ii) When M > M∗, there exists a J∗
2 ≡ J∗

2 (M,n) ≤ M being the unique solution of

C12 log n/n = g(J ; Θ)/J .

Proof. First, note that f(x) and g(x; Θ)/x are two monotone decreasing functions which con-

verge to 0 as x→ ∞.

When M ≤ M∗, log n/n = o (f(M)), thus f(M) dominates the MER for the first J

scores. Without loss of generality, we assume g(1;Θ) ≥ f(1), since g(1;Θ) and f(1) are

both absolute constants, we can always realize it by rescaling. For any fixed M , if f(M) ≥

g(M ; Θ)/M , there must be a J∗
1 such that f(M) = g(J∗

1 ; Θ)/J∗
1 ; Otherwise, there exists a

constant r11 > 1, such that f(M) ≥ g(r11M ; Θ)/(r11M). Let h(r) = g(rM ; Θ)/g(M ; Θ),

r > 1, then it’s easy to see that h(r) is a monotone decreasing function of r, when r = r11,

there exists a r12 > 1, such that h(r11) ≥ r12. Thus we have r11f(M) ≥ r12g(M ; Θ)/M , i.e.

r1f(M) ≥ g(M ; Θ)/M , where r1 = r11/r12.

When M > M∗, log n/n dominates the MER for the first J scores. For some large n,

log n/n < g(1;Θ) is naturally satisfied. For any fixed n and M , if log n/n ≥ g(M ; Θ)/M ,

there must be a J∗
2 such that log n/n = g(J∗

2 ; Θ)/J∗
2 ; Otherwise, since f(M) < log n/n <

g(M ; Θ)/M , we can get the similar result with another constant r2 such that r2 log n/n ≥

g(M ; Θ)/M .

C.2 Proof of Theorem 4.1

Proof. Theorem 4.1 can be derived easily from Lemma C.15.

C.3 Proof of Proposition 4.1

Proof. Consider parameter space Θ(α), for any θ ∈ Θ(α), we have

∞∑
j=J+1

(ϵj − 1)2 ≍
∞∑

j=J+1

j−a ≍
∫ ∞

J+1

t−adt = (a− 1)−1(J + 1)1−a

162

and

∞∑
j=J+1

(µj1 − µj2)
2

λ
(2)
j

≍
∞∑

j=J+1

j−b ≍
∫ ∞

J+1

t−bdt = (b− 1)−1(J + 1)1−b.

Since a, b > α,

g(J ; Θ) = sup
a,b

{
(a− 1)−1(J + 1)1−a + (b− 1)−1(J + 1)1−b

}
≍ J−(α−1).

C.4 Proof of Theorem 4.2

Proof. For any 3 ≤ ℓ1 < ℓ2 < ℓ3 < J , define the following partial summations based on the

definitions in the proof of Lemma C.14.

Ak(ℓ1, ℓ2) =

ℓ2∑
j=ℓ1

[
(ϵj − 1)k + k(ϵj − 1)k−1 (µj1 − µj2)

2

λ
(2)
j

+ (ϵj − 1)k−2 (µj1 − µj2)
2

λ
(2)
j

]
,

s21(ℓ1, ℓ2) = A2
3(ℓ1, ℓ2)A

−3
2 (ℓ1, ℓ2) , s2(ℓ1, ℓ2) = A4(ℓ1, ℓ2)A

−2
2 (ℓ1, ℓ2),

σχ(ℓ1, ℓ2) =
√
2

s1(ℓ1,ℓ2)−
√
s21(ℓ1,ℓ2)−s2(ℓ1,ℓ2)

, σq(ℓ1, ℓ2) =

√
2
∑ℓ2

j=ℓ1

[
(ϵj − 1)2 + 2

∆µ2j

λ
(2)
j

ϵj

]
,

Dq(ℓ1, ℓ2) =
µχ(ℓ1,ℓ2)

σχ(ℓ1,ℓ2)
σq(ℓ1, ℓ2)−µq(ℓ1, ℓ2), Uq(ℓ1, ℓ2) =

√
s21(ℓ1,ℓ2)−s2(ℓ1,ℓ2)

(s1(ℓ1,ℓ2)−
√
s21(ℓ1,ℓ2)−s2(ℓ1,ℓ2))3

, γ(ℓ1, ℓ2) =

s1(ℓ1,ℓ2)−3
√
s21(ℓ1,ℓ2)−s2(ℓ1,ℓ2)

(s1(ℓ1,ℓ2)−
√
s21(ℓ1,ℓ2)−s2(ℓ1,ℓ2))3

I(s1(ℓ1, ℓ2)2 > s2(ℓ1, ℓ2)) + s−2
1 (ℓ1, ℓ2))I(s21(ℓ1, ℓ2) ≤ s2(ℓ1, ℓ2)).

Define a particular parameter space for {λj}Jj=1,

BJ =

{
{λj}Jj=1 : R3,ℓ1 exp

{
−Uq(3, ℓ1)−

∑ℓ1
j=3 λj

2

}
> c−1

0 , ℓ1 < J∗/2,

ℓ2 − ℓ1, ℓ3 − ℓ2 ≥ J∗/2} ,

163

where Rℓ1,ℓ2 =
σχ(ℓ1,ℓ2)σ

−1
q (ℓ1,ℓ2)

2γ(ℓ1,ℓ2)/2−1Γ(γ(ℓ1,ℓ2)/2−1)
, Hℓ1,ℓ2 = Uq(ℓ1, ℓ2) + σχ(ℓ1, ℓ2)σq(ℓ1, ℓ2)

−1(Dq(ℓ1, ℓ2)

+
∑ℓ2

j=ℓ1
λj) and

c0 = inf
3≤ℓ1,ℓ2,ℓ3≤J

Rℓ1,ℓ2Rℓ2,ℓ3 exp

{
−Hℓ1,ℓ2 −Hℓ2,ℓ3 − σχ(ℓ2, ℓ3)σ

−1
q (ℓ2, ℓ3)(

∑ℓ3
j=ℓ2

λj + 1)

2

}
(C10)

is a constant. Let ej be the vector with j-th element 1 and 0 otherwise. Let Ej be the diagonal

matrix with j-th diagonal element 1 and 0 otherwise. Let τ1, τ̃1, τ̃2 be some constants small

enough, which are specified later. For any J > 4J∗, we consider the parameter space

Θu =
{
θu = (τ1e1 + τ̃1e2,−τ1e1 − τ̃1e2,Σ

u
1 ,Σ2) : Σ2 = diag (λ1, . . . , λJ) , {λj}1≤j≤J ∈ BJ ,

(Σu
1)

−1 = Σ−1
2 + τ2

√
log n

n

J−1∑
j=3

ujEj + τ̃2EJ ,u = (u1, . . . , uJ) ∈ AJ,J∗

}
,

where AJ,J∗ is defined in Lemma C.9. Thus, we have Θu ⊆ Θ.

We first calculate KL divergence between two distributions for u and u′. By Lemma C.9,

we have

KL(Pθu , Pθu′
) =

1

2

{
log

|Σu′
1 |

|Σu
1 |

− J + tr

((
Σu′

1

)−1

Σu
1

)}
≤ 1

4

J−1∑
j=3

{
τ 22

log n

n
(uj − u′j)

2 + o

(
log n

n

)}
≤ τ 22

2

J∗ log n

n
+ o

(
J∗ log n

n

)
≤ α

logN

n
.

We choose some constant τ2 such that α ∈ (0, 1/8). By Lemmas C.7 and C.8, given any

classifier Ĝ in the considered parameter space Θu, we have

[
Rθ(Ĝ)−Rθ(G

∗
θu)
]
+
[
Rθ(Ĝ)−Rθ(G

∗
θu′

)
]
≥ 1

2

Lθ(G
∗
θu′

)−

√
KL

(
Pθu , Pθu′

)
2

2

.

164

Since KL(Pθu , Pθu′
) ≤ τ22

2
J∗ logn

n
, it’s sufficient to show that Lθ(G

∗
θu′

) ≥ c
√

J∗ logn
n

for some

c > τ2/2. Now, we need to calculate

(z − µ1)
⊤Du(z − µ1)− 2δ⊤Ωu

2(z − µ̄)− log(|Σu
1 |/|Σ2|)

= −τ2

√
log n

n

J−1∑
j=3

ujz
2
j +

4τ1
λ1
z1 +

4τ̃1
λ2
z2 − τ̃2z

2
J + log (1 + λJ τ̃2)

+
J−1∑
j=3

log

(
1 + λjτ2

√
log n

n
uj

)

= −τ2

√
log n

n

J−1∑
j=3

uj(z
2
j − λj) +

4τ1
λ1
z1 +

4τ̃1
λ2
z2 − τ̃2(z

2
J − λJ)−

1

2
τ̃ 22λ

2
J

−1

2

J−1∑
j=3

λ2jτ
2
2

log n

n
uj + o

(
log n

n

)

= −τ2

√
log n

n

J−1∑
j=3

uj(z
2
j − λj) +

4τ1
λ1
z1 +

4τ̃1
λ2
z2 − τ̃2(z

2
J − λJ)−

1

2
τ̃ 22λ

2
J

+O

(
τ 22
J∗ log n

n

)
+ o

(
J∗ log n

n

)
.

Without loss of generality, we assume that z ∼ N (µ1,Σ1) and uj = u′j = 1 when i =

3, . . . ,m1, uj = 1 − u′j = 1 when j = m1 + 1, . . . ,m2, uj = 1 − u′j = 0 when j =

m2+1, . . . ,m3 and uj = u′j = 0 when j = m3+1, . . . , J−1. Then for G∗
θu

, we have decision

function

Qu(z) = −τ2

√
log n

n

(
m1∑
j=3

(z2j − λj) +

m2∑
j=m1+1

(z2j − λj)

)
+

4τ1
λ1
z1

+
4τ̃1
λ2
z2 − τ̃2(z

2
J − λJ)−

1

2
τ̃ 22λ

2
J +O

(
τ 22
J∗ log n

n

)
+ o

(
J∗ log n

n

)
,

and for G∗
θu′

, we have decision function

Qu′(z) = −τ2

√
log n

n

[
m1∑
j=3

(z2j − λj) +

m3∑
j=m2+1

(z2j − λj)

]
+

4τ1
λ1
z1

+
4τ̃1
λ2
z2 − τ̃2(z

2
J − λJ)−

1

2
τ̃ 22λ

2
J +O

(
τ 22
J∗ log n

n

)
+ o

(
J∗ log n

n

)
.

165

Let T1 = −τ2
√

logn
n

∑m1

j=3(z
2
j − λj) +

4τ1
λ1
z1 +

4τ̃1
λ2
z2 − τ̃2(z

2
J − λJ)− 1

2
τ̃ 22λ

2
J + O

(
τ 22

J∗ logn
n

)
,

T2 = −τ2
√

logn
n

∑m2

j=m1+1(z
2
j − λj), T3 = −τ2

√
logn
n

∑m3

j=m2+1(z
2
j − λj), then

{
G∗

θu ̸= G∗
θu′

}
=

{
T3 + o

(
J∗ log n

n

)
< T1 ≤ T2 + o

(
J∗ log n

n

)
,

T2 + o

(
J∗ log n

n

)
< T1 ≤ T3 + o

(
J∗ log n

n

)}
.

Thus, Lθ(G
∗
θu′

) ≥ 1
2
Pz∼N (µ1,Σ2) (T2 < T1 ≤ T3) + o

(
J∗ logn

n

)
.

Notice that Ezj = 0 and Ez2j = λj for all j ≥ 3. Since
∑m2

j=m1+1 z
2
j =

∑m2

j=m1+1 λjh
2
j and∑m3

j=m2+1 z
2
j =

∑m3

j=m2+1 λjh
2
j , where hj ∼ N (0, 1), following the same procedure in the proof

of Lemma C.14, we have A′
k =

∑m2

j=m1+1 λ
k
j , µ′

q =
∑m2

j=m1+1 λj and σ′
q =

√
2
∑m2

j=m1+1 λ
2
j ,

which are all constants. Without loss of generality, we have s21 > s2. Using the lower bound of

probability density, with constants σχ/σq, Dq and Uq, we have

E

[
(T3 − T2)I

{
−τ2

√
J∗ log n

n
≤ T2 < T3 < τ2

√
J∗ log n

n

}]

≥ E

[
(T3 − T2)I

{
−τ2

√
J∗ log n

n
≤ T2 < 0, 0 < T3 < τ2

√
J∗ log n

n

}]

≥ 2τ2

√
J∗ log n

n
P

(
−τ2

√
J∗ log n

n
≤ T2 < 0

)
P

(
0 < T3 < τ2

√
J∗ log n

n

)

= 2τ2

√
J∗ log n

n
P

(
m2∑

j=m1+1

λj ≤
m2∑

j=m1+1

z2j <
√
J∗ +

m2∑
j=m1+1

λj

)

×P

((
−
√
J∗ +

m3∑
j=m2+1

λj

)
∨ 0 <

m3∑
j=m2+1

z2j <

m3∑
j=m2+1

λj

)

≥ 2τ2

√
J∗ log n

n
P

(
m2∑

j=m1+1

λj ≤
m2∑

j=m1+1

z2j < 1 +

m2∑
j=m1+1

λj

)

×P

((
−1 +

m3∑
j=m2+1

λj

)
∨ 0 <

m3∑
j=m2+1

z2j <

m3∑
j=m2+1

λj

)

≥ 2c0τ2

√
J∗ log n

n
.

166

Similar as T2 and T3, the density function for T ∗
1 = −τ2

√
logn
n

∑m1

j=3(z
2
j − λj) has the lower

bound

−τ2

√
log n

n

σχ

2
γ
2 σqΓ(γ/2− 1)

exp

τ2
√

logn
n
Kq − Uq −

∑m1

j=3 λj

2

 ,

and 4τ1
λ1
z1 ∼ N

(
4τ21
λ1
,
16τ21
λ1

)
, 4τ̃1
λ2
z2 ∼ N

(
4τ̃21
λ2
,
16τ̃21
λ2

)
. Since λJ is decreasing with J , −τ̃2(z2J −

λJ)− 1
2
τ̃ 22λ

2
J = op(1) and O

(
τ 22

J∗ logn
n

)
= o

(
J∗ logn

n

)
when τ̃2 and τ2 are sufficiently small, T1

is the sum of T ∗
1 and it is a normal random variable. By simple calculation, we have

fT1(t) ≥ c1c2 exp

[
−τ2

√
log n

n

σχ
σq

{
t−
(
12τ 21
λ1

+
12τ̃ 21
λ2

)
−Dq

}]
,

where c1 =
σχσ

−1
q

2
γ
2 Γ(γ/2−1)

and c2 = exp
(

−Uq−
∑m1

j=3 λj

2

)
. When |t| < τ2

√
J∗ logn

n
, and τ̃2 is suffi-

ciently small, we have

inf
t:|t|<τ2

√
J∗ logn

n

f(t)

≥ c1c2 exp

{
−τ 22

log n

n

σχ
σq

√
J∗ − τ2

√
log n

n

σχ
σq

(
12τ 21
λ1

+
12τ̃ 21
λ2

)
− τ2

√
log n

n

σχ
σq
Dq

}
≥ c1c2Cn (τ1, τ̃1, τ2) .

When n → ∞ and τ1, τ̃1, τ2 → 0, Cn (τ1, τ̃1, τ2) → 1, and given parameter space Θu, we have

2c1c2 ≥ c−1
0 , where c0 is given in (C10). Note that

Pz∼N (µ1,Σ2) (T2 < T1 ≤ T3)

≥ Pz∼N (µ1,Σ2)

(
T2 < T1 ≤ T3,−τ2

√
J∗ log n

n
≤ T2 < T3 < τ2

√
J∗ log n

n

)

= ET2

[
I

{
−
√
J∗ log n

n
≤ T2 < T3 < τ2

√
J∗ log n

n

}∫ T3

T2

fT1(t)dt

]

≥ 1

2c0
E

[
(T3 − T2)I

{
−τ2

√
J∗ log n

n
≤ T2 < T3 < τ2

√
J log n

n

}]

≥ c0
2c0

τ2

√
J∗ log n

n
=
τ2
2

√
J∗ log n

n
.

167

Finally, by Lemma C.8, we can conclude that for any J > 4J∗,

inf
Ĝ

sup
θ∈Θ

E
[
Rθ(Ĝ)−Rθ(G

∗
θ)
]
≳
J∗ log n

n
.

C.5 Proof of Theorem 4.3

Proof. The proof can be easily derived from Lemma C.16 and the proof of Lemma C.12 and

Theorem 4.1, thus it is omitted.

C.6 Proof of Theorem 4.4

Proof. The proof can be easily derived from the proof of Lemma C.12 and Theorem 4.2, thus

it is omitted.

C.7 Proof of Proposition 4.2

Proof. Consider the parameter space Θ∗(c, d, α), such that
∑∞

j=M+1 µ
2
j ≍ (2c′ − 1)−1M1−2c′

and
∑∞

j=M+1 λj ≍ (d′ − 1)−1M1−d′ . Thus we have

∥µ̂J − µJ∥2 ≲
√

log n

n
+
√
J(2c− 1)−1M1−2c,

with probability at least 1−O(1/n), and

∥Σ̂−Σ∥2 ≲

√
log n

n
+

√
log n

n

1√
M

√√√√ ∞∑
j=M+1

λj +

(
1 +

√
log n

n

)
∞∑

j=M+1

λj

≍
√

log n

n
+

∞∑
j=M+1

λj ≍
√

log n

n
+ (d− 1)−1M1−d,

with probability at least 1 − 3/n. Hence, the result can be easily derived from the proof of

Lemma C.12 and Proposition 4.1, thus it is omitted.

168

Appendix D

Functional Classification via Deep Neural Networks

D.1 Proofs of Theorem 5.1

D.1.1 Preliminary

For any M > 0, we define ϵ = maxuM
−β∗

u for simplicity. The following lemma provides an

error bound for excess risk.

LEMMA D.17. There exists an f̃ ∈ F(L, J,p, B) and G̃ = sign(f̃) satisfying

sup
h∈H

E
[
Rh(G̃)−Rh(G

∗
J)
]
≲ ϵα+1 + ϵϵ(J),

such that L ≲ log2M , ∥p∥∞ ≲ maxu=0,...,q d(u+1)Jtu(M + 1)tu , B ≲ M , where G∗
J is the

Bayes classifier for the first J scores and J0 ≤ J ≲ maxu=0,...,qM
tu .

The following two propositions are implied by Assumption 2.

Proposition D.1. Assumption 2 implies that |E (Q∗ −QJ) | ≲ ϵ(J).

Proposition D.2. (Mild density condition) Assumption 2 implies that P (|Q∗(ξ)| <∞) = 1.

The proofs of Lemma D.17 and two propositions are provided in Appendix B.

D.1.2 Proof of Theorem 5.1 (i)

Let u∗ = argminu=0,...,q
β∗
u(α+1)

β∗
u(α+2)+tu

, β∗ = βu∗ , t∗ = tu∗ , β∗∗ = β∗
u∗ and β̃ =

∏q
k=u∗+1(βk ∧ 1).

Without loss of generality, we assume u∗ is unique.

169

For an integer w ≥ 1, define the regular grid on Rt∗ as

Gw =

{(
2k1 + 1

2w
, . . . ,

2kt∗ + 1

2w

)
: kℓ ∈ {0, . . . , w − 1}, ℓ = 1, . . . , t∗

}
.

Let nw(x) ∈ Gw be the closest point to x ∈ Rt∗ among points in Gw. Let Xℓ, ℓ = 0, . . . ,m be

the partition of Rt∗ defined in the proof of Theorem 4.1 in [7], where m ≤ wt
∗ .

Let p : R+ → R+ be a nonincreasing infinitely differentiable function such that p = 1

on [0, 1/4] and p = 0 on [1/2,∞). For instance, p can be constructed as in [7]: p(x) =(∫ 1/2

1/4
p1(s)ds

)−1 ∫∞
x
p1(t)dt, where

p1(x) =

 exp
{

1
(x−1/4)(x−1/2)

}
, x ∈ (1/4, 1/2),

0, otherwise.

Let hu∗ : Rt∗ → R+ be a function defined as hu∗(x) = w−β∗
Cpp(∥w(x − nw(x))∥), where

Dshu∗(x) = q|s|−β
∗
CpD

sp(∥w(x−nw(x))∥) for any s ∈ Nt∗ such that |s| ≤ ⌈β∗⌉, and Cp is a

constant small enough to ensure hu∗ ∈ Cβ∗ (Rt∗ , K∗) for a constant K∗ > 0. Here, we require

Cp being small so that hu∗ has Lipschitz constant K∗.

In the following, we construct a special composition function based on hu∗ . For −→σ =

(σ1, . . . , σm) ∈ {−1, 1}m, let h(x) =
∑m

j=1 σjhj(x) such that hj(x) = hu∗I (x ∈ Xj). It is

easy to verify that h ∈ Cβ∗ (Rt∗ , 2K∗). Define the following functions

gu(x1, . . . , xdu) = (x1, . . . , xdu), u < u∗,

gu(x1, . . . , xdu) = (h(x1, . . . , xt∗), 0, . . . , 0) , u = u∗,

gu(x1, . . . , xdu) = (xβu∧11 , 0, . . . , 0), u > u∗.

Let J0 be a (relatively) large integer up to O (nc)) for some universal positive constant c. For

z ∈ RJ0 and x ∈ Rt∗ , define zg(z) as the first element of gu∗ ◦ gu∗−1 ◦ . . . ◦ g0(z), and

170

h(x) = zg(z). Let

η−→σ (z) =
1

2
+

1

2
gq ◦ . . . ◦ gu∗+1 ◦ gu∗ ◦ gu∗−1 ◦ . . . ◦ g0(z)

=
1

2
+

1

2

m∑
j=0

σjh
β̃
u∗(x)I (x ∈ Xj) .

For all J ≥ J0, let η(z′) = η−→σ (z), where z′ ∈ RJ and z ∈ RJ0 is the first J0 elements of

z′. It is easy to see that η−→σ ∈ G (q, J0,d, t,β), and Assumption 2 is satisfied for all J ≥ J0.

According to Proposition D.2, Q∗ is finite in probability, and it is equivalent to the mild density

assumption in [7]. Assumption 1 is equivalent to the margin assumption in [7], which can be

justified accordingly. The rest of proof can simply follow the proof of Theorem 4.1 in [7],

where for any generic classifier Ĝ, there exists a universal constant C1, such that

sup
h∈H

E
[
Rh(Ĝ)−Rh(G

∗)
]
≥ sup

h∈H
E
[
Rh(Ĝ)−Rh(G

∗
J0)
]
≥ C1

(
1

n

)S0

.

D.1.3 Proof of Theorem 5.1 (ii)

Proof. Let BM0 = {|ξj| ≤M0 for all j ∈ A}. We first find the minimax upper bound on a

bounded set when ξj ∈ [−M0,M0] for all j ∈ A and M0 > 0. Let the δ in inequality (D9) be

ϵα+1, we have (
ϵα+1

)−maxu
tu

(α+1)β∗u
− (α+2)

α+1 log3(ϵ−1) ≲ n,

which leads to

ϵα+1 ≳

(
log3 n

n

)minu
β∗u(α+1)

β∗u(α+2)+tu

.

Together with Lemma D.28 in Appendix B, the excess risk of the first J scores via DNN

satisfies

sup
h∈H

E
[
Rh(f̃)−Rh(G

∗
J)
]
≲
(
n−1 log3 n

)S0
.

The asymptotic order of L, max0≤ℓ≤L pℓ and B can be simply derived by letting ϵα+1 ≍(
log3 n
n

)minu
β∗u(α+1)

β∗u(α+2)+tu and applying the result in Lemma D.17. Note that the input J satisfies

J ≲ max1≤ℓ≤L pℓ ≲ (n log−3 n)S1 .

171

Next, we approximate the first J scores and the whole process. Since

Rh(G
∗
J)−Rh(G

∗) ≍ P (Q∗ > 0)− P (Q∗
J > 0),

and

P (Q∗ > 0)− P (Q∗
J > 0)

= P (Q∗ > 0)− P (Q∗ > Q∗ −Q∗
J) = P (Q∗ > 0)− E [P (Q∞ > Q∗ −Q∗

J |Q∗ −Q∗
J)]

=

(
1−

∫ 0

−∞
fQ∗(t)dt

)
− E

(
1−

∫ Q∗−Q∗
J

−∞
fQ∗(t)dt

)
= E

(∫ 0

Q∗−Q∗
J

fQ∗(t)dt

)
.

By considering h ∈ H , we have 0 < fQ∗(t) <∞, and

E

(∫ Q∗−Q∗
J

0

fQ∗(t)dt

)
≍ E (Q∗ −Q∗

J) .

Therefore, by Proposition D.1, Rh(G
∗
J)−Rh(G

∗) = O(ϵ(J)).

By Assumption 2 and Assumption 3(b), we have ϵ(J) = O(J−ρ) ≲
(
n−1 log3 n

)S0 .

When ρ > S0/S1, there always exists a constant C ′ and C ′′ , such that C ′(n log−3 n)S0/ρ <

C
′′
(n log−3 n)S1 , and the optimal J exists.

Therefore, for those optimal J’s, we have

sup
h∈H

E
[
Rh(Ĝ

FDNN)−Rh(G
∗)
]
≲

(
log3 n

n

)S0

, under event BM0 .

Finally, we control the minimax upper bound for ξj ∈ R for all j ∈ A. For any h and

M0 > 0, we have

Eh(Ĝ) = Eh(ĜI(BM0)) + Eh(ĜI(BcM0
))

≲

(
log3 n

n

)S0

+ P (BcM0
).

172

It is trivial to see that, for any e > 0, there exists an M > 0, such that

P (BM) = P (|ξj| ≤M for all j ∈ A) ≥ 1− e, (D1)

for all j ∈ A. Therefore, choose P (BcM0
) ≤

(
log3 n
n

)S0

, there exists a corresponding M0, to

make the aforementioned asymptotic inequality hold. Choose some constant C2 which depends

on q,d, t,β, α, C, ϵ(·),Γ(·), the proof is complete.

D.2 Technical lemmas

In this section, we provide technical lemmas with their proofs.

For any J ≥ 1, define regression functions

η∗(ξ) =
h1(ξ)

h1(ξ) + h−1(ξ)
=

1

1 + exp {Q∗(ξ)}

and

η(J) (ξJ) =
1

1 + exp {Q∗
J(ξJ)}

.

The following lemma describes the behavior of η(J) around 1
2

for large J .

LEMMA D.18. Assumption 1 and Assumption 2 imply that for any sufficiently small x > 0 and

J0 ≥ 1,

Pr(|η(J)(ξJ)−
1

2
| ≤ x) ≲ xα + ϵ(J), ∀J ≥ J0. (D2)

Proof. We have the following connections between η∗ and Q∗:

P
(
|η∗(ξ)− 1

2
| ≤ x

)
= P

(∣∣∣∣ h1(ξ)

h1(ξ) + h−1(ξ)
− 1

2

∣∣∣∣ ≤ x

)
= P

(∣∣∣∣1− e−Q
∗

1 + e−Q∗

∣∣∣∣ ≤ 2x

)
= P

(
1− 2x

1 + 2x
≤ e−Q

∗ ≤ 1 + 2x

1− 2x

)
≍ P(−4x ≤ Q∗ ≤ 4x), (D3)

173

where the last step is obtained by log
(
1−2x
1+2x

)
≍ −4x and log

(
1+2x
1−2x

)
≍ 4x when x = o(1). It

also holds for η(J) and Q∗
J for any J ≥ 1. The intermediate steps indicate that the equivalence

between Assumption 1 and the concentration of η∗.

For any J ≥ J0, we have

P(−4x ≤ Q∗
J ≤ 4x) = P(−4x+Q∗ −Q∗

J ≤ Q∗ ≤ 4x+Q∗ −Q∗
J)

≤ P(−4x− |Q∗ −Q∗
J | ≤ Q∗ ≤ 4x+ |Q∗ −Q∗

J |)

= P(−4x− |Q∗ −Q∗
J | ≤ Q∗ ≤ 4x+ |Q∗ −Q∗

J |, |Q∗ −Q∗
J | ≤ 4x)

+P(−4x− |Q∗ −Q∗
J | ≤ Q∗ ≤ 4x+ |Q∗ −Q∗

J |, |Q∗ −Q∗
J | > 4x)

≤ P(−8x ≤ Q∗ ≤ 8x) + P(|Q∗ −Q∗
J | > 4x)

≤ C(8x)α + ϵ(J)Γ(4x),

where the last step is obtained owing to Equation (D3) and Assumptions 2. Since Γ(·) is

bounded, the proof is complete.

In the following, we demonstrate the construction of the fully connected neural networks.

LEMMA D.19. For any m > 0, there exists a network

Multm ∈ F(2m+ 2, (2, 12, 12, . . . , 12, 1), 1),

such that for all x, y ∈ [0, 1]

|Multm(x, y)− xy| ≤ 4−m+1, (D4)

where Multm(x, y) ∈ [0, 1].

The next lemma designs a network which can approximate all monomials up to a certain

degree. Denote α = (α1, . . . , αr) and xα = xα1
1 . . . xαr

r . Let (xα)|α|<β be the vector of all

monomials up to degree ⌈β⌉ − 1, where β > 0, |α| = α1 + . . .+ αr. Let Cr,β be the length of

(xα)|α|<β . Note that Cr,β ≤ (β + 1)r.

174

LEMMA D.20. For β > 0 and any positive integer m and r, there exists a network Monrm,β :

[0, 1]r → [0, 1]Cr,β , such that

Monrm,β ∈ F ((m+ 5)⌈log2(β ∨ 1)⌉, (r, 24⌈β⌉Cr,β, . . . , 24⌈β⌉Cr,β, Cr,β), 1) ,

and

|Monrm,β(x)− (xα)|α|<β| ≤ |α|24−m+1,

for all x ∈ [0, 1]r.

Proof. We first investigate the sub-network for any fixed degree |α|. When |α| ≤ 1, it is trivial

since the monomials are either linear functions or constants, and we can obtain the network

F(1, (1, 1, 1), 1).

When |α| ≥ 2, we design the network Mult
|α|
m by the following.

1. We construct the first hidden layer as

(x1, x2, . . . , xr) 7→ (x1, . . . , x1︸ ︷︷ ︸
α1

, x2, . . . , x2︸ ︷︷ ︸
α2

, . . . , xr, . . . , xr︸ ︷︷ ︸
αr

),

This layer requires |α| number of neurons, since all inputs are non-negative.

2. From the second hidden layer, we apply the network described in Lemma D.19 for each

adjacent pair of the first hidden layer, which computes

(xℓ, xℓ′) 7→Multm(xℓ, xℓ′), 0 ≤ ℓ, ℓ′ ≤ |α|.

After 2m + 2 layers, with each layer at most 12⌈|α|/2⌉ number of nodes, we have the

the (2m+ 3)-th hidden layer with nodes

(Multm(x1, xℓ), . . . ,Multm(xℓ′ , xr)), ℓ ∈ {1, 2} , ℓ′ ∈ {r − 1, r} .

3. Repeat Step 2, until the number of output is one. Denote this resulting network as

Mult
|α|
m . The number of repitition is ⌈log2 |α|⌉.

175

By dichotomy, the total number of hidden layers of Mult
|α|
m is (m + 5)⌈log2 |α|⌉, with

width vector at most (r, 24|α|, 24|α|, . . . , 24|α|, 1).

The approximation error can be obtained by mathematical deduction. For any y1, y2 ∈

{Multm(·, ·) :Multmas described in Lemma D.19} and z1, z2 ∈ [0, 1], we have

|Multm(y1, y2)− z1z2| ≤ |Multm(y1, y2)− y1y2|+ |y1 − z1|+ |y2 − z2|

≤ 4−m+1 + (4−m+1 + . . .︸ ︷︷ ︸
three terms

) + (4−m+1 + . . .︸ ︷︷ ︸
three terms

)

. . .

≤
(
2⌈log2 |α|⌉ − 1

)
4−m+1.

Let q = 2⌈log2 |α|⌉, then log2(q − 1) ≤ log2 |α| ≤ log2 q, which leads to

⌈log2 |α|⌉ ≤ log2(q − 1) + log2 |α| ≤ log2 |α|2,

where |α| ≥ 2. Therefore, we have |Mult
|α|
m (x)− xα| ≤ |α|24−m+1.

Next, we stack all the parallel networks for all |α|, and embed these networks into one.

Denote this network as Monrm,β , then

|Monrm,β(x)− (xα)|α|<β|∞ ≤ sup
|α|<β

|α|24−m+1 ≤ β24−m+1.

The number of hidden layer is taken to be sup|α|<β(m+5)⌈log2 |α|⌉ = (m+5)⌈log2(β ∨ 1)⌉,

the width vector is taken accordingly as

(r, 24⌈β⌉Cr,β, 24⌈β⌉Cr,β, . . . , 24⌈β⌉Cr,β, Cr,β),

and all weights are bounded by one.

Define the polynomial approximation of f(x) at x0 up to β as

P β
x0
f(x) =

∑
0≤|α|<β

(∂αf)(x0)
(x− x0)

α

α!
, (D5)

176

where x0 ∈ [0, 1]r. Let D(M) = {aℓ = (ℓk/M)k=1,...,r} be the set of evenly spaced M + 1

grid points. Define

P βf(x) =
∑

aℓ∈D(M)

r∏
k=1

(1−M |xk − ℓk/M |)+P β
ak
f(x), (D6)

where
∑

aℓ∈D(M)

∏r
k=1(1−M |xk − ℓk/M |)+ = 1.

The following lemma provides the error bound for a function and its taylor approximation

on M + 1 grid points.

LEMMA D.21. If f ∈ Cβ ([0, 1]r , K), then ∥P βf − f∥∞ ≤ KM−β .

Proof. For any x ∈ [0, 1]r, we have

|P βf(x)− f(x)|

= |
∑

aℓ∈D(M)

r∏
k=1

(1−M |xk − ℓk/M |)+(P β
aℓ
f(x)− f(x))|

≤
∑

aℓ∈D(M)

r∏
k=1

(1−M |xk − ℓk/M |)+|P β
aℓ
f(x)− f(x)|

=
∑

∥x−aℓ∥∞<M−1

r∏
k=1

(1−M |xk − ℓk/M |)+|P β
aℓ
f(x)− f(x)|

≤
∑

∥x−aℓ∥∞<M−1

r∏
k=1

(1−M |xk − ℓk/M |)+(K∥x− aℓ∥β∞)

< KM−β
∑

∥x−aℓ∥∞<M−1

r∏
k=1

(1−M |xk − ℓk/M |)+

= KM−β, (D7)

where we use the fact that

|P β
aℓ
f(x)− f(x)| ≤

∑
β−1≤|α|<β

|(x− aℓ)
α|

α!
|(∂αf)(aℓ + ζ(x− aℓ))− (∂αf)(aℓ)|

≤ K∥x− aℓ∥β∞

for some ζ > 0. Since (D7) holds for all x ∈ [0, 1]r, the proof is complete.

177

The following lemma provides the approximation of
(
P β
aℓ
f(x)

)
aℓ∈D(M)

.

LEMMA D.22. For β > 0 and any positive integers m, M and r, there exists a network u1 :

[0, 1]r → [−Ker, Ker](M+1)r , such that

u1 ∈ F ((m+ 5)⌈log2(β ∨ 1)⌉, (r, 24⌈β⌉Cr,β, . . . , 24⌈β⌉Cr,β, 2Cr,β), 2Ker) ,

and ∥∥∥u1(x)− (P β
aℓ
f(x)

)
aℓ∈D(M)

∥∥∥
∞

≤ 2Kerβ24−m+1,

for all x ∈ [0, 1]r.

Proof. We first write P β
aℓ
f(x) as the standard polynomial form. By Equation (D5), we have

P β
aℓ
f(x) =

∑
0≤|α|<β

b(α)xα,

where the coefficients satisfy |b(α)| ≤ K/α! and
∑

0≤|α|<β |b(α)| ≤ Ker [92]. Therefore,

P β
aℓ
f(x) ∈ [−Ker, Ker], and 1

2Ker
P β
aℓ
f(x) + 1

2
∈ [0, 1]. According to Lemma D.20, there

exists a network

u′1 ∈ F ((m+ 5)⌈log2(β ∨ 1)⌉, (r, 24⌈β⌉Cr,β, . . . , 24⌈β⌉Cr,β, Cr,β), 1) ,

such that
∥∥∥u′1 − (1

2Ker
P β
aℓ
f(x) + 1

2

)
aℓ∈D(M)

∥∥∥
∞

≤ β24−m+1. We can construct u1 = 2Keru′1−

Ker by setting the maximal weights as Ker and add one more shift term for the last hidden

layer. Then, it follows that

u1 ∈ F ((m+ 5)⌈log2(β ∨ 1)⌉, (r, 24⌈β⌉Cr,β, . . . , 24⌈β⌉Cr,β, 2Cr,β), 2Ker) .

The following lemma provides the approximation of
∏r

k=1(1−M |xk−ℓk/M |)+ by neural

networks.

178

LEMMA D.23. For any positive integers m, M and r, there exists a network Prodrm : [0, 1]r →

[0, 1], such that

Prodrm ∈ F (2 + (m+ 5)⌈log2 r⌉, (r, 24r, 24r, . . . , 24r, 1),M) ,

and ∣∣∣∣∣Prodrm(x)−
r∏

k=1

(1−M |xk − ℓk/M |)+

∣∣∣∣∣ ≤ r24−m+1,

for all x ∈ [0, 1]r.

Proof. We first construct the network for individual k-th term (1 − M |xk − ℓk/M |)+. In

fact, for any integers M > 0 and non-negative integer k ≤ M , there exists a network sk ∈

F(3, (1, 2, 2, 1),M), such that

sk(x) = (1−M |xk − ℓk/M |)+ for all x ∈ [0, 1] .

To see this, we let the first hidden layer computes M(xk − ℓk/M) and M(ℓk/M − xk), the

second layer computes 1 − (M(xk − ℓk/M))+ and −(M(ℓk/M − xk))+, and the output is

(1− (M(xk − ℓk/M))+ − (M(ℓk/M − xk))+)+.

Next, we use the same procedures discussed in the proof of Lemma D.20 and let sk be

the inputs, then build the network by Lemma D.19. Since α1 = . . . = αr = 1, the total

number of hidden layers of the network Multrm(x) is (m + 5)⌈log2 r⌉, with width vector at

most (r, 24r, 24r, . . . , 24r, 1). The error bound is |Multrm(s) − sα| ≤ r24−m+1, where s =

(s1, . . . , sr). We combine the networks and the proof is complete.

Let Bβ,r = ((β + 1)r⌈β⌉+ (M + 1)rr). The next Lemma gives the full approximation of

P βf .

LEMMA D.24. For any positive integers m, M and r, there exists a network f̃ : [0, 1]r →

[−Ker, Ker], such that

f̃ ∈ F (2(m+ 5)(1 + ⌈log2 β ∨ r⌉), (r, 24Bβ,r, . . . , 24Bβ,r, 1), Ke
r ∨M) ,

179

and

|f̃(x)− P βf | ≤ (2K + 1)(2e)r(1 + β2 + r2)4−m+1,

for all x ∈ [0, 1]r.

Proof. By Lemma D.22, we have network u1, with (M + 1)r number of output entries, and

denote the ℓ-th output entry as Qℓ. By Lemma D.23, we have Prodrm for each ℓk/M , in total

(M + 1)r number of such networks for all points in D(M), and denote the ℓ-th output entry

as Prodℓ. Then we pair Qℓ and Prodℓ for all ℓ = 1, . . . , (M + 1)r, and apply Mult(·, ·) as

discussed in Lemma D.19. Finally we add all Mult(Qℓ, P rodℓ) and get the one entry output.

The approximation error is given by

∣∣∣∣∣∣
∑

aℓ∈D(M)

Mult(Qℓ, P rodℓ)− P βf

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

aℓ∈D(M)

Mult(Qℓ, P rodℓ)−
∑

aℓ∈D(M)

r∏
k=1

(1−M |xk − ℓk/M |)+P β
ak
f(x)

∣∣∣∣∣∣
≤

∑
aℓ∈D(M)

∣∣∣∣∣Mult(Qℓ, P rodℓ)−
r∏

k=1

(1−M |xk − ℓk/M |)+P β
ak
f(x)

∣∣∣∣∣
≤

∑
aℓ∈D(M)

|Mult(Qℓ, P rodℓ)−QℓProdℓ|+
∑

aℓ∈D(M)

∣∣QℓProdℓ − ProdℓP
β
ak
f(x)

∣∣
+

∑
aℓ∈D(M)

∣∣∣∣∣ProdℓP β
ak
f(x)−

r∏
k=1

(1−M |xk − ℓk/M |)+P β
ak
f(x)

∣∣∣∣∣
≤ (M + 1)r4−m+1 + (M + 1)r sup

ℓ

∣∣Qℓ − P β
ak
f(x)

∣∣
+∥P β

ak
f(x)∥∞(M + 1)r sup

ℓ

∣∣∣∣∣Prodℓ −
r∏

k=1

(1−M |xk − ℓk/M |)+

∣∣∣∣∣
≤ (M + 1)r

(
4−m+1 + 2Kerβ24−m+1 +Kerr24−m+1

)
≤ (2K + 1)(2e)r(1 + β2 + r2)4−m+1.

Totally, the number of hidden layers should be no more than

{2 + (m+ 5)⌈log2 r⌉} ∨ {(m+ 5)⌈log2(β ∨ 1)⌉}+ (2m+ 2) + 1,

180

and the width vector is no wider than

(r, 24 ((β + 1)r⌈β⌉+ (M + 1)rr) , . . . , 24 ((β + 1)r⌈β⌉+ (M + 1)rr) , 1),

where we use the fact that Cr,β ≤ (β + 1)r. Since all weights are bounded by 2Ker ∨M , the

proof is complete.

The following lemma provides the approximation of Hölder functions in Cβr ([a, b]
r , K)

via networks.

LEMMA D.25. For any g ∈ Cβ([a, b]r , K), any positive integers m and M , there exists a

network such that

g̃ ∈ F (2(m+ 5)(1 + ⌈log2 β ∨ r⌉), (r, 24Bβ,r, . . . , 24Bβ,r, 1), K
∗er ∨M) ,

and

|g̃(x)− g(x)| ≤ (2K∗ + 1)(2e)r(1 + β2 + r2)4−m+1 +K∗M−β,

for all x ∈ [a, b]r, where K∗ = K
{
(b− a)⌊β⌋ ∨ 1

}
.

Proof. For any x ∈ [a, b]r, define g(x) = h
(
x−a
b−a

)
. Since g ∈ Cβ([a, b]r , K), it’s easy to verify

that h ∈ Cβ([0, 1]r , K(b− a)⌊β⌋). According to Lemma D.21 and Lemma D.24, there exists a

network h̃, which belongs to

F
(
2(m+ 5)(1 + ⌈log2 β ∨ r⌉), (r, 24Bβ,r, . . . , 24Bβ,r, 1), K(b− a)⌊β⌋er ∨M

)
,

and

|h̃(t)− h(t)| ≤ (2K(b− a)⌊β⌋ + 1)(2e)r(1 + β2 + r2)4−m+1 +K(b− a)⌊β⌋M−β,

for all t ∈ [0, 1]r. When g̃(x) = h̃
(
x−a
b−a

)
, the proof is complete.

The next lemma provides the error bound of approximating f = gq◦. . .◦g0 by g̃q◦. . .◦g̃0.

181

LEMMA D.26. For any gu = (guv)v=1,...,du+1 , u = 1, . . . , q, such that guv ∈ Cβu([au, bu]tu , Ku)

for all v, f = gq ◦ . . . ◦ g0 satisfies

∥f − g̃q ◦ . . . ◦ g̃0∥L∞[a0,b0]
d0 ≤

q∏
u=1

(Ku ∨ 1)

q∑
u=0

∥|gu − g̃u|∞∥
∏q

w=u+1 βw∧1
L∞[au,bu]

du ,

where g̃u are the estimates of gu.

Proof. We use mathematical deduction to prove the result.

When q = 1, we have

|g1 ◦ g0(x)− g̃1 ◦ g̃0(x)|

≤ |g1 ◦ g0(x)− g1 ◦ g̃0(x)|+ |g1 ◦ g̃0(x)− g̃1 ◦ g̃0(x)|

≤ K1|g0(x)− g̃0(x)|β1∧1∞ + ∥|g1 − g̃1|∞∥L∞[a1,b1]
d1

≤ K1∥|g0 − g̃0|∞∥β1∧1
L∞[a0,b0]

d0
+ ∥|g1 − g̃1|∞∥L∞[a1,b1]

d1

≤ (K1 ∨ 1)
{
∥|g0 − g̃0|∞∥β1∧1

L∞[a0,b0]
d0
+ ∥|g1 − g̃1|∞∥L∞[a1,b1]

d1

}
=

q∏
u=1

(Ku ∨ 1)

q∑
u=0

∥|gu − g̃u|∞∥
∏q

w=u+1 βw∧1
L∞[au,bu]

du .

If for q = q∗, such that

|gq∗(x) ◦ . . . ◦ g0(x)− g̃q∗(x) ◦ . . . ◦ g̃0(x)|

≤
q∗∏
u=1

(Ku ∨ 1)

q∗∑
u=0

∥|gu − g̃u|∞∥
∏q∗

w=u+1 βw∧1
L∞[au,bu]

du ,

182

then for q = q∗ + 1, we have

|gq∗+1(x) ◦ . . . ◦ g0(x)− g̃q∗+1(x) ◦ . . . ◦ g̃0(x)|

≤ |gq∗+1(x) ◦ gq∗(x) . . . ◦ g0(x)− gq∗+1(x) ◦ g̃q∗(x) . . . ◦ g̃0(x)|

+|gq∗+1(x) ◦ g̃q∗(x) . . . ◦ g̃0(x)− g̃q∗+1(x) ◦ g̃q∗(x) . . . ◦ g̃0(x)|

≤ Kq∗+1|gq∗(x) ◦ . . . ◦ g0(x)− g̃q∗(x) ◦ . . . ◦ g̃0(x)|βq∗+1∧1

+∥|gq∗+1 − g̃q∗+1|∞∥
L∞[aq∗+1,bq∗+1]

dq∗+1

≤
q∗+1∏
u=1

(Ku ∨ 1)

[
q∗∑
u=0

∥|gu − g̃u|∞∥
∏q∗

w=u+1 βw∧1
L∞[au,bu]

du

]βq∗+1∧1

+∥|gq∗+1 − g̃q∗+1|∞∥
L∞[aq∗+1,bq∗+1]

dq∗+1

≤
q∗+1∏
u=1

(Ku ∨ 1)

q∗∑
u=0

∥|gu − g̃u|∞∥
∏q∗+1

w=u+1 βw∧1
L∞[au,bu]

du

+∥|gq∗+1 − g̃q∗+1|∞∥
L∞[aq∗+1,bq∗+1]

dq∗+1

=

q∗+1∏
u=1

(Ku ∨ 1)

q∗+1∑
u=0

∥|gu − g̃u|∞∥
∏q∗+1

w=u+1 βw∧1
L∞[au,bu]

du .

The proof is complete.

For any u = 0, . . . , q, define β∗
u = βu

∏q
w=u+1 βw ∧ 1.

In the following, we will consider the local properties of the aforementioned function class

G. With a little abuse of notation, define the local version function class G(q, J,d, t,β,K): let

G(q, J,d, t,β,K) be the class of functions of the form

g(x) = gq ◦ · · · ◦ g0(x), ∀x ∈ [a0, b0]
d0 , (D8)

where for any constants a0, b0 ∈ R, there exists a1, . . . , aq+1, b1, . . . , bq+1, K0, . . . , Kq, such

that gu = (gu1, . . . , gudu+1) : [au, bu]
du → [au+1, bu+1]

du+1 , with guv ∈ Cβutu
(
[au, bu]

tu , Ku

)
being βu-Hölder functions of radius Ku involving only tu(≤ du) variables. Define the set

of the effective inputs: A = {j : ξj is effective for g0v for all v = 1, . . . , d1}, such that |A| ≤

t0d1 <∞. Owing to finite |A| , it is straightforward to verify the following lemma:

The following lemma provides the network approximation of G (q, J,d, t,β, K).

183

LEMMA D.27. For any f ∈ G (q, J,d, t,β, K) and any sufficiently large positive integer

M , there exists a fully connected network f̃ ∈ F (L(M),p(M), B(M)) satisfying L(M) ≲

log2M , ∥p(M)∥∞ ≲ maxu=0,...,q du+1tu(M + 1)tu , B(M) ≲M , such that

∥f̃(x)− f(x)∥∞ ≤ C∗max
u

M−β∗
u ,

where C∗ is some constant depending on function class G (q,d, t,β, K).

Proof. We first apply Lemma D.25 to each guv. Let mu = ⌈βu
2
log2(C

−1/βu
u M)⌉, where Cu =

K∗
u

8(K∗
u+1)(2e)tu (1+βu+t2u)

, then for any positive integer M , there exists a network such that

g̃u ∈ F
(
2(mu + 5)(1 + ⌈log2 βu ∨ tu⌉), (tu, 24Bβu,tu , . . . , 24Bβu,tu , 1), K

∗
ue
tu ∨M

)
,

and

|g̃u(x)− gu(x)| ≤ K∗
uM

−βu ,

for all x ∈ [au, bu]
tu , where K∗

u = Ku

{
(bu − au)

⌊βu⌋ ∨ 1
}

. We add two more layers to cal-

culate g̃∗u = ((bu+1 − au+1)− (bu+1 − g̃u)+)+ + au+1, which confines the range of outputs.

Therefore, we have du+1 parallel networks for any fixed u, which can be embedded in

F
(
Lu, (du, 24du+1Bβu,tu , . . . , 24du+1Bβu,tu , 1), K

∗∗
u e

tu ∨M
)
,

where Lu = 2(mu+5)(1+ ⌈log2 βu ∨ tu⌉)+ 2, K∗∗
u = (Ku ∨Ku+1)

{
(bu − au)

⌊βu⌋ ∨ 1
}

. The

described network g̃∗u satisfies

∥|g̃∗u − gu|∞∥L∞[au,bu]
du ≤ ∥|g̃u − gu|∞∥L∞[au,bu]

du ≤ K∗
uM

−βu .

Lastly, we can design f̃ = g̃q ◦ g̃∗q−1 . . . ◦ g̃∗0 . This network can be embedded in F (L,p, B),

whereL = q−1+
∑q

u=0 Lu, p = (d0, 24Bβ,t,d, . . . , 24Bβ,t,d, 1), withBβ,t,d = maxu du+1Bβu,tu ,

and B = maxuK
∗∗etu ∨ M . By choosing sufficiently large M , we have L ≲ log2M ,

∥p∥∞ ≲ maxu du+1tu(M + 1)tu and B ≲M .

184

By applying Lemma D.26, we have

∥f − f̃∥L∞[a0,b0]
d0 ≤

q∏
u=1

(Ku ∨ 1)

q∑
u=0

(K∗
uM

−βu)
∏q

w=u+1 βw∧1

≤ (max
u

Ku)
2q

q∑
u=0

M−βu
∏q

w=u+1 βw∧1

≤ (q + 1)(max
u

Ku)
2qmax

u
M−β∗

u = C∗max
u

M−β∗
u .

In the following, we provide the complete proof of Lemma D.17.

Proof. We use the network η̃ obtained in Lemma D.27 and construct a network

f̃ = 2

(
σ

(
ϵ−1

(
η̃ − 1

2

))
− σ

(
ϵ−1

(
η̃ − 1

2

)
− 1

))
− 1.

We need two more layers from η̃ to f̃ , which can be obtained by

η̃ 7→ σ

(
ϵ−1

(
η̃ − 1

2

))
,

η̃ 7→ σ

(
ϵ−1

(
η̃ − 1

2

)
− 1

)
with the maximal value of weights is bounded above by ϵ−1. Since the subtraction is mul-

tiplied by two, we need double the width, and the last layer of additive structure with bias

term −1. The construction doesn’t change the asymptotic orders of L and p. Define A ={
ξJ : |η(J)(ξJ)− 1

2
| > 2ϵ

}
, then we have the identity f̃(ξJ) = f ∗

ϕ(ξJ) when ξJ ∈ A, where

f ∗
ϕ = argminf∈F E [ϕ(Y f(ξJ))] for all measurable real-valued functions with J inputs. This

is because when η(J)(ξJ)− 1
2
> 2ϵ, we have

η̃(ξJ)−
1

2
= η̃(ξJ)− η(J)(ξJ) + η(J)(ξJ)−

1

2
> −ϵ+ 2ϵ = ϵ

185

and when η(J)(ξJ)− 1
2
< −2ϵ, we have

η̃(ξJ)−
1

2
= η̃(ξJ)− η(J)(ξJ) + η(J)(ξJ)−

1

2
< ϵ− 2ϵ = −ϵ.

For appropriately chosen M , ϵ can be sufficiently small around 0. Note that ϕ is Fisher consis-

tent, i.e., sign(f ∗
ϕ) = G∗

J , and by Theorem 2.31 of [100],

sup
h∈H

E
[
Rh(G̃)−Rh(G

∗
J)
]
≲ sup

h∈H
E
[
ϕ
(
Y f̃
)
− ϕ (Y G∗

J)
]
.

Therefore,

E
[
ϕ
(
Y f̃(ξJ)

)
− ϕ (Y G∗

J(ξJ))
]

=

∫ ∣∣∣f̃(x)−G∗
J(x)

∣∣∣ ∣∣2η(J)(x)− 1
∣∣ dPθ̃(x)

= 2

∫
Ac

∣∣∣f̃(x)−G∗
J(x)

∣∣∣ ∣∣∣∣η(J)(x)− 1

2

∣∣∣∣ dPθ̃(x)

≤ 4

∫
Ac

∣∣∣∣η(J)(x)− 1

2

∣∣∣∣ dPθ̃(x)

≤ 8ϵP
(∣∣∣∣η(J)(ξJ)− 1

2

∣∣∣∣ ≤ 2ϵ

)
≲ ϵα+1 + ϵϵ(J),

and for any J ≥ J0, the upper bound of the EMR for the first J scores is derived. Combining

the result in Lemma D.27 , the proof is complete.

We introduce the complexity measures of a given function class. Let F be a given class of

real valued functions on C.

Definition 1. (Covering number) Let κ > 0 and ∥f∥∞ = supz∈C |f(z)|. A subset {fk ∈ F}k≥1

is called a κ-covering set of F with respect to ∥f∥∞, if for all f ∈ F , there exists an fk such

that ∥fk − f∥∞ ≤ κ. The κ-covering number of F with respect to ∥f∥∞ is defined by

N (κ,F , ∥ · ∥∞) = inf

{
N ∈ N : ∃f1, . . . , fN , s.t. F ⊂

N⋃
k=1

{f ∈ F : ∥fk − f∥∞ ≤ κ}

}
.

186

Definition 2. (Bracketing entropy) A collection of pairs
{(
fLk , f

U
k

)
∈ F × F

}
k≥1

is called a

κ-bracketing set of F with respect to ∥f∥∞, if ∥fLk − fUk ∥∞ ≤ κ and for all f ∈ F , there

exists a pair
(
fLk , f

U
k

)
such that fLk ≤ f ≤ fUk . The cardinality of the minimal κ-bracketing set

with respect to ∥f∥∞ is called the κ-bracketing number, which is denoted by NB(κ,F , ∥ · ∥∞).

Define κ-bracketing entropy as HB(κ,F , ∥ · ∥∞) = logNB(κ,F , ∥ · ∥∞). Given any κ > 0, it

is known that

logN (κ,F , ∥ · ∥∞) ≤ HB(κ,F , ∥ · ∥∞) ≤ logN (κ/2,F , ∥ · ∥∞).

The following lemma provides the excess risk of FDNN classifier under some regularity

conditions.

LEMMA D.28. Under Assumption 1 and some regularity conditions:

(i) For a positive sequence {δ∗n}n≥1, there exists a sequence of function classes {Fn}n≥1

such that E [ϕ (Y fn(x))− ϕ (Y C∗(x))] ≤ δ∗n for some fn ∈ Fn;

(ii) There exists a sequence {δn}n≥1, such that δn ≤ n−α+1
α+2 ,H1/2

B (δn,Fn, ∥·∥2) ≤ nδ
(α+2)/(α+1)
n

, and {Fn}n≥1 in (i),

when n (max{δ∗n, δn})
2(α+2)/(α+1) ≳ log1+a2 n for any small enough a > 0, then f̂ϕ,n satisfies

E
[
R(ĜFDNN)−R(G∗

J)
]
≲ (max{δ∗n, δn})

2.

Proof. This result can be derived similarly as Theorem A.2 in [52]. Therefore, since condition

(C1) can be directly verified if (C3) holds, we only need to verify the conditions (C3) in The-

orem A.1. Following the same notations and (A.4) in [52], since ϵ2n ≥ 27δn/c1 for some small

enough ϵn, when δn ≤ n−α+1
α+2 , we have

H
1/2
B (δn,Fn, ∥ · ∥2)

(
ϵ2n
) α+2

2(α+1) ≤ nδ
α+2
α+1
n

(
ϵ2n
) α+2

2(α+1) ≤ nδ
α+2

2(α+1)
n

(
δn/ϵ

2
n

) α+2
2(α+1) ,

which has the upper bound (27/c1)
α+2

2(α+1)n1/2. Therefore (C3) is verified.

The following lemma provides the covering number for fully connected networks.

187

LEMMA D.29. Given a fully connected network class F(L, J,p, B) and any δ > 0, the upper

bound for logN (δ,F(L, J,p, B), ∥ · ∥∞) is

2L

(
L∑
l=1

(pl + 1)pl+1 + Jp1 + 1

)
log
{
δ−1(L+ 1)(max{∥p∥∞, J}+ 1)(B ∨ 1)

}
.

Proof. Let S be the number of active neurons for the neural network. According to Lemma 3 of

[102], since the fully connected network has S ≤
∑L

l=0(pl+1)pl+1, the proof is complete.

Denote F∗ = F(L(M), J,p(M), B(M)). As a result of Lemma D.29, we restrict that

J ≲ ∥p∥∞ (we show it holds under Assumption 2 in Proof of Theorem 5.1(ii)), when ϵα ≳

ϵ(J), for relatively large M , we have

logN (δ,F∗, ∥ · ∥∞) ≲ max
u=0,...,q

M2tu
[
log3M + logM log(δ−1)

]
≲

(
ϵ−1
)maxu 2tu/β∗

u
[
log3(ϵ−1) + log(ϵ−1) log(δ−1)

]
=

(
ϵα+1

)−maxu
2tu

(α+1)β∗u
[
log3(ϵ−1) + log(ϵ−1) log(δ−1)

]
,

where the second inequality is obtained by M = (ϵ−1)
maxu 1/β∗

u .

D.2.1 Proof of Proposition D.1

Proof. Without loss of generality, suppose
∫∞
0

Γ(x)dx = 1, otherwise we scale it by
∫∞
0

Γ(x)dx.

|E (Q∗ −QJ) | ≤ E|Q∗ −QJ | =
∫ ∞

0

P(|Q∗ −QJ | > x)dx

≲
∫ ∞

0

ϵ(J)Γ(x)dx = ϵ(J).

188

D.2.2 Proof of Proposition D.2

Proof. For any x > 0 and J ≥ J0, we have

P (|Q∗| > x) ≤ P (|Q∗ −Q∗
J |+ |Q∗

J | > x)

= P (|Q∗ −Q∗
J | > x− |Q∗

J |)

= P (|Q∗ −Q∗
J | > x− |Q∗

J |, |Q∗
J | ≤ x/2)

+P (|Q∗ −Q∗
J | > x− |Q∗

J |, |Q∗
J | > x/2)

≤ P (|Q∗ −Q∗
J | > x/2) + P (|Q∗

J | > x/2) .

Let x→ ∞, according to Assumption 2, right hand side of the inequality has the limit zero for

any finite J . Thus, the proof is complete.

D.2.3 Extension to independent t distribution

The following proposition provides a sufficient condition for equivalent measures under stu-

dent’s t distribution. It is an extension from Gaussian functional data. Similar results for the

Gaussian case have been well studied in [31, 30, 12].

Proposition D.3. When
∑∞

j=1 log
[
2 (1 + νj|δj|)νj+1] < ∞ and

∑∞
j=1 ν

5/2
j |δj| < ∞ are satis-

fied, P (|Q∗(ξ)| <∞) = 1.

Proof. We first show some preliminaries. For some positive a and r ≥ 2, we have

∫ ∞

−∞
(1 + x2)−r log(1 + ax2)dx

=

∫ ∞

−∞
(1 + x2)−r log(1 + x2)

log(1 + ax2)

log(1 + x2)
dx

≤ a

∫ ∞

−∞
(1 + x2)−r log(1 + x2)dx

= 2a

∫ π/2

−π/2
(sec y)−r+2 log(sec y)dy

≤ −4a

∫ π/2

0

log(cos y)dy

= 2aπ log 2, (D9)

189

where we use the substitution x = tan y for the second equation, and (sec y)−r+2 ≤ 1 for the

second inequality.

We have h(1)j (x) =
Γ
(

νj+1

2

)
√
νjπΓ(

νj
2)

(
1 + x2

νj

)− νj+1

2
and h(1)j (x) =

Γ
(

µj+1

2

)
√
µjπΓ(

µj
2)

(
1 + x2

µj

)−µj+1

2
.

According to Wallis’ inequality, for any positive integers m,

1√
π(m+ 4/π − 1)

≤ (2m− 1)!!

(2m)!!
<

1√
π(m+ 1/4)

.

After some simple calculation, when νj = 2m,

Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

) =
1

2
√
νj

(2m− 1)!!

(2m− 2)!!
∈ 1√

2π

[√
νj − 1

νj + 1
, 1

]
, (D10)

and when νj = 2m− 1,

Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

) =
1

π
√
νj

(2m− 2)!!

(2m− 3)!!
∈ 1√

2π

[√
νj − 1

νj + 1
, 1

]
. (D11)

Thus, the ratio of coefficients of h(1)j and h(−1)
j satisfies

Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
 Γ

(
µj+1

2

)
√
µjπΓ

(µj
2

)
−1

∈

[√
νj − 1

νj + 1
,

√
µj + 1

µj − 1

]
,

and

log

 Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
 Γ

(
µj+1

2

)
√
µjπΓ

(µj
2

)
−1

 ∈ 1

2

[
− log

(
1 +

2

νj − 1

)
, log

(
1 +

2

µj − 1

)]
.

By assuming that µj, νj ≥ 3, we have

log

 Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
 Γ

(
µj+1

2

)
√
µjπΓ

(µj
2

)
−1

 ∈ [−(log 2)/2, (log 2)/2] . (D12)

190

Without loss of generality, in the following we assume ϵj ≥ 0 for all j ≥ 1. When X(t) ∼

class 1, we have

E [Q∗(X,θ)]

=
∞∑
j=1

∫ ∞

−∞
h
(1)
j log

(
h
(1)
j

h
(−1)
j

)

=
∞∑
j=1

∫ ∞

−∞

Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

) (1 + x2

νj

)−
νj+1

2

log

 Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
 Γ

(
µj+1

2

)
√
µjπΓ

(µj
2

)
−1

+

(
µj + 1

2

)
log

(
1 +

x2

µj

)
−
(
νj + 1

2

)
log

(
1 +

x2

νj

)}
dx

=
∞∑
j=1

log

 Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
 Γ

(
µj+1

2

)
√
µjπΓ

(µj
2

)
−1

+
Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
×
∫ ∞

−∞

(
1 +

x2

νj

)−
νj+1

2
{(

µj + 1

2

)
log

(
1 +

x2

µj

)
−
(
νj + 1

2

)
log

(
1 +

x2

νj

)}
dx

=
∞∑
j=1

log

 Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
 Γ

(
µj+1

2

)
√
µjπΓ

(µj
2

)
−1

+
Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
×
∫ ∞

−∞

(
1 +

x2

νj

)−
νj+1

2
{(

µj + 1

2

)
log

(
1 +

x2

µj

)
−
(
νj + 1

2

)
log

(
1 +

x2

µj

)
+

(
νj + 1

2

)
log

(
1 +

x2

µj

)
−
(
νj + 1

2

)
log

(
1 +

x2

νj

)}
dx

=
∞∑
j=1

log

 Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
 Γ

(
µj+1

2

)
√
µjπΓ

(µj
2

)
−1

+
Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
×

µj − νj
2

∫ ∞

−∞

(
1 +

x2

νj

)−
νj+1

2

log

(
1 +

x2

µj

)
dx

+
νj + 1

2

∫ ∞

−∞

(
1 +

x2

νj

)−
νj+1

2
[
log

(
1 +

x2

µj

)
− log

(
1 +

x2

νj

)]
dx

 .

According to inequality (D9), we have

µj − νj
2

∫ ∞

−∞

(
1 +

x2

νj

)−
νj+1

2

log

(
1 +

x2

µj

)
dx ∈

[
−(π log 2)ν

5/2
j |ϵj|, (π log 2)ν5/2j |ϵj|

]
.

(D13)

191

Since

log

(
1 +

x2

µj

)
− log

(
1 +

x2

νj

)
= log

(
1 +

νjδjx
2

νj + x2

)

≤

log
(
1 +

δjx
2

2νj

)
, νj ≤ x2

log
(
1 +

νjδj
2

)
, νj > x2

and δj ≥ 0, we have

νj + 1

2

∫ ∞

−∞

(
1 +

x2

νj

)−
νj+1

2
[
log

(
1 +

x2

µj

)
− log

(
1 +

x2

νj

)]
dx

= (νj + 1)

∫ ∞

0

(
1 +

x2

νj

)−
νj+1

2
[
log

(
1 +

x2

µj

)
− log

(
1 +

x2

νj

)]
dx

≤ (νj + 1)

∫ √
νj

0

(
1 +

x2

νj

)−
νj+1

2

log

(
1 +

δjx
2

2νj

)
dx

+(νj + 1)

∫ ∞

√
νj

(
1 +

x2

νj

)−
νj+1

2

log

(
1 +

νjδj
2

)
dx

≤ π log 2

2
δj

(
ν
3/2
j + ν

1/2
j

)
+ (νj + 1) log

(
1 +

νjδj
2

)∫ ∞

0

(
1 +

x2

νj

)−
νj+1

2

dx

=
π log 2

2
δj

(
ν
3/2
j + ν

1/2
j

)
+

(
νj + 1

2

) Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
−1

log

(
1 +

νjδj
2

)
. (D14)

Therefore, according to Equations (D10) to (D14), we have

|E [Q∗(X,θ)] |

≤
∞∑
j=1

√
π log 2

8

(
2ν

5/2
j + ν

3/2
j + ν

1/2
j

)
δj

+
∞∑
j=1

(log 2)/2 +
∞∑
j=1

(
νj + 1

2

)
log

(
1 +

νjδj
2

)
.

≤
(√

2π log 2
) ∞∑
j=1

ν
5/2
j δj +

∞∑
j=1

(
1

2

)
log

[
2

(
1 +

νjδj
2

)νj+1
]
.

192

When X(s)’s class label is -1, we have

E [Q∗(X,θ)]

=
∞∑
j=1

∫ ∞

−∞
h
(−1)
j log

(
h
(1)
j

h
(−1)
j

)
(x)dx

=
∞∑
j=1

∫ ∞

−∞

Γ
(
µj+1

2

)
√
µjπΓ

(µj
2

) (1 + x2

νj

)−
νj+1

2

log

 Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
 Γ

(
µj+1

2

)
√
µjπΓ

(µj
2

)
−1

+

(
µj + 1

2

)
log

(
1 +

x2

µj

)
−
(
νj + 1

2

)
log

(
1 +

x2

νj

)}
dx

=
∞∑
j=1

log

 Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
 Γ

(
µj+1

2

)
√
µjπΓ

(µj
2

)
−1

+
Γ
(
µj+1

2

)
√
µjπΓ

(µj
2

) ×
∫ ∞

−∞

(
1 +

x2

µj

)−
νj+1

2
{(

µj + 1

2

)
log

(
1 +

x2

µj

)
−
(
νj + 1

2

)
log

(
1 +

x2

νj

)}
dx

=
∞∑
j=1

log

 Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
 Γ

(
µj+1

2

)
√
µjπΓ

(µj
2

)
−1

+
Γ
(
µj+1

2

)
√
µjπΓ

(µj
2

)
×
∫ ∞

−∞

(
1 +

x2

µj

)−
νj+1

2
{(

µj + 1

2

)
log

(
1 +

x2

µj

)
−
(
νj + 1

2

)
log

(
1 +

x2

µj

)
+

(
νj + 1

2

)
log

(
1 +

x2

µj

)
−
(
νj + 1

2

)
log

(
1 +

x2

νj

)}
dx

=
∞∑
j=1

log

 Γ
(
νj+1

2

)
√
νjπΓ

(νj
2

)
 Γ

(
µj+1

2

)
√
µjπΓ

(µj
2

)
−1

+
Γ
(
µj+1

2

)
√
µjπΓ

(µj
2

)
×

µj − νj
2

∫ ∞

−∞

(
1 +

x2

µj

)−
νj+1

2

log

(
1 +

x2

µj

)
dx

+
νj + 1

2

∫ ∞

−∞

(
1 +

x2

µj

)−
νj+1

2
[
log

(
1 +

x2

µj

)
− log

(
1 +

x2

νj

)]
dx

 .

According to inequality (D9) and some simple calculation, we have

µj − νj
2

∫ ∞

−∞

(
1 +

x2

µj

)−
µj+1

2

log

(
1 +

x2

µj

)
dx ∈

[
−(π log 2)ν

5/2
j |δj|, (π log 2)ν5/2j |δj|

]
,

(D15)

193

where we use the fact that δjνj ≥ 0. We also have

νj + 1

2

∫ ∞

−∞

(
1 +

x2

µj

)−
µj+1

2
[
log

(
1 +

x2

µj

)
− log

(
1 +

x2

νj

)]
dx

= (νj + 1)

∫ ∞

0

(
1 +

x2

µj

)−
µj+1

2
[
log

(
1 +

x2

µj

)
− log

(
1 +

x2

νj

)]
dx

≤ (νj + 1)

∫ √
νj

0

(
1 +

x2

µj

)−
µj+1

2

log

(
1 +

δjx
2

2νj

)
dx

+(νj + 1)

∫ ∞

√
νj

(
1 +

x2

µj

)−
µj+1

2

log

(
1 +

νjδj
2

)
dx

≤ π log 2

2
δj

(
ν
3/2
j + ν

1/2
j

)
+ (νj + 1) log

(
1 +

νjδj
2

)∫ ∞

0

(
1 +

x2

µj

)−
µj+1

2

dx

=
π log 2

2
δj

(
ν
3/2
j + ν

1/2
j

)
+

(
νj + 1

2

) Γ
(
µj+1

2

)
√
µjπΓ

(µj
2

)
−1

log

(
1 +

νjδj
2

)
, (D16)

where the last inequality uses the fact that δjνj ≥ 0.

Therefore, according to Equations (D10), (D11), (D12), (D15) and (D16), we have

|E [Q∗(X,θ)] |

≤
∞∑
j=1

√
π log 2

8

(
2ν

5/2
j + ν

3/2
j + ν

1/2
j

)
δj

+
∞∑
j=1

(log 2)/2 +
∞∑
j=1

(
νj + 1

2

)
log

(
1 +

νjδj
2

)
.

≤
√

2π log 2
∞∑
j=1

ν
5/2
j δj +

∞∑
j=1

(
1

2

)
log

{
2

(
1 +

νjδj
2

)νj+1
}
.

Since νjδj = o(1) and positive, we have

log

(
1 +

νjδj
2

)
≤ − log

(
1− νjδj

2

)
= log

(
1 +

νjδj
2− νjδj

)
≤ log(1 + νjδj),

and the proof is done.

194

Appendix E

Empirical Likelihood Ratio Tests for Varying Coefficient Geo Models

E.1 Regularity assumptions

Without loss of generality, let the area of Ω be 1. For the univariate splines, we consider

equally-spaced knots in our theoretical derivation. For a univariate function ψ(·), denote ψ′(·),

ψ′′(·) and ψ(v)(·) be its first, second and v-th order derivative, respectively. For any bivariate

function g defined on Ω, let ∥g(s)∥∞,Ω = sups∈Ω |g(s)| be the supremum norm of g, and let

|g|υ,∞,Ω = maxi+j=υ ∥∇i
s1
∇j
s2
g(s)∥∞,Ω be the maximum norms of all the υ-th order derivatives

of g over Ω. Let v be a nonnegative integer, and δ ∈ (0, 1] such that ϱ = δ + v ≥ 1. Let

H(ϱ)([a, b]) be the class of functions ψ on [a, b] whose v-th derivative exists and satisfies a

Lipschitz condition of order δ: |ψ(v)(x) − ψ(v)(x′)| ≤ Cv|x − x′|δ, for x, x′ ∈ [a, b]. Let

D0([a, b]) = {g : Eg(Z) = 0, Eg2(Z) < ∞} be the function space defined on [a, b] and

Wd+1,∞(Ω) = {g : |g|k,∞,Ω <∞, 0 ≤ k ≤ d+ 1} be the standard Sobolev space.

The following are the technical assumptions needed to facilitate the technical details,

(A1) For k = 1, . . . , p, β0k ∈ H(ϱ) ∩ D0 and the true bivariate function α0(·) ∈ Wd+1,∞(Ω).

(A2) The density function f(x, z, s) of (X1, . . . , Xp, Z,S) satisfies

0 < cf ≤ inf
(x,z,s)∈Rp+1×Ω

f(x, z, s) ≤ sup
(x,z,S)∈Rp+1×Ω

f(x, z, s) ≤ Cf <∞.

The marginal density function fz(·) of Z is twice continuously differentiable and the

marginal density function fs(·) of S is bounded away from zero and infinity on Ω.

195

(A3) Recall that Srd(△) denotes the spline space of degree d and smoothness r over △. For

every α ∈ Sr3r+2 and every τ ∈ △, there exists a positive constant F1, independent of α

and τ , such that

F1∥α∥∞,τ ≤

 ∑
Si∈τ,i∈{1,...,n}

α(Si)
2

1/2

≤ F2∥α∥∞,τ ,

where ∥α∥∞,τ denotes the supremum norm of α over triangle τ , F2 is the largest among

the numbers of observations in triangles τ ∈ △ and F2/F1 = O(1).

(A4) The errors satisfy

E {εi|Xi = xi, Zi = zi,Si = si} = 0

and

E
{
ε2+νi |Xi = xi, Zi = zi,Si = si

}
<∞

for some ν ∈ (3,∞).

(A5) For some positive constant π, (minτ∈△ Tτ)
−1 ≤ |△| ≤ π, where Tτ is the radius of the

largest disk contained in τ .

(A6) The number of knots Jn for the univariate splines and the triangulation size |△| satisfy

that Jn → ∞, |△| → 0, and Jn ≪ |△|2n log−1(n); and the smoothness penalty parame-

ter λnn−1|△|−3 → 0.

(A6′) h = o(n−1/5). For some ϱ ≥ 1 and d ≥ 2, |△| ≪ n−2/(5d+5) and |△|1/(ϱ+1)n2/(5ϱ+5) ≪

Jn ≪ |△|2n log−1(n) and λnn−1|△|−3n2/5 = o(1).

(A7) The kernel function K(·) is a symmetric probability density with bounded support in

[−1, 1].

(A8) Ω(z) = E(X1X
⊤
1 |Z = z) and Γ(z) = E(X1X

⊤
1 X

⊤
1 X1|Z = z) are twice continuously

differentiable. C(z) is uniformly bounded in [a, b].

The above assumptions are regularity conditions that can be satisfied in many practical

situations. Assumption (A1) describes the requirement on the varying coefficient functions,

196

which are frequently used in the literature of non and semi-parametric estimation. Assump-

tions (A1) and (A2) are similar to Assumptions (A1) and (A2) in [129]. Assumptions (A3)

and (A5) are analogue to Assumptions (A2) and (A5) in [129], which has been widely used

in the triangulation based literature [116, 57]. Assumptions (A6) and (A6′) show the require-

ment of the number of interior knots and the size of triangulation to ensure the consistency

property of spline estimator and to obtain the local linear estimator, respectively. Note that the

Assumption (A6′) only provides the order of h = o(n−1/5) to be satisfied. This upper bounds

on the bandwidth h in Assumption (A6′), is adapted from [114], which is a necessary condi-

tion for Proposition 6.1. The naive empirical log-likelihood ratio is asymptotically non-central

if the optimal bandwidth is used, which has been discussed in [124]. To make the likelihood

ratio asymptotically parameter free, we adopt the undersmoothing Assumption (A6′). Assump-

tions (A4), (A7) and (A8) which are analogue to conditions 1, 2 and 3 in [114], are common

regularity conditions in non-parametric smoothing literature.

E.2 Preliminaries

In this section, we depict the following bivariate splines properties. We first introduce some no-

tations. For any vector a = (a1, ..., an)
⊤ ∈ Rn, denote the norm ∥a∥r = (|a1|r+ · · ·+ |an|r)1/r,

1 ≤ r < +∞, ∥a∥∞ = max (|a1| , . . . , |an|). For any matrix A = (aij)
m,n
i=1,j=1, denote its Lr

norm as ∥A∥r = maxa∈Rn,a̸=0 ∥Aa∥r ∥a∥
−1
r , for r < +∞ and ∥A∥r = max1≤i≤m

∑n
j=1 |aij|,

for r = ∞. Given sequences of positive numbers an and bn, an ≲ bn means an/bn is

bounded, and an ≍ bn means both an ≲ bn and an ≳ bn hold. We define the norm on

the space G. For any functions ϕ1, ϕ2 ∈ G, define their theoretical inner product ⟨ϕ1, ϕ2⟩

as ⟨ϕ1, ϕ2⟩ = Eϕ1(X, Z,S)ϕ2(X, Z,S). Define their empirical inner product ⟨ϕ1, ϕ2⟩n as

⟨ϕ1, ϕ2⟩n = 1
n

∑n
i=1 ϕ1(Xi, Zi,Si)ϕ2(Xi, Zi,Si). Hence, ∥ϕ∥ =

√
⟨ϕ, ϕ⟩ and ∥ϕ∥n =

√
⟨ϕ, ϕ⟩n.

LEMMA E.30. (Theorem 10.2, [56]) Suppose that |△| is a π-quasi-uniform triangleation of a

polygonal domain Ω, and ϕ(·) ∈ Wd+1,∞(Ω).

197

(i) For bi-integer(α1, α2) with 0 ≤ a1 + a2 ≤ d, there exists a spline ϕ∗(·) ∈ S0
d(△) such

that ∥∇a1
s1
∇a2
s2
(ϕ−ϕ∗)∥∞ ≤ C|△|d+1−a1−a2|ϕ|d+1,∞ where C is a constant depending on d and

shape parameter π.

(ii) For bi-integer(α1, α2) with 0 ≤ a1 + a2 ≤ d, there exists a spline ϕ∗∗(·) ∈ S0
d(△)

(d ≥ 3r + 2) such that ∥∇a1
s1
∇a2
s2
(ϕ− ϕ∗∗)∥∞ ≤ C|△|d+1−a1−a2|ϕ|d+1,∞ where C is a constant

depending on d, r and shape parameter π.

Lemma E.30 shows that S0
d(△) has full approximation power, and S0

d(△) also has full

approximation power if d ≥ 3r + 2.

LEMMA E.31. (Lemma B.4, [129]) For any k = 1, · · · , p, ϕk ∈ H(ϱ) ∩ D0
k, there exist a

constant c and a function ϕ∗
k ∈ U0

k such that ∥ϕk − ϕ∗
k∥∞ ≤ c∥ϕ(ϱ+1)

k ∥∞J−ϱ−1
n .

LEMMA E.32. Suppose that Assumptions (A2), (A5) and (A6) hold. Then

sup
ϕ1,ϕ2∈A

∣∣∣∣⟨ϕ1, ϕ2⟩n − ⟨ϕ1, ϕ2⟩
∥ϕ1∥∥ϕ2∥

∣∣∣∣ = Oa.s.

(
J1/2
n |△|−1n−1/2 log1/2 n

)

where A =
{
ϕ : ϕ(x, z,S) =

∑p
k=1

∑
j∈J ηkjUkj(z)xk +

∑
m∈M γmBm(s),

xk, z, ηkj, γm ∈ R, s ∈ Ω}.

Proof. The proof is similar as the proof of Lemma B.7 in [129].

LEMMA E.33. Under Assumptions (A2), (A5) and (A6), there exist constants 0 < cA < CA <

∞, such that cA ≤ λmin(nA11) ≤ λmax(nA11) ≤ CA, where A11 is given in (6.2.2).

Proof. The proof is similar as the proof of Lemma B.8 in [129]. Details are omitted.

E.3 Proof of Theorem 6.1

Proof. We first prove the consistency of α̂. Define Hw = I−W(W⊤W)−1W⊤. Note that

θ̂ = A22Q
⊤
2 B

⊤HwY

= A22Q
⊤
2 B

⊤Hw(β
⊤
0 (Z)X+ α0(S)) +A22Q

⊤
2 B

⊤Hwε

= θ̃µ + θ̃ε.

198

According to Lemmas E.30 and E.31, there exist α∗(S) = B(S)Q2θ0 and β∗(z) = U(z)η0,

which are the best approximation to α0 and β0 with the approximation rate at ∥α∗ − α0∥∞ ≤

Cα|△|d+1|α0|d+1,∞ and ∥β0(z) − U(z)η0∥∞ ≤ CβJ
−ϱ−1
n . Hence, it is easy to find that

∥β0(Z)
⊤X − Wη0∥∞ = Op(CβJ

−ϱ−1
n). Denote by γ0 = Q2θ0 the spline coefficients of

α∗. We have the following decomposition: θ̂ − θ0 = θ̃µ − θ0 + θ̃ε. Note that

∥θ̃µ − θ0∥ ≤
∥∥A22Q

⊤
2 B

⊤Hwβ
⊤
0 (Z)X

∥∥
+
∥∥A22Q

⊤
2 B

⊤Hw(α0 −BQ2θ0)− λnA22Q
⊤
2 PQ2θ0

∥∥ .
For any vector a, according to Lemma E.33 and the proof of Theorem 2 in [116], one has

na⊤A22a ≤ C|△|−2. Hence, we have

∥∥A22Q
⊤
2 B

⊤Hwβ
⊤
0 (Z)X

∥∥ ≤ C1/2|△|−1n−1
∥∥B⊤Hw(Wη +Op(h

p)1)
∥∥

≤ Op

(
J−ϱ−1
n

)
|△|−1n−1

[∑
m∈M

{B⊤
mHw1}2

]1/2
= Op

(
J−p
n

)
.

Similarly,

∥∥A22Q
⊤
2 B

⊤Hw(α0 −BQ2θ0)
∥∥

≤ C1/2|△|−1n−1

[∑
m∈M

{B⊤
mHw(α0 −BQ2θ0)}2

]1/2
= Op

(
|△|d|α0|d+1,∞

)
,

and λn∥A22Q
⊤
2 PQ2θ0∥ ≤ λn

n|△|4
(
|α0|2,∞ + |△|d−1|α0|d+1,∞

)
.

Thus,

∥θ̃µ − θ0∥ = Op

{
J−ϱ−1
n +

λn
n|△|4

|α0|2,∞ +

(
1 +

λn
n|△|5

)
|△|d|α0|d+1,∞

}
.

For any b with ∥b∥ = 1, we have b⊤θ̃ε =
∑n

i=1 αiεi and

α2
i = b

⊤A22Q2B
⊤HwBQ2A22b.

199

Following the similar argument in Lemma S.7 in [116], we have max1≤i≤n α
2
i = Op (n

−2|△|−2).

Thus,

∥θ̃ε∥ ≤ |△|−1|α⊤θ̃ε| = |△|−1

∣∣∣∣∣
n∑
i=1

αiεi

∣∣∣∣∣ = Op

(
n−1/2|△|−2

)
.

Hence,

∥θ̂ − θ0∥

= Op

{
J−ϱ−1
n + n−1/2|△|−2 +

λn
n|△|4

|α0|2,∞ +

(
1 +

λn
n|△|5

)
|△|d|α0|d+1,∞

}
.

Observing that α̂(S) = B(S)γ̂ = B(S)Q2θ̂, we have

∥α̂− α0∥L2

≤ ∥α̂− ρ0,α0∥L2
+ |△|d+1|α0|d+1,∞

≤ C
(
|△|∥θ̂ − θ0∥+ |△|d+1|α0|d+1,∞

)
= Op

{
J−ϱ−1
n |△|+ n−1/2|△|−1 +

λn
n|△|3

|α0|2,∞

+

(
1 +

λn
n|△|5

)
|△|d+1|α0|d+1,∞

}
.

Next, we prove the consistency for β̂.

Define HB = I−BQ2

{
Q⊤

2

(
B⊤B+ λnP

)
Q2

}−1
Q⊤

2 B
⊤. Letα0 = (α0(S1), . . . , α0(Sn))

⊤

and note that

η̂ = A11W
⊤HBY = A11W

⊤HB

(
β⊤
0 (Z)X+α0

)
+A11W

⊤HBε = η̃µ + η̃ε.

Note that,

∥η̃µ − η0∥ ≤
∥∥A11W

⊤HB(β
⊤
0 (Z)X−Wη0)

∥∥+ ∥∥A11W
⊤HBα0

∥∥
≤ Op

(
J−ϱ−1
n

)
∥A11W

⊤HB1∥+
∥∥A11W

⊤HBα0

∥∥
= O(1)∥A11W

⊤HBα0∥.

200

By the Lemma E.33, there exist constants 0 ≤ cA < CA < ∞, such that with probability

approaching 1 as n→ ∞,

cAI((Jn+ϱ+1))×(Jn+ϱ+1) ≤ nA11 ≤ CAI(Jn+ϱ+1)×(Jn+ϱ+1).

Hence, we have

∥η̃µ − η0∥

≤ O(1)∥n−1W⊤ (I−BQ2{Q⊤
2 (B

⊤B+ λnP)Q2}−1Q⊤
2 B

⊤)α0∥

= O(1)∥R∥,

where R = (R1, . . . , Rp(Jn+ϱ+1))
⊤, with

Rj = n−1W⊤
j

[
α0 −BQ2{Q⊤

2 (B
⊤B+ λnP)Q2}−1Q⊤

2 B
⊤α0

]
for W⊤

j = (W1j, . . . ,Wnj). Next we derive the order of Rj , j = 1, . . . , p(Jn + ϱ+ 1). For any

αj ∈ S, we have Rj = ⟨wj, α0 − ρλ,α0⟩n = ⟨wj − αj, α0 − ρλ,α0⟩n + λnn
−1⟨ρλ,α0 , αj⟩E , where

ρλ,α0 = argminρ∈S
∑n

i=1{α0(Si) − ρ(Si)}2 + λ
2
E(ρ) is the penalized least-squares splines of

α(·, ·).

By Assumptions (A1)-(A6) and Lemma S.6 in [116], |Rj| = op(n
−1/2), for j = 1, . . . , p(Jn+

ϱ+ 1). Therefore, ∥η̃µ − η0∥ = Op(n
−1/2J

1/2
n).

Note that η̃ε = A11W
⊤ (I−BQ2V

−1
22 Q

⊤
2 B

⊤) ε. For any b with ∥b∥ = 1, we have

b⊤η̃ε =
∑n

i=1 αiεi and

α2
i = n−2b⊤(nA11)

(
W⊤

i −V21V
−1
22 Q

⊤
2 Bi

) (
Wi −B⊤

i Q2V
−1
22 V21

)
(nA11)b,

and conditioning on {(Wi,Si), i = 1, . . . , n}, αiεi’s are independent. By Lemma E.33, we

have that max1≤i≤n α
2
i ≤ Cn−2max1≤i≤n

{
∥Wi∥2 + ∥V12V

−1
22 Q

⊤
2 Bi∥2

}
, where for any b ∈

201

Rp,

b⊤V12V
−1
22 Q

⊤
2 Bib

= n−1b⊤V12

(
Q⊤

2 Γn,λQ2

)−1
Q⊤

2 Bib ≤ Cn−1|△|−2b⊤W⊤BBib

and the j-th component of n−1W⊤BBi is

n−1

n∑
i′=1

Wi′j

∑
m∈M

Bm(Si′)Bm(Si).

Under Assumption (A2), we have

E

{
n−1

n∑
i′=1

Wi′j

∑
m∈M

Bm(Si′)Bm(Si)

}2

= O(1),

for large n. Thus with probability approaching 1,

max
1≤i≤n

∣∣∣∣∣ 1n
n∑

i′=1

Wi′j

∑
m∈M

Bm(Si′)Bm(Si)

∣∣∣∣∣ = Op(1),

max
1≤i≤n

∥V12V
−1
22 Q

⊤
2 Bi∥2 = Op(|△|−2).

Therefore, max1≤i≤n α
2
i = Op{n−2(|△|−2 + Jn)} and ∥η̃ε∥ = Op(n

−1|△|−1 + n−1J
1/2
n). Let

η̂ = (η̂1, . . . , η̂p). ∥β0(z) − U(z)η0∥∞ ≤ CβJ
−ϱ−1
n and observing that β̂k(Z) = U⊤

k (Z)η̂k,

we have ∥β̂k − β0k∥L2 ≤ C (∥η̂k − η0k∥+ J−ϱ−1
n) = Op

(
n−1/2J

1/2
n + n−1|△|−1 + J−ϱ−1

n

)
,

and the consistency of β̂ is proved.

E.4 Proof of Proposition 6.1

Proof. Recall that Ω(z) = E
(
XiX

⊤
i |Z = z

)
, Γ(z) = E

(
XiX

⊤
i X

⊤
i Xi|Z = z

)
. By the defi-

nition of gi{β0(z)} , we have the following decomposition,

gi{β0(z)} =
{
Yi − β⊤

0 (z)Xi − α̂(Si)
}
XiKh(Zi − z)

=
{
Yi − β⊤

0 (Zi)Xi − α0(Si) + β
⊤
0 (Zi)Xi − β⊤

0 (z)Xi

202

+α0(Si)− α̂(Si)}XiKh(Zi − z)

=
{
ϵi + [β0(Zi)− β0(z)]

⊤Xi + [α0(Si)− α̂(Si)]
}

×XiKh(Zi − z)

= ϵiXiKh(Zi − z) +XiX
⊤
i [β0(Zi)− β0(z)]Kh(Zi − z)

+ [α0(Si)− α̂(Si)]XiKh(Zi − z)

:= ξi + L1i + L2i.

Denote β(1)
0 (z) =

(
β′
01(z1), β

′
02(z2), . . . , β

′
0p(zp)

)⊤. By the smoothness of β0k, k = 1, 2, . . . , p,

we have β(1)
0 (z) = O(1)1p×1 for all z.

It is clear that Eξi = 0, and we have

E (L1i) = E
{
E(XiX

⊤
i |Zi)

[
β

(1)
0 (z∗)(Zi − z)

]
Kh(Zi − z)

}
= β

(1)
0 (z∗)E [Ω(Zi)(Zi − z)Kh(Zi − z)])

= β
(1)
0 (z∗)

∫ b

a

Ω(u)(u− z)Kh(u− z)f(u)du

= β
(1)
0 (z∗)

[
h

∫ b

a

v(Ω(z) +Ω′(z)hv + 1/2Ω′(z)h2v2)K(v)(f(z)

+f ′(z)hv + 1/2f ′′(z)h2v2)dv
]

= O(h2)1n×1.

According to the proof of Theorem 6.1, we also have

E (L2i) = E{XiKh(Zi − z)(α0(Si)− α̂(Si))}

= E {XiKh(Zi − z)E [(α0(Si)− α̂(Si)) | {Xi, Zi,Si}ni=1]}

= E {XiKh(Zi − z) (α0(Si)− E [α̂(Si)| {Xi, Zi,Si}ni=1])}

= E
{
XiKh(Zi − z)

(
α0(Si)−B(Si)Q2θ̃µ

)}
≤ E {|XiKh(Zi − z)|}

×E
(∥∥∥α0(Si)− α∗(Si) +B(Si)Q2

(
θ0 − θ̃µ

)∥∥∥
∞

)
≲ E {|XiKh(Zi − z)|}E

(
∥α0 − α∗∥∞ +O(|△|)∥θ0 − θ̃µ∥2

)
,

203

where by Theorem 6.1, we have

E
(
∥α0(Si)− α∗∥∞ + |∆|∥θ0 − θ̃µ∥2

)
= O

(
J−ϱ−1
n |△|+ λn

n|△|3
+ |△|d+1

)
,

andE{|XiKh(Zi−z)|} = E
[
E{|Xi|

∣∣Zi}Kh(Zi − z)
]
≍ E [Kh(Zi − z)]×1p×1 = O(f(z))1p×1.

If h = o(n−1/5), when |△| ≪ n−2/(5d+5) and Jn ≫ |△|1/(ϱ+1)n2/(5ϱ+5), we have EL2i =

O(h2)1p×1 by Assumption (A6′). Therefore, we have E{gi{β0(z)}} = O(h2)1p×1. In the

following, we calculate the variance of gi{β0(z)}. Firstly, we have

E
(
ξiξ

⊤
i

)
= E

{
ϵ2iXiX

⊤
i K

2
h(Zi − z)

}
= σ2E

[
E
(
XiX

⊤
i |Zi

)
K2
h(Zi − z)

]
= σ2Ω(z)f(z)µ20h

−1 (1 + o(1)) .

Secondly, we have

E
(
L1iL

⊤
1i

)
= E

{
XiX

⊤
i K

2
h(Zi − z)X⊤

i (β0(Zi)− β0(z))(β0(Zi)− β0(z))
⊤Xi

}
= E

{
XiX

⊤
i K

2
h(Zi − z)

[
(Zi − z)2X⊤

i β
(1)
0 (z∗)β

(1)
0 (z∗)⊤Xi

+ o(Zi − z)2X⊤
i Xi

]}
= E

{
E
[
XiX

⊤
i X

⊤
i β

(1)
0 (z∗)β

(1)
0 (z∗)⊤Xi

∣∣Zi]K2
h(Zi − z)(Zi − z)2

}
×{1 + o(1)}

≍ E
{
E
[
XiX

⊤
i X

⊤
i Xi

∣∣Zi]K2
h(Zi − z)(Zi − z)2

}
(1 + o(1))

= E
{
Γ(Zi)K

2
h(Zi − z)(Zi − z)2

}
(1 + o(1)) = Γ(z)f(z)µ22h (1 + o(1)) .

Finally,

E
(
L2iL

⊤
2i

)
= E

{
XiX

⊤
i (α0(Si)− α̂(Si))

2K2
h(Zi − z)

}
= E

{
E
[
XiX

⊤
i (α0(Si)− α̂(Si))

2K2
h(Zi − z)| {Xi, Zi,Si}ni=1

]}
= E

{
E
[
(α0(Si)− α̂(Si))

2| {Xi, Zi,Si}ni=1

]
XiX

⊤
i K

2
h(Zi − z)

}
204

= E
{
E
[
B(Si)Q2(θ0 − θ̂)(θ0 − θ̂)⊤Q⊤

2 B
⊤(Si)

]
× XiX

⊤
i K

2
h(Zi − z)

}
= E

{
XiX

⊤
i K

2
h(Zi − z)∥B(Si)Q2(θ0 − θ̃µ)∥22

}
+σ2E

{
XiX

⊤
i K

2
h(Zi − z)∥B(Si)Q2A22Q

⊤
2 B

⊤Hω∥22
}
.

On the one hand, for (k, k′)-th entry, k, k′ = 1, 2, . . . , p, we have

E
{
XikXik′K

2
h(Zi − z)∥B(Si)Q2(θ0 − θ̃µ)∥22

}
≤ E

{
|∆|2XikXik′K

2
h(Zi − z)∥Q2(θ0 − θ̃µ)∥22

}
≤ O

(
|∆|2

) (
E
{
X2
ikX

2
ik′K

4
h(Zi − z)

})1/2 (
E∥θ0 − θ̃µ∥42

)1/2
= O

(
|∆|2h−3/2

) (
E
{
∥θ0 − θ̃µ∥42

})1/2
. (E1)

On the other hand, for (k, k′)-th entry, k, k′ = 1, 2, . . . , p, we have

E
{
XikXik′K

2
h(Zi − z)∥B(Si)Q2A22Q

⊤
2 B

⊤Hω∥22
}

≤ C|∆|−4n−2E
{
XikXik′K

2
h(Zi − z)∥B(Si)B

⊤Hω∥22
}

≤ C|∆|−4n−2
(
E
{
X2
ikX

2
ik′K

4
h(Zi − z)

})1/2 (
E
{
∥B(Si)B

⊤Hω∥42
})1/2

= O
(
n−1h−3/2

)
. (E2)

Combining (E1) and (E2), we have EL2iL
⊤
2i = O(|∆|2h−3/2+n−1h−3/2)1p×p. Hence, we have

V ar{gi{β0(z)}} = E
{
gi{β0(z)}gi{β0(z)}⊤

}
= E

(
ξiξ

⊤
i + L1iL

⊤
1i + L2iL

⊤
2i

)
= E

(
ξiξ

⊤
i

)
(1 + o(1))

= σ2Ω(z)f(z)µ20h
−1 (1 + o(1)) .

205

E.5 Proof of Theorem 6.2

Proof. First, for convenience we suppress the argument z in the functions such as β(z), Ω(z)

and so on, since we fix z ∈ [a, b] in this proof.

For the minimization problem (6.8), we use the Lagrange multiplier method:

min
1

n

n∑
i=1

log
[
1 + δ⊤(z)gi{β(z)}

]
+ ν⊤(z)H{β(z)},

where ν(z) is a q × 1 vector of Lagrange multipliers. Define

M1n(β, δ) =
1

n

n∑
i=1

gi(β)

1 + δ⊤(β)gi(β)

and

M2n(β, δ) =
1

n

n∑
i=1

∂g⊤i (β)

∂β
δ

1 + δ⊤(β)gi(β)
+ ν⊤C(β).

We first obtain their derivatives with respect to the three variables β, δ and ν.

∂M1n(β, δ)

∂β⊤ =
1

n

n∑
i=1

∂gi(β)

∂β⊤ (1 + δ⊤(β)gi(β))− gi(β)δ
⊤∂gi(β)

∂β⊤

(1 + δ⊤(β)gi(β))2
,

∂M1n(β, δ)

∂δ⊤
= − 1

n

n∑
i=1

gi(β)g
⊤
i (β)

(1 + δ⊤(β)gi(β))2
,

∂M1n(β, δ)

∂ν⊤ = 0,

∂M2n(β, δ,ν)

∂β⊤ =
1

n

n∑
i=1

∂2g⊤i (β)

∂β⊤∂β
δ(1 + δ⊤(β)gi(β))−

∂g⊤i (β)

∂β
δδ⊤

∂gi(β)

∂β⊤

(1 + δ⊤(β)gi(β))2

+
∂C⊤(β)

∂β⊤ ν,

∂M2n(β, δ,ν)

∂δ⊤
=

1

n

n∑
i=1

∂g⊤i (β)

∂β⊤ − ∂g⊤i (β)

∂β⊤ δg⊤i (β)

(1 + δ⊤(β)gi(β))2
,

∂M2n(β, δ,ν)

∂ν⊤ = C⊤(β),

206

∂H(β)

∂β⊤ = C(β),
∂H(β)

∂δ⊤
= 0,

∂H(β)

∂ν⊤ = 0.

Hence, we have the following Taylor expansions of the system of equations at (β0, 0, 0).

Denote the solution to this equation system as
{
β̃(z), δ̃(z), ν̃(z)

}
. Let ∆n = ∥β̃ − β0∥ +

∥δ̃∥+ ∥ν̃∥.

0 =M1n

(
β̃, δ̃, ν̃

)
=M1n(β0, 0) +

∂M1n(β0, 0)

∂β⊤

(
β̃ − β0

)
+
∂M1n(β0, 0)

∂δ⊤

(
δ̃ − 0

)
+
∂M1n(β0, 0)

∂ν⊤ (ν̃ − 0) + op(∆n)

=
1

n

n∑
i=1

gi(β0) +
1

n

n∑
i=1

∂gi(β0)

∂β⊤

(
β̃ − β0

)
− 1

n

n∑
i=1

gi(β0)g
⊤
i (β0)δ̃ + op(∆n),

0 =M2n

(
β̃, δ̃, ν̃

)
=M2n(β0, 0, 0) +

∂M2n(β0, 0, 0)

∂β⊤

(
β̃ − β0

)
+
∂M2n(β0, 0, 0)

∂δ⊤

(
δ̃ − 0

)
+
∂M2n(β0, 0, 0)

∂ν⊤ (ν̃ − 0) + op(∆n)

=
1

n

n∑
i=1

∂g⊤i (β0)

∂β
δ̃ +C⊤(β0)ν̃ + op(∆n),

and 0 = H
(
β̃
)
= H (β0) + C⊤(β0)

(
β̃ − β0

)
+ op(∆n) = C⊤(β0)

(
β̃ − β0

)
+ op(∆n).

Putting the above equations into a matrix form, we obtain

−n−1

∑n
i=1 gi(β0) + op(∆n)

op(∆n)

−H(β0) + op(∆n)

 = Σn

C2
nn

−1δ̃

β̃ − β0

ν̃

 .

where

Σn =

−C−2

n

∑n
i=1 gi(β0)g

⊤
i (β0) n−1

∑n
i=1

∂gi(β0)
∂β⊤ 0

n−1
∑n

i=1
∂g⊤i (β0)

∂β
0 C⊤(β0)

0 C(β0) 0

 .

207

Then we have Σn
P−→ Σ =

−Σ11 Σ12 0

Σ12 0 Σ⊤
23

0 Σ23 0

 , and Σ23 = C(β0). By Proposition 6.1, it

is easy to find that

Σ11 = σ2
0Ω(z)f(z)µ20,Σ12 = Ω(z)f(z). (E3)

By the simple calculation, we have

Σ−1 =

−Σ−1

11 +Σ−1
11 Σ12ΥΣ12Σ

−1
11 Σ−1

11 Σ12Υ Σ−1
11 Σ12S

⊤

ΥΣ12Σ
−1
11 Υ S⊤

SΣ12Σ
−1
11 S −R

 ,

where Υ = V
(
I−Σ⊤

23S
)
, R =

(
Σ23VΣ⊤

23

)−1, S = RΣ23V, and V =
(
Σ12Σ

−1
11 Σ12

)−1
.

Thus, we have the following

C2
nn

−1δ̃

β̃ − β0

ν̃

 = Σ−1

−n−1

∑n
i=1 gi(β0)

0

−H(β0)

+ op(∆n).

By this, under the local alternative hypothesis H1, we could figure out that

∆n =

∥∥∥∥∥∥∥∥∥∥

δ̃

β̃ − β0

ν̃

∥∥∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥∥∥

C2
nn

−1δ̃

β̃ − β0

ν̃

∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥
Σ−1

1

0

0

{
− 1

n

n∑
i=1

gi(β0)

}
−Σ−1

0

0

1

H(β0) + op(∆n)

∥∥∥∥∥∥∥∥∥∥
≤ Op

(
n−1/2h−1/2

)
+ op(∆n),

which implies that ∆n = Op

(
n−1/2h−1/2

)
.

208

Combining the above results, we have

C2
nn

−1δ̃

β̃ − β0

ν̃

 =

−Σ−1

11 +Σ−1
11 Σ12ΥΣ12Σ

−1
11

ΥΣ12Σ
−1
11

SΣ12Σ
−1
11

{
− 1

n

n∑
i=1

gi(β0)

}

−

Σ−1

11 Σ12S
⊤

S⊤

−R

H(β0) + op
(
n−1/2h−1/2

)
. (E4)

Given the following results −SΣ⊤
12Σ

−1
11 = −RΣ23VV−1Σ−1

12 = −RΣ23Σ
−1
12 we have the

asymptotic expression for ν̃,

ν̃ = −SΣ⊤
12Σ

−1
11

{
1
n

∑n
i=1 gi(β0)

}
+RH(β0) + op

(
n−1/2h−1/2

)
= −RΣ23Σ

−1
12

{
1
n

∑n
i=1 gi(β0)

}
+RH(β0) + op

(
n−1/2h−1/2

)
. (E5)

By equation (E5), under the null hypothesis H0 : H {β0(z)} = 0, we have

ν̃ = n−1R1/2Σ23Σ
−1
12

n∑
i=1

gi(β0) + op
(
n−1/2h−1/2

)
.

Since

−ΥΣ12Σ
−1
11 = −ΥV−1Σ−1

12 = −V(I−Σ⊤
23S)V

−1Σ−1
12

= −Σ−1
12 +VΣ⊤

23SV
−1Σ−1

12 = −Σ−1
12 +VΣ⊤

23RΣ23VV−1Σ−1
12

= −Σ−1
12 +VΣ⊤

23RΣ23Σ
−1
12 ,

for the asymptotic expression of β̃ − β0, (E4) together with (E5) gives

β̃ − β0 =
(
−Σ−1

12 +VΣ⊤
23RΣ23Σ

−1
12

){ 1
n

n∑
i=1

gi(β0)
}
+ op

(
n−1/2h−1/2

)
= −Σ−1

12

{
1

n

n∑
i=1

gi(β0)

}
+VΣ⊤

23RΣ23Σ
−1
12

{ 1
n

n∑
i=1

gi(β0)
}

+op
(
n−1/2h−1/2

)
209

= −Σ−1
12

{
1

n

n∑
i=1

gi(β0)

}
−VΣ⊤

23ν̃ + op
(
n−1/2h−1/2

)
.

Using the expression of δ̃

δ̃ =

{
n−1

n∑
i=1

gi(β0)g
⊤
i (β0)

}−1{
n−1

n∑
i=1

gi(β0)

}

+

{
n−1

n∑
i=1

gi(β0)g
⊤
i (β0)

}−1{
n−1

n∑
i=1

gi(β0)
[δ̃⊤gi(β0)]

2

1 + δ̃⊤gi(β0)

}

=

{
n−1

n∑
i=1

gi(β0)g
⊤
i (β0)

}−1{
n−1

n∑
i=1

gi(β0)

}
+ op

(
n−1/2h−1/2

)
,

and the above asymptotic expression for β̃−β0, the empirical log-likelihood ratio statistic can

be written as

2ℓ(z) = 2
n∑
i=1

δ̃⊤gi

(
β̃
)
−

n∑
i=1

δ̃⊤gi

(
β̃
)
g⊤i

(
β̃
)
δ̃ + op(1)

= 2n

{
1

n

n∑
i=1

g⊤i

(
β̃
)}

δ̃ − nδ̃⊤

{
1

n

n∑
i=1

gi

(
β̃
)
g⊤i

(
β̃
)}

δ̃ + op(1)

= 2nh

{
1

n

n∑
i=1

g⊤i

(
β̃
)}

Σ−1
11 (

1

n

n∑
i=1

gi

(
β̃
)
)

− nh

{
1

n

n∑
i=1

gi

(
β̃
)}⊤

Σ−1
11 Σ11Σ

−1
11

{
1

n

n∑
i=1

g⊤i

(
β̃
)}

+ op(1)

= nh

{
1

n

n∑
i=1

g⊤i

(
β̃
)}

Σ−1
11

{
1

n

n∑
i=1

g⊤i

(
β̃
)}

+ op(1)

= nhν̃⊤Σ23VΣ12Σ
−1
11 Σ12VΣ⊤

23ν̃ + op(1) = nhν̃⊤R−1ν̃ + op(1).

We see that E
(
R1/2Σ23Σ

−1
12

∑n
i=1 gi(β0)

)
= 0 and as n→ ∞,

C−1
n Var

(
R1/2Σ23Σ

−1
12

n∑
i=1

gi(β0)

)
→ R1/2Σ23Σ

−1
12 Σ11Σ

−1
12 Σ

⊤
23R

1/2

= R1/2Σ23(Σ12Σ11Σ12)
−1Σ⊤

23R
1/2

= R1/2Σ23VΣ⊤
23R

1/2

= R1/2R−1R1/2

210

= Iq×q.

Thus, by the Central Limit Theorem, under the null hypothesis H0 : H{β0(z)} = 0, we have

n−1/2h1/2R1/2Σ23Σ
−1
12

∑n
i=1 gi(β0)

d−→ N(0, Iq) which means

√
nhR−1/2ν̃

d−→ N(0, Iq).

Thus, 2ℓ(z) d−→ χ2
q . Under local alternative hypothesis H1 : H{β0(z)} = (nh)1/2d(z), we have

√
nhR−1/2ν̃

d−→ N(R1/2d, Iq).

Thus, 2ℓ(z) = nhν̃⊤R−1ν̃ + op(1)
d−→ χ2

q(d
⊤Rd).

E.6 Proof of Theorem 6.3

Proof. We first prove the asymptotic normality of Dn under the null hypothesis.

We have the decomposition for Dn = Dn1 +Dn2, where

Dn1 = C−2
n

n∑
i=1

∫ b

a

ξ⊤i (z)G
⊤(z)G(z)ξi(z)w(z)dz

= C−2
n

n∑
i=1

ϵ2i

∫ b

a

Kh(Zi − z)2X⊤
i G

⊤(z)G(z)Xiw(z)dz,

Dn2 = C−2
n

n∑
i=1

n∑
k ̸=i

∫ b

a

ξ⊤i (z)G
⊤(z)G(z)ξk(z)w(z)dz

= C−2
n

n∑
i=1

n∑
k ̸=i

ϵiϵk

∫ b

a

Kh(Zi − z)Kh(Zk − z)X⊤
i G

⊤(z)G(z)Xkw(z)dz.

Note that,

E
{
X⊤
i G

⊤(z)G(z)Xi

∣∣Zi = z
}

= tr(G(z)Ω(z)G⊤(z))

= tr
[
(σ2µ20f(z))

−1Iq×q
]
= q(σ2µ20f(z))

−1,

211

and EDn2 = 0. We also have

EDn1 = hσ2

∫ b

a

E
{
Kh(Zi − z)2X⊤

i G
⊤(z)G(z)Xi

}
w(z)dz

= hσ2

∫ b

a

E
{
E
[
X⊤
i G

⊤(z)G(z)Xi

∣∣Zi]Kh(Zi − z)2
}
w(z)dz

= σ2

∫ b

a

[
E
{
X⊤
i G

⊤(z)G(z)Xi

∣∣Zi = z
}
f(z)µ20 +O(h2)

]
w(z)dz

= q +O(h2).

Define K(4)(x) =
∫
K2(y)K2 (y − x) dy and Iik(z) = X⊤

i G
⊤(z)G(z)Xk.

Thus, X⊤
i G

⊤(z1)G(z1)XkX
⊤
i′G

⊤(z2)G(z2)Xk′ = Iik(z1) × Ii′k′(z2). When i ̸= k, we

have

E(Iii(z1)Ikk(z2)
∣∣Zi = z1, Zk = z2)

= E(Iii(z1)
∣∣Zi = z1)E(Ikk(z2)

∣∣Zk = z2)

= tr(E
[
G⊤(z1)X

⊤
i XiG(z1)

∣∣Zi = z1
]
)

×tr(E
[
G⊤(z2)X

⊤
kXkG(z2)

∣∣Zk = z2
]
)

= q2µ−2
20 σ

−4f−1(z1)f
−1(z2).

Thus, we have

ED2
n1

= h2n−2

n∑
i=1

n∑
i′=1

∫ b

a

∫ b

a

E
{
ξ⊤i1G

⊤(z1)G(z1)ξi1ξ
⊤
i′2G

⊤(z2)G(z2)ξi′2
}

×w(z1)w(z2)dz1dz2

=
n∑
i′ ̸=i

h2n−2

∫ b

a

∫ b

a

E
{
ϵ2i ϵ

2
i′Kh(Zi − z1)

2Kh(Zi′ − z2)
2Iii(z1)Ii′i′(z2)

}
×w(z1)w(z2)dz1dz2

+
n∑
i=1

h2n−2

∫ b

a

∫ b

a

E
{
ϵ4iKh(Zi − z1)

2Kh(Zi − z2)
2Iii(z1)Iii(z2)

}
×w(z1)w(z2)dz1dz2

=
n∑
i′ ̸=i

n−2σ4

∫ b

a

∫ b

a

{
E(Iii(z1)× Ikk(z2)

∣∣Zi = z1, Zk = z2)f(z1)f(z2)µ
2
20

212

+O(h2)
}
× w(z1)w(z2)dz1dz2

+
n∑
i=1

n−2Eϵ4i

∫ b

a

∫ b

a

{
hE(Iii(z1)× Iii(z2)

∣∣Zi = z1
)
f(z1)K

(4)

(
z2 − z1
h

)
+o(h2)

}
× w(z1)w(z2)dz1dz2

≍ q2 +O
(
h2
)
.

Next, we calculate ED2
n2. Note that

ED2
n2

= h2n−2

n∑
i=1

n∑
i′=1

n∑
k=1

n∑
k′=1

∫ b

a

∫ b

a

E
{
ξ⊤i1G

⊤(z1)G(z1)ξk1ξ
⊤
i′2G

⊤(z2)G(z2)ξk′2
}

×w(z1)w(z2)dz1dz2.

When k ̸= i and k′ ̸= i′, E (ϵiϵi′ϵkϵk′) ̸= 0 only in two cases, the first one is {i = i′, k = k′},

and the second one is {i = k′, k = i′}. In particularly, we have ED2
n2 = h2n−2σ4

∑n
i=1

∑n
k ̸=i∫ b

a

∫ b
a
(Π1 +Π2)w(z1)w(z2)dz1dz2, where

Π1 = E {Iik(z1)Iik(z2)Kh(Zi − z1)Kh(Zk − z1)Kh(Zi − z2)Kh(Zk − z2)}

= E
{
E
[
Iik(z1)Iik(z2)

∣∣Zi, Zk]Kh(Zi − z1)Kh(Zk − z1)

Kh(Zi − z2)Kh(Zk − z2)}

=

∫ b

a

∫ b

a

E
[
Iik(z1)Iik(z2)

∣∣Zi = x, Zk = y
]
f(x)f(y)

×Kh(x− z1)Kh(x− z2)Kh(y − z1)Kh(y − z2)dxdy

=

∫ b

a

{
h−1E

[
Iik(z1)Iik(z2)

∣∣Zi = z1, Zk = y
]
f(z1)K

(2)

(
z2 − z1
h

)
+O(h)} × f(y)Kh(y − z1)Kh(y − z2)dy

= h−2E
[
Iik(z1)Iik(z2)

∣∣Zi = z1, Zk = z2
]
f(z1)f(z2)

{
K(2)

(
z2 − z1
h

)}2

+O(1)

and

Π2 = E {Iik(z1)Iki(z2)Kh(Zi − z1)Kh(Zk − z1)Kh(Zi − z2)Kh(Zk − z2)}

213

= E
{
E
[
Iik(z1)Iki(z2)

∣∣Zi, Zk]Kh(Zi − z1)Kh(Zk − z1)Kh(Zi − z2)

× Kh(Zk − z2)}

=

∫ b

a

∫ b

a

E
[
Iik(z1)Iki(z2)

∣∣Zi = x, Zk = y
]

×f(x)f(y)Kh(x− z1)Kh(x− z2)Kh(y − z1)Kh(y − z2)dxdy

=

∫ b

a

{
h−1E

[
Iik(z1)Iki(z2)

∣∣Zi = z1, Zk = y
]
f(z1)K

(2)

(
z2 − z1
h

)
+O(h)

}
×f(y)Kh(y − z1)Kh(y − z2)dy

= h−2E
[
Iik(z1)Iki(z2)

∣∣Zi = z1, Zk = z2
]
f(z1)f(z2)

{
K(2)

(
z2 − z1
h

)}2

+O(1).

Since

E
[
Iik(z1)Iik(z2)

∣∣Zi = z1, Zk = z2
]

= E
{
E
[
X⊤
i G

⊤(z1)G(z1)XkX
⊤
i G

⊤(z2)G(z2)Xk

]
|Zi = z1, Zk = z2

}
= E

{
X⊤
kG

⊤(z1)G(z1)E
[
XiX

⊤
i

]
G⊤(z2)G(z2)Xk|Zi = z1, Zk = z2

}
= tr

{
E
[
X⊤
kG

⊤(z1)G(z1)E
(
XiX

⊤
i

)
G⊤(z2)G(z2)Xk|Zi = z1, Zk = z2

]}
= tr

{
E
[
G(z1)E

(
XiX

⊤
i

)
G⊤(z2)G(z2)XkX

⊤
kG

⊤(z1)|Zi = z1, Zk = z2
]}

= G(z1)E
(
XiX

⊤
i |Zi = z1

)
G⊤(z2)G(z2)E

(
XkX

⊤
k |Zk = z2

)
G⊤(z1)

= G(z1)Ω (z1)G
⊤(z2)G(z2)Ω (z2)G

⊤(z1) ≍ q,

and similarly, we have E
[
Iik(z1)Iki(z2)

∣∣Zi = z1, Zk = z2
]
≍ q. Combining the results for Π1

and Π2, we have

ED2
n2 ≍ σ4h

∫ ∫
f(v)f(v + hu)w(v)w(v + hu)

(
K(2) (u)

)2
dudv

= h

∫ (
K(2) (u)

)2
du

∫
f 2(v)w2(v)dv +O(h2),

214

Hence we have V ar(Dn1) = o(V ar(Dn2)), and it follows that

Dn − E(Dn) = Dn2 {1 + o(1)} .

We can write Dn2 as Dn2 = 1
n

∑n
i ̸=k
∫ b
a
Z⊤
i (z)Zk(z)w(z)dz, where Zi(z) =

√
hG(z)ξi(z).

Let Un = 1
n−1

Dn2 =
2

n(n−1)

∑
1≤i<k≤nK(Zi,Zk), where K(Zi,Zk) =

∫ b
a
Z⊤
i (z)Zk(z)w(z)dz.

Define AK as AKg(x) =
∫∞
∞ K(x, y)g(y)dF (y), where F is the distribution of Zi. Then we

have the associated eigenvalues and eigenfunctions, denoted as {λk, ψk}∞k=1 . The remaining

proof for Dn under the null hypothesis test is analogous to the sparse case in Theorem 2 and

Corollary 1 in [114].

Secondly, we prove the asymptotic distribution for Dn under alternative hypothesis. No-

tice that 2ℓ(z) = nhν̃⊤R−1ν̃ + op(1) as shown in Theorem 6.2 and by (E5) under local alter-

native,

ν̃ = −RΣ23Σ
−1
12

{
1

n

n∑
i=1

gi(β0)

}
+RH(β0) + op

(
n−1/2h−1/2

)
.

The remaining proof is the same as the sparse case in Theorem 3 in [114].

215

