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Abstract 
 

 

 A computationally efficient and reliable propeller design tool has been constructed using 

an advanced real coded Genetic Algorithm (GA) and a mid-fidelity potential flow solver. The GA 

constructs a population of propeller geometries using a series of Bernstein Polynomials (BP) which 

have a total of 63 coefficients. This population of propeller geometries is then tested using a 

reliable and efficient solver. The best four members from the population are then obtained by 

means of a tournament style selection followed by a round-robin style tournament to determine 

the true maximums. A following population is then built using the 63 characteristics from the four 

most optimal members. The process of build, test, select, and build is carried out for several demes 

or subpopulations which provide the initial population for the main generational loop. After all the 

deme and main generations have been executed, the GA will provide a propeller that matches the 

desired thrust input for the specified operating conditions and diameter while maintaining high 

propulsive efficiencies due to the nature of the fitness function. This thesis describes the technical 

details of the optimizer, solver, and associated tooling, validation cases for the solver, and sample 

optimization results.   
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Chapter 1: Introduction 

 The need for a high-speed, high-fidelity propeller design and optimization tool has been 

satisfied by using a vorticity based potential flow solver and a streamlined and efficient real coded 

genetic algorithm. With an increased interest towards electric powered flight, propellers are given 

more and more attention as they are the most practical applicants for propulsion in this genre of 

aircraft. The design of electric air vehicles requires extremely efficient propeller designs that can 

match the exact required thrust and power load that is applied to the motor for optimum operating 

conditions1,2. Commercial off the shelf propellers generally are not sufficiently well matched to 

electric aircraft performance requirements to achieve efficiencies required for vehicle viability. 

Thus, there is a need for a design tool which can provide a robust conceptual design based on flight 

conditions and thrust requirements. To drive a design toward a physically achievable solution, the 

tool must be able to model performance metrics with reliable fidelity and to employ population-

based optimization methods the tool must be computationally efficient. By having a robust 

conceptual design process the propeller and vehicle designs emerging from the conceptual design 

process are far more mature, ultimately saving time and resources. There are computational fluid 

dynamic tools that are capable of predicting performance with high fidelity, but these tools are not 

sufficiently computationally efficient for conceptual design trade studies.  Lower order methods 

such as blade element theory, lifting line, XFOIL and XROTOR can be used in various 

combinations to produce results for special cases; however, such tools are not suitable for angle of 

attack analysis, or for cases in which there is a two-way interaction between propellers or between 

propellers and other aerodynamic components. For this work, a modern surface vorticity solver 

known as FlightStream® was selected for the propeller performance analysis.  FlightStream® has 
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both steady and unsteady solution options which are capable of addressing the propeller 

performance analysis problems efficiently and with at least preliminary design level fidelity.  

 The concept of the Genetic Algorithm stems from a purely survival-based system, much 

like that of which is exhibited in nature3. A population of members is randomly created, and each 

member of the population is tested to determine its fitness. The fittest members pass their genes 

onto the next generation by crossing with other relatively fit members. These new members are 

then tested, and the fittest ones of the current population pass their genes to the next population 

and so on and so forth. The GA depends on mutations to expose good attributes of a member4. 

Without extensive mutating, positive genes and gene combinations will never become exposed 

and passed onto the next population. Thus, a weaker population is created. This same behavior can 

be examined in the wild. For instance, a species of animal that is present in an environment that 

requires its members to have two distinct survival characteristics: speed and proper camouflage. 

However, the current population only consists of members that possess the ability to attain high 

speeds. Over the course of hundreds of generations, a mutation occurs in one of the offspring which 

cause the pigment in the skin to change color to fit in with the surroundings more appropriately. 

This member would be considered extremely fit for its environment, and thus, it would reproduce 

more than the other less fit members. This mutation in the skin pigment would then become a 

dominating characteristic of the population. The GA operates on the same basis of survival. Unless 

there is a large amount of mutation across the generations, favorable characteristics will never be 

exposed5.  

 The Genetic Algorithm is a tool used in design and optimization problems in which a 

maximum or minimum value is found depending on the fitness function.  This GA takes advantage 

of the real coded genetic algorithm basis to find the best performing propeller for given flight 
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conditions. The idea of the GA in application with aerospace design and optimization has been 

around since the 1980’s, and it has been applied to a vast range of engineering problems6 that vary 

from solid rocket motor design to guidance and control7,8. Many improvements have been made 

to GAs since their first appearance in the 50’s and 60’s9 when John Holland from the University 

of Michigan made their discovery10. These improvements have shortened run times by developing 

more effective methods of parent selection to increasing the probability of a proper mutation or 

crossover. However, there is still a limit for the number of variables that must be predicted by the 

GA for a given computational time11. This GA extends that limit on two fronts by means of a better 

performing GA and an extremely computationally efficient flow solver that decreases run times.  

 Previous propeller performance tools have focused on 2-D, thin surface, geometries to 

efficiently analyze the general performance characteristics12. Here, 2-D refers to mean surface 

approximations which only use a thin surface for the propeller blade which captures twist, chord 

and sweep variations. The 3-D geometries refer to models which incorporate some thickness to 

the airfoil shape. While a 2-D model is an efficient method, it is not overly effective in the sense 

that any practical propeller geometry will be constructed and built based off a 3-dimensional 

propeller design which incorporates some cross-sectional airfoil shape. Therefore, to obtain the 

information about efficiencies and thrusts at various flight conditions for a 3-dimensional 

geometry is far more important. Moreover, while trends can be observed in both 2-dimensional 

geometries and 3-dimensional geometries, the 2D geometry is limited to chord, twist and sweep 

values. The 3D propeller blades can not only provide more realistic numbers regarding the 

propeller, but airfoil shapes can also be implemented to the design of the propeller. This allows for 

the conceptual design to further expose problems and information not seen by low fidelity design 

tools.  
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 There are however challanges to the 3D geometry optimization. The most obvious of these 

draw backs is the increase of design parameters to model the added dimension from 2 to 3. This 

can often double the number of parameters, and thus, the convergence time for the GA portion can 

take much longer. The number of generations must be increased as well as the number of members 

in each generation. Furthermore, the solver used to analyze each of the geometries will become 

more computational expensive as the mesh becomes more complex with the added dimension. 

Therefore, an effort to streamline the basic methods of the GA to effectively handle the necessary 

number of parameters to model a propeller and the analysis tool used in the GA is required.  

The main efforts for the work presented here: 

• Develop an efficient GA capable of handling the vast amount of required design variables 

• Develop a geometry definition that virtually has no limits on the design space other than 

user inputs 

• Apply the GA to stand-alone propellers as well as coaxial propeller designs 

 Conceptual and preliminary design requires tools that possess high computational 

efficiency as well high fidelity to further extend the concepts and ideas in the design phase. Many 

tools exist that provide fast solutions, but they lack the fidelity needed to provide a sturdy 

preliminary design. Furthermore, there exist such tools that are the opposite in which they provide 

the necessary fidelity, but the computational times are not compatible with current large scale 

optimization techniques. This work uses FlightStream®, which provides the necessary fidelity to 

strength preliminary designs, but also offers computational times that can pair with optimization 

schemes.   
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Chapter 2: Basic Theory  

 The requirement for reliable preliminary design level fidelity and short computational 

times for the GA design approach drove the decision to use FlightStream®. This section provides 

explanation for the flow solvers that were not chosen to address this specific problem and why 

FlightStream® was implemented.  

2.1 CFD Solvers 

 Three-dimensional Computational Fluid Dynamic (CFD) analysis tools are capable 

providing very high-fidelity solutions for propellers and solving an unsteady problem of propeller-

wing interactions13. These tools are also capable of accurately modeling a given propeller over a 

wide range of different freestream velocities and rotational values without having to adjust the 

solvers methods or expand upon them; however, these tools are not capable of completing the tasks 

with high computational efficiency in most cases14. This informs a need for an accurate 

aerodynamic analysis tool with full three-dimensional flow solving capability, at least conceptual 

design level fidelity, robust and high-fidelity geometry input, unsteady solving capability and 

computational efficiency.  

2.2 Lower Order Tools 

 Some of the existing lower order tools for obtaining performance data include QPROP or 

XROTOR; however, these aerodynamic tools generally offer only mean camber surface 

definitions for the geometry and steady flow solution options15. XROTOR is a tool designed 

specifically for free tip propellers, ducted rotors, and wind machines16. The tool can provide 

accurate predictions of axisymmetric and spatially non-uniform distributions of slipstream and the 

induced velocity. The geometry for XROTOR is modeled by radial distributions of the chord 

length, twist, and airfoil data. While this may produce an accurate model in reasonable time, it 
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provides no information about the far field. A recent study was done on propeller-wing 

interactions. In the study, the aerodynamic tool used was XROTOR. The induced velocities at the 

location of the wing were not directly produced by XROTOR. Instead, a vortex theory-based 

procedure was constructed to model the propeller effects at the wing with the given XROTOR 

data. Furthermore, this aerodynamic tool also lacks the ability to model the propeller at any angle 

of attack in the freestream. Only freestream velocities parallel to the axis of rotation are modeled. 

XROTOR is incapable of modeling any “edgewise” flight conditions17.  

 QPROP provides a relatively similar analysis for the propeller model which is implemented 

with a simpler geometry design. The propellers examined in this tool are modeled with a blade 

element/vortex method. The geometry file consists of distributed radial values and the 

corresponding twist and chord lengths. The model also requires extensive performance 

information about the airfoil such as CLα  ̧CLmin, CLmax, etc18. Often XROTOR and QPROP can 

provide excellent results for cruise conditions or for specific design scenarios for which 

appropriate models have been adapted; however, they do not offer a full range of flight condition 

analysis capabilities, and they have only limited aero-propulsive integration analysis capabilities. 

2.3  Potential Flow Solvers 

 There are two main types of potential flow solvers: vorticity based, and pressure based. 

Pressure based solvers use the determination of pressure fields along the provided geometry to 

determine the aerodynamic loads that act on the object. A combination of source and sink panels 

along with doublet panels on the trailing edge is used to provide a solution for pressure based 

potential flow solvers. Vorticity solvers depend on the circulation about a given geometry while 

taking advantage of the Kutta-Joukowski theorem and applying it to each panel on the surface. 

These potential flow solvers use vortex rings and doublet distributions over the surface of the 
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geometries. Vorticity based solvers also allow for the use of non-manifold and non-conformal 

mesh surfaces unlike pressure-based solvers. In general, the vorticity based potential flow solvers 

are much more robust and allow for courser meshes which ultimately reduce the computational 

time19. The need for a robust solver with short computational times is required for the use of 

optimization with a GA. Early-stage solutions for the GA can be extremely rough and pose a 

plethora of problems for numerical flow solvers with extremely arbitrary designs. It is necessary 

to have tool that can provide a solution for these designs.  

 FlightStream® offers this suite of characteristics and was thus selected for this optimization 

study. FlightStream® is a high-fidelity tool with very short computational times because it is a 

vorticity based potential flow solver20. Unlike most three-dimensional flow solvers, FlightStream® 

uses surface vorticity sheets and vorticity-based loads which greatly expedites the solving time. 

The volumetric meshes seen in conventional solvers take far longer to provide results and offer 

minimal advantages in the accuracy of calculations21.  

2.4 Genetic Algorithms 

 A genetic algorithm (GA) is an optimization technique that mimics the behavior of the 

natural world in which organisms mutate and create offspring which share parents’ genes. The 

fittest of these organisms will survive to produce more offspring who share their genes; the less fit 

of these organisms will die out. The GA operates by the same set of parameters: fitness-based 

selection and mutation/gene crossing. Proper mutations are rewarded, and mutations which do not 

show progress or hurt the population are discarded.  

2.4.1 Overview  

 The genetic algorithm consists of many generations. Each of these generations has a 

population of n members. Each of which is a solution to the GA. Whether or not the member is a 
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good solution depends on the fitness function of the GA. Each member has a set number of 

parameters or genes that describe it. These members are then assigned a fitness level based off a 

fitness function which describes that member’s ability to do the task at hand. The members with 

highest fitness will move onto the gene pool where their parameters will be swapped and/or 

mutated with the other higher functioning members. The products of this gene pool will be the 

next generation and so on and so forth until the maximum number of generations has been met or 

the GA has converged on a solution. 

  There are two main operations to consider when constructing the real coded GA: 

mutate/cross parameters between members and determining fitness levels. There are many 

techniques for making alterations to members; however, they all follow the same basic principles 

of crossing over genes followed by mutations. It is extremely important for the mutations to have 

the capability to produce extremely wide variation in parameters as well as very fine adjustments. 

The fitness level for each of the members must be assigned. This fitness assignment is done by the 

fitness function which should incorporate every important aspect of what is trying to be optimized. 

Failure to include all necessary values can lead to untrustworthy fitness assignments, and thus, 

members are passed on who should have been terminated. This can lead to sub optimal solutions.  

2.4.2 Binary vs Real Coded 

 The real coded GA and the binary GA are the two main types of genetic algorithms. The 

binary GA uses a string of binary numbers to represent each members attributes22 whereas the real 

coded GA uses real numbers to model each characteristic23. In the case of the binary GA, the 

mutations occur to the string of binary numbers which are then converted to real numbers that are 

implemented in the model. The real coded GA simply applies the mutation to the real numbers 

themselves which describes the given member. While binary GAs have dominated since the 
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existence of the Genetic Algorithm itself24, the real coded GA proves to be the dominant of the 

two in many cases. There have been optimization studies done in which binary and real coded GAs 

run in parallel25; however, for the sake of simplicity, this section will focus on the use of one or 

the other. While the binary GA offers some advantages over the Real Coded GA, there are also 

many situations in which the roles are reversed which has ultimately led to the decision for using 

the real coded GA in this optimization study. One major issue with binary GAs is known as 

Hamming cliff which is when the values of adjacent numbers differ in each bit. This can lead to 

convergence issues as the GA approaches a global maximum. Furthermore, using real coded 

parameters to model each member allows for large optimization domains for each variable as well 

as gradual mutations over the generations to find solutions26.  

2.4.3 Cross Over Types 

 The crossovers in a GA provide the necessary bases for the variation between generations 

without straying too far from partially correct solutions. The GA will first make the new population 

by means of cross overs, and then mutate that population. Without the crossovers, the GA would 

lack any interaction between the best performing members; therefore, correct solutions would be 

left completely up to partially random guessing.  

2.4.3.1 Laplace Cross Overs 

 The Laplace crossover method is used in many genetic algorithm applications27 and is 

given by two equations each describing the children of the two parents. The following crossover 

is applied to each parameter individually.  

𝑦1 = 𝑥1 + 𝛽|𝑥1 − 𝑥2|                                                              (1)                                                        

𝑦2 = 𝑥2 + 𝛽|𝑥1 − 𝑥2|                                                              (2) 
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x1 and x2 are the parents (the fittest members from the previous population). y1 and y2 are the 

children of the fittest two members of the previous population. β is a random number that satisfies 

the Laplace distribution and is generated by the following equation.  

𝑓(𝑥) = {
𝑎 − 𝑏 log(𝑢𝑖) , 𝑟 < 0.5

𝑎 + 𝑏 log(𝑢𝑖) , 𝑟 ≥ 0.5
                                                   (3)        

a is the location parameter, and b is a scaling parameter. ui and ri are random numbers between 0 

and 1.   From the information provide in equations 1 and 2, a correct mutation is only likely to 

occur 50% of the time. 

2.4.3.2 Point Cross Overs 

 Pont crossovers can be useful in the application of real coded GA’s; however, they can be 

limiting without a proper amount of mutation. Point crossovers take the characteristics of two 

parents and directly apply those characteristics to the children without any alteration other than the 

blending of the two parents. An example of a single point and a double point crossover are shown 

in Figure 1. There can be as many cross overs as there are variables that describe a member minus 

one. In this case, the maximum cross over is a 4-point. In such a case, the children would have 

every other parameter swapped from each of the parents. Furthermore, the order in which the cross 

overs are represented can be changed (the location of the split point can move) to further increase 

crossover diversity. Nevertheless, the point cross over technique implies that the correct values 

 

Figure 1: Point crossover example 
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already exist in the population. This is virtually never the case. Therefore, the point cross over 

mutation is very impractical unless combined with other mutation strategies  

2.4.3.3 Linear Cross Overs 

 Linear crossovers provide a wider range of mutations than point cross overs, but the 

tendency of the mutation to move in the proper direction is not extremely effective. Linear cross 

overs take parent one and parent two and combine the attributes to form an infinite number of 

possible solutions. Provided parents x1 and x2 the following three solutions can be developed as 

example. 

𝑐ℎ𝑖𝑙𝑑1 = 0.5𝑥1 + 0.5𝑥2                                                            (4)  

𝑐ℎ𝑖𝑙𝑑2 = 1.5𝑥1 − 0.5𝑥2                                                            (5) 

𝑐ℎ𝑖𝑙𝑑3 = −0.5𝑥1 + 1.5𝑥2                                                         (6)                                               

Now it is seen that all possible solutions have the potential to converge on the correct value; 

however, the computational time to do so is quite extensive. A proper mutation is a one in three 

chance. The first of the solutions provides a child with a value that lies somewhere in the middle 

of the two parents. The second solution provides a child that exceeds the value of the first parent 

to some degree outside the bounds of parent one and two. The last solution provides some value 

to the offspring, that will exceed parent two beyond the bounds of parent one and parent two. The 

target value is unknown and can sit in the middle of the two parents or outside the bounds of the 

parents on either end. Therefore, a proper mutation is given one out of every three mutations. There 

are more solutions that can be developed by altering the coefficients of x1 and x2, but these will 

only increase or decrease the extent to which the above-mentioned crossovers will be behave and 

not the odds of properly mutating.  
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2.4.3.4 Blended Cross Overs 

 Blended cross overs offer the same range of mutation as the linear cross overs and provide 

a better method for convergence. These are very similar to the modified Laplace cross overs except 

the beta value is replaced by an alpha which is held constant throughout the time if the simulations. 

Using parents x1 and x2, two children can be formed as follows 

𝑐ℎ𝑖𝑙𝑑1 = 𝑥1 − 𝛼(𝑥2 − 𝑥1)                                                           (7)                                   

𝑐ℎ𝑖𝑙𝑑2 = 𝑥2 + 𝛼(𝑥2 − 𝑥1)                                                           (8)                                                        

With only two solutions provided, and a set value of alpha, the crossover variation is limited. While 

solutions will converge on a value due to the decreasing nature of the term in the parenthesis, the 

odds of making a proper mutation is not as likely as the modified Laplace crossover (discussed in 

section 6.3.1). Nevertheless, none of the crossover schemes provide a completely perfect cross. 

The pairing of the crossover types and minor advantages in each of them makes the difference in 

convergence times.  

2.4.4 Mutation Types 

 Genetic Algorithms depend largely on the mutations of the generations. There are many 

mutations that provide a variety of solutions to the GA. A number of these mutation types were 

examined for this GA. The mutations themselves range in effectiveness and such effectiveness 

depends on the point at which the GA has progressed through its timeline. More drastic mutations 

prove to be very effective in early stages while the more moderate changes provide better solutions 

in later stages. These mutations are described in full in the following subsections.  
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2.4.4.1 Power Mutations 

 Power mutations account for a large majority of the mutations in each of the populations 

and provide some of the more radical mutations to the propellers. Power mutations are defined by 

the following equation28. 

𝑥 = {
𝑥̅ − 𝑠(𝑥̅ − 𝑥𝑙),       𝑡 < 𝑟

𝑥̅ + 𝑠(𝑥𝑢 − 𝑥̅),       𝑡 ≥ 𝑟
                                                       (9)                                                 

𝑥𝑙 and 𝑥𝑢 are the lower and upper bounds for the parameter that is to be mutated. 𝑥̅ is the parent 

or the most fit member of the previous population. r is a random number between 0 and 1.  t is 

determining factor for the mutation and is presented. 

𝑡 =  
𝑥̅ − 𝑥𝑙

𝑥𝑢 − 𝑥̅
                                                                    (10) 

s is included to determine the extent of the mutation and is defined as follows 

𝑠 = 𝑠1
𝑝                                                                        (11) 

s1 is a random number between 0 and 1. p is the index of mutation. This parameter governs the 

amount of mutation for given parameters. As the index of mutation increases, the amount of 

mutation decreases and vice versa. 

2.4.4.2 MPTM 

 The Makinen, Periaux, Toivanen Mutation (MPTM) can be described fully by Deep29 in 

which a mutated child, 𝑥̂, is produced by the parent x. The mutation process is described by 

equations 12 and 13. 

𝑥̂ = (1 − 𝑡̂ )𝑥𝑙 + 𝑡̂𝑥𝑢                                                      (12)                                                  
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𝑡̂ =  

{
 
 

 
 𝑡 − 𝑡 (

𝑡 − 𝑟

𝑡
)
𝑏

               𝑟 < 𝑡

𝑡                                        𝑟 = 𝑡

𝑡 + (1 − 𝑡) (
𝑟 − 𝑡

1 − 𝑡
)
𝑏

    𝑟 > 𝑟

                                             (13) 

t is described in the same manner as the power mutation. If one were to work out the problem, it 

would be shown that this mutation is the exact opposite of the original power mutation in the sense 

of the direction in which the mutations tend to move. Like the power mutation, the MPTM has a 

parameter which governs the strength of the mutation, b. As b is increased the mutations grow 

weaker and weaker. Furthermore, as the GA progresses through the generations it does not lose 

any strength in the mutations if the MPTM is used. 

2.4.4.3 Non-Uniform Mutation 

 The Non-Uniform Mutation (NUM) provides an excellent technique for converging values 

near the final generations of the GA, yet it provides the necessary range of large mutations in the 

early stages. Examples of these have been used and explained in multiple applications30,31. The 

process by which the mutations occur is shown. 

𝑥𝑡+1 = {
𝑥𝑡 + Δ(𝑡, 𝑥𝑢 − 𝑥𝑡), 𝑟 ≤ 0.5

𝑥𝑡 − Δ(𝑡, 𝑥𝑡 − 𝑥𝑙), 𝑟 > 0.5
                                         (14) 

t represents the generation that the GA is currently working on, and r is a random value between 

0 and 1. The Δ operator is defined as follows. 

𝛥(𝑡, 𝑦) = 𝑦 (1 − 𝑢(1−
𝑡
𝑇
)
𝑏

)                                                    (15) 

u is a random value between 0 and 1, and T is the total number of generations in the GA. 

Furthermore, as the GA reaches the last of its generations, the mutations begin to decrease in 
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strength do to the term in parentheses that is raised to the b power. Thus, the model will converge 

properly in theory.  

2.4.5  Demes 

 Aside from the vast range of crossovers and mutations, Genetic Algorithms have a 

multitude of other approaches which not only assist in locating a maximum in less iterations but 

also in avoiding local maximums32. One method for avoiding local maximums is through the use 

of demes, or subpopulations, which operate for the sole purpose of providing the starting 

generation to the main generational loop33. These demes operate for a specified number of 

generations which can range anywhere from 1 to infinity depending on the available computational 

power. The demes then put forth their best members to create a population which starts the main 

set of generations. The demes can communicate throughout the generations of the main group or 

only once at the start. A visualization that uses 4 demes is provided in Figure 2. Here four demes 

are used to run for a specified number of times and then provide information to the main 

generational loop. Demes in this application have been introduced in a number of GAs to improve 

the overall performance of the GA34. Because the demes operate entirely independently of each 

other, the best members should be similar with some differences. Obviously, if each of the demes 

is executed for many iterations, the most optimal member from each deme should be same, but in 

this application, the demes are only executed for ranges of 10 generations due to computational 

 

Figure 2: Deme Example 
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power availability. Thus, not enough time is provided for the demes or miniature generational 

loops to converge on a global maximum.  

2.5  The Propeller 

 The propeller at its base is like that of any other propulsion device in that it simply takes 

some amount of a fluid and changes the momentum to impart a force on a vehicle by using radially 

distributed lifting surfaces or blades. The propeller for analytic solutions can be modeled as an 

actuator disk or even more rudimentary models as a control volume through which air flows in at 

a relatively low velocity and leaves at a high velocity. From an efficiency perspective, the one 

important characteristic of all propellers is the amount of energy it takes to cause this momentum 

change. The power to drive these essentially lifting surfaces is often gathered from a gas turbine 

or a piston driven engine. In recent years, strides have been made in the application of electrical 

power sources for propellers35. Thus, the argument is made for new more efficient propellers.  

 When new propeller driven aircraft are developed, a fuselage is developed by one 

company, the power sources for the propulsion systems are developed by another, and the 

propellers themselves are developed by a third company such as Master Airscrew, Aeronuat, 

Hartzell, etc. The propellers are designed to maximize the performance of the aircraft for the given 

operating conditions: RPM, freestream velocity, power source limits, etc.36. Much work has been 

done on analyzing and modeling electric propulsion systems to power these propellers because 

electric motors have increased power densities and high efficiencies37,38. The purpose of this thesis 

is to provide an expedited answer to the propeller design problem.  Over the years many 

achievements have been made in the design and implementation for propellers. The rest of this 

subsection will provide a brief history to propeller theory.  



29 

 

 The theory of modern propeller design begins with Rankine and Froude in the 1800’s when 

they used momentum relation for analysis of marine propulsive devices. While the analysis was 

focused on a different propeller application than discussed here, the models are analogous to each 

other. The Wright brothers soon followed with their development of air-based propeller systems39. 

While the Wright brothers contributed very little to the theory of propeller design, the Wright 

brothers were the first to make truly revolutionary improvements to the modern propeller design. 

Their first propeller was developed in 1902 in which design they used a twist which obtained a 

constant angle of attack along the radius. The propeller produced roughly 12lbs of thrust at 

1600RPM in a freestream of 25mph. The propeller was 28” in diameter and required 0.8hp to 

operate at this condition40. 

 The Wright brothers developed propellers which were on the same level of efficiency as 

those present today (71%– 76%). The propellers used for their self-powered flight were arguably 

the hardest part to implement due to the lack of testing capabilities. The Wright brothers realized 

that the forward performance was vastly different from the static test which had been conducted; 

however, the Wright brothers only had access to simple static test environments with limited 

instrumentation. To properly model the performance of forward flight an actual flight test was 

required. This was both difficult and time consuming41.   

 While the Wright Brothers’ achievements were extraordinary for their time, the more 

remarkable of the achievements towards propeller theory come from Prandtl and his lifting line 

theory42 and the continuously worked upon blade element theory43. The original application for 

lifting line theory is applied to wings on an aircraft, but seeing that propellers are just lifting 

surfaces themselves; it has been applied in a number of propeller applications44. Both are very 

popular for propeller analysis; however, the level of fidelity for both models is limiting as 
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described in prior sections. Nevertheless, the background information is necessary for 

understanding the problem at hand.  

2.6 Variable Pitch Propeller 

 While this GA focuses on optimization for small UAV/UAM propellers with a constant 

pitch, it should be noted that the GA can run simulations for variable pitch rotors. This section is 

presented in order to provide the set up for the variable pitch problem. The variable pitch propeller 

operates by simply adjusting the pitch of the propeller blades to increase or decrease thrust at 

various flight conditions. In the variable pitch model,  the GA optimizes a constant speed propeller. 

These propellers are typically used on larger aircraft due to the weight of the gears used to control 

the pitch of the propeller.  There exist many types of mechanical devices for controlling the pitch 

of the propeller45; however, that is beyond the scope of this work. The variable pitch propeller is 

of great interest due to its ability to bring forth the full capabilities of larger, more powerful engines 

operating in adverse conditions such as high altitudes or increased free stream velocities46. In terms 

of the optimization problem, there are challenges to the variable pitch propeller. The main 

advantage for using a variable pitch propeller is its ability to easily adapt to a multitude of flight 

conditions whereas the fixed pitch propeller is typically designed for one flight condition (typically 

cruise)47. With the increased number of design conditions, the GA requires more inputs and linked 

with the increased inputs comes an increased requirement for the number of iterations. From the 

single point design of the fixed pitch propeller, the variable pitch problem must converge on thrust 

and efficiency for as many flight conditions as presented. When applied in this GA, the propeller 

is given 4 flight conditions, therefore, a total of 8 parameters to converge on. Moreover, at each 

one of these flight conditions comes an adjusted pitch angle. Thus, there is an increase in the 
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number of design variables. Due to the complexities involved in the variable pitch optimization, 

the problem was merely explored in this study and should be a large focus for future efforts.  

2.7 Coaxial Propellers 

 The coaxial propeller problem introduces a far greater challenge in modeling the behavior 

of the rotors when compared to the single standalone propeller model. The standalone propeller 

model is never a case which offers true fidelity because the stand-alone propeller model is never 

implemented in real world applications. A propeller will always experience effects from other 

objects in the flow whether that object be a wing placed in front of or behind the propeller or 

perhaps another propeller placed in the flow such as the coaxial configuration. Because the 

propeller application is subsonic in nature, objects placed behind the propeller will still have effects 

on the propeller though it may be acceptable to ignore them. The truly daunting challenge is to 

model the propeller with something placed in front of it such as the pusher-proper scenario or even 

more complex the coaxial problem. The coaxial propeller problem is one of the more challenging 

configurations to accurately capture because the entirety of the problem is unsteady. The forward 

propeller sees effects from the rear propeller because for the most part in these configurations the 

propellers are very close to each other. Furthermore, in most applications of the coaxial set up, the 

propellers are operating in a static environment, further permitting communication from the rear 

propeller to the forward propeller. Now, these complexities do not even begin to address the effects 

that the forward propeller will have on the rear propeller. The rear propeller is operating in an 

extremely unsteady environment from the wake of the forward propeller. As the forward propeller 

increases its rotational speeds, the rear propeller becomes far less effective as the incoming 

velocities will be increased. While the effects of the rear propeller on the front propeller are 

measurable, they are overall negligible48. Thus, it can be concurred that the effects of the forward 
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propeller on the rear propeller are far greater than the effects of the rear rotor on the front rotor49. 

Therefore, in this case, to fully demonstrate the capabilities of the solver’s computational 

efficiency and fidelity, the rear propeller is optimized.  

2.8 Flow Separation 

 Flow separation is an important aspect of any aerodynamic analysis. As a fluid flows over 

a surface, it is either in the presence of an adverse or a favorable pressure gradient. Favorable 

pressure gradients are characterized by a decreasing pressure in the direction of flow and an 

increase in velocity which is why the boundary layer formed from this is referred to as an 

accelerating boundary layer. Adverse pressure gradients are characterized by increasing pressure 

in the direction of the flow and decrease in the velocity hence the boundary layer name, 

decelerating boundary layer50. Flow over surfaces that have an adverse pressure gradient have 

boundary layers that decelerate, thicken, and then form a point of inflection. Both pressure 

gradients can be shown on a single surface in a flow. Favorable pressure gradients are associated 

with converging surfaces while adverse pressure gradients are associated with diverging surfaces. 

An example of the two is provided in Figure 351. Here the leading edge of the sphere is a 

 

Figure 3: Pressure Gradient Example 
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converging surface, and the trailing edge is a diverging surface. The favorable pressure gradient 

has no potential for separation; while, if the adverse pressure gradient is strong enough and persists 

long enough, the flow will eventually separate over the surface and reverse direction near the 

surface boundary52. This separated flow will then lead to increased amounts of drag on the surface 

and a loss of lift due53. Now, why is this important to the problem optimization problem?  

 For the FlightStream® solution a lower limit was set for flow separation that was allowed 

to occur on the top side of the propeller. Due the shape of a propeller blade and the high angles of 

attack, the flow across the surface of the airfoil sections can experience very strong adverse 

pressure gradients which lead to separation. While the numerical flow solver used in this analysis 

can detected where the separation has occurred, it cannot describe the aerodynamic effects that 

accompany the propeller blade under these conditions. Because airfoils experience increased 

amounts of drag, and losses in lift when the flow is separated, then a propeller will experience 

increased amounts of torque due to the increase in drag and a decreased amount of thrust. For this 

reason, a limit was set on the amount of separation. Propellers with more than a given percent of 

the upper surface separated were provided a fitness of -10.00. This fitness ensured that their 

characteristics namely, twist, would not be passed to the next generation. This hard coded value 

for fitness is justified because this is a thrust and efficiency optimized propeller solution, and if 

the separation across the top is that high, then the limited amounts of thrust and decreased 

efficiency of a separated propeller will lead to an unfit propeller. 

2.9 Maximum Efficiency 

 There are realistic limits to the efficiency of propellers given the thrust produced, propeller 

radius, and freestream velocity. The propulsive efficiency for any propulsion device is a ratio of 

the thrust power and the amount of kinetic energy production. The thrust power is simply defined 
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as the thrust produced multiplied by the freestream velocity. The kinetic energy production for a 

propeller is defined as one half the mass flow rate multiplied by the square of the change in velocity 

from freestream to the far field behind the propeller. This full relation is shown below 

𝜂𝑝 =
𝑇𝑢

1
2 𝑚̇

(𝑢𝑒2 − 𝑢∞2 )
                                                            (16) 

Given the equation, it is understood that there must be a limit to efficiency even in the most optimal 

of assumptions and operating environments. The thrust for a propeller is defined as follows 

𝑇 =
1

2
𝜌𝐴(𝑢𝑒

2 − 𝑢∞
2 )                                                           (17) 

Plugging this into the efficiency equation 

𝜂𝑝 =
[
1
2𝜌𝐴

(𝑢𝑒
2 − 𝑢∞

2 )] 𝑢

1
2 𝑚̇

(𝑢𝑒2 − 𝑢∞2 )
=
𝜌𝐴𝑢∞
𝑚̇

                                             (18) 

For a propeller, the mass flow rate is defined as the free stream density multiplied by the area over 

which the propeller accelerates the working fluid multiplied by the velocity of the fluid across the 

propeller disc. The velocity of the fluid across the disc is defined as an average of the free stream 

velocity and the velocity in the far field or  

𝑢𝑑𝑖𝑠𝑐 =
(𝑢𝑒 + 𝑢∞)

2
                                                               (19) 

Therefore, 

𝜂𝑝 =
𝜌𝐴𝑢∞
𝜌𝐴𝑢𝑑𝑖𝑠𝑐

=
𝑢∞

(𝑢𝑒 + 𝑢∞)
2

=
2𝑢∞

𝑢𝑒 + 𝑢∞
                                            (20) 

While the exit velocity is unlikely know for propeller operating conditions in the design phase, the 

thrust is known. Therefore, to make appropriate assumptions to maximum operating efficiency for 
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a propeller the thrust equation defined above is solved for the exit velocity which is given as 

follows 

𝑢𝑒 = √
2𝑇

𝐴𝜌
+ 𝑢∞2                                                                  (21) 

Now, plugging this into the developed equation for estimating propulsive efficiency 

𝜂𝑝 =
2𝑢∞

𝑢∞ +√
2𝑇
𝐴𝜌 + 𝑢∞

2

                                                         (22) 

With an estimation of the maximum efficiency for a propeller obtained, relations can be drawn 

regarding propeller performance as a function of its operational environment.  

 The original equation presented for efficiency suggests that the efficiency is only a function 

of the free stream velocity and the exit velocity which is true; however, for more accurate modeling 

of a propeller, the exit velocity variable was replaced by two other variables: area and thrust 

produced. While the density of the operating environment is important to the performance of the 

propeller, the actual sizing of the propeller and its efficiency are of higher importance and 

therefore, the density is held constant over the following examples.  

 From equation 16 for  propulsive efficiency, it can be determined that the maximum 

efficiency of a propeller is experienced when the exit velocity matches the freestream velocity in 

forward flight. Yet, in this case, the propeller, or any thrust generating device for that matter, will 

not serve its purpose of producing any thrust by equation 17 presented for thrust. Therefore, the 

following trade study was done to demonstrate the effects of thrust, freestream velocity, and disc 

area on the propeller efficiency. Figure 4 provides efficiency and changes in velocity over different 

thrust production levels and free stream velocities. All propellers were given a radius of 10 cm and 
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operate at sea level i.e., density is set to 1.225 kg/m3. The right axis in the figure represents the 

change in velocity of the fluid from the free stream to the far field given a thrust, area, density, and 

freestream velocity. The left axis represents the efficiency of the propeller. As stated early and 

demonstrated here, the maximum efficiency occurs when the change in velocity is zero, and thus, 

thrust is zero. Note the solid lines which represent the performance of the propeller in the slowest 

of three freestream velocities plotted. This flight condition has the lowest efficiencies of the three 

because it also has the largest increase in freestream velocity at any point. At first glance, this may 

appear to be a mistake in the calculations; however, thrust is determined by the difference in the 

velocities squared. Therefore, as freestream velocity increases, the required differential in velocity 

to achieve the same thrust decreases. Take for example the operating condition in which 8 N of 

thrust is required. For the given predefined parameters, the propeller needs the velocity terms in 

 

Figure 4: Efficiency and Velocity change vs Thrust 
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the parenthesis to be equal to roughly 415 m2/s2. Therefore, the propeller operating in the 5m/s 

environment needs to produce exit velocities equal to ~21m/s which leads to a velocity differential 

of 16m/s. On the other hand, the propeller operating in the 30m/s environment only needs to 

produce exit velocities of ~36.25 m/s which is a 6.25m/s differential. Therefore, by the original 

equation for propulsive efficiency, the propeller operating in the higher velocity environment will 

produce greater maximum efficiency values.  

 The same function for maximum propeller efficiency is then used to observe the behavior 

of efficiency on propeller areas and freestream velocities again. In cases, the thrust is fixed to a 

constant 5 N, and the propellers have radii of 5, 15, and 30 cm. The smallest of these propellers is 

obviously the most inefficient, as it must accelerate the fluid through an area that is 36 times 

 

Figure 5: Efficiency and Velocity Change vs Freestream Velocity 
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smaller than the area of the largest propeller. To compensate for this reduced area and mass flow 

rate, the propeller must provide a greater acceleration to the fluid in order to match the thrust that 

is required. The effect of this large fluid acceleration is seen in the efficiency line for the smallest 

propeller as it persists to be the lowest of the three propellers. One important factor to note here is 

the continuous increase in efficiency. This is because the thrust is constant for all cases which is 

not necessarily the case in a nominal operating scenario; however, for the sake of maximum 

propeller efficiency analysis this will be accepted. As the thrust is held constant the exit velocity 

remains greater than the free stream velocity for all cases, and therefore, as the freestream velocity 

extends to infinity, the exit velocity will effectively match the freestream velocity while still 

producing thrust which is indeed false. Nevertheless, the results for absolute maximum efficiency 

are presented in this section to provide a basis for these comparisons in the results. While the 

propeller optimizer, converges on propellers with optimal efficiency, it should never produce 

propellers that have efficiencies that match the ones presented here. 
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Chapter 3: The Propeller Geometry 

 The process by which the geometry is conceived and the program or means by which it is 

built are crucial aspects to the development of the objective function, necessary to any trade study 

or optimization including a GA approach. There are many programs for building a CAD model of 

the geometry and there are even more options in the process of developing the geometry. The 

process by which the geometry is constructed should be accurate and replicable. Furthermore, the 

design space should not be limited by the design tool used to create the geometry.  

3.1 The Geometric Build 

 There are many processes and types of geometric builds for constructing a propeller. One 

important consideration is the difference between “Machine Geometry” and “CFD Geometry”. 

Often, the level of geometric detail included in a drawing to build a part is too expansive for 

practical flow solutions.  Outer mold lines for fluid solutions are routinely simplified to correctly 

capture the flow surfaces but not detailed features such as fasteners, seam lines, and other features 

required for machining parts.  For surface vorticity solvers, there is the additional consideration of 

whether a simple thin airfoil shape mean camber line will be used or whether an airfoil with some 

considerable thickness will be implemented. If the thin sheet propeller representation is 

implemented, then a simple mean camber model can be constructed. If the application of the 

propeller is to have a thick airfoil, then the consideration of how to construct the propeller becomes 

more complicated. For the objective function used in this work, two processes by which the 

propeller geometry is to be built were considered: an OpenVSP model or a Component Cross 

Section file. Both representations considered are capable of representing a geometrically correct 

outer mold line.  
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3.1.1 OpenVSP 

 OpenVSP is an open-source tool developed by NASA for conceptual design and study of 

aircraft and aircraft components. VSP is easy to use and provides fast models. The program allows 

the user to create a three-dimensional model and then export that model as a surface mesh54. An 

example of the meshing provided by OpenVSP is shown Figure 6. A general propeller geometry 

is already built into the program. Therefore, only certain aspects of the propeller such as the twist, 

chord, sweep, thickness, 

and airfoil sections needed 

to be altered.  OpenVSP is 

also fully scriptable which 

is a main requirement for the GA’s geometry building component55; however, it can provide rough 

geometries with meshing that have the potential to cause problems for the FlightStream® solver 

upon importing the .stl file. Furthermore, the application of the script to run OpenVSP in the GA 

provided little freedom in the geometry design. Predefined variable names were vast, as the 

scripting language uses angel script. Moreover, the scripting files, CompGeom files, and geometry 

files themselves occupy an extensive amount of memory. Lastly, by having to access a secondary 

application in the process of constructing the geometry, computational times would be 

compromised and one of the main advantages of this GA would be lost. Therefore, while OpenVSP 

remains an efficient program for building propellers, the application of it in a genetic algorithm is 

not cost-effective. The OpenVSP tool was used, however, for the validation cases’ geometry.  

 

Figure 6: Example OpenVSP Mesh 
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3.1.2 Component Cross Section 

 The Component Cross Section (CCS) geometry provides the best means of importing a 

geometry into the solver. The file is specific to the numerical solver used in this Optimization 

exercise, FlightStream®. The file import works exactly as the name describes it. A number of cross 

sections are imported into solver and smooth curved surfaces are lofted between each of the cross-

sections in order to provide a surface. The CCS geometry also provides compatible meshing 

because it is meshed in the solver. Furthermore, the import file permits the user to define the 

number of spanwise and chord wise meshing points. Trailing edge detection is another key 

attribute to the CCS import in which the first point of each of the cross sections is selected to be 

the trailing edge. An example of the component cross-sections in FlightStream® can be seen in 

Figure 7. The CCS file is a csv file which is created in a subroutine of the GA and stored in a folder 

with all the other geometry files. The CCS file consist of all the specified x, y, and z points of the 

cross sections as well as some additional information regarding the geometry and the nature of the 

import. An example of the CCS file shown in Figure 8. The first line provides a name of the file 

import, and the next line provides a name to the component once it is in the solver. The following 

line informs the solver that this is a lifting surface. The 4th line in the file defines the mesh for the 

propeller. Here a 60 chordwise by 40 spanwise mesh grid is placed over the propeller. The growth 

 

Figure 7: Example Cross Section Import 
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type is set to uniform, and the growth rate is set to 1. The periodicity and the refinement for the 

object mesh are both turned off. Lastly, in the setup, the trailing edges are marked. The following 

lines then contain the x, y, and z coordinates in that order for each cross section. The cross sections 

start nearest to the hub and work their way out. As Figure 8 displays, it is very easy to build these 

geometry files and store them with little computational cost. These geometry files can be built for 

every propeller in a population, and then, the entire population can be tested.  

3.2 Geometry Definition 

 The defining characteristics for the propeller geometries come in two forms. The first and 

limiting geometry definition comes from a pre-built airfoil. The second is provided by a Bernstein 

Polynomial. Both geometry types rely on the use of polynomials for twist, chord, and sweep values 

along the span of the propeller, and they rely on the CCS import function for getting the geometry 

into the solver. The only differences lay in the airfoil cross sectional shapes and the types of 

polynomials used in developing the blade shapes.  

 

Figure 8: Example CCS File 
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3.2.1 Airfoil Import 

 The airfoil import is much easier to implement, but the extent to which the geometries must 

expand in design space is limited. The airfoil import takes a predefined airfoil shape and uses it as 

the airfoil shape along the propeller. The idea behind this propeller modeling is that the GA would 

rely on a bank of airfoils to implement on each propeller at given cross sections, and a numerical 

value in the string of genes for each propeller would determine which airfoil will be used for that 

propeller at that given cross section. This modeling technique was only used in the early stages of 

this work and only went as far as having two different airfoils in a propeller. That is not to say the 

airfoils were set in stone when applied to the propeller. Once the airfoil had been imported for a 

geometry, it was then scaled by a chord function which was a 6th order polynomial describing the 

chord along the span of the propeller. Furthermore, the airfoil was also adjusted by some thickness 

to change the airfoil shape. This thickness as well a pitch and sweep adjustment were also 6th order 

polynomials. While this method is simple and easily applied, it requires a lot of information about 

existing airfoil shapes and all the data points that describe them.  

 The airfoil import method for propeller design is effective in achieving a simple propeller 

design as it does not require as many parameters to describe the propeller shape and the airfoil 

cross sections are already built. These two advantages are, however, weaknesses and lead to its 

elimination from the final version of this work. The design space for the airfoil import method is 

limited because it uses existing airfoils and only allows for changes in airfoil shape regarding the 

thickness. Due to its tight geometry restrictions, the following method was chosen as the geometry 

construction method.  
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3.2.2 Bernstein Polynomials 

 The Bernstein Polynomials allow for a vast range of propeller designs and seldom limit the 

GA in terms of the propeller’s geometry. This freedom can be observed in the early generations of 

the GA as the designs are completely random in nature. In fact, in rare cases, the lack of constraint 

can be a problem as solutions do not converge due to the abstractness of the propeller design. 

Nevertheless, this issue is resolved in further generations given the circumstance that it even 

occurs. This is due to several reasons, but most obvious is the number of cases that are executed. 

One of the cases will eventually converge, and thus, light will be shed on the propeller’s true 

performance. 

 The propeller GA takes advantage of Bernstein Polynomials (BP) to construct the 

definitions of airfoil shape, pitch, chord, and sweep. The equations which describe theses 

parameters are expanded from Kulfman56 which first develops the ideas; furthermore, the 

equations are presented in Burger57, but here they are expanded and used on a 3-dimensional 

geometry. The BP used to construct the airfoil can be divided into two separate parts: the shape 

function and the shaping terms. The shape function is used to model the leading and trailing edge 

of the airfoil. This is provided below. 

𝐶𝑁2
𝑁1(𝜓) = (𝜓)𝑁1[1 − 𝜓]𝑁2                                                     (23) 

C is the shape function, and 𝜓 is the percent of the chord length. The first term on the right-hand 

side describes the radius of the leading edge. Values for the N1 term range from 0.5 to 1. A value 

of 0.5 will lead to a rounded leading edge, and a value of 1 will lead to a sharper leading edge. The 

same relationship exists for the second term which describes the trailing edge shape. An example 

of the effects of these values can be seen in Figure 9. All shaping terms in the in the airfoils shown 
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in Figure 9 are equal, thus demonstrating the effects of the shape function. The shaping terms 

themselves use a 3rd order BP. Putting the shape function with the shape terms, the airfoil surface 

at a given point along the propeller blade can be described.  

𝑍𝑢𝑝(𝑥, 𝑦) = (
𝑥

𝑐
)
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The first two terms in both the upper and lower equations are the shape functions which describe 

the leading and trailing edge, and the terms in the brackets are the shaping terms that describe the 

 

Figure 9: Example of Shaping Function Effects 
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shape of the airfoil between the leading and trailing edge. The Au and Al terms are function of y 

(the span) and provide the necessary information to model the change in the airfoil shape in the y 

direction or spanwise direction. These BP equations can be represented and visualized using 

Pascal’s triangle and increasing the order of the BP shown in  Figure 10. By increasing the order 

of the BP, the variation in airfoil shape from leading to trailing edge can be greatly increased; 

however, it comes at a cost. The number of variables required for each BP is equal to the order of 

the polynomial plus one. Furthermore, this only describes the airfoil shape at a given cross section 

along the propeller blade. The function to describe the upper airfoil surface shaping terms is 

dependent upon 20 variables. This equation is show below as a 3rd order BP  

𝐴𝑢𝑖(𝑦) = 𝑎𝑢𝑖 (1 −
𝑦

𝑟
)
3

+ 3𝑎𝑢𝑖+5 (1 −
𝑦

𝑟
)
2

(
𝑦

𝑟
) +  3𝑎𝑢𝑖+10 (1 −

𝑦

𝑟
)
2

(
𝑦

𝑟
) + 𝑎𝑢𝑖+15 (

𝑦

𝑟
)
3

 (26) 

Y is the distance measured outward from the hub of the propeller and r is the radius of the propeller. 

The same equation is used for the lower surface shaping values 

 

Figure 10: Pascal's Triangle 
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𝐴𝑙𝑖(y) = 𝑎𝑢𝑖 (1 −
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𝑟
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𝑟
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3

   (27) 

Each one of au terms is used describe the 𝐴𝑢𝑝𝑝𝑒𝑟  which describe the change in the propeller airfoil 

in the y direction (hub to tip direction). Therefore, there are four terms used to describe each of the 

five au values resulting in 20 parameters for the top airfoil shaping terms and 20 for the bottom. 

There also exist a similar set of equations for the shape functions. These use a 1st order BP to 

provide the N1 and N2 values for the top and bottom which is shown below.  

𝑁𝑢𝑖(𝑦) = 𝑛𝑢𝑖 (
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𝑟
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𝑟
)                                          (28) 

𝑁𝑙𝑖(𝑦) = 𝑛𝑙𝑖 (
𝑦

𝑟
) + 𝑛𝑙𝑖+2 (1 −

𝑦

𝑟
)                                          (29) 

Now, there are a total of 48 parameters which describe the airfoil shape along the direction of span 

and chord lengths. There are also another 15 parameters which describe the chord, twist, and sweep 

along the span of the propeller. These are modeled using 3rd order BP and can be seen below. 
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There are a total of 63 parameters which govern the shape of the propeller blade: 24 for the upper 

airfoil surface, 24 for the lower airfoil surface, 5 for the chord function, 5 for the twist function 

and 5 for the sweep function. Now comes the question as how to implement the geometric data on 

the actual propeller itself.  
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 The airfoil implementation has been expanded to require one more step that of which leads 

to a vast extension in the design space of the propellers themselves. Here, the BP have not only 

been extended to include a 2-D shape with upper and lower surface curves, but they also include 

the ability for airfoils to possess large amounts of camber. This is achieved by not applying the 

lower surface equation directly, but instead, subtracting it from the upper airfoil curve. In doing 

so, the possibility for an inflection point has been added to the bottom shape design leading to 

camber in the airfoil. This adjustment does not sacrifice any of the design space either. Figure 11 

provides examples of direct application of the lower surface equation and then the subtracted 

modification of the lower surface curve. All the airfoils on the top of Figure 11 are generated from 

the modified method of airfoil generation, and the bottom four images are generated form the direct 

application of the lower surface equation. Note the amount of camber in the top airfoils, as well as 

the absence of it. This demonstrates that by applying the modified method for lower surface 

calculations, a large design space is achieved. Furthermore, cambered airfoils are ubiquitous on 

efficiency propellers and most subsonic lifting surfaces for that matter.  

 Lastly, it should be noted that majority of the propellers presented in Figure 11 are 

inefficient in design and do not take on the shape of a typical airfoil. A CST method58 was 

 

 

Figure 11: Example Airfoil Variation 
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considered to develop the airfoil; however, it was not used because one favorable aspect of the GA 

is the vast design space. By using the BP with no geometric input constraints, the design space for 

the propellers is much larger than CST method and its applied inputs. Furthermore, the solver 

should be able to determine ‘good’ airfoil designs from ‘bad’ ones due to the level of fidelity. 

Therefore, the poor performing airfoils should be filtered out from the solver results.  

3.2.3 Geometry Implementation 

  To model the geometry, a loop is implemented to apply each of the BP over the span of 

the propeller. The radial values range from 10% of the radius all the way to the tip of the propeller. 

This vector of radial values contains the coordinates for each point on the propeller. Within the 

loop, a vector of the chord lengths along the span is created first. This vector is then used 

individually throughout the rest of the loop to model the other points at their given locations along 

the span. Multiple loops are then implemented to fill a matrix for the upper and lower points for 

the airfoil using the BP which describes the airfoil shape itself as well as the BP which describes 

the shape functions. The loops range from 0% of the chord to 100% at the given y location. The 

chord values are represented by the x coordinate direction. The z coordinates are the actual 

coordinates that are altered by the BP for the airfoil function. After this has been completed a 

geometry has been built which contains multiple airfoil cross sections along the span of the 

propeller. These cross sections can be characterized by their airfoil shape and chord lengths. To 

 

 

Figure 12: Isometric View of Geometry Build 
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obtain a functioning propeller, the simple wing that has been created is twisted by the BP for pitch. 

This is done by rotating given cross sections about the y axis as follows 

𝑋𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = 𝑋 𝑐𝑜𝑠(𝜓) − 𝑍𝑠𝑖 𝑛(𝜓)                                                (33) 

𝑍𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = 𝑋 sin(𝜓) + 𝑍 cos(𝜓)                                                (34) 

This has now twisted all the cross sections by some angle to provide appropriate pitch angles at 

given cross section to generate lift. Lastly, the sweep polynomial is applied to the propeller in the 

same manner. Except, this rotation is done about the x axis. An example of the process is provided 

in Figure 12 and Figure 13. The figures work left to right and top to bottom respectively. The first 

image present in the figure is the meshed propeller blade with no twist or sweep applied to it and 

only chord and airfoil functions to describe its shape. The second image has been rotated to allow 

the propeller to have some pitch. Lastly, the final propeller is presented which is described by the 

polynomials for airfoil shape, chord, twist, and sweep.  

 

 

 

 

 

Figure 13: Front View of Geometry Build 
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Chapter 4:  The Solver 

FlightStream® is highly applicable to modeling entire aircraft as well as propellers in steady 

and unsteady flow regimes. The unsteady model is precisely the tool required for fast and accurate 

propeller modeling from standalone models to coaxial rotor simulations, and unlike other solvers, 

FlightStream® provides a solution in minutes or even seconds in some cases59. Furthermore, the 

solver provides the ability to analyze propellers operating with their axial at some angle of attack 

to the freestream. Lastly, the wide range of geometry types that are compatible with FlightStream® 

make it extremely easy to create and import a geometry for testing. FlightStream® has been used 

to demonstrate longitudinal and lateral characteristics of full-scale airplanes, vertical takeoff 

aircraft, as well as optimizing engine placement along a wing60,61,62.  

4.1 Script and Setup 

 A fully scriptable solver is crucial to the propeller GA, and the scripting ability that 

FlightStream® provides is a major driving factor for the use of this flow solver in this GA. The 

scripts for FlightStream® allow for any operation that can also be conducted manually63. The script 

in this application involves importing the geometry and setting up the simulation for the given 

inputs to the GA. This script is quite extensive due to the large availability of options for running 

the solver. The text file starts by importing a single propeller blade from a CCS import as a csv 

file. The trailing edges are already selected in the csv file by inserting a simple function. The solver 

then changes the altitude to the provided altitude in the GA text file input. The solver is then 

changed from the default steady setting to either the steady rotary or unsteady case depending on 

which propeller optimization is being executed. The rotational speeds for the propeller are then 

set, and the number of blades is implemented. The solver is then initialized using a wake 
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termination location that gives the propeller the opportunity to make at least 1 full rotation.  Once 

the solver is initialized, the freestream velocity is set as well as the reference velocity. The solver 

is then executed. After the solver converges, the necessary files are exported for that propeller. 

The solver is cleared, and the next propeller is loaded uploaded for testing.  

 FlightStream® solver can be executed in four different settings: steady, steady (rotary), 

steady (viscous) and unsteady. This subsection will discuss the steady(rotary) and unsteady 

settings as they are the only settings specifically applicable to the propeller case. While this GA 

uses the steady rotary solver and the unsteady solver, the unsteady solver provides a far more 

expansive regime of flight conditions and possibilities. FlightStream® can also be used in vorticity 

or pressure-based load setting. The propeller GA at hand uses the vorticity-based loads; however, 

the difference in them should be understood for the purpose of this thesis. 

4.2 Steady (Rotary) 

 The steady (rotary) solver in FlightStream® provides a solution to the propeller problem in 

seconds which is why it is used for the propeller GA in the stand-alone model. This solver can 

operate under mirrored conditions. In other words, the geometries can be mirrored across planes 

or periodically about an axis without increasing the number mesh faces. The one original geometry 

is geometry that the solver calculates loads and moments on and then simply applies these to the 

mirrored surfaces. The minimized number of mesh faces allows the solver to converge on a 

solution in extremely short computational times, and with 128 members per generation, 

computational speed becomes a large factor in determining the performance aspect of the GA. The 

steady (rotary) solution requires only an RPM input to the freestream, and the rest of the governing 

parameters follow the same as other solver settings. In general, propellers converge in less 

iterations than the maximum setting of 1000, further resulting in short computation times.  
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4.3 Unsteady 

 The unsteady solver in FlightStream® provides a wider range of options for running 

simulations. While the steady rotary solver is virtually only single propeller type simulations, the 

unsteady solver provides solutions for everything from modeling ground effect to coaxial propeller 

interactions64. The unsteady solution does require a longer run time. The unsteady solver must be 

run for a large number of time steps to arrive at a converged solution. This solver will run for a 

user defined number of time steps at defined time increments. Each of these time step iterations 

will have to converge on a solution or run until the maximum number of iterations is reached. The 

unsteady solver is used in this GA because of its ability to capture complex flow interactions; 

however, run times in this application are much greater which impose some limitations to the GA. 

The unsteady solver also can capture propellers in edgewise flight, and therefore, the objective 

function could be modified to address optimization for propellers that operate in edgewise flight.  

4.4 Vorticity and Pressure Solver 

 FlightStream® solver can operate in a pressure or a vorticity-based mode to gather forces 

and moments operating on a body. In the case of the propeller in the steady rotary solver, the 

vorticity mode was used to gather both forces and moments. The vorticity mode provides a purely 

inviscid solution by using a method of integrated circulation. This is discussed in greatly detail in 

Solver Theory section of this work. The pressure mode uses the vorticity mode to calculate 

pressure fields along the surface of the objects. Furthermore, the pressure mode can apply a 

boundary layer module which allows for the solver to account for viscous flows. The 

documentation for the FlightStream® solver can be found in several papers and in the FlightStream 

User’s Guide65,66.  
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4.5 Solver Theory 

 The original development for the solver comes from the work done my Ahuja which is 

outlined in his dissertation67. The solver is a product of Research in Flight®, and much progress 

has been made toward in enhancing its abilities since the solvers beginning. The solver makes use 

of the Fast Multipole Method (FMM) which combines the far field source/sink doublets into a 

single body for computing the effect on the near field. The FMM is used to expedite the solutions 

for calculating far field effects on near field objects68. This method has been applied to numerous 

topics in aerodynamics69,70 and is used in FlightStream to combine far-field vorticity into localized 

point doublets. These point doublets contain the vorticity strength for the entirety of the far-field. 

Using the far-field, near-field thresholds are established, a spatial octree is constructed around the 

geometry as shown in Figure 14. 

The solver has a laminar and a turbulent method for boundary layer analysis. The boundary 

analysis calculations apply a 2-D method to the streamlines on the surface of the geometry of 

interest. The laminar model uses a standard two-parameter Thwaites momentum integral equation 

as shown below and described in full by Ahuja71. 

𝑈
𝑑

𝑑𝜂
[
𝜃2

𝜈
] = 0.45 − 6

𝜃2

𝜈

𝑑𝑈

𝑑𝜂
                                                    (35) 

 

Figure 14: Octree Example 
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The turbulent model assumes the fluid outside the boundary layer to be isentropic, subsonic, and 

compressible. The momentum thickness and compressibility factor are given as follows 

𝑑𝜃𝑖
𝑑𝑋

= −
𝜃𝑖
𝑀𝑒

𝑑𝑀𝑒

𝑑𝑋
(2 + 𝐻𝑇𝑅) +

𝑑𝑥

𝑑𝑋
 
𝑐𝑓

2
(
𝑇𝑒
𝑇0
)
3

                                     (36) 
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𝜃𝑖

𝑑𝜃𝑖
𝑑𝑥
]                    (37)  

The development for this turbulent model is obtained from Standen72. Here x and X are the 

longitudinal coordinate parallel to the wall boundary and its transform. Me is the Mach number at 

the outer edge of the boundary layer. Htr is the transformed shape factor and 𝐻𝛿−𝛿∗ is the shape 

factor associated with the entrainment rate. The non-dimensional mass entrainment rate is given 

by F. The presented equations are then integrated using a higher order Runge-Kutta73. 

4.6 Run Times 

 When using a program for optimization or any purpose for that matter it is crucial to take 

advantage of the system or program in every way possible. This GA is executed on a machine that 

has 28 cores. While the run times for FlightStream® are extremely rapid relative to other solvers 

with the same fidelity and even faster when running the steady case, in the process of constructing 

this GA, there was still need for even faster computational times. FlightStream® allows the user to 

specify the number of cores that each simulation will occupy for a given run. For original single 

simulations, this value was set to 6. For the simultaneous run model, the number of cores per run 

was set to 3. The runs were split into 7 groups each of which was a different flight condition that 

all propellers were run through. Each group had its very own script that was executed 

simultaneously.  
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 Furthermore, the run times were largely impacted by the number of iterations given to a 

single propeller simulation as well as the convergence threshold. In the beginning phases of the 

GA, FlightStream® solver was set to run for 500 iterations with a convergence threshold of 1E-5 

where a forced execution of all the iterations was not implemented. In other words, the simulation 

would run until either the threshold was met, or the number of iterations was exceeded. The first 

of these two options is the ideal case for a GA to ensure that true values are provided, and thus, 

the GA can eliminate unfit members of the population. However, with such a low number of 

iterations and an absurdly large design space, exotic propellers seen in the first few random 

generations would lead to nonconverging values in which they ran the full length of the set number 

of iterations. These leads to two major problems in the design. The first and the most obvious is 

the fact that a non-converging solution is being recorded and taken into the fitness function 

calculation. Therefore, a propeller whose thrust that should have been negative is now being 

reported as positive, or perhaps an unrealistic efficiency is calculated from FlightStream® provided 

values for torque and thrust. Now, a propeller that should have been eliminated is producing even 

more like itself in the population. This ultimately leads to a non-converged solution for the GA 

itself which is far worse than that of a local maximum which will be discussed later. Furthermore, 

with the unrealistic propeller running for the full number of iterations, the total solver run times 

increase by extreme amounts. This was also observed in a separate project for FlightStream® 

involving the unsteady solver for a quadcopter. Furthermore, because the propeller is creating 

offspring like itself through the GA mechanism, run times are not only increased for the faulty 

propeller but also for the offspring. Therefore, with the lower number of iterations, the GA 

produces non-converged solutions and in fact takes longer to run. To solve this issue, a maximum 

number of iterations was set to 1000. This proved to be the most optimum setting for the GA 
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regarding run times and convergence. While initial populations may take longer to run, every 

propeller has true solutions provided, and on an entire scale of the GA, the run times are less 

because as more solvable propellers are produced, FlightStream® has an easier time predicting 

values. Thus, run times are shorter.  The steady solver can converge on an accurate solution in 

roughly 30 seconds depending on the geometry shape. Abstract geometries with sharp leading 

edges or odd twist or chord distributions may take longer. Therefore, with 128 members per 

generation and 140 total generations, the total computational time for the stand-alone propeller 

model is about 6.2 days.  

 The unsteady solver requires more computational time as well as attention in the solver 

settings. The coaxial simulations will take longer to run simply because the interactions between 

the two propellers is far more complicated to capture. The unsteady simulations run for a number 

of user defined time steps in user defined increments. The solver must converge on each time step.  

For propeller models the unsteady solver should allow for propellers to advance 5 to 7 degrees per 

time step. For the coaxial model, the front propeller should complete one full rotation once its 

wake has come into contact with the rear rotor to ensure that the wake is full established, and the 

solver is not converging on a poor solution. That being said, the unsteady solver in the coaxial set 

up requires roughly 26 minutes to complete one full simulation. With 128 members per generation 

this would take 55.4 hours or 2.3 days to complete one generation. Therefore, to increase the 

efficiency of the GA, simulations were executed simultaneously to reduce the number of effective 

simulations to 38. Therefore, one generation of the coaxial propellers takes 16.5 hours or 0.686 

days. 
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4.7 Meshing 

  The mesh used for the propellers built in the csv file is a crucial parameter to the solvers 

ability to converge. The mesh used had to be large enough such that run times in the solver 

remained relatively low and small enough to allow for the geometry to be smooth to allow for the 

solver to converge accurately. The mesh implemented on the propeller designs uses 60 points in 

the chord wise direction and 40 in the radial direction, resulting in roughly 4700 faces for one 

blade. In the steady rotary solver, this will be the total number of mesh faces despite the number 

of blades, because the steady rotary solver can set up periodic symmetry when initializing. An 

example of the mesh is shown in Figure 16. The unsteady, coaxial simulations use more mesh 

faces than the steady solver, but the mesh refinement is far rougher. The forward propeller is a thin 

surface model which uses a total of 2000 mesh faces for both propellers. Unlike the steady solver, 

 

Figure 16: 60x40 Mesh Used in Steady Rotary Analysis 

 

 

Figure 15: Coaxial Mesh Configuration 
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the unsteady cannot operate using a periodic symmetry; therefore, every mesh face must be 

accounted for. The GA produced propeller uses roughly 4600 mesh faces for both blades. An 

image of the coaxial set up is provided in Figure 15.  
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Chapter 5: Validation for the Solver 

 Several sources of propeller performance and geometry data provided ample amounts of 

validation for the solver. In this chapter, propellers from the UIUC propeller database and the 

NACA Technical report 640 are examined in FlightStream® and compared to the provided wind 

tunnel data for the standalone propeller model. The coaxial propellers are validated using a master 

airscrew propeller that was testing in a wind tunnel.   

5.1  UIUC Propellers 

 The UIUC propeller database was chosen for this validation largely because of the data 

that was provided. The database provides an appropriate amount of wind tunnel propeller 

performance data, as well as enough data regarding the propeller geometry. The UIUC propeller 

database was initially released in 2011 with performance data for 78 propellers. Now the database 

consists of three volumes with the performance data for nearly 140 propellers. The data consists 

of a large variety of propellers from different manufactures. The propellers are relatively small and 

used mainly on small UAVs and model aircraft. The data regarding their performance consists of 

thrust and power coefficients as well as efficiencies over a range of advance ratios at given values 

for RPM74. Calculations for these thrust coefficients and advance ratios were provided in detail in 

the release notes. These calculations were reversed to obtain the necessary data needed to run the 

validation cases. The data for the propellers comes from experiments conducted in a low-speed 

wind tunnel. The propellers were mounted in the wind tunnel and attached to a small electric motor. 

Thrust correction factors were implemented to obtain the true thrust produced by the propeller at 

the given conditions75. 
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 The data for this validation case comes from Volume 1 of the database and is comprised 

of an Electric Only 11x7 and a G/F 10x8 propeller from Master Airscrew. The first number in the 

propeller name refers to the diameter in inches, and the second number refers to the pitch given in 

inches/rev. The data for these propellers consists of advance ratios ranging from 0.1 to 0.9 and 

RPM values ranging from 3005 to 6803 depending on the propeller. The geometry data given in 

the database consists of a radial value and the corresponding beta and chord value. An example of 

one of these geometry data sets is provided Figure 1776. Notice the absence of any airfoil data or 

thickness measurements. To properly validate the numerical solver, an accurate geometry model 

was required. Therefore, some information regarding the thickness and airfoil shape of the 

propeller at various sections was necessary for modeling the propeller geometries. A 3-D scanner 

was used to obtain the information regarding the airfoils shape. The scanner used in this data 

collection was the Go!SCAN20 shown on the left in Figure 18. This scanner has a volumetric 

accuracy of 0.3 mm/m and point accuracy of 0.1mm. Furthermore, the scanner requires that three 

points be completely known to collect more points77. This data collection set up is exhibited in the 

right of Figure 18. Here the propeller being scanned is surrounded by textured and colored objects. 

These objects have three textured points and three colored points that assist the scanner in locating 

 

Figure 17: Example UIUC Propeller Database Geometry Data 
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known points to capture more data.   A raw image from the scanner is provided in the top of Figure 

19. The white film that is on the propeller is a powder spray that was used to add some texture and 

color to the dark surface of the propeller. Originally, the scanner would not collect clean points 

from the propeller as the dark surface of the propeller did not permit any light to reflect back to 

the scanner. The lower image in Figure 19 is a higher density point cloud from the original scan. 

More points were added to the scan using a Poison-disk sampling tool in MeshLab, an open-source 

mesh processing application78. The increased number of points serves the purpose of removing the 

 

Figure 19: Raw Scan and Enhanced Point Cloud 

 

Figure 18: Scanner and Scanner Setup 
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background from the propeller. As the images demonstrate, the background was blended with the 

propeller itself; therefore, by adding an increased number of points, the edges of the propeller were 

more clearly defined. Once the point cloud was cleaned, the data was loaded into MATLAB where 

cross sections of points were collected to obtain the airfoil. These cross sections were placed into 

an OpenVSP specific file format called an airfoil file. The airfoil files were then loaded into the 

propeller at various cross sections. An example of an airfoil and the airfoil file are provided in 

Figure 20. The points gathered from the top scan are shown in blue, and the points from the bottom 

scan are shown in orange. While there is only a small amount of camber to the airfoil, it is important 

that it was captured for the validation case. The full process of geometry construction is explained 

in detail in Appendix I.  

 The results from the validation consist of thrust coefficients, power coefficients and 

efficiencies which are calculated as follows.  

𝐶𝑇 =
𝑇

𝜌𝑛2𝐷4
                                                                    (38) 

 

Figure 20: Example Airfoil and Airfoil File 
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𝐶𝑝 =
𝑃

𝜌𝑛3𝐷5
= 2𝜋𝐶𝑄 → 𝐶𝑄 =

𝑄

𝜌𝑛2𝐷5
                                           (39) 

𝜂 =
𝐶𝑇𝐽

𝐶𝑃
                                                                       (40) 

 The UIUC propellers had data collected over the same advance ratios using different RPM 

values by adjusting the freestream velocity. Due to viscous effects, there is a large scatter in the 

data. As the RPM increased with an adjustment in the velocity to maintain a similar advance ratio 

the propellers saw an increase in thrust and torque as well as efficiency because the thrust increased 

by a greater amount. The viscous model in solver is capable of modeling viscous effects only for 

higher Reynolds numbers on the order of a couple 100,000 whereas the UIUC propellers have a 

Reynolds number of roughly 60,000. This leads to constant thrust and torque values produced by 

the solver for a given advance ratio despite changes in the velocity and RPM.  

Both propellers were modeled using viscous coupling and without viscous coupling. The non-

viscous coupling propellers are labeled with “(NV)” while the models with viscous coupling are 

 

Figure 21: GF 10x8 Thrust Coefficient 
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labeled with “(V)”.  Figure 21 provides the thrust coefficient results for the GF 10x8 propeller. As 

shown in the plot, FlightStream® captures the behavior of the propeller extremely well with both 

the viscous coupling model and model without viscous coupling.  The model that does not have 

the viscous coupling setting on intuitively predicts higher values for the thrust than the viscous 

model does, but from the UIUC data the model that does not have the viscous coupling accounted 

for is the more accurate of the two. Nevertheless, both models are placed within the scatter or very 

near the scatter of the wind tunnel data for the thrust coefficient.  

 The power coefficient is presented next in Figure 22. The performance from both models 

is grouped tighter together for the power coefficient than the thrust coefficient which will lead to 

discrepancies in the efficiency plots. Furthermore, both models exhibit more linear behaviors than 

the actual wind tunnel data suggests. Causes for this could be explained by the complicated 

geometry build process and possible errors in scanned point clouds. Despite these irregularities, 

the data for power coefficient is matched well by the numerical solver. At the lower advance ratios 

 

Figure 22: GF 10x8 Power Coefficient 
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of 0.25 and less and the higher advance ratios just before windmilling occurs, there are over 

predictions of about 7%. At any other advance ratio between those values, the predictions by the 

solver are within the scatter of the wind tunnel data.  

 Lastly, the plot for the efficiency of the GF 10x8 propeller is presented. Due the to the 

differences in the thrust prediction between the two models and then the similarities in the power 

coefficients, the difference in efficiency plots between the viscous and non-viscous model are quite 

large, but the same difference in performance data is exhibited in the wind tunnel data. The scatter 

for thrust and power from the wind tunnel leads to even greater scatter in the efficiency plots. Both 

models fit within the provided range of efficiency at the given advance ratios. The viscous model 

provides a lower prediction for efficiency than does the non-viscous coupling model which is 

sound. The viscous coupling model even under predicts efficiency compared to the wind tunnel 

data. This, again, could be due to errors in the geometry or perhaps a minor over prediction in the 

torque on the model in the solver itself. However, it is appropriate to conclude that the solver is 

 

Figure 23: GF 10x8 Efficiency 
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validated for the GF 10x8 propeller. Plots for thrust and power coefficient place results within the 

upper and lower ranges of RPM for the wind tunnel data, and most importantly the efficiency 

predicted by the solver is accurate.  

 The Electric 11x7 propeller is presented with similar characteristics to that of the previous 

propeller. Figure 24 provides the thrust coefficient for the E11x7 propeller from the numerical 

solver. Here, the viscous coupling model is very similar to the non-viscous coupling model as the 

plots for both are placed almost directly on each other. While the curve predicted by the numerical 

solver tends to be more linear than the provided data, both models stay within the variance of the 

wind tunnel data other than a slight over prediction in the lower advance ratios.  

 The power coefficient predictions for the E11x7 propeller are provided in Figure 25 which 

are far more accurate than that of the GF10x8. The numerical solver provides a clean non-linear 

curve for the power predictions. Although the spread for the wind tunnel data is quite large for the 

given advance ratios, FlightStream® produced results are consistently placed in the center of the 

 

Figure 24: E11x7 Thrust Coefficient 
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scattered data. One oddity noticed form the plots, however, is the predictions for the viscous 

coupling model and the non-viscous coupling model. It should be assumed that the viscous 

coupling model would produce higher predictions in the torque on the propeller blades and 

ultimately the power required, but here the opposite is shown. One cause for this is a non-

converging solution in the solver or perhaps a faulty geometry from the scan. Still, the fact of the 

matter remains that the predictions for both models are accurate and are placed in the range of the 

provided data. 

 Lastly, the efficiency plots for the E11x7 are provided in Figure 26. Both models are the 

propeller remain in the range of the UIUC data. Because the results for the thrust coefficient in 

Figure 24 where so similar the main defining characteristics between the viscous coupling model 

and the non-viscous coupling model are rooted the power coefficient. Therefore, the plot follows 

almost the exact same behavior as the power coefficient in that the viscous model produces greater 

efficiencies where it would be assumed that the opposite would happen. Again, the issues may 

 

Figure 25: E11x7 Power Coefficient 
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remain in the solver not converging in the provided number of iterations or the geometry of the 

propeller itself. In reality, this is a miniscule error because the results for both are still very 

accurate.   

Data from the University of Illinois propeller data base has been collected and implemented 

into an OpenVSP model which in turn provided the meshed geometries for the solver. The 

numerical solver, FlightStream®, was then validated over advance ratios for the thrust coefficient, 

power coefficient, and efficiency. All results produced by the solver follow the necessary trends 

and are placed directly in the scatter of the wind tunnel data or within a reasonable error.  

A simple analysis was also conducted on comparisons between the same E11x7 propeller with 

and without a spinner or hub in the center of the propeller. This analysis was carried out to validate 

the methods for the optimization derived geometries because the propellers in the GA do not have 

spinners. The thrust coefficient, power coefficient, and efficiency for both propellers are shown in 

Figure 27, Figure 28, and Figure 29. The torque loads on the blade remain relatively constant 

 

Figure 26: E11x7 Efficiency 
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between the two case which leads to power coefficient being almost identical. The main 

discrepancy in the results arises in the thrust coefficient predictions which are understandable. The 

spinner provides only structural support to the propeller as it is what holds the blades themselves. 

It provides no thrust and therefore can only increase drag on the propeller, effectively reducing the 

thrust. Thus, it is expected for the thrust to be slightly over predicted for the no-spinner model. 

Due to the increased thrust and similar power requirements, the no-spinner model has an increase 

 

 

Figure 28: Spinner vs No Spinner Thrust Coefficient 
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Figure 27: Spinner vs No Spinner Power Coefficient 
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in the efficiency from the model with the spinner. While there are discrepancies between the 

spinner and no spinner analysis, the trends between the two models are identical in nature. 

Therefore, it is reasonable to use a geometry model in the GA that does not have a spinner. This 

saves in computational time because there are less mesh faces to account for. Furthermore, it 

allows room for more error in the geometry designs and modeling in FlightStream®. As these 

models are loaded into the numerical solver, a mesh is created across the cross sections that are 

loaded in. If a spinner is to be meshed with the propeller as well, it is likely that more errors will 

arise in the models leading to non-converging solutions which provide the GA with no useful 

information and take longer to run in the solver. The conclusion is that producing models with no 

spinner is far more practical for blade optimization purposes. Lastly, the the optimization process 

described in this work is a preliminary design tool and therefore results are not required to be 

finalized but rather to provide further insight to the development process.  

 

Figure 29: Spinner vs No Spinner Efficiency 
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5.2 NACA Technical Report 

 The NACA TR-640 provides extensive wind tunnel performance data as well as the 

necessary information for reconstructing the propellers. The propellers provided in this report are 

10 feet in diameter. A total of three groups of propellers are tested. The first group has Clark Y 

airfoil sections and consist of 2, 3 and 4 bladed propellers. The second group is the same as the 

first except an R.A.F. 6 airfoil composes the cross section. The last group consists of a single two 

bladed propeller with an R.A.F. 

6 airfoil, but the chord is 50% 

greater than the two bladed 

propeller in group 2. The 

geometry data provided is 

shown in Figure 30. Because the 

propellers are very similar, only 

one group is studied in this 

validation. The R.A.F. 6 

propellers are studied for the 2, 

3, and 4 bladed designs. These 

three propellers are studied with 

the pitch at 15 degrees at 75% of 

the radius as well as one model where the pitch is increased to 25 degrees at 75% of the radius 

providing a total of 4 propellers in this validation. One notable aspect of the geometry is the 

thickness of the propeller blade. The chord, airfoil shape, and thickness of the blade were all 

provided which would lead the propeller geometry to be over constrained. The airfoil shape is 

 

Figure 30: NACA TR-640 Example Data 
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normalized by the chord, and therefore, when a chord and airfoil are given, the full geometry is 

provided. Appling anymore constraints regarding the cross section would lead to changing the 

airfoil itself. Thus, two models were created for the three-bladed model: one that uses the airfoil 

and chord only, and on that uses the airfoil, chord, and thickness. The geometry model which only 

uses the chord and airfoil shape is named “Airfoil” in the plots, and the model which uses an 

adjusted thickness is named “Adjusted”. Furthermore, each of these models was tested with and 

without the viscous coupling enabled. The viscous coupling models are indicated by “(V)”, and 

the models which do not use viscous coupling are indicated by “(NV)” after the geometry 

identification name.  

 The three bladed propeller with 15 degrees of pitch at 75% of the radius thrust coefficient 

is provided in Figure 31. The viscous coupling and non-viscous coupling models provide 

practically the same results as both plots lie directly on top of each other. The model which uses 

the adjusted thickness is thicker than the airfoil modeled thickness which leads to the over 

 

Figure 31: 3-Bladed 15° Pitch at 75% Radius Thrust Coefficient 
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predictions in the thrust coefficient. The models which use the airfoil captured thickness provide 

much more accurate data with respect to the NACA 640 report. The same trend is seen in the 

results for the power coefficient in Figure 32. Here the data is only provided until the thrust 

becomes negative at an advance ratio of ~0.81. This is because the GA only searches for propellers 

that are producing a positive thrust. Thus, there is no need to validate the flight condition. Both the 

airfoil thickness model and the adjusted thickness model provide the same trends as the wind 

tunnel data; however, the airfoil thickness model provides much more accurate results with some 

under predictions at lower advance ratios. The adjusted thickness model has an increased thickness 

radially outward along the propeller. This leads to the over prediction in the torque calculations 

which is reflected in the power coefficient. Although both models produce different results for 

thrust and power coefficients, the efficiency for both is similar due to the consistent over prediction 

by the adjusted thickness model. Figure 33 provides the efficiency for both geometry models. It is 

shown that the airfoil modeled thickness provides a better representation of the efficiency curve as 

 

Figure 32: 3-Bladed 15° Pitch at 75% Radius Power Coefficient 
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it increases and then experiences a sharp decline at an advance ratio of 0.6. The adjusted thickness 

model over predicts the location of this maximum followed by a drop off; in this model, the over 

increasing efficiency extends to an advance ratio of 0.7. Ultimately, the airfoil modeled thickness 

provides better results regarding the wind tunnel data produced from the NACA TR-640. 

Therefore, for the remainder of this validation, the airfoil captured thickness models were used.  

 The two-bladed propeller with 15-degree pitch is presented next. The results from this 

validation are similar to the three-bladed model largely because it is the same blade. Figure 34 

provides the results for thrust coefficient from the 2 blade propeller simulations. For both the 

viscous coupling model and the non-viscous coupling model, the thrust coefficient predicted by 

the numerical solver is identical to that of the wind tunnel. Other than slight over predictions at 

higher advance ratios, the numerical solver data is an exact match. The power coefficient data, 

 

Figure 33: 3-Bladed 15° Pitch at 75% Radius Efficiency 
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however, does not provide nearly as accurate results as the thrust coefficient modeling, but the 

power coefficient performance is still valid. Figure 35 provides the power coefficient data for this 

 

Figure 34: 2-Bladed 15° Pitch at 75% Radius Thrust Coefficient 
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Figure 35: 2-Bladed 15° Pitch at 75% Radius Power Coefficient 
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propeller and demonstrates a more linear curve than is shown by the wind tunnel data. This 

linearity is exhibited in both the viscous and non-viscous coupling models. Although the data does 

not experience an exact match, the general location of the data points is very similar to what was 

expected form the wind tunnel. The largest error in prediction arises between the advance ratios of 

0.3 and 0.6, and this under prediction is shown in the efficiency plots as the efficiency for the 

 

Figure 36: 2-Bladed 15° Pitch at 75% Radius Efficiency 
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Figure 37: 4-Bladed 15° Pitch at 75% Radius Thrust Coefficient 
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propeller is over predicted in that range. The plot of propeller efficiency for the 2-bladed propeller 

with 15-degree pitch at 75% the radius is provided in Figure 36. At the lower advance ratios, the 

efficiency predictions are identical to the wind tunnel performance; however, as the advance ratios 

increase the numerical solver over predicts the efficiency of the propeller. Despite this over 

prediction, the trend of the efficiency vs advance ratio is captured. Furthermore, the plots from the 

solver remain near to that of the wind tunnel. One important take away from this modeling is the 

lack of difference in the viscous coupling and non-viscous coupling models. One reason for this is 

the operating condition for these propellers which will be discussed in the following section.  

 The four-bladed propeller with the same pitch as the first two propellers is provided next. 

As seen before the thrust coefficient in Figure 37 has slight over predictions but remains very 

accurate in terms of the overall trends provided by the solver and the values of the plot itself. The 

same behavior as the two and three bladed propeller is also seen for the power coefficient given in 

Figure 38. Accurate values are provided at the lower and higher advance ratios but from advance 

ratios of 0.3 to 0.6 the power is under predicted. Furthermore, the efficiency plot for the four-

 

Figure 38: 4-Bladed 15° Pitch at 75% Radius Power Coefficient 
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bladed propeller, provided in Figure 39, is the same as the efficiency plots for the 2 and 3 bladed 

propellers where the solver provides the appropriate trend to the plot and accurate values for lower 

advance ratios and an over prediction for the higher advance ratios. Therefore, it is concluded that 

the solver is validated for the NACA TR-640 propellers with various numbers of blades.  

 Lastly, the propeller with a different pitch is provided for the validation to ensure that the 

solver offers a full range of propeller modeling capabilities. Here the three-bladed propeller is 

twisted by 10 degrees to offer 25 degrees of pitch at 75% of the radius. The thrust coefficient for 

this model is provided in Figure 40. Again, the same trend is shown for the propeller where the 

thrust coefficient is slightly over predicted in the range of advance ratios and remains accurate and 

within a reasonable range of the provided data. The main difference between this propeller and the 

others previously validated is the power calculations which are given in Figure 41. While accurate 

results are provided at the higher advance ratios, the solver over predicts torque values at the lower 

advance ratios. The cause for this is rooted in the steady rotary solver itself. At lower advance 

ratios, the steady rotary solver experiences difficulties in converging. For these flight conditions 

 

Figure 39: 4-Bladed 15° Pitch at 75% Radius Efficiency 
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the unsteady solver must be used, but for this case, only the steady rotary solver needs to be 

validated at the advance ratios provided to the GA which are well above these values which have 

error. Although, there are large errors at lower advance ratios for power predictions, the efficiency 

of the propeller is well matched by the solver in Figure 42. While there are some over predictions 

 

Figure 40: 3-Bladed 25° Pitch at 75% Radius Thrust Coefficient 

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Th
ru

st
 C

o
ef

fi
ci

en
t

Advance Ratio
Wind Tunnel Airfoil (NV) Airfoil (V)

 

Figure 41: 3-Bladed 25° Pitch at 75% Radius Power Coefficient 
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for maximum efficiency, the solver predicts the drop off for efficiency and provides a correctly 

modeled trend for the curve with respect to the provided wind tunnel data.  

 The propellers from the NACA TR-640 report have been used to validate the numerical 

solver that is implemented in the Genetic Algorithm. The solver has been shown to capture the 

effects of adding blades to a propeller, adjusting the pitch and other general characteristics. The 

propellers used in this validation used an R.A.F. 6 propeller with 2, 3, and 4 blades. A fourth model 

was also added to the group of propellers which had 3 blades but had a pitch which was increased 

by 10-degrees. The solver demonstrated appropriate modeling and accuracy for each propeller.  

5.3 Flow Separation Modeling 

 One notable characteristic between the previous two cases for propeller validation is the 

effects of including or not including the viscous coupling models for the solver validation. In 

section 5.1, the propellers from the UIUC Propeller Database experienced large differences 

between the cases when the flow viscous coupling was enabled and when it was not. This is due 

to the amounts of flow separation that occur on the top of the blade. This analysis of flow 

 

Figure 42: 3-Bladed 25° Pitch at 75% Radius Efficiency 
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separation and difference in viscous coupling models is indeed important to the performance 

modeling for the GA. Because the viscous coupling setting takes longer for the solutions to 

converge, it is not used in the modeling for the GA; however, the flow separation is still accounted 

for by a 7% rule. As demonstrated by the previous validation case which uses the NACA TR-640 

propellers, some solutions do not need to have the viscous coupling effects enabled as the solution 

converges on the same results. These cases consist of propellers with very low amounts of flow 

separation. Figure 43 provides the separation marker across the three-bladed NACA TR-640 

propeller with the pitch at 15 degrees at 75% of the radius. A separation marker of 1 indicates fully 

separated flow, and a separation marker of 0 indicates fully attached flow. Notice that there is 

almost no separation across the propeller. Therefore, whether the viscous coupling is turned on or 

off, it will not matter, only slight adjustments in thrust and torque will occur between the two 

models. This is the reason for the similarity in the models from the NACA report. When the 

separated flow becomes the dominating flow regime over the propeller, the viscous coupling 

effects are very important to capture. Figure 44 provides the separation for the GF 10x8 propeller. 

 

Figure 43: 3-Bladed NACA Propeller Flow Separation at an Advance Ratio of 0.5 
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Notice the large increase in the amount of separation. This separation is what causes the drastic 

difference in the results between the viscous coupling and non-viscous coupling cases.  

 Now that the reason for the difference in the cases is identified, a shortcut can be 

implemented in the optimizer to provide shorter run times. If there is no difference between the 

viscous coupling models and the non-viscous coupling models for conditions in which the flow is 

mostly attached, then only propellers with fully attached flow should be considered, and the 

viscous coupling mode should be turned off to provide faster run times. Furthermore, this analysis 

is supported that this is an optimization tool. Therefore, it should only consider optimal propellers 

for the solutions, and propellers with more separation are less optimal than propellers with less 

separation. Thus, a marker is set in the GA which indicates propellers with overloaded amounts of 

separation. When a propeller with more than 5% of the flow has separation markers of 90% or 

greater, the propeller is given a fitness of -10. This eliminates the propeller from being a possible 

candidate for the best propellers which pass their characteristics on to the next generation. This 

provides faster run times, and it only allows the GA to consider more optimal propellers.  

 

Figure 44: GF 10x8 Flow Separation at an Advance Ratio of 0.5 
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5.4 Coaxial Propeller Validation 

 The coaxial propellers were validated in the solver for thrust and torque loads. The 

geometry for the propeller comes from a scan of an MR9x4.5 propeller. The scan was conducted 

in the same manner as the UIUC propellers; however, in the case of this geometry construction, 

the entire geometry was gathered via scanning whereas the UIUC scans only collected airfoil 

shape. An example of the geometry that was constructed in the scan is provided in Figure 45, and 

 

Figure 45: MR9x4.5 Geometry 
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Figure 46: Coaxial Propellers at Various Points in the Validation 
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an image of the set up in FlightStream® is provided in Figure 46. Here the propellers are shown 

after a number of time iterations with the velocity magnitude color map shown across the 

propellers. The time stepping increment was set to 0.0001 seconds, and the solver was set to run 

such that the front propeller completed one full rotation after its wake encountered the rear 

propeller to ensure that all the effects were captured. The propellers were tested over RPM values 

ranging from 1000 to 15000 for both the front and rear rotor. The results for the thrust by both 

rotors are provided in Figure 47 and Figure 48. The front propeller thrust is predicted accurately 

by the solver for all RPM values of both the rear and forward rotor. As predicted, the rear rotor 

has little impact on the front rotor due to the nature of the setup described in Chapter 2. The rear 

 

Figure 47: Front Propeller Thrust Validation 

 

 

Figure 48: Rear Propeller Thrust Validation 
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propeller on the other hand, has a large dependence on the operating conditions of the forward 

rotor as shown by the experimental data in left graphic of Figure 48. The numerical solver results 

are accurate compared to the experimental data; however, the FlightStream® results fail to capture 

the full effect of the forward propeller, and thus, the solver is more accurately validated for the 

cases which fall in the red square. These cases consist of lower RPM values for the front propeller 

and higher RPM values for the rear propeller. This same accuracy is seen for the torque 

measurements as well which are shown in Figure 49 and Figure 50. The front propeller’s 

performance is modeled well by the solver and is congruent with what is expected from the 

experimental results. Furthermore, it is shown once again that the rear rotor has little if any impact 

  

Figure 49: Front Propeller Torque Validation 

 

 

Figure 50: Rear Propeller Torque Validation 
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on the performance of the forward rotor for the solver produced plots and the experimental data. 

The rear propeller torque values are once again modeled with accuracy but fail to capture the full 

effect of the front rotor. The range for accuracy of this validation is also shown by the red square 

and consists of the front rotor operating at a lower RPM and the rear rotor operating at a higher 

RPM. Though majority of the data is validated using the numerical solver, the GA will optimize a 

rear propeller that fits in the range of the red boxes. Because the solvers viscous models are aircraft 

centric, it is accurate only for higher Reynolds number simulations. The small rotors in this 

validation have Reynolds numbers on the order of 60,000 to 80,000 where the solver model is 

designed for Reynolds numbers on the order of few hundred thousand. This leads an error in the 

data at the lower RPM/lower Reynolds number values.  
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Chapter 6: The Genetic Algorithm Model 

 The propeller Genetic Algorithm is written in FORTRAN and requires a text file for input 

and a terminal command to access FlightStream® which provides the performance modeling for 

the propellers. This section provides a map for the GA, the variables considered, mutation 

techniques and the parent selection process for each generation.  

6.1 Model Blueprints 

 The full GA model is presented Figure 51. This model includes the logic and thought 

processes that the GA uses to go through the entire execution including the demes and the main 

generational loop. The GA starts with a simple text file input which specifies the number of 

generations for each deme, the number of generations for the main generational loop, the operating 

 

Figure 51: GA Blueprints 
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conditions for the propeller, the minimum and maximum value for each of the parameters, etc. The 

GA then builds a completely random set of members as the starting population for deme number 

1. These members are then tested and have the fitness determined. If the multiple flight condition 

setting is being executed, all the flight conditions are tested at the same time. Once each propeller 

has been evaluated, the fitness is determined for each member. Then, the four best members are 

placed in a mating pool where the next population is created. Finally, the new population is mutated 

and tested again. This is carried out for the user specified number of deme generations. The process 

of creating a new population, testing, building a new population off the four fittest, testing, and so 

on is carried out for each deme. Once each deme has been completed, the demes put forth their 

best member to create the starting population of the main generational loop. The process of testing, 

building, mutating, and testing is then carried out for the number of main generational loops.  

 The GA is built using five subroutines which are called in order throughout the main script. 

These subroutines are “Prop_Build”, “FlightStream®_Script”, “File_Read”, “ParentSelector”, and 

 

Figure 52: Subroutine Map 



90 

 

“Creator”. The order in which they are called is provided in Figure 52. This figure describes the 

process for a single iteration in the generations. “Prop_Build” is the first subroutine called in the 

generation. This subroutine uses the Bernstein Polynomials discussed in section 3.2 to build the 

CCS file for each propeller geometry. “FlightStream®_Script” builds a FlightStream® script which 

runs each member of a population in batch. After the script has been built a command line is used 

in the code to access FlightStream® and run the script. As each propeller is tested, and the 

performance is saved in a text file from FlightStream® which is then read back into the GA using 

the subroutine “File_Read”.  “File_Read” reads in the performance data for each propeller which 

consists of the thrust, torque and flow separation data for the propeller. Using the torque and the 

thrust the efficiency of the propeller is calculated by the following equations. 

𝐶𝑞 =
𝑄

𝜌𝑛2𝑑5
                                                                     (41) 

𝐶𝑝 = 2𝜋𝐶𝑞                                                                      (42) 

𝑃 = 𝐶𝑝𝜌𝑛
3𝑑5                                                                 (43)  

𝜂 =
𝑇𝑉∞
𝑃
                                                                       (44) 

Q and P are the torque acting on the propeller and the power required respectively, and T is the 

thrust produced. 𝐶𝑞 and 𝐶𝑝 are the torque coefficient and power coefficient. n is the rotational 

speed of the propeller measured in rotations per second. After the efficiency and thrust have been 

obtained, the percent of separated flow across the surface of the propeller is determined. If more 

than 7% of the propeller has flow which is more than 90% separated a fitness of -10 is assigned. 

After reading and calculating the necessary data, “ParentSelector” then determines the fitness of 

each member and performs the parent selection process which is discussed at the end of this 
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chapter. “Creator” takes the parents from “ParentSelector” and performs crossovers to create the 

new generation. This generation is then mutated, and the characteristics of each member are 

provided back to “Prop_Build” to create the geometries for the new generation.  

6.2 Variables 

 The basic propeller depends on three main sets of variables each of which have several 

defining parameters. The propeller’s geometry, performance, and the flight conditions under which 

the propeller operates define the GA and promote the GA to converge on a solution. In this case, 

the GA makes use of the propeller’s geometry and mutates it to obtain the performance of the 

propeller under the specified operating conditions. The geometric set of variables consist of the 

radius, airfoil shape function, twist angle (beta) function, chord length function, and the sweep 

function of the propeller. The latter four of these variables depend on several other variables to 

provide a curve along the operate directions of the propeller. The performance set of variables 

consists of thrust, torque (power required), and efficiency. In the case of this model, two of the 

three performance variables must be set to achieve any useful results. If only the thrust is chosen 

to maximize, then an extremely inefficient propeller will be selected. If the power required is 

chosen to be minimized, then the GA will converge on a propeller that produces very little thrust. 

The one confusing parameter to hold is the efficiency. If only the efficiency is chosen, it is possible 

that the GA will favor a decrease in power over an increase in thrust. Therefore, the two most 

optimal performance variables to set for general use are the thrust and the efficiency. Lastly, the 

flight conditions must be reasonably set with the given thrust, efficiency, and radius specifications. 

This set consists of the free stream velocity and the RPM setting. Failure to set appropriate values 

will lead to faulty convergences. An example would be a very low thrust setting for a high RPM 
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and radius value which will lead to a very skinny propeller which is trying to match the specified 

thrust. 

  In reality, models should be based off the power and thrust only. Therefore, the propellers 

will be maximizing thrust while absorbing a given power or perhaps minimizing power while 

producing a given thrust requirement. In this set up, propellers will be designed accurately for very 

specific operating conditions because some information has now been provided to the model which 

considers the performance of the power source. Nevertheless, the modeling approach used here 

which incorporates the thrust and the efficiency provides suitable results for the given study.  

6.3 Mutations and Crossovers 

 The GA uses a variation of a modified Laplace crossover, selective point crossovers, and 

random point crossovers to make the next population which is then mutated by a variation of power 

mutations. The modifications and variations used in the GA are explained and examined below.  

6.3.1 Laplace Cross Overs Modification 

 The Laplace cross over is one of the techniques used in this GA to generate members; 

however, this GA uses a modified version to provide better results. From the two equations 

described in the Laplace crossover section, six additional equations were added and observed over 

the six possible scenarios of parent 1, parent 2, and the target value. All of which were adjusted 

with respect to each other. 

𝑦1 = 𝑥1 + 𝛽 (𝑥1 − 𝑥2)                                                           (45) 

𝑦2 = 𝑥1 + 𝛽 |𝑥1 − 𝑥2|                                                            (46) 

𝑦3 = 𝑥1 − 𝛽 (𝑥1 − 𝑥2)                                                           (47) 
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𝑦4 = 𝑥1 − 𝛽 |𝑥1 − 𝑥2|                                                           (48) 

𝑦5 = 𝑥2 + 𝛽 (𝑥1 − 𝑥2)                                                          (49) 

𝑦6 = 𝑥2 + 𝛽 |𝑥1 − 𝑥2|                                                           (50) 

𝑦7 = 𝑥2 − 𝛽 (𝑥1 − 𝑥2)                                                           (51) 

𝑦8 = 𝑥2 − 𝛽 |𝑥1 − 𝑥2|                                                           (52) 

The eight presented equations were compared in the six possible combinations of parent 1, parent 

2 and the target value that the GA is trying to converge on. All six scenarios can be seen in Figure 

53.  It is now clear that certain equations make the appropriate mutation for certain scenarios. Table 

1 is provided to shed light on which equations prove useful in their crossovers and which do not. 

The green coloration indicates a proper mutation; the uncolored cells indicated an incorrect 

mutation. 

 

 

 

 

 

 

 

 

Figure 53: Possible Values of Parents and Target 
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Table 1: Mutation Direction for Modified Equations 

 Eqn 1 Eqn 2 Eqn 3 Eqn 4 Eqn 5 Eqn 6 Eqn 7 Eqn 8 x1 & x2 relation 

Case 1         x1<x2 

Case 2         x1>x2 

Case 3         x1<x2 

Case 4         x1>x2 

Case 5         x1<x2 

Case 6         x1>x2 

 

It is now seen that child 3 and child 5 are the most useful of the 8 equations. These two equations 

will provide a 66.66% chance of a proper crossover. However, by restricting the criteria for what 

equation to use based off the values of the parents with respect to each other, more equations can 

be used to provide a 66.66% chance of a proper mutation. If just the cases where parent 2 is greater 

than parent 1 (cases 1, 3, and 5) are observed, children 2, 3, 5, and 8 will provide a 66.66% chance 

of success, and if only cases where parent 1 is greater than parent 2 (cases 2, 4, and 6) are observed, 

children 3, 4, 5, and 6 will provide a 66.66% chance of a proper mutation. By extending the number 

of equations to use, the variation in the child produced increases and mutations are not consistent. 

This allows for the GA to run through a wider range of results.  

6.3.2 Selective Point and Random Point Crossovers 

 The selective and random point crossovers are used to create a child that is very similar to 

the two parents that were used in the synthesis. Both crossovers operate by simply exchanging 

parameters between two parents. The selective point crossovers exchange certain parameters 

between the two parents. In the case of this GA, these parameters consist of sets of polynomial 

coefficients that describe the characteristics of a parameter. The parameters referred to here can be 

the airfoil shape, chord, twist, and sweep. The polynomials which describe these are provided in 

chapter 3 section 2. For the selective point crossover, only entire sets of parameters are selected to 
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be exchanged between parents i.e. the selected point for the crossover is only at the end of a group 

of parameters. For example, the first 48 parameters that describe a propeller geometry are used to 

define the shape. The next 3 intervals of 5 parameters are used to describe the twist, chord, and 

sweep. Therefore, crossovers only occur at 48, 53, and 58. This ensures that the entire set of genes 

which describe a propeller defining parameter are transferred over. Thus, the child will have exact 

characteristics of the two parents.  

 The random point crossover operates based on two parents combining at a random point to 

make a new child. Therefore, it is very likely that half of the defining genes for a parameter are 

derived from parent 1 and the other come from parent 2. With four parents, there are a total of 12 

combinations of parents (1-2, 2-1, 1-3, 3-1, 4-1, 1-4, etc.). Therefore, two random numbers are 

selected for each crossover. The first random number is between 1 and 12, and it describes which 

parents will be combine and the order in which they will be blended. The second is between 1 and 

63, and it describes the gene at which they will split. For instance, if the first random number is 3 

and the second number is 34, then parents 1 and 3 will be split at the gene 34. The first part of the 

child will come from the first 34 genes of parent 1 and the last 29 genes will come from parent 3.  
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6.3.3 Power Mutation 

 The power mutation is mutation type chosen in this GA. The power mutation offers a wide 

range of mutation strength with the mutation being raised to a user defined value. The way by 

which the power mutation operates is described in section 2.4.3.6. The level of mutation is almost 

completely dependent on the value of p. A representation of the mutation variation can be 

described by a power function with varying levels of power. This is shown in Figure 54. The y-

axis represents the amount of mutation for given values of p over a range of possible random values 

for s. The distribution of random values is evenly distributed between 0 and 1. At p=1, the mutation 

strength is linear with respect to the random value; therefore, one can expect to see a mutation 

strength greater than 0.50 50% of the time. This is an extreme amount of mutation and will lead to 

over and under shoots on the target value. At the opposite end of the spectrum, a p value of 20 will 

 

Figure 54: Mutation Strength vs Random Number Selection Over a Range of p Values 
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lead to less than a 0.10 mutation strength roughly 90% of the time. This is far too low and will not 

lead to sufficient mutation amounts in the early stages of the GA. 

The correctness of the power mutation is dependent on a random value r and the value of the parent 

which is implemented upon t. The degree of correctness of the mutation will be ignored here i.e., 

the mutation either moves closer or further from the target; the degree to which it moves further 

or closer will be ignored. The following table presents evenly distributed possible values of a 

parent and the corresponding value for t. The table also presents the probability of the power 

mutation being correct. 

Table 2: Odds of Mutation for Original Power Mutation 

Parent Value t Odds if target is 

greater than parent  

Odds if target is less 

than parent 

0.1 0.111 11.1% 88.9% 

0.2 0.250 25.0% 75.0% 

0.3 0.428 42.8% 57.2% 

0.4 0.666 66.6% 33.3% 

0.5 1 100% 0% 

0.6 >1 100% 0% 

0.7 >1 100% 0% 

0.8 >1 100% 0% 

0.9 >1 100% 0% 

 

The columns “Odds if target is greater than parent” and “Odds if target is less than parent” 

represent the odds of a correct mutation if the target value is above the parent or below the parent, 

respectively. Take the first row for example: given that the range of values for a parent are between 

0 and 1, if the parent value is 0.1, then by equation 10 the value of t is 0.111. Now, r is a random 

number between 0 and 1 which means that there is a 11.1% chance that r is less than t, and there 

is an 88.9% chance it is greater than t. The target value is the most optimum value that the GA is 

looking for and is unknown. If the target value is greater than the parent value, then the mutation 
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needs to increase, so by equation 9 r needs to be less than .111 which is an 11.1% chance. If the 

target is less than the parent, then we need a decrease in the mutation, so by equation 9, r needs to 

be greater than 0.111 which is an 88.8% chance. Because the target is unknown, it can be said that 

there is a 90% chance the target is above the parent, and there is a 10% chance the target is below 

the parent. By this observation, the equality of t and r should be flipped in equation 9 because it 

would be better odds to have an 88.8% chance of being correct 90% of the time than having a 

11.1% chance of being correct 90% of the time. 

 Now, observe the behavior of a parent value being equal to 0.5. Therefore, there is a 50% 

chance the target is below and a 50% chance the target is above the parent. This also results of t 

value being equal to 1. This value for t results in a zero probability of the r value ever being greater 

than t. Thus, the mutation will only increase which means if the target is above the parent than it 

is guaranteed to approach it; however, if the target is below the parent, it will never be reached. 

This results in a true 50/50 chance of the target being approached which provides no weight to the 

argument of whether the inequalities in the power mutation should be flipped.  

 Lastly, observe the last condition in which the parent value is equal to 0.9. This results in 

a value for t which is greater than one leaving it impossible for r to be less than t. Therefore, there 

is a 0% chance that the mutation will decrease. There is a 90% that the target value is less than the 

parent, and a 10% chance that the target is above the parent. That means the GA will only be 

making a proper mutation 10% of the time. If the inequalities are flipped in the power mutation 

definition in equation 9, then we are left with a 90% of being right. Therefore, the direction of the 

inequalities should be flipped in order to promote better mutations in the Genetic Algorithm. Table 

3 provides the odds of correct mutation for various parent values.  



99 

 

Table 3: Odds of Proper Mutation for Flipped Inequalities 

Parent Value t Odds if target is 

greater than parent  

Odds if target is less 

than parent 

0.1 0.111 88.8% 11.1% 

0.2 0.250 75.0% 25.0% 

0.3 0.428 57.2% 42.8% 

0.4 0.666 33.3% 66.6% 

0.5 1 0% 100% 

0.6 >1 0% 100% 

0.7 >1 0% 100% 

0.8 >1 0% 100% 

0.9 >1 0% 100% 

 

A graphical representation of the odds is presented in Figure 55. Clearly the plots of both cases 

will simply flip from case to case; however, this plot provides an image of the area for which the 

odds of a 100% correctness mutation are present when the signs are flipped. It also stresses the 

point of the original power mutation in that if a value is already small and needs to decrease more 

it should rely on the original power mutation to do so. A key take away is that the modified power 

mutation will operate more effectively on a wider population which is present in the early stages 

 

Figure 55: Odds of a Proper Mutation Given a Parent Value and the Location of the 

Target 
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of the GA. The original power mutation will be more effective in later stages for fine tuning 

parameters.  

6.3.4 Mutation bounds 

 Using crossovers and power mutations as the operations for creating and mutating 

members, a check point has been implemented for both schemes to ensure that values outside the 

range of the specified parameters are not created. The Laplace crossover uses one of the eight 

mentioned equations to ensure upper and lower bounds are not crossed. The upper bound equation 

is provided from the 8th of the developed equations and is shown below  

𝑦8 = 𝑥2 − 𝛽 |𝑥1 − 𝑥2|                                                         (53) 

The lower bound check uses the 2nd of the 8 equations 

𝑦2 = 𝑥1 + 𝛽 |𝑥1 − 𝑥2|                                                        (54) 

It is seen that if the upper bound of the parameter at hand is crossed, then the value is decreased, 

and if the lower bound is crossed with the original mutation, then the value of the child’s parameter 

is adjusted to increase. This ensures that all values and mutations stay within the user specified 

range.  

 The power mutation uses one of the same equations presented in the original mutation to 

readjust values back into the limits. The conditional set for the values of t and r is replaced with a 

minimum and maximum range value. If the upper limit is surpassed, then the following is used 

𝑥 =  𝑥̅ − 𝑠(𝑥̅ − 𝑥𝑙)                                                             (55) 

Furthermore, if the lower limit is met, then the following is used to mutate the parameter 

𝑥 =  𝑥̅ + 𝑠(𝑥𝑢 − 𝑥̅)                                                            (56) 
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By using these equations and stated conditionals for minimum and maximum values, no mutation 

can produce a value for a parameter that is outside the range of the specified values.  

6.4  Parent Selection 

 The parent selection for this GA can vary more than most due to the different optimization 

points that the user describes. In general, the fittest four members of each population are selected 

to be placed in a mating where they will pass their characteristics to the offspring. The fitness of 

each member is determined by the following 

𝐹𝑖𝑡 =
∑(𝑇𝑐𝑤𝑡 + 𝜂 𝑤𝜂 

)
𝑖

∑(𝑤𝑡 + 𝑤𝜂 )𝑖

                                        (57) 

Here the Tc values are the thrust correctness of each flight condition and the 𝑤𝑡 values are the 

weight given to each of those thrust values.  

𝑇 = 1 −
|𝑇𝑟𝑒𝑞 − 𝑇𝑎𝑐𝑡|

𝑇𝑟𝑒𝑞
                                                           (58) 

Treq is the required thrust provided to the GA, and T𝑎𝑐𝑡 is the actual thrust found from the solver. 

When the required thrust is equal to the actual thrust the second term goes to zero and the fitness 

for that particular requirement is 1. The further the actual thrust strays from the required thrust 

leads to further decreases in the fitness. The same weighted method is applied to the efficiency 

where η is the efficiency at a given flight condition and the wη 
 is the weight of that flight condition 

efficiency. The number flight conditions can range from 1 to infinity; however, convergence issues 

arise when the number of flight conditions increases. Models have only been executed up to four 

flight conditions.  
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 The actual parent selection itself is described by Figure 56. All the members are first tested 

against each other in an unseeded tournament. In the first round, the first half of the members are 

tested against their counterpart in the second half i.e., member 1 faces member 65, member 2 faces 

member 66 as shown. This is not a complete method because the tournament is unseeded, and 

therefore, a secondary test must be conducted. From the tournament, four assumed fittest members 

will be selected. These four members are then individually tested against the entire population, 

and if any of the assumed fittest members have a lesser fitness, then that member is replaced. In 

Figure 56, the errors of the unseeded tournament are exposed in the elimination of member 65. 

Member 65 is the third best member and should be in the mating pool, but it is eliminated in the 

first round of the tournament; however, with the implantation of the round-robin style tournament, 

member 65 will end up replacing the assumed 3rd best member from the population.  

6.5 Generational Variance 

 Each population consists of 128 members. The four fittest members of each population are 

selected to be in the mating pool which will create the next population. To ensure that progress is 

not lost, the overall fittest member is chosen to be a part of the next generation unchanged. This is 

known as elitism. Once in the mating pool, modified Laplace, selective point, and random point 

 

Figure 56: Example Parent Selection 
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crossovers are performed on the four fittest members. These cross overs provide the foundation 

for the next set of members which are mutated.  

 The first crossovers seen in the population generation are the Laplace crossovers. These 

Laplace crossovers produce 36 of the members in the new population. These crossovers are done 

evenly over combinations of parents (parents 1 and 2, parents 1 and 3, etc.). Each combination of 

parents crosses 6 times. The next crossover done to create the new population is the selective point. 

There are 48 of these crossovers which occur between every parent combination including the 

order at every characteristic change in the vector of parameters. Lastly, the random point 

crossovers produce the remainder of the 128 members. Table 4 provides a summary of how each 

generation is constructed. Because a large portion of the new generation comes from non-mutating  

Table 4: Summary of Population Generation 

Member 1 Members 2-37 Members 38-85 Members 86-128 

Fittest from Previous 

Population 

Modified Laplace 

Crossover 

Selective Point 

Crossover 

Random Point 

Crossover 

 

parameters, a large number of mutations need to occur. The selective point and random point 

crossovers do create some variance in the populations, but they assume that the optimal values for 

each parameter already exist in the population, only not in the correct order. Therefore, the power 

mutation was implemented to provide some variance. The power of mutation varies depending on 

the accuracy of the fittest members. This is discussed in the following section. 
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 It is important to note that all the random values used in this genetic algorithm come from 

the prebuilt function in FORTRAN for random number generation. This random number generator 

provides real numbers between 0 and 1 when it is called. This function is called multiple times 

throughout the use of the GA, and to ensure its randomness is truly uniform. 2 test cases were 

executed. The results from these cases are provided in Figure 57. Here the random number 

generator was called 10,000 times. The bar graphs were then created which provide the amount of 

times a random number was between 0 and 0.1, 0.1 and 0.2, etc. As the plots show, the random 

number is indeed a from a uniform random number generator. 

6.6 GA Check Points 

 Lastly, the different check points implemented in the GA are discussed. These check points 

provide many advantages to the code over a variety of aspects which ultimately assist the GA and 

the solver in finding a global maximum. There a 6 main check points in the GA: 2 fitness-mutation 

checks, a flow separation check, an achievable efficiency, and 2 geometry check points. 

 

Figure 57: Random Number Variation 
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6.6.1 Mutation Check Points  

 The 2 fitness-mutation check points tell the GA how the next population will be created 

depending on the maximum fitness in the current population. Because many of the check points 

are constructed around eliminating poor performing members (these members are given a fitness 

of -10 to ensure the genes are not passed to the next population), in early stages, it is possible for 

every member to have a fitness of -10. In such a case, the GA will not know which member is 

most optimal and therefore, it will simply pick the last four members in the population to build the 

next generation. The odds of these members being good members is very unlikely, so the next 

population will simply be filled with poor performing members. This process will continue until 

the maximum number of iterations is reached. To combat this, the GA has a check. If the maximum 

fitness of the entire population is -10, then the GA builds a completely new and random population. 

With 128 members per population, it is unlikely that the GA will produce more than 2 random 

populations where every member is a poor performer. The second fitness-mutation check point 

deals with the mutation strength of the power mutation. If the maximum fitness in the previous 

population is not higher than a set value, the power of mutation is decreased, leading to an increase 

in the mutation strength. This gives the population a large amount of variance as it searches in the 

early stages. Once the GA starts producing members within a desired fitness, the mutation strength 

is decreased to allow for proper amounts of creep in finding the solution.  

6.6.2 Performance Check Points 

 The next check point mutation deals with the flow separation setting discussed in chapter 

2. If more than a certain number of faces on the top side of the propeller experience flow separation, 

then the propeller is given a fitness of -10. This is for two reasons: propellers with more flow 

separation are not good performing propellers and the solver does not model flow separation 
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impacts to their full extent. However, due to the randomness of the first generation, a lot of 

propellers experience massive amounts of flow separation, and none fall below the lower limit of 

faces which can have flow separation. Flow separation should be limited as much as possible, but 

if it is limited too much, none of the propellers will have a fitness other than -10. Therefore, there 

are two searches placed in the GA. The first looks for propellers with less than 7% of the surfaces 

separated. If none of the propellers fall in this category, then the GA makes use of its second search 

which finds propellers with less than 12% of the faces having separated flow. The GA continues 

this process throughout every generation; however, once the GA finds one propeller with less than 

12%, it will build more resembling these characteristics, and eventually one will be constructed 

which has less than 7% of the faces separated. At this point 7% becomes the new criteria.  

 A realistic efficiency check point has also been placed in the fitness calculation for the GA. 

While the numerical solver has mid-level fidelity capabilities, there are some cases in which the 

solver converges on non-realistic solutions or more likely, the solver does not converge in the 

given number of iterations. In this case, it is unlikely, but possible, that the solver will provide 

results for a non-realistic propeller that matches the thrust very well and has an extremely low 

torque on the blades, resulting in efficiencies greater than the possible limit. To address these 

 

Figure 58: Unrestricted Potential Airfoil Shape 
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propellers, a loop is placed in the fitness calculation which searches for propellers that efficiencies 

above the set limit. If a propeller is found to have an efficiency greater than this limit, it is given a 

fitness of -10.  

6.6.3 Geometry Check Points 

 Lastly, there are two geometry check points which are implemented to assist both the 

numerical solver and the GA. The first geometry check point that was implemented and the GA 

sees in constructing the geometries is the airfoil leading edge limit. Unchecked, the abstractness 

of the BP allows for the airfoils to take on shapes as shown in Figure 58. These two airfoil shapes 

appear to be identical, yet they were created by two different means. The airfoil on the left was 

created by having a lower surface au value that was much less than the upper surface. Because the 

lower surface is subtracted from the upper surface, when the lower surface subtraction is small, 

the leading edge can take shapes as shown. The airfoil on the right was created by setting the lower 

leading-edge shape to a value greater than the upper leading-edge term. Again, because the lower 

surface is subtracted, under these conditions the airfoil leading edge will take this shape. This is 

not only a bad design, but the solver has difficulty in converging on propellers or any lifting surface 

for that matter with these oddly shaped cross sections. To limit these shapes from being 

constructed, conditionals were set in place to make the lower surface term equal to the upper 

surface term if it is less the upper surface value. Note: this is only done for the first term located 

nearest the leading, therefore, propeller airfoils are still allowed to have extensive amounts of 

camber. The same sort of conditional is also applied to the leading-edge shaping terms.  

 The chord shapes are also limited in order to help the GA limit the extent to what it can 

create. Propellers with high efficiency, typically have chord lengths that taper towards the tip of 

the propeller blade. Simply to help the GA, the last two stations that model the chord at the tip and 
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near the tip were limited. The chord along the span of the propeller is described by five coefficients 

for a BP. The first coefficient describes the tip chord, and the fourth coefficient describes the chord 

at the hub. The second and third coefficients fill the chord descriptions between the tip in the hub. 

The last coefficient describes the overall length of the chord. To ensure that the chord had some 

amount of preferred taper, a conditional was set such that the first coefficient must be less than the 

second, and the second has must be less than the third. This means that the chord can potential 

increase up until the mid-span of the propeller, but after that point, the chord will be limited to a 

constant or decreasing shape.   
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Chapter 7: Results 

7.1  Stand Alone Propeller Model 

 The Genetic Algorithm was first set to optimize a single propeller operating in the 

freestream. This model used the steady rotary solver which offers the periodic symmetry. Using 

the periodic symmetry can cut run times down to half of what they would be with the full mesh; 

therefore, the GA ultimately converges faster. In this set up the propeller was optimized for thrust 

matching while keeping efficiencies very high for a single operating point. This model was used 

several times on multiple thrust settings, and a strong argument is made for the overall convergence 

of the GA.  

 Each propeller was tested in a free stream of 20 m/s and operated at 6000RPM. All 

propellers were set to 25.56cm (10inches) which corresponds to an advance ration of 0.71. Typical 

propellers at these conditions and sizes produce thrust values from 1 to 3 newtons79. The thrust 

input for the GA had a much higher range than the expected thrust values just to observe if its 

members would indeed try to optimize on the grossly over predicted inputs. Lastly, each propeller 

was provided a weight of 3 for the efficiency and 7 for the thrust, so it should be understood that 

the GA will favor thrust accuracy over an efficiency jump in the mutation process.  

7.1.1 Single Point GA Analysis 

 A single case is observed here to demonstrate the effectiveness of the GA. All thrust cases 

had the same behavior across the generations which is the reasoning for only examining one of the 

thrust settings in detail over the demes and main generations. This GA analysis focuses on the 3N 

requirement and outlines the GA from the first generation of the first deme to the 100th and final 

generation of the main loop.  



110 

 

 First, the thrust, efficiency, and fitness of four demes are analyzed over the course of 10 

generations in Figure 59. The thrust and the efficiency of the most optimal member of each 

generation of the demes are shown by the lines on the left-hand side of the plot which range from 

1 to 10. The lines with circle on the right-hand side represent the main generational loop. All the 

demes eventually produce propellers with greater than 70% efficiencies and thrust values that are 

near the requirement. Through this process, the demes are seen to be erratic in behavior as they 

bounce and mutate across the board, and in some cases decreases in thrust and efficiency are seen 

to be almost at random. But this behavior is rather easily explained by 1 one of two things: the 

favoritism shown towards accurate thrust propellers and one of the check points in the GA. The 

favoritism towards propellers with accurate thrust develops from the different weights given to the 

efficiency and thrust. Because thrust has a higher weight, the GA will choose propellers with 

 

Figure 59: Thrust and Efficiency over 10 Deme Generations and 10 Main Generations 
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accurate thrust while disregarding the efficiency of the propeller. This can therefore explain some 

of the absurd decreases in the efficiency. Second, recall that excessive amounts of flow separation 

across the top of the propeller are indicative of a poor performing propeller which is subject to 

large amounts of torque and decreases in thrust, thus large decreases in efficiency. To combat 

propellers of this nature the GA has a check point that of which assigns fitness levels of -10 to 

propellers with greater than 7% of the faces experiencing flow separation. One issue with this 

method, however, is the fact that it is very likely all the propellers will have greater than 7% flow 

separation. Therefore, if no propeller with less than 7% separation is created, then the GA looks 

for propellers with less than 12% separation. Once a propeller with the required separation is found 

then it will be given a high fitness and used to populate the next generation. Even though the GA 

is using a propeller with 12% separation, a propeller with less than 7% separation will inevitable 

be created over a few generations. Because the GA searches for the 7% criteria first, once it finds 

one with less than 7% separation, this propeller will then be the new dominating form even though 

 

Figure 60: Fitness over 10 Deme Generations and 10 Main Generations 
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its fitness may be lower than the original propeller with 12% of the faces separated (this decrease 

in fitness is common over the transition from 12% to 7% separation). Figure 60 demonstrates the 

decrease the in fitness from the transition of 12% separation to 7% separation. In this figure, large 

decreases in the fitness occur for each one of the demes. On average, the transition takes place 

after the 2 or 3 generation. It is rare to see an initial population that already has a propeller which 

has less than 7% separation as well for a deme to operate until the 8th generation before the 

separation occurs. Despite the decreases in fitness, all demes reach fitness levels of 0.88 or higher 

by the time the top performing members are passed to the main generational loop. Lastly a 

tabulated form of this data is provided Table 5. The yellow column shows the location of the 

transition point.  

Table 5: Deme Behavior over 10 Generations 

Generation 1 2 3 4 5 6 7 8 9 10 

Fitness 0.436 0.854 -0.416 -0.254 0.626 0.895 0.904 0.904 0.904 0.904 

Efficiency 0.720 0.799 0.634 0.557 0.714 0.765 0.754 0.754 0.754 0.754 

Thrust 5.18 2.65 9.05 8.15 4.27 2.91 3.03 3.03 3.03 3.03 

 

The fittest propeller geometries across the generations are provided in Figure 61. These sample 

geometries are taken from deme 2 and notice in Figure 60 that deme 2 experiences a massive 

decrease in fitness at the 3rd generation. This is due to the flow separation transition. The propeller 

now has less than 7% of the upper surface separated, but it is inefficient, and the thrust is over 

predicted. The most notable change in the geometries is the change from generation 9 to 10. This 

large jump in propeller shape is permitted to occur because in the early stages of the GA, the 

mutation strength is extremely high. The higher mutation strength allows the GA to cover an 

extensive amount of design space with no loss in fine tuning the geometries because the GA is in 

the early stages of the generations. All the demes have the same behavior other than some of the 

propellers that are produced in the final generation because each deme starts with a completely 
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random population and only operates over 10 generations which is not enough time to have a fully 

developed propeller.  

The main generational loop for the 3-newton propeller is examined next to demonstrate the how 

the GA mutates towards its most optimum value. The first population in the main loop was 

 

Figure 61: Example Deme Mutations over 10 Generations 
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constructed off the best propeller from each of the demes, and therefore, the propellers are for the 

most part good performing propellers. The fitness, efficiency and thrust of the best member from 

each generation across the total number of generations is provided in Figure 62. The propellers 

 

Figure 62: Main Generational Behavior for 3-Newton Propeller 

 

 

 

Figure 63: Fittest Propellers over 3N Thrust Requirement Main Generation 
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start out with fitness levels of about 0.89 and thrust values within 2% of the required value. 

Because weight of thrust is far greater than the efficiency, propellers often converge on thrust and 

then move towards increased efficiency designs which is present here. The demes have served the 

purpose of producing propellers that have thrust values near the required value, and now, the main 

loop will fine tune the propeller geometries to obtain a high efficiency propeller.  The GA 

continues to make large mutations from generation to generation until about the 10th generation 

and has a final mutation at generation 46 where the efficiency is increased by 1%. The final 

propeller has a thrust of 3.00N and an efficiency of 81.4% and an overall fitness of 0.931. Lastly, 

the most optimum propellers from generations 1, 25, 50, 75, and 100 are provided in Figure 63. 

Only three propellers are shown here because the GA stopped obtaining better members after the 

46th generation. Therefore, the maximum propeller at generation 50, 75 and 100 are identical. The 

propeller in the top left is from generation 1, and the propeller in the top right is from generation 

 

Figure 64: Geometric Parameters for 3N Propeller 
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25. The geometric parameters for the most optimal propeller of the 3N thrust requirement are 

provided in Figure 64. The propeller has characteristics that are indicative of an efficient propeller 

for each geometric parameter. Towards the tip of the propeller the blade has decreases in the pitch 

and the chord to prevent the blades from experiencing increased torque loads which will decrease 

efficiency. Furthermore, the propeller has some sweep at the tip of the propeller which is another 

characteristic of a typical efficient propeller. 

7.1.2 Single Design Point (2, 3, 5, 7, and 10 Newton Requirements) 

The GA was set for various thrust requirements over a range from 2 to 10 N to ensure that the GA 

and the solver would respond appropriately to the thrust that is demanded. The geometries and 

corresponding performance from each of the propellers is presented and demonstrates reasonable 

convergence given the thrust requirement for the constant diameter and operating conditions that 

all propellers were subject to.  

Table 6: Thrust, Efficiency, and Fitness for Thrust Requirements 

Design 

Thrust 

2N 3N 5N 7N 10N 

Thrust (N) 2.00 3.00 5.00 6.95 10.12 

Efficiency 81.24% 81.39% 78.06% 76.53% 71.55% 

Fitness 0.93148 0.93196 0.91987 0.90967 0.88921 

 

Table 6 provides the most optimum from each of the thrust requirements. It is obvious from the 

understand of section 2.8 that as the thrust is increases for a constant diameter propeller operating 

in constant conditions, the efficiency of the propeller will decrease. This is also demonstrated in 

the table as well. Furthermore, because the efficiencies are dropping off, the fitness levels of the 

propellers will also be limited as the thrust acquired fitness and the efficiency determined fitness 
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battle each other. A representation of this tug-of-war between efficiency and thrust is provided 

Figure 65. The theoretical maximum efficiency for a propeller given thrust, free stream, and 

density, is derived in section 2.9. The propellers produced by the GA follow the trend of this 

theoretical maximum efficiency over the range of given thrust values with constant under 

prediction of roughly 14%.  

 The final propeller designs are presented in the following four images. The designs for 

each of the propellers at the given thrust values are quite intuitive. As the thrust is increased, the 

chord and pitch along the propeller are increased to an extent. All propellers exhibit appropriate 

sweep as well to maintain efficiency. As the propellers increased in size, the sweep was also 

increased but remained similar between the cases and appears to simply have been scaled from 

case to case.  

 

Figure 65: Efficiency vs Thrust Production for Constant Operating Conditions 
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 The geometries for each optimized propeller are provided Figure 66 where the 2 Newton 

propeller is in the top left and the 10 Newton propeller is on the bottom. The 5, 7, and 10 newton 

propellers are simply scaled versions of each other. Because the GA limited the propellers to a 

certain amount of separation, the propellers could only increase the pitch angle so much to increase 

the thrust production. The GA was permitted to increase the pitch further out towards the tip and 

still have meet the requirement for minimum separation but doing so would lead to large drag 

forces on the tip which in turn would increase the torque and decrease efficiency. Therefore, the 

GA used the chord to match the thrust requirements once the pitch angles had been put to the 

maximum. Note that each of the propellers from the 5, 7 and 10 requirements increased the chord 

nearest to the hub. This was done to keep the propellers more efficiency by reducing the drag on 

the tip of the propeller and ultimately reducing the torque. There then persist an issue in the 

 

Figure 66: Optimum Propellers from Thrust Requirements of 2, 3, 5, 7, 10 N 
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optimization where the GA can increase the chord at the hub by some large amount to account for 

the thrust or increase the pitch of the propeller at the tip by a miniscule amount. Both methods will 

achieve the necessary thrust but sacrifice some loss in efficiency. This GA found the following 

forms for twist and chord to be the most effective, presented in Figure 67. The chord values nearest 

towards the hub increase exponentially with increases in thrust requirement whereas the tip values 

have a more linear increase in length with the increase in thrust requirement. All the curves for 

twist distribution along the span of the propeller are very similar and seem to reach a maximum 

value which is caused by the flow separation limit. One remarkable similarity in cases is between 

the 5 Newton requirement and the 7 Newton requirement. These two propellers are almost scaled 

versions of each other in which the greater of the two has increases in the chord, twist and sweep 

 

Figure 67: Geometric Plots for Optimum Propellers 
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distribution. The sweep for each of the propellers demonstrates a common behavior, relatively 

constant values until about 75% of the radius at which point the propellers sweep begins to 

increase. This increase in sweep is amplified as the propellers grow larger.  

 

 

 

  

Figure 68: Airfoil Sections of Optimal Blades 
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Lastly, the airfoil shapes are examined between each one of the cases. Figure 68 provides the airfoil 

shape at 10%, 50% and 100% of the radius for each of the propellers. The first row provides airfoil 

shapes for the 2 Newton model, the second row provides results for the 3 Newton model and so 

on all the way to the 10 Newton model. The most notable trend that is drawn from this is the 

increased thickness in the airfoil shape as the thrust is increased. This same behavior was seen in 

the validation cases. Original geometry models over predicted thrust in the validation cases 

because the airfoil cross sections were too thick. This issue was eventually resolved, but it brought 

forth an important point that a thicker airfoil brings with it an increase in the thrust or lift produced. 

The same trend is seen here in the results for the GA. Second, notice the abstractness of the airfoil 

shapes as the thrust is increased. Until the thrust requirement reaches approximately 7 Newtons, 

the airfoils are reasonably shaped. This could be due to an issue in the GA where it is trying to 

converge on these unreasonable thrust demands from such small diameter propellers. Therefore, 

the GA applied more attention to the chord and twist values while paying little attention to the 

airfoil shapes.  

7.2 Coaxial Model 

 The number of generations used in the coaxial models was truncated due to the extensive 

run times; however, appropriate convergence is still seen in each model due to the nature of the 

first generation. The GA for the coaxial model operated in the same manner as the single 

standalone application excepts for two distinct differences. The most notable of these is the 

absence of demes and the decreased number of generations. The run times for the coaxial 

simulation were too large to achieve full scale optimization from random generations to maximum 

members; therefore, the demes were neglected, and the number of generations was set to 10. In 

order to account for all the losses in generational strength, the coaxial GA used data from the stand-
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alone models. The first generation of the coaxial GA used the most optimal member from the 3-

newton requirement GA execution. The first member of the first population was the 3-newton 

propeller exactly. The rest of the 127 members were created by using weakened power mutations 

on the same propeller parameters. By using an already optimized propeller only slight adjustments 

were required to optimize in a different but similar operating condition. These slight adjustments 

are expected to occur to a sufficient degree with in the provided 10 generations. The GA is then 

expected to finish all 10 generations in 6.86 days.  

7.2.1  Setup 

The optimized coaxial simulation was based on the validation case which is seen provided in 

Coaxial Propeller Validation section. Here the propellers were placed 7.5cm apart. The free stream 

velocity was set to 0m/s and the propeller rotational speeds were set with in the described limits 

of the validation. The forward propeller had a rotational speed of 6000RPM, and the rear optimized 

propeller had a rotational speed of 10,000 RPM. Both propellers had a diameter of 22.86 cm. An 

 

Figure 69: Example Coaxial Set up 
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example of the set up in the solver is provided. The solver was allowed to run for 80 iterations. 

The time step for each iteration was set to 0.0002 seconds. This time step and number of iterations 

allowed for the wake of the front propeller to come into full contact with the rear propeller and 

converge. 

 The fitness function for the coaxial simulation is slightly different than that of the single 

propeller model. Instead of having an efficiency and thrust based model, a torque and a thrust 

based model were used to determine fitness. This was done because the efficiency becomes zero 

in static environments such as the hover conditions. The overall fitness calculation remained the 

same with the efficiency being replaced with torque, and instead of maximizing the efficiency, the 

torque was minimized. A weight of 4 was given to the torque values and a weight of 7 and 6 were 

provided to the thrust values.  

7.2.2  Coaxial Results 

The coaxial GA was executed for two different thrust requirements: 10N and 16N. The 16N model 

had a thrust weight of 7 while the 10N model had a weight of 6. To provide some perspective, the 

 

Figure 70: 16N Thrust Requirement Propellers at Generations 1, 3, 5, 7, and 10 (from 

left to right and top to bottom) 
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validated propeller at these exact operating conditions produced ~8.8N with a torque of 0.170 N-

m. The 16N results are provided first in Figure 70. The maximum propeller from each of the 

generations is provided. All these propellers have 15.49N to 15.98N and torque values from 

0.4083N-m to 0.4524N-m. One notable characteristic that the GA favors is the sweep of the 

propeller. As the GA moves through the generations, the propellers have more and more sweep. 

This swept back blade is typical for efficient propellers.  

 There are cases of non-convergence in the solver where the same propeller will produce 

different values of thrust and torque which are provided in Figure 71. Due to the inherently 

unsteady flow that is introduced by the front propeller, the rear propeller tends to oscillate in its 

values for torque and thrust. This can lead to errors in the solver where the maximum performing 

propeller performs less than it had originally which then allows a less dominant propeller to pass 

 

Figure 71: Thrust and Torque vs Generation 
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its genes to the next generation. Nevertheless, the values for the plot deviate very little. The final 

propeller from the 10 generations had a thrust of 15.88N and a torque of 0.4138N-m.  

 The 10N model produced results similar to the 16N requirement only scaled down so that 

the model would meet the required thrust. The 10N model started with in the same manner as the 

16N model by mutating the stand-alone 3N model. The results from the 10 generations are 

provided below in Figure 72. The first noticeable difference between the two is the amount of 

sweep that the propellers took on. Ideally, the GA would have found a swept back blade to me be 

the most optimial; however, the GA focused on decreasing the chord at the tip of the propeller. 

The chord lengths are also decreased from the 16N model which is an obvious geometry difference 

given the reduction in the thrust requirement. While the airfoils that the two models converged are 

similar, the 10N model found that by decreasing the thickness of the airfoil it could obtain a 

propeller which produced less torque. The propeller, however, is limited in the model to a given 

thickness so, that top and bottom airfoil curves are not over lapping.  

 The geometric parameters for both propellers are plotted against the radial values in Figure 

73. All of the results for the 10N model are given in red while the 16N results are provided in blue. 

 

Figure 72: 10N Thrust Requirement Propellers at Generations 1, 3, 5, 7, and 10 (from 

left to right and top to bottom) 
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Both propeller models demonstrate the same relationship with the chord values. Infact, the 16N 

model chord values are almost a linear increase from the 10N models. The pitch for both models 

is identical which implies that the difference in thrust values was accounted for in the changes in 

the chord only. The sweep for the 16N model is more reasonable with respect to what is generally 

seen for efficient propellers while the 10N model takes on a more unique form. The 3-N stand-

alone model which was used to produce the first geometry did not take on these sweep values; 

therefore, the attribute was picked up in the generations. Perhaps a non-converging result was 

provided by the solver leaving the GA with faulty data. Nevertheless, both geometric 

characteristics follow typical values and show improvements in the performance.  

 

Figure 73: Geometry Values for 10N and 16N Thrust Requirement 
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Chapter 8: Conclusions and Remarks 

  Using an advanced real coded genetic algorithm which takes advantage of demes and 

mutation directions and a computational efficient solver, a robust real coded genetic algorithm has 

been developed for propeller blade shape designs in both steady and unsteady flight conditions. 

The solver was first validated using performance data from the UIUC propeller database, NACA 

Technical Report 640, and wind tunnel data for a coaxial rotor configuration. The results from the 

GA prove to be reasonable and within an expected range provided the performance data from wind 

tunnel experiments and existing knowledge of propellers. The steady propeller optimization 

designs were permitted to run over 140 total generations with 40 of those generations comprising 

the demes. The coaxial models only ran over 10 generations; however, designs were not 

constructed from a totally random population like the stand-alone models. The unsteady, coaxial 

initial population was developed from one of the stand-alone model convergences. Thus, an 

already optimized propeller design was used in the initial generations, and only small adjustments 

were required to optimize the propeller for a different flight condition. Furthermore, with 128 

members per generation it is reasonable to say that 10 generations would provide enough time for 

convergence.  

 There are a several areas of work that still need to be delt with to maximize the efficiency 

of the GA and solver itself. The first of these is the computational power and efficiency that was 

used in these executions. While the coaxial simulation simultaneously ran members of the 

population the steady, stand-alone models were run one at a time. Now, this is not to say that only 

one model was run at once. By running each of the members one at a time, multiple GA thrust 

requirements were run on the same computer which ultimately reduced the total run time; however, 

for even faster results, the stand-alone model should be altered such that it operates in the same 
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manner as the coaxial where it runs multiple sets of observations at a time. From a simple 

calculation, it is estimated that a single propeller model with 128 members per generation over 140 

generations can be completed in less than 2 days whereas the current model takes just over 6 days 

to complete. The second improvement which can be in regard to computational efficiency is the 

amount of computational power itself. The current machine that the GA is running on has 28 cores; 

therefore, 7 runs were executed simultaneously providing 4 cores to each. By increasing the 

number of cores available, a full-scale coaxial optimization is plausible.  

 It is mentioned in this work that the optimization does have built in which it focuses on 

variable pitch propellers. While the results are not provided in the work due to a larger focus on 

the unsteady problem, the variable pitch propeller model is very useful and not just in the sense of 

propeller itself. The variable pitch model focuses on four different flight conditions, therefore, 

even if the propeller was not variable pitch, the multiple point optimization would be very useful 

for different applications. A future study of this work should consist of the variable pitch model 

applied to aircraft or perhaps focus on a constant pitch propeller with differing flight conditions.  

 The last suggestion for the future of this work and propeller optimization in general is the 

most interesting and arguably the most important. During the propeller validation process, it was 

discovered to be quite arduous in taking a scanned propeller and turning it into a suitable geometry 

for testing, but it was shown to be possible. Furthermore, during the development of the coaxial 

simulation, the idea of using an already optimized propeller to build the initial generation gave a 

spark to this process. The argument made here is that propellers in general need to be optimized 

for the given advances in electric rotor craft for UAM and UAV applications. Many efficient and 

well performing propellers exist; however, none perfectly fit the desired flight conditions 

therefore, there exists the need for the optimization scheme. It would be very efficient and effective 
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to have an algorithm which matches a Bernstein polynomial to a given point cloud collected from 

a scan. There are 63 parameters to predict in this case just as the problem described in this paper, 

so the GA here can handle the number of parameters. The point cloud would offer the most optimal 

configuration of points which the GA is working towards constructing using the BP. The 

evaluation times would be short compared to the solver run times, and the fitness function would 

be based off the accuracy of the geometry curves from the BP to the point cloud. In summary, the 

user would simply input the same file as described in appendix II as well as a point cloud or perhaps 

even a matrix which contains the points from the point cloud. This scanned propeller would then 

be optimized given a flight condition. It is suggested that the most efficient way to match the point 

cloud geometry would be to generate geometry curves (chord, twist, sweep) as a function of the 

radius and match these with the BP. The airfoil development should only be done at certain section. 

Optimization of the entire propeller and all the point cloud points would prove to be difficult. After 

all, it will be sent through an optimization process, so the geometry only needs to be similar not 

100% correct.  
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Appendix I: Geometry Transformation 

 The complete process for developing a propeller’s cross sections from a scan are detailed 

in this section. The point cloud is first loaded into MeshLab as a .ply file, shown in top of Figure 

74. While the scans in the validation case consist of a top scan and a bottom scan of the propeller, 

it is suggested that the data be gathered in one scan for better accuracy. If this cannot be completed 

in one scan, the process follows the exact same steps as described in this section with the exception 

of adding a step in which the top and bottom scans are put together. Once the original scan is 

loaded, the number of points is increased using the Poison disk-sampling tool in MeshLab is used 

to increase the number of points. This adjustment can be observed in bottom of Error! Reference 

source not found.. With the number of points increased to an appropriate amount, the .ply file is 

 

 

 

Figure 74: Point Clouds from Propeller Scan 
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loaded into MATLAB using the built-in function. Once the file is ply is loaded into MATLAB, it 

is transformed and rotated to be oriented along an axis to allow for easier data collection. An 

 

Figure 75: MATLAB Point Cloud Rotation 
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example of this rotation is provided in Figure 75. The rotation is done by using the built in 

MATLAB “affine3d” this is the function that rotates the point cloud using a specified matrix. The 

full code is provided in Figure 76. Lines 3-8 read and display the point cloud as it is directly 

provided. Lines 10-15 conduct the translation of the point cloud so that the hub of the propeller is 

at the origin. Lines 17-28 provide the rotation angles and the rotation matrix used. Lines 29-33 

create the matrix used in the “affine3d” function as well as create the rotation variable, “tform”. 

 

Figure 76: Code for Point Cloud Translation and Transformation 
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Line 34 executes the transformation, and lines 36-37 display the transformed the point cloud. Once 

transformed such that the point cloud is oriented on an axis with the hub positioned at the origin, 

the cross-sectional data can be collected using sets of conditionals. The information containing 

each of the data points is stored in a structure of whatever the point clouds name is under the field 

“Location” i.e., the data for each point is found in variable “PointCloudName.Location”.  The 

information in the Location matrix is stored as x, y, and z coordinates. Therefore, all of the points 

 

Figure 77: Cross Section Collection 
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in the matrix are analyzed through a loop. If the value of a point lies within the given constraints 

for a cross section it is stored to build the geometry of that cross section. An example of the first 

cross section collection loop is provided in Figure 77. The first line defines a variable, “f”, that 

contains the data for all points in the point cloud. The first “for” loop runs through each point in 

the point cloud. If the x-value location (radial value) is in between the given range for the cross 

section, the x, y, and z coordinates for that point are stored in a matrix called “X_Sec1” which 

contains all the points for the first cross section. The second “for” loop divides the cross section 

into upper and lower sections. The airfoil file used in OpenVSP has to have the bottom and top 

curve separated; therefore, the division is made here by drawing a line through the airfoil and 

separating points along the top and bottom. This procedure can be seen in Figure 78. If points are 

 

Figure 78: Airfoil Top and Bottom Division 
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above the red line, they are placed in the upper airfoil curve, and if they are below the red line, 

they are placed in the lower airfoil curve. The entirety of this code shown in Figure 77 and is done 

for each cross section. Once all the cross sections have been obtained, they are translated such that 

the leading edge of each airfoil is at its own respective origin and the trailing edge is on the x axis. 

To do this, all the points that make a cross section or airfoil are adjusted by the leading-edge point. 

For example, if the leading the edge is at (-453, 205), then all points will have 453 added to the x 

value, and the y values will have 205 subtracted from them.  The rotation is down by simply 

applying the following two equations for all the points for given axes.  

 

 

Figure 79: Airfoil Transformation 
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𝑋𝑟𝑜𝑡 = 𝑋𝑜𝑔 cos(𝛽) − 𝑌𝑜𝑔 sin(β) 

𝑌𝑟𝑜𝑡 = 𝑌𝑜𝑔 cos(𝛽) − 𝑋𝑜𝑔 sin(𝛽) 

𝛽 is the angle by which the airfoil is rotated to become aligned with the x axis. The og terms 

represent the original x and y coordinates, and the rot terms represent the rotated coordinates of 

the airfoil. Lastly all the points of the airfoil are normalized by the chord length. The full process 

is provided in Figure 79. The order of operations moves from left to right then top to bottom. The 

final normalized airfoil is then used to create the OpenVSP airfoil file for the propeller. An 

example airfoil file is provided in the UIUC validation section in Figure 20. 
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Appendix II: Input File Overview 
 

 The text file input for the single point 

optimization is provided in Figure 80. 

The first 4 lines describe the behavior and 

set up of the GA itself. The number of 

greater generations is the number of 

generations in the main generational 

loop, and the number of lesser 

generations is the number of generations 

in each deme. The number of demes is 

constructed by calling the subroutine by 

the specified number of times. It has been 

done in other projects where the number 

of demes can be set as an input, but here 

it is set to a concrete value of 4. Lines 5 

and 6 describe the governing limits for 

the construction of each of the 

geometries. Line 5 gives the number of 

cross sections in the radial direction while 

line 6 gives the number of points that 

describe the airfoil. Here it is set to 50 so 

there are 25 points to describe the upper 

surface and 25 to describe the lower. 

 

Figure 80: Text File Input 
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Lines 7 and 8 provides weights for the fitness calculation. Line 9 gives the diameter for the 

propeller. Lines 10, 11, and 12 provide the solver set up and flight conditions for the propeller. 

Line 13 gives the thrust which the propeller is to be optimized for at the provided flight conditions. 

The rest of the inputs describe the minimum and maximum values for each of the coefficients that 

describe the behavior of the BP. Notice that all of the values are set from 0 to 1 except for the 

leading-edge terms of the airfoil and the sweep terms. The leading-edge terms are limited so that 

the leading edge cannot be extremely sharp. For subsonic flow regimes it is expected for the most 

optimal airfoil to have a rounded leading edge. Furthermore, the solver has difficulties on 

converging on propellers with these very sharp leading edges with thin surfaces. The sweep is 

limited to 0.5 due to initial results seen from the GA. None of the most optimal propellers had 

sweep coefficients greater than 0.5; therefore, it was limited in order to help the GA converge. It 

should be noted that even with this limitation, propellers are still capable of having sweep angles 

as high as 28.6 degrees.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 


