

Propeller Design and Optimization Using a Robust Genetic Algorithm and a

Computationally Efficient Solver

by

Grady Pastor

A thesis submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Master of Science

Auburn, Alabama

May 7, 2022

Copyright 2022 by Grady Pastor

Approved by

Roy Hartfield, Chair, Assistant Professor, Aerospace Engineering

Imon Chakraborty, Assistant Professor, Aerospace Engineering

Anwar Ahmed, Assistant Professor, Aerospace Engineering

2

Abstract

 A computationally efficient and reliable propeller design tool has been constructed using

an advanced real coded Genetic Algorithm (GA) and a mid-fidelity potential flow solver. The GA

constructs a population of propeller geometries using a series of Bernstein Polynomials (BP) which

have a total of 63 coefficients. This population of propeller geometries is then tested using a

reliable and efficient solver. The best four members from the population are then obtained by

means of a tournament style selection followed by a round-robin style tournament to determine

the true maximums. A following population is then built using the 63 characteristics from the four

most optimal members. The process of build, test, select, and build is carried out for several demes

or subpopulations which provide the initial population for the main generational loop. After all the

deme and main generations have been executed, the GA will provide a propeller that matches the

desired thrust input for the specified operating conditions and diameter while maintaining high

propulsive efficiencies due to the nature of the fitness function. This thesis describes the technical

details of the optimizer, solver, and associated tooling, validation cases for the solver, and sample

optimization results.

3

Acknowledgments

 I would first like to thank my professor Dr. Roy Hartfield for all his guidance during the

development of my thesis and other graduate studies as well as his former student, Dr. Vivek

Ahuja, who was an enormous source of information and assistance for my work. I would also

like to thank my parents for their loving support, and finally, I would like to thank my girlfriend

who always provided words of encouragement.

4

Table of Contents

Abstract ... 2

Acknowledgments ... 3

List of Tables .. 7

List of Figures ... 8

List of Abbreviations .. 12

Chapter 1: Introduction ... 13

Chapter 2: Basic Theory ... 17

2.1 CFD Solvers .. 17

2.2 Lower Order Tools .. 17

2.3 Potential Flow Solvers .. 18

2.4 Genetic Algorithms ... 19

2.4.1 Overview ... 19

2.4.2 Binary vs Real Coded ... 20

2.4.3 Cross Over Types .. 21

2.4.4 Mutation Types ... 24

2.4.5 Demes ... 27

2.5 The Propeller ... 28

2.6 Variable Pitch Propeller .. 30

2.7 Coaxial Propellers ... 31

2.8 Flow Separation .. 32

2.9 Maximum Efficiency .. 33

Chapter 3: The Propeller Geometry .. 39

3.1 The Geometric Build ... 39

3.1.1 OpenVSP ... 40

3.1.2 Component Cross Section ... 41

3.2 Geometry Definition ... 42

3.2.1 Airfoil Import .. 43

3.2.2 Bernstein Polynomials .. 44

3.2.3 Geometry Implementation .. 49

Chapter 4: The Solver .. 51

4.1 Script and Setup .. 51

5

4.2 Steady (Rotary) ... 52

4.3 Unsteady ... 53

4.4 Vorticity and Pressure Solver ... 53

4.5 Solver Theory .. 54

4.6 Run Times ... 55

4.7 Meshing... 58

Chapter 5: Validation for the Solver ... 60

5.1 UIUC Propellers ... 60

5.2 NACA Technical Report ... 72

5.3 Flow Separation Modeling .. 81

5.4 Coaxial Propeller Validation ... 84

Chapter 6: The Genetic Algorithm Model .. 88

6.1 Model Blueprints .. 88

6.2 Variables ... 91

6.3 Mutations and Crossovers ... 92

6.3.1 Laplace Cross Overs Modification.. 92

6.3.2 Selective Point and Random Point Crossovers ... 94

6.3.3 Power Mutation ... 96

6.3.4 Mutation bounds ... 100

6.4 Parent Selection .. 101

6.5 Generational Variance... 102

6.6 GA Check Points ... 104

6.6.1 Mutation Check Points .. 105

6.6.2 Performance Check Points .. 105

6.6.3 Geometry Check Points .. 107

Chapter 7: Results ... 109

7.1 Stand Alone Propeller Model ... 109

7.1.1 Single Point GA Analysis ... 109

7.1.2 Single Design Point (2, 3, 5, 7, and 10 Newton Requirements).. 116

7.2 Coaxial Model ... 121

7.2.1 Setup .. 122

7.2.2 Coaxial Results ... 123

Chapter 8: Conclusions and Remarks ... 127

6

References ... 130

Appendix I: Geometry Transformation ... 133

Appendix II: Input File Overview ... 140

7

List of Tables

Table 1: Mutation Direction for Modified Equations ... 94

Table 2: Odds of Mutation for Original Power Mutation ... 97

Table 3: Odds of Proper Mutation for Flipped Inequalities .. 99

Table 4: Summary of Population Generation ... 103

Table 5: Deme Behavior over 10 Generations .. 112

Table 6: Thrust, Efficiency, and Fitness for Thrust Requirements ... 116

8

List of Figures

Figure 1: Point crossover example .. 22

Figure 2: Deme Example .. 27

Figure 3: Pressure Gradient Example ... 32

Figure 4: Efficiency and Velocity change vs Thrust .. 36

Figure 5: Efficiency and Velocity Change vs Freestream Velocity ... 37

Figure 6: Example OpenVSP Mesh .. 40

Figure 7: Example Cross Section Import .. 41

Figure 8: Example CCS File ... 42

Figure 9: Example of Shaping Function Effects ... 45

Figure 10: Pascal's Triangle .. 46

Figure 11: Example Airfoil Variation ... 48

Figure 12: Isometric View of Geometry Build ... 49

Figure 13: Front View of Geometry Build ... 50

Figure 14: Octree Example ... 54

Figure 15: Coaxial Mesh Configuration ... 58

Figure 16: 60x40 Mesh Used in Steady Rotary Analysis ... 58

Figure 17: Example UIUC Propeller Database Geometry Data ... 61

Figure 18: Scanner and Scanner Setup ... 62

Figure 19: Raw Scan and Enhanced Point Cloud ... 62

Figure 20: Example Airfoil and Airfoil File ... 63

Figure 21: GF 10x8 Thrust Coefficient .. 64

Figure 22: GF 10x8 Power Coefficient ... 65

https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748090
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748091
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748092
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748093
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748094
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748095
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748096
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748097
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748098
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748099
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748100
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748101
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748102
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748103
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748104
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748105
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748106
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748107
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748108
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748109
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748110
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748111

9

Figure 23: GF 10x8 Efficiency ... 66

Figure 24: E11x7 Thrust Coefficient .. 67

Figure 25: E11x7 Power Coefficient .. 68

Figure 26: E11x7 Efficiency ... 69

Figure 27: Spinner vs No Spinner Power Coefficient .. 70

Figure 28: Spinner vs No Spinner Thrust Coefficient .. 70

Figure 29: Spinner vs No Spinner Efficiency ... 71

Figure 30: NACA TR-640 Example Data .. 72

Figure 31: 3-Bladed 15° Pitch at 75% Radius Thrust Coefficient .. 73

Figure 32: 3-Bladed 15° Pitch at 75% Radius Power Coefficient .. 74

Figure 33: 3-Bladed 15° Pitch at 75% Radius Efficiency... 75

Figure 34: 2-Bladed 15° Pitch at 75% Radius Thrust Coefficient .. 76

Figure 35: 2-Bladed 15° Pitch at 75% Radius Power Coefficient .. 76

Figure 36: 2-Bladed 15° Pitch at 75% Radius Efficiency... 77

Figure 37: 4-Bladed 15° Pitch at 75% Radius Thrust Coefficient .. 77

Figure 38: 4-Bladed 15° Pitch at 75% Radius Power Coefficient .. 78

Figure 39: 4-Bladed 15° Pitch at 75% Radius Efficiency... 79

Figure 40: 3-Bladed 25° Pitch at 75% Radius Thrust Coefficient .. 80

Figure 41: 3-Bladed 25° Pitch at 75% Radius Power Coefficient .. 80

Figure 42: 3-Bladed 25° Pitch at 75% Radius Efficiency... 81

Figure 43: 3-Bladed NACA Propeller Flow Separation at an Advance Ratio of 0.5 82

Figure 44: GF 10x8 Flow Separation at an Advance Ratio of 0.5 .. 83

Figure 45: MR9x4.5 Geometry ... 84

https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748112
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748113
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748114
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748115
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748116
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748117
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748118
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748119
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748120
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748121
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748122
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748123
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748124
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748125
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748126
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748127
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748128
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748129
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748130
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748131
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748132
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748133
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748134

10

Figure 46: Coaxial Propellers at Various Points in the Validation ... 84

Figure 47: Front Propeller Thrust Validation ... 85

Figure 48: Rear Propeller Thrust Validation .. 85

Figure 49: Front Propeller Torque Validation .. 86

Figure 50: Rear Propeller Torque Validation ... 86

Figure 51: GA Blueprints.. 88

Figure 52: Subroutine Map ... 89

Figure 53: Possible Values of Parents and Target .. 93

Figure 54: Mutation Strength vs Random Number Selection Over a Range of p Values 96

Figure 55: Odds of a Proper Mutation Given a Parent Value and the Location of the Target 99

Figure 56: Example Parent Selection .. 102

Figure 57: Random Number Variation ... 104

Figure 58: Unrestricted Potential Airfoil Shape ... 106

Figure 59: Thrust and Efficiency over 10 Deme Generations and 10 Main Generations 110

Figure 60: Fitness over 10 Deme Generations and 10 Main Generations 111

Figure 61: Example Deme Mutations over 10 Generations.. 113

Figure 62: Main Generational Behavior for 3-Newton Propeller ... 114

Figure 63: Fittest Propellers over 3N Thrust Requirement Main Generation 114

Figure 64: Geometric Parameters for 3N Propeller .. 115

Figure 65: Efficiency vs Thrust Production for Constant Operating Conditions 117

Figure 66: Optimum Propellers from Thrust Requirements of 2, 3, 5, 7, 10 N 118

Figure 67: Geometric Plots for Optimum Propellers .. 119

Figure 68: Airfoil Sections of Optimal Blades ... 120

https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748135
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748136
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748137
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748138
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748139
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748140
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748141
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748142
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748143
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748144
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748145
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748146
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748147
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748148
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748149
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748150
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748151
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748152
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748153
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748154
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748155
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748156
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748157

11

Figure 69: Example Coaxial Set up .. 122

Figure 70: 16N Thrust Requirement Propellers at Generations 1, 3, 5, 7, and 10 (from left to right

and top to bottom) ... 123

Figure 71: Thrust and Torque vs Generation .. 124

Figure 72: 10N Thrust Requirement Propellers at Generations 1, 3, 5, 7, and 10 (from left to right

and top to bottom) ... 125

Figure 73: Geometry Values for 10N and 16N Thrust Requirement .. 126

Figure 74: Point Clouds from Propeller Scan ... 133

Figure 75: MATLAB Point Cloud Rotation ... 134

Figure 76: Code for Point Cloud Translation and Transformation ... 135

Figure 77: Cross Section Collection ... 136

Figure 78: Airfoil Top and Bottom Division .. 137

Figure 79: Airfoil Transformation .. 138

Figure 80: Text File Input ... 140

https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748158
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748159
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748159
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748160
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748161
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748161
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748162
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748163
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748164
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748165
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748166
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748167
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748168
https://d.docs.live.net/db12279756b71440/Desktop/Writing/Thesis03_14LSF.docx#_Toc98748169

12

List of Abbreviations

BP Bernstein Polynomial

CCS Component Cross Section

GA Genetic Algorithm

MDAO Multi-Disciplinary Analysis and Optimization

UAM Urban Air Mobility

UAV Unmanned Aerial Vehicle

UIUC University of Illinois at Urbana-Champaign

13

Chapter 1: Introduction

 The need for a high-speed, high-fidelity propeller design and optimization tool has been

satisfied by using a vorticity based potential flow solver and a streamlined and efficient real coded

genetic algorithm. With an increased interest towards electric powered flight, propellers are given

more and more attention as they are the most practical applicants for propulsion in this genre of

aircraft. The design of electric air vehicles requires extremely efficient propeller designs that can

match the exact required thrust and power load that is applied to the motor for optimum operating

conditions1,2. Commercial off the shelf propellers generally are not sufficiently well matched to

electric aircraft performance requirements to achieve efficiencies required for vehicle viability.

Thus, there is a need for a design tool which can provide a robust conceptual design based on flight

conditions and thrust requirements. To drive a design toward a physically achievable solution, the

tool must be able to model performance metrics with reliable fidelity and to employ population-

based optimization methods the tool must be computationally efficient. By having a robust

conceptual design process the propeller and vehicle designs emerging from the conceptual design

process are far more mature, ultimately saving time and resources. There are computational fluid

dynamic tools that are capable of predicting performance with high fidelity, but these tools are not

sufficiently computationally efficient for conceptual design trade studies. Lower order methods

such as blade element theory, lifting line, XFOIL and XROTOR can be used in various

combinations to produce results for special cases; however, such tools are not suitable for angle of

attack analysis, or for cases in which there is a two-way interaction between propellers or between

propellers and other aerodynamic components. For this work, a modern surface vorticity solver

known as FlightStream® was selected for the propeller performance analysis. FlightStream® has

14

both steady and unsteady solution options which are capable of addressing the propeller

performance analysis problems efficiently and with at least preliminary design level fidelity.

 The concept of the Genetic Algorithm stems from a purely survival-based system, much

like that of which is exhibited in nature3. A population of members is randomly created, and each

member of the population is tested to determine its fitness. The fittest members pass their genes

onto the next generation by crossing with other relatively fit members. These new members are

then tested, and the fittest ones of the current population pass their genes to the next population

and so on and so forth. The GA depends on mutations to expose good attributes of a member4.

Without extensive mutating, positive genes and gene combinations will never become exposed

and passed onto the next population. Thus, a weaker population is created. This same behavior can

be examined in the wild. For instance, a species of animal that is present in an environment that

requires its members to have two distinct survival characteristics: speed and proper camouflage.

However, the current population only consists of members that possess the ability to attain high

speeds. Over the course of hundreds of generations, a mutation occurs in one of the offspring which

cause the pigment in the skin to change color to fit in with the surroundings more appropriately.

This member would be considered extremely fit for its environment, and thus, it would reproduce

more than the other less fit members. This mutation in the skin pigment would then become a

dominating characteristic of the population. The GA operates on the same basis of survival. Unless

there is a large amount of mutation across the generations, favorable characteristics will never be

exposed5.

 The Genetic Algorithm is a tool used in design and optimization problems in which a

maximum or minimum value is found depending on the fitness function. This GA takes advantage

of the real coded genetic algorithm basis to find the best performing propeller for given flight

15

conditions. The idea of the GA in application with aerospace design and optimization has been

around since the 1980’s, and it has been applied to a vast range of engineering problems6 that vary

from solid rocket motor design to guidance and control7,8. Many improvements have been made

to GAs since their first appearance in the 50’s and 60’s9 when John Holland from the University

of Michigan made their discovery10. These improvements have shortened run times by developing

more effective methods of parent selection to increasing the probability of a proper mutation or

crossover. However, there is still a limit for the number of variables that must be predicted by the

GA for a given computational time11. This GA extends that limit on two fronts by means of a better

performing GA and an extremely computationally efficient flow solver that decreases run times.

 Previous propeller performance tools have focused on 2-D, thin surface, geometries to

efficiently analyze the general performance characteristics12. Here, 2-D refers to mean surface

approximations which only use a thin surface for the propeller blade which captures twist, chord

and sweep variations. The 3-D geometries refer to models which incorporate some thickness to

the airfoil shape. While a 2-D model is an efficient method, it is not overly effective in the sense

that any practical propeller geometry will be constructed and built based off a 3-dimensional

propeller design which incorporates some cross-sectional airfoil shape. Therefore, to obtain the

information about efficiencies and thrusts at various flight conditions for a 3-dimensional

geometry is far more important. Moreover, while trends can be observed in both 2-dimensional

geometries and 3-dimensional geometries, the 2D geometry is limited to chord, twist and sweep

values. The 3D propeller blades can not only provide more realistic numbers regarding the

propeller, but airfoil shapes can also be implemented to the design of the propeller. This allows for

the conceptual design to further expose problems and information not seen by low fidelity design

tools.

16

 There are however challanges to the 3D geometry optimization. The most obvious of these

draw backs is the increase of design parameters to model the added dimension from 2 to 3. This

can often double the number of parameters, and thus, the convergence time for the GA portion can

take much longer. The number of generations must be increased as well as the number of members

in each generation. Furthermore, the solver used to analyze each of the geometries will become

more computational expensive as the mesh becomes more complex with the added dimension.

Therefore, an effort to streamline the basic methods of the GA to effectively handle the necessary

number of parameters to model a propeller and the analysis tool used in the GA is required.

The main efforts for the work presented here:

• Develop an efficient GA capable of handling the vast amount of required design variables

• Develop a geometry definition that virtually has no limits on the design space other than

user inputs

• Apply the GA to stand-alone propellers as well as coaxial propeller designs

 Conceptual and preliminary design requires tools that possess high computational

efficiency as well high fidelity to further extend the concepts and ideas in the design phase. Many

tools exist that provide fast solutions, but they lack the fidelity needed to provide a sturdy

preliminary design. Furthermore, there exist such tools that are the opposite in which they provide

the necessary fidelity, but the computational times are not compatible with current large scale

optimization techniques. This work uses FlightStream®, which provides the necessary fidelity to

strength preliminary designs, but also offers computational times that can pair with optimization

schemes.

17

Chapter 2: Basic Theory

 The requirement for reliable preliminary design level fidelity and short computational

times for the GA design approach drove the decision to use FlightStream®. This section provides

explanation for the flow solvers that were not chosen to address this specific problem and why

FlightStream® was implemented.

2.1 CFD Solvers

 Three-dimensional Computational Fluid Dynamic (CFD) analysis tools are capable

providing very high-fidelity solutions for propellers and solving an unsteady problem of propeller-

wing interactions13. These tools are also capable of accurately modeling a given propeller over a

wide range of different freestream velocities and rotational values without having to adjust the

solvers methods or expand upon them; however, these tools are not capable of completing the tasks

with high computational efficiency in most cases14. This informs a need for an accurate

aerodynamic analysis tool with full three-dimensional flow solving capability, at least conceptual

design level fidelity, robust and high-fidelity geometry input, unsteady solving capability and

computational efficiency.

2.2 Lower Order Tools

 Some of the existing lower order tools for obtaining performance data include QPROP or

XROTOR; however, these aerodynamic tools generally offer only mean camber surface

definitions for the geometry and steady flow solution options15. XROTOR is a tool designed

specifically for free tip propellers, ducted rotors, and wind machines16. The tool can provide

accurate predictions of axisymmetric and spatially non-uniform distributions of slipstream and the

induced velocity. The geometry for XROTOR is modeled by radial distributions of the chord

length, twist, and airfoil data. While this may produce an accurate model in reasonable time, it

18

provides no information about the far field. A recent study was done on propeller-wing

interactions. In the study, the aerodynamic tool used was XROTOR. The induced velocities at the

location of the wing were not directly produced by XROTOR. Instead, a vortex theory-based

procedure was constructed to model the propeller effects at the wing with the given XROTOR

data. Furthermore, this aerodynamic tool also lacks the ability to model the propeller at any angle

of attack in the freestream. Only freestream velocities parallel to the axis of rotation are modeled.

XROTOR is incapable of modeling any “edgewise” flight conditions17.

 QPROP provides a relatively similar analysis for the propeller model which is implemented

with a simpler geometry design. The propellers examined in this tool are modeled with a blade

element/vortex method. The geometry file consists of distributed radial values and the

corresponding twist and chord lengths. The model also requires extensive performance

information about the airfoil such as CLα ̧CLmin, CLmax, etc18. Often XROTOR and QPROP can

provide excellent results for cruise conditions or for specific design scenarios for which

appropriate models have been adapted; however, they do not offer a full range of flight condition

analysis capabilities, and they have only limited aero-propulsive integration analysis capabilities.

2.3 Potential Flow Solvers

 There are two main types of potential flow solvers: vorticity based, and pressure based.

Pressure based solvers use the determination of pressure fields along the provided geometry to

determine the aerodynamic loads that act on the object. A combination of source and sink panels

along with doublet panels on the trailing edge is used to provide a solution for pressure based

potential flow solvers. Vorticity solvers depend on the circulation about a given geometry while

taking advantage of the Kutta-Joukowski theorem and applying it to each panel on the surface.

These potential flow solvers use vortex rings and doublet distributions over the surface of the

19

geometries. Vorticity based solvers also allow for the use of non-manifold and non-conformal

mesh surfaces unlike pressure-based solvers. In general, the vorticity based potential flow solvers

are much more robust and allow for courser meshes which ultimately reduce the computational

time19. The need for a robust solver with short computational times is required for the use of

optimization with a GA. Early-stage solutions for the GA can be extremely rough and pose a

plethora of problems for numerical flow solvers with extremely arbitrary designs. It is necessary

to have tool that can provide a solution for these designs.

 FlightStream® offers this suite of characteristics and was thus selected for this optimization

study. FlightStream® is a high-fidelity tool with very short computational times because it is a

vorticity based potential flow solver20. Unlike most three-dimensional flow solvers, FlightStream®

uses surface vorticity sheets and vorticity-based loads which greatly expedites the solving time.

The volumetric meshes seen in conventional solvers take far longer to provide results and offer

minimal advantages in the accuracy of calculations21.

2.4 Genetic Algorithms

 A genetic algorithm (GA) is an optimization technique that mimics the behavior of the

natural world in which organisms mutate and create offspring which share parents’ genes. The

fittest of these organisms will survive to produce more offspring who share their genes; the less fit

of these organisms will die out. The GA operates by the same set of parameters: fitness-based

selection and mutation/gene crossing. Proper mutations are rewarded, and mutations which do not

show progress or hurt the population are discarded.

2.4.1 Overview

 The genetic algorithm consists of many generations. Each of these generations has a

population of n members. Each of which is a solution to the GA. Whether or not the member is a

20

good solution depends on the fitness function of the GA. Each member has a set number of

parameters or genes that describe it. These members are then assigned a fitness level based off a

fitness function which describes that member’s ability to do the task at hand. The members with

highest fitness will move onto the gene pool where their parameters will be swapped and/or

mutated with the other higher functioning members. The products of this gene pool will be the

next generation and so on and so forth until the maximum number of generations has been met or

the GA has converged on a solution.

 There are two main operations to consider when constructing the real coded GA:

mutate/cross parameters between members and determining fitness levels. There are many

techniques for making alterations to members; however, they all follow the same basic principles

of crossing over genes followed by mutations. It is extremely important for the mutations to have

the capability to produce extremely wide variation in parameters as well as very fine adjustments.

The fitness level for each of the members must be assigned. This fitness assignment is done by the

fitness function which should incorporate every important aspect of what is trying to be optimized.

Failure to include all necessary values can lead to untrustworthy fitness assignments, and thus,

members are passed on who should have been terminated. This can lead to sub optimal solutions.

2.4.2 Binary vs Real Coded

 The real coded GA and the binary GA are the two main types of genetic algorithms. The

binary GA uses a string of binary numbers to represent each members attributes22 whereas the real

coded GA uses real numbers to model each characteristic23. In the case of the binary GA, the

mutations occur to the string of binary numbers which are then converted to real numbers that are

implemented in the model. The real coded GA simply applies the mutation to the real numbers

themselves which describes the given member. While binary GAs have dominated since the

21

existence of the Genetic Algorithm itself24, the real coded GA proves to be the dominant of the

two in many cases. There have been optimization studies done in which binary and real coded GAs

run in parallel25; however, for the sake of simplicity, this section will focus on the use of one or

the other. While the binary GA offers some advantages over the Real Coded GA, there are also

many situations in which the roles are reversed which has ultimately led to the decision for using

the real coded GA in this optimization study. One major issue with binary GAs is known as

Hamming cliff which is when the values of adjacent numbers differ in each bit. This can lead to

convergence issues as the GA approaches a global maximum. Furthermore, using real coded

parameters to model each member allows for large optimization domains for each variable as well

as gradual mutations over the generations to find solutions26.

2.4.3 Cross Over Types

 The crossovers in a GA provide the necessary bases for the variation between generations

without straying too far from partially correct solutions. The GA will first make the new population

by means of cross overs, and then mutate that population. Without the crossovers, the GA would

lack any interaction between the best performing members; therefore, correct solutions would be

left completely up to partially random guessing.

2.4.3.1 Laplace Cross Overs

 The Laplace crossover method is used in many genetic algorithm applications27 and is

given by two equations each describing the children of the two parents. The following crossover

is applied to each parameter individually.

𝑦1 = 𝑥1 + 𝛽|𝑥1 − 𝑥2| (1)

𝑦2 = 𝑥2 + 𝛽|𝑥1 − 𝑥2| (2)

22

x1 and x2 are the parents (the fittest members from the previous population). y1 and y2 are the

children of the fittest two members of the previous population. β is a random number that satisfies

the Laplace distribution and is generated by the following equation.

𝑓(𝑥) = {
𝑎 − 𝑏 log(𝑢𝑖) , 𝑟 < 0.5

𝑎 + 𝑏 log(𝑢𝑖) , 𝑟 ≥ 0.5
 (3)

a is the location parameter, and b is a scaling parameter. ui and ri are random numbers between 0

and 1. From the information provide in equations 1 and 2, a correct mutation is only likely to

occur 50% of the time.

2.4.3.2 Point Cross Overs

 Pont crossovers can be useful in the application of real coded GA’s; however, they can be

limiting without a proper amount of mutation. Point crossovers take the characteristics of two

parents and directly apply those characteristics to the children without any alteration other than the

blending of the two parents. An example of a single point and a double point crossover are shown

in Figure 1. There can be as many cross overs as there are variables that describe a member minus

one. In this case, the maximum cross over is a 4-point. In such a case, the children would have

every other parameter swapped from each of the parents. Furthermore, the order in which the cross

overs are represented can be changed (the location of the split point can move) to further increase

crossover diversity. Nevertheless, the point cross over technique implies that the correct values

Figure 1: Point crossover example

23

already exist in the population. This is virtually never the case. Therefore, the point cross over

mutation is very impractical unless combined with other mutation strategies

2.4.3.3 Linear Cross Overs

 Linear crossovers provide a wider range of mutations than point cross overs, but the

tendency of the mutation to move in the proper direction is not extremely effective. Linear cross

overs take parent one and parent two and combine the attributes to form an infinite number of

possible solutions. Provided parents x1 and x2 the following three solutions can be developed as

example.

𝑐ℎ𝑖𝑙𝑑1 = 0.5𝑥1 + 0.5𝑥2 (4)

𝑐ℎ𝑖𝑙𝑑2 = 1.5𝑥1 − 0.5𝑥2 (5)

𝑐ℎ𝑖𝑙𝑑3 = −0.5𝑥1 + 1.5𝑥2 (6)

Now it is seen that all possible solutions have the potential to converge on the correct value;

however, the computational time to do so is quite extensive. A proper mutation is a one in three

chance. The first of the solutions provides a child with a value that lies somewhere in the middle

of the two parents. The second solution provides a child that exceeds the value of the first parent

to some degree outside the bounds of parent one and two. The last solution provides some value

to the offspring, that will exceed parent two beyond the bounds of parent one and parent two. The

target value is unknown and can sit in the middle of the two parents or outside the bounds of the

parents on either end. Therefore, a proper mutation is given one out of every three mutations. There

are more solutions that can be developed by altering the coefficients of x1 and x2, but these will

only increase or decrease the extent to which the above-mentioned crossovers will be behave and

not the odds of properly mutating.

24

2.4.3.4 Blended Cross Overs

 Blended cross overs offer the same range of mutation as the linear cross overs and provide

a better method for convergence. These are very similar to the modified Laplace cross overs except

the beta value is replaced by an alpha which is held constant throughout the time if the simulations.

Using parents x1 and x2, two children can be formed as follows

𝑐ℎ𝑖𝑙𝑑1 = 𝑥1 − 𝛼(𝑥2 − 𝑥1) (7)

𝑐ℎ𝑖𝑙𝑑2 = 𝑥2 + 𝛼(𝑥2 − 𝑥1) (8)

With only two solutions provided, and a set value of alpha, the crossover variation is limited. While

solutions will converge on a value due to the decreasing nature of the term in the parenthesis, the

odds of making a proper mutation is not as likely as the modified Laplace crossover (discussed in

section 6.3.1). Nevertheless, none of the crossover schemes provide a completely perfect cross.

The pairing of the crossover types and minor advantages in each of them makes the difference in

convergence times.

2.4.4 Mutation Types

 Genetic Algorithms depend largely on the mutations of the generations. There are many

mutations that provide a variety of solutions to the GA. A number of these mutation types were

examined for this GA. The mutations themselves range in effectiveness and such effectiveness

depends on the point at which the GA has progressed through its timeline. More drastic mutations

prove to be very effective in early stages while the more moderate changes provide better solutions

in later stages. These mutations are described in full in the following subsections.

25

2.4.4.1 Power Mutations

 Power mutations account for a large majority of the mutations in each of the populations

and provide some of the more radical mutations to the propellers. Power mutations are defined by

the following equation28.

𝑥 = {
𝑥̅ − 𝑠(𝑥̅ − 𝑥𝑙), 𝑡 < 𝑟

𝑥̅ + 𝑠(𝑥𝑢 − 𝑥̅), 𝑡 ≥ 𝑟
 (9)

𝑥𝑙 and 𝑥𝑢 are the lower and upper bounds for the parameter that is to be mutated. 𝑥̅ is the parent

or the most fit member of the previous population. r is a random number between 0 and 1. t is

determining factor for the mutation and is presented.

𝑡 =
𝑥̅ − 𝑥𝑙

𝑥𝑢 − 𝑥̅
 (10)

s is included to determine the extent of the mutation and is defined as follows

𝑠 = 𝑠1
𝑝 (11)

s1 is a random number between 0 and 1. p is the index of mutation. This parameter governs the

amount of mutation for given parameters. As the index of mutation increases, the amount of

mutation decreases and vice versa.

2.4.4.2 MPTM

 The Makinen, Periaux, Toivanen Mutation (MPTM) can be described fully by Deep29 in

which a mutated child, 𝑥̂, is produced by the parent x. The mutation process is described by

equations 12 and 13.

𝑥̂ = (1 − 𝑡̂)𝑥𝑙 + 𝑡̂𝑥𝑢 (12)

26

𝑡̂ =

{

 𝑡 − 𝑡 (

𝑡 − 𝑟

𝑡
)
𝑏

 𝑟 < 𝑡

𝑡 𝑟 = 𝑡

𝑡 + (1 − 𝑡) (
𝑟 − 𝑡

1 − 𝑡
)
𝑏

 𝑟 > 𝑟

 (13)

t is described in the same manner as the power mutation. If one were to work out the problem, it

would be shown that this mutation is the exact opposite of the original power mutation in the sense

of the direction in which the mutations tend to move. Like the power mutation, the MPTM has a

parameter which governs the strength of the mutation, b. As b is increased the mutations grow

weaker and weaker. Furthermore, as the GA progresses through the generations it does not lose

any strength in the mutations if the MPTM is used.

2.4.4.3 Non-Uniform Mutation

 The Non-Uniform Mutation (NUM) provides an excellent technique for converging values

near the final generations of the GA, yet it provides the necessary range of large mutations in the

early stages. Examples of these have been used and explained in multiple applications30,31. The

process by which the mutations occur is shown.

𝑥𝑡+1 = {
𝑥𝑡 + Δ(𝑡, 𝑥𝑢 − 𝑥𝑡), 𝑟 ≤ 0.5

𝑥𝑡 − Δ(𝑡, 𝑥𝑡 − 𝑥𝑙), 𝑟 > 0.5
 (14)

t represents the generation that the GA is currently working on, and r is a random value between

0 and 1. The Δ operator is defined as follows.

𝛥(𝑡, 𝑦) = 𝑦 (1 − 𝑢(1−
𝑡
𝑇
)
𝑏

) (15)

u is a random value between 0 and 1, and T is the total number of generations in the GA.

Furthermore, as the GA reaches the last of its generations, the mutations begin to decrease in

27

strength do to the term in parentheses that is raised to the b power. Thus, the model will converge

properly in theory.

2.4.5 Demes

 Aside from the vast range of crossovers and mutations, Genetic Algorithms have a

multitude of other approaches which not only assist in locating a maximum in less iterations but

also in avoiding local maximums32. One method for avoiding local maximums is through the use

of demes, or subpopulations, which operate for the sole purpose of providing the starting

generation to the main generational loop33. These demes operate for a specified number of

generations which can range anywhere from 1 to infinity depending on the available computational

power. The demes then put forth their best members to create a population which starts the main

set of generations. The demes can communicate throughout the generations of the main group or

only once at the start. A visualization that uses 4 demes is provided in Figure 2. Here four demes

are used to run for a specified number of times and then provide information to the main

generational loop. Demes in this application have been introduced in a number of GAs to improve

the overall performance of the GA34. Because the demes operate entirely independently of each

other, the best members should be similar with some differences. Obviously, if each of the demes

is executed for many iterations, the most optimal member from each deme should be same, but in

this application, the demes are only executed for ranges of 10 generations due to computational

Figure 2: Deme Example

28

power availability. Thus, not enough time is provided for the demes or miniature generational

loops to converge on a global maximum.

2.5 The Propeller

 The propeller at its base is like that of any other propulsion device in that it simply takes

some amount of a fluid and changes the momentum to impart a force on a vehicle by using radially

distributed lifting surfaces or blades. The propeller for analytic solutions can be modeled as an

actuator disk or even more rudimentary models as a control volume through which air flows in at

a relatively low velocity and leaves at a high velocity. From an efficiency perspective, the one

important characteristic of all propellers is the amount of energy it takes to cause this momentum

change. The power to drive these essentially lifting surfaces is often gathered from a gas turbine

or a piston driven engine. In recent years, strides have been made in the application of electrical

power sources for propellers35. Thus, the argument is made for new more efficient propellers.

 When new propeller driven aircraft are developed, a fuselage is developed by one

company, the power sources for the propulsion systems are developed by another, and the

propellers themselves are developed by a third company such as Master Airscrew, Aeronuat,

Hartzell, etc. The propellers are designed to maximize the performance of the aircraft for the given

operating conditions: RPM, freestream velocity, power source limits, etc.36. Much work has been

done on analyzing and modeling electric propulsion systems to power these propellers because

electric motors have increased power densities and high efficiencies37,38. The purpose of this thesis

is to provide an expedited answer to the propeller design problem. Over the years many

achievements have been made in the design and implementation for propellers. The rest of this

subsection will provide a brief history to propeller theory.

29

 The theory of modern propeller design begins with Rankine and Froude in the 1800’s when

they used momentum relation for analysis of marine propulsive devices. While the analysis was

focused on a different propeller application than discussed here, the models are analogous to each

other. The Wright brothers soon followed with their development of air-based propeller systems39.

While the Wright brothers contributed very little to the theory of propeller design, the Wright

brothers were the first to make truly revolutionary improvements to the modern propeller design.

Their first propeller was developed in 1902 in which design they used a twist which obtained a

constant angle of attack along the radius. The propeller produced roughly 12lbs of thrust at

1600RPM in a freestream of 25mph. The propeller was 28” in diameter and required 0.8hp to

operate at this condition40.

 The Wright brothers developed propellers which were on the same level of efficiency as

those present today (71%– 76%). The propellers used for their self-powered flight were arguably

the hardest part to implement due to the lack of testing capabilities. The Wright brothers realized

that the forward performance was vastly different from the static test which had been conducted;

however, the Wright brothers only had access to simple static test environments with limited

instrumentation. To properly model the performance of forward flight an actual flight test was

required. This was both difficult and time consuming41.

 While the Wright Brothers’ achievements were extraordinary for their time, the more

remarkable of the achievements towards propeller theory come from Prandtl and his lifting line

theory42 and the continuously worked upon blade element theory43. The original application for

lifting line theory is applied to wings on an aircraft, but seeing that propellers are just lifting

surfaces themselves; it has been applied in a number of propeller applications44. Both are very

popular for propeller analysis; however, the level of fidelity for both models is limiting as

30

described in prior sections. Nevertheless, the background information is necessary for

understanding the problem at hand.

2.6 Variable Pitch Propeller

 While this GA focuses on optimization for small UAV/UAM propellers with a constant

pitch, it should be noted that the GA can run simulations for variable pitch rotors. This section is

presented in order to provide the set up for the variable pitch problem. The variable pitch propeller

operates by simply adjusting the pitch of the propeller blades to increase or decrease thrust at

various flight conditions. In the variable pitch model, the GA optimizes a constant speed propeller.

These propellers are typically used on larger aircraft due to the weight of the gears used to control

the pitch of the propeller. There exist many types of mechanical devices for controlling the pitch

of the propeller45; however, that is beyond the scope of this work. The variable pitch propeller is

of great interest due to its ability to bring forth the full capabilities of larger, more powerful engines

operating in adverse conditions such as high altitudes or increased free stream velocities46. In terms

of the optimization problem, there are challenges to the variable pitch propeller. The main

advantage for using a variable pitch propeller is its ability to easily adapt to a multitude of flight

conditions whereas the fixed pitch propeller is typically designed for one flight condition (typically

cruise)47. With the increased number of design conditions, the GA requires more inputs and linked

with the increased inputs comes an increased requirement for the number of iterations. From the

single point design of the fixed pitch propeller, the variable pitch problem must converge on thrust

and efficiency for as many flight conditions as presented. When applied in this GA, the propeller

is given 4 flight conditions, therefore, a total of 8 parameters to converge on. Moreover, at each

one of these flight conditions comes an adjusted pitch angle. Thus, there is an increase in the

31

number of design variables. Due to the complexities involved in the variable pitch optimization,

the problem was merely explored in this study and should be a large focus for future efforts.

2.7 Coaxial Propellers

 The coaxial propeller problem introduces a far greater challenge in modeling the behavior

of the rotors when compared to the single standalone propeller model. The standalone propeller

model is never a case which offers true fidelity because the stand-alone propeller model is never

implemented in real world applications. A propeller will always experience effects from other

objects in the flow whether that object be a wing placed in front of or behind the propeller or

perhaps another propeller placed in the flow such as the coaxial configuration. Because the

propeller application is subsonic in nature, objects placed behind the propeller will still have effects

on the propeller though it may be acceptable to ignore them. The truly daunting challenge is to

model the propeller with something placed in front of it such as the pusher-proper scenario or even

more complex the coaxial problem. The coaxial propeller problem is one of the more challenging

configurations to accurately capture because the entirety of the problem is unsteady. The forward

propeller sees effects from the rear propeller because for the most part in these configurations the

propellers are very close to each other. Furthermore, in most applications of the coaxial set up, the

propellers are operating in a static environment, further permitting communication from the rear

propeller to the forward propeller. Now, these complexities do not even begin to address the effects

that the forward propeller will have on the rear propeller. The rear propeller is operating in an

extremely unsteady environment from the wake of the forward propeller. As the forward propeller

increases its rotational speeds, the rear propeller becomes far less effective as the incoming

velocities will be increased. While the effects of the rear propeller on the front propeller are

measurable, they are overall negligible48. Thus, it can be concurred that the effects of the forward

32

propeller on the rear propeller are far greater than the effects of the rear rotor on the front rotor49.

Therefore, in this case, to fully demonstrate the capabilities of the solver’s computational

efficiency and fidelity, the rear propeller is optimized.

2.8 Flow Separation

 Flow separation is an important aspect of any aerodynamic analysis. As a fluid flows over

a surface, it is either in the presence of an adverse or a favorable pressure gradient. Favorable

pressure gradients are characterized by a decreasing pressure in the direction of flow and an

increase in velocity which is why the boundary layer formed from this is referred to as an

accelerating boundary layer. Adverse pressure gradients are characterized by increasing pressure

in the direction of the flow and decrease in the velocity hence the boundary layer name,

decelerating boundary layer50. Flow over surfaces that have an adverse pressure gradient have

boundary layers that decelerate, thicken, and then form a point of inflection. Both pressure

gradients can be shown on a single surface in a flow. Favorable pressure gradients are associated

with converging surfaces while adverse pressure gradients are associated with diverging surfaces.

An example of the two is provided in Figure 351. Here the leading edge of the sphere is a

Figure 3: Pressure Gradient Example

33

converging surface, and the trailing edge is a diverging surface. The favorable pressure gradient

has no potential for separation; while, if the adverse pressure gradient is strong enough and persists

long enough, the flow will eventually separate over the surface and reverse direction near the

surface boundary52. This separated flow will then lead to increased amounts of drag on the surface

and a loss of lift due53. Now, why is this important to the problem optimization problem?

 For the FlightStream® solution a lower limit was set for flow separation that was allowed

to occur on the top side of the propeller. Due the shape of a propeller blade and the high angles of

attack, the flow across the surface of the airfoil sections can experience very strong adverse

pressure gradients which lead to separation. While the numerical flow solver used in this analysis

can detected where the separation has occurred, it cannot describe the aerodynamic effects that

accompany the propeller blade under these conditions. Because airfoils experience increased

amounts of drag, and losses in lift when the flow is separated, then a propeller will experience

increased amounts of torque due to the increase in drag and a decreased amount of thrust. For this

reason, a limit was set on the amount of separation. Propellers with more than a given percent of

the upper surface separated were provided a fitness of -10.00. This fitness ensured that their

characteristics namely, twist, would not be passed to the next generation. This hard coded value

for fitness is justified because this is a thrust and efficiency optimized propeller solution, and if

the separation across the top is that high, then the limited amounts of thrust and decreased

efficiency of a separated propeller will lead to an unfit propeller.

2.9 Maximum Efficiency

 There are realistic limits to the efficiency of propellers given the thrust produced, propeller

radius, and freestream velocity. The propulsive efficiency for any propulsion device is a ratio of

the thrust power and the amount of kinetic energy production. The thrust power is simply defined

34

as the thrust produced multiplied by the freestream velocity. The kinetic energy production for a

propeller is defined as one half the mass flow rate multiplied by the square of the change in velocity

from freestream to the far field behind the propeller. This full relation is shown below

𝜂𝑝 =
𝑇𝑢

1
2 𝑚̇

(𝑢𝑒2 − 𝑢∞2)
 (16)

Given the equation, it is understood that there must be a limit to efficiency even in the most optimal

of assumptions and operating environments. The thrust for a propeller is defined as follows

𝑇 =
1

2
𝜌𝐴(𝑢𝑒

2 − 𝑢∞
2) (17)

Plugging this into the efficiency equation

𝜂𝑝 =
[
1
2𝜌𝐴

(𝑢𝑒
2 − 𝑢∞

2)] 𝑢

1
2 𝑚̇

(𝑢𝑒2 − 𝑢∞2)
=
𝜌𝐴𝑢∞
𝑚̇

 (18)

For a propeller, the mass flow rate is defined as the free stream density multiplied by the area over

which the propeller accelerates the working fluid multiplied by the velocity of the fluid across the

propeller disc. The velocity of the fluid across the disc is defined as an average of the free stream

velocity and the velocity in the far field or

𝑢𝑑𝑖𝑠𝑐 =
(𝑢𝑒 + 𝑢∞)

2
 (19)

Therefore,

𝜂𝑝 =
𝜌𝐴𝑢∞
𝜌𝐴𝑢𝑑𝑖𝑠𝑐

=
𝑢∞

(𝑢𝑒 + 𝑢∞)
2

=
2𝑢∞

𝑢𝑒 + 𝑢∞
 (20)

While the exit velocity is unlikely know for propeller operating conditions in the design phase, the

thrust is known. Therefore, to make appropriate assumptions to maximum operating efficiency for

35

a propeller the thrust equation defined above is solved for the exit velocity which is given as

follows

𝑢𝑒 = √
2𝑇

𝐴𝜌
+ 𝑢∞2 (21)

Now, plugging this into the developed equation for estimating propulsive efficiency

𝜂𝑝 =
2𝑢∞

𝑢∞ +√
2𝑇
𝐴𝜌 + 𝑢∞

2

 (22)

With an estimation of the maximum efficiency for a propeller obtained, relations can be drawn

regarding propeller performance as a function of its operational environment.

 The original equation presented for efficiency suggests that the efficiency is only a function

of the free stream velocity and the exit velocity which is true; however, for more accurate modeling

of a propeller, the exit velocity variable was replaced by two other variables: area and thrust

produced. While the density of the operating environment is important to the performance of the

propeller, the actual sizing of the propeller and its efficiency are of higher importance and

therefore, the density is held constant over the following examples.

 From equation 16 for propulsive efficiency, it can be determined that the maximum

efficiency of a propeller is experienced when the exit velocity matches the freestream velocity in

forward flight. Yet, in this case, the propeller, or any thrust generating device for that matter, will

not serve its purpose of producing any thrust by equation 17 presented for thrust. Therefore, the

following trade study was done to demonstrate the effects of thrust, freestream velocity, and disc

area on the propeller efficiency. Figure 4 provides efficiency and changes in velocity over different

thrust production levels and free stream velocities. All propellers were given a radius of 10 cm and

36

operate at sea level i.e., density is set to 1.225 kg/m3. The right axis in the figure represents the

change in velocity of the fluid from the free stream to the far field given a thrust, area, density, and

freestream velocity. The left axis represents the efficiency of the propeller. As stated early and

demonstrated here, the maximum efficiency occurs when the change in velocity is zero, and thus,

thrust is zero. Note the solid lines which represent the performance of the propeller in the slowest

of three freestream velocities plotted. This flight condition has the lowest efficiencies of the three

because it also has the largest increase in freestream velocity at any point. At first glance, this may

appear to be a mistake in the calculations; however, thrust is determined by the difference in the

velocities squared. Therefore, as freestream velocity increases, the required differential in velocity

to achieve the same thrust decreases. Take for example the operating condition in which 8 N of

thrust is required. For the given predefined parameters, the propeller needs the velocity terms in

Figure 4: Efficiency and Velocity change vs Thrust

37

the parenthesis to be equal to roughly 415 m2/s2. Therefore, the propeller operating in the 5m/s

environment needs to produce exit velocities equal to ~21m/s which leads to a velocity differential

of 16m/s. On the other hand, the propeller operating in the 30m/s environment only needs to

produce exit velocities of ~36.25 m/s which is a 6.25m/s differential. Therefore, by the original

equation for propulsive efficiency, the propeller operating in the higher velocity environment will

produce greater maximum efficiency values.

 The same function for maximum propeller efficiency is then used to observe the behavior

of efficiency on propeller areas and freestream velocities again. In cases, the thrust is fixed to a

constant 5 N, and the propellers have radii of 5, 15, and 30 cm. The smallest of these propellers is

obviously the most inefficient, as it must accelerate the fluid through an area that is 36 times

Figure 5: Efficiency and Velocity Change vs Freestream Velocity

38

smaller than the area of the largest propeller. To compensate for this reduced area and mass flow

rate, the propeller must provide a greater acceleration to the fluid in order to match the thrust that

is required. The effect of this large fluid acceleration is seen in the efficiency line for the smallest

propeller as it persists to be the lowest of the three propellers. One important factor to note here is

the continuous increase in efficiency. This is because the thrust is constant for all cases which is

not necessarily the case in a nominal operating scenario; however, for the sake of maximum

propeller efficiency analysis this will be accepted. As the thrust is held constant the exit velocity

remains greater than the free stream velocity for all cases, and therefore, as the freestream velocity

extends to infinity, the exit velocity will effectively match the freestream velocity while still

producing thrust which is indeed false. Nevertheless, the results for absolute maximum efficiency

are presented in this section to provide a basis for these comparisons in the results. While the

propeller optimizer, converges on propellers with optimal efficiency, it should never produce

propellers that have efficiencies that match the ones presented here.

39

Chapter 3: The Propeller Geometry

 The process by which the geometry is conceived and the program or means by which it is

built are crucial aspects to the development of the objective function, necessary to any trade study

or optimization including a GA approach. There are many programs for building a CAD model of

the geometry and there are even more options in the process of developing the geometry. The

process by which the geometry is constructed should be accurate and replicable. Furthermore, the

design space should not be limited by the design tool used to create the geometry.

3.1 The Geometric Build

 There are many processes and types of geometric builds for constructing a propeller. One

important consideration is the difference between “Machine Geometry” and “CFD Geometry”.

Often, the level of geometric detail included in a drawing to build a part is too expansive for

practical flow solutions. Outer mold lines for fluid solutions are routinely simplified to correctly

capture the flow surfaces but not detailed features such as fasteners, seam lines, and other features

required for machining parts. For surface vorticity solvers, there is the additional consideration of

whether a simple thin airfoil shape mean camber line will be used or whether an airfoil with some

considerable thickness will be implemented. If the thin sheet propeller representation is

implemented, then a simple mean camber model can be constructed. If the application of the

propeller is to have a thick airfoil, then the consideration of how to construct the propeller becomes

more complicated. For the objective function used in this work, two processes by which the

propeller geometry is to be built were considered: an OpenVSP model or a Component Cross

Section file. Both representations considered are capable of representing a geometrically correct

outer mold line.

40

3.1.1 OpenVSP

 OpenVSP is an open-source tool developed by NASA for conceptual design and study of

aircraft and aircraft components. VSP is easy to use and provides fast models. The program allows

the user to create a three-dimensional model and then export that model as a surface mesh54. An

example of the meshing provided by OpenVSP is shown Figure 6. A general propeller geometry

is already built into the program. Therefore, only certain aspects of the propeller such as the twist,

chord, sweep, thickness,

and airfoil sections needed

to be altered. OpenVSP is

also fully scriptable which

is a main requirement for the GA’s geometry building component55; however, it can provide rough

geometries with meshing that have the potential to cause problems for the FlightStream® solver

upon importing the .stl file. Furthermore, the application of the script to run OpenVSP in the GA

provided little freedom in the geometry design. Predefined variable names were vast, as the

scripting language uses angel script. Moreover, the scripting files, CompGeom files, and geometry

files themselves occupy an extensive amount of memory. Lastly, by having to access a secondary

application in the process of constructing the geometry, computational times would be

compromised and one of the main advantages of this GA would be lost. Therefore, while OpenVSP

remains an efficient program for building propellers, the application of it in a genetic algorithm is

not cost-effective. The OpenVSP tool was used, however, for the validation cases’ geometry.

Figure 6: Example OpenVSP Mesh

41

3.1.2 Component Cross Section

 The Component Cross Section (CCS) geometry provides the best means of importing a

geometry into the solver. The file is specific to the numerical solver used in this Optimization

exercise, FlightStream®. The file import works exactly as the name describes it. A number of cross

sections are imported into solver and smooth curved surfaces are lofted between each of the cross-

sections in order to provide a surface. The CCS geometry also provides compatible meshing

because it is meshed in the solver. Furthermore, the import file permits the user to define the

number of spanwise and chord wise meshing points. Trailing edge detection is another key

attribute to the CCS import in which the first point of each of the cross sections is selected to be

the trailing edge. An example of the component cross-sections in FlightStream® can be seen in

Figure 7. The CCS file is a csv file which is created in a subroutine of the GA and stored in a folder

with all the other geometry files. The CCS file consist of all the specified x, y, and z points of the

cross sections as well as some additional information regarding the geometry and the nature of the

import. An example of the CCS file shown in Figure 8. The first line provides a name of the file

import, and the next line provides a name to the component once it is in the solver. The following

line informs the solver that this is a lifting surface. The 4th line in the file defines the mesh for the

propeller. Here a 60 chordwise by 40 spanwise mesh grid is placed over the propeller. The growth

Figure 7: Example Cross Section Import

42

type is set to uniform, and the growth rate is set to 1. The periodicity and the refinement for the

object mesh are both turned off. Lastly, in the setup, the trailing edges are marked. The following

lines then contain the x, y, and z coordinates in that order for each cross section. The cross sections

start nearest to the hub and work their way out. As Figure 8 displays, it is very easy to build these

geometry files and store them with little computational cost. These geometry files can be built for

every propeller in a population, and then, the entire population can be tested.

3.2 Geometry Definition

 The defining characteristics for the propeller geometries come in two forms. The first and

limiting geometry definition comes from a pre-built airfoil. The second is provided by a Bernstein

Polynomial. Both geometry types rely on the use of polynomials for twist, chord, and sweep values

along the span of the propeller, and they rely on the CCS import function for getting the geometry

into the solver. The only differences lay in the airfoil cross sectional shapes and the types of

polynomials used in developing the blade shapes.

Figure 8: Example CCS File

43

3.2.1 Airfoil Import

 The airfoil import is much easier to implement, but the extent to which the geometries must

expand in design space is limited. The airfoil import takes a predefined airfoil shape and uses it as

the airfoil shape along the propeller. The idea behind this propeller modeling is that the GA would

rely on a bank of airfoils to implement on each propeller at given cross sections, and a numerical

value in the string of genes for each propeller would determine which airfoil will be used for that

propeller at that given cross section. This modeling technique was only used in the early stages of

this work and only went as far as having two different airfoils in a propeller. That is not to say the

airfoils were set in stone when applied to the propeller. Once the airfoil had been imported for a

geometry, it was then scaled by a chord function which was a 6th order polynomial describing the

chord along the span of the propeller. Furthermore, the airfoil was also adjusted by some thickness

to change the airfoil shape. This thickness as well a pitch and sweep adjustment were also 6th order

polynomials. While this method is simple and easily applied, it requires a lot of information about

existing airfoil shapes and all the data points that describe them.

 The airfoil import method for propeller design is effective in achieving a simple propeller

design as it does not require as many parameters to describe the propeller shape and the airfoil

cross sections are already built. These two advantages are, however, weaknesses and lead to its

elimination from the final version of this work. The design space for the airfoil import method is

limited because it uses existing airfoils and only allows for changes in airfoil shape regarding the

thickness. Due to its tight geometry restrictions, the following method was chosen as the geometry

construction method.

44

3.2.2 Bernstein Polynomials

 The Bernstein Polynomials allow for a vast range of propeller designs and seldom limit the

GA in terms of the propeller’s geometry. This freedom can be observed in the early generations of

the GA as the designs are completely random in nature. In fact, in rare cases, the lack of constraint

can be a problem as solutions do not converge due to the abstractness of the propeller design.

Nevertheless, this issue is resolved in further generations given the circumstance that it even

occurs. This is due to several reasons, but most obvious is the number of cases that are executed.

One of the cases will eventually converge, and thus, light will be shed on the propeller’s true

performance.

 The propeller GA takes advantage of Bernstein Polynomials (BP) to construct the

definitions of airfoil shape, pitch, chord, and sweep. The equations which describe theses

parameters are expanded from Kulfman56 which first develops the ideas; furthermore, the

equations are presented in Burger57, but here they are expanded and used on a 3-dimensional

geometry. The BP used to construct the airfoil can be divided into two separate parts: the shape

function and the shaping terms. The shape function is used to model the leading and trailing edge

of the airfoil. This is provided below.

𝐶𝑁2
𝑁1(𝜓) = (𝜓)𝑁1[1 − 𝜓]𝑁2 (23)

C is the shape function, and 𝜓 is the percent of the chord length. The first term on the right-hand

side describes the radius of the leading edge. Values for the N1 term range from 0.5 to 1. A value

of 0.5 will lead to a rounded leading edge, and a value of 1 will lead to a sharper leading edge. The

same relationship exists for the second term which describes the trailing edge shape. An example

of the effects of these values can be seen in Figure 9. All shaping terms in the in the airfoils shown

45

in Figure 9 are equal, thus demonstrating the effects of the shape function. The shaping terms

themselves use a 3rd order BP. Putting the shape function with the shape terms, the airfoil surface

at a given point along the propeller blade can be described.

𝑍𝑢𝑝(𝑥, 𝑦) = (
𝑥

𝑐
)
𝑁1

(1 −
𝑥

𝑐
)
𝑁2

[𝐴𝑢1(𝑦) (
𝑥

𝑐
)
4

+ 4𝐴𝑢2(𝑦) (1 −
𝑥

𝑐
) (
𝑥

𝑐
)
3

+ 6𝐴𝑢3(𝑦) (1 −
𝑥

𝑐
)
2

(
𝑥

𝑐
)
2

+ 4𝐴𝑢4(𝑦) (1 −
𝑥

𝑐
)
3

(
𝑥

𝑐
)
2

+ 𝐴𝑢5(𝑦) (1 −
𝑥

𝑐
)
4

] (24)

𝑍𝑙𝑜𝑤(𝑥, 𝑦) = −(
𝑥

𝑐
)
𝑁1

(1 −
𝑥

𝑐
)
𝑁2

[𝐴𝑙1(𝑦) (
𝑥

𝑐
)
4

+ 4𝐴𝑙2(𝑦) (1 −
𝑥

𝑐
) (
𝑥

𝑐
)
3

+ 6𝐴𝑙3(𝑦) (1 −
𝑥

𝑐
)
2

(
𝑥

𝑐
)
2

+ 4𝐴𝑙4(𝑦) (1 −
𝑥

𝑐
)
3

(
𝑥

𝑐
)
2

+ 𝐴𝑙5(𝑦) (1 −
𝑥

𝑐
)
4

] (25)

The first two terms in both the upper and lower equations are the shape functions which describe

the leading and trailing edge, and the terms in the brackets are the shaping terms that describe the

Figure 9: Example of Shaping Function Effects

46

shape of the airfoil between the leading and trailing edge. The Au and Al terms are function of y

(the span) and provide the necessary information to model the change in the airfoil shape in the y

direction or spanwise direction. These BP equations can be represented and visualized using

Pascal’s triangle and increasing the order of the BP shown in Figure 10. By increasing the order

of the BP, the variation in airfoil shape from leading to trailing edge can be greatly increased;

however, it comes at a cost. The number of variables required for each BP is equal to the order of

the polynomial plus one. Furthermore, this only describes the airfoil shape at a given cross section

along the propeller blade. The function to describe the upper airfoil surface shaping terms is

dependent upon 20 variables. This equation is show below as a 3rd order BP

𝐴𝑢𝑖(𝑦) = 𝑎𝑢𝑖 (1 −
𝑦

𝑟
)
3

+ 3𝑎𝑢𝑖+5 (1 −
𝑦

𝑟
)
2

(
𝑦

𝑟
) + 3𝑎𝑢𝑖+10 (1 −

𝑦

𝑟
)
2

(
𝑦

𝑟
) + 𝑎𝑢𝑖+15 (

𝑦

𝑟
)
3

 (26)

Y is the distance measured outward from the hub of the propeller and r is the radius of the propeller.

The same equation is used for the lower surface shaping values

Figure 10: Pascal's Triangle

47

𝐴𝑙𝑖(y) = 𝑎𝑢𝑖 (1 −
𝑦

𝑟
)
3

+ 3𝑎𝑙𝑖+5 (1 −
𝑦

𝑟
)
2

(
𝑦

𝑟
) + 3𝑎𝑙𝑖+10 (1 −

𝑦

𝑟
)
2

(
𝑦

𝑟
) + 𝑎𝑙𝑖+15 (

𝑦

𝑟
)
3

 (27)

Each one of au terms is used describe the 𝐴𝑢𝑝𝑝𝑒𝑟 which describe the change in the propeller airfoil

in the y direction (hub to tip direction). Therefore, there are four terms used to describe each of the

five au values resulting in 20 parameters for the top airfoil shaping terms and 20 for the bottom.

There also exist a similar set of equations for the shape functions. These use a 1st order BP to

provide the N1 and N2 values for the top and bottom which is shown below.

𝑁𝑢𝑖(𝑦) = 𝑛𝑢𝑖 (
𝑦

𝑟
) + 𝑛𝑢𝑖+2 (1 −

𝑦

𝑟
) (28)

𝑁𝑙𝑖(𝑦) = 𝑛𝑙𝑖 (
𝑦

𝑟
) + 𝑛𝑙𝑖+2 (1 −

𝑦

𝑟
) (29)

Now, there are a total of 48 parameters which describe the airfoil shape along the direction of span

and chord lengths. There are also another 15 parameters which describe the chord, twist, and sweep

along the span of the propeller. These are modeled using 3rd order BP and can be seen below.

𝐶(𝑦) = c5 [𝑐1 (1 −
𝑦

𝑟
)
3

+ 3𝑐2 (1 −
𝑦

𝑟
)
2

(
𝑦

𝑟
) + 3𝑐3 (1 −

𝑦

𝑟
)
2

(
𝑦

𝑟
) + 𝑐4 (

𝑦

𝑟
)
3

] (30)

Β(𝑦) = 𝛽5 [𝛽1 (1 −
𝑦

𝑟
)
3

+ 3𝛽2 (1 −
𝑦

𝑟
)
2

(
𝑦

𝑟
) + 3𝛽3 (1 −

𝑦

𝑟
)
2

(
𝑦

𝑟
) + 𝛽4 (

𝑦

𝑟
)
3

] (31)

Ψ(𝑦) = ψ5 [𝜓1 (1 −
𝑦

𝑟
)
3

+ 3𝜓2 (1 −
𝑦

𝑟
)
2

(
𝑦

𝑟
) + 3𝜓3 (1 −

𝑦

𝑟
)
2

(
𝑦

𝑟
) + 𝜓4 (

𝑦

𝑟
)
3

] (32)

There are a total of 63 parameters which govern the shape of the propeller blade: 24 for the upper

airfoil surface, 24 for the lower airfoil surface, 5 for the chord function, 5 for the twist function

and 5 for the sweep function. Now comes the question as how to implement the geometric data on

the actual propeller itself.

48

 The airfoil implementation has been expanded to require one more step that of which leads

to a vast extension in the design space of the propellers themselves. Here, the BP have not only

been extended to include a 2-D shape with upper and lower surface curves, but they also include

the ability for airfoils to possess large amounts of camber. This is achieved by not applying the

lower surface equation directly, but instead, subtracting it from the upper airfoil curve. In doing

so, the possibility for an inflection point has been added to the bottom shape design leading to

camber in the airfoil. This adjustment does not sacrifice any of the design space either. Figure 11

provides examples of direct application of the lower surface equation and then the subtracted

modification of the lower surface curve. All the airfoils on the top of Figure 11 are generated from

the modified method of airfoil generation, and the bottom four images are generated form the direct

application of the lower surface equation. Note the amount of camber in the top airfoils, as well as

the absence of it. This demonstrates that by applying the modified method for lower surface

calculations, a large design space is achieved. Furthermore, cambered airfoils are ubiquitous on

efficiency propellers and most subsonic lifting surfaces for that matter.

 Lastly, it should be noted that majority of the propellers presented in Figure 11 are

inefficient in design and do not take on the shape of a typical airfoil. A CST method58 was

Figure 11: Example Airfoil Variation

49

considered to develop the airfoil; however, it was not used because one favorable aspect of the GA

is the vast design space. By using the BP with no geometric input constraints, the design space for

the propellers is much larger than CST method and its applied inputs. Furthermore, the solver

should be able to determine ‘good’ airfoil designs from ‘bad’ ones due to the level of fidelity.

Therefore, the poor performing airfoils should be filtered out from the solver results.

3.2.3 Geometry Implementation

 To model the geometry, a loop is implemented to apply each of the BP over the span of

the propeller. The radial values range from 10% of the radius all the way to the tip of the propeller.

This vector of radial values contains the coordinates for each point on the propeller. Within the

loop, a vector of the chord lengths along the span is created first. This vector is then used

individually throughout the rest of the loop to model the other points at their given locations along

the span. Multiple loops are then implemented to fill a matrix for the upper and lower points for

the airfoil using the BP which describes the airfoil shape itself as well as the BP which describes

the shape functions. The loops range from 0% of the chord to 100% at the given y location. The

chord values are represented by the x coordinate direction. The z coordinates are the actual

coordinates that are altered by the BP for the airfoil function. After this has been completed a

geometry has been built which contains multiple airfoil cross sections along the span of the

propeller. These cross sections can be characterized by their airfoil shape and chord lengths. To

Figure 12: Isometric View of Geometry Build

50

obtain a functioning propeller, the simple wing that has been created is twisted by the BP for pitch.

This is done by rotating given cross sections about the y axis as follows

𝑋𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = 𝑋 𝑐𝑜𝑠(𝜓) − 𝑍𝑠𝑖 𝑛(𝜓) (33)

𝑍𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = 𝑋 sin(𝜓) + 𝑍 cos(𝜓) (34)

This has now twisted all the cross sections by some angle to provide appropriate pitch angles at

given cross section to generate lift. Lastly, the sweep polynomial is applied to the propeller in the

same manner. Except, this rotation is done about the x axis. An example of the process is provided

in Figure 12 and Figure 13. The figures work left to right and top to bottom respectively. The first

image present in the figure is the meshed propeller blade with no twist or sweep applied to it and

only chord and airfoil functions to describe its shape. The second image has been rotated to allow

the propeller to have some pitch. Lastly, the final propeller is presented which is described by the

polynomials for airfoil shape, chord, twist, and sweep.

Figure 13: Front View of Geometry Build

51

Chapter 4: The Solver

FlightStream® is highly applicable to modeling entire aircraft as well as propellers in steady

and unsteady flow regimes. The unsteady model is precisely the tool required for fast and accurate

propeller modeling from standalone models to coaxial rotor simulations, and unlike other solvers,

FlightStream® provides a solution in minutes or even seconds in some cases59. Furthermore, the

solver provides the ability to analyze propellers operating with their axial at some angle of attack

to the freestream. Lastly, the wide range of geometry types that are compatible with FlightStream®

make it extremely easy to create and import a geometry for testing. FlightStream® has been used

to demonstrate longitudinal and lateral characteristics of full-scale airplanes, vertical takeoff

aircraft, as well as optimizing engine placement along a wing60,61,62.

4.1 Script and Setup

 A fully scriptable solver is crucial to the propeller GA, and the scripting ability that

FlightStream® provides is a major driving factor for the use of this flow solver in this GA. The

scripts for FlightStream® allow for any operation that can also be conducted manually63. The script

in this application involves importing the geometry and setting up the simulation for the given

inputs to the GA. This script is quite extensive due to the large availability of options for running

the solver. The text file starts by importing a single propeller blade from a CCS import as a csv

file. The trailing edges are already selected in the csv file by inserting a simple function. The solver

then changes the altitude to the provided altitude in the GA text file input. The solver is then

changed from the default steady setting to either the steady rotary or unsteady case depending on

which propeller optimization is being executed. The rotational speeds for the propeller are then

set, and the number of blades is implemented. The solver is then initialized using a wake

52

termination location that gives the propeller the opportunity to make at least 1 full rotation. Once

the solver is initialized, the freestream velocity is set as well as the reference velocity. The solver

is then executed. After the solver converges, the necessary files are exported for that propeller.

The solver is cleared, and the next propeller is loaded uploaded for testing.

 FlightStream® solver can be executed in four different settings: steady, steady (rotary),

steady (viscous) and unsteady. This subsection will discuss the steady(rotary) and unsteady

settings as they are the only settings specifically applicable to the propeller case. While this GA

uses the steady rotary solver and the unsteady solver, the unsteady solver provides a far more

expansive regime of flight conditions and possibilities. FlightStream® can also be used in vorticity

or pressure-based load setting. The propeller GA at hand uses the vorticity-based loads; however,

the difference in them should be understood for the purpose of this thesis.

4.2 Steady (Rotary)

 The steady (rotary) solver in FlightStream® provides a solution to the propeller problem in

seconds which is why it is used for the propeller GA in the stand-alone model. This solver can

operate under mirrored conditions. In other words, the geometries can be mirrored across planes

or periodically about an axis without increasing the number mesh faces. The one original geometry

is geometry that the solver calculates loads and moments on and then simply applies these to the

mirrored surfaces. The minimized number of mesh faces allows the solver to converge on a

solution in extremely short computational times, and with 128 members per generation,

computational speed becomes a large factor in determining the performance aspect of the GA. The

steady (rotary) solution requires only an RPM input to the freestream, and the rest of the governing

parameters follow the same as other solver settings. In general, propellers converge in less

iterations than the maximum setting of 1000, further resulting in short computation times.

53

4.3 Unsteady

 The unsteady solver in FlightStream® provides a wider range of options for running

simulations. While the steady rotary solver is virtually only single propeller type simulations, the

unsteady solver provides solutions for everything from modeling ground effect to coaxial propeller

interactions64. The unsteady solution does require a longer run time. The unsteady solver must be

run for a large number of time steps to arrive at a converged solution. This solver will run for a

user defined number of time steps at defined time increments. Each of these time step iterations

will have to converge on a solution or run until the maximum number of iterations is reached. The

unsteady solver is used in this GA because of its ability to capture complex flow interactions;

however, run times in this application are much greater which impose some limitations to the GA.

The unsteady solver also can capture propellers in edgewise flight, and therefore, the objective

function could be modified to address optimization for propellers that operate in edgewise flight.

4.4 Vorticity and Pressure Solver

 FlightStream® solver can operate in a pressure or a vorticity-based mode to gather forces

and moments operating on a body. In the case of the propeller in the steady rotary solver, the

vorticity mode was used to gather both forces and moments. The vorticity mode provides a purely

inviscid solution by using a method of integrated circulation. This is discussed in greatly detail in

Solver Theory section of this work. The pressure mode uses the vorticity mode to calculate

pressure fields along the surface of the objects. Furthermore, the pressure mode can apply a

boundary layer module which allows for the solver to account for viscous flows. The

documentation for the FlightStream® solver can be found in several papers and in the FlightStream

User’s Guide65,66.

54

4.5 Solver Theory

 The original development for the solver comes from the work done my Ahuja which is

outlined in his dissertation67. The solver is a product of Research in Flight®, and much progress

has been made toward in enhancing its abilities since the solvers beginning. The solver makes use

of the Fast Multipole Method (FMM) which combines the far field source/sink doublets into a

single body for computing the effect on the near field. The FMM is used to expedite the solutions

for calculating far field effects on near field objects68. This method has been applied to numerous

topics in aerodynamics69,70 and is used in FlightStream to combine far-field vorticity into localized

point doublets. These point doublets contain the vorticity strength for the entirety of the far-field.

Using the far-field, near-field thresholds are established, a spatial octree is constructed around the

geometry as shown in Figure 14.

The solver has a laminar and a turbulent method for boundary layer analysis. The boundary

analysis calculations apply a 2-D method to the streamlines on the surface of the geometry of

interest. The laminar model uses a standard two-parameter Thwaites momentum integral equation

as shown below and described in full by Ahuja71.

𝑈
𝑑

𝑑𝜂
[
𝜃2

𝜈
] = 0.45 − 6

𝜃2

𝜈

𝑑𝑈

𝑑𝜂
 (35)

Figure 14: Octree Example

55

The turbulent model assumes the fluid outside the boundary layer to be isentropic, subsonic, and

compressible. The momentum thickness and compressibility factor are given as follows

𝑑𝜃𝑖
𝑑𝑋

= −
𝜃𝑖
𝑀𝑒

𝑑𝑀𝑒

𝑑𝑋
(2 + 𝐻𝑇𝑅) +

𝑑𝑥

𝑑𝑋

𝑐𝑓

2
(
𝑇𝑒
𝑇0
)
3

 (36)

𝑑𝐻𝑖
𝑑𝑥

= −
(𝐻𝑖 − 0.7)

3.715

4.17
[
𝐹

𝜃𝑖

𝑑𝑋

𝑑𝑥
−
𝐻𝛿−𝛿∗

𝑀𝑒

𝑑𝑀𝑒

𝑑𝑥
−
𝐻𝛿−𝛿∗

𝜃𝑖

𝑑𝜃𝑖
𝑑𝑥
] (37)

The development for this turbulent model is obtained from Standen72. Here x and X are the

longitudinal coordinate parallel to the wall boundary and its transform. Me is the Mach number at

the outer edge of the boundary layer. Htr is the transformed shape factor and 𝐻𝛿−𝛿∗ is the shape

factor associated with the entrainment rate. The non-dimensional mass entrainment rate is given

by F. The presented equations are then integrated using a higher order Runge-Kutta73.

4.6 Run Times

 When using a program for optimization or any purpose for that matter it is crucial to take

advantage of the system or program in every way possible. This GA is executed on a machine that

has 28 cores. While the run times for FlightStream® are extremely rapid relative to other solvers

with the same fidelity and even faster when running the steady case, in the process of constructing

this GA, there was still need for even faster computational times. FlightStream® allows the user to

specify the number of cores that each simulation will occupy for a given run. For original single

simulations, this value was set to 6. For the simultaneous run model, the number of cores per run

was set to 3. The runs were split into 7 groups each of which was a different flight condition that

all propellers were run through. Each group had its very own script that was executed

simultaneously.

56

 Furthermore, the run times were largely impacted by the number of iterations given to a

single propeller simulation as well as the convergence threshold. In the beginning phases of the

GA, FlightStream® solver was set to run for 500 iterations with a convergence threshold of 1E-5

where a forced execution of all the iterations was not implemented. In other words, the simulation

would run until either the threshold was met, or the number of iterations was exceeded. The first

of these two options is the ideal case for a GA to ensure that true values are provided, and thus,

the GA can eliminate unfit members of the population. However, with such a low number of

iterations and an absurdly large design space, exotic propellers seen in the first few random

generations would lead to nonconverging values in which they ran the full length of the set number

of iterations. These leads to two major problems in the design. The first and the most obvious is

the fact that a non-converging solution is being recorded and taken into the fitness function

calculation. Therefore, a propeller whose thrust that should have been negative is now being

reported as positive, or perhaps an unrealistic efficiency is calculated from FlightStream® provided

values for torque and thrust. Now, a propeller that should have been eliminated is producing even

more like itself in the population. This ultimately leads to a non-converged solution for the GA

itself which is far worse than that of a local maximum which will be discussed later. Furthermore,

with the unrealistic propeller running for the full number of iterations, the total solver run times

increase by extreme amounts. This was also observed in a separate project for FlightStream®

involving the unsteady solver for a quadcopter. Furthermore, because the propeller is creating

offspring like itself through the GA mechanism, run times are not only increased for the faulty

propeller but also for the offspring. Therefore, with the lower number of iterations, the GA

produces non-converged solutions and in fact takes longer to run. To solve this issue, a maximum

number of iterations was set to 1000. This proved to be the most optimum setting for the GA

57

regarding run times and convergence. While initial populations may take longer to run, every

propeller has true solutions provided, and on an entire scale of the GA, the run times are less

because as more solvable propellers are produced, FlightStream® has an easier time predicting

values. Thus, run times are shorter. The steady solver can converge on an accurate solution in

roughly 30 seconds depending on the geometry shape. Abstract geometries with sharp leading

edges or odd twist or chord distributions may take longer. Therefore, with 128 members per

generation and 140 total generations, the total computational time for the stand-alone propeller

model is about 6.2 days.

 The unsteady solver requires more computational time as well as attention in the solver

settings. The coaxial simulations will take longer to run simply because the interactions between

the two propellers is far more complicated to capture. The unsteady simulations run for a number

of user defined time steps in user defined increments. The solver must converge on each time step.

For propeller models the unsteady solver should allow for propellers to advance 5 to 7 degrees per

time step. For the coaxial model, the front propeller should complete one full rotation once its

wake has come into contact with the rear rotor to ensure that the wake is full established, and the

solver is not converging on a poor solution. That being said, the unsteady solver in the coaxial set

up requires roughly 26 minutes to complete one full simulation. With 128 members per generation

this would take 55.4 hours or 2.3 days to complete one generation. Therefore, to increase the

efficiency of the GA, simulations were executed simultaneously to reduce the number of effective

simulations to 38. Therefore, one generation of the coaxial propellers takes 16.5 hours or 0.686

days.

58

4.7 Meshing

 The mesh used for the propellers built in the csv file is a crucial parameter to the solvers

ability to converge. The mesh used had to be large enough such that run times in the solver

remained relatively low and small enough to allow for the geometry to be smooth to allow for the

solver to converge accurately. The mesh implemented on the propeller designs uses 60 points in

the chord wise direction and 40 in the radial direction, resulting in roughly 4700 faces for one

blade. In the steady rotary solver, this will be the total number of mesh faces despite the number

of blades, because the steady rotary solver can set up periodic symmetry when initializing. An

example of the mesh is shown in Figure 16. The unsteady, coaxial simulations use more mesh

faces than the steady solver, but the mesh refinement is far rougher. The forward propeller is a thin

surface model which uses a total of 2000 mesh faces for both propellers. Unlike the steady solver,

Figure 16: 60x40 Mesh Used in Steady Rotary Analysis

Figure 15: Coaxial Mesh Configuration

59

the unsteady cannot operate using a periodic symmetry; therefore, every mesh face must be

accounted for. The GA produced propeller uses roughly 4600 mesh faces for both blades. An

image of the coaxial set up is provided in Figure 15.

60

Chapter 5: Validation for the Solver

 Several sources of propeller performance and geometry data provided ample amounts of

validation for the solver. In this chapter, propellers from the UIUC propeller database and the

NACA Technical report 640 are examined in FlightStream® and compared to the provided wind

tunnel data for the standalone propeller model. The coaxial propellers are validated using a master

airscrew propeller that was testing in a wind tunnel.

5.1 UIUC Propellers

 The UIUC propeller database was chosen for this validation largely because of the data

that was provided. The database provides an appropriate amount of wind tunnel propeller

performance data, as well as enough data regarding the propeller geometry. The UIUC propeller

database was initially released in 2011 with performance data for 78 propellers. Now the database

consists of three volumes with the performance data for nearly 140 propellers. The data consists

of a large variety of propellers from different manufactures. The propellers are relatively small and

used mainly on small UAVs and model aircraft. The data regarding their performance consists of

thrust and power coefficients as well as efficiencies over a range of advance ratios at given values

for RPM74. Calculations for these thrust coefficients and advance ratios were provided in detail in

the release notes. These calculations were reversed to obtain the necessary data needed to run the

validation cases. The data for the propellers comes from experiments conducted in a low-speed

wind tunnel. The propellers were mounted in the wind tunnel and attached to a small electric motor.

Thrust correction factors were implemented to obtain the true thrust produced by the propeller at

the given conditions75.

61

 The data for this validation case comes from Volume 1 of the database and is comprised

of an Electric Only 11x7 and a G/F 10x8 propeller from Master Airscrew. The first number in the

propeller name refers to the diameter in inches, and the second number refers to the pitch given in

inches/rev. The data for these propellers consists of advance ratios ranging from 0.1 to 0.9 and

RPM values ranging from 3005 to 6803 depending on the propeller. The geometry data given in

the database consists of a radial value and the corresponding beta and chord value. An example of

one of these geometry data sets is provided Figure 1776. Notice the absence of any airfoil data or

thickness measurements. To properly validate the numerical solver, an accurate geometry model

was required. Therefore, some information regarding the thickness and airfoil shape of the

propeller at various sections was necessary for modeling the propeller geometries. A 3-D scanner

was used to obtain the information regarding the airfoils shape. The scanner used in this data

collection was the Go!SCAN20 shown on the left in Figure 18. This scanner has a volumetric

accuracy of 0.3 mm/m and point accuracy of 0.1mm. Furthermore, the scanner requires that three

points be completely known to collect more points77. This data collection set up is exhibited in the

right of Figure 18. Here the propeller being scanned is surrounded by textured and colored objects.

These objects have three textured points and three colored points that assist the scanner in locating

Figure 17: Example UIUC Propeller Database Geometry Data

62

known points to capture more data. A raw image from the scanner is provided in the top of Figure

19. The white film that is on the propeller is a powder spray that was used to add some texture and

color to the dark surface of the propeller. Originally, the scanner would not collect clean points

from the propeller as the dark surface of the propeller did not permit any light to reflect back to

the scanner. The lower image in Figure 19 is a higher density point cloud from the original scan.

More points were added to the scan using a Poison-disk sampling tool in MeshLab, an open-source

mesh processing application78. The increased number of points serves the purpose of removing the

Figure 19: Raw Scan and Enhanced Point Cloud

Figure 18: Scanner and Scanner Setup

63

background from the propeller. As the images demonstrate, the background was blended with the

propeller itself; therefore, by adding an increased number of points, the edges of the propeller were

more clearly defined. Once the point cloud was cleaned, the data was loaded into MATLAB where

cross sections of points were collected to obtain the airfoil. These cross sections were placed into

an OpenVSP specific file format called an airfoil file. The airfoil files were then loaded into the

propeller at various cross sections. An example of an airfoil and the airfoil file are provided in

Figure 20. The points gathered from the top scan are shown in blue, and the points from the bottom

scan are shown in orange. While there is only a small amount of camber to the airfoil, it is important

that it was captured for the validation case. The full process of geometry construction is explained

in detail in Appendix I.

 The results from the validation consist of thrust coefficients, power coefficients and

efficiencies which are calculated as follows.

𝐶𝑇 =
𝑇

𝜌𝑛2𝐷4
 (38)

Figure 20: Example Airfoil and Airfoil File

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

0 0.2 0.4 0.6 0.8 1 1.2

64

𝐶𝑝 =
𝑃

𝜌𝑛3𝐷5
= 2𝜋𝐶𝑄 → 𝐶𝑄 =

𝑄

𝜌𝑛2𝐷5
 (39)

𝜂 =
𝐶𝑇𝐽

𝐶𝑃
 (40)

 The UIUC propellers had data collected over the same advance ratios using different RPM

values by adjusting the freestream velocity. Due to viscous effects, there is a large scatter in the

data. As the RPM increased with an adjustment in the velocity to maintain a similar advance ratio

the propellers saw an increase in thrust and torque as well as efficiency because the thrust increased

by a greater amount. The viscous model in solver is capable of modeling viscous effects only for

higher Reynolds numbers on the order of a couple 100,000 whereas the UIUC propellers have a

Reynolds number of roughly 60,000. This leads to constant thrust and torque values produced by

the solver for a given advance ratio despite changes in the velocity and RPM.

Both propellers were modeled using viscous coupling and without viscous coupling. The non-

viscous coupling propellers are labeled with “(NV)” while the models with viscous coupling are

Figure 21: GF 10x8 Thrust Coefficient

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Th
ru

st
 C

o
ef

fi
ci

en
t

Advance Ratio

Wind Tunnel 3005RPM

Wind Tunnel 3998RPM

Wind Tunnel 5003RPM

Wind Tunnel 6007RPM

FlightStream (NV)

FlightStream (V)

65

labeled with “(V)”. Figure 21 provides the thrust coefficient results for the GF 10x8 propeller. As

shown in the plot, FlightStream® captures the behavior of the propeller extremely well with both

the viscous coupling model and model without viscous coupling. The model that does not have

the viscous coupling setting on intuitively predicts higher values for the thrust than the viscous

model does, but from the UIUC data the model that does not have the viscous coupling accounted

for is the more accurate of the two. Nevertheless, both models are placed within the scatter or very

near the scatter of the wind tunnel data for the thrust coefficient.

 The power coefficient is presented next in Figure 22. The performance from both models

is grouped tighter together for the power coefficient than the thrust coefficient which will lead to

discrepancies in the efficiency plots. Furthermore, both models exhibit more linear behaviors than

the actual wind tunnel data suggests. Causes for this could be explained by the complicated

geometry build process and possible errors in scanned point clouds. Despite these irregularities,

the data for power coefficient is matched well by the numerical solver. At the lower advance ratios

Figure 22: GF 10x8 Power Coefficient

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Po
w

er
 C

o
ef

fi
ci

en
t

Advance Ratio

Wind Tunnel 3005RPM

Wind Tunnel 3998RPM

Wind Tunnel 5003RPM

Wind Tunnel 6007RPM

FlightStream (NV)

FlightStream (V)

66

of 0.25 and less and the higher advance ratios just before windmilling occurs, there are over

predictions of about 7%. At any other advance ratio between those values, the predictions by the

solver are within the scatter of the wind tunnel data.

 Lastly, the plot for the efficiency of the GF 10x8 propeller is presented. Due the to the

differences in the thrust prediction between the two models and then the similarities in the power

coefficients, the difference in efficiency plots between the viscous and non-viscous model are quite

large, but the same difference in performance data is exhibited in the wind tunnel data. The scatter

for thrust and power from the wind tunnel leads to even greater scatter in the efficiency plots. Both

models fit within the provided range of efficiency at the given advance ratios. The viscous model

provides a lower prediction for efficiency than does the non-viscous coupling model which is

sound. The viscous coupling model even under predicts efficiency compared to the wind tunnel

data. This, again, could be due to errors in the geometry or perhaps a minor over prediction in the

torque on the model in the solver itself. However, it is appropriate to conclude that the solver is

Figure 23: GF 10x8 Efficiency

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ef
fi

ci
en

cy

Advance Ratio

Wind Tunnel 3005RPM

Wind Tunnel 3998RPM

Wind Tunnel 5003RPM

Wind Tunnel 6007RPM

FlightStream (NV)

FlightStream (V)

67

validated for the GF 10x8 propeller. Plots for thrust and power coefficient place results within the

upper and lower ranges of RPM for the wind tunnel data, and most importantly the efficiency

predicted by the solver is accurate.

 The Electric 11x7 propeller is presented with similar characteristics to that of the previous

propeller. Figure 24 provides the thrust coefficient for the E11x7 propeller from the numerical

solver. Here, the viscous coupling model is very similar to the non-viscous coupling model as the

plots for both are placed almost directly on each other. While the curve predicted by the numerical

solver tends to be more linear than the provided data, both models stay within the variance of the

wind tunnel data other than a slight over prediction in the lower advance ratios.

 The power coefficient predictions for the E11x7 propeller are provided in Figure 25 which

are far more accurate than that of the GF10x8. The numerical solver provides a clean non-linear

curve for the power predictions. Although the spread for the wind tunnel data is quite large for the

given advance ratios, FlightStream® produced results are consistently placed in the center of the

Figure 24: E11x7 Thrust Coefficient

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Th
ru

st
 C

o
ef

fi
ci

en
t

Advance Ratio

Wind Tunnel 3021RPM
Wind Tunnel 4005RPM
Wind Tunnel 5007RPM
Wind Tunnel 5908RPM
FlightStream (NV)
FlightStream (V)

68

scattered data. One oddity noticed form the plots, however, is the predictions for the viscous

coupling model and the non-viscous coupling model. It should be assumed that the viscous

coupling model would produce higher predictions in the torque on the propeller blades and

ultimately the power required, but here the opposite is shown. One cause for this is a non-

converging solution in the solver or perhaps a faulty geometry from the scan. Still, the fact of the

matter remains that the predictions for both models are accurate and are placed in the range of the

provided data.

 Lastly, the efficiency plots for the E11x7 are provided in Figure 26. Both models are the

propeller remain in the range of the UIUC data. Because the results for the thrust coefficient in

Figure 24 where so similar the main defining characteristics between the viscous coupling model

and the non-viscous coupling model are rooted the power coefficient. Therefore, the plot follows

almost the exact same behavior as the power coefficient in that the viscous model produces greater

efficiencies where it would be assumed that the opposite would happen. Again, the issues may

Figure 25: E11x7 Power Coefficient

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Po
w

er
 C

o
ef

fi
ci

en
t

Advance Ratio

Wind Tunnel 3021RPM
Wind Tunnel 4005RPM
Wind Tunnel 5007RPM
Wind Tunnel 5908RPM
FlightStream (NV)
FlightStream (V)

69

remain in the solver not converging in the provided number of iterations or the geometry of the

propeller itself. In reality, this is a miniscule error because the results for both are still very

accurate.

Data from the University of Illinois propeller data base has been collected and implemented

into an OpenVSP model which in turn provided the meshed geometries for the solver. The

numerical solver, FlightStream®, was then validated over advance ratios for the thrust coefficient,

power coefficient, and efficiency. All results produced by the solver follow the necessary trends

and are placed directly in the scatter of the wind tunnel data or within a reasonable error.

A simple analysis was also conducted on comparisons between the same E11x7 propeller with

and without a spinner or hub in the center of the propeller. This analysis was carried out to validate

the methods for the optimization derived geometries because the propellers in the GA do not have

spinners. The thrust coefficient, power coefficient, and efficiency for both propellers are shown in

Figure 27, Figure 28, and Figure 29. The torque loads on the blade remain relatively constant

Figure 26: E11x7 Efficiency

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Ef
fi

ci
en

cy

Advance Ratio

Wind Tunnel 3021RPM

Wind Tunnel 4005RPM

Wind Tunnel 5007RPM

Wind Tunnel 5908RPM

FlightStream (NV)

FlightStream (V)

70

between the two case which leads to power coefficient being almost identical. The main

discrepancy in the results arises in the thrust coefficient predictions which are understandable. The

spinner provides only structural support to the propeller as it is what holds the blades themselves.

It provides no thrust and therefore can only increase drag on the propeller, effectively reducing the

thrust. Thus, it is expected for the thrust to be slightly over predicted for the no-spinner model.

Due to the increased thrust and similar power requirements, the no-spinner model has an increase

Figure 28: Spinner vs No Spinner Thrust Coefficient

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Th
ru

st
 C

o
ef

fi
ci

en
t

Advance Ratio

Spinner

No Spinner

Figure 27: Spinner vs No Spinner Power Coefficient

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Po
w

er
 C

o
ef

fi
ci

en
t

Advance Ratio

Spinner

No Spinner

71

in the efficiency from the model with the spinner. While there are discrepancies between the

spinner and no spinner analysis, the trends between the two models are identical in nature.

Therefore, it is reasonable to use a geometry model in the GA that does not have a spinner. This

saves in computational time because there are less mesh faces to account for. Furthermore, it

allows room for more error in the geometry designs and modeling in FlightStream®. As these

models are loaded into the numerical solver, a mesh is created across the cross sections that are

loaded in. If a spinner is to be meshed with the propeller as well, it is likely that more errors will

arise in the models leading to non-converging solutions which provide the GA with no useful

information and take longer to run in the solver. The conclusion is that producing models with no

spinner is far more practical for blade optimization purposes. Lastly, the the optimization process

described in this work is a preliminary design tool and therefore results are not required to be

finalized but rather to provide further insight to the development process.

Figure 29: Spinner vs No Spinner Efficiency

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Ef
fi

ci
en

cy

Advance Ratio

Spinner

No Spinner

72

5.2 NACA Technical Report

 The NACA TR-640 provides extensive wind tunnel performance data as well as the

necessary information for reconstructing the propellers. The propellers provided in this report are

10 feet in diameter. A total of three groups of propellers are tested. The first group has Clark Y

airfoil sections and consist of 2, 3 and 4 bladed propellers. The second group is the same as the

first except an R.A.F. 6 airfoil composes the cross section. The last group consists of a single two

bladed propeller with an R.A.F.

6 airfoil, but the chord is 50%

greater than the two bladed

propeller in group 2. The

geometry data provided is

shown in Figure 30. Because the

propellers are very similar, only

one group is studied in this

validation. The R.A.F. 6

propellers are studied for the 2,

3, and 4 bladed designs. These

three propellers are studied with

the pitch at 15 degrees at 75% of

the radius as well as one model where the pitch is increased to 25 degrees at 75% of the radius

providing a total of 4 propellers in this validation. One notable aspect of the geometry is the

thickness of the propeller blade. The chord, airfoil shape, and thickness of the blade were all

provided which would lead the propeller geometry to be over constrained. The airfoil shape is

Figure 30: NACA TR-640 Example Data

73

normalized by the chord, and therefore, when a chord and airfoil are given, the full geometry is

provided. Appling anymore constraints regarding the cross section would lead to changing the

airfoil itself. Thus, two models were created for the three-bladed model: one that uses the airfoil

and chord only, and on that uses the airfoil, chord, and thickness. The geometry model which only

uses the chord and airfoil shape is named “Airfoil” in the plots, and the model which uses an

adjusted thickness is named “Adjusted”. Furthermore, each of these models was tested with and

without the viscous coupling enabled. The viscous coupling models are indicated by “(V)”, and

the models which do not use viscous coupling are indicated by “(NV)” after the geometry

identification name.

 The three bladed propeller with 15 degrees of pitch at 75% of the radius thrust coefficient

is provided in Figure 31. The viscous coupling and non-viscous coupling models provide

practically the same results as both plots lie directly on top of each other. The model which uses

the adjusted thickness is thicker than the airfoil modeled thickness which leads to the over

Figure 31: 3-Bladed 15° Pitch at 75% Radius Thrust Coefficient

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TH
ru

st
 C

o
ef

fi
ci

en
t

Advance Ratio

Wind Tunnel Airfoil (NV) Airfoil (V) Adjusted (NV) Adjusted (V)

74

predictions in the thrust coefficient. The models which use the airfoil captured thickness provide

much more accurate data with respect to the NACA 640 report. The same trend is seen in the

results for the power coefficient in Figure 32. Here the data is only provided until the thrust

becomes negative at an advance ratio of ~0.81. This is because the GA only searches for propellers

that are producing a positive thrust. Thus, there is no need to validate the flight condition. Both the

airfoil thickness model and the adjusted thickness model provide the same trends as the wind

tunnel data; however, the airfoil thickness model provides much more accurate results with some

under predictions at lower advance ratios. The adjusted thickness model has an increased thickness

radially outward along the propeller. This leads to the over prediction in the torque calculations

which is reflected in the power coefficient. Although both models produce different results for

thrust and power coefficients, the efficiency for both is similar due to the consistent over prediction

by the adjusted thickness model. Figure 33 provides the efficiency for both geometry models. It is

shown that the airfoil modeled thickness provides a better representation of the efficiency curve as

Figure 32: 3-Bladed 15° Pitch at 75% Radius Power Coefficient

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Po
w

er
 C

o
ef

fi
ci

en
t

Advance Ratio

Wind Tunnel Airfoil (NV) Airfoil (V) Adjusted (NV) Adjusted (V)

75

it increases and then experiences a sharp decline at an advance ratio of 0.6. The adjusted thickness

model over predicts the location of this maximum followed by a drop off; in this model, the over

increasing efficiency extends to an advance ratio of 0.7. Ultimately, the airfoil modeled thickness

provides better results regarding the wind tunnel data produced from the NACA TR-640.

Therefore, for the remainder of this validation, the airfoil captured thickness models were used.

 The two-bladed propeller with 15-degree pitch is presented next. The results from this

validation are similar to the three-bladed model largely because it is the same blade. Figure 34

provides the results for thrust coefficient from the 2 blade propeller simulations. For both the

viscous coupling model and the non-viscous coupling model, the thrust coefficient predicted by

the numerical solver is identical to that of the wind tunnel. Other than slight over predictions at

higher advance ratios, the numerical solver data is an exact match. The power coefficient data,

Figure 33: 3-Bladed 15° Pitch at 75% Radius Efficiency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ef
fi

ci
en

cy

Advance Ratio
Wind Tunnel Airfoil (NV) Airfoil (V) Adjusted (NV) Adjusted (V)

76

however, does not provide nearly as accurate results as the thrust coefficient modeling, but the

power coefficient performance is still valid. Figure 35 provides the power coefficient data for this

Figure 34: 2-Bladed 15° Pitch at 75% Radius Thrust Coefficient

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Th
ru

st
 C

o
ef

fi
ci

en
t

Advance Ratio
Wind Tunnel Airfoil (NV) Airfoil (V)

Figure 35: 2-Bladed 15° Pitch at 75% Radius Power Coefficient

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Po
w

er
 C

o
ef

fi
ci

en
t

Advance Ratio
Wind Tunnel Airfoil (NV) Airfoil (V)

77

propeller and demonstrates a more linear curve than is shown by the wind tunnel data. This

linearity is exhibited in both the viscous and non-viscous coupling models. Although the data does

not experience an exact match, the general location of the data points is very similar to what was

expected form the wind tunnel. The largest error in prediction arises between the advance ratios of

0.3 and 0.6, and this under prediction is shown in the efficiency plots as the efficiency for the

Figure 36: 2-Bladed 15° Pitch at 75% Radius Efficiency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ef
fi

ci
en

cy

Advance Ratio

Wind Tunnel Airfoil (NV) Airfoil (V)

Figure 37: 4-Bladed 15° Pitch at 75% Radius Thrust Coefficient

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Th
ru

st
 C

o
ef

fi
ci

en
t

Advance Ratio

Wind Tunnel Airfoil (NV) Airfoil (V)

78

propeller is over predicted in that range. The plot of propeller efficiency for the 2-bladed propeller

with 15-degree pitch at 75% the radius is provided in Figure 36. At the lower advance ratios, the

efficiency predictions are identical to the wind tunnel performance; however, as the advance ratios

increase the numerical solver over predicts the efficiency of the propeller. Despite this over

prediction, the trend of the efficiency vs advance ratio is captured. Furthermore, the plots from the

solver remain near to that of the wind tunnel. One important take away from this modeling is the

lack of difference in the viscous coupling and non-viscous coupling models. One reason for this is

the operating condition for these propellers which will be discussed in the following section.

 The four-bladed propeller with the same pitch as the first two propellers is provided next.

As seen before the thrust coefficient in Figure 37 has slight over predictions but remains very

accurate in terms of the overall trends provided by the solver and the values of the plot itself. The

same behavior as the two and three bladed propeller is also seen for the power coefficient given in

Figure 38. Accurate values are provided at the lower and higher advance ratios but from advance

ratios of 0.3 to 0.6 the power is under predicted. Furthermore, the efficiency plot for the four-

Figure 38: 4-Bladed 15° Pitch at 75% Radius Power Coefficient

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
o

w
er

t
C

o
ef

fi
ci

en
t

Advance Ratio

Wind Tunnel Airfoil (NV) Airfoil (V)

79

bladed propeller, provided in Figure 39, is the same as the efficiency plots for the 2 and 3 bladed

propellers where the solver provides the appropriate trend to the plot and accurate values for lower

advance ratios and an over prediction for the higher advance ratios. Therefore, it is concluded that

the solver is validated for the NACA TR-640 propellers with various numbers of blades.

 Lastly, the propeller with a different pitch is provided for the validation to ensure that the

solver offers a full range of propeller modeling capabilities. Here the three-bladed propeller is

twisted by 10 degrees to offer 25 degrees of pitch at 75% of the radius. The thrust coefficient for

this model is provided in Figure 40. Again, the same trend is shown for the propeller where the

thrust coefficient is slightly over predicted in the range of advance ratios and remains accurate and

within a reasonable range of the provided data. The main difference between this propeller and the

others previously validated is the power calculations which are given in Figure 41. While accurate

results are provided at the higher advance ratios, the solver over predicts torque values at the lower

advance ratios. The cause for this is rooted in the steady rotary solver itself. At lower advance

ratios, the steady rotary solver experiences difficulties in converging. For these flight conditions

Figure 39: 4-Bladed 15° Pitch at 75% Radius Efficiency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ef
fi

ci
en

cy

Advance Ratio

Wind Tunnel Airfoil (NV) Airfoil (V)

80

the unsteady solver must be used, but for this case, only the steady rotary solver needs to be

validated at the advance ratios provided to the GA which are well above these values which have

error. Although, there are large errors at lower advance ratios for power predictions, the efficiency

of the propeller is well matched by the solver in Figure 42. While there are some over predictions

Figure 40: 3-Bladed 25° Pitch at 75% Radius Thrust Coefficient

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Th
ru

st
 C

o
ef

fi
ci

en
t

Advance Ratio
Wind Tunnel Airfoil (NV) Airfoil (V)

Figure 41: 3-Bladed 25° Pitch at 75% Radius Power Coefficient

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

P
o

w
er

 C
o

ef
fi

ci
en

t

Advance Ratio
Wind Tunnel Airfoil (NV) Airfoil (V)

81

for maximum efficiency, the solver predicts the drop off for efficiency and provides a correctly

modeled trend for the curve with respect to the provided wind tunnel data.

 The propellers from the NACA TR-640 report have been used to validate the numerical

solver that is implemented in the Genetic Algorithm. The solver has been shown to capture the

effects of adding blades to a propeller, adjusting the pitch and other general characteristics. The

propellers used in this validation used an R.A.F. 6 propeller with 2, 3, and 4 blades. A fourth model

was also added to the group of propellers which had 3 blades but had a pitch which was increased

by 10-degrees. The solver demonstrated appropriate modeling and accuracy for each propeller.

5.3 Flow Separation Modeling

 One notable characteristic between the previous two cases for propeller validation is the

effects of including or not including the viscous coupling models for the solver validation. In

section 5.1, the propellers from the UIUC Propeller Database experienced large differences

between the cases when the flow viscous coupling was enabled and when it was not. This is due

to the amounts of flow separation that occur on the top of the blade. This analysis of flow

Figure 42: 3-Bladed 25° Pitch at 75% Radius Efficiency

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ef
fi

ci
en

cy

Advance Ratio

Wind Tunnel Airfoil (NV) Airfoil (V)

82

separation and difference in viscous coupling models is indeed important to the performance

modeling for the GA. Because the viscous coupling setting takes longer for the solutions to

converge, it is not used in the modeling for the GA; however, the flow separation is still accounted

for by a 7% rule. As demonstrated by the previous validation case which uses the NACA TR-640

propellers, some solutions do not need to have the viscous coupling effects enabled as the solution

converges on the same results. These cases consist of propellers with very low amounts of flow

separation. Figure 43 provides the separation marker across the three-bladed NACA TR-640

propeller with the pitch at 15 degrees at 75% of the radius. A separation marker of 1 indicates fully

separated flow, and a separation marker of 0 indicates fully attached flow. Notice that there is

almost no separation across the propeller. Therefore, whether the viscous coupling is turned on or

off, it will not matter, only slight adjustments in thrust and torque will occur between the two

models. This is the reason for the similarity in the models from the NACA report. When the

separated flow becomes the dominating flow regime over the propeller, the viscous coupling

effects are very important to capture. Figure 44 provides the separation for the GF 10x8 propeller.

Figure 43: 3-Bladed NACA Propeller Flow Separation at an Advance Ratio of 0.5

83

Notice the large increase in the amount of separation. This separation is what causes the drastic

difference in the results between the viscous coupling and non-viscous coupling cases.

 Now that the reason for the difference in the cases is identified, a shortcut can be

implemented in the optimizer to provide shorter run times. If there is no difference between the

viscous coupling models and the non-viscous coupling models for conditions in which the flow is

mostly attached, then only propellers with fully attached flow should be considered, and the

viscous coupling mode should be turned off to provide faster run times. Furthermore, this analysis

is supported that this is an optimization tool. Therefore, it should only consider optimal propellers

for the solutions, and propellers with more separation are less optimal than propellers with less

separation. Thus, a marker is set in the GA which indicates propellers with overloaded amounts of

separation. When a propeller with more than 5% of the flow has separation markers of 90% or

greater, the propeller is given a fitness of -10. This eliminates the propeller from being a possible

candidate for the best propellers which pass their characteristics on to the next generation. This

provides faster run times, and it only allows the GA to consider more optimal propellers.

Figure 44: GF 10x8 Flow Separation at an Advance Ratio of 0.5

84

5.4 Coaxial Propeller Validation

 The coaxial propellers were validated in the solver for thrust and torque loads. The

geometry for the propeller comes from a scan of an MR9x4.5 propeller. The scan was conducted

in the same manner as the UIUC propellers; however, in the case of this geometry construction,

the entire geometry was gathered via scanning whereas the UIUC scans only collected airfoil

shape. An example of the geometry that was constructed in the scan is provided in Figure 45, and

Figure 45: MR9x4.5 Geometry

0

0.05

0.1

0.15

0.2

0.25

0.3

0

5

10

15

20

25

30

35

0
.1

3
5

0
.2

1
9

0
.3

0
3

0
.3

8
2

0
.4

4
8

0
.5

4
6

0
.6

3
1

0
.7

1
3

0
.7

9
4

0
.8

7
7

0
.9

5
8

0
.9

8
7

1

C
h

o
rd

/R
ad

iu
s

Tw
is

t

Radius
Twist

Chord

Figure 46: Coaxial Propellers at Various Points in the Validation

85

an image of the set up in FlightStream® is provided in Figure 46. Here the propellers are shown

after a number of time iterations with the velocity magnitude color map shown across the

propellers. The time stepping increment was set to 0.0001 seconds, and the solver was set to run

such that the front propeller completed one full rotation after its wake encountered the rear

propeller to ensure that all the effects were captured. The propellers were tested over RPM values

ranging from 1000 to 15000 for both the front and rear rotor. The results for the thrust by both

rotors are provided in Figure 47 and Figure 48. The front propeller thrust is predicted accurately

by the solver for all RPM values of both the rear and forward rotor. As predicted, the rear rotor

has little impact on the front rotor due to the nature of the setup described in Chapter 2. The rear

Figure 47: Front Propeller Thrust Validation

Figure 48: Rear Propeller Thrust Validation

86

propeller on the other hand, has a large dependence on the operating conditions of the forward

rotor as shown by the experimental data in left graphic of Figure 48. The numerical solver results

are accurate compared to the experimental data; however, the FlightStream® results fail to capture

the full effect of the forward propeller, and thus, the solver is more accurately validated for the

cases which fall in the red square. These cases consist of lower RPM values for the front propeller

and higher RPM values for the rear propeller. This same accuracy is seen for the torque

measurements as well which are shown in Figure 49 and Figure 50. The front propeller’s

performance is modeled well by the solver and is congruent with what is expected from the

experimental results. Furthermore, it is shown once again that the rear rotor has little if any impact

Figure 49: Front Propeller Torque Validation

Figure 50: Rear Propeller Torque Validation

87

on the performance of the forward rotor for the solver produced plots and the experimental data.

The rear propeller torque values are once again modeled with accuracy but fail to capture the full

effect of the front rotor. The range for accuracy of this validation is also shown by the red square

and consists of the front rotor operating at a lower RPM and the rear rotor operating at a higher

RPM. Though majority of the data is validated using the numerical solver, the GA will optimize a

rear propeller that fits in the range of the red boxes. Because the solvers viscous models are aircraft

centric, it is accurate only for higher Reynolds number simulations. The small rotors in this

validation have Reynolds numbers on the order of 60,000 to 80,000 where the solver model is

designed for Reynolds numbers on the order of few hundred thousand. This leads an error in the

data at the lower RPM/lower Reynolds number values.

88

Chapter 6: The Genetic Algorithm Model

 The propeller Genetic Algorithm is written in FORTRAN and requires a text file for input

and a terminal command to access FlightStream® which provides the performance modeling for

the propellers. This section provides a map for the GA, the variables considered, mutation

techniques and the parent selection process for each generation.

6.1 Model Blueprints

 The full GA model is presented Figure 51. This model includes the logic and thought

processes that the GA uses to go through the entire execution including the demes and the main

generational loop. The GA starts with a simple text file input which specifies the number of

generations for each deme, the number of generations for the main generational loop, the operating

Figure 51: GA Blueprints

89

conditions for the propeller, the minimum and maximum value for each of the parameters, etc. The

GA then builds a completely random set of members as the starting population for deme number

1. These members are then tested and have the fitness determined. If the multiple flight condition

setting is being executed, all the flight conditions are tested at the same time. Once each propeller

has been evaluated, the fitness is determined for each member. Then, the four best members are

placed in a mating pool where the next population is created. Finally, the new population is mutated

and tested again. This is carried out for the user specified number of deme generations. The process

of creating a new population, testing, building a new population off the four fittest, testing, and so

on is carried out for each deme. Once each deme has been completed, the demes put forth their

best member to create the starting population of the main generational loop. The process of testing,

building, mutating, and testing is then carried out for the number of main generational loops.

 The GA is built using five subroutines which are called in order throughout the main script.

These subroutines are “Prop_Build”, “FlightStream®_Script”, “File_Read”, “ParentSelector”, and

Figure 52: Subroutine Map

90

“Creator”. The order in which they are called is provided in Figure 52. This figure describes the

process for a single iteration in the generations. “Prop_Build” is the first subroutine called in the

generation. This subroutine uses the Bernstein Polynomials discussed in section 3.2 to build the

CCS file for each propeller geometry. “FlightStream®_Script” builds a FlightStream® script which

runs each member of a population in batch. After the script has been built a command line is used

in the code to access FlightStream® and run the script. As each propeller is tested, and the

performance is saved in a text file from FlightStream® which is then read back into the GA using

the subroutine “File_Read”. “File_Read” reads in the performance data for each propeller which

consists of the thrust, torque and flow separation data for the propeller. Using the torque and the

thrust the efficiency of the propeller is calculated by the following equations.

𝐶𝑞 =
𝑄

𝜌𝑛2𝑑5
 (41)

𝐶𝑝 = 2𝜋𝐶𝑞 (42)

𝑃 = 𝐶𝑝𝜌𝑛
3𝑑5 (43)

𝜂 =
𝑇𝑉∞
𝑃
 (44)

Q and P are the torque acting on the propeller and the power required respectively, and T is the

thrust produced. 𝐶𝑞 and 𝐶𝑝 are the torque coefficient and power coefficient. n is the rotational

speed of the propeller measured in rotations per second. After the efficiency and thrust have been

obtained, the percent of separated flow across the surface of the propeller is determined. If more

than 7% of the propeller has flow which is more than 90% separated a fitness of -10 is assigned.

After reading and calculating the necessary data, “ParentSelector” then determines the fitness of

each member and performs the parent selection process which is discussed at the end of this

91

chapter. “Creator” takes the parents from “ParentSelector” and performs crossovers to create the

new generation. This generation is then mutated, and the characteristics of each member are

provided back to “Prop_Build” to create the geometries for the new generation.

6.2 Variables

 The basic propeller depends on three main sets of variables each of which have several

defining parameters. The propeller’s geometry, performance, and the flight conditions under which

the propeller operates define the GA and promote the GA to converge on a solution. In this case,

the GA makes use of the propeller’s geometry and mutates it to obtain the performance of the

propeller under the specified operating conditions. The geometric set of variables consist of the

radius, airfoil shape function, twist angle (beta) function, chord length function, and the sweep

function of the propeller. The latter four of these variables depend on several other variables to

provide a curve along the operate directions of the propeller. The performance set of variables

consists of thrust, torque (power required), and efficiency. In the case of this model, two of the

three performance variables must be set to achieve any useful results. If only the thrust is chosen

to maximize, then an extremely inefficient propeller will be selected. If the power required is

chosen to be minimized, then the GA will converge on a propeller that produces very little thrust.

The one confusing parameter to hold is the efficiency. If only the efficiency is chosen, it is possible

that the GA will favor a decrease in power over an increase in thrust. Therefore, the two most

optimal performance variables to set for general use are the thrust and the efficiency. Lastly, the

flight conditions must be reasonably set with the given thrust, efficiency, and radius specifications.

This set consists of the free stream velocity and the RPM setting. Failure to set appropriate values

will lead to faulty convergences. An example would be a very low thrust setting for a high RPM

92

and radius value which will lead to a very skinny propeller which is trying to match the specified

thrust.

 In reality, models should be based off the power and thrust only. Therefore, the propellers

will be maximizing thrust while absorbing a given power or perhaps minimizing power while

producing a given thrust requirement. In this set up, propellers will be designed accurately for very

specific operating conditions because some information has now been provided to the model which

considers the performance of the power source. Nevertheless, the modeling approach used here

which incorporates the thrust and the efficiency provides suitable results for the given study.

6.3 Mutations and Crossovers

 The GA uses a variation of a modified Laplace crossover, selective point crossovers, and

random point crossovers to make the next population which is then mutated by a variation of power

mutations. The modifications and variations used in the GA are explained and examined below.

6.3.1 Laplace Cross Overs Modification

 The Laplace cross over is one of the techniques used in this GA to generate members;

however, this GA uses a modified version to provide better results. From the two equations

described in the Laplace crossover section, six additional equations were added and observed over

the six possible scenarios of parent 1, parent 2, and the target value. All of which were adjusted

with respect to each other.

𝑦1 = 𝑥1 + 𝛽 (𝑥1 − 𝑥2) (45)

𝑦2 = 𝑥1 + 𝛽 |𝑥1 − 𝑥2| (46)

𝑦3 = 𝑥1 − 𝛽 (𝑥1 − 𝑥2) (47)

93

𝑦4 = 𝑥1 − 𝛽 |𝑥1 − 𝑥2| (48)

𝑦5 = 𝑥2 + 𝛽 (𝑥1 − 𝑥2) (49)

𝑦6 = 𝑥2 + 𝛽 |𝑥1 − 𝑥2| (50)

𝑦7 = 𝑥2 − 𝛽 (𝑥1 − 𝑥2) (51)

𝑦8 = 𝑥2 − 𝛽 |𝑥1 − 𝑥2| (52)

The eight presented equations were compared in the six possible combinations of parent 1, parent

2 and the target value that the GA is trying to converge on. All six scenarios can be seen in Figure

53. It is now clear that certain equations make the appropriate mutation for certain scenarios. Table

1 is provided to shed light on which equations prove useful in their crossovers and which do not.

The green coloration indicates a proper mutation; the uncolored cells indicated an incorrect

mutation.

Figure 53: Possible Values of Parents and Target

94

Table 1: Mutation Direction for Modified Equations

 Eqn 1 Eqn 2 Eqn 3 Eqn 4 Eqn 5 Eqn 6 Eqn 7 Eqn 8 x1 & x2 relation

Case 1 x1<x2

Case 2 x1>x2

Case 3 x1<x2

Case 4 x1>x2

Case 5 x1<x2

Case 6 x1>x2

It is now seen that child 3 and child 5 are the most useful of the 8 equations. These two equations

will provide a 66.66% chance of a proper crossover. However, by restricting the criteria for what

equation to use based off the values of the parents with respect to each other, more equations can

be used to provide a 66.66% chance of a proper mutation. If just the cases where parent 2 is greater

than parent 1 (cases 1, 3, and 5) are observed, children 2, 3, 5, and 8 will provide a 66.66% chance

of success, and if only cases where parent 1 is greater than parent 2 (cases 2, 4, and 6) are observed,

children 3, 4, 5, and 6 will provide a 66.66% chance of a proper mutation. By extending the number

of equations to use, the variation in the child produced increases and mutations are not consistent.

This allows for the GA to run through a wider range of results.

6.3.2 Selective Point and Random Point Crossovers

 The selective and random point crossovers are used to create a child that is very similar to

the two parents that were used in the synthesis. Both crossovers operate by simply exchanging

parameters between two parents. The selective point crossovers exchange certain parameters

between the two parents. In the case of this GA, these parameters consist of sets of polynomial

coefficients that describe the characteristics of a parameter. The parameters referred to here can be

the airfoil shape, chord, twist, and sweep. The polynomials which describe these are provided in

chapter 3 section 2. For the selective point crossover, only entire sets of parameters are selected to

95

be exchanged between parents i.e. the selected point for the crossover is only at the end of a group

of parameters. For example, the first 48 parameters that describe a propeller geometry are used to

define the shape. The next 3 intervals of 5 parameters are used to describe the twist, chord, and

sweep. Therefore, crossovers only occur at 48, 53, and 58. This ensures that the entire set of genes

which describe a propeller defining parameter are transferred over. Thus, the child will have exact

characteristics of the two parents.

 The random point crossover operates based on two parents combining at a random point to

make a new child. Therefore, it is very likely that half of the defining genes for a parameter are

derived from parent 1 and the other come from parent 2. With four parents, there are a total of 12

combinations of parents (1-2, 2-1, 1-3, 3-1, 4-1, 1-4, etc.). Therefore, two random numbers are

selected for each crossover. The first random number is between 1 and 12, and it describes which

parents will be combine and the order in which they will be blended. The second is between 1 and

63, and it describes the gene at which they will split. For instance, if the first random number is 3

and the second number is 34, then parents 1 and 3 will be split at the gene 34. The first part of the

child will come from the first 34 genes of parent 1 and the last 29 genes will come from parent 3.

96

6.3.3 Power Mutation

 The power mutation is mutation type chosen in this GA. The power mutation offers a wide

range of mutation strength with the mutation being raised to a user defined value. The way by

which the power mutation operates is described in section 2.4.3.6. The level of mutation is almost

completely dependent on the value of p. A representation of the mutation variation can be

described by a power function with varying levels of power. This is shown in Figure 54. The y-

axis represents the amount of mutation for given values of p over a range of possible random values

for s. The distribution of random values is evenly distributed between 0 and 1. At p=1, the mutation

strength is linear with respect to the random value; therefore, one can expect to see a mutation

strength greater than 0.50 50% of the time. This is an extreme amount of mutation and will lead to

over and under shoots on the target value. At the opposite end of the spectrum, a p value of 20 will

Figure 54: Mutation Strength vs Random Number Selection Over a Range of p Values

97

lead to less than a 0.10 mutation strength roughly 90% of the time. This is far too low and will not

lead to sufficient mutation amounts in the early stages of the GA.

The correctness of the power mutation is dependent on a random value r and the value of the parent

which is implemented upon t. The degree of correctness of the mutation will be ignored here i.e.,

the mutation either moves closer or further from the target; the degree to which it moves further

or closer will be ignored. The following table presents evenly distributed possible values of a

parent and the corresponding value for t. The table also presents the probability of the power

mutation being correct.

Table 2: Odds of Mutation for Original Power Mutation

Parent Value t Odds if target is

greater than parent

Odds if target is less

than parent

0.1 0.111 11.1% 88.9%

0.2 0.250 25.0% 75.0%

0.3 0.428 42.8% 57.2%

0.4 0.666 66.6% 33.3%

0.5 1 100% 0%

0.6 >1 100% 0%

0.7 >1 100% 0%

0.8 >1 100% 0%

0.9 >1 100% 0%

The columns “Odds if target is greater than parent” and “Odds if target is less than parent”

represent the odds of a correct mutation if the target value is above the parent or below the parent,

respectively. Take the first row for example: given that the range of values for a parent are between

0 and 1, if the parent value is 0.1, then by equation 10 the value of t is 0.111. Now, r is a random

number between 0 and 1 which means that there is a 11.1% chance that r is less than t, and there

is an 88.9% chance it is greater than t. The target value is the most optimum value that the GA is

looking for and is unknown. If the target value is greater than the parent value, then the mutation

98

needs to increase, so by equation 9 r needs to be less than .111 which is an 11.1% chance. If the

target is less than the parent, then we need a decrease in the mutation, so by equation 9, r needs to

be greater than 0.111 which is an 88.8% chance. Because the target is unknown, it can be said that

there is a 90% chance the target is above the parent, and there is a 10% chance the target is below

the parent. By this observation, the equality of t and r should be flipped in equation 9 because it

would be better odds to have an 88.8% chance of being correct 90% of the time than having a

11.1% chance of being correct 90% of the time.

 Now, observe the behavior of a parent value being equal to 0.5. Therefore, there is a 50%

chance the target is below and a 50% chance the target is above the parent. This also results of t

value being equal to 1. This value for t results in a zero probability of the r value ever being greater

than t. Thus, the mutation will only increase which means if the target is above the parent than it

is guaranteed to approach it; however, if the target is below the parent, it will never be reached.

This results in a true 50/50 chance of the target being approached which provides no weight to the

argument of whether the inequalities in the power mutation should be flipped.

 Lastly, observe the last condition in which the parent value is equal to 0.9. This results in

a value for t which is greater than one leaving it impossible for r to be less than t. Therefore, there

is a 0% chance that the mutation will decrease. There is a 90% that the target value is less than the

parent, and a 10% chance that the target is above the parent. That means the GA will only be

making a proper mutation 10% of the time. If the inequalities are flipped in the power mutation

definition in equation 9, then we are left with a 90% of being right. Therefore, the direction of the

inequalities should be flipped in order to promote better mutations in the Genetic Algorithm. Table

3 provides the odds of correct mutation for various parent values.

99

Table 3: Odds of Proper Mutation for Flipped Inequalities

Parent Value t Odds if target is

greater than parent

Odds if target is less

than parent

0.1 0.111 88.8% 11.1%

0.2 0.250 75.0% 25.0%

0.3 0.428 57.2% 42.8%

0.4 0.666 33.3% 66.6%

0.5 1 0% 100%

0.6 >1 0% 100%

0.7 >1 0% 100%

0.8 >1 0% 100%

0.9 >1 0% 100%

A graphical representation of the odds is presented in Figure 55. Clearly the plots of both cases

will simply flip from case to case; however, this plot provides an image of the area for which the

odds of a 100% correctness mutation are present when the signs are flipped. It also stresses the

point of the original power mutation in that if a value is already small and needs to decrease more

it should rely on the original power mutation to do so. A key take away is that the modified power

mutation will operate more effectively on a wider population which is present in the early stages

Figure 55: Odds of a Proper Mutation Given a Parent Value and the Location of the

Target

100

of the GA. The original power mutation will be more effective in later stages for fine tuning

parameters.

6.3.4 Mutation bounds

 Using crossovers and power mutations as the operations for creating and mutating

members, a check point has been implemented for both schemes to ensure that values outside the

range of the specified parameters are not created. The Laplace crossover uses one of the eight

mentioned equations to ensure upper and lower bounds are not crossed. The upper bound equation

is provided from the 8th of the developed equations and is shown below

𝑦8 = 𝑥2 − 𝛽 |𝑥1 − 𝑥2| (53)

The lower bound check uses the 2nd of the 8 equations

𝑦2 = 𝑥1 + 𝛽 |𝑥1 − 𝑥2| (54)

It is seen that if the upper bound of the parameter at hand is crossed, then the value is decreased,

and if the lower bound is crossed with the original mutation, then the value of the child’s parameter

is adjusted to increase. This ensures that all values and mutations stay within the user specified

range.

 The power mutation uses one of the same equations presented in the original mutation to

readjust values back into the limits. The conditional set for the values of t and r is replaced with a

minimum and maximum range value. If the upper limit is surpassed, then the following is used

𝑥 = 𝑥̅ − 𝑠(𝑥̅ − 𝑥𝑙) (55)

Furthermore, if the lower limit is met, then the following is used to mutate the parameter

𝑥 = 𝑥̅ + 𝑠(𝑥𝑢 − 𝑥̅) (56)

101

By using these equations and stated conditionals for minimum and maximum values, no mutation

can produce a value for a parameter that is outside the range of the specified values.

6.4 Parent Selection

 The parent selection for this GA can vary more than most due to the different optimization

points that the user describes. In general, the fittest four members of each population are selected

to be placed in a mating where they will pass their characteristics to the offspring. The fitness of

each member is determined by the following

𝐹𝑖𝑡 =
∑(𝑇𝑐𝑤𝑡 + 𝜂 𝑤𝜂

)
𝑖

∑(𝑤𝑡 + 𝑤𝜂)𝑖

 (57)

Here the Tc values are the thrust correctness of each flight condition and the 𝑤𝑡 values are the

weight given to each of those thrust values.

𝑇 = 1 −
|𝑇𝑟𝑒𝑞 − 𝑇𝑎𝑐𝑡|

𝑇𝑟𝑒𝑞
 (58)

Treq is the required thrust provided to the GA, and T𝑎𝑐𝑡 is the actual thrust found from the solver.

When the required thrust is equal to the actual thrust the second term goes to zero and the fitness

for that particular requirement is 1. The further the actual thrust strays from the required thrust

leads to further decreases in the fitness. The same weighted method is applied to the efficiency

where η is the efficiency at a given flight condition and the wη
 is the weight of that flight condition

efficiency. The number flight conditions can range from 1 to infinity; however, convergence issues

arise when the number of flight conditions increases. Models have only been executed up to four

flight conditions.

102

 The actual parent selection itself is described by Figure 56. All the members are first tested

against each other in an unseeded tournament. In the first round, the first half of the members are

tested against their counterpart in the second half i.e., member 1 faces member 65, member 2 faces

member 66 as shown. This is not a complete method because the tournament is unseeded, and

therefore, a secondary test must be conducted. From the tournament, four assumed fittest members

will be selected. These four members are then individually tested against the entire population,

and if any of the assumed fittest members have a lesser fitness, then that member is replaced. In

Figure 56, the errors of the unseeded tournament are exposed in the elimination of member 65.

Member 65 is the third best member and should be in the mating pool, but it is eliminated in the

first round of the tournament; however, with the implantation of the round-robin style tournament,

member 65 will end up replacing the assumed 3rd best member from the population.

6.5 Generational Variance

 Each population consists of 128 members. The four fittest members of each population are

selected to be in the mating pool which will create the next population. To ensure that progress is

not lost, the overall fittest member is chosen to be a part of the next generation unchanged. This is

known as elitism. Once in the mating pool, modified Laplace, selective point, and random point

Figure 56: Example Parent Selection

103

crossovers are performed on the four fittest members. These cross overs provide the foundation

for the next set of members which are mutated.

 The first crossovers seen in the population generation are the Laplace crossovers. These

Laplace crossovers produce 36 of the members in the new population. These crossovers are done

evenly over combinations of parents (parents 1 and 2, parents 1 and 3, etc.). Each combination of

parents crosses 6 times. The next crossover done to create the new population is the selective point.

There are 48 of these crossovers which occur between every parent combination including the

order at every characteristic change in the vector of parameters. Lastly, the random point

crossovers produce the remainder of the 128 members. Table 4 provides a summary of how each

generation is constructed. Because a large portion of the new generation comes from non-mutating

Table 4: Summary of Population Generation

Member 1 Members 2-37 Members 38-85 Members 86-128

Fittest from Previous

Population

Modified Laplace

Crossover

Selective Point

Crossover

Random Point

Crossover

parameters, a large number of mutations need to occur. The selective point and random point

crossovers do create some variance in the populations, but they assume that the optimal values for

each parameter already exist in the population, only not in the correct order. Therefore, the power

mutation was implemented to provide some variance. The power of mutation varies depending on

the accuracy of the fittest members. This is discussed in the following section.

104

 It is important to note that all the random values used in this genetic algorithm come from

the prebuilt function in FORTRAN for random number generation. This random number generator

provides real numbers between 0 and 1 when it is called. This function is called multiple times

throughout the use of the GA, and to ensure its randomness is truly uniform. 2 test cases were

executed. The results from these cases are provided in Figure 57. Here the random number

generator was called 10,000 times. The bar graphs were then created which provide the amount of

times a random number was between 0 and 0.1, 0.1 and 0.2, etc. As the plots show, the random

number is indeed a from a uniform random number generator.

6.6 GA Check Points

 Lastly, the different check points implemented in the GA are discussed. These check points

provide many advantages to the code over a variety of aspects which ultimately assist the GA and

the solver in finding a global maximum. There a 6 main check points in the GA: 2 fitness-mutation

checks, a flow separation check, an achievable efficiency, and 2 geometry check points.

Figure 57: Random Number Variation

105

6.6.1 Mutation Check Points

 The 2 fitness-mutation check points tell the GA how the next population will be created

depending on the maximum fitness in the current population. Because many of the check points

are constructed around eliminating poor performing members (these members are given a fitness

of -10 to ensure the genes are not passed to the next population), in early stages, it is possible for

every member to have a fitness of -10. In such a case, the GA will not know which member is

most optimal and therefore, it will simply pick the last four members in the population to build the

next generation. The odds of these members being good members is very unlikely, so the next

population will simply be filled with poor performing members. This process will continue until

the maximum number of iterations is reached. To combat this, the GA has a check. If the maximum

fitness of the entire population is -10, then the GA builds a completely new and random population.

With 128 members per population, it is unlikely that the GA will produce more than 2 random

populations where every member is a poor performer. The second fitness-mutation check point

deals with the mutation strength of the power mutation. If the maximum fitness in the previous

population is not higher than a set value, the power of mutation is decreased, leading to an increase

in the mutation strength. This gives the population a large amount of variance as it searches in the

early stages. Once the GA starts producing members within a desired fitness, the mutation strength

is decreased to allow for proper amounts of creep in finding the solution.

6.6.2 Performance Check Points

 The next check point mutation deals with the flow separation setting discussed in chapter

2. If more than a certain number of faces on the top side of the propeller experience flow separation,

then the propeller is given a fitness of -10. This is for two reasons: propellers with more flow

separation are not good performing propellers and the solver does not model flow separation

106

impacts to their full extent. However, due to the randomness of the first generation, a lot of

propellers experience massive amounts of flow separation, and none fall below the lower limit of

faces which can have flow separation. Flow separation should be limited as much as possible, but

if it is limited too much, none of the propellers will have a fitness other than -10. Therefore, there

are two searches placed in the GA. The first looks for propellers with less than 7% of the surfaces

separated. If none of the propellers fall in this category, then the GA makes use of its second search

which finds propellers with less than 12% of the faces having separated flow. The GA continues

this process throughout every generation; however, once the GA finds one propeller with less than

12%, it will build more resembling these characteristics, and eventually one will be constructed

which has less than 7% of the faces separated. At this point 7% becomes the new criteria.

 A realistic efficiency check point has also been placed in the fitness calculation for the GA.

While the numerical solver has mid-level fidelity capabilities, there are some cases in which the

solver converges on non-realistic solutions or more likely, the solver does not converge in the

given number of iterations. In this case, it is unlikely, but possible, that the solver will provide

results for a non-realistic propeller that matches the thrust very well and has an extremely low

torque on the blades, resulting in efficiencies greater than the possible limit. To address these

Figure 58: Unrestricted Potential Airfoil Shape

107

propellers, a loop is placed in the fitness calculation which searches for propellers that efficiencies

above the set limit. If a propeller is found to have an efficiency greater than this limit, it is given a

fitness of -10.

6.6.3 Geometry Check Points

 Lastly, there are two geometry check points which are implemented to assist both the

numerical solver and the GA. The first geometry check point that was implemented and the GA

sees in constructing the geometries is the airfoil leading edge limit. Unchecked, the abstractness

of the BP allows for the airfoils to take on shapes as shown in Figure 58. These two airfoil shapes

appear to be identical, yet they were created by two different means. The airfoil on the left was

created by having a lower surface au value that was much less than the upper surface. Because the

lower surface is subtracted from the upper surface, when the lower surface subtraction is small,

the leading edge can take shapes as shown. The airfoil on the right was created by setting the lower

leading-edge shape to a value greater than the upper leading-edge term. Again, because the lower

surface is subtracted, under these conditions the airfoil leading edge will take this shape. This is

not only a bad design, but the solver has difficulty in converging on propellers or any lifting surface

for that matter with these oddly shaped cross sections. To limit these shapes from being

constructed, conditionals were set in place to make the lower surface term equal to the upper

surface term if it is less the upper surface value. Note: this is only done for the first term located

nearest the leading, therefore, propeller airfoils are still allowed to have extensive amounts of

camber. The same sort of conditional is also applied to the leading-edge shaping terms.

 The chord shapes are also limited in order to help the GA limit the extent to what it can

create. Propellers with high efficiency, typically have chord lengths that taper towards the tip of

the propeller blade. Simply to help the GA, the last two stations that model the chord at the tip and

108

near the tip were limited. The chord along the span of the propeller is described by five coefficients

for a BP. The first coefficient describes the tip chord, and the fourth coefficient describes the chord

at the hub. The second and third coefficients fill the chord descriptions between the tip in the hub.

The last coefficient describes the overall length of the chord. To ensure that the chord had some

amount of preferred taper, a conditional was set such that the first coefficient must be less than the

second, and the second has must be less than the third. This means that the chord can potential

increase up until the mid-span of the propeller, but after that point, the chord will be limited to a

constant or decreasing shape.

109

Chapter 7: Results

7.1 Stand Alone Propeller Model

 The Genetic Algorithm was first set to optimize a single propeller operating in the

freestream. This model used the steady rotary solver which offers the periodic symmetry. Using

the periodic symmetry can cut run times down to half of what they would be with the full mesh;

therefore, the GA ultimately converges faster. In this set up the propeller was optimized for thrust

matching while keeping efficiencies very high for a single operating point. This model was used

several times on multiple thrust settings, and a strong argument is made for the overall convergence

of the GA.

 Each propeller was tested in a free stream of 20 m/s and operated at 6000RPM. All

propellers were set to 25.56cm (10inches) which corresponds to an advance ration of 0.71. Typical

propellers at these conditions and sizes produce thrust values from 1 to 3 newtons79. The thrust

input for the GA had a much higher range than the expected thrust values just to observe if its

members would indeed try to optimize on the grossly over predicted inputs. Lastly, each propeller

was provided a weight of 3 for the efficiency and 7 for the thrust, so it should be understood that

the GA will favor thrust accuracy over an efficiency jump in the mutation process.

7.1.1 Single Point GA Analysis

 A single case is observed here to demonstrate the effectiveness of the GA. All thrust cases

had the same behavior across the generations which is the reasoning for only examining one of the

thrust settings in detail over the demes and main generations. This GA analysis focuses on the 3N

requirement and outlines the GA from the first generation of the first deme to the 100th and final

generation of the main loop.

110

 First, the thrust, efficiency, and fitness of four demes are analyzed over the course of 10

generations in Figure 59. The thrust and the efficiency of the most optimal member of each

generation of the demes are shown by the lines on the left-hand side of the plot which range from

1 to 10. The lines with circle on the right-hand side represent the main generational loop. All the

demes eventually produce propellers with greater than 70% efficiencies and thrust values that are

near the requirement. Through this process, the demes are seen to be erratic in behavior as they

bounce and mutate across the board, and in some cases decreases in thrust and efficiency are seen

to be almost at random. But this behavior is rather easily explained by 1 one of two things: the

favoritism shown towards accurate thrust propellers and one of the check points in the GA. The

favoritism towards propellers with accurate thrust develops from the different weights given to the

efficiency and thrust. Because thrust has a higher weight, the GA will choose propellers with

Figure 59: Thrust and Efficiency over 10 Deme Generations and 10 Main Generations

111

accurate thrust while disregarding the efficiency of the propeller. This can therefore explain some

of the absurd decreases in the efficiency. Second, recall that excessive amounts of flow separation

across the top of the propeller are indicative of a poor performing propeller which is subject to

large amounts of torque and decreases in thrust, thus large decreases in efficiency. To combat

propellers of this nature the GA has a check point that of which assigns fitness levels of -10 to

propellers with greater than 7% of the faces experiencing flow separation. One issue with this

method, however, is the fact that it is very likely all the propellers will have greater than 7% flow

separation. Therefore, if no propeller with less than 7% separation is created, then the GA looks

for propellers with less than 12% separation. Once a propeller with the required separation is found

then it will be given a high fitness and used to populate the next generation. Even though the GA

is using a propeller with 12% separation, a propeller with less than 7% separation will inevitable

be created over a few generations. Because the GA searches for the 7% criteria first, once it finds

one with less than 7% separation, this propeller will then be the new dominating form even though

Figure 60: Fitness over 10 Deme Generations and 10 Main Generations

112

its fitness may be lower than the original propeller with 12% of the faces separated (this decrease

in fitness is common over the transition from 12% to 7% separation). Figure 60 demonstrates the

decrease the in fitness from the transition of 12% separation to 7% separation. In this figure, large

decreases in the fitness occur for each one of the demes. On average, the transition takes place

after the 2 or 3 generation. It is rare to see an initial population that already has a propeller which

has less than 7% separation as well for a deme to operate until the 8th generation before the

separation occurs. Despite the decreases in fitness, all demes reach fitness levels of 0.88 or higher

by the time the top performing members are passed to the main generational loop. Lastly a

tabulated form of this data is provided Table 5. The yellow column shows the location of the

transition point.

Table 5: Deme Behavior over 10 Generations

Generation 1 2 3 4 5 6 7 8 9 10

Fitness 0.436 0.854 -0.416 -0.254 0.626 0.895 0.904 0.904 0.904 0.904

Efficiency 0.720 0.799 0.634 0.557 0.714 0.765 0.754 0.754 0.754 0.754

Thrust 5.18 2.65 9.05 8.15 4.27 2.91 3.03 3.03 3.03 3.03

The fittest propeller geometries across the generations are provided in Figure 61. These sample

geometries are taken from deme 2 and notice in Figure 60 that deme 2 experiences a massive

decrease in fitness at the 3rd generation. This is due to the flow separation transition. The propeller

now has less than 7% of the upper surface separated, but it is inefficient, and the thrust is over

predicted. The most notable change in the geometries is the change from generation 9 to 10. This

large jump in propeller shape is permitted to occur because in the early stages of the GA, the

mutation strength is extremely high. The higher mutation strength allows the GA to cover an

extensive amount of design space with no loss in fine tuning the geometries because the GA is in

the early stages of the generations. All the demes have the same behavior other than some of the

propellers that are produced in the final generation because each deme starts with a completely

113

random population and only operates over 10 generations which is not enough time to have a fully

developed propeller.

The main generational loop for the 3-newton propeller is examined next to demonstrate the how

the GA mutates towards its most optimum value. The first population in the main loop was

Figure 61: Example Deme Mutations over 10 Generations

114

constructed off the best propeller from each of the demes, and therefore, the propellers are for the

most part good performing propellers. The fitness, efficiency and thrust of the best member from

each generation across the total number of generations is provided in Figure 62. The propellers

Figure 62: Main Generational Behavior for 3-Newton Propeller

Figure 63: Fittest Propellers over 3N Thrust Requirement Main Generation

115

start out with fitness levels of about 0.89 and thrust values within 2% of the required value.

Because weight of thrust is far greater than the efficiency, propellers often converge on thrust and

then move towards increased efficiency designs which is present here. The demes have served the

purpose of producing propellers that have thrust values near the required value, and now, the main

loop will fine tune the propeller geometries to obtain a high efficiency propeller. The GA

continues to make large mutations from generation to generation until about the 10th generation

and has a final mutation at generation 46 where the efficiency is increased by 1%. The final

propeller has a thrust of 3.00N and an efficiency of 81.4% and an overall fitness of 0.931. Lastly,

the most optimum propellers from generations 1, 25, 50, 75, and 100 are provided in Figure 63.

Only three propellers are shown here because the GA stopped obtaining better members after the

46th generation. Therefore, the maximum propeller at generation 50, 75 and 100 are identical. The

propeller in the top left is from generation 1, and the propeller in the top right is from generation

Figure 64: Geometric Parameters for 3N Propeller

116

25. The geometric parameters for the most optimal propeller of the 3N thrust requirement are

provided in Figure 64. The propeller has characteristics that are indicative of an efficient propeller

for each geometric parameter. Towards the tip of the propeller the blade has decreases in the pitch

and the chord to prevent the blades from experiencing increased torque loads which will decrease

efficiency. Furthermore, the propeller has some sweep at the tip of the propeller which is another

characteristic of a typical efficient propeller.

7.1.2 Single Design Point (2, 3, 5, 7, and 10 Newton Requirements)

The GA was set for various thrust requirements over a range from 2 to 10 N to ensure that the GA

and the solver would respond appropriately to the thrust that is demanded. The geometries and

corresponding performance from each of the propellers is presented and demonstrates reasonable

convergence given the thrust requirement for the constant diameter and operating conditions that

all propellers were subject to.

Table 6: Thrust, Efficiency, and Fitness for Thrust Requirements

Design

Thrust

2N 3N 5N 7N 10N

Thrust (N) 2.00 3.00 5.00 6.95 10.12

Efficiency 81.24% 81.39% 78.06% 76.53% 71.55%

Fitness 0.93148 0.93196 0.91987 0.90967 0.88921

Table 6 provides the most optimum from each of the thrust requirements. It is obvious from the

understand of section 2.8 that as the thrust is increases for a constant diameter propeller operating

in constant conditions, the efficiency of the propeller will decrease. This is also demonstrated in

the table as well. Furthermore, because the efficiencies are dropping off, the fitness levels of the

propellers will also be limited as the thrust acquired fitness and the efficiency determined fitness

117

battle each other. A representation of this tug-of-war between efficiency and thrust is provided

Figure 65. The theoretical maximum efficiency for a propeller given thrust, free stream, and

density, is derived in section 2.9. The propellers produced by the GA follow the trend of this

theoretical maximum efficiency over the range of given thrust values with constant under

prediction of roughly 14%.

 The final propeller designs are presented in the following four images. The designs for

each of the propellers at the given thrust values are quite intuitive. As the thrust is increased, the

chord and pitch along the propeller are increased to an extent. All propellers exhibit appropriate

sweep as well to maintain efficiency. As the propellers increased in size, the sweep was also

increased but remained similar between the cases and appears to simply have been scaled from

case to case.

Figure 65: Efficiency vs Thrust Production for Constant Operating Conditions

118

 The geometries for each optimized propeller are provided Figure 66 where the 2 Newton

propeller is in the top left and the 10 Newton propeller is on the bottom. The 5, 7, and 10 newton

propellers are simply scaled versions of each other. Because the GA limited the propellers to a

certain amount of separation, the propellers could only increase the pitch angle so much to increase

the thrust production. The GA was permitted to increase the pitch further out towards the tip and

still have meet the requirement for minimum separation but doing so would lead to large drag

forces on the tip which in turn would increase the torque and decrease efficiency. Therefore, the

GA used the chord to match the thrust requirements once the pitch angles had been put to the

maximum. Note that each of the propellers from the 5, 7 and 10 requirements increased the chord

nearest to the hub. This was done to keep the propellers more efficiency by reducing the drag on

the tip of the propeller and ultimately reducing the torque. There then persist an issue in the

Figure 66: Optimum Propellers from Thrust Requirements of 2, 3, 5, 7, 10 N

119

optimization where the GA can increase the chord at the hub by some large amount to account for

the thrust or increase the pitch of the propeller at the tip by a miniscule amount. Both methods will

achieve the necessary thrust but sacrifice some loss in efficiency. This GA found the following

forms for twist and chord to be the most effective, presented in Figure 67. The chord values nearest

towards the hub increase exponentially with increases in thrust requirement whereas the tip values

have a more linear increase in length with the increase in thrust requirement. All the curves for

twist distribution along the span of the propeller are very similar and seem to reach a maximum

value which is caused by the flow separation limit. One remarkable similarity in cases is between

the 5 Newton requirement and the 7 Newton requirement. These two propellers are almost scaled

versions of each other in which the greater of the two has increases in the chord, twist and sweep

Figure 67: Geometric Plots for Optimum Propellers

120

distribution. The sweep for each of the propellers demonstrates a common behavior, relatively

constant values until about 75% of the radius at which point the propellers sweep begins to

increase. This increase in sweep is amplified as the propellers grow larger.

Figure 68: Airfoil Sections of Optimal Blades

121

Lastly, the airfoil shapes are examined between each one of the cases. Figure 68 provides the airfoil

shape at 10%, 50% and 100% of the radius for each of the propellers. The first row provides airfoil

shapes for the 2 Newton model, the second row provides results for the 3 Newton model and so

on all the way to the 10 Newton model. The most notable trend that is drawn from this is the

increased thickness in the airfoil shape as the thrust is increased. This same behavior was seen in

the validation cases. Original geometry models over predicted thrust in the validation cases

because the airfoil cross sections were too thick. This issue was eventually resolved, but it brought

forth an important point that a thicker airfoil brings with it an increase in the thrust or lift produced.

The same trend is seen here in the results for the GA. Second, notice the abstractness of the airfoil

shapes as the thrust is increased. Until the thrust requirement reaches approximately 7 Newtons,

the airfoils are reasonably shaped. This could be due to an issue in the GA where it is trying to

converge on these unreasonable thrust demands from such small diameter propellers. Therefore,

the GA applied more attention to the chord and twist values while paying little attention to the

airfoil shapes.

7.2 Coaxial Model

 The number of generations used in the coaxial models was truncated due to the extensive

run times; however, appropriate convergence is still seen in each model due to the nature of the

first generation. The GA for the coaxial model operated in the same manner as the single

standalone application excepts for two distinct differences. The most notable of these is the

absence of demes and the decreased number of generations. The run times for the coaxial

simulation were too large to achieve full scale optimization from random generations to maximum

members; therefore, the demes were neglected, and the number of generations was set to 10. In

order to account for all the losses in generational strength, the coaxial GA used data from the stand-

122

alone models. The first generation of the coaxial GA used the most optimal member from the 3-

newton requirement GA execution. The first member of the first population was the 3-newton

propeller exactly. The rest of the 127 members were created by using weakened power mutations

on the same propeller parameters. By using an already optimized propeller only slight adjustments

were required to optimize in a different but similar operating condition. These slight adjustments

are expected to occur to a sufficient degree with in the provided 10 generations. The GA is then

expected to finish all 10 generations in 6.86 days.

7.2.1 Setup

The optimized coaxial simulation was based on the validation case which is seen provided in

Coaxial Propeller Validation section. Here the propellers were placed 7.5cm apart. The free stream

velocity was set to 0m/s and the propeller rotational speeds were set with in the described limits

of the validation. The forward propeller had a rotational speed of 6000RPM, and the rear optimized

propeller had a rotational speed of 10,000 RPM. Both propellers had a diameter of 22.86 cm. An

Figure 69: Example Coaxial Set up

123

example of the set up in the solver is provided. The solver was allowed to run for 80 iterations.

The time step for each iteration was set to 0.0002 seconds. This time step and number of iterations

allowed for the wake of the front propeller to come into full contact with the rear propeller and

converge.

 The fitness function for the coaxial simulation is slightly different than that of the single

propeller model. Instead of having an efficiency and thrust based model, a torque and a thrust

based model were used to determine fitness. This was done because the efficiency becomes zero

in static environments such as the hover conditions. The overall fitness calculation remained the

same with the efficiency being replaced with torque, and instead of maximizing the efficiency, the

torque was minimized. A weight of 4 was given to the torque values and a weight of 7 and 6 were

provided to the thrust values.

7.2.2 Coaxial Results

The coaxial GA was executed for two different thrust requirements: 10N and 16N. The 16N model

had a thrust weight of 7 while the 10N model had a weight of 6. To provide some perspective, the

Figure 70: 16N Thrust Requirement Propellers at Generations 1, 3, 5, 7, and 10 (from

left to right and top to bottom)

124

validated propeller at these exact operating conditions produced ~8.8N with a torque of 0.170 N-

m. The 16N results are provided first in Figure 70. The maximum propeller from each of the

generations is provided. All these propellers have 15.49N to 15.98N and torque values from

0.4083N-m to 0.4524N-m. One notable characteristic that the GA favors is the sweep of the

propeller. As the GA moves through the generations, the propellers have more and more sweep.

This swept back blade is typical for efficient propellers.

 There are cases of non-convergence in the solver where the same propeller will produce

different values of thrust and torque which are provided in Figure 71. Due to the inherently

unsteady flow that is introduced by the front propeller, the rear propeller tends to oscillate in its

values for torque and thrust. This can lead to errors in the solver where the maximum performing

propeller performs less than it had originally which then allows a less dominant propeller to pass

Figure 71: Thrust and Torque vs Generation

125

its genes to the next generation. Nevertheless, the values for the plot deviate very little. The final

propeller from the 10 generations had a thrust of 15.88N and a torque of 0.4138N-m.

 The 10N model produced results similar to the 16N requirement only scaled down so that

the model would meet the required thrust. The 10N model started with in the same manner as the

16N model by mutating the stand-alone 3N model. The results from the 10 generations are

provided below in Figure 72. The first noticeable difference between the two is the amount of

sweep that the propellers took on. Ideally, the GA would have found a swept back blade to me be

the most optimial; however, the GA focused on decreasing the chord at the tip of the propeller.

The chord lengths are also decreased from the 16N model which is an obvious geometry difference

given the reduction in the thrust requirement. While the airfoils that the two models converged are

similar, the 10N model found that by decreasing the thickness of the airfoil it could obtain a

propeller which produced less torque. The propeller, however, is limited in the model to a given

thickness so, that top and bottom airfoil curves are not over lapping.

 The geometric parameters for both propellers are plotted against the radial values in Figure

73. All of the results for the 10N model are given in red while the 16N results are provided in blue.

Figure 72: 10N Thrust Requirement Propellers at Generations 1, 3, 5, 7, and 10 (from

left to right and top to bottom)

126

Both propeller models demonstrate the same relationship with the chord values. Infact, the 16N

model chord values are almost a linear increase from the 10N models. The pitch for both models

is identical which implies that the difference in thrust values was accounted for in the changes in

the chord only. The sweep for the 16N model is more reasonable with respect to what is generally

seen for efficient propellers while the 10N model takes on a more unique form. The 3-N stand-

alone model which was used to produce the first geometry did not take on these sweep values;

therefore, the attribute was picked up in the generations. Perhaps a non-converging result was

provided by the solver leaving the GA with faulty data. Nevertheless, both geometric

characteristics follow typical values and show improvements in the performance.

Figure 73: Geometry Values for 10N and 16N Thrust Requirement

127

Chapter 8: Conclusions and Remarks

 Using an advanced real coded genetic algorithm which takes advantage of demes and

mutation directions and a computational efficient solver, a robust real coded genetic algorithm has

been developed for propeller blade shape designs in both steady and unsteady flight conditions.

The solver was first validated using performance data from the UIUC propeller database, NACA

Technical Report 640, and wind tunnel data for a coaxial rotor configuration. The results from the

GA prove to be reasonable and within an expected range provided the performance data from wind

tunnel experiments and existing knowledge of propellers. The steady propeller optimization

designs were permitted to run over 140 total generations with 40 of those generations comprising

the demes. The coaxial models only ran over 10 generations; however, designs were not

constructed from a totally random population like the stand-alone models. The unsteady, coaxial

initial population was developed from one of the stand-alone model convergences. Thus, an

already optimized propeller design was used in the initial generations, and only small adjustments

were required to optimize the propeller for a different flight condition. Furthermore, with 128

members per generation it is reasonable to say that 10 generations would provide enough time for

convergence.

 There are a several areas of work that still need to be delt with to maximize the efficiency

of the GA and solver itself. The first of these is the computational power and efficiency that was

used in these executions. While the coaxial simulation simultaneously ran members of the

population the steady, stand-alone models were run one at a time. Now, this is not to say that only

one model was run at once. By running each of the members one at a time, multiple GA thrust

requirements were run on the same computer which ultimately reduced the total run time; however,

for even faster results, the stand-alone model should be altered such that it operates in the same

128

manner as the coaxial where it runs multiple sets of observations at a time. From a simple

calculation, it is estimated that a single propeller model with 128 members per generation over 140

generations can be completed in less than 2 days whereas the current model takes just over 6 days

to complete. The second improvement which can be in regard to computational efficiency is the

amount of computational power itself. The current machine that the GA is running on has 28 cores;

therefore, 7 runs were executed simultaneously providing 4 cores to each. By increasing the

number of cores available, a full-scale coaxial optimization is plausible.

 It is mentioned in this work that the optimization does have built in which it focuses on

variable pitch propellers. While the results are not provided in the work due to a larger focus on

the unsteady problem, the variable pitch propeller model is very useful and not just in the sense of

propeller itself. The variable pitch model focuses on four different flight conditions, therefore,

even if the propeller was not variable pitch, the multiple point optimization would be very useful

for different applications. A future study of this work should consist of the variable pitch model

applied to aircraft or perhaps focus on a constant pitch propeller with differing flight conditions.

 The last suggestion for the future of this work and propeller optimization in general is the

most interesting and arguably the most important. During the propeller validation process, it was

discovered to be quite arduous in taking a scanned propeller and turning it into a suitable geometry

for testing, but it was shown to be possible. Furthermore, during the development of the coaxial

simulation, the idea of using an already optimized propeller to build the initial generation gave a

spark to this process. The argument made here is that propellers in general need to be optimized

for the given advances in electric rotor craft for UAM and UAV applications. Many efficient and

well performing propellers exist; however, none perfectly fit the desired flight conditions

therefore, there exists the need for the optimization scheme. It would be very efficient and effective

129

to have an algorithm which matches a Bernstein polynomial to a given point cloud collected from

a scan. There are 63 parameters to predict in this case just as the problem described in this paper,

so the GA here can handle the number of parameters. The point cloud would offer the most optimal

configuration of points which the GA is working towards constructing using the BP. The

evaluation times would be short compared to the solver run times, and the fitness function would

be based off the accuracy of the geometry curves from the BP to the point cloud. In summary, the

user would simply input the same file as described in appendix II as well as a point cloud or perhaps

even a matrix which contains the points from the point cloud. This scanned propeller would then

be optimized given a flight condition. It is suggested that the most efficient way to match the point

cloud geometry would be to generate geometry curves (chord, twist, sweep) as a function of the

radius and match these with the BP. The airfoil development should only be done at certain section.

Optimization of the entire propeller and all the point cloud points would prove to be difficult. After

all, it will be sent through an optimization process, so the geometry only needs to be similar not

100% correct.

130

References

1 McDonald, Robert A., “Modeling Electric Motor Driven Propellers for Conceptual Aircraft Design,” AIAA SciTech

 2015-1676, January 2015.
2 McDonald, Robert A., “Electric Propulsion Modeling for Conceptual Aircraft Design,” AIAA SciTech 2014-0536,

 January 2014
3 Holland, J., “Genetic Algorithms,” Scientific American, Vol. 267, No. 1, July 1992, pp. 66-73.
4 D. Kalyanmoy, “An Introduction to Genetic Algorithms,” Sadhana, Vol. 24, No. 4 & 5, August 1999.
5 Anderson, M., “User’s Manual for Improve Version 3.0,” Sverdrup Technology Inc./TEAS Group, January 2008
6 Miettinen, K., Makela, M., and Toivanen, J., “Numerical Comparison of Some Penalty-Based Constraint Handling

 Techniques in Genetic Algorithms,” Journal of Global Optimization, Vol. 27, April 2003, pp. 427-446.
7 Anderson, M., “Genetic Algorithms in Aerospace Design: Substantial Progress, Tremendous Potential,” Sverdrup

 Technology Inc./TEAS Group, May 2002.
8 Anderson, M., Burkhalter, J., and Jenkins, R., “Design of a Ground-Launched Ballistic Missile Interceptor Using a

 Genetic Algorithm,” Sverdrup Technology Inc., TEAS Group and Auburn University
9 Holland, J., “Genetic Algorithms,” Scientific American, Vol. 267, No. 1, July 1992, pp. 66-73.
10 Goldberg, D., “Genetic Algorithms for Search, Optimization, and Machine Learning,” , Reading, MA: Adision-

 Wesley, 1989.
11 Adekanmbi, O., and Green, P., “Conceptual Comparison of Population Based Metaheuristics for Engineering

 Problems,” The Scientific World Journal, October 2014.
12 Burger, C., “Propeller Performance Analysis and Multidisciplinary Optimization Using a Genetic Algorithm,”

 Ph. D Dissertation, Auburn University, Auburn, AL, December 2007
13 Aref, P., Ghoreyshi, M., Jirasek, A., Satchell, M., and Bergeron, K., “Computational Study of Propeller-Wing

 Aerodynamic Interaction,” Aerospace, Vol. 5, No. 79, 2018.
14 Doyle, J., Hartfield, R., and Roy., C., “Aerodynamic Optimization for Freight Trucks Using a Genetic

 Algorithm,” AIAA 2008-323, Reno, NV, January 2008.
15 Burger, C., “Propeller Performance Analysis and Multidisciplinary Optimization Using a Genetic Algorithm,”

 Ph. D Dissertation, Auburn University, Auburn, AL, December 2007
16 Drela, M. “XROTOR User Guide”, 2003.
17 Alba, C., Elham, A., German, B. J., and Veldhuis, L., “A Surrogate-Based Multi-Disciplinary Design

 Optimization Framework Modeling Wing-Propeller Interaction,” Aerospace Science and Technology, Vol.

 78, Elsevier Masson SAS, 2018, pp. 721-733
18 Drela, M. “QPROP User Guide”, 2007
19 Ahuja, V., “Aerodynamic Loads Over Arbitrary Bodies by Method of Integrated Circulation,” Ph.D. Dissertation,

 Aerospace Engineering Dept., Auburn Univ., Auburn, AL, 2013
20 Olson, E. D., and Albertson, C. W., “Aircraft High-Lift Aerodynamic Analysis Using a Surface Vorticity Solver”,

 AIAA 2016-0779, January 2016
21 Vivek Ahuja and R. J. Hartfield. "Aerodynamic Loads over Arbitrary Bodies by Method of Integrated

 Circulation", Journal of Aircraft, Vol. 53, No. 6 (2016), pp. 1719-1730
22 Forrest, S., “Genetic Algorithms,” ACM Computing Surveys, Vol. 28, No. 1, March 1996.
23 Goldberg, D., “Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking,” University of illinios at Urbana-

 Champaign, Department of General Engineering.
24 Koza, J., “Genetic Programming,” The MIT Press, Cambridge, MA, 1992.
25 R. Arora, R. Tulshyan and K. Deb, "Parallelization of binary and real-coded genetic algorithms on GPU using

 CUDA," IEEE Congress on Evolutionary Computation, 2010, pp. 1-8
26 Roopesh, K., Umesha, P., and Kalappa, M.S., “Software Based on Heuristic Technique for Optimization of

 Transmission Line Towers,” Journal of Structural Engineering, Vol. 33, No. 2, June 2006, pp. 1-10.
27 Deep, Kusum, Singh, Krishna, Kansal, and Mohan, C., “A Real Coded Genetic Algorithm for Solving Integer and

 Mixed Integer Optimization Problems,” Applied Mathematics and Computation, Vol. 212, Issue 2, 2009,

 pp. 505-518
28 Deep, Kusum, Singh, Krishna, Kansal, and Mohan, C., “A Real Coded Genetic Algorithm for Solving Integer and

 Mixed Integer Optimization Problems,” Applied Mathematics and Computation, Vol. 212, Issue 2, 2009,

 pp. 505-518
29 Deep, K., and Thakur, M., “A New Mutation Operator for Real Coded Genetic Algorithms,” Applied Mathematics

 and Computation, 193 (2007) 211-230, 2007

131

30 Deep, K., and Thakur, M., “A New Mutation Operator for Real Coded Genetic Algorithms,” Applied Mathematics

 and Computation, 193 (2007) 211-230, 2007
31 Fikret Tokan and Filiz Gunes, "The Multi-Objective Optimization of Non-Uniform Linear Phased Arrays Using

 the Genetic Algorithm," Progress In Electromagnetics Research B, Vol. 17, 135-151, 2009.
32 Miettinen, K., Makela, M., and Toivanen, J., “Numerical Comparison of Some Penalty-Based Constraint Handling

 Techniques in Genetic Algorithms,” Journal of Global Optimization, Vol. 27, April 2003, pp. 427-446.
33 Britt, W. “A Meta-Parallel Evolutionary System for Solving Optimization Problems,” Master’s Thesis, Computer

 Science and Software Engineering Dept., Auburn University., Auburn AL, 2007.
34 Dozier, G. “Distributed Steady-State Neuro-Evolutionary Path Planning in Non-Stationary Environments Using

 Adaptive Replacement,” Auburn University, Auburn, AL, Department of Computer Science and Software

 Engineering
35 Xiang, S., Liu, Y., Tong, G., Zhao, W., Tong, S., and Li, Y., “An Improved Propeller Design Method for the Electric

 Aircraft,” Aerospace Science and Technology, Vol. 78, July 2018, pp. 488-493.
36 Carroll, T. J., “Wright Brothers’ Invention of the 1903 and Genesis of Modern Propeller Theory,” Journal of

 Aircraft, Vol. 42, No. 1, January 2005.
37 McDonald, R. A., “Modeling Electric Motor Driven Propellers for Conceptual Aircraft Design,” AIAA SciTech

 2015-1676, January 2015.
38 McDonald, R. A., “Electric Propulsion Modeling for Conceptual Aircraft Design,” AIAA SciTech 2014-0536,

 January 2014
39 Wald, Q. R., “The Aerodynamics of Propellers,” Progress in Aerospace Sciences 42 (2006) 85-128.
40 Ash, R. L., Miley, S. J., Landman, D., and Hyde, K. W., “Evolution of Wright Flyer Propellers between 1903 and

 1912,” AIAA 2001-0309 January 2001.
41 Miley, S. J., Ash, R. L., Hyde, K. W., Landman, D., and Sparks, A. K., “Propeller Performance Tests of Wright

 Brothers’ “Bent-End” Propellers,” Journal of Aircraft, Vol. 39, No. 2, March 2002.
42 Philips, W. F., and Snyder, D. O., “Modern Adaptation of Prandtl’s Classic Lifting-Line Theory,” Journal of

 Aircraft, Vol. 37, No. 4, July 2000.
43 Mahmuddin, F., “Rotor Blade Performance Analysis with Blade Elements Momentum Theory,” Energy Procedia

 105 (2017) 1123-1129.
44 Epps, B. P., and Kimball, R. W., “Unified Rotor Lifting Line Theory,” Journal of Ship Researc, Vol. 57, No. 4,

 December 2013.
45 Bacon, D., “Variable Pitch Propellers,” NACA TM 2, September 1920.
46 Heinzen, S., Hall, C., and Gopalarathnam, A., “Development and Testing of a Passive Variable-Pitch Propeller,”

 Journal of Aircraft, Vol. 25, No. 3, May 2015.
47 Pistolesi, E., “Variable Pitch Propeller,” NACA TM 216, July 1923.
48 Holzsager, J. E., “The Effects of Coaxial Propellers for the Propulsion of Multirotor Systems,” Master’s Thesis,

 Aerospace Engineering Dept, Rutgers University, New Brunswick, NJ, 2017.
49 DuWalt, F. A., “Wakes of Lifting Propellers (Rotors) in Ground Effect,” ONR Contract No. 3691(00) Final Report,

 November 2017.
50 Drela, M., “Boundary Layer Analysis” Flight Vehicle Dynamics, The MIT Press, Cambridge, MA., 2014
51 Kundu, P., Cohen, I., and Dowling, D., “Boundary Layers and Related Topics,” Fluid Mechanics, 6th ed. Elsevier

 Inc., New York, NY, 2012
52 Kundu, P., Cohen, I., and Dowling, D., “Boundary Layers and Related Topics,” Fluid Mechanics, 6th ed. Elsevier

 Inc., New York, NY, 2012
53 Anderson, J., “Inviscid, Compressible Flow,” Fundamentals of Aerodynamics, 6th ed. McGraw Hill, New York,

 NY, 2017.
54Olson, E. D., “Three-Dimensional Modeling of Aircraft High-Lift Components with Vehicle Sketch Pad.” AIAA

 2016-1274, January 2016.

55 McDonald, R. A., “Advanced Modeling in OpenVSP,” AIAA 2016-3282, June2016.
56 Kulfman, B., and Bussoletti, J., “Fundamental Parametric Geometry Representations for Aircraft Component

 Shapes,” AIAA-2006-6948, Portsmouth, VA, September 2006.
57 Burger, C., “Propeller Performance Analysis and Multidisciplinary Optimization Using a Genetic Algorithm,”

 Ph. D Dissertation, Auburn University, Auburn, AL, December 2007
58 Lane, K. and Marshall, D., “Inverse Airfoil Design Utilizing CST Parameterization,” AIAA 2010-1228, January

 2010

132

59 Ahuja, V., Hartfield, R., “Predicting the Aero Loads Behind a Propeller in the Presence of a Wing Using

 FlightStream®,” AIAA 2015-2734, presented at the AIAA Aviation 2015 Conference, Dallas, June 2015.
60 Ahuja, Vivek, Hartfield, Roy, and Burkhalter, John, “Optimizing Engine Placement on an Aircraft Wing using

 Biomimetic optimization and FlightStream®”, AIAA 2017-0235, Proceedings of AIAA SciTech 2017,

 Dallas, TX, January 2017
61 Johnson, S., Hartfield, R., van Dommelen, D, and Ahuja, V., “Investigation of the Static Longitudinal and Lateral

 Characteristics of a Full-Scale Light Single-Engine Airplane using a Surface Vorticity Solver and

 CFD” AIAA 2018-1259, Presented at the AIAA SciTech Conference, Orlando, FL, January 2018
62 Sandoz, B., Ahuja, V., and Hartfield, R., “Longitudinal Aerodynamic Characteristics of a V/STOL Tilt-wing Four-

 Propeller Transport Model using a Surface Vorticity Flow Solver”, AIAA 2018-2070, Presented at the AIAA

 SciTech Conference, Orlando, FL, January 2018.
63 Ahuja, V., “FlightStream® User Guide,” 2020.
64 Pastor, G., Hartfield, R., Ahuja, V., and McClearen, J., “Numerical and Experimental Testing of a Coaxial Propeller

 for UAM Applications,” Aviation 2022, June 2022. (Submitted for publication)
65 Ahuja, V. and Hartfield, R, “Reduced-Order Aerodynamics with the Method of Integrated Circulation,” AIAA

 SciTech 2022, January 2022.
66 Ahuja, V., and Hartfield, R., “Predicting the Aerodynamic Loads behind a Propeller in the presence of a wing using

 FlightStream,” AIAA 2015-2734, Dallas, Tx, June 2015.
67 Ahuja, V., “Aerodynamic Loads Over Arbitrary Bodies by Method of Integrated Circulation,” Ph.D. Dissertation,

 Aerospace Engineering Dept., Auburn Univ., Auburn, AL, 2013
68 Darve, E., “The Fast Multipole Method: Numerical Implementation,” Journal of Computational Physics, Vol. 160,

 No. 1, May 2000, pp. 195-240.
69 Kebbie-Anthony, A., Gumerov, N., Preidikman, S., Balachandran, B., and Azarm, S., “Fast Multipole Method for

 Nonlinear, Unsteady Aerodynamic Simulations,” Sci Tech 2018, Kissimmee, Florida, January 2018.
70 Wolf, W. and Lele, S., “Aeroacoustics Integrals Accelerated by Fast Multipole Method,” AIAA Journal, Vol. 49,

 No. 7, July 2011.
71 Ahuja, V. and Hartfield, R, “Reduced-Order Aerodynamics with the Method of Integrated Circulation,” AIAA

 SciTech 2022, January 2022.
72 Standen, N., “Calculation of Integral Parameters of a Compressible Turbulent Boundary Layer Using a Concept of

 Mass Entrainment,” Master’s Thesis, Department of Mechanical Engineering, McGill University, Montreal,

 1964.
73 Ahuja, V., and Hartfield, R. “Novel Viscous Surface Vorticity Method for Fast Aerodynamic Analysis of Road

 Vehicles”, Aerovehicles (4), August 2021
74 Gavin, A., “Release Notes”, UIUC Propeller Database [online database], URL:

 https://m-selig.ae.illinois.edu/props/volume-1/releaseNotes.html [retrieved 08 February 2021].
75 Brandt, J. B., and Selig, M. S., “Propeller Performance Data at Low Reynolds Numbers.” AIAA 2011-1255,

 January 20011
76 Gavin, A., “Release Notes”, UIUC Propeller Database [online database], URL:

 https://mselig.ae.illinois.edu/props/volume-1/propDB-volume-1.html [retrieved 08 February 2021].
77 Polo, M.E., Cuartero, A. and Felicísimo, Á.M., 2019. “Study of uncertainty and repeatability in structured-light

 3D scanners”. arXiv preprint arXiv:1910.13199.

78 Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G., “MeshLab: an Open-Source

 Mesh Processing Tool,” Eurographics Italian Chapter Conference, 2008
79 Gavin, A., “Release Notes”, UIUC Propeller Database [online database], URL:

 https://mselig.ae.illinois.edu/props/volume-1/propDB-volume-1.html [retrieved 08 February 2021].

https://m-selig.ae.illinois.edu/props/volume-1/releaseNotes.html
https://mselig.ae.illinois.edu/props/volume-1/propDB-volume-1.html
https://mselig.ae.illinois.edu/props/volume-1/propDB-volume-1.html

Appendix I: Geometry Transformation

 The complete process for developing a propeller’s cross sections from a scan are detailed

in this section. The point cloud is first loaded into MeshLab as a .ply file, shown in top of Figure

74. While the scans in the validation case consist of a top scan and a bottom scan of the propeller,

it is suggested that the data be gathered in one scan for better accuracy. If this cannot be completed

in one scan, the process follows the exact same steps as described in this section with the exception

of adding a step in which the top and bottom scans are put together. Once the original scan is

loaded, the number of points is increased using the Poison disk-sampling tool in MeshLab is used

to increase the number of points. This adjustment can be observed in bottom of Error! Reference

source not found.. With the number of points increased to an appropriate amount, the .ply file is

Figure 74: Point Clouds from Propeller Scan

134

loaded into MATLAB using the built-in function. Once the file is ply is loaded into MATLAB, it

is transformed and rotated to be oriented along an axis to allow for easier data collection. An

Figure 75: MATLAB Point Cloud Rotation

135

example of this rotation is provided in Figure 75. The rotation is done by using the built in

MATLAB “affine3d” this is the function that rotates the point cloud using a specified matrix. The

full code is provided in Figure 76. Lines 3-8 read and display the point cloud as it is directly

provided. Lines 10-15 conduct the translation of the point cloud so that the hub of the propeller is

at the origin. Lines 17-28 provide the rotation angles and the rotation matrix used. Lines 29-33

create the matrix used in the “affine3d” function as well as create the rotation variable, “tform”.

Figure 76: Code for Point Cloud Translation and Transformation

136

Line 34 executes the transformation, and lines 36-37 display the transformed the point cloud. Once

transformed such that the point cloud is oriented on an axis with the hub positioned at the origin,

the cross-sectional data can be collected using sets of conditionals. The information containing

each of the data points is stored in a structure of whatever the point clouds name is under the field

“Location” i.e., the data for each point is found in variable “PointCloudName.Location”. The

information in the Location matrix is stored as x, y, and z coordinates. Therefore, all of the points

Figure 77: Cross Section Collection

137

in the matrix are analyzed through a loop. If the value of a point lies within the given constraints

for a cross section it is stored to build the geometry of that cross section. An example of the first

cross section collection loop is provided in Figure 77. The first line defines a variable, “f”, that

contains the data for all points in the point cloud. The first “for” loop runs through each point in

the point cloud. If the x-value location (radial value) is in between the given range for the cross

section, the x, y, and z coordinates for that point are stored in a matrix called “X_Sec1” which

contains all the points for the first cross section. The second “for” loop divides the cross section

into upper and lower sections. The airfoil file used in OpenVSP has to have the bottom and top

curve separated; therefore, the division is made here by drawing a line through the airfoil and

separating points along the top and bottom. This procedure can be seen in Figure 78. If points are

Figure 78: Airfoil Top and Bottom Division

138

above the red line, they are placed in the upper airfoil curve, and if they are below the red line,

they are placed in the lower airfoil curve. The entirety of this code shown in Figure 77 and is done

for each cross section. Once all the cross sections have been obtained, they are translated such that

the leading edge of each airfoil is at its own respective origin and the trailing edge is on the x axis.

To do this, all the points that make a cross section or airfoil are adjusted by the leading-edge point.

For example, if the leading the edge is at (-453, 205), then all points will have 453 added to the x

value, and the y values will have 205 subtracted from them. The rotation is down by simply

applying the following two equations for all the points for given axes.

Figure 79: Airfoil Transformation

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 5 10 15 20

Original

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 5 10 15 20

Translation

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 5 10 15 20

Rotation

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.5 1 1.5

Normalization

139

𝑋𝑟𝑜𝑡 = 𝑋𝑜𝑔 cos(𝛽) − 𝑌𝑜𝑔 sin(β)

𝑌𝑟𝑜𝑡 = 𝑌𝑜𝑔 cos(𝛽) − 𝑋𝑜𝑔 sin(𝛽)

𝛽 is the angle by which the airfoil is rotated to become aligned with the x axis. The og terms

represent the original x and y coordinates, and the rot terms represent the rotated coordinates of

the airfoil. Lastly all the points of the airfoil are normalized by the chord length. The full process

is provided in Figure 79. The order of operations moves from left to right then top to bottom. The

final normalized airfoil is then used to create the OpenVSP airfoil file for the propeller. An

example airfoil file is provided in the UIUC validation section in Figure 20.

140

Appendix II: Input File Overview

 The text file input for the single point

optimization is provided in Figure 80.

The first 4 lines describe the behavior and

set up of the GA itself. The number of

greater generations is the number of

generations in the main generational

loop, and the number of lesser

generations is the number of generations

in each deme. The number of demes is

constructed by calling the subroutine by

the specified number of times. It has been

done in other projects where the number

of demes can be set as an input, but here

it is set to a concrete value of 4. Lines 5

and 6 describe the governing limits for

the construction of each of the

geometries. Line 5 gives the number of

cross sections in the radial direction while

line 6 gives the number of points that

describe the airfoil. Here it is set to 50 so

there are 25 points to describe the upper

surface and 25 to describe the lower.

Figure 80: Text File Input

141

Lines 7 and 8 provides weights for the fitness calculation. Line 9 gives the diameter for the

propeller. Lines 10, 11, and 12 provide the solver set up and flight conditions for the propeller.

Line 13 gives the thrust which the propeller is to be optimized for at the provided flight conditions.

The rest of the inputs describe the minimum and maximum values for each of the coefficients that

describe the behavior of the BP. Notice that all of the values are set from 0 to 1 except for the

leading-edge terms of the airfoil and the sweep terms. The leading-edge terms are limited so that

the leading edge cannot be extremely sharp. For subsonic flow regimes it is expected for the most

optimal airfoil to have a rounded leading edge. Furthermore, the solver has difficulties on

converging on propellers with these very sharp leading edges with thin surfaces. The sweep is

limited to 0.5 due to initial results seen from the GA. None of the most optimal propellers had

sweep coefficients greater than 0.5; therefore, it was limited in order to help the GA converge. It

should be noted that even with this limitation, propellers are still capable of having sweep angles

as high as 28.6 degrees.

