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Abstract

Visible Light (VL) is a wireless technology that uses visible light (400 ∼ 790 THz) as

the medium to transmit information (i.e., visible light communication or VLC) or sense user’s

activities (i.e., visible light sensing or VLS) and it has now become a very active research

topic in the area of wireless communication. While VL is expected to have a wide range

of applications in the near future and there has been significant progress on the research, the

security vulnerabilities of this technology have not been well understood so far. This situation

may lead to the dangerous “zero-day attacks” issue when the technology is deployed in the

near future. Thus, it’s urgent to study the security vulnerabilities of VL and develop rigid

countermeasures to these vulnerabilities.

In particular, due to the extremely short wavelength of visible light, the VL channel

presents several unique characteristics than its radio frequency counterparts, which imposes

new features on the VL security. Taking a physical-layer security perspective, the first pro-

posed research of this exploratory dissertation attempts to investigate the intrinsic confiden-

tiality of VLC communication as induced by its special channel characteristics. By exploiting

the intrinsic linear superposition properties of VL, the second proposed research of this ex-

ploratory dissertation aims to design a signal-level always-on spoofing detection framework

VL-Watchdog to secure the VL system from spoofing attack. The results reveal that due to the

different types of reflections (specular and diffusive), the VL system becomes more vulnerable

at specific locations where strong reflections exist, and the proposed VL-Watchdog was numer-

ically evaluated under different factors and it was proved to be effective for VL spoofing attack

detection.
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Chapter 1

Introduction

1.1 Background and Motivation

The blooming of Internet of Things (IoT) network that involves pervasive communication and

sensing among large amount of smart devices makes the current radio frequency (RF) spectrum

over crowded [1, 2, 3, 4]. In search of new spectrum resources, visible light (VL) technology

has received a lot of interest for both communication and sensing applications since the release

of IEEE 802.15.7 standard in 2011 [5]. VL is a wireless technology that uses visible light (400

∼ 790 THz) as the medium (Figure 1.1) to transmit information (i.e., visible light communica-

tion or VLC) or sense user’s activities (i.e., visible light sensing or VLS) and it has now become

a very active research topic in the area of wireless communication. Compared with regular RF

based communication and sensing, VLC and VLS enjoy several unique benefits. Firstly, the

VL spectrum is at a much higher frequency band and provides much wider bandwidth (more

than 10,000X) than the RF spectrum. As a result, a VLC link can easily achieve Gbps-level

transmission rate in short range (∼ 10 meters), and VLS can achieve higher spatial resolution

than RF sensing. Secondly, VL is more accessible than its RF counterparts. The VL spectrum

is license free while most of the RF bands are not. More importantly, VLC and VLS enjoy

the widely available lighting infrastructure that has already been installed in almost all indoor

and many outdoor environments. By piggybacking their communication/sensing signals on

today’s low-power solid-state LED illumination, VLC and VLS have higher energy efficiency

than their RF counterparts. Furthermore, because VL wave cannot penetrate walls and obsta-

cles, visible light communication and sensing signals can be well confined within an enclosed

area and cause little inter-cell interference. This allows dense spatial reuse of the VL spectrum.
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Figure 1.1: Electromagnetic spectrum

Because of these nice features, VL has been considered to be a promising and urgently-needed

small-cell solution for offloading the crowded RF bands in 5G systems and beyond.

While VLC and VLS are expected to have a wide range of applications in the near future,

the security vulnerabilities of this technology have not been well understood so far. In typical

VL systems, data is transmitted by modulating the output intensity of the emitters, and the

data signal is captured using photo-diodes as receivers. Contrary to the initial belief that VL

is intrinsically secure because the propagation of visible light is directive and can be confined

within a closed space, recent studies have revealed that this is not necessarily true, especially in

public areas [6, 7]. Without any sort of wave-guiding transmission media, the light illumination

that a VL link piggybacks on is diffusive in most real-world applications, which makes VL

links inherently susceptible to eavesdropping by an unintended receiver in the same room.

For example, the diffusive visible light illumination can be easily picked up and recorded by

an eavesdropper using a VL receiver at many locations in the space, and may be analyzed

afterwards to reveal the information embedded in the light. Such a unique “what-you-see-is-

what-you-get” feature of visible light [8] makes eavesdropping a highly realistic threat to VLC,

as its light can be seen at many locations due to its diffusiveness. This threat applies to most

public indoor environments, such as libraries, meeting rooms, shopping centers, or aircrafts.

Even worse, eavesdropping from outside of the space is possible when there are windows on

the wall [6, 9, 10].

Meanwhile, due to the extremely short wavelength of visible light (380 ∼ 700 nm), the

VL channel presents several unique features than its RF counterparts. For example, a VLC
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channel is a mix of both specular reflection and diffusive reflection, which allows a VLC sig-

nal to be overheard (or seen) at much more locations than a RF signal whose reflection is

dominantly specular, even when an eavesdropper is outside the main-lobe of the intended VL

communication and sensing. As a result, in contrast to the conventional multi-path RF channel,

a VL channel is no longer a discrete sequence of a small number of signal paths, but rather

a continuous combination/clusters of signal paths reflected by the entire environment – a di-

rect consequence of the diffusive reflection of visible light. Such a drastic change on channel

characteristics imposes new security features on VLC communication, and requires a different

method to investigate than its well-studied RF counterparts.

As more and more VLC/VLS systems are mounted on today’s light fixtures, how to guar-

antee the authenticity of the VL signal in these systems becomes an urgent issue. This is due

to the fact that almost all of today’s light fixtures are unprotected and can be openly accessed

by almost anyone, and hence are subject to tampering and substitution attacks. An attacker

can easily replace an authentic LED by a rogue LED under his control to inject spoofed VL

signal into user’s receiver. Unfortunately, most of today’s VLS applications do not have a re-

liable built-in signal authentication mechanism to detect these spoofed signals and hence will

mistakenly accept them as authentic sensing inputs, leading to compromised sensing outcome.

Similar situation also arises in VLC. For example, the attacker may first block the line of sight

(LOS) of the authentic VLC link, and then subsequently point a rogue LED transmitter to the

user’s receiver (typically a photo-diode) to inject spoofed data to the user [9].

In consideration of both the computationally demanding and complexity of the upper-layer

cryptographic techniques and severe hardware and energy constraints in IoT, we resort to phys-

ical layer approach to address the aforementioned security challenges in VLC/VLS. Physical

layer security has been identified as one of the promising secrecy scheme to secure transmission

in a wireless network. The underlying idea behind it is to sacrifice a portion of the communi-

cation rate, which otherwise would be used for secret data transmission via carefully-designed

signaling and coding schemes. It exploits dissimilarities among the physical communication

channels of different receivers in order to hide information from unauthorized receivers, with-

out relying on upper-layer encryption techniques. So, it can serve as an alternative to the
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computationally demanding and complex cryptographic algorithms and techniques. Moreover,

it also has the potential to provide lightweight standalone secrecy solutions in communication

systems functioning under limited hardware, low-complexity, and energy constraints such as

machine-type communication devices in the IoT [1].

The overarching goal of this exploratory dissertation is to obtain a comprehensive under-

standing on the security vulnerabilities of VLC and VLS, and to develop a solid mathematical

framework that can be used to investigate and develop rigid and provably-secure countermea-

sures to these vulnerabilities. Taking a physical-layer security perspective, the first proposed

research of this exploratory dissertation attempts to investigate the intrinsic confidentiality of

VLC communication as induced by its special channel characteristics. By exploiting the intrin-

sic linear superposition properties of VL, the second proposed research of this exploratory dis-

sertation aims to design a signal-level always-on spoofing detection framework VL-Watchdog

to secure the VL system from spoofing attack.

1.2 Major Contributions

1. Statistical modelling and analysis on the confidentiality of VL systems

Our study in this work aims to exploit the unique characteristics of VLC channel in cal-

culating its secrecy capacity. To the best of our knowledge, this is the first work that com-

prehensively considers the impact of both the specular and the diffusive reflections on se-

crecy capacity of indoor VLC and also investigates the spatial characteristics/distribution

of the secrecy capacity over the indoor communication space. More specifically, the main

contributions of our study are as follows:

• A modified Monte Carlo ray tracing method is proposed to account for both the

specular and diffusive reflections in calculating VLC channel impulse response at a

given location.

• A deep neural network (DNN) regression model is proposed to efficiently estimate

the VLC channel impulse response as a function of the VLC link location in the

4



communication space based on the training data set of a limited number of channel

response samples calculated according to the ray tracing model.

• Based on these models, the upper bound and the lower bound of the VLC secrecy

capacity are calculated considering multiple reflections under specific conditions.

• Leveraging the secrecy capacity bounds, we depict the spatial characteristics/distribution

of the VLC secrecy capacity over given indoor communication space.

• We also study how the multiple types of reflections affect VLC secrecy capacity

against a comprehensive set of factors, including the locations of the VLC transmit-

ter, receiver, and eavesdropper, the VLC channel bandwidth, the ratio between the

specular and the diffusive reflections, and the reflection coefficient.

The content of this contribution will be presented in Chapter 3 and they have been pub-

lished in the following papers [11, 12]:

• J. Chen and T. Shu, “Impact of multiple reflections on secrecy capacity of indoor

VLC system,” in Proceedings of 21st International Conference on Information and

Communications Security (ICICS’19), J. Zhou, X. Luo, Q. Shen, and Z. Xu, Eds.

Cham: Springer International Publishing, 2019, pp. 105–123.

• J. Chen and T. Shu, “Statistical modeling and analysis on the confidentiality of

indoor vlc systems,” in IEEE Transactions on Wireless Communications, 2020, vol.

19, no. 7, pp. 4744–4757.

2. Spoofing detection with redundant orthogonal coding for VL systems

In this work, we present VL-Watchdog, a novel signal-level always-on spoofing detection

framework for VLC and VLS systems. VL-Watchdog can be implemented as a small

hardware (receiver) add-on to an existing VL system. Once deployed, the watchdog

will persistently monitor the light signals in the field to ensure they are sent only from

authentic (legitimate) sources. VL-Watchdog supports large-scale VL systems, i.e., one

with many smart LEDs, and does not assume any physical or optical difference in the

LED hardware. Instead, VL-Watchdog is based on coding. It uses orthogonal codes
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to encode the illumination of each legitimate LED, so that the transmitted light of a

legitimate LED is identifiable by detecting the unique signal structure possessed by the

received light. To the best of our knowledge, this work serves as the first signal-level

always-on counter-spoofing mechanism applicable to both VLC and VLS systems. Our

main contributions are summarized as follows:

• An orthogonal coding based signal-level always-on VL spoofing detection frame-

work VL-Watchdog is proposed. Its optimal detection threshold is also derived by

analysis.

• A false-warning filter is proposed to improve VL-Watchdog’s detection accuracy

by accounting for random light perturbations caused by human activities and envi-

ronmental changes in realistic application scenarios.

• A proof-of-concept testbed is developed to verify the feasibility of VL-Watchdog.

• The performance of VL-Watchdog is evaluated based on extensive numerical sim-

ulations by taking into account a comprehensive set of parameters, including the

number of orthogonal coding basis, the spoofing power to noise ratio, spoofing de-

tection window size, the spoofer’s strategies in fabricating its spoofing signals, and

random perturbations from the application environment.

The content of this contribution will be presented in Chapter 4 and they have been pub-

lished in the following papers [13, 14]:

• J. Chen and T. Shu, “Spoofing detection for indoor visible light systems with redun-

dant orthogonal encoding,” in Proceedings of 2021 IEEE International Conference

on Communications (ICC’21), Montreal, Canada, 2021, pp. 1-6.

• J. Chen and T. Shu, “VL-Watchdog: Visible Light Spoofing Detection with Redun-

dant Orthogonal Coding,” in IEEE Internet of Things Journal, 2022, accepted.
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1.3 Organization

The structure of the dissertation reflects the list of contributions in the previous section, and is

presented as follows:

In Chapter 2, Literature review including the most recent VLC standardization survey and

related work is presented.

In Chapter 3, Statistical modelling and analysis on the confidentiality of VL systems.

In Chapter 4, Spoofing detection with redundant orthogonal coding for VL systems.

Finally, in Chapter 5, Conclusions and future work.
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Chapter 2

Literature review

2.1 VLC standardization survey

2.1.1 Introduction

Since the first introduction of Light Fidelity (Li-Fi) terminology in 2011 at a TED Global con-

ference by Harald Haas [15], Visible Light Communication (VLC) has regained a lot of interest,

and its standardization and commercialization have been accelerating. Li-Fi is a high speed bi-

directional fully connected VLC system and is analogous to Wi-Fi, which uses radio frequency

(RF) for communication. VLC is a wireless communication technology that uses visible light

spectrum (wavelengths of 390–750 nm or frequency band of 400–790 THz) as the medium to

provide wireless networking access. Compared with the RF wireless communications, VLC

enjoys several nice features, and its main characteristics are listed in Table 2.1. Because of

these nice features, VLC and the applicable Li-Fi technology have been considered to be a

promising solution for offloading the crowded RF traffic in 5G systems and beyond.

Feature VLC RF
Bandwidth High Low
Installation Easy Medium

Power Consumption Low High
Coverage distance Short Medium

Security High Low
EM Interference None High
Health Concern None Medium

Table 2.1: VLC vs. RF characteristics
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As we are stepping into the era of Internet of Things (IoT), more and more smart devices

make the current Wi-Fi solution run into limitations, such as bandwidth, data rate, electro-

magnetic (EM) interference, and security. Crowded spectrum is creating real problems in the

deployment of Wi-Fi and Li-Fi is believed to be able to alleviate some of those problems.

The features of high transmission rate, wide bandwidth, free of interference in electromagnetic

sensitive areas and non-hazardous to health have made Li-Fi an attractive technique for future

communication. Although Li-Fi is still in an exploratory phase at present, the standardization

of VLC facilitates to accelerate the development of Li-Fi technology and eventually deliver real

world deployments.

Recently, VLC is growing rapidly because of the rapid development of the solid-state light-

ing that uses semiconductor light-emitting diodes (LEDs) as the light source. As VLC embeds

communication into lighting, it can reuse the widely available lighting infrastructure that has

already been installed in almost all indoor and many outdoor environments. Simultaneous use

of LEDs for both lighting and communications purposes is a sustainable and energy-efficient

approach that has the potential to revolutionize wireless applications. VLC standards are cru-

cial to VLC applications, especially in the coming era of IoT, a landscape composed of a very

diverse set of smart devices. VLC standards are really the only way for these heterogeneous

devices to talk with one another and collaborate successfully in creating a large-scale VLC

ecosystem.

In this chapter, we will briefly overview the recent progress on VLC standardization and

present the mainstream VLC standards published by different standardization organizations.

2.1.2 Brief history of VLC standardization

Along with the growing academic interest in VLC [16, 17, 18, 19, 20, 21], industrial atten-

tion to VLC has triggered standardization activities in this emerging market [22, 23, 24]. In

Japan, the Visible Light Communications Consortium (VLCC) (www.vlcc.net) was leading the

VLC standardization activities and proposed two VLC standards. These two standards were ac-

cepted by the Japan Electronics and Information Technology Industries Association (JEITA) in

2007 and became known as JEITA CP-1221 (visible light communication system standard) and
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JEITA CP-1222 (visible light ID system standard), respectively. Additionally, in June 2013, the

JEITA CP-1223 visible light beacon system standard was approved as an improved version of

the JEITA CP-1222 [18, 19].

At the same time, the Institute of Electrical and Electronics Engineers (IEEE) also rec-

ognized the potential of this emerging technology and created IEEE Standard 802.15.7, which

was approved in June 2011 (IEEE Std 802.15.7-2011). A few years later, a new revision was

approved in December 2018 (IEEE Std 802.15.7-2018) [25]. This standard defines a physical

(PHY) layer and a medium access control (MAC) sublayer for VLC and promises data rates

sufficient to support audio and video multimedia services.

More recently, the International Telecommunication Union (ITU) organization released

the ITU-T G.9991 standard in March 2019 [26]. This standard is the derivative of ITU-T

G.9960 standard that was developed for next generation home network technology. This stan-

dard mainly defines the VLC system architecture, physical (PHY) layer and data link layer

(DLL) for high-speed indoor optical wireless communication transceiver using visible light.

2.1.3 IEEE 802.15.7 Standard

The IEEE 802.15.7 (IEEE VLC hereafter) standard [25] describes the use of visible light for the

standard network type VLC Personal Area Network (VPAN) and defines PHY layer and MAC

sublayer protocols. It covers issues such as network topologies, addressing, collision avoidance,

acknowledgment, performance quality indication, dimming support, visibility support, colored

status indication, and color stabilization.

IEEE VLC network topologies and architecture

In this standard, three classes of VLC devices are considered, including infrastructure, mobile,

and vehicle. The main features of each class are summarized in Table 2.2.

Depending on different application scenarios, a VPAN can be classified into one of three

different network topologies, namely peer-to-peer, star, and broadcast, as shown in Figure 2.1.

In each class, there is always a device (D) serving as coordinator (C), which is responsible for

10



Infrastructure Mobile Vehicle
Fixed coordinator Yes No No
Power supply Ample Limited Moderate
Form factor Unconstrained Constrained Unconstrained
Light source Intense Weak Intense
Physical mobility No Yes Yes
Range Short/long Short Long
Data rates High/low High Low

Table 2.2: IEEE VLC device classification

D

C C

D
D

DD
D

D

C

Peer-to-peer Star Broadcast

Coordinator

Devices

Figure 1

Figure 2.1: IEEE VLC network topologies

starting and maintaining a network and assigning new devices to an existing VPAN. In the peer-

to-peer and star topology, the destination address is required for bidirectional communication,

which is in contrast to the unidirectional communication in the broadcast topology.

The overall VLC network architecture is defined by a number of layers as illustrated in

Figure 2.2. Each of the layers is responsible for one part of the standard and offers services to

its upper layer. The upper layers include network layer (providing network configuration, ma-

nipulation, and message routing) and application layer (providing the intended function of the

device), which are vendor specific so that they are not defined in the standard. The logical link

control (LLC) layer provides access between the upper layers and the MAC sublayer through

the service-specific convergence sublayer (SSCS). The MAC data and MAC management in-

formation are accessed through the MAC common-part sublayer (MCPS) and the MAC layer

management entity (MLME), respectively. The PHY data and PHY management information

are accessed through the PHY layer Data (PD) and the PHY layer management entity (PLME),

respectively. The PHY switch serves as an interface to the optical service access point (Optical-

SAP) and connects to the optical cells. The device management entity (DME) communicates

with the dimmer to interface with upper layers and provide dimming information to the MAC

11



Upper layers

LLC

SSCS

MAC
MCPS                       MLME

PD                            PLME
PHY

PHY-switch

DME

dimmer

OPTICAL-SAP

...Cell 
1

Cell 
2

Cell 
n-1

Cell 
n

⁞
Network layer

Data link 
layer

Physical 
layer

OSI IEEE VLC

Figure 2
Figure 2.2: IEEE VLC network architecture

and PHY layers. The DME also controls the PHY switch through PLME for selection of the

optical transceivers to accommodate different size and position of a specific cell.

IEEE VLC PHY layer

The PHY layer provides the physical specification of the device and the relationship between

the device and the medium. The PHY layer mainly serves to establish and terminate a com-

munication link, and it is responsible for the following tasks: 1) Activation and deactivation of

the VLC transceiver; 2) Wavelength quality indication (WQI) for received frames; 3) Channel

selection; 4) Data transmission and reception; 5) Error correction; 6) Synchronization.

General system model: Figure 2.3 shows the block diagram of the general physical layer

implementation of the VLC system. The input bit stream is first passed through the channel

encoder. Then, the channel encoded bit stream is passed through the line encoder to generate

the encoded bit stream. After line encoding, modulation is performed and finally, the data is fed

to the LED for transmission through the optical channel. At the receiver side, the photodiode

receiver receives the optical signal. After demodulation and line decoding, the bit stream passed

through the channel decoder to generate the output bit stream.

PHY layer types: Depending on the usage environment and transmission data rate, physi-

cal implementations of VLC are divided into 6 different types as listed in Table 2.3.
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Figure 2.3: General physical layer system model of IEEE VLC

PHY types Usage environment Data rate
PHY I Outdoor Tens to hundreds of kb/s
PHY II Indoor Tens of Mb/s
PHY III Applications with multiple transceivers Tens of Mb/s
PHY IV Discrete light sources Up to 22 kb/s
PHY V Diffused surface light sources Up to 5.71 kb/s
PHY VI Video displays Up to 512 kb/s

Table 2.3: PHY layer types classification

Operating mode: The common PHY I, II, III and their settings of operating modes on

the modulation, optical clock rates, error correction codes, and data rates are summarized in

Table 2.4. In this table, multiple optical rates are provided for all PHY types to support different

classes of LEDs for various applications. For a given VPAN, its compliant PHY is defined as

one or multiple combinations of those types and implements at least one of the corresponding

operating modes listed in Table 2.4, and the upper MAC sublayer will choose an appropriate

optical rate during device discovery.

Modulation: There are three common modulation schemes for VLC, including On-Off

Keying (OOK), Variable Pulse Position Modulation (VPPM), and Color-Shift Keying (CSK).

OOK modulation is the simplest modulation scheme for VLC, where the LEDs are turned on or

off (the intensity of the light may simply be reduced so that it can be distinguished) depending

on data bits being 1 or 0. VPPM changes the duty cycle of each optical symbol to encode bits.

CSK modulation encodes the bit patterns into color (wavelength) combinations.

RRL line coding: Run length limited (RLL) line codes are used to avoid long runs of 1s

and 0s that could potentially cause flicker. RLL line codes take in random data symbols at input

and guarantee DC balance with equal 1s and 0s at the output for every symbol. Various RLL
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Modulation RLL code
Optical clock rate FEC Data rate

(Hz) (RS) [CC] (bps)

PHY I

OOK Manchester 200k

(15,7) 1/4 11.67k
(15,11) 1/3 24.44k
(15,11) 2/3 48.89k

(15,11) 73.3k
None 100k

VPPM 4B6B 400k

(15,2) 35.56k
(15,4) 71.11k
(15,7) 124.4k
None 266.6k

PHY II

VPPM 4B6B

3.75M
(64,32) 1.25M

(160,128) 2M

7.5M
(64,32) 2.5M

(160,128) 4M
None 5M

OOK 8B10B

15M
(64,32) 6M

(160,128) 9.6M

30M
(64,32) 12M

(160,128) 19.2M

60M
(64,32) 24M

(160,128) 38.4M

120M
(64,32) 48M

(160,128) 76.8M
None 96M

PHY III

4-CSK

None

12M
(64,32) 12M

8-CSK (64,32) 18M
4-CSK

24M

(64,32) 24M
8-CSK (64,32) 36M
16-CSK (64,32) 48M
8-CSK None 72M
16-CSK None 96M

Table 2.4: PHY I, II, III and their operating modes
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MAC frame type Functionality
BEACON frame transmit beacons by a coordinator in any topology

DATA frame transmit all data
ACK frame verify successful reception of a frame

MAC command frame manage and transmit all MAC control signal transfer
CVD frame use visibility and dimming support providing side information

Table 2.5: MAC frame types

line codes such as Manchester, 4B6B, and 8B10B are defined in the standard and provide DC

balance, clock recovery, and flicker mitigation.

FEC coding: IEEE VLC standard supports various forward error-correcting (FEC) schemes,

which support both long and short data frames for low data rate outdoor and high data rate in-

door applications. For outdoor applications, stronger codes using concatenated Reed-Solomon

(RS) and convolutional coding (CC) are developed to overcome the additional path loss due to

longer distances and potential interference introduced by optical noise. For indoor applications,

only RS codes are used for FEC since they are better suited to high data rate implementations.

IEEE VLC MAC sublayer

The MAC sublayer mainly supports data and management services. It handles all access to the

physical layer and is responsible for the following tasks: 1) Generating network beacons if the

device is a coordinator; 2) Synchronizing to network beacons; 3) Supporting device association

and disassociation; 4) Supporting color function; 5) Supporting visibility to maintain illumina-

tion and mitigate flicker; 6) Supporting dimming; 7) Flicker-mitigation scheme; 8) Supporting

visual indication of device status and channel quality; 9) Supporting device security; 10) Pro-

viding a reliable link between two peer MAC entities; 11) Supporting mobility.

MAC frame: The MAC frame comprises three basic components: the MAC header (MHR),

the MAC payload (MACP), and the MAC footer (MFR). The MHR contains the frame control

field, the sequence number field, the address information field, and the security-related infor-

mation field. An MACP part comprises specific information based on the selected frame type

(except ACK frame). An MFR, which contains a frame check sequence (FCS), is an error

correction–related footer and located at the end part of a MAC frame. According to its func-

tionality, the MAC frames can be classified into five types (Table 2.5).
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Network management: The device uses channel scanning to assess the current state of a

channel, locate all beacons within its operation environment, or locate a particular beacon with

which it has lost synchronization. The device can perform either active or passive scanning

to discover an operating network and the results of the channel scanning are used to choose a

suitable VPAN. Following a channel scan and selection of a suitable VPAN identifier, operation

as a coordinator starts. The association/disassociation mechanisms that allow devices to join or

leave a VPAN are further defined in the standard.

Random access mechanism: Depending on the network configurations, the standard pro-

vides four random access mechanism: slotted and unslotted random access with/without car-

rier sense multiple access with collision avoidance (CSMA/CA). Except for DATA and ACK

frames, all other frame types use slotted random access mechanism with/without CSMA/CA to

access the channel. If the devices are using the same spectrum and within the coverage of each

other, CSMA/CA can be optionally implemented. Otherwise, each device should ensure that

the channel is not used by another device to avoid collision by performing a channel clear as-

sessment, which is requested by MAC and performed by PHY. Using the CSMA/CA algorithm,

each device can sense the transmission channel before transmitting a frame.

Flicker mitigation and dimming support: Flicker refers to the modulation of the brightness

of light at frequencies higher than the critical fusion frequency that can cause noticeable and

negative/harmful physiological impacts on humans. To avoid flicker, the brightness changing

period must fall within the maximum flickering time period (MFTP). The MFTP is defined

as the maximum time period over which the light intensity can change without the human

eye perceiving it. Therefore, the modulation process in VLC must avoid either intraframe

flicker or interframe flicker. Dimming support is another important consideration for VLC for

power savings and energy efficiency. It is desirable to maintain communication while a user

arbitrarily dims the light source. It is a cross layer function between PHY and MAC and the

standard describe three major dimming methods: adding compensation symbols, controlling

pulse width, and controlling the amplitude of the signal [5].
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Figure 2.4: ITU VLC network topologies: (a) point-to-point (b) point-to-multipoint (P2MP)
(c) multipoint-to-multipoint (MP2MP) (d) relayed mode (e) centralized

2.1.4 ITU-T G.9991 Standard

The ITU-T G.9991 (ITU VLC hereafter) standard [26] details the VLC network architecture,

physical layer (PHY), and data link layer (DLL) specifications for high-speed indoor VLC

access points.

ITU VLC network topologies and architecture

In this standard, a VLC system consists of one or more domains. Inside each domain, there are

only one domain master (M) and one or more nodes (N) registered with it. The domain master

is responsible for assigning and coordinating resources (bandwidth and priorities) of all nodes

in its domain. The global master (GM) interacts with domain masters and coordinates resources

such as bandwidth reservations, inter-domain handover and operational characteristics between

domains. There are 5 legal topologies inside a domain, as illustrated in Figure 2.4.

The network architecture is presented in Figure 2.5. In particular, two PHY layers are

defined to adapt to different scenarios, in which PHY I is adapted from [ITU-T G.9960] and

PHY II is specifically designed for VLC, and a common DLL is laid upon them. The net-

work architecture includes three main reference points: application interface (A-interface),

physical medium-independent interface (PMI), and medium-dependent interface (MDI). The

A-interface is described in terms of primitives exchanged between the AE and the DLL. The

PMI interface, which is both medium independent and application independent, is responsible

for function flows and logical signals. The MDI is a physical interface defined in terms of the
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physical signals transmitted over a specific medium and mechanical connection to the medium.

ITU VLC PHY layer

The standard supports two physical layers, in which PHY I describes the adaptation of an [ITU-

T G.9960] PHY layer based on orthogonal frequency-division multiplexing (OFDM) approach,

while PHY II describes a PHY layer based on an asymmetrically clipped optical (ACO-OFDM)

approach. Both PHY I and PHY II include three sublayers: Physical Coding sublayer (PCS),

Physical media attachment (PMA) sublayer and Physical medium dependent (PMD) sublayer.

Functional model: The functional model of PHY layer is shown in Figure 2.6. In the transmit

(Tx) direction, data is transformed to MAC protocol data units (MPDUs) by PMI first. Then the

MPDU is mapped into a PHY frame in the PCS, scrambled and encoded in the PMA, modulated

in the PMD and transmitted over the medium using OFDM (PHY I) or ACO-OFDM (PHY II).

In the receive (Rx) direction, frames incoming from the medium via the MDI are demodulated

and decoded all the way up to PCS, where they will be recovered to MPDUs and forwarded to

the MAC via the PMI.

PHY frame: The PHY frame consists of a preamble, a header, an additional channel es-

timation (ACE) symbols and a payload. The preamble is intended to assist the receiver with
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Figure 2.6: Physical layer functional model

Frame Type Description
MAP/RMAP MAP/RMAP frame
MSG Data and management frame
ACK Acknowledgement control frame
RTS A request-to-send control frame
CTS A clear-to-send control frame
CTMG Short control frame
PROBE Probe frame
ACKRQ ACK retransmission request
BMSG Bi-directional MSG frame
BACK Bi-directional ACK frame
ACTMG ACK for CTMG
FTE Frame type extension

Table 2.6: PHY frame types

detecting and synchronizing to the frame boundaries, and acquiring the physical layer parame-

ters such as channel estimation and OFDM symbol alignment. The header identifies the frame

type and carries frame information, such as domain ID, source / destination ID, etc. PHY frame

types are presented in Table 2.6.

ITU VLC data link layer

The DLL within the standard defines three sublayers: Application Protocol Convergence (APC),

Logical Link Control (LLC) and Medium Access Control (MAC).

Functional model: The DLL functional model is shown in Figure 2.7. In the transmit

direction, the application data primitive (ADP) enters the DLL from AE. Each incoming ADP

set is converted by APC into an APC protocol data unit (APDU). Next, the LLC receives the
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Figure 2.7: Data link layer functional model

APDU as well as the link control data units (LCDUs) from the DLL management entity and

converts them into LLC protocol data units (LPDUs). LPDUs are then passed to MAC, which

is responsible for concatenating LPDU into MAC protocol data units (MPDUs). In the receive

direction, incoming MPDUs enter MAC via PMI and disassembled into LPDUs. Then, they

are recovered into the original APDUs and LCDUs by LLC and sent to the APC and LLC

management entity, respectively. ADPs are generated in the APC and conveyed to the AE via

A-interface.

Medium access: The MAC cycle includes one or more transmission opportunities (TX-

OPs), in which two types of TXOPs are described in the standard: shared TXOP (STXOP) and

full duplex shared TXOP (FDSTXOP). A STXOP may consist of one or more time slots (TSs),

which can be a contention-free TS (CBTS) or a contention-based TS (CFTS). Each CFTS could

be assigned to a data connection, a single source node, a single destination node and a mini-

mum user priority, while a CBTS is assigned to a group of nodes and a minimum user priority.

When a STXOP only contains CBTS, it is denoted as CBTXOP. Medium access in CBTXOP is

illustrated in Figure 2.8. Each TS in CBTXOP includes one access channel, one or zero trans-

mission channel, and the channel for ACK and IND frame. Inside the access channel, a node

shall randomly choose one contention slot to send the access request (AR) to the domain mas-

ter before transmitting, and then it will be allowed to transmit depending on whether an access

channel exists revealed from the ACK. Medium access in FDSTXOP involves a central node,

a primary receiver node and a group of secondary transmitter nodes. The central node is fixed

and allowed to transmit to the primary receiver and receive from a secondary transmitter node
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Figure 2.8: Medium access in CBTXOP: (a) no access channel exists (b) access channel exists

simultaneously. In the transmit direction, the central node transmits in a contention-free man-

ner, whereas in the receive direction, the TXOP is shared by a group of secondary transmitter

nodes to transmit to the central node.

2.1.5 Conclusions

In this chapter, we briefly present two mainstream VLC standards published by IEEE and ITU.

These standards detail the specifications on VLC network standardization, such as network

architecture and network layer configuration, which are crucial for the development and de-

ployments of VLC. They also pave the road for the rapid growth of the VLC market. With the

promising development of VLC standard, we would expect more and more real-world Li-Fi

deployments in the near future, e.g., the outdoor streetlights can be used as access points for

smart city applications, and the indoor ceiling lights can supply high throughput for smart home

appliances.

2.2 Related work

2.2.1 VL channel modelling and analysis

While the research on VLC has achieved significant development in many fields, such as chan-

nel modelling [27, 28, 29, 30], modulation [31], channel estimation [32, 33, 34], and channel

capacity analysis [35, 36], the security aspect of VLC has not been well understood so far.

Existing research on VLC security is preliminary, as evidenced by the limited number of re-

lated works and the narrow scope of problems addressed in the literature. In [7], the authors

discussed different scenarios of VLC sniffing, and the results of the experiment suggested that
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VLC channels should not be considered intrinsically secure. Yin and Haas also confirmed the

vulnerabilities of multiuser VLC networks by providing an analytical framework to character-

ize the secrecy performance [37]. Actually due to the broadcast feature of VLC, an unintended

receiver within the same communication room may receive the information without being no-

ticed, and this kind of threat could even apply to a scenario that the unintended receiver from

outside of the room could eavesdrop merely through the windows or door gaps. The feasibility

of such an attack was verified in [10], where an attacker outside a room was able to accurately

figure out the program being played on a TV set in the room just by observing the change of

light intensity illuminated by the TV through the window. Eavesdropping outside the direct

beam of the light was also verified by testbed in [6].

For most cases of securing VLC system, conventional cryptographic methods can be im-

plemented at specific layers of the protocol stack to provide data confidentiality, integrity, and

authenticity for VLC applications. The secret keys required by these cryptographic methods

can be generated by taking advantage of the physical layer characteristics of the VLC channels,

e.g., [38, 39, 40]. But it is facing great challenges with the elevated capability of computa-

tion. As a promising complement to it, physical layer security, mainly represented by non-

cryptographic methods, exploits the noise and the structure of the VLC channel to limit the

amount of information that can be overheard by unauthorized eavesdroppers [41, 42, 43].

From an information-theoretic point of view, the physical-layer security was first intro-

duced by Wyner as a wiretap channel model [44]: an eavesdropper sniffs a degraded signal

from the main channel. The secrecy capacity is derived as the difference between the infor-

mation capacity for the two channels. Different with RF communication, which is typically

modeled as a Gaussian broadcast channel with an average power constraint at the transmitter

side, the signal in VLC is typically modulated onto the intensity of the emitted light, it must

satisfy average, peak as well as non-negative amplitude constraints, imposed by practical illu-

mination requirements [35, 36, 45]. Due to the fundamental differences, results on the secrecy

capacity obtained for RF networks can not be directly applied to VLC networks.

By considering one transmitter, one legitimate user and one eavesdropper in a VLC sys-

tem, lower and upper bounds on the secrecy capacity of the amplitude-constrained Gaussian
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wiretap channel was recently studied in [46, 47, 48], with the use of the derived capacity lower

and upper bounds in [49]. Mostafa, et al. analyzed the achievable secrecy rate for single-input

single-output (SISO) and multiple-input single-output (MISO) scenarios, and proposed various

beamforming and jamming schemes to enhance the confidentiality of VLC links [42]. In ad-

dition, Arfaoui, et al. derived in closed-form the achievable secrecy rate as a function of the

discrete input distribution for wiretap channel under the amplitude constraints of the input sig-

nal [50, 51]. To address the issue of priori knowledge of locations or channel state information

of eavesdropper, in [52, 53], Cho, et al. investigated the secrecy connectivity in VLC in the

presence of randomly located eavesdroppers, and they also study how the multipath reflections

affect the secrecy outage probability. However, when considering the multipath reflections,

they only deal with the impact of main channel without considering of the inter-symbol inter-

ference from multipath reflections.

2.2.2 Spoofing detection related to VL systems

Existing research on VLC security is preliminary, as evidenced by the limited number of related

works and the narrow scope of problems addressed in the literature. Among the limited efforts,

most of which are focused on studying the secrecy capacity limit of VLC link by modeling it

as a wiretap channel [49, 54, 55]. These works take an information-theoretical approach, and

thus can only give the limit of the capacity but cannot answer how the limit can be achieved

in a realistic setting. Except the secrecy capacity, other issue unique to VLC, such as blocking

and spoofing [56, 9, 55], have been rarely investigated in the literature. Recently, there has

been comparable works, which could be exploited to investigate the spoofing issue, in other

research field, e.g., VLC indoor localization. Zhang et al. in [57] utilized the distinctive fluo-

rescent light, discriminating by unique inherent characteristic frequency, as location landmark

to achieve a simple and robust localization. Wei et al. in [58] exploited the intensity of po-

larized light from optical anchor to extract the relative orientation of indoor object. Both of

these physical approaches could be exploited to light transmitter discrimination, but they re-

quire either specific light fixture or extra facility to polarize transmitted light under the current

multi-link VLC network infrastructure.
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Meanwhile, to tackle the spoofing issues, different solutions were provided for WIFI net-

works in the literature [59, 60]. In particular, the related works can be roughly classified into

crypotographic and non-cryptographic methods. The crypotographic methods focus on the

data at higher layers and exploit crypotographic primitives to achieve authenticity. Tradition-

ally researchers have applied cryptographic authentication and encryption techniques to tackle

spoofing attacks [61, 62]. As most secure encryption techniques are usually highly resourced

intensive and complex, the crypotographic computation in these methods introduces long delay

in relative to the high-speed transmission at the physical layer, which significantly downgrades

the effective throughput perceived at higher layers. The non-cryptographic methods address

spoofing vulnerabilities under bottom layers, e.g., data link layer and physical layer. Sequence

number field from the MAC header of data link layer was firstly used for detecting identity

spoofing. In [63], Guo and Chiueh proposed sequence number gap based spoofing detection

algorithm in the link-layer header of IEEE 802.11 frames. Similarly, in [64] Li and Trappe sug-

gested the use of the sequence number gap and the distribution of inter-arrival times between

packets sequence numbers at data link layer frames to classify MAC address spoofing. How-

ever, in consideration of a packet crafting tool that can manipulate the desired fields in packets,

the sequence number based methods will lose their functionality. Down to the physical layer,

the studies of RSS have shown promise in identifying and detecting identity-based attacks.

Faria et al. in their work [65] used RSS based signalprint to detect of a large class of identity-

based masquerading and resource depletion attacks in an indoor environment. Chen et al. in

[66] formulated the attack detection as a statistical significance test and proposed RSS-based

k-means clustering to detect spoofing attack for IEEE 802.11 in indoor environments. Sheng

et al. in [67] showed that the RSS distribution function tends to a multi-Gaussian model due to

antenna diversity in their IEEE 802.11 testbed and built RSS profiles for spoofing detection by

modelling the RSS readings using Gaussian Mixture Models.
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Chapter 3

Statistical modelling and analysis on the confidentiality of VL systems

3.1 Introduction

Visible light communication (VLC), which integrates communication and illumination, has

now become a very active research topic in the area of wireless communication. Compared

with its radio frequency (RF) counterparts, VLC enjoys many nice features, such as license

free, interference free, reusable spectrum, wider bandwidth, higher transmission rate, higher

energy efficiency and so on. Because of these nice features, VLC has been considered to be a

promising and urgently-needed solution for offloading the crowded RF traffic in fifth generation

(5G) networks.

While VLC is expected to have a wide range of applications in the near future, the secu-

rity vulnerabilities of this technology have not been well understood so far. In typical VLC

systems, data is transmitted by modulating the output intensity of the emitters, and the data

signal is captured using photo-diodes as receivers. Contrary to the initial belief that VLC is

intrinsically secure because the propagation of visible light is directive and can be confined

within a closed space, recent studies have revealed that this is not necessarily true, especially

in public areas [6, 7]. Without any sort of wave-guiding transmission media, the light illumina-

tion that a VLC link piggybacks on is diffusive in most real-world applications, which makes

VLC links inherently susceptible to eavesdropping by an unintended receiver in the same room.

For example, the diffusive visible light illumination can be easily picked up and recorded by

an eavesdropper using a VLC receiver at many locations in the space, and may be analyzed

afterwards to reveal the information embedded in the light. Such a unique “what-you-see-is-

what-you-get” feature of visible light [8] makes eavesdropping a highly realistic threat to VLC,
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as its light can be seen at many locations due to its diffusiveness. This threat applies to most

public indoor environments, such as libraries, meeting rooms, shopping centers, or aircrafts.

Even worse, eavesdropping from outside of the space is possible when there are windows on

the wall [6, 9, 10].

In particular, due to the extremely short wavelength of visible light (0.38 ∼ 0.69 µm),

the VLC channel presents several unique features than its RF counterparts. For example, a

VLC channel is a mix of both specular reflection and diffusive reflection, which allows a VLC

signal to be overheard (or seen) at much more locations than a RF signal whose reflection

is dominantly specular, even when an eavesdropper is outside the main-lobe of the intended

VLC communication. As a result, in contrast to the conventional multi-path RF channel, a

VLC channel is no longer a discrete sequence of a small number of signal paths, but rather

a continuous combination/clusters of signal paths reflected by the entire environment – a di-

rect consequence of the diffusive reflection of visible light. Such a drastic change on channel

characteristics imposes new security features on VLC communication, and requires a different

method to investigate than its well-studied RF counterparts.

With that in mind, in this work we attempt to investigate the intrinsic confidentiality of

VLC communication as induced by its special channel characteristics. We consider the issue of

communication confidentiality, because eavesdropping has been foreseen as the most common

threats faced by VLC communications once they are deployed [7, 9, 68]. In contrast to many

existing confidentiality studies that take measures at upper layers of the network protocol stack,

such as access control, password protection, and end-to-end encryption, our investigation takes

a physical-layer security perspective and targets at the fundamental issue of VLC channel’s

secrecy capacity, by characterizing how easily a VLC signal would be overheard when it is

transmitted over the channel. Note that our study aims at understanding the intrinsic security

limits faced by the VLC signal itself, which is independent from any cryptographic measures

that could be added on the upper layers. Our work is also distinguishable from other VLC secu-

rity papers [69, 70, 71, 72] that aim at exploiting physical layer features to provide encryption

in the sense that our focus is on the intrinsic information-theoretic secrecy limits of the channel,

while their studies are from the operational/implementation perspectives of VLC systems. In
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Figure 3.1: A typical indoor VLC network system with Alice, Bob and Eve considering reflec-
tions.

practice, our study may lead to a better design of VLC transceivers that possess certain built-

in eaversdropping-proofness, and may be used in orthogonal with upper-layer cryptographic

methods to further enhance the security of VLC systems.

3.2 VLC channel modelling

In a typical indoor VLC system (Figure 3.1), data signal is transmitted by modulating the output

intensity of the emitter (Alice), and then it is captured using simple photo-diodes as receivers

(Bob or Eve). As the indoor optical wireless channel is significantly different from the RF

channel, statistical propagation models developed for the RF, which characterize the multipath

fading, can’t be directly applied to VLC. Accounting for the multiple types of reflections in

the indoor VLC system requires a distinct channel modeling that is able to capture the unique

characteristics of a VLC channel. In particular, a VLC channel response could be decomposed

into the line of sight (LOS) path component and the non-line of sight (NLOS) path component,

which are described respectively as follows.

According to [30], the emitter source is modeled as a generalized Lambertian radiation

pattern

P (m,φ) =
m+ 1

2π
cosm(φ) (3.1)
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where m is the Lambertian order defining the radiation lobe, which specifies the directivity of

the source, φ is the angle between the initial direction of ray and the direction of maximum

power, which specifies the emitting angle. The coefficient (m+ 1)/2π ensures that integrating

radiation intensity pattern over the surface of a hemisphere can obtain the source power. m = 1

corresponds to a traditional Lambertian source.

So, the LOS path gain can be calculated as

hLOS = P (m,φ)AD cos(θ)
1

d2
δ(t− d

c
) (3.2)

where AD is the detecting surface area of the receiver, θ is the incident angle between incident

light and the receiver normal direction, product of both gives the effective collection area of the

receiver. d is the LOS distance between the emitter and receiver, which depicts the geometric

attenuation. c is the speed of light and Dirac delta function gives the time delay.

Multipath channel gain due to the reflections by the walls was studied in [27]. The pro-

posed deterministic model calculated the reflection channel gain by partitioning a wall into

many elementary reflectors and summing up the impulse response contributions from different

reflectors as secondary sources until reaching the time limit. However, there is a problem with

this model, in that they only take into account diffusive reflection and can’t simulate specular

reflection when light reaches a wall. In reality, for grazing incidence there is strong specular re-

flection with quite different behavior. If there are polished surface, such as windows or mirrors,

the specular reflection is dominant over diffusive reflection. In order to consider the high spec-

ular reflection of smooth surfaces, here we use the Phong’s model to approximate the reflection

patterns (Figure 3.2), considered as the sum of the diffusive component and the specular com-

ponent [33, 73]. In this model, the surface characteristics are defined by two parameters: the

percentage of incident signal that is reflected diffusely rd and the directivity of the specular

component of the reflection m′′. Due to the high attenuation, in this paper, we consider only

the first reflection since the channel gain of the higher order reflections is small enough to be

neglected [33].
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Figure 3.2: Reflection pattern is described by Phong’s model.

So, the NLOS path gain can be described as

hNLOS =
n∑
j=1

P (m,φEj)∆A cos(θEj)
1

d2Ej
ρj [rdjP (m′, φjR) + (1− rdj)P (m′′, φjR − θEj)]

AD cos(θjR)
1

d2jR
δ

(
t− dEj + djR

c

)
(3.3)

where the wall is divided into n grid reflectors, each of which has an area of ∆A, ρ is the

surface reflection coefficient, m′ gives the directivity of the diffusive reflection component and

m′′ gives the directivity of the specular reflection component, φ and θ represent emitting angle

and incident angle, respectively. Such a model is general enough to accommodate various

reflection settings of the wall. For example, for a wall of homogeneous material, ρj and rdj

are identical for all the grids, so the subscript j can be dropped in the notation, resulting in a

common setting of ρ and rd in the channel model. For a wall of heterogeneous materials, e.g.,

a glass window embedded in the wall, different ρj and rdj should be used for different areas of

the wall, reflecting the heterogeneous reflection behavior of the different parts of the wall.

Therefore, the channel gain considering both the LOS and NLOS can be described as

H = hLOS + hNLOS. (3.4)
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Table 3.1: Main notations
Notation Explanation Notation Explanation

m,m′,m′′ Lambertian directivity order ILOS LOS intensity
φ Emitter radiation angle INLOS NLOS intensity
θ Receiver incident angle ∆t Time delay between NLOS and LOS
d Transmission distance α, β Gamma fitting parameters
ρ Reflection coefficient HB, HE Channel gain
rd Diffusive percentage σ2

B, σ
2
E Variance of noise

∆A Reflector effective area I(X;Y ) Mutual information between X and Y
AD Receiver effective area ξ Dimming target
c Speed of light A Maximum optical intensity

We use a modified Monte Carlo ray-tracing statistical approach to numerically calculate the

channel impulse response, as explained later in the experimental section. In case that the con-

sideration of higher order reflections is desirable, it can be recursively calculated by a nested

ray tracing model. For example, the second-order reflection can be considered by treating the

first-order reflected light at each grid as a secondary light illumination source. For each sec-

ondary light source, the proposed Monte Carlo ray tracing model (Equations (2) and (3)) can

be applied to compute its contribution to the second-order reflection. The actual second-order

reflection is just the summation of the contribution from all secondary light sources.

To improve the readability of our paper, we summarized the main notation in Table 3.1.

3.3 Channel Impulse Response fitting and synthesizing

Although the channel impulse response with multiple reflections could be numerically cal-

culated using different approaches, there is lacking an analytical expression for it in current

literature. The main drawback of the numerical methods is their excessive computational time

complexity. Due to the additional NLOS reflections, numerical computation of the impulse

response of a single VLC channel turns out to be very time consuming, and it becomes even

more prohibitive when one needs to calculate the channel response as a function of the VLC

link location over the entire communication space, e.g., to characterize the spatial distribution

of the VLC channel secrecy capacity. Therefore, for the very first time, we propose a fast ana-

lytical approach to synthesize channel impulse response using gamma probability distribution

function fitting and Deep Neural Network regression.
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3.3.1 Channel Impulse Response Fitting As A Gamma Probability Distribution

When analyzing the numerically calculated channel impulse response (Figure 3(a)), we notice

that it could be divided into two distinct components, LOS and NLOS. The LOS component is

a scalar channel gain related to the propagation attenuation of the VLC signal over the distance

between the transmitter and the receiver, and can be easily calculated according to the channel

model and system geometry. On the other hand, however, the NLOS component is much

more complicated, as it presents some time-series structure, as shown in Figure 3(b), where the

NLOS impulse response has been normalized by the total NLOS light intensity. Based on the

fact that the integral of the normalized NLOS time series equals to one, we hypothesize that

this time series can be fitted analytically by some probabilistic distribution function. Physically,

this hypothesis reflects the insight that the NLOS channel response is actually the distribution

of the reflected light power over different time delays[74]. To verify our hypothesis, we have

tested a number of probabilistic distribution functions, among which the gamma distribution

turns out to be the most promising one for the fitting.

A gamma distribution can be parameterized in terms of a shape parameter α and a rate pa-

rameter β. The corresponding probability density function (PDF) in the shape-rate parametriza-

tion is

f(x;α, β) =
βαxα−1e−βx

Γ(α)
; x > 0;α, β > 0 (3.5)

where Γ(α) is the gamma function. Given a numerically computed NLOS channel response,

its fitted gamma distribution expression (i.e., the fitted parameters (α, β)) can be obtained by

nonlinear regression. For instance, Figure 3(c) plots the fitted gamma distribution function for

the numerically calculated and normalized NLOS channel impulse response in Figure 3(b).

The fitting in this case turns out to be very accurate according to the normalized mean square

error (normalized mse < 0.002). To graphically assess how well the numerical calculation

matches with the fitted gamma distribution, a scatter quantile-quantile (Q-Q) plot is shown in

Figure 3(d), where the calculated set (X) and fitted set (Y) of quantiles are plotted against each

other. The cross points (+) are referred to as percentiles, below which a certain proportion of

the data fall. Ideally, if X and Y quantiles come from the same distribution, then all + marks
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Figure 3.3: A typical example of channel impulse response fitting. (a) a numerically calculated
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with total NLOS intensity; (c) the fitted NLOS impulse response; (d) Q-Q plot to evaluate
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should be aligned along the diagonal line (the red line in the figure). Indeed, it can be observed

in Figure 3(d) that most of the + marks are aligned well with the diagonal line, except a couple

exceptions, which are just a little off the diagonal line. This observation confirms that the fitted

gamma distribution matches reasonably well with the numerical calculations.

In order to statistically verify the accuracy of gamma fitting for more general cases, we

compared the calculated NLOS channel response against their gamma fitting outcomes in Fig-

ures 3(e) and 3(f) for 2401 VLC channels, which are taken over a 49-by-49-grid area with a

distance interval of 0.1 m per grid, in an indoor VLC communication environment. According

to the spatial distribution of the normalized mse in Figure 3(e) and the normalized mse his-

togram and cumulative density function (CDF) in Figure 3(f), it can be observed that more than

2200 (i.e., over 90% of the tested VLC channels) channel impulse responses fitting achieve

normalized mse less than 0.005. This exemplifies the accuracy and reliability of the proposed

gamma distribution fitting in general cases.

3.3.2 Channel Impulse Response Synthesizing with Deep Neural Network Regression

Now we can analytically express the channel impulse response as a LOS scalar plus a NLOS

gamma distribution, for which the key parameters include LOS intensity ILOS , NLOS intensity

INLOS , the time delay ∆t between NLOS and LOS, α, and β. Although we can get those

key parameters for some sample locations using numeric calculations, it becomes prohibitive

when calculating the channel impulse response at an arbitrary location. Being aware of those

key parameters are following nonlinear distribution over locations from the numeric samples,

we develop a Deep Neural Network (DNN) regressor to model the key parameters of channel

impulse response at an arbitrary location. In order to keep the DNN regressor as simple but

effective as possible and avoid over-fitting, we defined a 4-layer deep neural network model

with 3 hidden layers of 64 neurons through empirical experiments as shown in Figure 3.4. To

simplify our analysis, but without loss of generality, we assume that the location of the VLC

transmitter is fixed in the middle of the ceiling, and are interested in obtaining the channel

impulse response as a function of the receiver’s location. Accordingly, the proposed DNN has

two inputs, the x and y coordinates of the receiver’s location, and five outputs, ILOS , INLOS , ∆t,
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Figure 3.4: Framework of the DNN regression model. Input layer includes the x and y coordi-
nates of receiver, output layer includes the fitted parameters for synthesizing impulse response,
each of the three hidden layers includes 64 neurons. The DNN is fully connected between each
adjacent layers. The activation function for each layer is listed at the bottom.

α, and β. Each of the three hidden layers includes 64 neurons with their own sets of parameters.

The DNN model is set as a sequential model with loss function specified as mean square error

and optimizer specified as Adam, and each layer inside this model is fully connected between

its adjacent layers. As the DNN model is used as a nonlinear regression model, the activation

function of the last layer is specified as linear function and the activation function for three

hidden layers is set as rectified linear unit (ReLU), which is nonlinear.

The DNN regression model needs to be trained and tested before it can be used for channel

response prediction at an arbitrary receiver location. The detailed procedure for DNN training

and testing is presented in Section VI. Based on the predicted channel response parameters, the

channel impulse response at a given receiver location can be represented analytically as

H = ILOSδ(t−
d

c
) + INLOSf(t− d

c
−∆t;α, β) (3.6)

where d
c

is the light propagation delay between the transmitter and the receiver by following the

LOS path, and f is the Gamma distribution function. The proposed DNN regression allows us
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to efficiently obtain the channel impulse response at an arbitrary location based on an analytic

function, rather than time-consuming numerical calculations.

3.4 Secrecy capacity analysis

Consider an indoor VLC system consisting of a transmitter Alice, an intended receiver Bob,

and an eavesdropper Eve, as shown in Figure 3.1. Due to the diffusive and specular reflections

of light, the signal transmitted from Alice to Bob may also be overheard by Eve. The received

signals at Bob and Even can be represented respectively by


YB = HBX + ZB, ZB ∼ N(0, σ2

B)

YE = HEX + ZE, ZE ∼ N(0, σ2
E)

(3.7)

where X denotes the transmitted light intensity from Alice, HB and HE denote the main chan-

nel gain, defined between Alice and Bob, and the wiretap channel gain, defined between Alice

and Eve, respectively. ZB and ZE are zero-mean additive white Gaussian noise (AWGN) at

Bob and Eve, respectively, which are assumed to be independent from each other. The variance

of noise σ2
k(k = B,E) is given by [75]


σ2
k = σ2 +WISI

σ2 = σ2
thermal + σ2

shot

(3.8)

where σ2
thermal and σ2

shot denote variances of the thermal noise in the receiver electronic circuits

and the shot noise caused by ambient illumination from other light sources, respectively. These

two noises are well modeled by an additive white Gaussian process. WISI denotes the inter-

symbol interference (ISI) caused by the multiple reflections in a VLC channel, which may

become significant under high symbol transmission rate. This is illustrated in Figure 3.5, where

the ISI for symbol 4 (S4) accounts for the accumulated power from all previous symbols (S1,

S2, S3) over S4’s reception window [4t, 5t], where t = 1/B is the reception time duration of

a symbol at the receiver and B is simply the symbol rate of the VLC channel (binary intensity

modulation is assumed). From this figure, it is clear that the received signal power and the ISI
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Figure 3.5: Impact of ISI on system model caused by reflection. S stands for Symbol, t stands
for inter symbol time interval.

of a symbol (light pulse) can be calculated by partitioning the channel impulse response into

two parts according to the symbol’s reception window: The first part, denoted by N1 in the

figure, accounts for the first t seconds of the channel response inside the reception window, as

measured beginning from the LOS component. The integral of N1 contributes to the received

signal power of the symbol. On the other hand, the second part, denoted by N2 in the figure,

includes all the remainder outside the reception window, whose integral amounts to the ISI

(WISI) to the received symbol. So, Hk and σ2
k can be represented by


Hk = N

(k)
1

σ2
k = σ2 +N

(k)
2

k = B,E. (3.9)

where N (k)
1 and N

(k)
2 are the integral of N1 and N2 defined w.r.t. the channel response at

receiver k, respectively.

The secrecy capacity of a channel is a notion in the information-theoretic security and

it represents the maximum transmission rate at which the eavesdropper is unable to decode

any information while the intended receiver is able to receive all information error-free. It has

been shown that under the additive white Gaussian noise (AWGN) main channel and wiretap
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channel model, the secrecy capacity amounts to the difference between the main channel ca-

pacity and the wiretap channel capacity. Based on (7), if HB ≤ HE , which means the main

channel is stochastically degraded by the wiretap channel, the secrecy capacity C is essentially

zero. Alternatively, if HB > HE , the secrecy capacity C in the same VLC network can be

mathematically expressed as [46, 47, 49]

C = max
fX(x)

[I(X;YB)− I(X;YE)]

s.t.


∫ A
0
fX(x)dx = 1; 0 ≤ X ≤ A

E(X) =
∫ A
0
xfX(x)dx = ξA; ξ ∈ (0, 1]

(3.10)

where fX(x) denotes the PDF of X, I(X;Y ) denotes the mutual information between two

variables X and Y. A denotes the maximum peak optical intensity of the transmitter, ξ is the

dimming target. For a practical system, the maximum optical intensity will be constrained by

A and the dimmable average optical intensity will be constrained by ξ to satisfy the consistent

illumination requirements.

Since the secrecy capacity is related to the information capacity of the communication

channel, before determining the secrecy capacity in VLC networks it is essential to obtain

the information capacity of the VLC channel with average, peak and non-negative constraints.

However, to the best of our knowledge, the exact information capacity of the VLC channel with

such constraints still remains unknown, even for the simplest SISO case, except that some lower

and upper bounds have been derived [35, 46, 49]. In this paper, as we aim to study the impact

of multiple reflections on secrecy capacity, our analysis will be based on the lower and upper

bounds of the secrecy capacity. In particular, accounting for the new structure of the received

signal and ISI (3.9) as induced by the multiple types of reflections in the VLC channel, and

by following a similar derivation process in [46, 47, 49], we obtain a new set of lower bound

and upper bound on the VLC channel secrecy capacity when the diffusive reflection and the

specular reflection in the channel are considered.

37



Proposition 1: a lower bound for (3.10) is given by

C ≥ 1

2
ln

[
3(σ2 +N

(E)
2 )(N

(B)2
1 A2 + 2πeN

(B)
2 + 2πeσ2)

2πe(σ2 +N
(B)
2 )(N

(E)2
1 ξ2A2 + 3N

(E)
2 + 3σ2)

]
. (3.11)

Proof: The proposition can be proved by following the framework in [46, 47, 49]. For sim-

plicity, we choose the average-to-peak optical intensity ratio ξ = 0.5 and rewrite the objective

function in (3.10) in entropy as

C = max
fX(x)

[H(YB)−H(YE)]−H(YB|X) +H(YE|X) (3.12)

then using the entropy power inequality in [76] and given H(YB|X) = 1
2
ln(2πe(σ2 + N

(B)
2 )),

H(YE|X) = 1
2
ln(2πe(σ2 +N

(E)
2 )),

C ≥ max
fX(x)

[
1

2
ln(e2H(N

(B)
1 X) + e2H(ZB))− 1

2
ln(2πevar(YE))

]
+

1

2
ln(

σ2 +N
(E)
2

σ2 +N
(B)
2

) (3.13)

moreover, we haveH(N
(B)
1 X) = H(X) + ln(N

(B)
1 ) andH(ZB) = ln(

√
2πe(σ2 +N

(B)
2 )), so

C ≥ max
fX(x)

[
1

2
ln(e2(H(X)+ln(N

(B)
1 )) + 2πeσ2 + 2πeN

(B)
2 )− 1

2
ln(2πevar(YE))

]
+

1

2
ln(

σ2 +N
(E)
2

σ2 +N
(B)
2

)

(3.14)

by choosing an arbitrary input PDF fX(x) under the given constraints in (3.10), we can solve

the functional optimization problem using the variational method, thenH(X) and var(YE) can

be written as

H(X) = ln(A);var(YE) = N
(E)2
1

ξ2A2

3
+ σ2 +N

(E)
2 (3.15)

therefore, substituting (15) into (14), the lower bound on secrecy capacity for ξ = 0.5 can be

derived.

Proposition 2: an upper bound for (3.10) is given by

C ≤ 1

2
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)
 .

(3.16)
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Proof: The proposition can be proved by following the framework in [46, 47, 49]. The dual

expression of the secrecy capacity is employed when deriving the upper bound as in [49]. Given

an arbitrary conditional PDF gYB |YE(yB|yE), we have the relative entropy equation

I(X;YB|YE) + EXYE{D(fYB |YE(yB|YE)||gYB |YE(yB|YE))}

= EXYE{D(fYB |XYE(yB|X, YE)||gYB |YE(yB|YE))}
(3.17)

according to the non-negative property of the relative entropy, we have

I(X;YB|YE) ≤ EXYE{D(fYB |XYE(yB|X, YE)||gYB |YE(yB|YE))} (3.18)

considering the constrains in (3.10), we can find an unique PDF fX′(x) that maximizes I(X;YB|YE),

which will lead to the secrecy capacity

C ≤ EX′YE{D(fYB |XYE(yB|X, YE)||gYB |YE(yB|YE))}

= EX′

{∫ ∞
−∞

∫ ∞
−∞

fYBYE |X(yB, yE|X)ln

[
fYB |XYE(yB|X, yE)

gYB |YE(yB|yE)

]
dyBdyE

}
= EX′

{∫ ∞
−∞

∫ ∞
−∞

fYBYE |X(yB, yE|X)ln[fYB |XYE(yB|X, yE)]dyBdyE

}
− EX′

{∫ ∞
−∞

∫ ∞
−∞

fYBYE |X(yB, yE|X)ln[gYB |YE(yB|yE)]dyBdyE

}
(3.19)

each parts in (19) can be rewritten as

EX′

{∫ ∞
−∞

∫ ∞
−∞

fYBYE |X(yB, yE|X)ln[fYB |XYE(yB|X, yE)]dyBdyE

}
= −[H(YB|X ′) +H(YE|X ′, YB)−H(YE|X ′)]

= −1

2
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] (3.20)
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and

EX′

{∫ ∞
−∞

∫ ∞
−∞
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(3.21)

therefore, substituting (20) and (21) into (19), the upper bound on secrecy capacity can be

derived.

3.5 Experimental Design

Without loss of generality, we design an indoor VLC environment with 5 m in length, 5 m in

width, and 3 m in height. Similar to Figure 3.1, the emitter is fixed at the center of ceiling and

the receiver is placed on the receiver plane with a height of 0.85 m that is close to the height of a

regular desk. We partition the receiver plane into small grid area with length of 0.1 m, resulting

in 49-by-49-grid points taken as potential receiver location. Additional parameters assumed in

the calculation are listed in table 3.2. The default parameter value will be taken from the table

hereafter if not specified.

We use a modified Monte Carlo ray tracing model from [33] and [77] for numerical calcu-

lation of the channel impulse response. Our calculation is implemented using Matlab R2017a.

Firstly, a large number of rays are randomly generated according to the radiation pattern from

the emitter. When a ray impinges on a wall, the reflection point is converted into a new optical

source, so a new ray is generated with a similar distribution as the reflection pattern of that wall.

In order to consider both the specular and diffusive reflections, when a ray arrives at the wall, a

random number in the range (0, 1) is generated. If the generated number is smaller than the dif-

fusive percentage rd, the reflection for this ray is determined to be purely diffusive; otherwise,

it becomes a specular reflection. This treatment ensures that among all the rays reflected by
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Table 3.2: Numerical Calculation Parameters
Parameter Value

Room
Room size 5× 5× 3m2

Reflection Coefficient (ρ) 0.8
Diffusive Percentage (rd) 75%

Emitter

Emitter height 3 m
Emitted Optical Power 1 W
Number of Rays 68000
Modulation Bandwidth 500 MHz
Lambertian Order (m,m′,m′′) (1, 1, 250)

Receiver

Receiver height except B′1, E
′
2, E

′
3 0.85 m

Receiver height for B′1, E
′
2, E

′
3 1.45, 0.25, 0.25 m

Receiver Effective Area 10−4m2

Receiver FOV 60◦

Resolution (∆t) 0.2 ns

any small contiguous area of the wall, we can expect that rd fraction of them represent the dif-

fusive reflection and (1− rd) fraction of them represent specular reflection, which is consistent

with our model in (3). After each reflection the power of the ray is reduced by the reflection

coefficient of the wall. Since this model implements both diffusive and specular reflections, so

it can represent real world scenarios more plausibly.

Then for each of the calculated 2401 channel impulse responses from 49-by-49-grid re-

ceivers, we use the nonlinear regression model in Matlab to fit the NLOS part of channel im-

pulse response as gamma probability distribution. So far, we can get the seven key parameter

sets, including receiver location coordinates, LOS intensity, NLOS intensity, the time delay

∆t between NLOS and LOS, α, and β, which will be used as training dataset for the DNN

regression model. Before feeding the training dataset into the DNN regression model, it has

been preprocessed. Min-Max normalization is applied to the training dataset to guarantee sta-

ble convergence. For the sake of enabling fast and easy experimentation, the DNN regression

model is implemented on Keras [78], which is a high-level neural networks Python library for

deep learning and running on top of TensorFlow. The training dataset are split into two parts, of

which 90% are used to fit the model and the left 10% are used to evaluate the fitting result. The

two evaluation metrics mean square error and mean absolute value are shown in Figure 3.6. The

overlapped curves of training and testing show the comparable error level, which indicates the

DNN regression model is neither over-fitted nor under-fitted. Since mean square error gives a

41



0.00

0.02

0.04

0.06

m
se

Train
Test

0 100 200 300 400 500
Epoch

0.00
0.04
0.08
0.12
0.16

m
ae

Figure 3.6: Loss function plot that shows the fitting residuals, MSE - mean square error and
MAE - mean absolute error. An epoch refers to a training iteration with a random portion of
training dataset.

relatively high weight to large errors, mean absolute error is used to show average deviation of

fitted parameters. Both of the two metrics rapidly converge to a relative low error level, which

confirms the efficacy and veracity of the training process. To give a more intuitive evaluation

of the trained DNN regression model, we predicate the key parameters at the same locations of

calculated training dataset. Comparison between the calculated and fitted parameters is shown

in Figure 3.7. The calculated and fitted parameters for ∆t, ILOS , and INLOS , match well with

each other. For α and β, we can also observe a reasonably good match on most of the grids

except for a few mismatch over the diagonal line. In terms of the relative low fitting error level,

the overall accuracy should be taken as valid.

Once the DNN regression model finishes training and testing, it can be used to predict

the key parameters for synthesizing channel impulse response at any possible location inside

the indoor VLC system. Finally, the synthesized channel impulse response could be substituted

into equations (3.11) and (3.16) to calculate the corresponding secrecy capacity lower and upper

bound. In order to quantitatively present the secrecy capacity bounds, we set the dimming target

ξ as 0.5 during calculation.
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3.6 Evaluations and Discussions

In order to test the key factors that impact the secrecy capacity, we create different scenarios

by changing the locations of Bob and Eve, shown as in Figure 3.8. It shows the planimetric

position of Alice (yellow illuminant), Bob (black triangle), and Eve (empty triangle), with Alice

locates on the ceiling, Bob and Eve locates on the receiver plane. As shown in Figure 3.9, when

fixing Alice at A1, Bob at B1, the secrecy capacity changes with the optimal peak intensity A

when Eve locates at E2 and E3, respectively. It is worth noting that our derivations of the upper

and lower bounds are valid only when A ≥ 0 dB, otherwise the secrecy capacity would be 0

(for A < 0 dB). As the increase of A, the secrecy capacity also increases accordingly until it

saturates, which is consistent with previous study [46]. Moreover, if we move Eve from E2 to

E3, the secrecy capacity increases as a result of degradation of communication channel, which

indicates that the system security performance depends on the relative strength of the main

channel compared to the wiretap channel. As we discussed before, for a practical VLC system,

the maximum optical intensity will be constrained by A to satisfy the consistent illumination

requirements. Considering maximizing the secrecy capacity and energy efficiency, we can refer

to Figure 3.9 to find the minimum A that saturates the secrecy capacity as the maximum optical

intensity. It can also be observed from Figure 3.9 that, while our upper and lower bounds are

reasonably tight in the high secrecy capacity regime (i.e., for the cases of (A1, B′1, E
′
2) and (A1,

B′1, E
′
3)), they are relatively loose in the low secrecy capacity regime (the cases of (A1, B1, E2)

and (A1, B1, E3)). In particular, let the tightness of the bounds be defined as the ratio of the

gap between the upper bound and the lower bound to the value of the lower bound. It can be

observed from this figure that, when A ≥ 20 dB, the tightness of the bounds is smaller than

8% for the case of (A1, B′1, E
′
3), and is smaller than 10% for the case of (A1, B′1, E

′
2). Such a

tightness should be reasonably sufficient from an engineering’s point of view. How to improve

the bounds in the low secrecy capacity regime is out of the scope of this paper, and will be

pursued in our future study.

In the following subsections, some additional numerical results are provided to show the

security performance of the indoor VLC system with multiple reflections considered. We start
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Figure 3.10: Spatial characteristics of secrecy capacity bounds when Alice locates at A1, Bob
locates at B1, and Eve locates at any place.

from the spatial characteristics of the secrecy capacity, and then discuss the other factors that

impact secrecy capacity at a specific location.

3.6.1 Spatial Characteristics of Secrecy Capacity

Since the channel impulse response could be synthesized at any possible location in the in-

door VLC system, the spatial character of secrecy capacity can be calculated accordingly. Fig-

ure 3.10 shows the spatial characteristics of secrecy capacity bounds calculated for Eve locating

at each grid point with an spatial interval of 0.01 m, when Alice locates at A1 and Bob locates

atB1. The upper two panels depict the spatial pattern of the upper bound and lower bound, both

of which present similar spatial characteristics. Those red regions show the vulnerable area of

the VLC system, where the secrecy capacity approaches zero. They are mostly either following

the diagonal line of the experimental plane or nearby the walls. The strong reflections from two

adjacent walls might account for this quincunx pattern of the vulnerable zone. When receiver is

approaching the walls, the intensity of NLOS part increases significantly, and it could become

as strong as, or even stronger than, the intensity of LOS part. It would partially explain those

vulnerable areas nearby the walls. The bottom two panels show the horizontal and diagonal

46



Figure 3.11: Spatial characteristics of secrecy capacity bounds when Alice locates at A1, Bob
locates at B2, and Eve locates at any place.

cross section of the spatial secrecy capacity bounds. The relative quantity of secrecy capacity

bounds is increasing from center to edge as Eve is getting far away from Bob. It’s worthwhile

to point out that there is a secrecy capacity cutoff on both sides, and it turns out to be result of

the fixed modulation bandwidth as approaching the walls, which will be discussed in the next

subsection. We can conclude that areas with secrecy capacity approaching zero fall into three

cases: 1. when Eve is located nearby Bob; 2. when Eve is located around the diagonal line; 3.

when Eve is located nearby the walls.

If Bob is moved from B1 to B2, the corresponding spatial characteristics are shown in

Figure 3.11. A similar vulnerability pattern can be observed from the upper two panels, but

there is more vulnerable area inside the indoor VLC system. Since moving Bob from B1 to B2

will degrade the main communication channel, there is an increase of vulnerable area towards

outside. Compared with Figure 3.10, we also notice a decrease of the relative quantity of

secrecy capacity bounds, which is consistent with the degradation of the main communication

channel. In real world application, it’s also consistent with our real life experience as we always

want the intended receiver placed at location with the best communication channel. When
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Figure 3.12: Spatial characteristics of secrecy capacity bounds when Alice locates at A1, Eve
locates at E1, and Bob locates at any place.

we have the main communication channel set up, the spatial characteristics would be used to

identify the possible vulnerable area where eavesdropping likely takes place, which could be

exploited to counter data sniffing. Based on the limited vulnerable area, additional detection

mechanism could be instrumented to tell when an eavesdropping attack is under way.

On the contrary, if we fix Alice and Eve at A1 and E1 respectively, we can get the spa-

tial characteristics of secrecy capacity bounds when moving Bob around, which is shown in

Figure 3.12. The upper two panels show the spatial pattern of the upper bound and lower

bound, both of which present similar spatial characteristics, which could be used to identify

the best location for Bob. Those yellow regions show the possible locations for Bob, where the

VLC system secrecy capacity achieves a high value in excess of zero. The bottom two panels

show the horizontal and diagonal cross section of the spatial secrecy capacity bounds. Similar

with the secrecy capacity cutoff in previous scenario, there is also a secrecy capacity uplifting

nearby the walls due to the strong reflections and fixed modulation bandwidth. In such a sce-

nario, when the location of eavesdropper is known, we need to figure out the location for the

intended receiver to achieve the secrecy capacity as high as possible. In reality, although an
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Figure 3.13: Secrecy capacity bounds changes with modulation bandwidth when Alice locates
at A1, Bob locates at B1, and Eve locates at E4 and E5.

eavesdropper will always hide from the main communication channel in an unconscious place,

in a typical indoor VLC system we can still assume the possible locations of eavesdropper (e.g.,

close to the door, around the corner), then the spatial characteristics could be used to identify

the best location for the intended receiver.

3.6.2 Secrecy Capacity vs. Modulation Bandwidth

When considering the impact of multiple reflections on secrecy capacity, inter-symbol time

interval (i.e., reception time duration of a symbol) is another significant factor for calculating

ISI on secrecy capacity. It is determined by the reciprocal of symbol rate, as stated in section V.

For simplicity, the binary intensity modulation is assumed during calculation, so the symbol rate

is equivalent to modulation bandwidth if neglecting roll off factor. As long as the modulation

bandwidth is determined, the inter-symbol time interval for each receiver at different location

will be fixed as the same. However, the time delay from LOS to NLOS for channel impulse

response of each receiver at different location will be different because of the different reflection

path. So, given a location of receiver, if we change the modulation bandwidth, the impact on

secrecy capacity will be identified once the inter-symbol time interval becomes comparable to

the time delay from LOS to NLOS for channel impulse response. Figure 3.13 shows the change
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of secrecy capacity bounds with the bandwidth when Alice locates at A1, Bob locates at B1,

and Eve locates at E4 and E5, respectively.

As we move Eve from E4 to E5, the wiretap channel is degraded, so there is an increase

of secrecy capacity as expected. From both scenarios, we see a step function shaped change

of secrecy capacity when increasing the modulation bandwidth. This is because for a given

location of Eve, the time delay from LOS to NLOS for channel impulse response is determined,

there is an increase of secrecy capacity as increase of bandwidth when the inter-symbol time

interval is approaching the time delay. Once the inter-symbol time interval gets less than the

time delay, the secrecy capacity will get saturated. It acts like a cutoff frequency of secrecy

capacity due to the impact of reflections. This cutoff frequency varies for each location of

Eve, and it increases as Eve getting far away from the center. It could partially explain the

drastic drop or rise of secrecy capacity nearby the walls as we discussed in previous subsection

(Figure 3.10, 3.11, and 3.12), because we used 500 MHz fixed modulation bandwidth for those

scenarios. So, when we deploy a VLC system, we will have to consider not only the quality

of the communication channel, but also the modulation bandwidth, as a higher modulation

bandwidth would eliminate the feasibility of eavesdropping nearby the reflector, even though it

could be far away from the main communication channel.

3.6.3 Secrecy Capacity vs. Diffusive Percentage

As discussed before, each reflection is supposed to be comprised of specular and diffusive re-

flections depending on the roughness of the wall. Intuitively, the more rough the wall is, the

more diffusive part the reflection will contain. As the increase of the diffusive percentage,

we would expect to see the corresponding increase of secrecy capacity, which is verified in

Figure 3.14 when Alice locates at A1, Bob locates at B1, and Eve locates at E6. Since the

numerically calculated channel impulse response using statistic approach for a given location

varies from time to time, We calculate secrecy capacity bounds ten times for each diffusive

percentage, and get the 95% confidence interval. There is a distinct increasing trend with larger

uncertainty as the increase of diffusive percentage. Obviously, it would be difficult for eaves-

dropper to sniff effective data when most of the emitted energy are diffusely reflected. As
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Figure 3.14: Secrecy capacity bounds change with the percentage of diffusive reflection when
Alice locates at A1, Bob locates at B1, and Eve locates at E6. Error bar represent 95% confi-
dence interval.

a testbed exemplification in [6], different flooring materials (e.g., acrylic glass, vinyl plank,

glazed tile, carpet, and laminate flooring) result in variable decoding bit error rate for eaves-

dropper, which imposes potential eavesdropping vulnerability. Thus, for indoor VLC system

implementation, the construction material and design should be taken into consideration in case

of security vulnerability.

3.6.4 Secrecy Capacity vs. Reflection Coefficient

On the other hand, when considering the property of the wall, the reflection coefficient is an-

other significant factor that could impact the intensity of reflection. As for each reflection,

the total emitted energy would be reduced by the reflection coefficient. Figure 3.15 shows the

change of secrecy capacity with the reflection coefficient when Alice locates at A1, Bob lo-

cates at B1, and Eve locates at E6. We can see a decreasing trend of the secrecy capacity with

the increase of reflection coefficient, which is consistent with our intuition that high reflection

coefficient would generate strong reflection and result in secrecy vulnerability. Considering

the feasibility of vulnerability due to the high reflection coefficient, it would suggest to choose

materials with low reflection coefficient to reduce the impact of reflections on secrecy capacity

when designing an indoor VLC system. But in the real world application, according to [73],
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Figure 3.15: Secrecy capacity bounds change with the reflection coefficient when Alice locates
at A1, Bob locates at B1, and Eve locates at E6. Error bar represent 95% confidence interval.

since the VLC uses a wide spectrum in 380 ∼ 750 nm, spectral reflectance of indoor reflector

(e.g., ceiling, floor, plaster wall, plastic wall) varies a lot, which will make the design of indoor

VLC system more complicated by inducing spectrum information.

3.7 Conclusions

In this paper, the impact of multiple reflections on secrecy capacity of indoor VLC system

is investigated. Base on the established indoor VLC system model with three entities, the

system security performance is evaluated against a comprehensive set of factors, including the

locations of the transmitter, receiver, and eavesdropper, the VLC channel bandwidth, the ratio

between the specular and diffusive reflections, and the reflection coefficient, according to the

calculated lower and upper secrecy capacity bounds. Both the specular reflection and diffusive

reflection are considered in the system model, as the increase of the specular reflection part,

the VLC system becomes more vulnerable. The spatial characteristics of secrecy capacity are

also discussed, which could be used to identify possible vulnerable areas. Due to the addition

of LOS and NLOS components, we have found areas with strong reflections, which makes

feasible that if an eavesdropper located on those areas, he could sniff data at least partially due
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to reflection. The possible sniffing attack could also be used as an exploit on insidious attacks

such as blocking and spoofing in future complex systems.
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Chapter 4

Spoofing detection with redundant orthogonal coding for VL systems

4.1 Introduction

The blooming of Internet of Things (IoT) network that involves pervasive communication and

sensing among large amount of smart devices makes the current radio frequency (RF) spectrum

over crowded [2, 3, 4]. Emerging IoT applications such as VR/AR with high-throughput, low

latency and reliability requirements make the case even worse [79]. In search of new spectrum

resources, visible light (VL) technology has received a lot of interest for both communication

and sensing applications since the release of IEEE 802.15.7 standard in 2011 [5]. VL is a wire-

less technology that uses visible light (430 ∼ 790 THz) as the medium to transmit information

(i.e., visible light communication or VLC) or sense user’s activities (i.e., visible light sensing

or VLS). Compared with regular RF based communication and sensing, VLC and VLS enjoy

several unique benefits. Firstly, the VL spectrum is at a much higher frequency band and pro-

vides much wider bandwidth (more than 10,000X) than the RF spectrum. As a result, VLS and

VLC can accommodate the ubiquitous sensing and device-to-device communication demand

for IoT applications with higher throughput and lower latency than their RF counterparts. More

importantly, the VL spectrum is license free and the widely available lighting infrastructure has

already been installed in almost all indoor and many outdoor environments, which makes the

IoT applications enjoy free spectrum and easy deployment. By piggybacking their commu-

nication/sensing signals on today’s low-power solid-state LED illumination, IoT applications

utilizing VLC and VLS also have higher energy efficiency than those of RF. Furthermore, be-

cause VL wave cannot penetrate walls and obstacles, visible light communication and sensing

signals can be well confined within an enclosed area and cause little inter-cell interference.
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This allows dense spatial reuse of the VL spectrum and help enhancing privacy and security

of IoT applications where data exchange can be easily restricted through obstacles like doors,

walls, and window blinds. Because of these nice features, VLC/VLS has been considered to

be a promising and urgently-needed small-cell solution for offloading the crowded RF bands in

5G systems and beyond for IoT.

As more and more VLC/VLS systems are mounted on today’s light fixtures, how to guar-

antee the authenticity of the VL signal in these systems becomes an urgent issue. This is due

to the fact that almost all of today’s light fixtures are unprotected and can be openly accessed

by almost anyone, and hence are subject to tampering and substitution attacks. As will be clear

shortly in Section 4.2.2, an attacker can easily replace an authentic LED by a rogue LED un-

der his control to inject spoofed VL signal into user’s receiver. Unfortunately, most of today’s

VLS applications do not have a reliable built-in signal authentication mechanism to detect these

spoofed signals and hence will mistakenly accept them as authentic sensing inputs, leading to

compromised sensing outcome. Similar situation also arises in VLC. For example, the attacker

may first block the line of sight (LOS) of the authentic VLC link, and then subsequently point

a rogue LED transmitter to the user’s receiver (typically a photo-diode) to inject spoofed data

to the user [9].

Ensuring the received signals are coming from the legitimate transmitters (LEDs) is the

key to address the above problem. Conventionally, this is achieved either at the physical layer

– by authenticating the LED hardware, or at the link layer – by authenticating the received data

from the LEDs based on cryptographic algorithms. Both methods have their own limitations.

In particular, a physical layer authentication method is able to tell from which LEDs a received

VL signal is coming by identifying certain physical features pertinent to the LED hardware,

such as the light temperature color [80], or the polarization angle [81]. For example, due to

the subtle differences in the material and manufacturing conditions, LEDs of the same nomi-

nal color temperature actually illuminate light of slightly different wavelengths (i.e., different

colors), which could be used as a fingerprint to identify different LEDs. The physical layer

methods provide always-on authentication at the signal level, but require each LED to present

sufficient and measurable differences in its hardware, which is not scalable in practice [57]. On
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the other hand, a link-layer data authentication typically relies on cryptography and involves ex-

tensive computation (e.g., encryption/decryption) over the transmitted data [61, 82, 83]. While

these cryptographic methods are applicable to VLC applications, as will be clear shortly in

Section 4.2.2, they are often irrelevant to VLS, because typically sensing happens at the signal

level, and no data (i.e., sequence of 0’s and 1’s) is transmitted in a VLS application.

In this paper, we present VL-Watchdog, a novel signal-level always-on spoofing detection

framework for VLC and VLS systems. VL-Watchdog can be implemented as a small hardware

(receiver) add-on to an existing VL system. Once deployed, the watchdog will persistently

monitor the light signals in the field to ensure they are sent only from authentic (legitimate)

sources. VL-Watchdog supports large-scale VL systems, i.e., one with many smart LEDs, and

does not assume any physical or optical difference in the LED hardware. Instead, VL-Watchdog

is based on coding. It uses orthogonal codes to encode the illumination of each legitimate LED,

so that the transmitted light of a legitimate LED is identifiable by detecting the unique signal

structure possessed by the received light.

Meanwhile, we need to point out that this is not the first time that orthogonal coding is

used for anti-spoofing attack. In particular, there are extensive studies trying to use orthogonal

coding to secure communication in RF, e.g., pilot authentication [84] and global position system

counter-spoofing [85]. However, applying orthogonal coding in VL faces unique challenge

because of the excessive noises introduced by the significant bandwidth gap between the photo-

diode’s light spectrum response bandwidth (this corresponds to the range of light wavelengths

to which the photo-diode will generate an electric current) and the VL signal’s bandwidth. More

specifically, in RF communication, a fine-tuned band-pass filter can be conveniently used to

filter out all out-band noises and extract a clean copy of the desired signal. However, in VL the

light spectrum response bandwidth of nearly every type of commercially available photo-diode

is much greater than VL signal’s bandwidth. For example, a silicon-based photo-diode has

responsive wavelengths ranging from 190 to 1100 nm, which is much wider than any VL signals

(380 ∼ 700 nm). Therefore, any light signal that is outside of the bandwidth of the desired VL

signal but inside the photo-diode’s light spectrum response bandwidth (e.g., ultraviolet and

infrared) can also generate electric current via the photo-diode (a light-to-current conversion
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device). Because this conversion is mainly based on the light intensity, these electric current

cannot be separated from those converted from the true/desired VL signal, hence introducing

excessive noises to the electronic signals after the photo-diode. If nothing is done, these noises

can easily break the orthogonality of the encoded signal, making the orthogonal-coding based

spoofing detection fail. This will be reflected by the high detection error probabilities (i.e.,

false-alarm and miss-detection rates) presented by the detection scheme when being used in

realistic environment, where the ambient light (e.g. the sunlight) forms a good source of noises.

A naive solution to the above challenge is to use optical filter, a glass-based optical device.

However, this hardware-based solution has several limitations: (1) high cost: a good-quality

optical filter can easily cost hundreds of dollars, and therefore they are typically used in high-

end medical and imaging devices, and rarely intended for lower-end consumer-level uses; (2)

the pass band of the optical filter must match with the bandwidth of the VL signal. Practically

this is difficult to achieve because, unlike those RF filters whose pass band can be fine-tuned

by carefully deciding the parameters of the elements in the circuit, the pass band of the optical

filter is pre-set when the device is manufactured and can not be tuned during the use phase. So it

is difficult to use such a pre-set pass band to match with the various light spectrum distributions

of different types of LED bulbs used in practice.

In this paper, we propose a software based solution to the above challenge. Instead of

trying to suppress the out-of-band light noise in the front end (this is what the optical-filter

solution attempts to do), our solution tries to use carefully designed signal processing algo-

rithm to minimize detection error probabilities when the noises present. Such a software based

solution enjoys the benefits of low cost, wide applicability and flexibility to accommodate all

types of LED bulbs used in practice. To the best of our knowledge, except for our preliminary

conference paper [13], this work serves as the first signal-level always-on counter-spoofing

mechanism applicable to both VLC and VLS systems.

4.2 Indoor VL System Model and Spoofing Attack Model

In this section, we briefly introduce the indoor Multi-link VL system model and the spoofing

attack model.
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Figure 4.1: Indoor Multi-link VL channel.

4.2.1 Indoor Multi-link VL System Model

We consider a typical multi-link VL channel as shown in Figure 4.1, which is a general multi-

link VL conceptual system that could be used to represent many different applications, such as

visible light communication, visible light localization, and visible light sensing. A photo-diode

is used to pick up the light and convert it into proportional current, which will be demodulated

to a received data Y . So, the Multi-link VL channel in Figure 4.1 can be modelled as

Y =
n∑
i=1

hiSi + ω, (4.1)

where h is VL LOS channel gain that is calculated from geometric attenuation when the

light source is assumed to follow a Lambertian radiation pattern [30], S is transmitted signal,

ω ∼ N(0, σ2) is the noise processes that are well-modelled as signal-independent, zero-mean,

additive, white Gaussian noise (AWGN). The channel gain in this multi-link VL channel model

considers only LOS component and ignores reflected components from nearby reflectors. It is

valid for most indoor scenarios, because regular building materials (e.g., plaster, wood, and

plastic) of walls are diffusive reflectors for light, a unique characteristic of VL channel presents

that the LOS component is much stronger than the non-LOS components, leading to a ne-

glectable multipath effect [75, 86].
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4.2.2 VL Spoofing Attack Model

Illuminating through an open space, the open nature of VL makes its channel inherently sus-

ceptible to spoofing attacks. This threat is especially true when it comes to most public indoor

spaces, such as meeting rooms, libraries, shopping malls, and commercial airliners, where VL

devices are expected to be widely deployed for sensing and communication applications in the

near future. To make our presentation more concrete, in the following we describe the VL

spoofing attack model based on two important example visible light sensing applications: vis-

ible light localization [87] and visible light posture sensing for human-computer interaction

(HCI) [88].

Visible Light Localization (VLL)

VLL utilizes LEDs as localization anchors to compute the location of a light receiver (i.e., the

user). More specifically, using a fixed light intensity PT , each LED periodically broadcasts

beacon packets that carry its location information. The beacon signals from LED i are mod-

ulated using, e.g., binary frequency shift keying (BFSK) [87], at a carrier frequency fi. The

fi’s are sufficiently separated apart from each other so that the modulated beacon signals sent

by different LEDs do not overlap with each other in the frequency domain. By tuning to each

carrier frequency fi, the light receiver will be able to receive the beacon of LED i, and hence

obtaining knowledge of the LED’s location. Meanwhile, based on the received intensity of the

beacon, say P (i)
R , the receiver is also able to calculate the propagation path loss from LED i to

the receiver as hi =
P

(i)
R

PT
. Based on hi, and by applying the Lambertian channel model [30],

the receiver can estimate the distance between itself and LED i (i.e., the length of the LOS

propagation path). Multilateration can subsequently be used to estimate the receiver’s location

based on the LEDs’ location and ranging information.

A rogue LED can easily impersonate a legitimate LED i in VLL by (1) blocking LED i’s

beacon broadcast from the receiver (this could be done, e.g., by tampering the hardware of the

LED, as typically the light fixture is unprotected), and (2) switching to carrier frequency fi and

replaying beacons of LED i on that frequency. Note that in this case encrypting or digitally

signing the beacons of LED i does not prevent the rogue LED from replaying these beacons, so
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Figure 4.2: Spoofing attack scenarios: (a) VLL, (b) VLHPS.

cryptographic methods adopted at higher layers cannot stop such impersonation. Consequently,

as illustrated in Figure 4.2(a), the distance between the rogue LED and the user will be mis-

identified by the localization algorithm as the distance between LED i and the user, leading to

false localization outcome.

Visible Light Human Posture Sensing (VLHPS)

VLHPS is realized by analyzing complex shadow pattern generated by human body from differ-

ent light fixtures in the environment. In particular, through optics reverse engineering, VLHPS

maps the shape of a user’s shadow to a posture of the user that most likely generates such

a shape in the shadow [88]. To improve the accuracy of posture sensing outcome, typically

multiple LEDs mounted at different locations are used to shed light on the user from different

directions, resulting in a complex shadow pattern that is essentially the superimposition of the

shadow components generated by each LED individually. As such, a key step in the optics

reverse engineering is to separate these shadow components, including identifying the shadow

component generated by each LED and extracting it from the composite shadow pattern. To

make the shadow components separable, a LED i flashes its illumination at a high frequency

fi (KHz level), resulting in the shadow component generated by this LED being amplitude-

modulated by the frequency fi. The fi’s are separated sufficiently apart from each other, so

that different shadow components do not overlap with each other in the frequency domain. The
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component generated by LED i can then be extracted from the composite shadow pattern by

using a band-pass filter of central frequency fi.

A rogue LED can easily impersonate a legitimate LED i in the above VLHPS by (1)

blocking LED i’s illumination from the user, and (2) flashing its illumination at frequency

fi. Consequently, the shadow generated by the rogue LED will be mis-used by the reverse

engineering algorithm as a component generated by LED i, leading to false posture sensing

outcomes. For example, consider the VLHPS spoofing attack scenario illustrated in Figure

4.2(b), where for simplicity only one legitimate LED is shown. Suppose that the true posture of

the user is “moving to the right”, and hence the shadow generated by the rogue LED becomes

longer and longer with time. However, because this shadow is mis-identified by the reverse

engineering algorithm as one generated by the legitimate LED, it will be mis-mapped to a false

posture sensing outcome of “moving to the left”, because, based on the relative position of

the user and the legitimate LED, moving to the left is the only possible posture under which a

shadow generated by the legitimate LED can become longer and longer with time. Note that

in this case cryptography-based counter measures are irrelevant, because the attack happens at

the signal level (i.e., the shadow) and no logical data is involved in the process.

Remarks: From the above two case studies, it is clear that the major reason that such spoofing

attacks can happen is because there lacks an effective method to authenticate, at the very basic

signal level and on an always-on basis, that the received light signals are indeed sent from legit-

imate devices. Cryptographic authentication methods are either not relevant (because no data

is transmitted in the application) or not effective. For example, a cryptographic authentication

method may authenticate the identity of the legitimate LEDs at the beginning of the application,

but it cannot prevent the application’s sensing signal from being hijacked later by a rogue LED.

Considering the wide applications envisioned for VL in the near future and the fact that most

existing light fixtures are un-protected, spoofing attack is a highly practical and urgent issue to

be addressed for VL systems.
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4.3 Proposed Spoofing Detection Framework: VL-Watchdog

In this section, we present VL-Watchdog, a novel signal-level always-on spoofing detection

framework for VLS and VLC systems. In the case of VLS, VL-Watchdog does not require

a re-design of the existing sensing algorithm. Instead, VL-Watchdog augments over the un-

derlying system as a small hardware (receiver) add-on. In the case of VLC, the receiver can

implement the proposed framework with a small overhead to fulfill the role of VL-Watchdog for

its communication link. In the following, we first introduce the intuition behind VL-Watchdog

and then present its orthogonal-coding based design. Then we formulate the spoofing detection

problem as a classical statistical hypothesis test, and determine the test statistic and its optimal

threshold by analyzing optimal spoofing detection strategy of the watchdog under ambient light

noise.

4.3.1 Overview

In the proposed VL-Watchdog framework, signals illuminated from legitimate LEDs are made

orthogonal between each other. VL-Watchdog determines the authenticity of received signals

by checking whether the expected orthogonality still holds in the received signals. More specif-

ically, consider a VL system that has n legitimate LEDs T1, . . . , Tn and am-dimensional signal

space spanned by m base vectors A1, . . . , Am, where m > n, and Ai is orthogonal with Aj for

any 1 ≤ i, j ≤ m and i 6= j. From a geometric perspective, a m-axis Cartesian coordinate

system is used to represent the space, where an axis i corresponds to the base vector Ai, for

1 ≤ i ≤ m. Let the whole set of all axes be denoted by A
def
= (A1, . . . , Am).

At time t, a subset of n axes are selected from the whole set A and are used to modulate the

data bits sent by the n legitimate LEDs, one for each LED. In the case of VLC, these bits are the

data to be communicated. In the case of VLS, however, these are just arbitrary bits generated

by the transmitter and superimposed on the regular sensing signal after modulation. These

bits can be open (i.e., it can be known as a pre-knowledge by the spoofer), and the transmitter

does not need to coordinate with the receiver in generating these bits. It will be clear shortly

that the value of these bits does not affect the proposed spoofing detection. We assume that

the duration of each of these bits is much shorter than that of the regular sensing signal, so the
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regular sensing signal can be simply viewed as a DC bias from the perspective of these bits. We

also assume that the amplitude of these bits are much smaller than that of the regular sensing

signal, so the superposition of these bits with the sensing signal will not affect the normal

operation of the sensing algorithm. Denote the n axes that are selected at time t by the set

R(t)
def
= (r1(t), . . . , rn(t)), and R(t) ⊂ A. Without loss of generality, let us suppose that axis

ri(t) is used to modulate the data of Ti, so a bit Si(t) ∈ (−1,+1) to be sent by Ti at time t will

be modulated as Si(t)Ari(t), for 1 ≤ i ≤ n. The signal Si(t)Ari(t) will be transmitted by Ti over

VL channel using intensity modulation (IM), for which the intensity of the modulated signal

is much weaker than that of the visible light carrier (i.e., the DC bias), so in the case of VLS

the transmission of the modulated signal does not affect the normal operation of the original

sensing algorithm. R(t) is referred to as the transmission mode of the VL system at time t. R(t)

changes with time t according to some pseudo random schedule that is a shared secret between

the transmitter of the VL system and the receiver of VL-Watchdog. After authenticating each

other’s identity based on any cryptographic entity authentication mechanism, such a shared

secret transmission mode schedule can be established, for example, by a synchronized random

number generator at the two parties, whereby the synchronization is achieved by VL transmitter

sending an encrypted seed to VL-Watchdog ahead of each session.

Given the absence of any illegitimate transmissions, the received signal at the VL-Watchdog

at time t, say Y (t), is simply a linear combination of Si(t)Ari(t)’s, for all 1 ≤ i ≤ n. Such

a received signal resides in the sub-space spanned by vectors Ari(t)’s, where 1 ≤ i ≤ n, and

therefore should be orthogonal to any axis j that is not in R(t), i.e., ∀j ∈ A − R(t), which

is defined as spare basis. Such an orthogonality condition can be efficiently checked by VL-

Watchdog by projecting Y (t) to each of the m axes and verifying that

 Y (t) • Ai 6= 0 if i ∈ R(t)

Y (t) • Ai = 0 if i ∈ A−R(t)
(4.2)

where the operator • denotes inner product between two vectors.

Clearly, when an illegitimate LED presents, Y (t) will include a component contributed by

the spoofing signal. The only way for the orthogonality condition in (4.2) to continue to hold
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(so the attack can elude from being detected), is for the spoofer to generate its signal at time

t only in the sub-space spanned by vectors Ari(t)’s. This requires the spoofer to follow every

orthogonal axis that is selected for modulation at every moment of time. But this is difficult to

achieve, as R(t) appears to be a random process from the spoofer’s viewpoint, especially when

m is sufficiently greater than n. Consequently, the presence of illegitimate LED transmission

will cause frequent violations of (4.2), rendering the spoofing attack detectable. Note that even

though the attacker may be able to resolve R(t) by projecting Y (t) to each axis in A, such

a projection can be performed only after Y (t) is received, and therefore it does not help the

attacker to generate the spoofing signal in Y (t).

4.3.2 Orthogonal Coding Based VL-Watchdog Design

VL-Watchdog implements the aforementioned Cartesian coordinate system by using orthog-

onal coding. In particular, Walsh-Hadamard codes are used due to their simplicity and great

popularity in real-world applications [89].

Walsh-Hadamard codes can be efficiently generated because they correspond to rows of

the Hadamard matrix. In particular, given a Hadamard matrix H with size of m (2k, k =

1, 2, 3...), up to m orthogonal codes, say C1, . . . ,Cm can be generated as follows:


C1

...

Cm

 = Hm =

 Hm/2 Hm/2

Hm/2 −Hm/2

 where H1 = [1]. (4.3)

From a geometric perspective, if the Hadamard matrix expands to be a m dimensional space,

each pair of orthogonal codes represents two perpendicular vectors in it, so the m orthogonal

codes constitute the m orthogonal basis in such a space.

In VL-Watchdog, the aforementioned base vector set A is implemented as the set of or-

thogonal codes (C1, . . . ,Cm), so an axis i in the Cartesian coordinate system is represented by

code Ci, for 1 ≤ i ≤ m. The modulation process is simply implemented by convolving each

transmitted signal with the assigned orthogonal code, which will expand the transmitted signal
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into a much higher frequency band (e.g., at 100 KHz level). The same orthogonal code is used

by VL-Watchdog to perform the signal projection defined in (4.2).

For a VL system of n legitimate LEDs, the received signal at VL-Watchdog at time t can

be modelled as

Yj(t) =
n∑
i=1

hiSi(t)C(ri(t),j) + ωj for 1 ≤ j ≤ m (4.4)

where h is the VL LOS channel gain, S(t) is the signal bit to be sent by each legitimate LED,

Cij is the orthogonal code chips from Ci and ri(t) is the selected orthogonal code index from

R(t) at time t, ω is the ambient light noise and interference that could be well-modelled as

AWGN. The projection process mathematically constitutes a correlation of the received sig-

nal with all the orthogonal codes. So, the detected signal at VL-Watchdog at time t can be

mathematically calculated as

Si(t)
′ =

1

m
h−1i

m∑
j=1

Yj(t)Cij

=


Si(t) + 1

m
h−1i

∑m
j=1 ωjCij if i ∈ R(t)

1
m
h−1i

∑m
j=1 ωjCij if i ∈ A−R(t)

(4.5)

Since there are non-zero projections on the complementary subset of R(t) caused by AWGN

interference in (5), a certain threshold τ is essential to reduce the probability of false detection.

As an example shown in Figure 4.3, there are 2 legitimate transmitters, S1 and S2. Each

of them transmits a random binary signal, which is represented by a high (1) or low (-1) signal

in order to be distinguished from light-off signal (0). Then the input signal are encoded into

transmitted chips with the assigned orthogonal code ri(t) from the transmission mode R(t) at t

moment. For simplicity, here we choose the least 4-chip Walsh-Hadamard codes for illustration

purpose, which will supply at most 4 orthogonal codes to expand as 4 dimensional space and

it will leave 2 redundant codes as spare basis for spoofing detection. The transmitted chips

will be amplitude modulated as 2 levels of LED intensity and they will be accumulated and

quantized to multi-level intensity signal and represented by received chips (St) on the receiver

side. As a result, the received chips will be projected onto all the orthogonal basis as detected
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Figure 4.3: Simple example of spoofing detection framework using orthogonal coding.

signal. From the geometric perspective, the encoding and projection process performs like

vector composition and decomposition in the 4 dimensional space spanned by orthogonal codes

(Figure 4.3). If the same orthogonal codes from R(t) are used in the projection process, it will

exactly reconstruct the legitimate signal S1 and S2 at the receiving end. If the corresponding

orthogonal codes within spare basis are used, it is supposed to output zero signal when there is

no spoofing attack, otherwise any significant non-zero signal detection on the spare basis would

indicate a potential spoofing attack once the total accumulated power exceeds the predefined

threshold τ .

It is worth noting that the received signal intensity is accumulated from different trans-

mitters in the multi-link VL system, so the proposed orthogonal coding based VL-Watchdog

piggybacks on the unique linear superposition characteristics of VL due to its high frequency,

which is invalid in the low frequency RF system. Since there are few experiments in the litera-

ture that validate the communication effectiveness of the multi-link VL system with orthogonal

coding, a proof-of-concept testbed is developed shortly in Section 4.4 to verify the feasibility

of the proposed VL-Watchdog with orthogonal coding.
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4.3.3 Spoofing Detection under Noise

For a given indoor multi-link VL system, the proposed VL-Watchdog aims to determine whether

there is a spoofing attack or not in a reasonable amount of time. Under the proposed VL-

Watchdog framework, any non-zero projection detected on the spare basis could be only due

to noise or spoofing. In order to differentiate the spoofing attack from noise, we propose a

statistical hypothesis test based on the average signal power projected on all spare basis dur-

ing a given time window T that consists of s time slots, say t1, . . . , ts, each with its randomly

assigned transmission mode R(t). More specifically, the null hypothesis is given as

H0 : no spoofing (i.e., noise induced non-zero projection),

and the alternate hypothesis is given as

H1 : presence of spoofing (i.e., spoofing induced non-zero projection).

In this significance testing, the test statistic P is defined as the average total signal power

projected on all spare basis in each time slot tj(j = 1, 2, . . . , s). So, the observed test statistic

Pobs can be mathematically expressed as

Pobs =
1

s

s∑
j=1

∑
i

|Si(t)′|2,∀i ∈ A−R(t). (4.6)

For a given hypothesis test threshold τ , the presence of spoofing attack is declared under the

condition:

Pobs > τ. (4.7)

The threshold τ plays an important role in the proposed spoofing detection framework, and

an optimal threshold τ would maximize the spoofing detection accuracy of the VL-Watchdog.

According to the maximum a posteriori (MAP) criteria, the optimal threshold τ is decided

by the test statistic distribution under the null hypothesis H0 and alternative hypothesis H1,

respectively, which can be analyzed as follows.
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To calculate the test statistic distribution under the null hypothesisH0, we model the noise

as AWGN shown in (4), whose amplitude projection on each spare basis i in A−R(t) is i.i.d.

and follows normal distribution, i.e.,

Si(t)
′ ∼ N(0,

σ2

m
), (4.8)

where σ2 is the average power of the AWGN. So the total detected power P j
1 on all spare basis

given the presence of only noise in time slot tj can be calculated as

P j
1 =

∑
i∈A−R(t)

|Si(t)′|2. (4.9)

Therefore the random variable P j
1
m
σ2 follows chi-square distribution with m − n degrees of

freedom, i.e.,

P j
1

m

σ2
=
∑
i

(
Si(t)

′
√
m

σ

)2

∼ χ2(m− n) (4.10)

Therefore P j
1 follows Gamma distribution with a shape parameter of m−n

2
and a scale parameter

of 2σ2

m
, i.e., P j

1 ∼ Gamma(m−n
2
, 2σ

2

m
). Over the time window T , the average total detected power

on all spare basis given the presence of only noise, denoted by P1, can be calculated as

P1 =
1

s

s∑
j=1

P j
1 . (4.11)

So the random variable P1 follows Gamma distribution with a shape parameter of s(m−n)
2

and a

scale parameter of 2σ2

sm
, i.e., P1 ∼ Gamma( s(m−n)

2
, 2σ

2

sm
), and its probability density function is

given by

fP1(x) =
σ2

sm

x
s(m−n)

2
−1e−

x
2

2
s(m−n)

2 Γ( s(m−n)
2

)
(4.12)

where Γ(•) denotes the gamma function. So, the detected test statistic distribution for given

H0 will be calculated as

fP |H0(x|P1) = fP1(x). (4.13)
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To calculate the test statistic distribution under the alternative hypothesisH1, we consider

a blind-guess spoofing strategy, in which the attacker randomly chooses k(1 ≤ k ≤ m) or-

thogonal codes from the whole base vector set A in each time slot to generate its spoofing

signal. Among the k chosen orthogonal codes, let ξ denote the number of those that happen

to be in the spare basis set A − R(t) and k − ξ denote the rest of the chosen codes that are

in the transmission mode set R(t). Clearly, ξ is a random variable that takes value from the

set 0 ≤ ξ ≤ k. The attacker then equally allocates its transmission power Ps onto the k chosen

orthogonal codes to generate the spoofing signal. In our following analysis, we first consider

the basic case that k is a deterministic number known to the hypothesis test. Based on the result

of this basic case, we will then extend our analysis subsequently to the more general case that

k is a random variable.

The Case of Deterministic k

In this case, the probability mass function of ξ in each time slot can be calculated as

Prob(ξ = ks) =



Cksm−nC
k−ks
n

Ckm
, ks =


0, . . . , k; 1 ≤ k ≤ n

k − n, . . . , k; n < k < m− n

k − n, . . . ,m− n− 1; m− n ≤ k ≤ m∑k
k′=m−n

Ck
′−m+n
n

Ck′m
, ks = m− n; m− n ≤ k ≤ m

(4.14)

where Cj
i = i!

(i−j)!j! is the binomial coefficient of i choose j. Its expectation and variance can

be calculated as

E(ξ) =
m−n∑
ξ=0

ξProb(ξ) =



∑k
ξ=0 ξ

Cξm−nC
k−ξ
n

Ckm
; 1 ≤ k ≤ n∑k

ξ=k−n ξ
Cξm−nC

k−ξ
n

Ckm
; n < k < m− n∑m−n−1

ξ=k−n ξ
Cξm−nC

k−ξ
n

Ckm
+

(m− n)
∑k

k′=m−n
Ck
′−m+n
n

Ck
′
m

; m− n ≤ k ≤ m

(4.15)
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V ar(ξ) =
1

m− n+ 1

m−n∑
ξ=0

[ξ − E(ξ)]2

=



1
k+1

∑k
ξ=0

[
ξ −

∑k
ξ=0 ξ

Cξm−nC
k−ξ
n

Ckm

]2
; 1 ≤ k ≤ n

1
n+1

∑k
ξ=k−n

[
ξ −

∑k
ξ=k−n ξ

Cξm−nC
k−ξ
n

Ckm

]2
; n < k < m− n

1
m−k+1

∑m−n
ξ=k−n

[
ξ −

∑m−n−1
ξ=k−n ξ

Cξm−nC
k−ξ
n

Ckm

−(m− n)
∑k

k′=m−n
Ck
′−m+n
n

Ck′m

]2
; m− n ≤ k ≤ m

(4.16)

As the attacker is randomly selecting k orthogonal codes in each time slot, ξ’s in time slots

tj(j = 1, 2, . . . , s) are i.i.d. Given a sufficiently large number of slots in the time window T

(e.g., greater than 10 slots in T ), according to the central limit theorem, the average number

of orthogonal codes that are chosen by the attacker in a time slot but are not in the underlying

transmission mode set of that slot should approximately follow a normal distribution, i.e.,

ξ ∼ N(E(ξ),
1

s
V ar(ξ)). (4.17)

Thus, the average total detected power on all spare basis given the presence of spoofing in an

arbitrary slot is given by P2 = Ps
k
ξ. Clearly, P2 also follows a normal distribution:

P2 ∼ N(
Ps
k
E(ξ),

P 2
s

sk2
V ar(ξ)) (4.18)

and its probability density function is

fP2(x) =
1√

2πP 2
s

sk2
V ar(ξ)

e
− 1

2

sk2(x−Ps
k
E(ξ))2

P2
s V ar(ξ) . (4.19)

So, the test statistic distribution givenH1 can be calculated as

fP |H1(x|P1 + P2) = fP1+P2(x) ≈ fP2(x). (4.20)
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Here the approximation is due to the fact that the power of spoofing signal is usually much

stronger than that of the AWGN (i.e., Ps
σ2 � 1), so noise power can be safely neglected from

the test statistic.

Given an equally-probable a priori distribution between H0 and H1, i.e., Prob(H0) =

Prob(H1) = 0.5, the MAP criteria downgrades to the maximum likelihood (ML) criteria.

Therefore the optimal detection threshold τ o can be determined by solving the following equa-

tion
fP |H1(τ

o|P1 + P2)

fP |H0(τ
o|P1)

= 1. (4.21)

In practice, because Ps � σ2, the solution to the above equation always exists and is unique.

The Case of Random k

In this case, let pk denote the probability by which the attacker selects k orthogonal codes in a

time slot, where 1 ≤ k ≤ m and
∑m

k=1 pk = 1. The probability mass function of ξ in a time

slot can be calculated as

Prob(ξ = ks) =
m∑
k=1

pkProb(ξ = ks|k) =


∑n

k=1 pk
Ckn
Ckm
, ks = 0∑ks+n

k=ks
pk

Cksm−nC
k−ks
n

Ckm
, 0 < ks < m− n∑m

k=m−n pk
∑k

k′=m−n
Ck
′−m+n
n

Ck′m
, ks = m− n

(4.22)

Its expectation and variance can be calculated by substituting (4.22) into (4.15) and (4.16).

By following a similar derivation in the previous deterministic case, we can calculate the test

statistic distribution given H1 from (4.19) with the updated expectation and variance in this

random case. Therefore the optimal detection threshold τ o can be determined by solving (4.21)

in this case.
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4.4 Proof-of-Concept Testbed for feasibility verification

As stated in Section 4.3.1, signals illuminated from legitimate LEDs are made orthogonal

between each other with orthogonal coding in the proposed VL-Watchdog framework. VL-

Watchdog determines the authenticity of received signals by checking the orthogonality con-

dition in (4.2) to continue to hold in the received signals. It’s clear that the presence of il-

legitimate LED transmission will cause frequent violations of (4.2), rendering the spoofing

attack detectable, unless the spoofer could generate its signal at time t if and only if within the

transmission mode sub-space. Thus, it’s more crucial for us to demonstrate the feasibility of

orthogonal coding on VL signals, and hence verify the feasibility of VL-Watchdog, we have

developed a proof-of-concept VL orthogonal encoding and decoding testbed for a multi-link

VLC system. This is described as follows.

4.4.1 Testbed Settings

Figure 4.4(a) shows a picture of our testbed. In particular, we use four commercial off the

shelf (COTS) LEDs [90] from DigiKey on the transmitter side and one COTS photo-diode on

the receiver side to compose a 4-channel multi-link VLC system. The LED transmitter and

photo-diode receiver are placed about 10 cm apart and are controlled by an Arduino UNO R3

[91] control board, which is connected to a desktop computer (as a host) via USB. On the

desktop computer, MATLAB is used to control the Arduino board via the Matlab API supplied

by Arduino and also to implement orthogonal encoding and decoding.

The left part of Figure 4.4(b) shows a diagram of the transmitter circuit. In particular,

the transmission is based on pulse-amplitude modulation (PAM) [30], with the DC bias at the

transmitter ensuring the non-negativity of the total current driving the LEDs. On the transmitter

side, a high speed serial bit stream input (S) is parallelized into 4 sub bit streams (S1, S2, S3,

S4). A fixed bias current IDC is superimposed with Si (i = 1, 2, 3, 4) and the resulting modu-

lated current IDC + Si drives the illumination of each of the LEDs. In order to maintain linear

current-light conversion and avoid clipping distortion [92, 49], a unique requirement to VLC is

that the total current must be constrained within some range IDC+αIDC , where α ∈ [0, 1] is the

modulation index. Thus Si is amplitude-constrained by |Si| < αIDC , which is different from
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(a)

(b)

Figure 4.4: (a) Multi-link VL system prototype and (b) Transmitter and receiver circuits
schematic diagram.

the common mean-power constraint in RF communication. To this end, each LED is cascaded

with a current limiting resistor R of 100 Ω. The intensity-modulated signals are generated by

supplying a 2-level (high or low) driving voltage to each LED. In order to generate these driv-

ing voltages, we use a COTS Analog Devices DC2179A [93] demo board that integrates with

itself a LTC2645 PWM-DAC. To transmit a bit, Matlab instructs the Arduino control board to

send DC2179A the digital PWM signal corresponding to the bit. This PWM signal will then

be converted by DC2179A into the required voltage to drive the LEDs.

The right part of Figure 4.4(b) shows the diagram of the receiver circuit. In particular,

the photo-diode works in photoconductive mode to measure the received light intensity and is

driven by a 12 V DC and cascaded with a 510 Ω resistor. The received optical power is linearly

proportional to the output voltage of the resistor as well as the light driven current inside the

circuit. We connect the output voltage of the resistor back to Analog-In pins of Arduino control

board. The recorded voltage data are quantified and processed in MATLAB to recover the

transmitted signal.

All computation required in the orthogonal encoding and decoding processes are imple-

mented using Matlab. The transmitter is responsible for converting the generated codes into VL
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Figure 4.5: Verification of multi-link VL communication based on orthogonal coding.

signals, and the receiver is responsible for converting the received VL signals into codes based

on which the transmitted bits can be decoded. To simplify our implementation but without loss

of generality, the driving voltages for the 4 LED transmitters are calibrated so that the received

light intensity from each of them are equalized for the same transmitted chip.

4.4.2 Feasibility of Orthogonal Coding over VL

We verify the feasibility of orthogonal coding over VL by actually transmitting and receiving

coded bit stream over our testbed. Figure 4.5 shows the Matlab measurements of a representa-

tive snapshot in our experiment. In particular, Figure 4.5(a) shows a measurement of the input

signals (S1, S2, S3, S4) for the 4 LED transmitters, respectively. Each input signal consists of 4

bits binary data and is encoded by a 16-bit Walsh-Hadamard code (C1, C2, C3, C4), randomly

selected from the 16-chips Hadamard matrix. So the length of transmitted signal at each LED

would be 64 chips. Figure 4.5(b) shows the randomly selected Walsh-Hadamard codes C1, C2,

C3, C4 for each of the 4 LED transmitters, which forms the transmission mode at this moment.

The sum of the transmitted signals (in blue) and the strength of the received signal as repre-

sented by the current in the receiver circuit (in read) are depicted in Figure 4.5(c). It can be

observed that the multi-level pattern of the received current is fully consistent with that of the

transmitted signals. After the quantization and projection process at the receiver, the received
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bits in the four coding channels (C1 through C4) are shown in Figure 4.5(d), which verifies the

successful communication of data based on orthogonal coding of the VL signals.

In order to demonstrate the feasibility over large transmission distance, we increase the

distance between the LED transmitter and photo-diode to about 20 cm and replicate the testbed

experiment with the same input signals and transmission mode. The strength of the received

signal as represented by the multi-level pattern of current in the receiver circuit (shown as

magenta circle in Figure 4.5(c)) still presents consistency with that of the transmitted signals,

and further can be recovered and decoded into the transmitted bits in Figure 4.5(d) after the

corresponding quantization and projection process. Thus, it verifies the the successful commu-

nication of data based on orthogonal coding of the VL signals over large transmission distance.

4.5 Numerical Evaluation

To evaluate the performance of VL-Watchdog, we resort to simulations, which allow us to

measure how the proposed spoofing detector performs against a set of attack parameters.

4.5.1 Performance Metrics

We use the following spoofing detection rate PD, miss detection rate MD, and false warning

rate FW to characterize the accuracy of the proposed VL-Watchdog detector:

PD =

∫ ∞
τo

fP |H1(x|P1 + P2)dx,

MD =

∫ τo

−∞
fP |H1(x|P1 + P2)dx,

FW =

∫ ∞
τo

fP |H0(x|P1)dx.

(4.23)

where τ o is the optimal detection threshold as defined in (4.21). Based on these quantities, the

precision and sensitivity measures of the detector are defined as follows:

Precision =
PD

PD + FW
,Sensitivity =

PD

PD +MD
. (4.24)
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The overall performance is measured by the F1 score [94], which is defined as

F1 = 2
Precision× Sensitivity
Precision+ Sensitivity

=
2PD

2PD + FW +MD
. (4.25)

F1 score is calculated as harmonic mean between precision and sensitivity and it represents the

overall accuracy of the detector.

4.5.2 Simulation Results

We simulate a multi-link VLC system with 8 legitimate LED transmitters (n = 8). In each

time window T , we assume that a spoofer will present randomly with a 0.5 probability. We

are interested in evaluating how the VL-Watchdog will perform against a set of parameters,

including the number of base vectors m, the spoofing power to noise ratio Ps
σ2 , the number

of time slots s within the given time window, and the number of orthogonal codes k that the

spoofer chooses in fabricating its spoofing signal. In each simulation we vary the value of one of

the above parameters while keeping the others constant. To this end, we assume the following

default value for the parameters in our simulation: m = 16, Ps
σ2 = 5, s = 5, and k = 8. The

simulation results are shown in Figure 4.6.

Impact of the Number of Base Vectors

Figure 4.6(a) shows the impact of the number of base vectors m on the spoofing detection per-

formance. We can see that there is an optimal number of base vectors (m = 32), which is about

four times of the number of transmitters and it maximizes the overall spoofing detection perfor-

mance (F1 score). It could be used to determine the optimal number of base vectors that should

be used for a given number of transmitters in a multi-link VLC system. Additionally, there is a

slight increase of overall performance before the optimal m, which could be explained by the

fact that adequate increase of spare basis would benefit the overall performance. After the opti-

mal m, we can see that with the increase of m, F1 score decreases rapidly and the Sensitivity

measurement drops off while the Precision measurement maintains at approximately same

level. It turns out that the decline of the Sensitivity measurement is mainly induced by the

rapid decrease of PD, which leaves FW almost unchanged. It is not surprising because as the
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Figure 4.6: Performance evaluation for spoofing detection under varying factors.
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increase of m, the average power assigned to each base vectors from spoofing will decrease

rapidly, which will make the spoofing signal behaves much more similar with the background

noise.

Impact of Spoofing Power

Figure 4.6(b) shows the impact of the spoofing power to noise ratio Ps
σ2 on the spoofing detection

performance. As for the numerical simulation, we fix the noise power σ2 = 1, so the spoofing

power Ps changes accordingly with the Ps
σ2 ratio. We can see from the figure that with the

increase of the Ps
σ2 ratio, the overall spoofing detection performance degrades gradually, i.e., the

F1 score decreases gradually. We can also observe that the Precision measurement remains

almost unchanged while the Sensitivity measurement decreases rapidly. It might be a little

surprising at first sight, but it would be still in line with our intuition if we take a thorough

consideration on (18). Although the mean of the detected average spoofing power on spare

basis increases with Ps, the variance increases quadratically, so the enlarged variance would

eventually induce the decrease of PD, which is represented as Sensitivity measurement in

the figure.

Impact of the Number of Time Slots

Figure 4.6(c) shows the impact of the number of time slots s within a given time window on

the spoofing detection performance. We can see the increase of the overall spoofing detection

performance from F1 score with the increase of s, but it has a very limited impact which is

about 0.1%. In practice, as the power of spoofing signal differs significantly from that of the

background noise, we can always expect using a large s would differentiate a spoofing attack

from noise with less randomness. It is worth noting that once s exceeds a certain number, e.g.,

s ≥ 8 in this case, it won’t impact the spoofing detection performance anymore. This could

be utilized to explore an minimum s as we always prefer to detect a potential spoofer in an

efficient way, given the condition that the received power projection process in VL-Watchdog

is performed in each time slot.
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Impact of the Number of Random Selections

In order to simplify the calculation, we only simulate the deterministic selection case, in which

k is a random number but it’s deterministic to be the same for all the s time slots. Figure 4.6(d)

shows the impact of the number of orthogonal codes k that the spoofer chooses in fabricating

its spoofing signal on the spoofing detection performance. We can see an improvement of

the overall spoofing detection performance from F1 score as the increase of k. It can be also

observed that there is a significant improvement of overall performance when k is relative small

and then the overall performance saturates once k exceeds the number of transmitters (k > 8),

which is in line with the intuition that for a fixed m and n, with the increase of k, there could

be much more proportions of the average spoofing power projected onto the spare basis to be

detected since it’s assumed that the spoofing power is equally assigned to k orthogonal basis.

In consideration of the computational complexity and transmission efficiency when in-

troducing VL-Watchdog into existing VL systems, we only consider the major impact of the

number of base vectors m and the number of time slots s for calculation simplicity but without

loss of generality. The computational complexity increases with the product of these two major

factors and can be written as O(m∗s). It would be utilized as a qualitative control for determin-

ing the optimal factors, because we would always pursue an add-on spoofing mechanism with

minimum computational overhead. As the secrecy is achieved with additional coding from sac-

rificing a portion of the transmission rate, the transmission efficiency decreases proportionally

with the increase of m when the symbol transmission rate is fixed. It also indicates that a small

m is always preferred as long as the overall performance is maximized, which is in line with

the observation in Figure 4.6(a).

4.6 Improvements by Accounting for the Application Environment

Because indoor VLC and VLS systems typically use intensity modulation, their performance

are subject to not only background light noise, but also the random light perturbation from

activities happening in the environment. For example, opening a door that connects to a lighted

hallway may abruptly increase the background light intensity for a VL system working in a
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(relatively) dark room. Similarly, a moving user whose trajectory cuts through the line of

sight (LOS) between the LED and the photo-diode may first trigger a sudden bright-to-dark

transition when it blocks the LOS, and then a dark-to-bright transition when it leaves the LOS.

It is easy to see that such an environment-induced perturbation, when it takes place, will break

the orthogonality of the in-transmission VL signal, and hence may trigger VL-Watchdog to

issue a (false) spoofing warning, while actually there is no spoofer present. Since in a realistic

working environment the above activity-induced perturbation happens frequently, if nothing

is done, a high false alarm rate should be expected for the baseline VL-Watchdog spoofing

detector presented in the previous sections.

4.6.1 False Warning Filter

To tackle this problem and hence significantly improve the accuracy of VL-Watchdog in a real-

istic environment, we propose a false-warning filtering mechanism, which attempts to identify

and filter out those (false) spoof warnings that are caused by the environment changes from

those caused by the real spoofing signals. The key insight in our filtering mechanism is the

observation that environment-induced false warnings are typically related to the mechanical

movements of some objects in the environment, and therefore they should happen at a lower

rate than those caused by the real spoofer, which has to persistently generate spoofing signals

for a prolonged period of time in order to make its attack meaningful. The proposed filtering

mechanism exploits this key difference in the statistical behavior of the two sources (i.e., the

environment changes and the real spoofing signals) to reach its goal.

In particular, our filter maintains a counter that counts the total number of warnings, de-

noted by Kobs, generated by the VL-Watchdog over a predefined number, say nt, of time win-

dows, where nt � 1 in order to make the filtering accurate. The filter considers the filtering as

a hypothesis test problem that differentiates between the following two hypothesis,

I0 : no spoofing (i.e., warnings are caused by activities in the environment),

I1 : presence of spoofing.
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Accordingly, an optimal threshold κo can be decided based on the distribution of the number

of warnings associated with I0 and I1 according to the MAP criteria (or the ML criteria when

the two hypothesis are equally probable), so that a spoofing alarm is announced only if

Kobs ≥ κo. (4.26)

The distribution of the number of warnings in a period of nt time windows under I0 and I1 can

be derived as follows.

Spoof Warnings Generated by Change of Environment

The change of environment can be modeled as a Poisson process with rate λe, where the value

of λe could be decided in the system calibration phase by measuring the average number of

warnings generated by VL-Watchdog per unit of time when there is no spoofer. Accordingly,

the probability that n environment-change-induced warnings will be generated during a given

period of nt i.i.d time windows when there is no spoofer can be calculated as

Prob{N(nt) = n|I0} =
(λent)

n

n!
e−λent . (4.27)

Spoof Warnings Generated by Spoofing Signals

Given a spoofer presents, in each time window, the VL-Watchdog generates a spoof warning

with probability PD (see (4.23)), and does not generate spoof warning with probability 1−PD.

Therefore, over a period of nt i.i.d. time windows, the number of spoof warnings generated by

VL-Watchdog follows Binomial distribution and its probability mass function can be calculated

as

Prob{N(nt) = n|I1} = Cn
ntPD

n(1− PD)nt−n, (4.28)

where Cn
nt = nt!

n!(nt−n)! is the binomial coefficient.
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Given an equally-probable a priori distribution between I0 and I1, i.e., Prob(I0) = Prob(I1) =

0.5, the MAP criteria downgrades to the maximum likelihood (ML) criteria. Therefore the op-

timal detection threshold κo can be determined by the following

arg min
κo∈[0,1,...,nt]

|Prob{N(nt) = κo|I1} − Prob{N(nt) = κo|I0}|. (4.29)

4.6.2 Numerical Evaluation for the Filter

Taking the induced spoofing warnings from random changes of environment into considera-

tion by modelling it as Poisson process, we can numerically evaluate the effectiveness of the

proposed false-warning filtering mechanism and the performance of it under different settings,

respectively. To simplify the calculation, here we only consider those random changes of envi-

ronment that are significant enough to trigger a false warning by VL-Watchdog, otherwise they

will be taken as background noise. As in real-world applications we always expect to determine

whether a VL system is under spoofing attack or not in a reasonable amount of time, we define

the time period as the number of time windows nt used to make such a decision. In order to

evaluate the performance of the proposed filter, we conduct numerical simulations without and

with the false-warning filter by taking two critical factors of the filter into account, including

the rate of environment changes λe and the number of time windows nt.

Simulation Settings and Performance Metrics

In each simulation we vary the value of one of the above parameters while keeping the other

constant and assume the following default value in our simulation: λe = 5 and nt = 10.

The rest of the parameters are set as the same default values as in the previous simulations in

Section 4.5.2. We use the F1 score defined in (25) and false alarm rate FA to characterize

the performance of VL-Watchdog with and without the filter. In order to make those two

cases (i.e., with and without the filter) fairly comparable with each other, FA will be calculated

within nt time windows for both the without-filter case and the with-filter case. For the without-

filter case, FA is calculated as the probability of either the background noise or the change of
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Figure 4.7: Performance evaluation under practical environment perturbation for false-warning
filtering.

environment triggers a false warning:

FA(w/o) = 1− (1− FW )ntProb{N(nt) = 0|I0}, (4.30)

For the with-filter case, FA is calculated according to the following equation based on the

optimal detection threshold κo given in (4.29):

FA(w/) =
nt∑

n=κo

Prob{N(nt) = n|I0}. (4.31)

Some representative results from our simulation are shown in Figure 4.7.

Performance vs. the Rate of Environment Changes

Figure 4.7(a) shows the performance of the VL-Watchdog under the impact of λe with and

without false-warning filter, respectively. Our first observation is that VL-Watchdog achieves

significantly higher F1 score and significantly lower false alarm rate under the filter than with-

out the filter in all simulated cases, indicating that the filter does reduce the chances of false

alarm and increase the overall accuracy of the watchdog as expected in its design. Furthermore,

we can see that the overall performance indicated by F1 score decreases with the increase of λe

regardless of using the filter or not. It is not surprising because as the increase of λe the number
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of spoofing warnings triggered by the changes of environment will approach those caused by

the spoofer, making it more and more difficult to distinguish between the two. However, if we

take a close look at the small λe part, we can see the rapid decrease of F1 score without filter

while the F1 score with filter maintains at a high level, which demonstrate the effectiveness

of the proposed false-warning filter on the overall performance. Moreover, it can be observed

that with the increase of λe, the FA increases accordingly for both cases, which cause the

decrease of the overall performance after we consider practical environment perturbation. In

real-world applications, if we use the VL-Watchdog in a crowded indoor environment without

the proposed filter, it will lose its functionality by keeping sending false alarms. This obser-

vation justifies the necessity of the proposed false-warning filtering mechanism in a realistic

application environment.

Performance vs. the Number of Time Windows

Figure 4.7(b) demonstrates the performance of the VL-Watchdog under the impact of nt with

and without filter, respectively. From the figure, we can see that with the increase of nt, the

overall performance represented by F1 score is improved gradually while the FA decreases

correspondingly for the with-filter case. This is in line with our intuition that the increase

of nt would lead to the decrease of the average λe within each time window, so the overall

performance would be improved as a result. However, as for the without-filter case, we can see

that the performance of VL-Watchdog would stay at a very poor level once nt exceeds a certain

number (e.g., 5 in our simulation), as indicated by the low F1 score and the high false alarm

rate. Physically, this means at this point VL-Watchdog will keep giving false alarms when nt

is large, and hence demonstrates the necessity of turning on the proposed false-warning filter.

4.7 Conclusions

In conclusion, to secure the indoor multi-link VL system from spoofing attack, we proposed a

signal-level always-on spoofing detection framework VL-Watchdog in this paper, which pig-

gybacks on the redundant orthogonal coding. By exploiting the intrinsic linear superposition

properties of VL, the transmission mode consisting of periodically changed orthogonal codes
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was used to identify encoded data transmitted by multiple LED transmitters in case of rogue

LED transmitters. A proof-of-concept testbed was built to validate the identification feasibility

of multi-link VL system under the framework. The proposed VL-Watchdog was numerically

evaluated under different factors and it was proved to be effective. In addition, we proposed

a false-warning filter to improve VL-Watchdog by accounting for the environment perturba-

tion. Its performance was also numerically evaluated accordingly. In terms of implementation,

the proposed VL-Watchdog can be easily integrated into the current VL system with a small

hardware add-on of minimum overhead under existing infrastructure.
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Chapter 5

Conclusions and future work

5.1 Conclusions

Taking a physical-layer security perspective, the first proposed research of this exploratory dis-

sertation aimed to investigate the intrinsic confidentiality of VLC communication as induced by

its special channel characteristics. This work exploited the unique characteristics of VLC chan-

nel in calculating its secrecy capacity, and it comprehensively considered the impact of both the

specular and the diffusive reflections on secrecy capacity of indoor VLC and also investigated

the spatial characteristics/distribution of the secrecy capacity over the indoor communication

space. Base on the established indoor VLC system model with three entities, the system secu-

rity performance was evaluated against a comprehensive set of factors, including the locations

of the transmitter, receiver, and eavesdropper, the VLC channel bandwidth, the ratio between

the specular and diffusive reflections, and the reflection coefficient, according to the calculated

lower and upper secrecy capacity bounds. Due to the addition of LOS and NLOS components,

we have found areas with strong reflections, which makes feasible that if an eavesdropper lo-

cated on those areas, he could sniff data at least partially due to reflection. The possible sniffing

attack could also be used as an exploit on insidious attacks such as blocking and spoofing in

future complex systems.

By exploiting the intrinsic linear superposition properties of VL, the second proposed

research of this exploratory dissertation aimed to design a signal-level always-on spoofing de-

tection framework to secure the VL system from spoofing attack. This work proposed such
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a framework named VL-Watchdog, which is applicable to both VLC and VLS systems. VL-

Watchdog piggybacks on the redundant orthogonal coding, and it uses orthogonal codes to en-

code the illumination of each legitimate LED, so that the transmitted light of a legitimate LED

is identifiable by detecting the unique signal structure possessed by the received light. A proof-

of-concept testbed was built to validate the identification feasibility of multi-link VL system

under the framework. The proposed VL-Watchdog was numerically evaluated under different

factors and it was proved to be effective. In addition, a false-warning filter was proposed to im-

prove VL-Watchdog by accounting for the environment perturbation. Its performance was also

numerically evaluated accordingly. In terms of implementation, the proposed VL-Watchdog

can be easily integrated into the current VL system with a small hardware add-on of minimum

overhead under existing infrastructure. Once deployed, the watchdog will persistently monitor

the light signals in the field to ensure they are sent only from authentic (legitimate) sources.

5.2 Future work

Our work is also subject to some limitations. In particular, while the upper and lower bounds

derived in the first proposed research are reasonably tight in the high secrecy capacity regime,

they are relatively loose in the low secrecy capacity regime. Further study on how to improve

these bounds in the low secrecy capacity regime needs to be done in the future work. Mean-

while, in the second proposed research, a real-world simulation testbed is better to accommo-

date a more complicated real-world scenario and take more practical factors into consideration.

While the refinement on the proposed research is ongoing, we consider this exploratory disser-

tation as an exploration of physical layer approach to secure both VLC and VLS systems and

expect it can inspire more research on the same direction.
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