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Abstract 

 

During recent years, Autonomous Vehicle Storage and Retrieval Systems (AVS/RS) have 

been widely applied in distribution centers and production sites to meet the increasing demand for 

rapid and flexible large-scale warehousing activities. As the core subsystem of the bigger 

warehousing system, in AVS/RS horizontal devices (vehicles) and vertical devices (lifts) are 

applied for storage and retrieval operations to fulfill customer orders. The main topic of this study, 

Shuttle-based Storage and Retrieval System (SBS/RS), is one representative class in AVS/RS 

category. Recognizing the complex service dynamics due to the use of different types of S/R 

devices, both the configuration design problem and operational control problem need to be studied 

in order to improve efficient, sustainable and robust performance of the system. We identified 

critical decisions and factors of SBS/RS-based warehousing systems and studied their complexities 

and correlations, and proposed a comprehensive and consistent methodology for both the design 

configuration and the operational control practices. 

In the first step, an animated, data-driven and data-generated simulation model is 

developed to support the development of both the design and configuration approach and the 

operational control strategy of SBS/RS-based warehouse systems. The model enables detailed 

analysis of different technology options including tier-captive and tier-to-tier configurations, 

multi-deep rack designs, multi-capacity lifts, etc., and provides visualized tracking of accurately 

simulated service processes of the S/R devices and performance evaluation under configurable 

demand scenarios.  

In the second step, the research focuses on the conceptual design problem in which 

alternative SBS/RS designs and configurations are evaluated. A three-stage design methodology 

based on queuing analysis is proposed to provide rapid evaluation and screening for large number 

of alternative design options. The methodology considers not only design configuration parameters 

including number of aisles, tiers, columns, and shuttles, but also different technology options as 

well as control policies to improve estimation quality.  

In the third step, we focus on the control aspect which involves the development of various 

operational control approaches for storage assignment and device scheduling. Mathematical 
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programming techniques and dynamic dispatching approaches are explored to provide in-depth 

analysis of the control decisions. An operational control strategy framework that systematically 

integrates the control policies is developed and illustrated in detailed charts and pseudocode for 

practical implementation.  

The research work used in this dissertation is part of a research and development project 

of an SBS/RS product by Damon Group (http://www.damon-group.com/), a global logistics 

solution provider, which is also the sponsor of this research work. Thanks to the practical data and 

professional insights provided by our sponsor, this research work is examined and validated all the 

way along its development. 
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Chapter 1 Introduction 

1.1 System Overview 

With the rise of e-commerce and advancement of Industry 4.0 technologies, automated 

storage and retrieval system (AS/RS) technologies are evolving rapidly to help supply chain 

enterprises achieving higher performance, lower costs, and better responsiveness to customers and 

supply chain partners. During the past decade, a preeminent AS/RS innovation, autonomous 

vehicle storage and retrieval system (AVS/RS) technology, has been increasingly introduced to 

the market and widely applied in automated production and warehouse control. An AVS/RS 

typically uses separate vertical machines (lifts/elevators) and horizontal machines 

(vehicles/shuttles) for items’ storage and retrieval operations to and from locations in storage racks. 

Compared with traditional crane-based automated storage and retrieval systems, AVS/RSs provide 

higher transaction rate and better responsiveness to orders, and also improve overall system 

flexibility in accommodating stochastic and seasonal demands. The technology has proven 

successful especially for use with relatively lightweight loads, large product assortments, and low 

order sizes. Various system designs based on AVS/RS technology are developed. The main topic 

of this study, Shuttle-based Storage and Retrieval System (SBS/RS) (also called Multi-shuttle 

Storage and Retrieval System), is one representative subset of AVS/RS category (see Figure 1.1). 

In general, activities in automated warehouses are designed to fulfill orders from customers 

or partners from the supply chain. Fulfilling an order typically consists of picking up certain 

quantities of specific SKUs (stock keeping units) from storage locations (slots), and packaging 

into containers, possibly with specific sequence/sorting requirements. This order-fulfillment 

operation is sometimes called “pick-up”. Besides pick-up operations, replenishment operations of 

goods, containers, etc. are another important aspect to support the daily functions of the warehouse 

system. 
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Figure 1.1 Illustration of a Shuttle-based Storage and Retrieval System (Dematic 

Multishuttle 2 Whitepaper, 2013) 

An SBS/RS applies a number of shuttles (vehicles) and two non-passing lifts – a storage 

lift and a retrieval lift – for each aisle. In traditional SBS/RS, each tier is deployed with a dedicated 

shuttle (tier-captive), thus the number of shuttles is no longer configurable once the rack 

dimensions are determined. Such designs are effective in situations that the demand scenarios are 

less uncertain. Another type of SBS/RS is called tier-to-tier SBS/RS, where shuttles are transferred 

between tiers when needed by an additional aisle-captive shuttle lift. In this research, the design 

configuration methodology and operational control strategy for both tier-captive and tier-to-tier 

SBS/RS are studied. 

Just like all other types of automated warehouse systems, the operations in both types of 

SBS/RS-based warehouse system can be described as: 1) storage operations, by which specific 

SKUs stored in container units (totes, bins, etc.) are delivered from system input terminals to 

specific storage locations (slots) in the rack; and 2) retrieval operations, by which specific SKUs 

stored in container units are accessed from specific slots in the rack and then delivered to system 

output terminals. However, unlike its traditional counterparts like crane-based automated storage 

and retrieval system (CBS/RS) in which a single automated mechanism takes care of all aspects 

of storage and retrieval operations, each S/R device in an SBS/RS aisle is only responsible for 

either the vertical parts (the lifts) or the horizontal parts (the shuttles) in storage and retrieval 



9 

services. The horizontal services are performed in parallel by multiple shuttles and are relatively 

decoupled from the vertical services, thus SBS/RS can potentially be more efficient and 

economical than many traditional S/R systems in high-speed demand environments – if designed 

and controlled properly. Moreover, in tier-to-tier SBS/RS the number of shuttles in each aisle is 

configurable, thus provides more flexibility in accommodating demand seasonality and reducing 

operational costs. 

A typical SBS/RS-based warehouse system consists of multiple SBS/RS aisles that 

interface with the encompassing systems like the work (pick) stations and conveyor network (see 

Figure 1.1). The aisles, workstations and conveyor network are subsystems of the larger warehouse 

system that need to be designed and configured with a holistic methodology so that to cost-

effectively fulfill the changing demands and controlled and coordinated in the operations so that 

to ensure efficient and sustainable performance of the storage and retrieval services. The design 

and configuration of SBS/RS requires precise and efficient performance estimation approaches for 

evaluating large numbers of design/configuration options. The development of operational control 

strategy involves clear identification of control decisions (storage assignment, task scheduling, 

etc.), and evaluation, integration and fine-tuning of control policies for different decisions.  

1.2 System Workflows 

Figure 1.2 shows how the devices within an SBS/RS aisle serve storage tasks and retrieval 

tasks. The aisle illustrated here is 2-deep, which means there are two storage rows in the z-axis on 

both sides of the aisle. Shuttles (autonomous vehicles) are responsible for horizontal movement 

for both storage tasks and retrieval tasks. A shuttle travels on rails on each tier, accesses storage 

locations of both depths using its arms, and each time carries no more than one tote. Two non-

passing tote lifts, namely the storage lift and retrieval lift, are elevators responsible for vertical 

movement for storage tasks and retrieval tasks, respectively. Each tote lift is a continuous elevator 

so that it may carry more than one tote within a tour. Moreover, in a tier-to-tier aisle the total 

number of shuttles is usually less than number of tiers, and there is a dedicated shuttle lift 

responsible for transferring shuttles between tiers when needed. In a tier-captive aisle, each tier 

has a captive shuttle and there is no shuttle lift. 
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1.2.1 Shuttle Operations 

The shuttle and shuttle lift operations are further explained in Figure 1.3. The input/output 

buffer conveyors on the left-most side of each tier are temporary stacking locations between shuttle 

(horizontal) services and tote lift (vertical) services. In a retrieval task, the service shuttle (shuttle.1) 

moves from its current column to the column of the tote’s slot, loads the tote, then moves to the 

output buffer on the tier, and finally unloads the tote to the buffer. The shuttle is then released, and 

the tote is waiting for the next phase of retrieval service provided by the retrieval lift. In a storage 

task, the tote to be stored is delivered to the input buffer conveyor through the first phase of storage 

service provided by the storage lift. The service shuttle (shuttle.2) then moves from its current 

column to the input buffer, loads the tote, then moves to the column of the tote’s target slot, and 

finally unloads the tote to slot. The shuttle is then released. In addition, for 2-deep aisles, a retrieval 

task from a 2-deep slot could be blocked by a tote stored at the slot’s neighboring 1-deep slot – in 

such cases, relocation of the blocker tote needs to be performed by the shuttle. 

 

Figure 1.2  Operations within a single aisle of a tier-to-tier SBS/RS 
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Figure 1.3  Shuttle Operations Illustration of a tier-to-tier SBS/RS 

In cases where there is no available shuttle to serve a storage task to a target tier or retrieval 

task from a target tier, shuttle tier-transfer operations must be conducted. First, a shuttle (shuttle.3) 

from another tier is selected and moves from its current column to transfer station at the right-most 

side of the tier. Then, the shuttle lift moves from its current tier to the shuttle’s tier, load the shuttle, 

then carries the shuttle to the target tier of the task, and finally unload the shuttle at the transfer 

station on the target tier. The shuttle lift is then released, and the shuttle proceed to serve the task.  

1.2.2 Tote Lift Operations 

Operations of the storage lift and retrieval lift are illustrated in Figure 1.4. The tote lifts can 

be either 1-capacity or multi-capacity depending on the technology applied – for the latter, the lifts 

can carry more than one tote at a time in each tour. In a storage task, the storage lift moves from 

its current tier to I/O floor to load the totes delivered by encompassing systems (e.g., conveyor 

system which delivers storage totes to the SBS/RS). Next, the lift moves to the target tiers of each 

storage totes, and finally unload the tote to the target tier’s input buffer. In a retrieval task, the 

retrieval lift moves from its current tier to the tier of each retrieval tote and loads it, then moves to 

the I/O floor and finally unloads the tote.  
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Figure 1.4  Tote Lift Operations Illustration of a tier-to-tier SBS/RS 

1.3 Design and Control Decision Makings in SBS/RS-based 

Warehouses 

1.3.1 Indicators for Evaluating Design and Control Decisions 

For an AS/R System, critical performance indicators include travel time per request, 

number of requests handled per time period, total time required to handle a certain number of 

requests, waiting times of cranes of the AS/RS, waiting times of products to be stored/retrieved, 

and number of requests waiting to be stored/retrieved (Roodbergen and Vis, 2009). In this research, 

the major indicators of SBS/RS based warehouse system are summarized as: 

Costs, which include the building costs of the rack aisles and aisle-captive lifts, the 

deployment costs of the shuttles, and the operational costs due to control strategies. 

Throughput of the system is defined by the maximum number of customer orders the 

system can fulfill per unit time. The system becomes unstable when its throughput cannot meet 

the target demand environment. 
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Responsiveness of the system, which is measured by the cycle time of storage/retrieval 

requests, consist of both the service times of the S/R devices and the waiting times for device 

services. 

The total required storage capacity is usually determined by the demand patterns of the 

expected application environment. In order to meet the storage capacity requirement, large 

numbers of design and technology options involving aisle numbers, rack dimensions and depths, 

tier-captive/tier-to-tier configurations, etc. are up for selection, while from which only one best 

design will be selected to fulfill the costs, throughput and responsiveness goals of the demand 

requirements and constraints of the application environments. In addition, the design of the 

SBS/RS usually must be considered together with the design of the encompassing systems and 

subject to the overall distribution/manufacturing processes. 

Although the system’s throughput and responsiveness performance primarily depend on 

system design and configuration, there is always room for further improvement through wise 

application of operational control approaches. Those approaches include storage assignment 

policies, device scheduling policies, and order dispatching policies, etc., each representing one 

aspect of control decisions. Those control approaches are expected to be integrated systematically 

and respond dynamically to demand changes so that to ensure efficient, sustainable, and robust 

system performance. 

1.3.2 Design and Configuration Decisions 

Each SBS/RS aisle has multi-tier storage racks on both sides and will be configured with 

its own set of S/R devices. These devices include one storage lift and one retrieval lift that handle 

the vertical inbound and outbound movements of totes to/from the SBS/RS, multiple shuttles that 

move horizontally in the aisle direction, and (in tier-to-tier configurations) one shuttle lift that 

transports shuttles between tiers. During the conceptual design phase, design parameters of the 

SBS/RS are determined. At first, the total required storage capacity is determined based on 

estimation of the future demands of the application environment, and decision is made between 

the tier-captive and tier-to-tier technology options. Tier-to-tier aisles are usually more expensive 

in initial investments due to the additional shuttle lift and the shuttles designed for tier-transfer 

mechanisms but allows the decision-maker to flexibly reconfigure shuttle deployment facing 

future demand changes so that to reduce operational costs. Then, based on the storage capacity 
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requirements and slot dimension requirements, the number of aisles, as well as the number of tiers 

on the y-axis (thus the rack height) and the number of columns/bays on the x-axis (thus the rack 

length) each aisle, need to be determined. In addition, the rack depth on the z-axis needs to be 

decided for each aisle: comparing to 1-deep rack designs, 2-deep rack designs provide higher 

storage density but usually longer average service time due to the required relocation efforts. The 

layout of the warehouse space is the main constraint to those decisions, while the locations of 

encompassing systems and patterns of their processes could also play significant roles. Usually, 

each aisle has identical numbers of tiers and columns, however irregular aisle designs may be 

applied depending on the requirements of the application environment.  

The incomplete knowledge of the demand scenario – not only the randomness of the 

demand in terms of throughput and responsiveness, but also the uncertainties with demand patterns, 

order structures, and SKU-level interdependencies – further complicate the design and 

configuration problem. Tier-to-tier SBS/RS’s flexibility in changing shuttle quantities allows 

better response to demand changes. However, sensitivity analysis involving various demand 

forecasts is still necessary, in which shuttle deployment decisions need to be evaluated together 

with operational control strategies under different scenarios. Because the design parameters and 

decisions may yield large search spaces of design candidates, a precise and efficient analytical 

methodology is necessary for candidates’ initial evaluation and screening. 

1.3.3 Operational Control Decisions 

To fully utilize the S/R devices and improve service performance, different control 

approaches need to be developed and evaluated by simulation or analytical techniques, integrated 

systematically in a larger control strategy framework, and response dynamically to incoming 

demands and system states. Based on our literature review (Chapter 2) and communications with 

our industry partners, we define three major types of operational control policies for SBS/RS:  

1. Order Dispatching, which determines how demand orders for SKUs are decomposed into tasks, 

as well as the timing of releasing those tasks to different S/R devices. Depending on the 

application environment, additional complexities like order due date requirements and pick-up 

precedence constraints may be introduced. Failure in dispatching orders may lead to long 

waiting times and poor utilization of S/R devices.   
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2. Storage Assignment, which determines the storage positions for each incoming storage tote. A 

storage assignment approach may be realized through either static rules based on SKU 

characteristics, or dynamic policies based on the current device and inventory states, or a 

combination of both aspects. In 2-deep aisles, relocation decisions can also be viewed as 

variations of storage assignment decisions. Storage assignment/relocation decisions not only 

affect the current storage/relocation services but also the future retrieval services. Good storage 

assignment approaches are designed to reduce unnecessary device movements and improve 

the system’s long-term efficiency in a robust way. 

3. Device Scheduling, which determines the sequence or priority that each S/R device uses to 

serve existing tasks. For tote lifts and shuttles, each device can be viewed as operating 

following its own task schedule determined by the scheduling approaches. Design options and 

constraints involving rack depths, tote lift capacities, I/O buffer capacities, etc. bring additional 

complexities for the scheduling approaches.  Moreover, for tier-to-tier systems two-degree 

decisions are made for tier-transfer services because both the target tiers and the shuttle 

allocation need to be selected. Good scheduling approaches are expected to create device 

schedules that improve the overall system performance, considering the direct and indirect 

interactions between the horizontal and vertical service processes, and adaptive to stochastic 

and changing demands. 

Generally speaking, order dispatching is more of a managerial-level decision (e.g., at the 

Warehouse Management System level) and subject to the application environment, the device 

scheduling decisions are more execution-level decisions (e.g. at the Warehouse Execution System 

level), and the storage assignment decisions are somewhere in between. In this research, the control 

strategy development mainly focuses on the latter two types of control decisions. Other control 

aspects include dwell policies which determine each S/R device’s action when it completed a 

service, entrance control of buffer conveyors, emergent task rules, etc. It is notable that, the control 

aspects mentioned above are correlated in implementation, while also subject to system design and 

demand scenario characteristics. Thus, the control approaches may need to be customized to 

demand patterns (e.g., SKU assortment) and updated based on the demand changes (e.g., SKU 

seasonality).  
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1.3.4 Interdependency of the Decisions 

The control decisions are highly correlated, while also largely affected by demand patterns 

as well as system design and configuration decisions. Recognizing the multi-stage nature of 

SBS/RS processes, we identify the critical design and control decision factors and illustrate the 

interdependencies between those factors in Figure 1.5, where important dependencies among those 

are denoted and highlighted. 

 

Figure 1.5  Key factors and decision-makings of SBS/RS-based warehouse design configuration 

and control strategy development 

1.4 Research Methodology 

The design configuration and operational control of SBS/RS are two closely related aspects, 

and both are highly dependent on the demand characteristics of the application environment. Our 

study aims to provide a comprehensive set of approaches from the system conceptual design phase 

to operational control practices to systematically improve the overall performance in different 
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application areas and under stochastic and changing demands. The objectives of this study can be 

concluded as follows: 

1) Simulation Model Design and Development 

In Chapter 3, an animated, data-generated and data-driven simulation model is built to 

support development of both the design and configuration methodology and operational control 

strategy of SBS/RS-based warehouse systems. The simulation model enables detailed analysis of 

different system configurations and technology options including tier-captive and tier-to-tier, 

multi-deep rack designs, multi-capacity lifts, etc., and provides visualized tracking of accurately 

simulated service processes of the S/R devices and performance evaluation under configurable 

demand scenarios in forms of stochastic task arrival process. In the following chapters, the 

development of the conceptual design methodology and the operational control strategy are highly 

dependent on the Monte Carlo experiments based on the simulation model. From the design 

perspective, the simulation model cross-validates the analytical model to facilitate the design 

methodology development. From the control perspective, various aspects of operational control 

strategy can be customized, evaluated, and fine-tuned to accommodate to different demand 

scenario assumptions, so that to facilitate the control strategy development. 

2) System Design System Design, Configuration and Performance Analysis 

In Chapter 4, a general analytical approach is established to support the SBS/RS conceptual 

design. A comprehensive travel time model based on queuing network analysis is developed to 

capture critical aspects from the system design and operational control perspectives. Based on the 

travel time model, a precise and efficient three-stage iterative analytical approach is proposed. In 

this approach, key parameters in SBS/RS design and configuration are identified, and critical 

variables describing stochastic demand scenarios are abstracted and integrated to the mathematical 

analysis. Design candidates – described by design parameters including numbers of aisles, tiers, 

columns, rack depth, and number of shuttles – are evaluated and screened, in order to find the best 

design for the given application environment described by demand variables including 

distributions of inter-arrival times of storage tasks and retrieval tasks as well as the inventory level 

(rack utilization) assumptions. System performance under evaluation is indicated by system 

throughput and task responsiveness (cycle times). Then, based on both the design parameters and 

demand/operational variables defined above, a queuing network model is developed to describe 
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the system and estimate performance. Various design options including tier-captive configurations 

and tier-to-tier configurations, multi-deep racks, and multi-unit tote lifts are accommodated in the 

model. For all these design options, work patterns of different types of S/R devices and their 

correlations are analyzed under a general framework.  

One important observation from this research is that the expected performance of 

operational control also needs to be estimated during the conceptual design phase. This is due to 

the process complexity caused by both the demand pattern and the S/R device operations. The in-

depth attempts integrating demand-level and operational-level factors in configuration design 

phase is one important novelty this research is expected to bring. Finally, the travel time model is 

validated by Monte-Carlo experiments with the simulation model. The validation results for both 

throughput and responsiveness estimates are satisfactory for both tier-captive and tier-to-tier 

configurations.  

Through systematically and rapidly screening alternative system configurations with 

sufficient estimation preciseness, our analytical approach narrows down the search scope for 

detailed evaluation and further operational control strategy development. Thus, the proposed 

design and configuration methodology is expected to contribute to the body of knowledge of the 

automated warehouse research and provide useful and significant insights for industrial 

practitioners. 

3) Operational Control Strategy Development 

In Chapter 5, operational control strategies are studied aiming at optimizing the throughput 

and responsiveness performance of SBS/RS. Two types of control policies – storage assignment 

and device scheduling – are further explored. Both the short-term effects and long-term effects of 

the control policies are be considered.  

Both mathematical programming (MP) techniques and dynamic dispatching (DD) 

approaches are explored to provide in-depth analysis of the control decisions and improve the 

overall performance of the control policies. The control strategy development is an incremental 

procedure starting from simple assumptions for system details and demand complexity. The 

control decisions are abstracted and formulated in MP optimization problems and augmented step-

by-step along with the assumptions. DD approaches are continuously developed and evaluated by 
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studying the benchmark MP solutions and systematically and fine-tuned through simulation 

experiments. Storage assignment policies that accommodate different demand assumptions, and 

device scheduling policies that adapt tier-captive and tier-to-tier systems, are proposed.  

The evaluation and validation of the control approaches are performed continuously using 

simulation experiments. We observe from simulation experiments that the proposed control 

strategy is computationally efficient, adaptive to various system design/configurations and demand 

scenario assumptions and improves the system performance significantly. Finally, an operational 

control strategy framework that systematically integrates the control policies is developed and 

illustrated in detailed charts and pseudocode for practical implementation. In addition, the time 

estimates from and updated by the control algorithms are expected to provide useful information 

for coordinating the encompassing subsystems in the larger warehouse system. 

1.5 Summary 

Due to the variety, stochasticity, complexity, and timing requirements brought by the rising 

e-commerce, coherent and systematic decision-making methodologies concerning both design and 

control aspects of automated warehousing systems are needed to improve the overall performance 

of warehousing systems. By using separate vertical and horizontal robotic S/R devices, Shuttle-

based Storage and Retrieval System (SBS/RS) technology shows great potential in improving 

warehousing system efficiency. In addition, the flexibility of shuttle deployment decision enables 

better response to varying demands.  

To improve the throughput and responsiveness performance, cost-effectiveness, and 

robustness of SBS/RS-based warehouse, a comprehensive methodology that facilitates system 

design configuration and control strategy integration in a valid, systematic, and consistent manner 

is proposed. By exploring research approaches involving analytical modeling, simulation 

modeling, mathematical programming, dynamic dispatching, and statistical analysis, etc., we 

expect our work to provide useful insights to industrial practitioners and contribute to the body of 

knowledge as well.  
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Chapter 2 Literature Review 

2.1 Automated Storage and Retrieval System (AS/RS) 

Warehouses, as well as production and distribution centers worldwide, have been applying 

Automated Storage and Retrieval System technologies since 1950s (Roodbergen and Vis, 2009). 

An Automated Storage and Retrieval System (AS/RS) is a combination of equipment and controls 

that handle, store, and retrieve materials as needed with precision, accuracy, and speed under a 

defined degree of automation (Material Handling Industry, 2020). Most types of AS/RSs consist 

two parts: the racks in which products/materials are stored, and the automated handling devices 

that execute storage and retrieval operations from/to encompassing systems – for example, picker 

workstations or production systems. AS/RSs are fully automated goods-to-person order-picking 

systems. Compared to their non-automated counterparts, AS/RSs provide lower labor costs, higher 

space utilization, better accuracy, and lower error rates. 

In a recent survey research by Boysen et al. (2019), the authors pointed out four important 

aspects of new generation warehousing requirements in e-commerce area: small orders, large 

assortment, tight delivery schedules, and varying workloads. Warehousing operations, 

especially order-picking, are labor-intensive material handling operations. For more than half 

century, computer-directed AS/RS technologies have been proven particularly successful in large-

scale warehousing applications. On the other hand, facing increasing challenges for dynamic 

demands, cost reduction, and throughput and responsiveness requirements, AS/RS technologies 

have been evolving into various branches, and each branch led to lots of research into all aspects 

on system design and configuration methodologies as well as operational control strategies.  

The earliest type of AS/RS, Crane-based AS/RS, uses automated cranes with a load/unload 

shuttle as the only mechanism to access slots in rectangular racks and perform pick up or drop off 

operations. The storage racks are divided into aisles, and each aisle is installed with one crane 

(aisle-captive). The crane travel in such AS/RS follows Chebyshev pattern (travels on horizontal 

and vertical directions simultaneously), and all waiting storage/retrieval tasks cannot be started 

until the crane is released from its current task(s). A typical AS/RS is illustrated in Figure 2.1. 
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2.1.1 Design and Configuration of AS/RS 

As the application environment of an AS/RS is typically highly dynamic and turbulent, the 

operational demand for the AS/RS is usually subject to stochasticity, uncertainty, and seasonality. 

To improve system performance and reduce investment costs, important design and configuration 

decision makings need to be made during the initial system conceptualization phase. In order to 

fulfill system requirements characterized by storage capacity, throughput, response time, etc., 

designers must decide the numbers of aisles, tiers (levels), columns, depth, and locations of 

input/output stations and so on for the AS/RS. Additional decisions may be made for different 

AS/RS variations.  

Analytical modeling based on travel time analysis, as well as simulation modeling, are the 

two major categories of approaches to evaluate AS/RS performance and thus guide system design 

and configuration. In early research by Hausman et al. (1976) and Graves et al. (1977), both 

continuous representations and discrete procedures are developed to establish AS/RS travel-time 

models which provide good approximation under specific assumptions. Bozer and White (1984) 

developed travel time models for AS/R machines and considered alternative I/O locations. A 

review research focusing on AS/RS travel-time models is conducted by Sarker and Babu (1995). 

Malmborg (2001) proposed a rule of thumb heuristics to guide design and configuration of crane-

based AS/RS. In a research by Gagliardi et al. (2012), various models for unit-load AS/RS – 

including both dynamic simulation-based ones and steady-state travel-time-based ones – are 

reviewed. The authors pointed out the limitations of analytical models due to the strict assumptions 

required, while also pointed out the limitations of simulation models as they are hardly 

generalizable. 
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Figure 2.1 A typical AS/RS (Heragu et al., 2011) 

2.1.2 Operational Control of AS/RS 

A large number of research works have been conducted to develop AS/RS (Automated 

Storage and Retrieval System) operational control strategies to study control problems involving 

the storage assignment of products, the interleaving and dwell-point positioning of the S/R 

machine, the sequencing of tasks, and the batching of orders, etc. Simulation modeling techniques 

are widely applied in those works to evaluate the performance of the control strategies.  

Hausman et al. (1976) compared the operating performance of four storage assignment 

rules – random storage, closest-open-location storage, class-based storage, and full turnover-based 

storage. Their work is also one of the first to consider request sequencing. Graves et al. (1977) 

compared the operating performance of alternative storage assignment / interleaving policies. 

Mandatory interleaving rules including First-Come-First-Serve (FCFS) and class-based 

prioritization rules are studied. Schwarz et al. (1978) used simulation to evaluate AS/RS storage 

assignment rules and interleaving rules under stochastic conditions. Bozer and White (1984) 
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examined various dwell point policies. Han et al. (1987) studied retrieval sequencing in AS/RS to 

improve system throughput, in which both analytical modeling and simulation technique is applied 

to evaluate sequencing rules. Two approaches for sequencing storage and retrieval requests, wave 

sequencing and dynamic sequencing, are proposed. Linn and Wysk (1987) developed a simulation 

model to analyze different control procedures of an AS/RS, considering effects of different product 

mix and seasonal demand trends. Eben-Chaime (1992) suggested a dynamic nearest-neighbor 

heuristic which outperformed the block-sequencing strategy in non-deterministic environments. In 

the review research by Sarker and Babu (1995), AS/RS travel time models for different command-

cycle operations are developed for both single-shuttle and double-shuttle AS/R machines, and 

impacts of retrieval sequencing and order batching are discussed. An optimal AS/RS routing 

algorithm under dedicated storage policy is proposed by Gademann (1999). A set of storage and 

retrieval requests is assumed as given beforehand and no new requests come in during operation 

(block sequencing). The author formulated the sequencing problem as a Transportation Problem 

which can be solved in polynomial time. Van Den Berg and Gademann (2000) conducted a 

simulation study to evaluate for types of policies and rules: storage assignment, request selection, 

open location selection, and urgency rules. Boysen and Stephan (2016) presented a novel 

classification scheme for single-crane scheduling problem, in which varieties of AS/RS layout, 

order characteristics and objective function are included in their classification. Order 

characteristics are defined in terms of kind of requests, information availability, release dates, 

deadline, storage positions, and precedence relations. 

2.1.3 Variations of AS/RS 

Ever since the introduction of the first aisle-captive crane-based AS/RS, continuous 

innovations based on the original design have been invented to better meet requirements under 

different circumstances: some enabled the cranes moving across aisles (moveable-aisle AS/RS), 

thus reduced costs as fewer cranes are needed; some increased capacity of the L/U shuttle on crane 

(multi-shuttle crane) and proposed specific scheduling methods; some developed rotating racks 

(carousels) to reduce task cycles; some increased storage depth on z-axis (double-deep rack) to 

improve storage density. Each successful innovation further contributes to the body of knowledge 

and benefits the industries. Roodbergen and Vis (2009) conducted a comprehensive review of 
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AS/RS classifications and provided good insights on both system design aspects and operational 

control aspects (Figure 2.2).  

 

Figure 2.2 Classifications of various AS/RS system options (Roodbergen and Vis, 2009) 

In order to meet the increasingly versatile demands posed by the rising of e-commerce, 

practitioners and researchers have taken one step further in redesigning the S/R mechanisms. 

Instead of using a single type of device (the crane) to perform all the movements and L/U processes, 

AS/RSs based on collaborative service provided by multiple S/R devices are developed. In such 

systems, S/R operations may be performed in multiple stages, possibly through collaboration 

between multiple types of S/R robotics. Transaction rates in such system are usually higher than 

traditional crane-based AS/RSs. Moreover, unlike the crane based AS/RSs in which the cranes are 

most likely unchangeable after the initial construction, S/R robotics here may be expandable and 

easily added or decreased according to current demands. Such flexibility benefits the industries 

with better cost-effectiveness when facing varying demands and unexpected changes. In addition, 

system robustness is improved in case that failure of a single device does not necessarily lead to 

the suspension of the entire system. Azadeh et al. (2019) reviewed the recent development of 

various types of robotized and automated warehouse systems and discussed critical issues 

involving both system design aspects and operational control aspects. Hamzaoui et al. (2021) 

studied three types of AS/RS: bi-directional flow-rack, multi-aisle, and mobile-rack, and 

developed efficient optimization method based on dominance properties for system design. 
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2.2 Autonomous Vehicle Storage and Retrieval System (AVS/RS) 

Autonomous Vehicle Storage and Retrieval Systems (AVS/RS), the main topic of this 

research, represent one of the most preeminent innovations among all AS/RS variations. AVS/RSs 

are also called Multi-layer Shuttle Storage and Retrieval Systems. Ever since its first 

conceptualization by Malmborg (2002), AVS/RS has gained vast research interests from 

practitioners. An AVS/RS is characterized by horizontally operating vehicles sharing a fixed 

number of lifts for vertical movement (Malmborg, 2002). Compared with its traditional 

counterparts like crane-based automated storage and retrieval system (CBS/RS), AVS/RSs provide 

users more flexibility in system design and asset configuration by allowing the designer to change 

the number of vehicles operating in storage racks when demand changes. Just like all innovative 

efforts made since the introduction of AS/RS, variations to further improve system performance 

and reduce costs are studied. Malmborg (2003) further studied the interleaving dynamics of 

AVS/RS operations based on state equation model. Two configurations of AVS/RS are defined, 

namely tier-captive and tier-to-tier (Heragu et al., 2009, Marchet et al., 2013). Unlike the tier-

captive configuration where each tier has one vehicle, in the tier-to-tier configuration vehicles ride 

lifts to move between tiers, and thus less number of vehicles are needed and costs are reduced. On 

the other hand, tier-captive configuration offers better throughput responsiveness performance as 

more vehicle resources are deployed. Hu et al. (2005) introduced and analyzed split-platform 

storage and retrieval system (SP-AS/RS), in which one vertical platform and N horizontal 

platforms serve N tiers of an AS/RS rack. Carlo and Vis (2012) introduced a variation to AVS/RS 

and named it shuttle-based storage and retrieval system (SBS/RS), which applies tier-captive 

vehicles in most cases and two non-passing lifts and buffer conveyors are used. Ning et al. (2016) 

studied a multi-elevator tier-captive SBS/RS design, in which the number of elevators (lifts) can 

be adjusted in system design. 

2.2.1 Alternative Designs in AVS/RS Category 

This research mainly focuses on AVS/RS designs in which each aisle has its own storage 

lift, retrieval lift, shuttles (vehicles), shuttle (vehicle) lift, and two I/O buffer conveyors are used 

on each tier. Thus, shuttles and all lifts are aisle-captive – the term Shuttle-based Storage and 

Retrieval System (SBS/RS) is used for such designs in the rest of this research. The storage lift 

and retrieval lift are installed at the same side of the aisle and interact with the encompassing 
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system (typically the conveyor system which delivers storage totes and takes away the retrieval 

tote). The shuttle lift, however, is installed on the other side, and only transfers vehicles from tier 

to tier when needed, and thus does not interact with other systems. However, it is necessary to 

mention that this is not the only design stereotype using separate vertical and horizontal S/R 

devices. Terminologies for similar devices or processes may also be different in those designs. 

Moreover, the S/R task patterns and thus cycle time models in those designs can be different. 

AVS/RS with Cross-aisle Vehicles 

In the first AVS/RS design introduced (Malmborg, 2002), vehicles are designed to travel 

along the x-axis on the aisles, and the z-axis on the cross-aisles (Figure 2.3, Figure 2.4), thus any 

vehicle is able to access any storage position in the system. Vehicles travel along end-of-aisle rails 

when transferring between aisles. For vertical movements, there is only one type of vehicle lift 

that carries a vehicle to/from the I/O at the floor level to pick up or drop off the product. Thus, a 

vehicle always travels with the lift in every storage/retrieval task – with the exception that S/R 

tasks at the floor level are processed by the vehicle alone. The number of vehicles is configurable, 

while normally no more than one vehicle is deployed to the same tier of all aisles in order to avoid 

collisions. The number of lift(s) is also a design decision depending on system throughput 

requirement. Due to this movement pattern, I/O buffers on each tier are not needed. All buffered 

loads and retrieval requests are “pooled” in a single queue. Such system is especially suitable for 

rack configurations where there is a large number of shallow storage aisles and provides good cost-

effectiveness when the tasks are less time critical. However, the operational control of this system 

could be difficult due to its complexity caused by various interaction effects (e.g., vehicle-lift 

interactions, blocking effects within aisles, etc.) in the system.  
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Figure 2.3 Illustration of AVS/RS (Malmborg, 2002) 

 

 

Figure 2.4 AVS/RS movement (Roy et al., 2012) 

Shuttle-based Storage and Retrieval System (SBS/RS) 

A SBS/RS design applies a number of shuttles (vehicles) and two non-passing lifts – a 

storage lift and a retrieval lift – for each aisle. Different from the original AVS/RS, in SBS/RS 

both the lifts and shuttles are aisle-captive, thus no cross-aisle operations are performed (Figure 

2.5). Also, unlike in the original AVS/RS design, vehicles in SBS/RS are not carried by the S/R 

lifts from/to I/O tiers. Instead, separate I/O buffers are installed for lift-shuttle interactions on each 

tier of each aisle. In traditional SBS/RS each tier is deployed with a dedicated shuttle (tier-captive), 
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thus the number of shuttles is no longer configurable once the rack dimensions are determined. 

Such designs are effective in situations where the demand scenarios are less uncertain. Another 

type of SBS/RS applies tier-to-tier techniques, where shuttles are transferred between tiers when 

needed by an aisle-captive shuttle lift. SBS/RS is also named as Multi-shuttle S/R System by many 

researchers (Carlo and Vis, 2012) and manufacturers. 

A Multi-elevator / multi-lift SBS/RS is a variation from typical SBS/RS (Figure 2.6). It is 

also tier-captive. Different from a typical SBS/RS in which lifts are installed on one side of the 

aisle, in multi-lift SBS/RS lifts are installed at different positions in the rack along the aisle 

direction. The multi-lift design balances the workload of shuttle carriers, while also introduces 

more design alternatives in terms of lift number and positions. This system is first studied by Ning 

et al. (2016). 

 

 

Figure 2.5 Front view of a single aisle of SBS/RS (Dematic Multishuttle 2 Whitepaper, 2013) 
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Figure 2.6 Difference between traditional SBS/RS and multi-elevator SBS/RS (Ning et al., 2016) 

Split-platform AS/RS 

In SP-AS/RS, one vertical platform and N horizontal platforms serve N tiers of an AS/RS 

rack (see Figure 2.7). This concept is similar to AVS/RS which applies separate lifts and vehicles 

to perform operations. The major difference is that, in an SP-AS/RS only the load is transferred 

from one platform to the other and allows for the other platform to perform the next stage of 

operation. The same tiers in two adjacent racks share a horizontal platform. This system is first 

introduced by Hu et al. (2005). 

 

Figure 2.7 Split-platform AS/RS (Hu et al. 2005) 
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2.2.2 Design and Control of AVS/RS (and variations) 

Design and control methods to optimize the performance of the AVS/RS are widely 

discussed, where analysis based on queuing theory are typically conducted. Most of those works 

focus more on the design/conceptualization aspect and made assumptions like FCFS in S/R device 

services, random storage, and simple order structures and stock keeping unit (SKU)-level 

characteristics to simplify the problem. Although AVS/RS studied by those researchers are not 

necessarily the same as ours (as discussed previously), their research methodologies and insights 

are certainly important and enlightening our study.  

Just like in AS/RS researches, analytical modeling approaches, including queuing models, 

state equation models, and optimization models, etc., are applied by many researchers in AVS/RS 

configuration design. The advantage of analytical modeling is to quickly evaluate among 

numerous alternative system configurations and offer sufficiently accurate performance estimates, 

before looking into more detailed aspects like operational control strategies. Various researches 

have been conducted in developing more accurate, efficient, and comprehensive analytical models. 

In the first conceptualization research by Malmborg (2002), the portions of single cycle (SC) 

commands versus dual cycle (DC) commands are highlighted as critical inputs in system 

performance evaluation. As mentioned before, the AVS/RS studied there has one single lift 

responsible for transporting both the vehicles and the totes in each aisle. This is different from the 

system studied in our research, as three different types of lifts are used for storage, retrieval, and 

tier-to-tier operations, respectively. In the later research by Malmborg (2003), a state equation 

model is proposed to estimate the proportion of dual command S/R cycles using opportunistic 

interleaving in AVS/RSs. “Opportunistic interleaving” in this context means dynamically 

combining storage and retrieval transactions into dual cycles to reduce the average vehicle time 

per transaction. The model extended the conceptual tools developed from the author’s previous 

work (Malmborg, 2002) which require an estimate of this proportion to predict system utilization 

and throughput capacity. Kuo et al. (2007) developed a computationally efficient cycle time model 

for AVS/RS, based on which vehicle utilization and system cost are estimated with good accuracy. 

Based on analysis of device movement elements, 12 service scenarios occurring under realistic 

operating assumptions are formulated in the model. Although the queuing approximations 

embedded in the model exhibit substantial errors, the model is sufficient for system 
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conceptualization studies and thus narrows the range of design profiles warranting more extensive 

simulation-based evaluation and validation. Kuo et al. (2008) further developed a cycle-time 

model based on queuing network approach for AVS/RS using class-based storage policies to guide 

system design conceptualization. The model is illustrated through various realistic case problems. 

Based on in-depth analysis of SC and DC movement elements in AVS/RS operations, Fukunari 

and Malmborg (2008) developed an efficient cycle time model for AVS/RS and compared its 

performance with crane-based AS/RS. An iterative estimation procedure is developed to estimate 

proportion of DC cycles. Simulation based validation shows that their model is adequately accurate 

for system conceptualization. Later, Fukunari and Malmborg (2009) estimated the system 

throughput and resource utilizations based on a network queuing approach, which overcame the 

computational disadvantages of the state equation model and the inflexibility of the nested queuing 

model and thus provide effective screening of candidate design profiles prior to more extensive 

simulation based validation. Zhang et al. (2009) proposed approximation strategies for transaction 

waiting times for AVS/RS with non-Poison arrival rates and non-exponential service times. Their 

procedure is illustrated through realistically sized problems and showed good analytical simplicity 

and computational efficiency. Hu et al. (2010) proposed load shuffling algorithms for split-

platform AS/RS to relocate items to minimize response times. Heragu et al. (2011) developed 

effective travel time models for the vehicles and lifts as in AVS/RS and also for cranes as in 

traditional AS/RS, based on which system performance with different lift machines configurations 

are analyzed. Both systems are modeled as open queuing networks (OQN), which enables quick 

evaluation of alternative configurations of the two systems. Roy et al. (2012) modeled a Cross-

aisle AVS/RS as a multi-class semi-open queuing network with class switching. Design variations 

including different cross-aisle zoning plans, number of L/U points, and vehicle assignment rules 

(selection priority to different types of transactions) are evaluated. To estimate performance 

measures of tier-captive SBS/RS, Marchet et al. (2012) presented an analytical model based on 

open queuing network approach. They pointed out that the transaction cycle time, specifically the 

waiting time, is the most critical component to be evaluated. They also highlighted the design 

complexity due to the combined effect of the kinematic behavior of vehicles and lifts, and the 

creation of queues deriving from the interaction of those two types of devices. Ekren et al. (2012) 

and Ekren et al. (2014) modeled AVS/RS as a semi-open queuing network model after defined all 

possible scenarios for storage and retrieval transactions and their probabilities, and applied a 
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matrix-geometric method for analyzing it. Lerher et al. (2015a) proposed an analytical travel time 

model for SBS/RS. Device operating characteristics like acceleration and maximum velocity are 

considered in their analytical model. Lerher (2016) studied travel time model for double-deep 

SBS/RS, in which two lanes of storage locations are on both side of the aisle. The rearranging of 

blocking totes (in case that a retrieval from the second lane is blocked by a tote stored on the first 

lane) is considered in the model. Ekren (2017) provided a graph-based solution, by which critical 

SBS/RS performance indicators under various design concepts are visualized and compared. 

Borovinšek et al. (2017) presented a multi-objective optimization model for SBS/RS design. Their 

model used Non-Dominated Sorting Genetic Algorithm II (NSGA II) genetic algorithm. Average 

throughput time, energy consumption, and total investment cost, are the three objective to be 

minimized. Ha and Chae (2019) developed a decision model to determine number of shuttles of 

the SBS/RS. Ekren (2020) presented a multi-objective optimization solution procedure to reduce 

cycle time and energy consumption of AVS/RS. 

Modeling and Simulation techniques are applied by many researchers to support AS/RS 

design and control decision making. Ekren (2011) built simulation model for an AVS/RS using 

commercial simulation software Arena. Performance indicators including device utilizations, 

queue lengths, waiting times, etc., as well total cost, are measured. Simulation experiments are 

conducted to evaluate system performance under various configurations. Marchet et al. (2013) 

investigated main design trade-offs for a tier-captive AVS/RS using simulation, and developed a 

comprehensive design framework. Their simulation results suggested fewer and longer aisles in 

order to reduce investment costs, and suggested to target at device utilization level of 90% so that 

waiting time is acceptable. Lerher et al. (2015b) presented simulation analysis for SBS/RS and 

explored the effects of various design assumptions. Tappia et al. (2017) developed queuing models 

which can handle both specialized and generic shuttles and both continuous and discrete lifts of 

multitier shuttle-based compact storage systems, and validated their models using simulation. Ning 

et al. (2016) developed simulation model for a multi-elevator SBS/RS and conducted a specific 

case study to evaluate alternative designs with different number of elevators. Akpunar et al. (2017) 

applied simulation techniques to explore energy minimum AVS/RS warehouse design providing 

maximum utilization of resources in the system. Ekren (2020) developed a simulation-based 

experimental design for SBS/RS warehouse design by considering energy related performance 

metrics.  
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2.3 Coordinated Control of Warehouse Order Fulfillment System 

As picker-to-part systems, automated warehousing systems are closely associated with 

downstream order picking processes through which pickup orders are finalized. The bins (totes) 

containing SKUs requested by an order are first retrieved from the storage system, then unloaded 

to a conveyor system and delivered to picking operators. The bin to be picked then stops in front 

of the picking operator and is processed by the operator according to order information (typically 

updated to the operator by the warehouse management system). After the pickup, the tote may be 

returned to storage by the conveyor system if it is not empty or may leave the system otherwise. 

The replenishment of SKUs (and possibly order containers) is another important process to be 

fulfilled by the conveyor system and the storage system.  

2.3.1 System Structure and Design 

As summarized by Boysen et al. (2019), an order fulfillment system based on picking 

workstations consists three types of element systems: 

 Storage system: the AS/RS where bins containing SKUs are stored; 

 Conveyor System: the intermediate system which delivers requested bins between 

storage system(s) and station(s); 

 Picking workstation: in which requested SKUs are withdrawn by a human picker from 

delivered storage bins to fulfill customer orders. The withdrawn SKUs are normally 

placed into empty containers (order bins), according to SKU types and quantities 

requested by customer orders. 

Depending on the application environments, different warehousing systems face different 

order structures characterized by order size, SKU variety, and time constraints, etc. Multiple 

picking workstations and complex conveyor design are common in today’s automated 

warehousing systems. Thus, the storage system must be wisely configured considering the 

functionalities and performances of the material handling systems encompassing it in conceptual 

design phase, and also coordinated with inbound and outbound flows from/to those encompassing 

systems during operational control. The true performance of an AS/RS is typically influenced by 

the other material handling systems in the warehouse as are the other systems’ performances 

influenced by the AS/RS (Roodbergen and Vis, 2009). In many applications in manufacturing 
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environment, the AS/RSs are responsible to transfer and sequence production materials between 

machines. In typical e-commerce applications, the AS/RSs need to coordinate with complex 

transfer, pick-up, sorting and packaging processes to fulfill various customer needs. Thus, the 

design and control of AS/RSs need to be addressed together with the design and control of those 

encompassing systems. Amato et al. (2005) suggested a control architecture for management of 

automated warehouses. De Koster et al. (2007) investigated different methodologies of design and 

control of warehouse order picking, multiple aspects the systems are discussed for both picker-to-

order and order-to-picker systems.  

2.3.2 Design and Control of Order Picking Workstations 

Order picking workstations are able to handle a wide spectrum of SKUs and provide high 

service rate up to 1000 order lines per hour (De Koster et al., 2007). Studies have been conducted 

to improve workstation performance from design and control aspects. Andriansyah et al. (2010) 

proposed a simulation modeling approach to study order picking workstation performance in 

automated warehouses. The order picking workstation is viewed as a polling system which 

interacts with the storage system through multiple buffer conveyors and a return conveyor. The 

authors then developed an aggregate model which provides satisfactory accuracy predicting both 

tote and order flow times. Based on the same system configuration, Claeys et al. (2016) conducted 

queuing analysis to compute stochastic bounds for order flow times. Andriansyah et al. (2014) 

studied design and control of a workstation which retrieves SKUs from an AS/RS in a larger order-

picking system. The workstation receives multiple orders simultaneously, and four picking policies 

are designed and evaluated using simulation techniques. They also proposed a novel design of 

carousal-type conveyor system to avoid deadlocks between different types of bins.  

2.3.3 Synchronization of Warehousing Workflows to Improve Overall Performance 

Instead of focusing on the storage systems in isolation, improving the overall performance 

of the warehouse system has attracted increasing number of researchers. Most of those researches 

assume the storage system is either crane-based AS/RS or not explicitly specified. Eben-Chaime 

(1996) proposed an integrative simulation model in which warehouse activities interact with other 

functions of the total system. In the author’s model, the storage requests are viewed as dependent 

to prior retrieval requests to present the pickup-return process. A hybrid command mode is 

proposed which outperformed dual-cycle mode under this condition. Chincholkar and Chetty 
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(1996) applied simultaneous job scheduling to an AS/RS system and machines in a flexible 

manufacturing system using Petri Nets and the Taguchi method. Van Gils et al. (2018) reviewed 

and classified order picking planning problems – both tactical ones (zoning, storage assignment, 

etc.) and operational ones (batching, job assignment, etc.) – in picker-to-part systems. They 

pointed out that optimizing those problems sequentially may yield a suboptimal overall warehouse 

performance due to their interactions, and thus suggested development of good policy 

combinations. In a study by Füßler and Boysen (2019), the authors aimed at concerted processing 

of picking orders and storage bins delivered from the crane-based AS/RS to picking workstations. 

They pointed out that a careful synchronization of delivered and demand SKUs can reduce the 

workload of the AS/RS, and formulated an optimization problem and develop a heuristic solution 

procedure.  

On the other hand, research specifically focusing on synchronization/coordination of 

AVS/RS-based warehousing systems also continues. Tappia et al. (2019) investigated the 

interactions between downstream picking systems and alternative upstream storage systems – 

crane-based AS/RS versus SBS/RS (tier-captive). They developed generic semi-open queuing 

models for both alternative designs, and proved that the SBS/RS yields more savings in investment 

costs comparing to the traditional AS/RS as less storage aisles and picking stations are needed, 

paired a lower total throughput time at a given order arrival rate. Li et al. (2019) built simulation 

model for a warehouse system consists of subsystems including multi-zone AVS/RS, pickup 

workstations, and conveyor network. They studied the interactions between those subsystems and 

made coordinated control attempts to improve overall system efficiency and reduce blocking. 

2.4 Summary 

Although the SBS/RS in our study is quite different from most of the AS/RSs introduced 

in this chapter in terms of design and operation, the abundant research methodologies and 

approaches proposed in the AS/RS-related literature provide us important insights and valuable 

experience. We attempt to identify critical factors which are in common between our system and 

AS/RS in general, and discuss about the insights we learned. More specifically, they are: 

1) Requirement identification and system configuration in conceptual design. The 

major requirement is typically the storage capacity determined based on demand 
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evaluation, and (potentially) constrained by facility layout. System configuration 

parameters including number of aisles/tiers/columns, etc. are decided and usually 

unchangeable in the future. Analytical methods developing travel-time models are 

mainstream approaches which rapidly evaluate thousands of alternative system 

configurations and select the one which is expected to best fulfill the design objectives 

(throughput, cycle time, and cost, etc.). However, as system complexity and demand 

uncertainty increase, the accuracy of analytical models is reduced. Simulation 

modeling enables further analysis of the candidate configurations with better accuracy 

and traceability. As a simulation model is typically costly to build and often lacks 

generality, simulation approaches should be better conducted after a smaller search 

space is obtained through “rough-cut” evaluations by analytical approaches. 

2) Use of control strategies to improve operational performance. As the demand is 

typically stochastic and usually dynamic, control approaches need to be implemented 

to continuously ensure system’s operational performance and robustness. Those control 

strategies involves multiple aspects of system control, and typical approaches are top-

down optimization algorithms (e.g. wave/block sequencing of requests), bottom-up 

dynamic policies (e.g. request prioritization rules), as well as static rules (e.g. class-

based storage, dwell policies of S/R device). Simulation approaches have become more 

and more significant in evaluating the overall performance of a combination of various 

control aspects. On the other hand, analytical approaches are still important here to 

provide mathematical validity of the control approaches, and offer insights to system 

design phase. 

3) Synchronization with encompassing subsystems. Researchers have long recognized 

AS/RS’s design and control complexity due to interactions with encompassing 

subsystems, and approaching to improve the overall performance of the larger 

warehousing system. Design and control of pick workstations and conveyor systems in 

AS/RS-based systems are studied. Researches focusing on control coordination 

between all the subsystems, as well as the effects of different AS/RS application 

environments (e.g. distribution center vs. production center) are still very few. 

As a growing research area, most AVS/RS studies till now focused on either introduction 

of new designs or/and approaches for design configuration. The various analytical approaches and 
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simulation studies proposed by those researchers highlighted the unique operational characteristics 

of AVS/RS and provided excellent insights, which significantly enlightened our study. On the 

other hand, although many AVS/RS variations are introduced and studied by those forerunning 

researchers, we did not find much researches specifically focusing on the tier-to-tier SBS/RS as 

introduced in our study. The majority of related researches are about the AVS/RS with single-type 

lift(s) and cross-aisle vehicles. For the SBS/RS section, researches till now mostly focused on tier-

captive designs. Furthermore, researches on operational control of AVS/RS are still quite few – 

not to mention the SBS/RS subset and the synchronization of the larger warehousing system based 

on AVS/RS. We view all those as our research opportunities to contribute the body of knowledge 

by developing a comprehensive methodology to guide the design, control, and coordination of 

SBS/RS warehousing systems. 
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Chapter 3 SBS/RS Simulation Model 

Design and Development 

3.1 Overview 

A data-driven and data-generated simulation model is built to support development of both 

the design and configuration methodology and operational control strategy of SBS/RS-based 

warehouse systems. The operations in the SBS/RS including device movements, acceleration and 

loads/unloads, as well as the dynamics in task, tote and SKU (stock keeping unit) information, etc., 

are simulated precisely using a hybrid simulation methodology based on Discrete Event 

Simulation (DES) and Agent-Based Simulation (ABS) techniques. The simulation models are 

implemented in AnyLogic (Grigoryev 2015), which is a commercial multimethod simulation 

modeling tool. The model simulates the systems’ demand scenarios either described by stochastic 

task arrival process based on user-configurable order structure and SKU-level characteristics 

parameters, or described by predefined task sets and inventory information. For the design and 

configuration aspect, the simulation model is auto-generated with predefined input data of design 

parameters including the numbers of aisles, tiers, columns, depths, shuttles deployed, etc., as well 

as physical parameters including rack dimensions, device velocities and accelerations, load/unload 

time, etc. With the custom system objects and modeling mechanisms we developed using 

AnyLogic, the simulation model is generated automatically given the input data. For the 

operational control aspect, control decisions involving storage assignment as well as task 

scheduling for different devices, are identified and implemented in the simulation model. 

Moreover, various user-configurable control algorithms are developed for different control 

decisions. Finally, the simulation model provides a solid experiment platform to simulate 

combinations of demand scenarios, designs and configurations, and control strategies, to evaluate 

system performance by critical indicators presented in numerical and graphical forms. 
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3.2 Simulation Modeling Approach 

To develop the simulation model, an iterative three-step methodology that includes 

Domain Modeling, Conceptual Modeling and Simulation Modeling is applied. Domain and 

Conceptual Models are important prerequisites for the simulation modeling approaches. The 

Domain model describes the problem domain and the conceptual model further describes the 

domain in language-independent simulation terms. As illustrated in Figure 3.1, system 

characteristics are identified and developed into simulation forms gradually in each step of the 

methodology, and reworks of the previous steps are performed whenever inconsistencies and 

discrepancies are observed. This iterative modeling methodology ensures the simulation model is 

a valid and acceptable abstraction of the practical SBS/RS-based warehouse systems to be 

analyzed and controlled under typical design and operational environments. As the system 

characteristics identified through the Domain and Conceptual Modeling steps are consistent with 

the system introduction and problem statements in the previous chapters, we will not discuss those 

steps in detail here.  

 

Figure 3.1 The Iterative Domain-Conceptual-Simulation Modeling Methodology 
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In the simulation models, 3D animations and various output statistics are developed and 

used to facilitate the analysis of the systems’ dynamics as well as the verification of the control 

approaches. 

 

Figure 3.2 SBS/RS-based warehouse system simulation model (built with AnyLogic) 

3.2.1 Modeling System Objects and Processes 

The simulation model is auto generated with predefined input data of design parameters 

including the numbers of aisles, tiers, columns, depths, shuttles deployed, etc., as well as physical 

parameters including rack dimensions, device velocities and accelerations, load/unload time, etc. 

Discrete Event Simulation (DES) techniques are selected as the main methodology for developing 

the simulation model, while some Agent-Based Simulation (ABS) techniques are also applied for 

modeling the low-level device-task interactions. Each aisle of the SBS/RS is modeled as an 

individual service agent that contains a set of S/R devices, a rack storage area which is a set of 

slots indicated by ሺ𝑥, 𝑦, 𝑧ሻ coordinates, and the roller-conveyor input/output buffers on different 

tiers. The aisle’s S/R devices including shuttles, storage lift, retrieval lift and shuttle lift are 

modeled as agents each has specified logics for providing storage and retrieval services, while the 

device service times are simulated under the DES framework. Generally speaking, the service 

times of all devices can be described in two aspects: the times needed for load/unload operations, 

and the rectilinear travel times. Given a service process described as a set of movement, load and 

unload commands, device service times are simulated deterministically under the DES framework: 
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the devices’ L/U times are modeled as constant parameters, and the rectilinear travel time between 

every two locations 𝑖 and 𝑗 (either horizontal or vertical) with distance 𝑙 are computed precisely 

given the device’s velocity 𝑣, acceleration 𝑎 and deceleration 𝑑 as follows: 
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The device travel times of all feasible paths (either horizontal or vertical) are pre-computed based 

on the input data during model generation. 

Totes are defined as the basic entities in the simulation model, either stored in slots or 

transported by the S/R devices. The initial tote inventories in the aisles’ rack storage areas are 

either auto-generated according to rack utilization parameter settings, or predefined in the input 

data. Tasks represents the minimum demand entities describing the information required for the 

S/R devices to provide services and the corresponding totes. A task can either be a storage task or 

a retrieval task, both require services from more than one S/R device. Moreover, under control 

assumptions where SKU-level characteristics are considered, SKU information is modeled as 

parameters/variables related to totes and tasks. Table 3.1 summarizes the major system objects and 

their processes identified for simulation modeling. Details of the service processes and control 

strategy options will be introduced in Section 3.2.3 and further discussed in Chapter 4 and Chapter 

5. 

Table 3.1 Major Objects in Simulation Modeling 

Object Primary 
Parameters 

Primary 
Variables 

Primary  
Processes / Interactions 

Tote  SKU type & qty. 
Current [Task] 

The basic entity of all process flows in 
simulation 

Aisle Rack size: 𝑋, 𝑌, 𝑍; 
Shuttles deployed: 𝐽 

Rack utilization; 
SKUs inventory 

൜ 
𝐽 ൌ 𝑋,   𝑇𝑖𝑒𝑟 െ 𝑐𝑎𝑝𝑡𝑖𝑣𝑒

𝐽 ൏ 𝑋,   𝑇𝑖𝑒𝑟 െ 𝑡𝑜 െ 𝑡𝑖𝑒𝑟 

Slot Locationሾ𝑥, 𝑦, 𝑧ሿ State ∈ {Idle; 
Occupied[Tote]; 
Reserved[Task]; 
etc.} 

In 2-deep aisles (𝑍 ൌ 4), a slot in deep 
positions (𝑧 ൌ 3 𝑜𝑟 4) cannot be 
accessed if its neighboring slot (𝑧 ൌ
1 𝑜𝑟 2) is occupied 
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Input  
Buffer (IB) 

Tierሾ𝑥ሿ, Capacity Totes {[Tote]} Blocks future storage lift processes if IB 
is full 

Output 
Buffer (OB) 

Tierሾ𝑥ሿ, Capacity Totes {[Tote]} Blocks future shuttle retrieval processes 
if OB is full 

Task Type ∈ {S, R}; 
Tote [Tote]; 
Target [Slot]; 
Arrival time; 
Due date; 
Precedence[Task] 

Waiting Time; 
Cycle Time; 
 
State ∈ {V, SL, 
RL, IB, OB, etc.} 

Tasks are realization of system 
demands, arrive to the aisles either in 
stochastic patterns or as defined by input 
data 

Shuttle (V) Velocity & 
acceleration; 
L/U times 

Location ሾ𝑥, 𝑦ሿ; 
Current [Task] 

Storage (S): 
[To IB→Load→To target→Unload] 
Retrieval (R): 
[To target→Load→To OB→Unload] 
2-deep Relocation (Re): 
[To blocker→Load→To target→Unload] 

Storage  
Lift (SL) 

Velocity & 
acceleration; 
L/U times; 
Tour capacity 

Location ሾ𝑥ሿ; 
Current {[Task]} 

Storage (S): 
[To I/O→Load→{To target→Unload}], 
“{}” indicates multiple tasks in the same 
tour 

Retrieval Lift 
(RL) 

Velocity & 
acceleration; 
L/U times; 
Tour capacity 

Location ሾ𝑥ሿ; 
Current {[Task]} 

Retrieval (R): 
[{To target→Load}→To I/O→Unload], 
“{}” indicates multiple tasks in the same 
tour 

Shuttle  
Lift (VL) 

Velocity & 
acceleration; 
L/U times 

Location ሾ𝑥ሿ; 
Current [Task] 
Current [Shuttle] 

Tier-transfer (TT): 
[To shuttle→Load→To target→Unload] 

 

3.2.2 Modeling Demand Scenarios 

Demand scenarios are defined as the task arrival patterns to the aisles, either described by 

stochastic task arrival process based on a user-configurable order structure and SKU-level 

characteristics/parameters, or described by task sets and inventory information predefined in the 

input data. In the former case, the arrival processes of storage tasks and retrieval tasks to each aisle 

are defined in terms of inter-arrival time (IAT) distributions. The IAT distributions are defined as 

general random, non-negative distributions, each described by distribution mean (𝜇) and standard 

deviation (𝜎). When the focus is analyzing the systems’ steady-state performances, the arrival rates 

of storage tasks and retrieval tasks must be equal, thus there is 𝜇ௌ ൌ 𝜇ோ ൌ 1 λ⁄  in which λ is the 

average task arrival rate for both task types (λ ൌ λௌ ൌ λோ ). On the other hand, there is not 

necessarily 𝜎ௌ ൌ 𝜎ோ because 𝜎ௌ and 𝜎ோ are measuring the variance of two different processes at 

the upstream of the system: 𝜎ௌ is corresponding to the patterns that the storage totes are delivered 
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to the aisles (e.g. from conveyor networks or/and docking areas), while 𝜎ோ is corresponding to the 

patterns that retrieval requests are released to the aisles (e.g. by higher-level systems like MRP). 

In this research, we use lognormal distributions to approximate the general distributions of the 

IATs, because the lognormal distribution can be described by the mean and standard deviation to 

flexibly describe different variances of storage and retrieval IATs, and only gives positive values. 

In the simulation model, each of the two general distributions are approximated as an individual 

lognormal distribution 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙ሺ𝜇ே, 𝜎ேሻ, where 𝜇ே, 𝜎ே are the mean and standard deviation of 

the included normal distribution, computed given the objective 𝜇, 𝜎 as follows: 

𝜇ே ൌ 2 lnሺ𝜇ሻ െ 0.5 lnሺ𝜎ଶ ൅ 𝜇ଶሻ 

𝜎ே ൌ ඥെ2 lnሺ𝜇ሻ ൅ lnሺ𝜎ଶ ൅ 𝜇ଶሻ 

As introduced in Chapter 1, the performances of the SBS/RS are measured by the 

throughput indicator (maximum sustainable task arrival rates of both storage and retrieval tasks) 

and the responsiveness indicator (task cycle times and tardiness, etc.). With some specific control 

strategies, the performance of a same SBS/RS design and configuration could vary significantly 

under different demand scenarios. For example, Closest-Open-Location policy (COL) is a classic 

storage assignment approach studied in this research which always assign storage totes to closest 

available slots to the I/O buffers – when COL is applied, the task service times are largely affected 

by rack utilization (number of occupied slots divided by total slots, denoted as 𝜌). Obviously, the 

dynamics of rack utilization of each aisle is subject to the arrival patterns of storage and retrieval 

tasks. Modeling these patterns as individual IAT distributions does not present the typical 

operational environment of the SBS/RSs, because in practical operations, correlations exist 

between the arrivals of storage tasks and retrieval tasks. However, such correlations are very 

difficult to identify precisely because they are usually originated both from the nature of the 

SBS/RSs’ application environments (e.g., those correlation could be very different between E-

commerce applications and manufacturing applications), and from the configurations and 

performances of the SBS/RSs’ upstream systems (e.g., the conveyor networks, MRP). 

Because this research is targeted at developing universal design and control methodologies 

for SBS/RS-based warehouse systems, we are not trying to explore all the possible situations in 
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various customized application environments. Instead, three alternative solutions are proposed and 

implemented in the simulation model to address such complexity: 

1) No explicit modeling of SKUs, while approximating the storage-retrieval correlation 

by controlling the numbers of storages and retrievals within specific time windows; 

2) Model SKUs explicitly, and model the demand and replenishment patterns as random 

processes based on SKU types; 

3) For manufacturing environment applications. Based on 2, model manufacturing orders 

as sets of retrieval tasks with precedence constraints. Model the additional pickup and 

return-to-stock patterns upstream and downstream of the SBS/RS as random processes 

for each order. 

In this research, we primarily focus on the first solution. The storage-retrieval correlation 

complexity is addressed by assuming an expected rack utilization 𝜌, as well as a time window 𝑇 

so that the total number of storage arrivals equals the total number of retrieval arrivals within each 

period of length 𝑇. The SKU-level characteristics of tasks and totes are not modelled explicitly, 

while to some extent 𝑇 can be interpreted as the expected replenishment lead time of overall SKUs 

(in term of totes). The initial rack utilization is set to 𝜌. The task arrival times of each duration are 

predetermined at the start of the duration as follows: 

WHEN (𝑡𝑖𝑚𝑒 ൌ 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 

𝑁 ൌ 𝑇𝜆  # Number of arrivals to be generated within period for each task type 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑁 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒𝑠 𝒕𝑺 ൌ ൣ𝑡ଵ
ௌ, 𝑡ଶ

ௌ … 𝑡ே
ௌ ൧ 𝑓𝑟𝑜𝑚 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙ሺ𝜆, 𝜎ௌሻ  

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑁 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒𝑠 𝒕𝑹 ൌ  ሾ𝑡ଵ
ோ, 𝑡ଶ

ோ … 𝑡ே
ோሿ 𝑓𝑟𝑜𝑚 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙ሺ𝜆, 𝜎ோሻ  

𝑆𝑐𝑎𝑙𝑒 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒𝑠: ቊ
𝑡௜

ௌ ൌ 𝑡௜
ௌ ൈ 𝑇 𝑡ே

ௌ⁄

𝑡௜
ோ ൌ 𝑡௜

ோ ൈ 𝑇 𝑡ே
ோ⁄

, ∀𝑖 ∈ ሾ1 … 𝑁ሿ  

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝒕𝑺, 𝒕𝑹  

Using this approach, the rack utilization equals 𝜌 at the end of each time window, and the resulting 

IAT distributions of storages and retrievals are approximately the same with their original 

lognormal distributions. Because the rack capacity of an SBS/RS aisle is typically large, based on 

multiple simulation experiments we found it reasonable to view the resulting time-average of 𝜌 ൎ

𝜌 with this approach. It is noticeable that both 𝜌 and 𝑇 are simulation inputs specified by the 
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decision maker to present the “typical” demand scenario(s) and/or “routine” warehousing 

operations that the decision maker interested in. Generally speaking, the variation of 𝜌 is larger 

when the rack capacity 𝑋𝑌𝑍 is smaller, and also larger when either the IAT standard deviations 𝜎ௌ 

and 𝜎ோ or the time window 𝑇 gets larger. 

3.2.3 Simulating Operational Control Decisions 

Operational control decisions involving storage assignment as well as task scheduling for 

different devices, are identified in Table 3.2 and implemented in the simulation model as illustrated 

in Figure 3.3. Generally speaking, all these control decisions can be interpreted as “select one from 

multiple candidates”. Those control decisions can be made either based on bottom-up approaches 

like dynamic dispatching rules, or through top-down approaches like mathematical programming 

– or even some heuristics that combine the advantages of both. The development and evaluation 

of the control strategies will be discussed in depth in Chapter 5. Moreover, for each control 

decision, various alternative and user-configurable control approaches are identified and 

implemented in the simulation model, as listed in Table 3.2.  

Table 3.2 Operational control decisions in an SBS/RS aisle 

Control Decision Selection Candidates Alternative Approach Examples 

D1:  
Storage 
Assignment 

Available {slots} in the aisle 
[select one slot for each storage 
task arrived to the aisle] 

 Pure Random Storage (PRS) 
 Closest Open Location (COL) 
 Consider horizontal distances 

only 
 Consider both horizontal and 

vertical distances 
 Prioritize 2-deep slots 

 By number of available slots on tiers 
(largest) 

 By input buffer sizes of target tiers 
(smallest) 

 By SKU characteristics 
 Predetermined zoning by SKU 

turn-over rates 
 By correlations of SKU-types 

D2:  
Retrieval Lift 
Scheduling 

Retrieval {tasks} that completed 
shuttle services and unloaded to 
the output buffers 
[select one task as the next task 
for retrieval lift service] 

 First Come First Serve (FCFS) 
 Closest to R.Lift’s current location 
 Earliest Due Date (EDD) 
 By output buffer sizes of target tiers 

(largest) 
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D3:  
Shuttle 
Scheduling 

Storage {tasks} that completed 
storage lift services and 
unloaded to the input buffers; 
Retrieval {tasks} arrived to the 
aisle. 
[select one task (either type) as 
the next task for shuttle service] 

 First Come First Serve (FCFS) 
 Closest to shuttle’s current location 
 Earliest Due Date (EDD) 
 Dual Cycle Interleaving (DC) 
 Makespan Minimization Heuristics 
 A* Search Algorithm 

D4:  
Relocation 
(for 2-deep racks) 

Available {slots} on the tier of 
each retrieval task arrived but 
blocked by a tote (blocker) in the 
neighboring slot. 
[select one slot for each blocker] 

 
 

(Similar with D4 except that the search 
scope is within one tier) 

D5:  
Tier-transfer 
(for tier-to-tier 
systems) 

1. {tiers} that have shuttle tasks 
but without shuttles 

2. {shuttles} that are idle 
[select one tier and one shuttle 
for each transfer-service] 

 By number of tasks on tiers (largest) 
 By expected shuttle travel times 

(smallest) 
 Resource Allocation Heuristics 
 P||C୫ୟ୶ Algorithm 

 

3.3 Model Verification and Validation 

Verification and validation (V&V) of the simulation model are performed using the 

aforementioned iterative Domain-Conceptual-Simulation modeling methodology. In simulation 

modeling, verification refers to the process of determining that a model implementation and its 

associated data accurately represent the developer's conceptual description and specifications, and 

validation refers to the process of determining the degree to which a simulation model and its 

associated data are an accurate representation of the real world from the perspective of the intended 

uses of the model. The verification of the simulation model is primarily based on various system 

performance statistics (either real-time or tally) collected by the model (Figure 3.4). Other model 

verification approaches, including code walk-throughs, visual verification using the model 

animations, and cross-verification with the queuing-based analytical model developed in Chapter 

4, where also performed continuously throughout the research. 

In addition, during the 18-month research project with our industry partner, the simulation 

model is continuously validated by our sponsors who manufacture SBS/RS products and provide 

automated warehousing solutions to their customers in various industries. The validation 

approaches in this research are primarily can be described in three aspects: 
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Figure 3.3 Implementation of the operational control decision in the simulation model 

1) System parameters. The physical parameters of the racks (both 1-deep and 2-deep) are valid 

presentations of the sponsors’ standard design criteria. Devices’ velocity, 

acceleration/deceleration and L/U time parameters are determined based on the actual device 

performances tested by the sponsors. Miscellaneous design factors, for examples the existence 

of maintenance floors (which makes the vertical distances between tiers non-uniform), and 

devices’ response delays from the Warehouse Control System, and buffer conveyor capacities 

and speeds, are also considered in the simulation model according to the needs of the sponsors.  

2) Demand formulation. Although practical demand information from the sponsors’ customers 

is not accessible due to confidentiality reasons, our formulation of S/R tasks and IAT 
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distributions in Section 3.2.2 are validated by the sponsors as acceptable approximations of the 

practical operational environments. The analytical model developed in the conceptual design 

approach further cross-validated the simulation model – to be discussed in Chapter 4. 

Moreover, the simulation model can also take deterministic tasks (deterministic arrival times, 

and either predetermined storage assignment or not) described in spreadsheet format as model 

inputs to facilitate V&V. 

3) Device control. The general service processes and the control decisions are validated by the 

sponsors. The control algorithms are verified and validated through systematic development 

approaches based on both top-down approaches and bottom-up approaches – to be introduced 

in Chapter 5. Besides the five control decisions for scheduling and storage assignment 

identified in Section 3.2.3, other control rules (e.g., device dwelling policies) are also 

implemented as options in simulation although they are not the primary focus of this research. 

 

Figure 3.4 System performance statistics in the simulation model  
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It is noticeable that the model validation is an on-going task that accommodates the future 

requirements proposed by the sponsors and/or decision makers. For example, industrial users can 

continue this process incorporating their own proprietary/confidential data and 

design/configuration criteria, and explore design and control methodologies for their own business 

in further research. 

3.4 Using the Simulation Model 

According to a survey conducted by Smith (2003), the application of simulation technology 

in manufacturing systems can be classified into three classes: 1) for system design that involves 

long-term decisions and the analysis of design alternatives; 2) for system operations that involve 

short-term decisions including operations planning and scheduling, real-time control, operating 

policies, and performance analysis; and 3) simulation language/software package development. 

The simulation model in this research is primarily developed to support the first two classes: the 

system design decisions (conceptual design) and the system operation decisions (control strategy 

development) of SBS/RS warehouses, as illustrated in Figure 3.5. These two topics will be 

explored in detail in Chapter 4 and Chapter 5, respectively. On the other hand, although the 

simulation model is developed on a specific commercial simulation software (AnyLogic), the 

modeling approaches applied here are generalized and most of the model logic components are 

coded in Java language. Thus, the simulation techniques here are considered as compatible with 

different simulation platforms, feasible for software packaging, and potentially expandable to 

similar warehousing systems of larger scopes or/and applying different AS/R technologies. 

3.5  Summary 

The generic, data-generated simulation model was developed according to an iterative 

Domain Modeling, Conceptual Modeling and Simulation Modeling methodology. System objects 

and service processes, demand scenarios, as well as control decisions are modeled, verified and 

validated. Demand scenarios are modeled based on random inter-arrival-time distributions of 

storage and retrieval tasks, and alternative modeling solutions are proposed to handle the storage-

retrieval correlations and SKU-level characteristics. Five types of control decisions – storage 

assignment, retrieval lift scheduling, shuttles in-tier scheduling, relocation, and tier-transfer – are 

identified. Multiple alternative control approaches are developed for each control decision and 
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implemented in the simulation model. The simulation model is expected to support both the 

development of conceptual design methodology and the development of operational control 

strategies of SBS/RS warehouses, to be further discussed in Chapter 4 and Chapter 5, respectively. 

Finally, the simulation techniques applied are viewed as potentially expandable to similar 

warehousing systems of larger scopes or/and applying different AS/R technologies. 

 

Figure 3.5 Using the Simulation Model for Conceptual Design and Control Strategy 

Development 
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Chapter 4 System Design, 

Configuration and Performance 

Analysis 

4.1 Overview 

In this chapter, a general analytical approach is established to support the conceptual design 

of Shuttle-based Storage and Retrieval Systems (SBS/RSs). A comprehensive travel time model 

based on queuing network analysis is developed to capture critical aspects from both the system 

design and operational control perspectives. Based on the travel time model, a precise and efficient 

three-stage iterative analytical approach is proposed. In this approach, design candidates – 

described by parameters including numbers of aisles, tiers, columns, rack depth, and shuttles – are 

evaluated and screened, in order to find the best design(s) for the given application environment 

described by demand variables including distributions of inter-arrival times of storage tasks and 

retrieval tasks as well as the inventory levels (rack utilizations). System performance under 

evaluation is indicated by system throughput and task responsiveness (cycle times). Various design 

options including tier-captive configurations and tier-to-tier configurations, multi-deep racks, and 

multi-unit tote lifts are accommodated in our approach. For all these design options, work patterns 

of different types of S/R devices and their correlations are analyzed under a general framework. 

Moreover, effects of operational control strategies including storage assignment policies and 

device scheduling policies are incorporated in our approach. Finally, the travel time model is 

validated by Monte-Carlo experiments with an animated, data-driven and data-generated 

simulation model that we developed (described in Chapter 3). The most complicated system 

configurations researched in this chapter are aisles with 2-deep racks (thus tote relocation 

operations are considered), 2-unit tote lifts (thus tours with different sizes are considered), Closest 

Open Location policy for storage assignment, and Dual Cycle policy for shuttle scheduling. 

Various demand levels, rack sizes, rack aspect ratios and shuttle deployment rates are examined 
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in the validation experiment. Even for such complicated systems, the validation results are still 

satisfactory: for tier-captive configurations, the analytical approach provides 98.7% and 98.0% 

precision on average with the throughput estimates and task cycle time estimates, respectively; for 

tier-to-tier configurations, the analytical approach provides 95.1% and 92.2% precision on average 

with the throughput estimates and task cycle time estimates, respectively. 

4.2 Key Factors in SBS/RS Performance Evaluation 

During the conceptual design phase of an SBS/RS-based warehousing system, the designer 

needs to determine the system configuration, which is characterized by the number of aisles, 

number of tiers, depths, as well as the number of shuttles to be deployed to each aisle. The target 

of conceptual design phase is to find the most cost-effective system configuration that satisfies the 

performance requirements under the expected operational environment, while also meeting other 

constraints like capacity requirements, layout requirements, maximum height, etc. 

The performance of an SBS/RS configuration is measured by its efficiency serving storage 

tasks and retrieval tasks. It is usually indicated by throughput, which is the maximum service rate 

of the tasks, and responsiveness, which is the cycle time of the tasks. Compared to the throughput 

indicator, the task responsiveness might be a secondary concern in warehousing applications. 

However, in production applications, timing could be critical in retrieving inventory products to 

the production line. 

An SBS/RS may have multiple aisles, interfacing with external systems like conveyor 

networks, pickup and/or packing workstations, etc. As each aisle of the SBS/RS has its own set of 

L/U devices that do not directly interfere with those in other aisles, each aisle can be analyzed 

independently, and the overall system performance can be viewed as an aggregation of each aisle’s 

performance under reasonable assumptions and/or approximations. As such, in this chapter, the 

research mainly focuses on analytical modeling of a single SBS/RS aisle. 

4.2.1 Demand Scenario Characteristics 

From the perspective of an individual SBS/RS aisle in a larger system, the aisle fulfills 

external demands by performing storage tasks and retrieval tasks. Thus, to evaluate an SBS/RS 

configuration for a target application environment, the demand scenario should be primarily 
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interpreted in terms of arrival patterns of storage/retrieval tasks. In our analytical modeling 

approach, such patterns are presented as random distributions of inter-arrival times. The task 

arrivals are not necessarily Poisson (exponential inter-arrival time). 

The range of total inventory levels is another important part of a demand scenario. Based 

on this, a target capacity is set to narrow the search space for configuration candidates. Also, the 

rack utilization range of each aisle is assumed, which is one significant input in estimating system’s 

throughput and responsive performance. 

Moreover, depending on the application environment, different demand scenarios may also 

have different requirements for the throughput and responsiveness of the system. Such 

requirements could be either interpreted as rigid constraints (e.g. minimum retrieval time 

requirement in the production line case) or as a weighed contribution to an overall cost-based 

objective function. 

Finally, SKU (stock keeping unit)-level characteristics may also be abstracted as model 

inputs to improve evaluation precision. For example, with a multi-deep rack aisle, SKU assortment 

could significantly impact the shuttles’ relocation workload. Low SKU assortment means totes 

containing same SKU types are more likely stored in neighboring deep slots, thus fewer relocation 

tasks are needed and the average service time is reduced. In this case, the system throughput will 

be underestimated if assuming unique SKU in each tote. 

4.2.2 Rack Dimensions and Device Characteristics 

In an SBS/RS aisle, horizontal and vertical L/U devices interact to perform storage and 

retrieval tasks, and each type of the devices could become the potential bottleneck to the system’s 

throughput. For tote lifts (the storage lift and the retrieval lift), their service rates are primarily 

limited by the height of the rack – the higher the rack, the longer the average travel time per task. 

Likewise, service rate of each shuttle is primarily limited by the length of the rack. However, the 

overall service rate of all shuttles is determined by both the length of the rack and the number of 

shuttles in the rack. In a tier-captive configuration, the number of shuttles is equal to the number 

of rack tiers. In a tier-to-tier configuration, the time needed for transferring shuttles between tiers 

must be considered when estimating/computing the total service time. The throughput of the aisle 

could be viewed as its service rate when either the shuttles or the lifts have reached a relatively 
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high utilization rate (e.g., 90%). Thus, the rack dimensions (including the number of shuttles 

deployed) determines the upper limit of the aisle’s throughput. 

Device performance characteristics, including velocities and load/unload durations of each 

type of the devices, are the basis of travel time computations. In this research, device 

accelerations/decelerations are also considered. Also, tier gaps and row gaps are not necessarily 

assumed to be uniform, which means the model can accommodate to irregular rack designs in 

which distances between adjacent tiers and distances between adjacent columns (i.e., “gaps”) vary. 

For multi-deep racks, the shuttle L/U time from/to different deep slots are handled differently. 

4.2.3 Control Strategy 

Control strategy is significant to the SBS/RS’s performance. To explore the true potential 

of a candidate system configuration, the expected effectiveness of the control strategy should be 

taken into consideration. In a “basic” SBS/RS aisle, shuttles are tier-captive thus no tier-transfer 

operations, tote lifts carry one tote in each tour, and the rack is single deep. Control is more 

complicated with tier-to-tier configurations or/and with tote lifts capable of carrying multiple totes 

in each tour, or/and with multi-deep racks in which relocation operations are needed to retrieve 

from deeper slots blocked by neighboring shallower slots. In general, the control strategy of an 

SBS/RS is categorized in terms of three aspects:  

1) Dispatching, which creates retrieval tasks according to higher-level customer demands or 

production requests. This control aspect is mostly depending on SKU-level characteristics 

of the application environment. Decisions need to be made when the target SKU type exists 

in multiple storage locations. Also, specific precedence constraints or/and due-date 

requirements may apply depending on the demand pattern. As this chapter mainly focus on 

developing a general analytical approach, the dispatching aspect is not discussed in depth 

here. 

2) Storage assignment, which creates storage tasks and determines target storage locations 

for the totes to be stored. Storage assignment is critical to system performance as it 

significantly impacts the device travel times. For example, in a long rack where shuttle 

service rate is the system’s bottleneck, a Closest Open Location (COL) type storage policy 

is in general more advantageous than Pure Random Storage (PRS) policy in reducing 
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shuttle travel time and thus improving both system throughput and task responsiveness. 

This is especially true when the average rack utilization is relatively low.  

3) Device scheduling, which determines the operation sequences for all types of devices in 

order to complete tasks. For example, just like in crane-based AS/RS, there is concept of 

Dual Cycle (DC) operations in SBS/RS: as the input/output locations on each tier are on 

the same side, it could be more efficient for each shuttle to serve the tasks in a retrieval-

storage-retrieval-storage…manner so that to reduce travel time. The complication here 

relative to a crane-based AS/RS is that multiple independent devices (lifts, shuttles) are 

required for each task rather than a single crane. 

4.2.4 Capital Expenditures 

The capital expenditures of each SBS/RS aisle consists of three major elements: the rack 

costs, the L/U device costs, and the software costs. The rack costs are mainly determined by rack 

dimensions. The tote lifts are aisle-captive thus mainly determined by the number of aisles. The 

issue is more complicated for the shuttles. With tier-captive configurations, the number of shuttles 

to be purchased for an aisle is equal to the number of tiers. With tier-to-tier configurations, the 

decision maker could expand the number of shuttles later if the demand grows, while extra initial 

investment needs to be made for the shuttle lift (which is aisle-captive). The computation of 

operational costs associated with the SBS/RS, including operator costs, energy consumption and 

maintenance costs, will not be considered in this chapter. 

4.3 Analytical Approach Framework 

Considering the variation of demand scenarios, the flexibility of design configurations, as 

well as the complexity of device service patterns and the corresponding control strategies, it is not 

practical to establish an analytical model for SBS/RS which is both generalized and also precise. 

Having the analytical model alone is not adequate in control strategy development aiming at 

improving system performance of particular designs under particular demand scenarios. On the 

other hand, our simulation model is capable of providing adequate precision in evaluating 

particular scenarios/designs/strategies. However, in the conceptual design phase, simulation 

modeling alone may not be practical considering the large search space of candidate design 

configurations. For each single aisle, number of tiers, number of columns, rack depth, and number 
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of vehicles (as in tier-to-tier system) are all decision variables, which implies a four-dimension 

search space. 

Hence, we propose a development procedure that combines an analytical approach and a 

simulation approach. A travel time model based on queuing analysis is developed to provide 

performance estimates for candidate designs. The first indicator is the system’s throughput, which 

is the system’s maximum sustainable service rate – in our approach, it is viewed as the task arrival 

rates (for both storage and retrieval tasks, which are assumed equal) when the utilization of one of 

the device types reaches a high level (e.g. 90%). The second indicator is the system’s 

responsiveness – in our approach, it is described by the average cycle time for each task type 

(storage, retrieval), where the cycle time of a task is defined as its total waiting time plus total 

service time of all its service stages in the system. Note that the average cycle times are estimated 

separately for the two task types, since the responsiveness requirements for storage and retrieval 

tasks could be very different depending on the application areas. Validated by Monte-Carlo 

simulation experiments, the travel time model provides good estimates of the system’s 

performance indicators under various assumptions regarding demand, design, and control strategy. 

Specifically, the characteristics of the travel time model can be described as follows: 

1. The aisle is viewed as a multi-stage queuing network with two independent arrival processes 

(storage tasks and retrieval tasks), each has arbitrary mean and variance of its inter-arrival time 

distribution;  

2. Applies to single aisle with arbitrary rack size parameters (number of tiers/columns, tier height, 

column width, etc.) and can accommodate irregular sized racks; 

3. Accommodates both PRS and COL in storage policy assumptions; 

4. Considers both DC and SC operations in shuttle service, where their occurrence probabilities 

𝜃஽ and 1 െ 𝜃஽ are estimated analytically; 

5. Accommodates both 1-deep racks and 2-deep racks – for the latter case, occurrence probability 

of relocation tasks 𝜃ோ is estimated analytically, and the relocation process is incorporated in 

analytical computation; 

6. Accommodates both tier-captive systems and tier-to-tier systems – for the latter case, 

occurrence probability of tier-transfer tasks 𝜃் is estimated analytically, and shuttle lift service 

and tier-transfer process are incorporated in analytical computation; 
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7. Accommodates multi-unit tote lifts; 

8. Incorporates device acceleration and deceleration effects. 

Based on various demand scenario assumptions, the analytical approach iteratively and 

systematically searches for design configuration candidates that are expected to satisfy the 

demand/space/budget requirements and estimates the candidates’ key performance indicators 

obtained from the travel time model. The search scope is thus narrowed down significantly for 

further control strategy development using simulation. The results from the travel time model can 

also be viewed as baselines of system performance for the decision maker to explore further design 

options (e.g. improve device travel speed). Note that the design and configuration of encompassing 

systems, e.g. conveyor network and work stations, are not discussed here. Finally, the analytical 

approach can also be applied during the operational phase, for example, the estimation results 

could be used as baselines or even inputs for control strategy development. 

4.3.1 Travel Time Model Formulation 

Table 4.1 lists the notation for the basic system elements. In the following sections, this 

notation will be used in combinations. For example, 𝑇ௌ
௏ indicates the average shuttle service time 

for storage tasks, and ሾ𝑆 െ 𝑇𝑇 െ 𝑅𝑒 െ 𝑅ሿ indicates a service sequence where a shuttle completes 

a storage task (𝑆), is then transferred to another tier (𝑇𝑇), relocates a blocker tote (𝑅𝑒) and finally 

serves a retrieval task (𝑅). Table 4.2 shows the input parameters and basic assumptions for the 

travel time model. The aisle’s rack capacity (total number of slots) can be computed as 𝑋 ൈ 𝑌 ൈ 𝑍, 

where 𝑋, 𝑌, 𝑍 are the numbers of tiers, columns, and slots per column, respectively. Each slot can 

be mapped as a three-dimensional index ሾ𝑥, 𝑦, 𝑧ሿ, where 𝑥 ∈ ሾ1, 𝑋ሿ, 𝑦 ∈ ሾ1, 𝑌ሿ, 𝑧 ∈ ሾ1, 𝑍ሿ.  The 

capacity requirement is the primary concern of warehousing system design, which is usually based 

on estimates of SKU-level demand scenarios – which is determined by SKU-level characteristics 

including the number of items per tote, demands, turn-over rates and seasonality, etc. The rack 

utilization of an SBS/RS aisle at a particular time instance is denoted as 𝜌 and defined as the 

number of occupied slots (number of totes in inventory) divided by the total number of rack slots. 

During system operation, the rack utilization 𝜌 of an SBS/RS aisle varies over time as it is subject 

to the inventory level of the warehouse – generally speaking, the higher the inventory level, the 

more totes in each aisle’s rack, and thus the higher 𝜌. In addition, 𝜌 varies over time based on the 

arrival patterns of storage and retrieval requests. Such patterns are specific to the configurations 
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and performances of higher level management decisions/systems (e.g. Material Requirement 

Planning, Manufacturing Execution Systems) as well as the upstream/downstream systems 

connected to the SBS/RS (e.g. conveyor networks). 

Table 4.1 System Elements Notation 

Notation Definition Notation Definition 

𝑆 Storage 𝑆𝐿 Storage Lift 

𝑅 Retrieval 𝑅𝐿 Retrieval Lift 

𝑅𝑒 Relocation 𝑇𝐿 Tote Lift (general, either SL or RL) 

𝑇𝑇  Tier-transfer 𝑉𝐿 Shuttle Lift (Vehicle Lift) 

𝑈 Device utilization 𝑊 Waiting Time 

𝑇 Service Time 𝐶𝑇 Cycle Time 

 

Task Arrival Assumptions 

The inflows and outflows of totes in the aisle’s rack storage are determined by the arrivals 

of storage and retrieval tasks. As introduced in the previous chapters, it is defined that each task 

(either type) is related to a single tote. Each tote is assumed to contain a unique SKU, thus each 

storage task is only related to a single and unique tote. The task arrival patterns of the storage and 

retrieval flows are important to the travel time computations. First of all, the system’s throughput 

is defined as the maximum sustainable task service rate. Secondly, the system’s responsiveness 

performance (in terms of task cycle times) considers of both the service times by the S/R devices 

and also the waiting times for device services, while the latter is largely affected by the variances 

of task inter-arrival times according to queuing theory. Finally, with specific control policies 

applied, system performance is subject to the dynamics of rack utilization (number of occupied 

slots divided by total slots, denoted as 𝜌) – which is determined by the correlations between storage 

arrivals and retrieval arrivals. For example, Closest-Open-Location policy (COL) is a classic 

storage assignment approach studied in this research which always assign storage totes to closest 

available slots to the I/O buffers on each tier – when COL is applied, higher rack utilization on 

each tier means longer expected shuttle service times for both storage tasks and retrieval tasks on 

this tier.  
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Essentially, the arrivals of retrieval and storage tasks to the SBS/RS, as well as the rack 

utilization dynamics, are subject to the SKUs’ demand and replenishment patterns at the 

warehouse system level. In other words, the task arrival patterns are determined by higher-level 

inventory control decisions external to the SBS/RS. As discussed in the previous chapter, it is not 

practical to explore all of such complexities with regard to task arrival patterns, not only because 

they are specific to the application environment but also because they may not be predicable at the 

design conceptualization phase. In this chapter, we are developing a generalized analytical 

methodology to provide performance estimation of the SBS/RS, based on which design candidates 

are evaluated for conceptual design purpose. For that purpose, proper simplification assumptions 

need to be made so that to decouple the aforementioned external complexities and the SBS/RS 

design and configuration evaluation. In the analytical approach, the total rack capacity requirement, 

the inter-arrival time (IAT) of tasks, as well as the dynamics of rack utilization, are assumed as 

inputs given beforehand. The task arrival patterns are formulated as general distributions of the 

inter-arrival times of both task type (storage and retrieval) to the aisle, defined as the arrival rate 𝜆 

(the inverse of average inter-arrival time) for both task types and standard deviations 𝜎ௌ and  𝜎ோ 

for storages and retrievals, respectively. The time-varying rack utilization of the aisle is described 

as a probability distribution function 𝐼ሺ𝜌ሻ to present the correlations between storage arrivals and 

retrieval arrivals. The determination of 𝐼ሺ𝜌ሻ will be further introduced in Section 4.4. The task 

arrival assumptions (IATs and 𝐼ሺ𝜌ሻ) are the basis for the queueing-network based analysis which 

is the core part of the travel time model – to be discussed in detail in Section 4.5. Finally, in this 

analytical approach it is assumed that no precedence constraints exist between storage or retrieval 

tasks (although precedence may be common for systems in production line applications, we view 

it as a control issue to be addressed with later using simulation-based control strategy 

development). 

Table 4.2 Input Parameters and assumptions of an SBS/RS Aisle 

Demand Scenario 

Notation Definition 

𝜆 Arrival rate of storage tasks = Arrival rate of retrieval tasks 

𝜎ௌ  Standard deviation of inter-arrival time of storage tasks 

𝜎ோ Standard deviation of inter-arrival time of retrieval tasks 

𝐼ሺ𝜌ሻ Probability distribution function of the aisle’s rack utilization 
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Task correlations:  
Inter-arrival times (IATs) of storage and retrieval tasks are assumed to be independent random 
distributions ሺ1 𝜆⁄ , 𝜎ௌሻ and ሺ1 𝜆⁄ , 𝜎ோሻ, respectively. Each storage/retrieval task is related to one 
single and unique tote, and not subject to precedence constraints with any other storage/retrieval 
task(s). The correlations between storage arrivals and retrieval arrivals are abstractly modeled 
using probability distribution 𝐼ሺ𝜌ሻ. 

Design and Configuration 

Notation Definition 

𝑋 Number of tiers 

𝑌 Number of columns in each tier 

𝑍 Number of slot locations in each column (ൌ 𝑑𝑒𝑝𝑡ℎ ൈ 2) 

𝐽 
Number of shuttles ൜

𝐽 ൌ 𝑋, 𝑡𝑖𝑒𝑟 െ 𝑐𝑎𝑝𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 𝐽 ൏ 𝑋, 𝑡𝑖𝑒𝑟 െ 𝑡𝑜 െ 𝑡𝑖𝑒𝑟 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

𝐾்௅ Capacity of tote lift 

𝜏௫ଵ,   ௫ଶ
்௅  Tote lift travel time from current tier 𝑥1 to target tier 𝑥2, where 𝑥1,  𝑥2 ∈ ሾ0,  𝑋ሿ 

(0 = Load point of storage lift / Unload point of retrieval lift) 

𝜏௫ଵ,   ௫ଶ
௏௅  (Tier-to-tier configuration) Shuttle lift travel time from current tier 𝑥1 to target tier 

𝑥2, where 𝑥1,  𝑥2 ∈ ሾ1,  𝑋ሿ 

𝜏௬ଵ,   ௬ଶ
௏  Shuttle travel time from current column 𝑦1 to target column 𝑦2, where 𝑦1,  𝑦2 ∈

ሾ0,  𝑌ሿ (0 = Load/unload point of I/O buffer on each tier) 

𝜔்௅ Tote lift load/unload time per tote 

𝜔௏௅ Shuttle lift load/unload time 

𝜔଴
௏ Shuttle load/unload time from/to I/O buffer 

𝜔௭
௏ Shuttle load/unload time from/to a slot of location 𝑧 ∈ ሾ1,  𝑍ሿ 

System boundaries:  
The load point of the storage lift (thus the entry point of the system) and the unload point of the 
retrieval lift (thus the exit point of the system) are both assumed to be unique 

Operational Control 

Notation Definition 

𝑀ௌ஺ Storage assignment mode within tier. 𝑀ௌ஺ ∈ ሾ𝐶𝑂𝐿, 𝑃𝑈𝑅ሿ 

𝑀஽஼ Shuttle dual-cycle mode within tier. 𝑀஽஼ ∈ ሾ𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒ሿ 

Scheduling policy: 
Each device is assumed to serve tasks available to it in first-come-first-serve (FCFS) pattern 
(additional rule for shuttles when 𝑀஽஼ ൌ 𝑇𝑟𝑢𝑒) 

Dwell-point policy:  
Each device stays at the point-of-service-completion (POSC) when it becomes idle 

Relocation policy:  
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With multi-depth rack, when a relocation service is required in order to retrieve a blocked tote, 
the target slot of the blocker tote to be relocated is selected based on the same criterion as the 
storage assignment policy 

Tier-to-tier policy:  
In tier-to-tier configuration, a tier-transfer service is started only when the following conditions 
are true: 

1. There exists at least one task whose target tier currently has no shuttle 
2. The shuttle lift is idle 
3. There exists at least one shuttle which is idle and there is no task can be started on its 

current tier 

 

Table 4.3  Computational Variables of an SBS/RS Aisle 

Notation Definition 
𝑃௫,௬,௭

ௌ  Probability a storage task is to slot ሾ𝑥, 𝑦, 𝑧ሿ  

𝑃௫,௬,௭
ோ  Probability a retrieved task is from slot ሾ𝑥, 𝑦, 𝑧ሿ  

𝑃௫,௬,௭
ோ௘ூ  Probability relocation is performed to slot ሾ𝑥, 𝑦, 𝑧ሿ in a retrieval task 

𝑃௫,௬,௭
ோ௘ை Probability relocation is performed from slot ሾ𝑥, 𝑦, 𝑧ሿ in a retrieval task 

𝜃஽ Ratio of occurrences of dual cycles in in-tier shuttle tasks (excl. tier-transfer tasks) 

𝜃ோ Ratio of occurrences of relocations over total retrieval tasks 

𝜃் Ratio of occurrences of tier-transfer tasks over total tasks 

 

Devices Travel Time Assumptions 

Devices travel between discrete nodes to perform tasks – the nodes are vertical tier 

locations for the lifts, and horizontal column locations for the shuttles. In our model, the device 

travel times between each pair of nodes are precomputed based on device velocity characteristics 

(maximum speed, acceleration/deceleration, etc.) and the distance between nodes, thus 

constructing a travel-time matrix for each device type. In regular-shape racks, the gaps between 

nodes are uniform – if devices are assumed with constant velocity or constant 

acceleration/deceleration, the travel times could also be presented in simpler, continuous forms (as 

illustrated in Section 3.2.1). However, here we choose to present travel times in such discrete, 

matrix forms and use them as direct inputs to the model, so that allowing flexibility in 

accommodating for irregular-shape racks and cases in which the devices have complex 



62 

acceleration/deceleration patterns. For the same reason, rack gaps and device velocity 

characteristics are not included as direct inputs to the model. 

Control Policies Assumptions 

The storage assignment policy determines the target slot for each storage task. It is assumed 

that the target tier for each storage task is selected randomly. However, after the tier is selected, 

the slot is selected either randomly (PRS) or according to proximity to I/O buffers (COL) – this 

option is an input parameter to the model. In this chapter, both PRS and COL are analyzed based 

on some simplification assumptions of the SKU-level characteristics (e.g. the turnover rate of each 

SKU type, the quantities of SKUs in each tote, the demand correlations of SKU types…). The 

COL policy analyzed in this chapter assumes the ideal case that the probabilities all totes being 

retrieved are equal regardless of SKU-level characteristics, thus each incoming tote can be stored 

to any available slot that minimizes device service times. The PRS policy analyzed in this chapter 

resembles another extreme scenario where the SKU-level characteristics are totally 

unknown/unpredictable, and the slot of each incoming tote is predefined from all available slots 

with equal probabilities. Thus, the storage policy parameter here should be chosen according to 

the expected application environment of the system. Finally, with multi-deep rack, it is assumed 

that shallower slots are always prioritized over deeper slots. The detailed mechanisms and analysis 

will be presented in Section 4.4. 

In general, each device is assumed to serve tasks available to it in first-come-first-serve 

(FCFS) pattern. For a storage task, it is not available to a shuttle until the storage lift unloads its 

tote to the input buffer of the target tier. Similarly, a retrieval task is not available to the retrieval 

lift until a shuttle unloads its tote to the output buffer of its current tier. In addition, shuttles can be 

assumed to apply dual-cycle (DC) policy or not – this option is an input parameter to the model. 

DC policy is expected to reduce shuttle travel time. If DC is applied, when there is at least one 

storage task and one retrieval task available to a shuttle, it will prioritize task(s) of the different 

type from its previous task. For example, if the previous task is retrieval (which means the shuttle’s 

current position is tier I/O), it will select a storage task to proceed with if possible – if multiple 

storage tasks are available, FCFS rule is applied.  

In our travel-time model, COL policy is not applied in selecting target tiers (which means 

slots in tiers closer to system entry/exit are not prioritized). This is because there can exist at most 
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one shuttle on each tier, simply prioritizing particular tiers will make some shuttles overloaded 

while others poorly utilized. A more advanced storage policy that dynamically considers both 

travel times and device workloads would be preferable in control strategy development. However, 

it will not be explored in this analytical approach – as the travel-time model is developed for 

higher-level conceptual design purpose. Similarly, as illustrated in Table 4.2, relatively simple 

assumptions are made for other control policies involving device scheduling, dwell-point, 

relocation service and tier-transfer service.  However, it is noticeable that such assumptions are 

only “simpler” comparing to control strategy development in the later phase, but still with 

sufficient precision in estimating baseline performance of the design configurations. 

4.3.2 Queuing Analysis 

 

Figure 4.1 Queuing System Presentation of a single SBS/RS aisle 

Although different types of devices each take care of a section of storage/retrieval tasks, 

the operations of those devices are not fully independent, and thus the computation of the system’s 

actual throughput and responsiveness characteristics is complicated by these dependencies and 

interactions. Based on demand/design/control assumptions made in Section 4.3.1, the problem 

formulated previously can be presented in a queuing network form as illustrated in Figure 4.1. The 
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system is essentially a tandem queuing system with two external arrival processes, and both are 

served in two-stage patterns.  

The storage lift or retrieval lift only serve a single task type. Although the storage lift and 

retrieval lift may carry multiple totes in each tour, they are formulated as G/G/1 queuing systems, 

based on approximations of the equivalent task service and waiting times with respect to the 

occurrence probabilities of different tour sizes. The tote lifts are not formulated as G/G/c instead 

for the following reasons: firstly, the service times of tasks in the same tour only partially overlap; 

secondly, the service times of a task is dependent to those of other task(s) in the same tour; at last, 

the size of a tour could between one and the lift capacity, but once the tote lift starts moving to 

unload the first task, no further tasks can be added to the tour even if the tour is not full. Detailed 

queuing analyzes of the tote lift services will be presented in Section 4.5.1.  

On the other hand, each shuttle serves both types of tasks. For in-tier task services, each 

shuttle can be viewed as an independent, double-ended G/G/1 queuing system, based on 

approximations of the equivalent task service and waiting times with respect to the interleaving 

characteristics imposed by the DC policy as well as the relocation characteristics with multi-deep 

racks. For tier-transfer task services, the situation is further complicated because the tier-transfer 

tasks search for an idle shuttle for service. The shuttle lift is paired with an idle shuttle to perform 

a tier-transfer task, thus imposing the entire system additional characteristics which is similar to a 

G/G/c queuing system, and the equivalent service times are approximated based on additional 

factors including the number of shuttles, the number of tiers, the occurrence probabilities of tier-

transfer tasks, etc. Detailed queuing analyzes of the shuttle services will be presented in Section 

4.5.2. 

The throughput of an SBS/RS aisle is defined as the maximum task service rate of the aisle, 

which is determined by the service rates of all device types: shuttle, storage tote lift, retrieval tote 

lift, and shuttle lift. In other words, any device type can become the bottleneck of the entire system 

when its utilization rate is too high, even if all the other device types are poorly utilized. This also 

brings insights to system design: for example, in a tier-to-tier configuration, adding more shuttles 

will not be helpful if the storage lift is expected to be the bottleneck of a rack configuration (for a 

given demand scenario), and the right approach might be choosing a vertically shorter while 

horizontally longer rack configuration instead. Task responsiveness is measured by task cycle time, 
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which is defined as the sum of service times plus sum of waiting times in all service stages. 

Because responsiveness requirements of storage tasks and retrieval tasks are usually of different 

importance for a warehousing system, cycle times of different task types are analyzed separately 

in our model. Effectiveness of control policies (storage assignment, shuttle dual-cycle, etc.) under 

different demand scenarios and design configurations is expected to be significant importance to 

both throughput and responsiveness performance, thus need to be evaluated carefully from 

conceptual design phase. For example: larger portion of shuttle dual-cycles and fewer occurrence 

of relocations are both expected to improve average service rate of shuttles; considering the tier-

transfer service pattern in tier-to-tier configuration, the occurrence frequency of such service is 

expected to significantly affect the overall system performance. We attempt to abstract these 

factors to improve the validity and precision of our travel time model.  

4.3.3 Iterative Searching Procedure 

As introduced earlier, the service patterns of SBS/RS are complicated due to various factors 

including device interactions, storage policies, DC policies, relocation, tier-transfer, etc. In order 

to model the problem in an appropriate form for queuing analysis, it is critical to identify the 

important factors to system performance, describe them in appropriate mathematical formats, and 

integrate them into the model formulations. In  

Table 4.3, a set of important computational variables critical to travel time computation are 

identified. In our analytical approach, based on the input parameters and assumptions introduced 

previously, these variables are computed step-by-step and used in queuing analysis. Figure 4.2 

gives an overview of the analysis procedure based on the travel time model. For each candidate 

design, the slot visit probabilities 𝑃ௌ, 𝑃ோ, 𝑃ோ௘ூ, 𝑃ோ௘ை and relocation ratio 𝜃ோ are estimated in Stage 

1 given the storage mode as well as the assumptions for the rack utilization (inventory level). DC 

ratio 𝜃஽ and tier-transfer ratio 𝜃் are estimated during the queuing analysis performed in Stage 2, 

given the demand scenario (arrival parameters) as well as the results obtained in Stage 1. Finally, 

the travel time model results indicating the candidate’s expected throughput and responsiveness 

performances are evaluated in Stage 3. If the candidate is underutilized according to the evaluation 

criteria (e.g. the maximum utilization among all devices 𝑈௠௔௫is less than 90%, which means the 

candidate can potentially handle larger demands), then Stage 2 is iterated with larger arrival 

parameters (for example, in our approach the new arrival rate 𝜆௡௘௪  is determined as 
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min ቂ𝜆௢௟ௗ ቀ
଴.ଽ

௎೘ೌೣ െ 1ቁ , 1ሺ𝑝𝑒𝑟 ℎ𝑜𝑢𝑟ሻቃ, and 𝜎௡௘௪ ൌ  𝜎௢௟ௗ ఒ೙೐ೢ

ఒ೚೗೏   ). Otherwise, the candidate is either 

accepted or abandoned according to the evaluation criteria. Finally, the design space is explored 

based on previous results and the next candidate is selected for a new analysis iteration starting 

from Stage 1. 

 

Figure 4.2 Iterative analysis procedure based on the travel time model 
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In this research, the iterative analysis procedure proposed in this chapter is packaged as an 

independent executable analysis program coded in Java. The analysis program takes external input 

data including the system’s physical parameters and design specifications described in Excel 

spreadsheets. 

4.4 Slot Task Visit Probabilities Estimation 

This section introduces the first stage of the analysis procedure illustrated in Figure 4.2. 

For storage assignment policies, both Pure-Random-Storage (PRS) and Closest-Open-Location 

(COL) are analyzed. Also, both 1-deep racks and 2-deep racks are considered for both storage 

policies, thus constructing four different cases in total. In each case, the visiting probabilities of 

each slot location by storage tasks, retrieval tasks, and relocation operations (in 2-deep racks) are 

estimated. These probabilities are the basis for the service time modeling based on queuing 

analysis introduced in the next section. It is noticeable that these probabilities are considered 

independently from the devices’ performances (velocities, L/U times, etc.) and independently from 

the demand levels (thus the device utilizations) as well.  

A notation 𝑁௫,௬,௭ is used to define the occupancy probability of slot ሾ𝑥, 𝑦, 𝑧ሿ. Based on rack 

design, rack utilization and storage policy mode, a matrix 𝑁 is formed to present the slot states in 

the rack. Task visit probability matrices 𝑃ௌ, 𝑃ோ, 𝑃ோ௘ூ, 𝑃ோ௘ை  as well as the relocation ratio  

𝜃ோ  are computed based on the matrix 𝑁 and used as inputs to the next stage of the analytical 

approach. 

4.4.1 Determination of Rack Utilization Probability Distribution 

In practical warehousing operations, both the demand rates and replenishment rates of the 

SKUs are usually inventory dependent, thus correlations exist between storage and retrieval 

arrivals. As introduced previously, the development of rack utilization probability distribution 

𝐼ሺ𝜌ሻ is an approximation approach for such correlations of the demand scenarios of evaluation 

interests. The 𝐼ሺ𝜌ሻ distribution is essentially an assumption to the travel time model, where 𝜌 ∈

ሺ0,1ሻ, ∀𝜌 and ׬ 𝐼ሺ𝜌ሻଵ
଴

ൌ 1. The 𝐼ሺ𝜌ሻ distribution is assumed as time independent in each demand 

scenario, independent from rack shape parameters (tiers/columns/depths), independent from task 

IAT distributions, and independent from the storage and scheduling policies. Generally speaking, 



68 

in design conceptualization, the design candidates are evaluated under demand scenarios where 

the racks are properly utilized (high  𝜌). Also, 𝐼ሺ𝜌ሻ is expected to approximate the rack utilization 

dynamics due to routine warehouse operations within relatively short time periods (e.g. on a 

daily/weekly basis) instead of approximating the seasonality of the warehouse inventory level – 

for the latter case, system performances are expected to be evaluated by the travel time model 

under different 𝐼ሺ𝜌ሻ assumptions. 

One important reason that a probability function 𝐼ሺ𝜌ሻ instead of a single expected value 𝜌 

is used as model input is that, the estimates will be less precise when COL is assumed for storage 

assignment if only a single 𝜌̅ is used in the computations introduced in this section – the visit 

probabilities of the slots at the further end (with respect to I/O) will be underestimated. On the 

other hand, our experience from numerous validation experiments is that, the development of 𝐼ሺ𝜌ሻ 

distribution does not require perfect precision – rough estimation of 𝐼ሺ𝜌ሻ is adequate for the travel 

time estimation. Take an example that a user is exploring design candidates which provide around 

100𝑘 total rack capacity with 10 identical aisles, thus 𝑋𝑌𝑍 ൎ 10𝑘. Assume the user is interested 

in system performance under demand scenarios where the total inventory level of all 10 aisles (in 

terms of totes) varies on a daily/weekly basis according to a particular 

distribution 𝑛𝑜𝑟𝑚𝑎𝑙ሺ80𝑘, 5𝑘ሻ – such distributions are assumed to be obtained either based on 

historical data or through empirical approaches like inventory modeling. These approaches are 

focusing at the higher system level (warehouse or supply chain level) and thus not discussed in the 

scope of this research. Then, it is reasonable to assume 𝐼ሺ𝜌ሻ of each aisle to be 𝑛𝑜𝑟𝑚𝑎𝑙ሺ0.8, 0.05ሻ 

for this example since the aisles are identical – otherwise (e.g. aisle shapes are different, priority 

rules exist between aisles, or aisles are predetermined for different SKU types), the performance 

of each aisle may need to be estimated separately by the travel time model with separate 𝐼ሺ𝜌ሻ and 

IAT settings (𝜆, 𝜎ௌ, 𝜎ோ) as well. Denote 𝜌௫ as the instantaneous utilization of tier 𝑥 ∈ ሾ1 … 𝑋ሿ (thus 

the number of occupied slots on this tier equals 𝜌௫𝑌𝑍), and denote 𝑃௫
ௌ and 𝑃௫

ோ as the probabilities 

that an incoming storage task / retrieval task is targeting at tier 𝑥 . If not otherwise specified 

regarding the preferences between tiers in storage assignment, there are: 

⎩
⎨

⎧𝑃௫
ோ ൌ

 𝜌௫𝑌𝑍
𝜌𝑋𝑌𝑍

ൌ
 𝜌௫

𝜌𝑋
                       

𝑃௫
ௌ ൌ

 ሺ1 െ 𝜌௫ሻ𝑌𝑍
ሺ1 െ 𝜌ሻ𝑋𝑌𝑍

ൌ
 ሺ1 െ 𝜌௫ሻ
ሺ1 െ 𝜌ሻ𝑋

  , ∀𝑥 ∈ ሾ1 … 𝑋ሿ 
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Denote 𝐼௫ሺ𝜌ሻ as a probability function of rack utilization on tier 𝑥 ∈ ሾ1. . . 𝑋ሿ. A series of Monte 

Carlo simulation experiments are conducted to analyze the relationship between 𝐼ሺ𝜌ሻand 𝐼௫ሺ𝜌ሻ 

under different designs and demand scenarios. As illustrated in Figure 4.3, we observed that for 

typical designs where number of tiers are not too small (e.g. 𝑋 ൐ 5), when the covariance of the 

IAT distributions 𝑐𝑜𝑣ௌ ൌ 𝜆𝜎ௌ and 𝑐𝑜𝑣ோ ൌ 𝜆𝜎ோ are not too small (minሺ𝑐𝑜𝑣ௌ, 𝑐𝑜𝑣ோሻ ൐ 0.5), it is 

reasonable to assume 𝐼௫ሺ𝜌ሻ ൎ  𝐼ሺ𝜌ሻ, ∀𝑥.  

 

 

Figure 4.3 Rack utilization PDFs (Aisle vs. Single tier) of a 14-tier, 73-col, 2-deep design under 

𝑐𝑜𝑣ௌ ൌ 𝑐𝑜𝑣ோ ൌ 1 scenario, based on Monte-Carlo Simulation  

If no historical data or empirical approaches are available for rack utilization estimation 

(which is very likely in the conceptual design phase), we hereby propose an alternative approach 

based on Monte Carlo simulation to approximate  𝐼௫ሺ𝜌ሻ  of an arbitrary tier (assuming no 

preferences between tiers in storage assignment). Consistent with the demand scenario modeling 

approach introduced in Section 3.2.2, storage and retrieval arrivals are generated according to the 

following inputs: 



70 

1) Design parameters: 𝑋, 𝑌, 𝑍; 

2) Demand parameters: Expected rack utilization 𝜌 and IAT parameters: 𝜆, 𝜎ௌ, 𝜎ோ; 

3) Time window: 𝑇, assuming the total storage arrivals equals the total retrieval arrivals 

within duration 𝑇. 

Then, 𝐼௫ሺ𝜌ሻ is estimated by sampling the resulting rack utilization 𝜌’s along the time. Details of 

this approximation approach is further introduced in Appendix I. Based on experimenting different 

combinations of design parameters, demand parameters and 𝑇  (days), we observed that 

𝐼௫ሺ𝜌ሻfunction roughly approximates a normal distribution truncated at 𝜌 ൌ 0 and 𝜌 ൌ 1, with 

expected value   𝜌 , and its standard deviations 𝜎௫ሺ𝜌ሻ  can be approximately described by the 

following regressing model: 

𝜎௫ሺ𝜌ሻ ൎ ሾ2 ൅ 𝜆ሺ𝜎ௌ ൅ 𝜎ோሻ ൅ 0.14𝑇 ൅ 0.07𝑋 െ 0.0003𝑋𝑌𝑍ሿ ൈ 100% 

Finally, 𝐼௫ሺ𝜌ሻ is converted into a discrete probability distribution from its continuous form 

– which is either estimated based on historical data / empirical approach, or the 𝑛𝑜𝑟𝑚𝑎𝑙൫ 𝜌, 𝜎௫ሺ𝜌ሻ൯ 

distribution obtained from the above Monte Carlo approach. In the rest of this section, the 

discretized 𝐼௫ሺ𝜌ሻ is used as a direct input to estimate the slot task visit probabilities. The empirical 

approach we use is dividing 𝐼௫ሺ𝜌ሻ into equal-length intervals. When given 𝑛𝑜𝑟𝑚𝑎𝑙ሺ 𝜌, 𝜎ሻ (𝜎௫ሺ𝜌ሻ 

is presented as  𝜎  for reading clarity) the distribution is divided into seven intervals within 

range ሾ𝜌௠௜௡ ൌ maxሺ 𝜌 െ 3𝜎, 0ሻ , 𝜌௠௔௫ ൌ minሺ 𝜌 ൅ 3𝜎, 1ሻሿ as follows: 

𝜌௜ ൌ 𝜌௠௜௡ ൅ ሺ𝑖 െ 0.5ሻ
𝜌௠௔௫ െ 𝜌௠௜௡

7
, 𝑖 ∈ ሼ1,2 … 7ሽ 

𝐼௫ሺ𝜌௜ሻ ൌ
𝑃 ቀ𝜌௜ െ 0.5

𝜌௠௔௫ െ 𝜌௠௜௡
7 ൏ 𝜌 ൏ 𝜌௜ ൅ 0.5

𝜌௠௔௫ െ 𝜌௠௜௡
7 ቁ

𝑃ሺ𝜌௠௜௡ ൏ 𝜌 ൏ 𝜌௠௔௫ሻ
, ∀𝑖 

For example, with the design and demand scenario presented in Figure 4.3 Rack utilization PDFs 

(Aisle vs. Single tier) of a 14-tier, 73-col, 2-deep design under 𝑐𝑜𝑣ௌ ൌ 𝑐𝑜𝑣ோ ൌ 1 scenario, based 

on Monte-Carlo Simulation we have  𝜌 ൌ 0.8 and  𝜎 ൌ 0.0473, and  𝐼௫ሺ𝜌ሻ is discretized as in 

Figure 4.4.   
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Figure 4.4 Discretized 𝐼௫ሺ𝜌ሻ of a 14-tier, 73-col, 2-deep design under 𝑐𝑜𝑣ௌ ൌ 𝑐𝑜𝑣ோ ൌ 1 

scenario, based on Monte-Carlo based estimation approach (T=1 week) 

4.4.2 Approximations of Storage Policies 

Storage policy has significant impact on the service rates of the devices, while its selection 

is highly dependent on the system’s application environment. In our travel-time model, the storage 

policy of the aisle is approximated either as Pure Random Storage (PRS) mode or as Closest Open 

Location (COL) mode. In general, COL-type storage policy increases the occupancy rates of 

forward storage locations (slots closer to I/O) and thus reduces device travel times. It is likely that 

customized Class-based storage policies based on SKU-level analysis would perform even better 

for particular application environments. However, such advanced policies are expected to be 

explored in the control strategy development phase and thus are not discussed here. For general e-

commerce warehousing systems, their storage policies can be assumed as COL in the conceptual 

design phase.  

4.4.3 Analysis of 1-deep Rack 

Figure 4.5 illustrates a single tier of a 1-deep rack design, where only one row of slots on 

each side of the aisle. Coordinates on the top shows slot locations, number on the bottom indicates 

selection priority of each slot in its tier with COL storage. 
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Figure 4.5 Illustration of slots on a single tier (tier 𝑥) of a 1-deep rack and storage assignment 

priorities under COL 

Pure Random Storage (PRS) Mode 

When assuming PRS storage mode, an empty slot is selected randomly for each storage 

task, which means the occupancy probability of each slot and the probability each slot is visited in 

a storage or retrieval task are both uniform. Thus, in a 1-deep rack applying PRS, when the rack 

utilization is 𝜌, for all slots there are: 

𝑁௫,௬,௭ ൌ 𝜌  

𝑃௫,௬,௭
ௌ ൌ 𝑃௫,௬,௭

ோ ൌ
1

2𝑋𝑌
 

Note that 2𝑋𝑌 is the total rack capacity of a 1-deep aisle. 

Closest Open Location (COL) Mode 

When assuming COL storage mode, slots closer to I/O on each tier are prioritized in storage 

assignment. As a result, both the occupancy probabilities and task visit probabilities of these slots 

are expected to be higher than those further from I/O. For the clarity of presentation, let’s 

temporarily use slot priority index (as shown in Figure 4.5) to indicate the probabilities: 𝑃௜
ௌ and 𝑃௜

ோ  

indicate the probability a storage/retrieval task to/from a tier is targeting slot 𝑖 on this tier, and 𝑁௜ 

indicates its occupancy probability. At a particular rack utilization 𝜌, it can be inferred that: 

𝑃ଵ
ௌ ൌ 1 െ 𝑁ଵ 

𝑃௜
ௌ ൌ ቌෑ 𝑁௜ᇲ

௜ᇲழ௜

௜ᇲୀଵ

ቍ ൈ ሺ1 െ 𝑁௜ሻ, ∀𝑖 ൐ 1 
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As an empty slot is selected in storage assignment to its tier only when all slots with higher 

priorities (closer to I/O in COL) in this tier are occupied. 

𝑃௜
ோ ൌ

𝑁௜

2𝜌𝑌
, ∀𝑖 

As the probability a slot is visited by a retrieval task to its tier equals the slot’s occurrence 

probability divided by the total utilization rate of its tier. Because it is obvious that 𝑃௜
ௌ ൌ 𝑃௜

ோ, ∀𝑖, 

the following equations are obtained: 

𝑁ଵ ൌ
1

1 ൅  1
2𝜌𝑌

 

𝑁௜ ൌ
1

1 ൅  
1

2𝜌𝑌 ൈ ∏ 𝑁௜ᇲ
௜ᇲழ௜
௜ᇲୀଵ

, ∀𝑖 ൐ 1 

And 𝑃௜
ௌ and 𝑃௜

ோ can be computed accordingly.  

Finally, based on the control assumption made in Section 4.3 that storages are assigned 

randomly to tiers, it can be inferred that for all slots, at a particular rack utilization 𝜌, we have: 

𝑃௫,௬,௭
ௌ ൌ 𝑃௫,௬,௭

ோ ൌ
𝑃௜

ௌ

𝑋
ൌ

𝑃௜
ோ

𝑋
, 𝑤ℎ𝑒𝑟𝑒 𝑖 ൌ 2ሺ𝑦 െ 1ሻ ൅ 𝑧 

4.4.4 2-deep Rack and Relocation 

For the purpose of improving storage space utilization, use of multi-deep racks is a popular 

option in automated warehouses. Multi-deep aisle design provides higher storage density 

compared to 1-deep aisle design. However, the horizontal L/U mechanism in multi-deep 

capabilities is generally more expensive because it either requires shuttles capable of accessing 

deeper slots (usually no more than 2-deep), or requires four-directional shuttles or additional L/U 

devices (such as satellite shuttles) that travel along the z-axis.  In this research, only 2-deep rack 

design is studied for multi-deep rack designs, and shuttles are assumed as capable of reaching 2-

deep positions with longer L/U times (as illustrated in Figure 4.6). In 2-deep racks, retrievals from 

a deep slot ሾ𝑥, 𝑦, 𝑧ሿ (𝑧 ∈ ሾ3,4ሿ) will be blocked by totes stored in its neighbor slot ሾ𝑥, 𝑦, 𝑧 െ 2ሿ – in 

such case, relocation is needed to first move the blocker tote to another slot before retrieving the 
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target tote. A relocation service includes load—move—unload—move processes that incurs 

similar service time relative to that of a non-relocation retrieval task. Thus, minimizing the 

occurrence of relocation is very important for improving the system performance. 

 

Figure 4.6  Illustration of slots on a single tier (tier 𝑥) of a 2-deep rack and storage assignment 

priorities under COL 

Just like the previous illustration of 1-deep rack, in the 2-deep rack illustration in Figure 

4.6, coordinates on the top shows slot locations, number on the bottom indicates selection priority 

of each slot in its tier with COL storage. In this chapter, the 2-deep slots (𝑧 ∈ ሾ3,4ሿ) are assumed 

always prioritized over 1-deep slots (𝑧 ∈ ሾ1,2ሿ). In each retrieval task, if relocation is needed, the 

target slot of the blocker tote is assumed selected based on the same priority rule. Unlike 1-deep 

racks where 𝑆௫,௬,௭ ൌ 𝑅௫,௬,௭, in 2-deep racks, the task visit probability of each slot satisfies the 

following equations:  

𝑃௫,௬,௭
ௌ ൅ 𝑃௫,௬,௭

ோ௘ூ ൌ 𝑃௫,௬,௭
ோ ൅ 𝑃௫,௬,௭

ோ௘ை 

Which means the sum of storage probability and relocation-to probability each slot equals the sum 

of retrieval probability and relocation-from probability of this slot, and: 

෍ 𝑃௫,௬,௭
ௌ ൌ ෍ 𝑃௫,௬,௭

ோ ൌ 𝜃ோ ൈ ෍ 𝑃௫,௬,௭
ோ௘ூ ൌ 𝜃ோ ൈ ෍ 𝑃௫,௬,௭

ோ௘ை 

Where 𝜃ோ is the expected relocation occurrence probability per retrieval task. In a 2-deep rack 

applying PRS or COL, when the rack utilization is 𝜌, the overall occupancy probabilities of 1-deep 

slots (1D) and 2-deep slots (2D) can be estimated as: 
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൜
 𝑁ଵ஽ ൌ 0  
 𝑁ଶ஽ ൌ 2𝜌         , 𝑖𝑓 𝜌 ൏ 0.5 

൜
 𝑁ଵ஽ ൌ 2𝜌 െ 1
 𝑁ଶ஽ ൌ 1            , 𝑖𝑓 0.5 ൑ 𝜌 ൏ 1 

The equations above indicate that when rack utilization is lower than 50%, only 2-deep slots are 

utilized. According to the control assumption that 2-deep slots are always prioritized over 1-deep 

slots, the relocation ratio 𝜃ோ when rack utilization is 𝜌 can be estimated as the probability that a 

retrieval is from any 2-deep slot multiplied by the probability that any 1-deep slot is occupied, 

there is: 

𝜃ோ ൌ
 𝑁ଶ஽

 𝑁ଵ஽ ൅  𝑁ଶ஽
ൈ  𝑁ଵ஽ 

Thus, 𝜃ோሺ𝜌ሻ can be estimated as: 

𝜃ோ ൌ ቐ
0,             𝑖𝑓 𝜌 ൏ 0.5

1 െ 
1

2𝜌
, 𝑖𝑓 0.5 ൑ 𝜌 ൏ 1

 

Pure Random Storage (PRS) Mode 

When assuming PRS storage mode, an empty 2-deep slot is selected randomly for each 

storage task – if no empty deep slot exist, then an empty 1-deep slot is selected randomly. Thus, 

the slot occupancy probabilities of each slot equals the overall occupancy probability of its depth: 

 𝑁௫,௬,௭ ൌ ൜
 𝑁ଵ஽, ∀𝑥, ∀𝑦, 𝑧 ∈ ሾ1,2ሿ
 𝑁ଶ஽, ∀𝑥, ∀𝑦, 𝑧 ∈ ሾ3,4ሿ 

Then, 𝑃ଵ஽
ௌ , 𝑃ଶ஽

ௌ , 𝑃ଵ஽
ோ , 𝑃ଶ஽

ோ , 𝑃ଵ஽
ோ௘ூ , 𝑃ଶ஽

ோ௘ூ , 𝑃ଵ஽
ோ௘ை  and 𝑃ଶ஽

ோ௘ை are used to present the overall task visit 

probabilities to each depth at rack utilization 𝜌. As PRS is applied for storage assignment, the visit 

probabilities of storage tasks to each slot can be inferred as followed: 

𝑃௫,௬,௭
ௌ ൌ ቐ

𝑃ଵ஽
ௌ

2𝑋𝑌ൗ , ∀𝑥, ∀𝑦, 𝑧 ∈ ሾ1,2ሿ

𝑃ଶ஽
ௌ

2𝑋𝑌ൗ , ∀𝑥, ∀𝑦, 𝑧 ∈ ሾ3,4ሿ
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Where  2𝑋𝑌  is the total number of slots of each depth in the aisle. The other task 

probabilities 𝑃ோ , 𝑃ோ௘ூ  and 𝑃ோ௘ை  are presented in the same way. Based on the assumption that 

storage and relocation use the same slot-selection criterion, it can be inferred that: 

𝑃ଵ஽
ோ௘ூ ൌ 𝜃ோ ൈ 𝑃ଵ஽

ௌ  

𝑃ଶ஽
ோ௘ூ ൌ 𝜃ோ ൈ 𝑃ଶ஽

ௌ  

Then, because in each relocation, the blocked tote is always in a 2-deep slot and the blocker tote 

is always in the neighboring 1-deep slot, it can be inferred that: 

𝑃ଵ஽
ோ௘ை ൌ  𝜃ோ 

𝑃ଶ஽
ோ௘ை ൌ 0 

Thus, based on equation 𝑃௫,௬,௭
ௌ ൅ 𝑃௫,௬,௭

ோ௘ூ ൌ 𝑃௫,௬,௭
ோ ൅ 𝑃௫,௬,௭

ோ௘ை , the task visit probability equation with 

PRS at rack utilization 𝜌 can be presented as: 

ቊ
 𝑃ଵ஽

ௌ ൈ ሺ1 ൅ 𝜃ோሻ ൌ 𝑃ଵ஽
ோ ൅ 𝜃ோ        

𝑃ଶ஽
ௌ ൈ ሺ1 ൅ 𝜃ோሻ ൌ 𝑃ଶ஽

ோ                    
 

Finally, for each retrieval task, the visit probability of each slot is: 

𝑃ଵ஽
ோ ൌ

𝑁ଵ஽

𝑁ଵ஽ ൅ 𝑁ଶ஽
ൌ

𝑁ଵ஽

2𝜌
ൌ 𝜃ோ 

𝑃ଶ஽
ோ ൌ

𝑁ଶ஽

𝑁ଵ஽ ൅ 𝑁ଶ஽
ൌ

𝑁ଶ஽

2𝜌
ൌ 1 െ 𝜃ோ 

Thus, at a particular rack utilization 𝜌, the task visit probabilities to each slot can all be computed. 

When 𝜌 ൒ 0.5, there are: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑃ଵ஽

ோ ൌ  1 െ
1

2𝜌
                                      

𝑃ଵ஽
ௌ ൌ 1 െ

1
4𝜌 െ 1

                                

 𝑃ଵ஽
ோ௘ூ ൌ ሺ1 െ

1
2𝜌

 ሻ ൈ ሺ1 െ
1

4𝜌 െ 1
  ሻ    

𝑃ଵ஽
ோ௘ை ൌ 1 െ

1
2𝜌

                                        

𝑎𝑛𝑑 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑃ଶ஽

ோ ൌ  
1

2𝜌
                             

𝑃ଶ஽
ௌ ൌ

1
4𝜌 െ 1

                       

 𝑃ଶ஽
ோ௘ூ ൌ ሺ1 െ

1
2𝜌

 ሻ ൈ
1

4𝜌 െ 1
  

 𝑃ଶ஽
ோ௘ை ൌ 0                                   
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When 𝜌 ൏ 0.5, the visit probabilities of a 2-deep rack resembles those of a 1-deep rack: 

⎩
⎨

⎧
𝑃ଵ஽

ோ ൌ 0
𝑃ଵ஽

ௌ ൌ 0
  𝑃ଵ஽ ൌ 0 
 𝑄ଵ஽ ൌ 0

  𝑎𝑛𝑑 

⎩
⎨

⎧
𝑃ଶ஽

ோ ൌ 1
𝑃ଶ஽

ௌ ൌ 1
  𝑃ଶ஽ ൌ 0 
 𝑄ଶ஽ ൌ 0

  

Finally, 𝑃௫,௬,௭
ௌ , 𝑃௫,௬,௭

ோ , 𝑃௫,௬,௭
ோ௘ூ  and 𝑃௫,௬,௭

ோ௘ை at this rack utilization 𝜌 are computed for each slot through 

dividing the corresponding total probability by 2𝑋𝑌. 

Closest Open Location (COL) Mode 

With 2-deep racks, the COL rule is assumed of lower priority than the rule that 2-deep slots 

are always prioritized. The slot selecting priorities in such case is illustrated in the previous Figure 

4.6. The task visit probabilities here are estimated in an approach similar to the previous approach 

for the 1-deep rack COL case. Again, for the clarity of presentation, we use 𝑃௜
ௌ, 𝑃௜

ோ, 𝑃௜
ோ௘ூ and 𝑃௜

ோ௘ை 

to indicate the task probabilities for the slot of priority 𝑖 within this tier, and 𝑁௜ to indicate slot 

occupancy probabilities – all based on the assumption that the rack is at a particular rack 

utilization 𝜌. It can be inferred that: 

𝑃ଵ
ௌ ൌ 1 െ 𝑁ଵ 

𝑃௜
ௌ ൌ ቌෑ 𝑁௜ᇲ

௜ᇲழ௜

௜ᇲୀଵ

ቍ ൈ ሺ1 െ 𝑁௜ሻ, ∀𝑖 ൐ 1 

𝑃௜
ோ ൌ

𝑁௜

4𝜌𝑌
, ∀𝑖 

Because the probability of relocation from a 1-deep slot equals the probability that this slot is 

occupied multiplied by the probability that a retrieval occurs to its neighboring 2-deep slot, there 

is:  

𝑃௜
ோ௘ை ൌ ൜𝑁௜ ൈ 𝑃௜ିଶ஼

ோ    , 𝑖 ൐ 2𝐶
          0           , 𝑖 ൑ 2𝐶

 

Because storage and relocation are assumed using the same prioritization criterion, the probability 

of relocation to a slot is estimated as: 
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𝑃௜
ோ௘ூ ൌ 𝑃௜

ௌ ൈ 𝜃ோ 

The equation 𝑃௫,௬,௭
ௌ ൅ 𝑃௫,௬,௭

ோ௘ூ ൌ 𝑃௫,௬,௭
ோ ൅ 𝑃௫,௬,௭

ோ௘ை can be rewritten into slot occupancy forms as followed: 

ቌෑ 𝑁௜ᇲ

௜ᇲழ௜

௜ᇲୀଵ

ቍ ሺ1 െ 𝑁௜ሻ ൈ ሺ1 ൅ 𝜃ோሻ ൌ
𝑁௜

4𝜌𝑌 
, 𝑖 ∈ ሾ1,  2𝑌ሿ 

ቌෑ 𝑁௜ᇲ

௜ᇲழ௜

௜ᇲୀଵ

ቍ ሺ1 െ 𝑁௜ሻ ൈ ሺ1 ൅ 𝜃ோሻ ൌ
𝑁௜ ൈ ሺ1 ൅ 𝑁௜ିଶ஼ሻ

4𝜌𝑌 
, 𝑖 ∈ ሾ2𝑌 ൅ 1,  4𝑌ሿ 

Thus, the slot occupancy probabilities are computed as: 

𝑁௜ ൌ

⎩
⎪⎪
⎨

⎪⎪
⎧

1

1 ൅  
1

4𝜌𝑌 ൈ ሺ1 ൅ 𝜃ோሻ ൈ ∏ 𝑁௜ᇲ
௜ᇲழ௜
௜ᇲୀଵ

      , 𝑖 ∈ ሾ1,  2𝐶ሿ          

1

1 ൅  
1 ൅ 𝑁௜ିଶ஼

4𝜌𝑌 ൈ ሺ1 ൅ 𝜃ோሻ ൈ ∏ 𝑁௜ᇲ
௜ᇲழ௜
௜ᇲୀଵ

     , 𝑖 ∈ ሾ2𝐶 ൅ 1,  4𝐶ሿ
 

Then, 𝑆௜, 𝑅௜, 𝑃௜ and 𝑄௜ can all be computed accordingly. Finally, based on the control assumption, 

it can be inferred that for all slots, at a particular rack utilization 𝜌, there are: 

𝑃௫,௬,௭
ௌ ൌ

𝑃௜
ௌ

𝑋
, 𝑃௫,௬,௭

ோ ൌ
𝑃௜

ோ

𝑋
, 𝑃௫,௬,௭

ோ௘ூ ൌ
𝑃௜

ோ௘ூ

𝑋
, 𝑃௫,௬,௭

ோ௘ை ൌ
𝑃௜

ோ௘ை

𝑋
  

In which: 

 𝑖 ൌ ൜
 2ሺ𝑦 െ 1ሻ ൅ 𝑧 ൅ 2𝑌   , 𝑧 ∈ ሾ1,2ሿ
 2ሺ𝑦 െ 1ሻ ൅ 𝑧 െ 2      , 𝑧 ∈ ሾ3,4ሿ

 

4.4.5 Final Task Visit Probability Matrices 

In the previous sections, task visit probabilities are computed based on a single rack 

utilization value 𝜌. Given the discrete probability function of rack utilization 𝐼௫ሺ𝜌ሻ, the final values 

of the matrices are approximated as the weighted averages of those computed for each 𝜌, thus: 

𝜃ோ ൌ ෍ሾ 𝐼௫ሺ𝜌ሻ ൈ 𝜃ோሺ𝜌ሻ ሿ 
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𝑃௫,௬,௭
ௌ ൌ ෍ሾ 𝐼௫ሺ𝜌ሻ ൈ 𝑃௫,௬,௭

ௌ ሺ𝜌ሻ ሿ , 𝑒𝑡𝑐 

It is noticeable that, under the control assumption that totes are randomly assigned to rack 

tiers with equal probabilities for both COL and PRS cases, there is actually no need to have the 𝑥 

coordinate in each of the four matrices, and the probabilities can just be presented as 𝑃௬,௭
ௌ ,  𝑃௬,௭

ோ , 

𝑃௬,௭
ோ௘ூ and 𝑃௬,௭

ோ௘ை. However, we decide to keep the current forms so that they can accommodate other 

control assumptions to be explored in the future. 

4.4.6 Validation 

Task visit probabilities and relocation ratio are critical inputs to the following travel-time 

computations based on queuing analysis. These inputs are assumed independent from the 

following computations – in other words, we assume that the task arrival rates do not impact their 

visit probabilities to the slots. It is not always true from operational control perspective, as it could 

be more efficient to apply more advanced storage/relocation policies that respond dynamically to 

system status. However, such simplification is consistent with the PRS and COL assumptions 

made previously, thus appropriate for this conceptual design phase.  

To validate the task visit probability estimation approach, simulation experiments are 

conducted to compare the estimates to simulation results. A 2-deep, tier-captive aisle design with 

of 10 rows and 73 columns (thus 2,920 slots) is selected for illustration. The rack utilization is 

expected to be 80% and its probability function is the same as the example from Figure 4.4. PRS 

and COL are both examined. In the simulation experiment, 300,000 storage tasks and 300,000 

retrieval tasks are created within 500 hours (excluding the warm-up period, which is 100 hours), 

both with exponential inter-arrival times. This means each slot is visited by about 100 storage tasks 

and 100 retrieval tasks on average. In addition, some simulation settings are specifically set so that 

to be consistent with the analytical assumptions – for example, the I/O buffer capacity is set as 

infinite in this experiment. 

Figure 4.7 shows the task visit probability estimates from the travel time model versus the 

task visit occurrences from a simulation experiment (presented as ratios to total tasks) with COL 

storage policy. In this experiment, shuttle utilization is 78% in the COL case and 83% in the PRS 

case. The tote lift utilizations are about 87% in both cases. The results are aggregated for all tiers, 
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and aggregated for both sides of each depth. Thus, the x-axis of the figure only shows the column 

index. It can be observed that the analytical estimates and simulation results are very close. After 

a series of simulation-based validation experiments, the task visit probability estimation is viewed 

as a valid approach in providing inputs to the following queuing-based analysis. (Note that the task 

visit probabilities validated here are only intermediate results in the analytical approach. 

Comprehensive validation experiments will be illustrated in Section 4.6. In the following section, 

we will continue with the process illustrated in Figure 4.2 using the values computed in this section. 

 

Figure 4.7 Task Visit Probability Estimates vs Simulation (COL) of 1-deep and 2-deep slots in a 

14-tier, 73-column, 2-deep aisle 

4.5 Service Time Modeling 

In this section, we use queuing-network analysis to estimate the device utilizations (as 

indicators of the system’s throughput performance) and the task cycle times (as indicators of the 

system’s responsiveness performance). The slot task visiting probabilities and the relocation ratio 

𝜃ோ obtained from the analysis described in the previous section are used as inputs for the service 

time computations. The main focus of this section is the system configurations with the most 

complicated mathematical forms in the scope of this research, where the system is tier-to-tier 
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configuration, the racks are 2-deep (thus tote relocation operations are considered), the tote lifts 

are 2-unit (thus tours with different sizes are considered), Closest Open Location (COL) policy is 

applied for storage assignment, and Dual Cycle (DC) policy is applied for shuttle scheduling. 

Simpler system configurations like tier-captive configurations, 1-deep racks, 1-unit tote lifts, pure-

random storage policy and simple FCFS shuttle scheduling policy can all be adapted to the 

mathematical formulations purposed here. 

In our analytical approaches, each SBS/RS aisle is viewed as multiple queuing systems 

configured in serial and in parallel. Both types of tote lifts are approximated as G/G/1 queuing 

systems, where the probabilities of 1-unit tours (non-full tours) and 2-unit tours (full-tours) are 

estimated, based on which the lift utilizations and task service/waiting times are estimated. In each 

aisle, the storage lift service’s departure process is the arrival process to the shuttle services, and 

the shuttle services’ departure process is the arrival process to the retrieval lift. The analysis of the 

shuttle service is more complicated – depending on the system’s complexity, at most 12 shuttle 

service cases are identified. With tier-captive configurations, each shuttle is viewed as a G/G/1 

queuing system, and the DC ratio 𝜃஽ is approximated to present the interleaving service pattern of 

the DC policy, based on which the shuttle utilizations and the service/waiting times of both storage 

tasks and retrieval tasks are estimated. With tier-to-tier configurations, the shuttles are transferred 

from tier to tier by the shuttle lift as needed. With each configuration, the shuttle service is 

approximated as a combination of a bounded M/M/c queuing system and multiple G/G/1 queuing 

systems. The tier-transfer ratio 𝜃் is approximated to determine the estimates for the portions of 

in-tier tasks and tier-to-tier tasks and their service/waiting times.  

4.5.1 Tote Lift Service Analysis 

In every aisle of the SBS/RS, a storage lift and a retrieval lift are responsible for the vertical 

inbound and outbound service of totes to/from the tiers. Both tote lifts interact with the 

encompassing system at the I/O floor. The two lifts interact with rack tiers at each tier’s input 

buffer and output buffer, respectively. Multi-unit tote lifts are designed to transport multiple totes 

simultaneously in each tour. Such lifts are also called multi-shuttle lifts, while we choose to use 

the term multi-unit to avoid confusion with the horizontal shuttles. A tour is defined as the set of 

operations starting from the time when the idle lift starts moving from its current location to load 

the first tote, until the time when the lift completed unloading the last tote. Each tour is not 
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necessarily full, which means the lifts will not wait for totes that are not ready to be loaded. In this 

section the tote lifts under analysis are 2-unit, as the analysis of 1-unit lifts is relatively simple and 

can be inferred according to the analysis of 2-unit lifts, and lifts with capacity larger than two are 

not common for the SBS/RS systems. Operations of 2-unit storage lifts and retrieval lifts can both 

be summarized as in Figure 4.8, in which both the storage lift service and retrieval lift service are 

illustrated. The I/O floor is the load point from the storage lift’s perspective, and the unload point 

from the retrieval lift’s perspective, and the I/O buffers are the unload points from the storage lift’s 

perspective, and load points from the retrieval lift’s perspective. 

 

Figure 4.8  Tote Lift Service Flows (2-unit tote lift) 

As introduced in Section 4.3the travel time between any two vertical tier locations 𝜏௫ଵ,   ௫ଶ
்௅  

is assumed given, where 𝑥1,  𝑥2 ∈ ሾ0,  𝑋ሿ, and tier 0 indicates the I/O floor location. Load/unload 

times 𝜔்௅ are assumed identical for each tote regardless of its sequence in the tour. Travel time 

and L/U time parameters are assumed identical for both the storage lift and the retrieval lift of an 

aisle. 

The multi-unit tote lifts can be approximated into G/G/1 queuing forms. It is obvious that 

the task arrival rates to both tote lifts are equal to the aisle’s overall task arrival rate 𝜆. The standard 

deviation of task inter-arrival time (IAT) for the storage lift  𝜎ௌ௅ equals that of the overall storage 

tasks 𝜎ௌ. However, the standard deviation of IAT for the retrieval lift  𝜎ோ௅ needs to be computed 

based on the queuing analysis results of the shuttle service (as illustrated in Figure 4.2). In this 

section generalized forms are used to present the analysis for both types of tote lifts. 
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The service time mean and variance for each task can be estimated based on the 

probabilities that the tote is in different cases with respect to the tote’s tour size and its position in 

the tour. Denote 𝑝௫
்௅ as the probability that a task’s target tier (thus the tier of a storage tote’s 

target slot for the storage lift, or the current tier of a retrieval tote for the retrieval lift) is tier 𝑥. 

With slot task visit probabilities estimated in Section 4.4we have: 

𝑝௫
்௅ ൌ ෍ ෍ 𝑃௫,௬,௭

ௌ

௭

ൌ ෍ ෍ 𝑃௫,௬,௭
ோ

௭௬௬

 

The above equation can be presented as a simpler form  𝑝௫
்௅ ൌ 1 𝑋⁄  under the earlier assumption 

that totes are randomly assigned to rack tiers with equal probabilities for both COL and PRS cases. 

Denote 𝑡௞ and 𝜎௞
ଶ as the mean and variance of task service time in a 𝑘-tote tour. For 2-unit tote 

lifts, the tour times are computed as following: 

𝑡ଵ ൌ ൭෍
2𝜏଴,   ௫

்௅

𝑋

௅

௫ୀଵ

൱ ൅ 2𝜔்௅ 

𝜎ଵ
ଶ  ൌ ෍

൫𝑡ଵ െ  2𝜏଴,   ௫
்௅ െ 2𝜔்௅ ൯

ଶ

𝑋

௅

௫ୀଵ

 

𝑡ଶ ൌ 0.5 ൈ ቌ൭ ෍ ෍
2𝜏଴,   ௫ଵ

்௅ ൅ 𝜏௫ଵ,   ௫ଶ
்௅

𝑋ଶ

௅

௫ଶୀଵ

௅

௫ଵୀଵ

൱ ൅ 4𝜔்௅ቍ 

𝜎ଶ
ଶ ൌ 0.5 ൈ ෍ ෍

ሺ𝑡ଶ െ 2𝜏଴,   ௫ଵ
்௅ െ 𝜏௫ଵ,   ௫ଶ

்௅ െ 4𝜔்௅ሻଶ

𝑋ଶ

௅

௫ଶୀଵ

௅

௫ଵୀଵ

 

Denote 𝑟௞ as the probability that a task is served in a 𝑘-tote tour. Utilization of a 𝐾்௅-unit tote lifts 

can be presented as: 

 𝑈 ൌ 𝜆 ෍ 𝑟௞𝑡௞

௄೅ಽ

௞ୀଵ

 

Denote 𝑃௡ as the probability that anytime there are 𝑛 tasks in the queuing system of the tote lift, 𝑟௞ 

can be estimated as: 
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𝑟௞ ൌ

⎩
⎨

⎧
𝑃௞ିଵ                   ,    ∀𝑘 ൏ 𝐾்௅

1 െ ෍ 𝑃௞ିଵ

௄೅ಽିଵ

௞ୀଵ

 ,   𝑘 ൌ 𝐾்௅   
 

For 2-unit tote lifts, when the variance of task inter-arrival time is significant,  𝑟௞  can be 

approximated as: 

𝑟ଵ ൌ 𝑃଴ ൎ ሺ1 െ 𝑈ሻ 

𝑟ଶ ൌ 1 െ 𝑃଴ ൎ 𝑈 

Because 𝑈 ൌ 𝜆ሺ𝑟ଵ𝑡ଵ ൅ 𝑟ଶ𝑡ଶሻ, 𝑟௞ can be solved as: 

𝑟ଵ ൌ
1 െ 𝜆𝑡ଶ

1 ൅ 𝜆ሺ𝑡ଵ െ 𝑡ଶሻ
 

𝑟ଶ ൌ 1 െ 𝑟ଵ ൌ
𝜆𝑡ଵ

1 ൅ 𝜆ሺ𝑡ଵ െ 𝑡ଶሻ
 

Finally, the utilization 𝑈 and average task service time 𝑇 of a 2-unit tote lift can be obtained as: 

𝑈 ൌ
𝜆𝑡ଵ

1 ൅ 𝜆ሺ𝑡ଵ െ 𝑡ଶሻ
 

𝑇 ൌ 𝑟ଵ𝑡ଵ ൅ 𝑟ଶ𝑡ଶ ൌ
𝑡ଵ

1 ൅ 𝜆ሺ𝑡ଵ െ 𝑡ଶሻ
 

Denote 𝜎௔ as the standard deviation of the overall task inter-arrival time. Denote 𝜎௦ as the standard 

deviation of the overall task service time, it is approximated as: 

𝜎௦
ଶ ൌ 𝑟ଵ𝜎ଵ

ଶ ൅ 𝑟ଶ𝜎ଶ
ଶ ൅ 𝑟ଵሺ𝑇 െ 𝑡ଵሻଶ ൅ 𝑟ଶሺ𝑇 െ 𝑡ଶሻଶ 

According to Kingman’s formula for G/G/1 queuing system, the average task waiting time 𝑊 is 

estimated as: 

𝑊 ൎ
𝑐𝑜𝑣௔

ଶ ൅ 𝑐𝑜𝑣௦
ଶ

2
ൈ

𝑈ଶ

1 െ 𝑈
ൈ 𝑇, 𝑤ℎ𝑒𝑟𝑒 𝑐𝑜𝑣௔ ൌ

𝜎௔

1 𝜆⁄
, 𝑐𝑜𝑣௦ ൌ

𝜎௦

𝑇
 

The mathematical formulations developed in this section also provide insights for the 

control strategy development phase. For example, the 𝑟௞ computation indicates that when the task 
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arrival rate is low, a larger portion of “underloaded” tours is expected to occur, which is generally 

unfavorable because the device is less efficient in terms of average service time per task. Also, it 

is generally favorable to reduce the 𝜏௫ଵ,   ௫ଶ
்௅  elements in the service time equations in order to 

improve the overall service rate – for storage lifts, this can be obtained through advanced storage 

assignment policies; for retrieval lifts, this can be obtained through scheduling approaches. 

Storage Lift 

For the storage lift, because it is the first stage server of the storage tasks, there is 𝜎௔
ௌ௅ ൌ 𝜎௔ 

for the standard deviation of its task inter-arrival times. Thus, the queuing estimates 𝑈ௌ௅, 𝑇ௌ௅, 𝜎௦
ௌ௅ 

and 𝑊ௌ௅ are all obtained before the shuttle service analysis. At last, the standard deviation of 

storage tasks’ inter-departure times from the storage lift is estimated in order to determine the 

inter-arrival time distribution to the shuttles in the next stage. It is computed based on the 

approximation solutions for Two-stage Tandem Queues by Rosenshine and Chandra (1975), in 

which the departure time variance 𝜎ௗ
ଶ of the first stage of a tandem queue is approximated as: 

𝜎ௗ
ଶ ൎ 1 𝑛𝜆ଶ⁄ ൅ ሺ𝑛 െ 1ሻ 𝑛𝜇ଶ⁄ ൅ ሺ1 െ 𝜌ሻሺ𝑛 െ 1ሻ 𝑚𝑛𝜇ଶ⁄ െ ሺ𝑚 െ 1ሻ 𝑚𝜇ଶ⁄  

 ൅ 0.5ሺ1 െ 𝜌ሻሺ𝑚 െ 1ሻሺ𝑛 െ 1ሻ 𝑚ଶ𝑛𝜇ଶ⁄ ൅ 2ሺ1 െ 𝜌ሻሺ𝑚 െ 1ሻሺ𝑛 െ 1ሻ 𝑚𝑛ଶ𝜇ଶ⁄  

In the above equation, 𝜆, 𝜇 and 𝜌 indicate the arrival rate, service rate, and utilization of the first 

stage server, 𝑚 ൌ
ሺ୫ୣୟ୬ ୱୣ୰୴୧ୡୣ ୲୧୫ୣሻమ

୴ୟ୰୧ୟ୬ୡୣ ୭୤ ୱୣ୰୴୧ୡୣ ୲୧୫ୣ
, 𝑛 ൌ

ሺ୫ୣୟ୬ ୧୬୲ୣ୰ୟ୰୰୧୴ୟ୪ ୲୧୫ୣሻమ

୴ୟ୰୧ୟ୬ୡୣ ୭୤ ୧୬୲ୣ୰ୟ୰୰୧୴ୟ୪ ୲୧୫ୣ
. It is noticeable that if both 

the inter-arrival time and service time are exponential (thus  𝑚 ൌ 𝑛 ൌ 1), the inter-departure times 

are also exponential and  𝜎ௗ ൌ 1 𝜆⁄ . In our content, replace 𝜎ௗ
ଶ  as ሺ𝜎ௗ

ௌ௅ሻଶ  to denote the inter-

departure time variance of the storage lift, thus λ, μ and ρ from the previous equation are replaced 

by 𝜆, ଵ

்ೄಽ and 𝑈ௌ௅, respectively, and 𝑚 ൌ ቀ
்ೄಽ

ఙ౩
౏ైቁ

ଶ
, 𝑛 ൌ ቀ

ଵ ஛⁄

ఙೄ ቁ
ଶ
. Then 𝜎ௗ

ௌ௅ is computed accordingly. 

At last, denote 𝑐𝑜𝑣ௗ
ௌ௅ ൌ 𝜆𝜎ௗ

ௌ௅  as the coefficient of variation of the storage lift inter-departure 

times. 

Retrieval Lift 

For the retrieval lift, utilization 𝑈ோ௅  and average service time  𝑇ோ௅  can be directly 

estimated. However, because the standard deviation 𝜎௔
ோ௅ of its inter-arrival time is estimated based 
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on the inter-departure time distribution of retrieval tasks 𝜎ௗோ
௏  of the shuttles, the waiting time 𝑊ோ௅ 

is obtained after the analysis for shuttle service (described in the following Section 4.5.2). 

4.5.2 Shuttle and Shuttle Lift Service Analysis 

Shuttles in SBS/RS serve both storage tasks and retrieval tasks. With 2-deep rack systems, 

a relocation operation is needed to retrieve a tote stored in a 2-deep slot if it is blocked by a tote 

stored in its neighboring 1-deep slot. With tier-to-tier systems, tier-transfer operations are needed 

to transport the shuttles between tiers by the shuttle lifts. The service flows of shuttle and shuttle 

lift can be summarized as in Figure 4.9. 

 

Figure 4.9  Shuttle and Shuttle Lift Service Flows 

The shuttles’ interaction points to tote lift services — input buffers and output buffers – 

are both located at the same end of each tier. In general, if the shuttles serve the tasks in a dual 

cycle (DC) interleaving pattern – storage, retrieval, storage, retrieval … – as much as possible, the 

shuttle service rate will be improved as the unnecessary travel times are minimized. In this research, 

an in-tier task is viewed as a DC task only if it matches one of the following conditions: 
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1. This task is a storage task and the previous task of the same shuttle going to serve it is a retrieval 

task (no matter in-tier or tier-transfer) in the same tier. In this case, the shuttle’s current location 

is column 0 (I/O buffer), and there is no need for the shuttle to travel before it starts loading 

the tote of the current task. 

2. This task is a retrieval task, and the previous task of the same shuttle going to serve it is a 

storage task (no matter in-tier or tier-transfer) in the same tier. In this case, the shuttle’s current 

location is the column 𝑦ௌ of the last task’s target slot ሾ𝑥𝑆, 𝑦𝑆, 𝑧𝑆ሿ, and it needs to travel to the 

column 𝑦ோ of the current task’s target slot ሾ𝑥𝑅, 𝑦𝑅, 𝑧𝑅ሿ before it starts loading the tote of the 

current task. 

Otherwise, an in-tier task is viewed as a single-cycle (SC) task. A tier-transfer task, either 

storage or retrieval, not counted as DC or SC. Relocation does not affect the DC/SC criterion for 

in-tier retrieval tasks. 

According to definitions of task types, DC, tier-transfer and relocation, all possible shuttle 

services can be categorized into 12 cases based on the shuttle’s service sequence, as illustrated in 

Table 4.4. Task types are denoted as S and R for storage and retrieval, respectively; TT and Re in 

the service sequences are used to indicate tier-transfer and relocation, respectively. Cases 1 to 4 

are storage task cases, and cases 5 to 12 are retrieval task cases. For example, case 8 represents the 

situation that a shuttle whose previous task is retrieval (R) is selected to serve a tier-transfer (TT), 

relocation-needed (Re) retrieval task (R). The dual cycle column indicates whether the task in each 

case is viewed as a DC task or SC task or neither. Finally, the occurrence probability of each case 

is presented using the computational variables  𝜃் , 𝜃ோ  and 𝜃஽  defined in Section 4.3. 𝜃ோ  is 

estimated in Section 4.4, while 𝜃்  and 𝜃஽  need to be estimated during the following queuing 

analysis.  

Table 4.4 Shuttle Service Cases 

Case Task Last 
Task 

Service 
Sequence 

Cycle 
Type 

𝒑𝒌  
Occurrence Probability / Task  

1 S R R-S DC ሺ1 െ 𝜃்ሻ𝜃஽ 

2 S R R-TT-S -- 𝜃் ൈ 0.5 

3 S S S-S SC ሺ1 െ 𝜃்ሻሺ1 െ 𝜃஽ሻ 
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4 S S S-TT-S -- 𝜃் ൈ 0.5 

5 R R R-R SC  ሺ1 െ 𝜃்ሻሺ1 െ 𝜃ோሻሺ1 െ 𝜃஽ሻ 

6 R R R-Re-R SC ሺ1 െ 𝜃்ሻ 𝜃ோሺ1 െ 𝜃஽ሻ 

7 R R R-TT-R -- 𝜃்ሺ1 െ 𝜃ோሻ ൈ 0.5  

8 R R R-TT-Re-R -- 𝜃்𝜃ோ ൈ 0.5 

9 R S S-R DC  ሺ1 െ 𝜃்ሻሺ1 െ 𝜃ோሻ𝜃஽ 

10 R S S-Re-R DC ሺ1 െ 𝜃்ሻ 𝜃ோ𝜃஽ 

11 R S S-TT-R -- 𝜃்ሺ1 െ 𝜃ோሻ ൈ 0.5 

12 R S S-TT-Re-R -- 𝜃்𝜃ோ ൈ 0.5 

 

Service Time Estimation by Case 

The service procedures of the shuttle service cases are further illustrated in Figure 4.10 and 

Figure 4.11. For each service case, the distribution of shuttle service times can be estimated based 

on the task visit probability matrices 𝑃ௌ , 𝑃ோ , 𝑃ோ௘ூ  and 𝑃ோ௘ை  obtained from the previous stage. 

Under the earlier assumption that totes are randomly assigned to rack tiers with equal probabilities 

for both COL and PRS cases, the matrices are presented with 𝑦  and 𝑧  coordinates only. For 

example, 𝑃௬,௭
ௌ  indicates the storage probability to slot ሾ𝑦, 𝑧ሿ  of any tier, thus  𝑃௬,௭

ௌ ൌ ∑ 𝑃௫,௬,௭
ௌ

௫ . 

Furthermore, denote 𝑃௬
ௌ  ൌ ∑ ∑ 𝑃௫,௬,௭

ௌ
௭௫  and 𝑃௭

ௌ ൌ ∑ ∑ 𝑃௫,௬,௭
ௌ

௬௫ , etc. Denote 𝑡௞ and 𝜎௞
ଶ as the mean 

and variance of the service time of case 𝑘, where 𝑘 ∈ ሾ1,2 … 12ሿ. The computation processes here 

are similar to those for tote lifts in Section 4.5.1. Hence, here we only use cases 1, 9, 10, 11 and 

12 for illustration. In the following 𝑡௞ equations, ሾ𝑥0, 𝑦0, 𝑧0ሿ and ሾ𝑥1, 𝑦1, 𝑧1ሿ indicates the target 

slots of the shuttle’s previous task and current task, respectively, and ሾ𝑥2, 𝑦2, 𝑧2ሿ indicates the 

relocation target slot if applicable. 

Case 1: ሾ 𝑅 െ 𝑆ሿ:  

𝑡ଵ ൌ ቌ ෍ ෍ ൫𝑃௬ଵ,௭ଵ
ௌ ൈ ሺ𝜏଴,௬ଵ

௏ ൅ 𝜔௭ଵ
௏ ሻ൯

௓

௭ଵୀଵ

௒

௬ଵୀଵ

ቍ ൅ 𝜔଴
௏ 

Case 9: ሾ 𝑆 െ 𝑅ሿ: 
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 𝑡ଽ ൌ
∑ ∑ ∑ ሺ𝑃௬଴

ௌ ൈ 𝑃௬ଵ,௭ଵ
ோ ൈ ൫𝜏௬଴,௬ଵ

௏ ൅𝜏௬ଵ,଴
௏ ൅ 𝜔௭ଵ

௏ ൯ሻଶ
௭ଵୀଵ

௒
௬ଵୀଵ

௒
௬଴ୀଵ

∑ 𝑃௭ଵ
ோଶ

௭ଵୀଵ
൅ 𝜔଴

௏ 

Note that case 1 and case 9 are the two basic DC cases. In both cases, the shuttle always interact 

with the I/O buffer once (L/U time 𝜔଴
௏) and interact with the slot once (L/U time 𝜔௭ଵ

௏ ). In 𝑡ଵ there 

is only one travel component 𝜏଴,௬
௏  for the travel time from the I/O buffer to the target column, this 

is because after unloaded a storage task, the shuttle does not need to perform additional travel 

before loading a retrieval task. On the other hand, 𝑡ଽ has two travel elements:  𝜏௬଴,௬ଵ
௏  for the travel 

time from shuttle’s current location to target column, and 𝜏௬ଵ,଴
௏  for the travel time from target 

column to I/O buffer. The service time of the two basic SC cases: 𝑡ଷ (S-S) and 𝑡ହ (R-R), can be 

inferred similarly. 

Case 10: ሾ 𝑆 െ 𝑅𝑒 െ 𝑅ሿ: 

𝑡ଵ଴ ൌ ቆ
∑ ∑ ∑ ሺ𝑃௬଴

ௌ ൈ 𝑃௬ଵ,௭ଵ
ோ ൈ ൫𝜏௬଴,௬ଵ

௏ ൅𝜏௬ଵ,଴
௏ ൅ 𝜔௭ଵ

௏ ൯ሻସ
௭ଵୀଷ

௒
௬ଵୀଵ

௒
௬଴ୀଵ

∑ 𝑃௭ଵ
ோସ

௭ଵୀଷ
൅  𝜔଴

௏ቇ 

൅
∑ ∑ ∑ ∑ ሺ𝑃௬ଵ,௭ଵ

ோ௘ை ൈ 𝑃௬ଶ,௭ଶ
ோ௘ூ ൈ ൫2𝜏௬ଵ,௬ଶ

௏ ൅ 𝜔௭ଵ
௏ ൅ 𝜔௭ଶ

௏ ൯ሻସ
௭ଶୀଵ

௒
௬ଶୀଵ

ସ
௭ଵୀଷ

௒
௬ଵୀଵ

ሺ𝜃ோሻଶ  

Each relocation case has an additional relocation time component compared to the non-relocation 

cases. The above 𝑡ଵ଴ equation describes the expected service time of a relocation-retrieval task 

given the shuttle’s previous task is storage. Note that the first component of 𝑡ଵ଴ is the same as 𝑡ଽ 

except for the z indices. The second component of 𝑡ଵ଴ is the time for the relocation operations, 

which consists of two travel elements (2𝜏௬ଵ,௬ଶ
௏ ) and two L/U elements (𝜔௭ଵ

௏ , 𝜔௭ଶ
௏ ). The service time 

of cases 𝑡଺ (R-Re-R) can be inferred similarly by adding a relocation component based on 𝑡ହ (R-

R). 
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Figure 4.10 Shuttle service cases: in-tier tasks 
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Figure 4.11 Shuttle service cases: tier-transfer tasks 

Case 11: ሾ 𝑆 െ 𝑇𝑇 െ 𝑅ሿ:   

𝑡ଵଵ ൌ ቌ ෍ ൫𝑃௬଴
ௌ ൈ 𝜏௬଴,௒

௏ ൯

௒

௬଴ୀଵ

ቍ ൅ ቆ
∑ ∑ 2𝜏௫଴,௫ଵ

௏௅௑
௫ଵୀଵ

௑
௫଴ୀଵ

𝑋ଶ ൅ 2𝜔௏௅ቇ

൅ ൮ቌ ෍ ෍ ቀ𝑃௬ଵ,௭ଵ
ோ ൈ ൫𝜏௒,௬ଵ

௏ ൅𝜏௬ଵ,଴
௏ ൅ 𝜔௭ଵ

௏ ൯ቁ

ଶ

௭ଵୀଵ

௒

௬ଵୀଵ

ቍ ൅ 𝜔଴
௏൲ 

For each tier-transfer task, the selected shuttle first travels to the transfer station located at column 

C (the opposite end of I/O buffers). As for 𝑡ଵଵ, the first component in the formula indicates the 
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average travel time from the column of the previous storage task to column Y (step 1 in Figure 

4.11) – denote this component as 𝑡ௌ௒
௏ . During this time, although the shuttle lift is idle, it is reserved 

by this task and waits until the selected shuttle arrived the transfer station (column Y). The second 

component indicates the total service time of the shuttle lift – denote this component as 𝑇௏௅ — 

consists of the processes where the shuttle lift travels toward the shuttle’s current tier, loads the 

shuttle, travels toward the target tier of the task, and then unload the shuttle (step 2, 3, 4, 5 in Figure 

4.11). According to the storage assignment assumption made previously that storage probabilities 

are equal between tiers, the two travel components are presented in the above form which consists 

of two travel elements (2𝜏௫଴,௫ଵ
௏௅ ) and two L/U elements (2𝜔௏௅). Also, according to the scheduling 

assumptions made previously, the shuttle lift will not start moving to the shuttle’s tier until the 

shuttle is standing by at the transfer station – this is why the first two components in the formula 

are presented independently (otherwise the shuttle’s travel time to the transfer station will partially 

overlap with the shuttle lift’s travel time to the shuttle’s current tier). The last component of the 

formula indicates shuttle retrieval operations after the shuttle is unloaded to the transfer station of 

the new tier, which consists of two travel elements (𝜏௒,௬ଵ
௏ , 𝜏௬ଵ,଴

௏ ) and two L/U elements (𝜔௭ଵ
௏ , 𝜔଴

௏). 

The  𝑡ସ  (S-TT-S) can be inferred similarly by changing the last component in  𝑡ଵଵ  above. The 

formula of 𝑡଻ (R-TT-R) is identical to 𝑡ଵଵ above except for the first component for the travel time 

from the shuttle’s position after completed the previous retrieval task to column Y – denote this 

component as 𝑡ோ௒
௏ , which simply equals 𝜏଴,௒

௏  because in this case the selected shuttle will always 

need to travel along the full aisle from I/O buffer to the transfer station. The 𝑡ଶ (R-TT-S) can be 

inferred similarly by changing the last component of 𝑡଻.  

For the rest of the cases, both tier-transfer and relocation exist in the service. Their service 

times can all be determined by adding a relocation component to the corresponding basic tier-

transfer case. For example, case #12 ሾ 𝑆 െ 𝑇𝑇 െ 𝑅𝑒 െ 𝑅ሿ, which is the most complicated case 

among all 12 shuttle service cases, is represented: 

Case 12: ሾ 𝑆 െ 𝑇𝑇 െ 𝑅𝑒 െ 𝑅ሿ:   

𝑡ଵଶ ൌ ቌ ෍ ൫𝑃௬଴
ௌ ൈ 𝜏௬଴,௒

௏ ൯

௒

௬଴ୀଵ

ቍ ൅ ቆ
∑ ∑ 2𝜏௫଴,௫ଵ

௏௅௑
௫ଵୀଵ

௑
௫଴ୀଵ

𝑋ଶ ൅ 2𝜔௏௅ቇ 
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൅
∑ ∑ ∑ ∑ ሺ𝑃௬ଵ,௭ଵ

ோ௘ை ൈ 𝑃௬ଶ,௭ଶ
ோ௘ூ ൈ ൫2𝜏௬ଵ,௬ଶ

௏ ൅ 𝜔௭ଵ
௏ ൅ 𝜔௭ଶ

௏ ൯ሻସ
௭ଶୀଵ

௒
௬ଶୀଵ

ସ
௭ଵୀଷ

௒
௬ଵୀଵ

ሺ𝜃ோሻଶ

൅ ൮ቌ ෍ ෍ ቀ𝑃௬ଵ,௭ଵ
ோ ൈ ൫𝜏௒,௬ଵ

௏ ൅𝜏௬ଵ,଴
௏ ൅ 𝜔௭ଵ

௏ ൯ቁ

ଶ

௭ଵୀଵ

௒

௬ଵୀଵ

ቍ ൅ 𝜔଴
௏൲ 

As showed above, 𝑡ଵଶ  has four components: shuttle travels from previous storage location to 

transfer station (which is identical to the first component of 𝑡ଵଵ), shuttle lift service time (identical 

to the second component of 𝑡ଵଵ), relocation time (identical to the second part of 𝑡ଵ଴), and retrieval 

time (identical to the third part of 𝑡ଵଵ). 

Some important observations are made regarding tier-transfer tasks and the ratio 𝜃். It is 

reasonable to view the tier-transfer services as a virtual independent queuing system – call it the 

Tier-transfer system (TT system) – whose task arrival rate is 2𝜆𝜃். Denote the utilization of the 

TT system as 𝑈்், which can be presented as: 

 𝑈்் ൌ 2𝜆𝜃்ሺ𝑇௏௅ ൅ 0.5ሺ𝑡ௌ௒
௏ ൅ 𝑡ோ௒

௏ ሻሻ, 

Where 𝑡ௌ௒
௏  and 𝑡ோ௒

௏  are the average times that a shuttle travels from its current position to the tier-

transfer station after a storage task and a retrieval task, respectively, and 𝑇௏௅ is the average service 

time of the shuttle lift – travel to shuttle’s tier, load shuttle, travel to target tier, and unload shuttle. 

Note that in the above presentation for 𝑈்், there is only one unknown variable 𝜃் (as discussed 

in the cases’ service time computations, 𝑇௏௅, 𝑡ௌ௒
௏  and 𝑡ோ௒

௏  are obtained without the other unknown 

variable 𝜃஽, and 𝜃ோ is already known). According to the control assumptions made previously, a 

task whose target tier does not have shuttle availability will initiate a tier-transfer service only 

when there is at least one idle shuttle on the other tiers. It can be inferred that 𝜃் will be in general 

smaller as 𝜆 gets higher (which causes higher shuttle utilization), and vise-versa. The negative 

correlation between 𝜆 and 𝜃் raises complexity in analyzing this virtual system. To some extent, 

the TT system behaves similar to a 𝐽-sever queuing system, where 𝐽 is the number of shuttles. 

However, once a tier-transfer service starts, the shuttle lift is also occupied together with the 

selected shuttle until the shuttle is released to the target tier – during this time, no other tier-transfer 

tasks can be started in parallel with the current task even if there are more idle shuttles (but these 

shuttle will still go for other in-tier tasks if any arrives during this time), which add some single-
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server queuing system characteristics to it. Moreover, the queue capacity of the TT system is 

limited to  ሺ𝑋 െ 𝐽ሻ  in an 𝑋 -tier, 𝐽 -shuttle aisle, because obviously each tier without shuttle 

availability can only have at most one tier-transfer task at any time (if there are multiple tasks 

waiting on that tier, only the first task will initiate tier-transfer service). The analysis of the TT 

system and the approximation of 𝜃் will be introduced later in this section. 

At last, the variance of service time is computed for each of the 12 cases. In general, these 

are computed as: 

𝜎௞
ଶ  ൌ ෍ ቀ𝑝௜ሺ௞ሻ ൈ ൫𝑡௞ െ 𝑡௜ሺ௞ሻ൯

ଶ
ቁ

௜ሺ௞ሻ

 

Where  𝑘  is the case index, 𝑖ሺ𝑘ሻ  represents the 𝑖 th member within case  𝑘 , and 𝑡௜ሺ௞ሻ  and 𝑝௜ሺ௞ሻ 

indicate its service time and probability within case 𝑘, respectively. For example, in case 9 (S-R) 

there are: 

𝑡௜ሺଽሻ ൌ ൫𝜏௬଴,௬ଵ
௏ ൅𝜏௬ଵ,଴

௏ ൅ 𝜔௭ଵ
௏ ൯ ൅ 𝜔଴

௏ 

𝑝௜ሺଽሻ ൌ
𝑃௬଴

ௌ ൈ 𝑃௬ଵ,௭ଵ
ோ

∑ 𝑃௬ଵ,௭ଵ
ோଶ

௭ୀଵ
 

𝑦0 ∈ ሾ1, 𝑌ሿ, 𝑦1 ∈ ሾ1, 𝑌ሿ, 𝑧1 ∈ ሾ1,2ሿ 

The computation details here are similar for all shuttle service cases, hence we do not discuss them 

in detail. Finally, although the mean and variance computation processes may look cumbersome 

at first glance, they are actually easy for coding implementation and are computational efficient in 

the analysis program as introduced in section 4.3.3 (anyway, the travel-time model developed here 

is not expected for manual computation). 

Estimation of Ratios 𝜽𝑫 and 𝜽𝑻 

Recall that instead of specifying whether a dual cycle should start with a storage or retrieval 

task, we define that a storage or retrieval task is considered as a DC task if the previous task served 

by the same shuttle is of the different type, and considered as an SC task otherwise. The mean and 

variance of each shuttle service case are estimated without the dual-cycle ratio 𝜃஽ or the tier-

transfer ratio 𝜃். However, to compute for the overall service time, these two ratios need to be 
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estimated in order to know the probabilities of each case. Based on the shuttle scheduling 

assumption made in Section 4.3 if the shuttles serve tasks in simple FCFS pattern (𝑀஽஼ ൌ 𝑓𝑎𝑙𝑠𝑒), 

there is expected to be equal number of DC tasks and SC tasks, thus 𝜃஽ is 0.5. However, with DC 

scheduling,  𝜃஽  is affected by shuttle utilization – in general, the busier the shuttles are, the 

higher 𝜃஽ is. The lower bound of 𝜃஽ with DC scheduling is 0.5, which is obvious. On the other 

hand, 𝜃் is affected by the number of tiers and number of shuttles deployed, the shuttle utilization, 

and the shuttle lift utilization as well. The lower bound of 𝜃் is 0. 

A nested goal-seeking approach is developed to approximate both 𝜃஽ and 𝜃். Define 𝑝௞ 

as the probability of occurrence for each service case 𝑘 ∈ ሾ1,12ሿ. Each 𝑝௞ is a function of  𝜃஽ 

and  𝜃்  as described in Table 4.4 (relocation ratio  𝜃ோ  is already known). The goal-seeking 

approach is illustrated in Figure 4.12. For tier-to-tier systems with DC scheduling mode, both of 

the ratios need to be estimated. The initial values of 𝜃் and 𝜃஽ are set to 0 and 1, respectively: 

𝜃் ൌ 0 means no tier-transfer task will occur, and 𝜃஽ ൌ 1 means the shuttles are always able to 

serve all tasks in DC patterns. The goal-seeking approach is essentially the processes of increasing 

the input 𝜃் and decreasing the input 𝜃஽ until both values are consistent with their corresponding 

estimates obtained in iterative computations. Estimates 𝜃෢்  and 𝜃஽෢  are computed and compared to 

the current 𝜃஽ and 𝜃் values, respectively. An estimate is accepted if the error is within preset 

allowances, otherwise the estimates are rejected and the 𝜃 value is updated for a new round of 

estimation – though such iterative approximation processes, the final values of 𝜃஽  and 𝜃்  are 

determined. In this research, the acceptance allowances of 𝜃஽ and 𝜃் are determined as 0.25% and 

0.5%, respectively. The maximum increment/decrement of each update are determined as 0.1% 

and 0.2% for 𝜃஽ and 𝜃், respectively.  The details of the two estimation functions are described 

in the following pseudo-code forms. 
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Figure 4.12 Goal-seeking for DC ratio 𝜃஽ and tier-transfer ratio 𝜃் 

Goal-seeking function 1: Estimate for 𝜽𝑻: 

𝑃௡௢ௌ௛௨௧௧௟௘ ൌ ሺ𝑋 െ 𝐽ሻ 𝑋⁄  

𝑈𝐵ሺ𝜃்ሻ ൌ min ቎
1

2𝜆 ቀ𝑇௏௅ ൅ 0.5ሺ𝑡ௌ௒
௏ ൅ 𝑡ோ௒

௏ ሻቁ
 , 𝑃௡௢ௌ௛௨௧௧௟௘቏ 

𝑈௏௅ ൌ 2𝜆θ் ൈ 𝑇௏௅ 

𝑇௏ ൌ 0.5 ෍ሺ𝑝௞ ൈ 𝑡௞ሻ
ଵଶ

௞ୀଵ

 

𝑈௏ ൌ
2𝜆
𝐽

ൈ 𝑇௏ 

𝑃ሺ0ሻ ൌ 1  ቎ ෍
ሺ 𝐽 ൈ 𝑈௏ሻ௠

𝑚!

௃ିଵ

௠ୀ଴

൅
ሺ 𝐽 ൈ 𝑈௏ሻ௃

𝐽! ൈ ሺ1 െ 𝑈௏ሻ
቏൘  

FOR (𝑛 ൌ 1,2, … , 𝑋 െ 𝐽ሻ: 
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𝑃ሺ𝑛ሻ ൌ

⎩
⎪
⎨

⎪
⎧𝑃ሺ0ሻ ൈ

ሺ𝐽 ൈ 𝑈௏ሻ௡

𝑛!
 , 𝑖𝑓 𝑛 ൏ 𝐽

𝑃ሺ0ሻ ൈ
ሺ𝐽 ൈ 𝑈௏ሻ௡

𝐽ሺ௡ି௃ሻ ൈ 𝐽!
 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

END FOR 

𝑃௜ௗ௟௘௏௅ ൌ 1 െ 𝑈௏௅ 

𝑃௕௨௦௬௏௅_ௗ௜௙௙்௜௘௥ ൌ 𝑈௏௅ ൈ ෍ ቆ𝑃ሺ𝑛ሻ ൈ ൬1 െ
𝑛

𝑋 െ 𝐽
൰ቇ

௑ି௃

௡ୀଵ

 

𝜃෢் ൌ 𝑚𝑖𝑛ሾ𝑃௡௢ௌ௛௨௧௧௟௘ ൈ ሺ𝑃௜ௗ௟௘௏௅ ൅ 𝑃௕௨௦௬௏௅_ௗ௜௙௙்௜௘௥ሻ,  𝑈𝐵ሺ𝜃்ሻሿ  

𝜀் ൌ 𝜃෢் െ 𝜃்  

IF ( |𝜀்| ൏ 0.0025 ):  
STOP 

ELSE IF ( 𝜀் ൏ 0 ):  
Update 𝜃் ൌ 𝜃் ൅ 𝑚𝑖𝑛 ሺ0.1𝜀், െ0.001ሻ 

ELSE:  
Update 𝜃் ൌ 𝜃் ൅ 𝑚𝑎𝑥 ሺ0.1𝜀், 0.001ሻ 

END IF 

In the above function for 𝜃் estimation, the upper bound of  𝜃் is estimated at the first 

place. Denote 𝑃௡௢ௌ௛௨௧௧௟௘ ൌ ሺ𝑋 െ 𝐽ሻ 𝑋⁄  for the probability that a task is targeting a tier that has no 

shuttle existence when it arrives, where J is the number of shuttles and X is the number of tiers. It 

can be inferred that, there are two cases that such task will become a tier-transfer task:  

1) The shuttle lift is currently idle, thus this task will be the next task the shuttle lift serves;  

2) Although the shuttle lift is currently busy, all existing tier-transfer tasks waiting for 

shuttle lift service are targeting at tiers that are different from this task’s target tier. Otherwise, this 

task will be an in-tier task because a shuttle will be transferred to its target tier in one of the 

previous tasks.  

It is obvious that 𝜃் ൏ ሺ𝑋 െ 𝐽ሻ 𝑋⁄ . Also,  𝜃் is bounded by the maximum service rate of 

the virtual TT system which can be estimated given its utilization,  𝑈்் ൌ 1 – in such case, the 

shuttle lift is always occupied by one tier-transfer task (either busy or waiting for an incoming 

shuttle). The upper bound 𝑈𝐵ሺ𝜃்ሻ is thus obtained. From the perspective of the TT system, 𝑈்் ൌ

1 does not lead to infinite queues: it can be inferred that at any moment in the aisle, the target tiers 

of all existing tier-transfer tasks are different, thus the maximum possible number of tier-transfer 

tasks in the aisle is limited to ሺ𝑋 െ 𝐽ሻ. 
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Then, based on the current value of 𝜃், shuttle lift utilization 𝑈௏௅ is estimated according 

to the average service time  𝑇௏௅ estimated earlier and the arrival rate of tier-transfer tasks based 

on the current value of 𝜃். The shuttle utilization 𝑈௏ and expected overall service time 𝑇௏ are 

estimated based on the current values of 𝜃் and 𝜃஽ (because case probabilities 𝑝௞ are functions of 

both ratios). 𝑃ሺ𝑛ሻ’s are the probabilities of number of tier-transfer tasks in the entire system, 

estimated by viewing the overall tier-transfer service process as an M/M/c (𝑐 ൌ 𝐽) queuing system 

(note that the tier-transfer service was temporarily viewed as single-server only for obtaining the 

upper bound 𝑈𝐵ሺ𝜃்ሻ). Then, for each tier-transfer task arrival, two probability components are 

formed to estimate the probability that the arriving task initializes a tier-transfer service. Denote 

𝑃௜ௗ௟௘௏௅  as the probability that the shuttle lift is idle, which is simply  1 െ 𝑈௏௅ . 

Denote 𝑃𝑏𝑢𝑠𝑦𝑉𝐿_𝑑𝑖𝑓𝑓𝑇𝑖𝑒𝑟 as the probability that the shuttle lift is busy while the target tier of the 

arriving task is different from that of any existing tier-transfer tasks in the system, estimated as 

𝑈௏௅ multiplied by the weighted sum of the corresponding probabilities of all possible number-in-

system cases. Take a 12-tier and 6-shuttle aisle for an example, obviously there will be 6 tiers not 

having shuttle all the time. If there are three tier-transfer tasks in the system (probability 𝑃ሺ3ሻ) by 

the time a task arrives(known its target tier does not have shuttle now), then 3 out of the 6 no-

shuttle tiers are expecting shuttles transfers prior to this task – because the existing 3 tier-transfer 

tasks are targeting at the other three no-shuttle tiers, respectively, as inferred earlier. Thus, the 

probability that this task will become a tier-transfer task is expected to be 1 െ 3 ሺ12 െ 6ሻ⁄ ൌ 0.5.   

Finally, an estimate 𝜃෢் ൌ 𝑃௡௢ௌ௛௨௧௧௟௘ ൈ ሺ 𝑃௜ௗ௟௘௏௅ ൅ 𝑃௕௨௦௬௏௅_ௗ௜௙௙௧௜௘௥ ሻ  is computed and 

compared to the upper bound 𝑈𝐵ሺ𝜃்ሻ – if 𝜃෢்  is larger, its value is set to 𝑈𝐵ሺ𝜃்ሻ. The final 𝜃෢்  is 

compared to the current 𝜃்.  According to the error 𝜀் between 𝜃෢்  and the current 𝜃், the function 

either accept the current 𝜃் value or update it for a new iteration. 

Goal-seeking function 2: Estimate for 𝜽𝑫: 

𝑃௜ௗ௟௘_஽஼ ൌ 0.5 

𝑃௦௧௢௥௔௚௘_௜௡௦௬௦௧௘௠ ൌ 𝑃௥௘௧௥௜௘௩௔௟_௜௡௦௬௦௧௘௠ ൌ 𝑈௏ 

𝑃௦௧௢௥௔௚௘_௜௡௤௨௘௨௘ ൌ 𝑃௥௘௧௥௜௘௩௔௟_௜௡௤௨௘௨௘ ൌ ሺ𝑈௏ሻଶ 

𝑃௕௨௦௬_௖௨௥௥௘௡௧ூ௦ூ௡௧௜௘௥_ௌ஼ ൌ 𝑃௦௧௢௥௔௚௘_௜௡௦௬௦௧௘௠ ൈ ሺ1 െ 𝑃௥௘௧௥௜௘௩௔௟_௜௡௤௨௘௨௘ሻ  

    ൌ 𝑃௥௘௧௥௜௘௩௔௟_௜௡௦௬௦௧௘௠ ൈ ሺ1 െ 𝑃௦௧௢௥௔௚௘_௜௡௤௨௘௨௘ሻ 
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    ൌ 𝑈௏ ൈ ሺ1 െ ሺ𝑈௏ሻଶሻ 

𝑃௕௨௦௬_௖௨௥௥௘௡௧ூ௦ூ௡௧௜௘௥_஽஼ ൌ 1 െ 𝑃௕௨௦௬_௖௨௥௥௘௡௧ூ௦ூ௡௧௜௘௥_ௌ஼ ൌ ሺ𝑈௏ሻଷ െ 𝑈௏ ൅ 1 

IF (Tier-Captive): 

𝑃௕௨௦௬_஽஼ ൌ 𝑃௕௨௦௬_௖௨௥௥௘௡௧ூ௦ூ௡௧௜௘௥_஽஼  

ELSE IF (Tier-to-Tier): 

𝑃௕௨௦௬_஽஼ ൌ ሺ1 െ 𝜃்ሻ ൈ 𝑃௕௨௦௬_௖௨௥௥௘௡௧ூ௦ூ௡௧௜௘௥_஽஼ ൅ 𝜃் ൈ 0.5 

END IF 

𝜃஽෢ ൌ 𝑃௜ௗ௟௘_஽஼ ൈ ሺ1 െ 𝑈௏ሻ ൅ 𝑃௕௨௦௬_஽஼ ൈ 𝑈௏ 

𝜀஽ ൌ 𝜃஽෢ െ 𝜃஽  

IF ( |𝜀஽| ൏ 0.005 ):  
STOP 

ELSE IF ( 𝜀் ൏ 0 ):  
Update 𝜃஽ ൌ 𝜃஽ ൅ 𝑚𝑖𝑛 ሺ0.2𝜀஽, െ0.002ሻ 

ELSE:  
Update 𝜃஽ ൌ 𝜃஽ ൅ 𝑚𝑎𝑥 ሺ0.2𝜀஽, 0.002ሻ 

END IF 

In the above function for 𝜃஽ estimation, service processes of the shuttles are temporarily 

viewed as independent M/M/1 queuing systems. The probabilities that a task is in the shuttle 

service system, and the probabilities that a task in the shuttle service queue, for both storage tasks 

and retrieval tasks. When the shuttle is idle, an arriving task is DC if the last task served by this 

shuttle is the different task type — this probability 𝑃௜ௗ௟௘_஽஼  is simply 0.5 because the type of the 

arriving task is independent from the type of the previous task. For tier-captive configurations 

where there is no tier-transfer task, when the shuttle is busy, the probability that the arriving task 

is SC 𝑃௕௨௦௬_ௌ஼ is approximated as the probability there is at least one task of the same type in the 

system multiplied by the probability that there is no task of the different type in the queue—for 

example, an arriving storage task will be SC if the shuttle is busy working on another storage task 

while there is no retrieval tasks in queue. For tier-to-tier configurations, the computations 

for 𝑃௕௨௦௬_ௌ஼ incorporated the concerns on whether the current task the shuttle is working on is in-

tier or tier-transfer – when the shuttle is busy working on a tier-transfer task, the type of the arriving 

task is expected to be independent from the type of the current tier-transfer task (according to the 

scheduling control assumptions). Then, for both tier-captive cases and tier-to-tier cases, it is 

obvious that the probability that an arriving task to a busy shuttle is DC  𝑃௕௨௦௬_஽஼  

equals  1 െ 𝑃௕௨௦௬_ௌ஼ . Finally, an estimate 𝜃஽෢ ൌ 𝑃௜ௗ௟௘_஽஼ ൈ ሺ1 െ 𝑈௏ሻ ൅ 𝑃௕௨௦௬_஽஼ ൈ 𝑈௏  is 
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computed and compared to the current  𝜃஽ . According to the error 𝜀஽  between 𝜃஽෢  and the 

current 𝜃஽ , the function either accept the current 𝜃஽  value, or update it and start over a new 

iteration (note that 𝜃் is also initialized). 

Inter-arrival Time Distributions 

It is obvious that for each shuttle, the mean inter-arrival times are 𝐽 𝜆⁄  for both task types, 

thus the overall mean inter-arrival time is 𝐽 2𝜆⁄ . The standard deviation of each shuttle’s task inter-

arrival times are denoted as 𝜎௔ௌ
௏  and 𝜎௔ோ

௏  for storage tasks and retrieval tasks, respectively. Based 

on the storage assignment assumptions and shuttle scheduling assumptions made previously, the 

probability that each storage task is assigned to any particular shuttle is equally 1 𝐽⁄  (for both tier-

captive cases and tier-to-tier cases). Denote task 𝑠଴ as the latest storage task assigned to shuttle 𝑗. 

Denote tasks 𝑠ଵ, 𝑠ଶ … 𝑠௜ as storage tasks departs from the storage lift after 𝑠଴, and denote 𝑡ଵ, 𝑡ଶ … 𝑡௜ 

as their departure times (relative to the departure time of 𝑠଴). Thus, the inter-arrival time of the 

next storage task assigned to shuttle 𝑗 after task 𝑠଴ is 𝑡௜∗ of the earliest task 𝑠௜∗which will also be 

served by shuttle 𝑗. Denote the probability 𝑖 ൌ 𝑖∗ as 𝑝௜. Because each departure task 𝑠଴ has equal 

probability 1 𝐽⁄  assigned to each shuttle, there is: 

 𝑝௜ ൌ
1
𝐽

ሺ1 െ
1
𝐽

ሻ௜ିଵ, ∀𝑖 

Let us temporarily assume 𝜎ௗ
ௌ௅ ൌ 0 for the purpose of computing the lower bound of the 

standard deviation 𝜎௔ௌ
௏  of storage arrivals for shuttle service, thus 𝑡௜ ൌ 𝑖 𝜆⁄ . It is obvious that the 

average storage inter-arrival time to each shuttle is 𝐽 𝜆⁄ . The lower bound of standard deviation 𝜎௔ௌ
௏  

is thus estimated as: 

 𝐿𝐵ሺ𝜎௔ௌ
௏ ଶ

ሻ  ൌ ෍ ቂ 𝑝௜ ൈ ൫𝑡௜ െ 𝑡௜൯
ଶ

ቃ
∞

௜ୀଵ
ൌ ෍ ቈ 

1
𝐽

൬1 െ
1
𝐽

൰
௜ିଵ

ൈ ሺ𝑖 𝜆⁄ െ 𝐽 𝜆⁄ ሻଶ቉
∞

௜ୀଵ
 

                    ൌ
1

𝐽𝜆ଶ ൈ ෍ ቈ൬1 െ
1
𝐽

൰
௜ିଵ

ൈ ሺ𝑖 െ 𝐽ሻଶ቉
∞

௜ୀଵ
 

The latter part of the above formulation is a convergent Taylor series, which can be derived into 

the following form: 
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 𝐿𝐵ሺ𝜎௔ௌ
௏ ଶ

ሻ ൌ
1

𝐽𝜆ଶ ൈ ሺ 𝐽ଶ ൈ ሺ 𝐽 െ 1 ሻ ሻ ൌ
𝐽ሺ 𝐽 െ 1 ሻ

𝜆ଶ  

And thus the lower bound of the standard deviation is obtained as followed: 

𝐿𝐵ሺ𝜎௔ௌ
௏ ሻ ൌ ට 𝐿𝐵ሺ𝜎௔ௌ

௏ ଶ
ሻ ൌ

ඥ𝐽ሺ 𝐽 െ 1 ሻ

𝜆
 

The lower bound of the coefficient of variation of storage inter-arrival times to each shuttle 

is estimated as followed. It can be inferred that the more shuttles in the aisle, the higher the 

coefficient of variation of the storage inter-arrival times, and 𝑐𝑜𝑣௔ௌ
௏  approximate 1 when number 

of shuttles 𝐽 becomes relatively large – in such cases, the storage inter-arrival times to each shuttle 

is approximately exponential. 

 𝐿𝐵ሺ𝑐𝑜𝑣௔ௌ
௏ ሻ ൌ

𝐿𝐵ሺ𝜎௔ௌ
௏ ሻ

𝐽 𝜆⁄
ൌ ඨ 

𝐽 െ 1
𝐽

  

The lower bound 𝐿𝐵ሺ𝑐𝑜𝑣௔ௌ
௏ ሻ is computed based on the assumption that 𝜎ௗ

ௌ௅ ൌ 0. In this research, 

according to experiment results based on Monte-Carlo approaches, we assume that the following 

equations are a reasonable approximations of 𝑐𝑜𝑣௔ௌ
௏  and 𝜎௔ௌ

௏ : 

𝑐𝑜𝑣௔ௌ
௏ ൎ 𝑚𝑎𝑥 ሺ𝐿𝐵ሺ𝑐𝑜𝑣௔ௌ

௏ ሻ  ,   𝑐𝑜𝑣ௗ
ௌ௅ሻ 

𝜎௔ௌ
௏ ൎ

𝐽
𝜆

ൈ 𝑐𝑜𝑣௔ௌ
௏  

This lower bound computation approach also applies for the retrieval task arrivals, because the 

probability that each retrieval task is assigned to any particular shuttle is also equally 1 𝐽⁄ . It can 

be inferred that for each shuttle, the lower bound of the coefficient of variation of retrieval inter-

arrival times is the same as that of storage inter-arrival times, thus: 

 𝐿𝐵ሺ𝑐𝑜𝑣௔ோ
௏ ሻ ൌ ඨ 

𝐽 െ 1
𝐽

  

Similarly, we assume that the following equations are a reasonable approximations of 𝑐𝑜𝑣௔ோ
௏  

and 𝜎௔ோ
௏ : 
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𝑐𝑜𝑣௔ோ
௏ ൎ 𝑚𝑎𝑥ሺ𝐿𝐵ሺ𝑐𝑜𝑣௔ோ

௏ ሻ  ,   𝑐𝑜𝑣ோሻ, 𝑤ℎ𝑒𝑟𝑒 𝑐𝑜𝑣ோ ൌ 𝜆𝜎ோ 

𝜎௔ோ
௏ ൎ

𝐽
𝜆

ൈ 𝑐𝑜𝑣௔ோ
௏  

Finally, the overall standard deviation of task inter-arrival times  𝜎௔
௏  to each shuttle is 

estimated as: 

 𝜎௔
௏ ൌ ට0.5𝜎௔ௌ

௏ ଶ
൅ 0.5𝜎௔ோ

௏ ଶ
 

Service Time Distributions 

In the previous part of this section, mean service time 𝑇௏  and utilization 𝑈௏  are both 

obtained for shuttle service. Also, the mean 𝑡௞ , variance 𝜎௞
ଶ  and occurrence probability 𝑝௞  are 

obtained for each shuttle service case 𝑘 ∈ ሾ1,12ሿ. The overall standard deviation of shuttle service 

times 𝜎௦
௏ is thus estimated as: 

𝜎௦
௏ ൌ ෍ሾ 𝑝௞𝜎௞

ଶ ൅ 𝑝௞ሺ𝑇௏ െ 𝑡௞ሻଶ ሿ
ଵଶ

௞ୀଵ

   

Note that in the above equation, both the variance components within each case and the variance 

components to the overall averages are incorporated.  We decide to use such approach to 

approximate the variances of the shuttle service pattern described previously (Figure 4.9). Then, 

denote 𝑇ௌ
௏  and  𝑇ோ

௏  as the mean shuttle service times for storage tasks and retrieval tasks, 

respectively, where: 

𝑇ௌ
௏ ൌ ෍ሺ𝑝௞ ൈ 𝑡௞ሻ

ସ

௞ୀଵ

, 𝑇ோ
௏ ൌ ෍ሺ𝑝௞ ൈ 𝑡௞ሻ

ଵଶ

௞ୀହ

,  

𝑇௏ ൌ 0.5 ൈ ෍ሺ𝑝௞ ൈ 𝑡௞ሻ
ଵଶ

௞ୀଵ

ൌ 0.5ሺ𝑇ௌ
௏ ൅ 𝑇ோ

௏ሻ 

The standard deviation of each shuttle’s service times are denoted as 𝜎௦ௌ
௏  and 𝜎௦ோ

௏  for storage tasks 

and retrieval tasks, respectively, computed as:  
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ሺ𝜎௦ௌ
௏ ሻଶ ൌ ෍ሾ 𝑝௞𝜎௞

ଶ ൅ 𝑝௞ሺ𝑇ௌ
௏ െ 𝑡௞ሻଶ ሿ

ସ

௞ୀଵ

, ሺ𝜎௦ோ
௏ ሻଶ ൌ ෍ሾ 𝑝௞𝜎௞

ଶ ൅ 𝑝௞ሺ𝑇ோ
௏ െ 𝑡௞ሻଶ ሿ

ଵଶ

௞ୀହ

 

The corresponding coefficients of variations of shuttle service times are then estimated as: 

𝑐𝑜𝑣௦ௌ
௏ ൌ 𝜎௦ௌ

௏ 𝑇ௌ
௏⁄ ,  𝑐𝑜𝑣௦ோ

௏ ൌ 𝜎௦ோ
௏ 𝑇ோ

௏⁄  

Queuing Time Estimation 

As the overall inter-arrival time to each shuttle has mean 𝐽 2𝜆⁄ , the shuttle utilization 𝑈௏ ൌ

2𝜆𝑇௏ 𝐽⁄ . When DC policy is applied for shuttle scheduling, because the shuttles serve the tasks in 

interleaving patterns, the queue lengths of storage tasks and retrieval tasks waiting for shuttle 

services need to be estimated separately. Denote 𝑄ௌ
௏ and 𝑄ோ

௏ as the estimates of the queuing lengths 

of a single shuttle. By viewing each shuttle as an independent G/G/1 queuing system, we purpose 

the following approach in approximating  𝑄ௌ
௏  and  𝑄ோ

௏  according to According to Kingman’s 

formula: 

𝑄ௌ
௏ ൎ

𝑐𝑜𝑣௔ௌ
௏ ଶ

൅ 𝑐𝑜𝑣௦ௌ
௏ ଶ

2
ൈ

ሺ𝑈௏ሻଶ

1 െ 𝑈௏ ൈ
1
2

 

𝑄ோ
௏ ൎ

𝑐𝑜𝑣௔ோ
௏ ଶ

൅ 𝑐𝑜𝑣௦ோ
௏ ଶ

2
ൈ

ሺ𝑈௏ሻଶ

1 െ 𝑈௏ ൈ
1
2

 

The above equations provide approximates of the queues by temporarily viewing each shuttle as 

two servers: one serves storage tasks and another serves retrieval tasks, while both servers share 

the same utilization 𝑈௏. Note that we make this assumption that this approximation approach is 

acceptable based on observations from the Monte-Carlo simulation results rather than based on 

mathematical proofs.  Denote 𝑄ௌ௫
௏  and 𝑄ோ௫

௏  as the expected number of in-tier tasks waiting for 

shuttle services on each tier, and denote 𝑄்்
௏  as the expected number of tier-to-tier tasks in the 

entire aisle (either storage or retrieval). For tier-captive configurations, there are obviously 𝑄ௌ௫
௏ ൌ

𝑄ௌ
௏  and  𝑄ோ௫

௏ ൌ 𝑄ோ
௏ , and  𝑄்்

௏ ൌ 0 . However, for tier-to-tier configurations, 𝑄ௌ
௏  and  𝑄ோ

௏  are the 

collective estimates for waiting tasks of a particular shuttle including the following three situations 

(illustrated in Figure 4.13): 

1. Waiting in-tier tasks on the shuttle’s current tier – the DC policy applies to those tasks; 
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2. Waiting tier-transfer tasks which will initiate tier-transfer operations with the shuttle – as 

introduced earlier, those tasks are only assigned to idle shuttles, and the DC policy does 

not apply to those tasks; 

3. Waiting in-tier tasks on other tiers which will be served by a shuttle after the shuttle has 

completed a tier-transfer task. Although these tasks are not on the shuttle’s current tier, 

they are viewed as in-tier tasks because they do not initiate tier-transfer operations. After 

the shuttle arrived their tiers, the DC policy also applies to those tasks. 

 

Figure 4.13 Different situations of waiting queues for shuttle services 

At a particular moment in the system, shuttle V1 is currently serving task R0, and its future 

task service sequence is as illustrated. The queue estimates 𝑄ௌ
௏ and 𝑄ோ

௏ include the tasks in all three 

situations. Known the tier-transfer ratio 𝜃், the queues of total in-tier tasks of each shuttle (thus 

the sum of queues in situation 1 and 3) are estimated as ሺ1 െ 𝜃்ሻ𝑄ௌ
௏ and ሺ1 െ 𝜃்ሻ𝑄ோ

௏ for storage 

and retrieval tasks, respectively. Because in steady-state, the queues of waiting tasks on each tier 

𝑥 ∈ ሾ1,2 … , 𝑋ሿ are expected to be the same over tiers (for both task types), it can be inferred that: 
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𝑄ௌ௫
௏ ൌ ሺ1 െ 𝜃்ሻ𝑄ௌ

௏ ൈ
𝐽
𝑋

 

𝑄ோ௫
௏ ൌ ሺ1 െ 𝜃்ሻ𝑄ோ

௏ ൈ
𝐽
𝑋

 

Where 𝐽 is the number of shuttles deployed and 𝑋 is the number of tiers. Because DC 

policy only applies to in-tier tasks (situation 1 and 3), the queues on the shuttle’s current tier 𝑄ௌ௫
௏  

and 𝑄ோ௫
௏  are considered as the only factors for estimating the task waiting times. Obviously, there 

are 𝑄ௌ௫
௏ ൌ 𝑄ௌ

௏  and 𝑄ோ௫
௏ ൌ 𝑄ோ

௏  in tier-captive configurations. In tier-to-tier systems, tier-transfer 

tasks are only assigned to idle shuttles and not considered in DC scheduling (situation 2). As 

introduced previously, tier-transfer service is viewed as a virtual TT system which resembles a 

bounded M/M/c queuing system, thus the queue length and waiting times of tier-transfer tasks are 

also estimated differently from those for the in-tier tasks. Consistent with the approaches applied 

in approximating for 𝜃், the expected queue length 𝑄்்
௏  and the expected waiting time 𝑊்்

௏  of tier-

transfer tasks waiting for shuttle and shuttle lift service are estimated as follows: 

𝑄்்
௏ ൌ ቎ ෍ 𝑛𝑃ሺ𝑛ሻ

௑ି௃ାଵ

௡ୀଵ

቏ ൅ ሺ𝑋 െ 𝐽ሻ ቌ1 െ ෍ 𝑃ሺ𝑛ሻ

௑ି௃ାଵ

௡ୀ଴

ቍ െ 𝑈்் 

𝑊்்
௏ ൌ

𝑄்்
௏ ൈ 𝑈்்

2𝜆𝜃்  

In which 𝑈்்  is the utilization of the virtual Tier-transfer System (as introduced previously), 

where 𝑈்் ൌ 2𝜆𝜃்ሺ𝑇௏௅ ൅ 0.5ሺ𝑡ௌ௒
௏ ൅ 𝑡ோ௒

௏ ሻሻ. Essentially, 𝑄்்
௏  is estimated as the difference of the 

expected number of tasks in system and the expected number of tasks being served. The number-

in-system estimation is based on approximating the virtual TT system as M/M/c (𝑐 ൌ 𝐽) when a 

tier-transfer task is waiting for shuttles’ availabilities. 𝑃ሺ𝑛ሻ’s are the probabilities of number of 

tasks in the TT system, estimated as followed: 

𝑃ሺ0ሻ ൌ 1  ቎ ෍
ሺ 𝐽 ൈ 𝑈௏ሻ௠

𝑚!

௃ିଵ

௠ୀ଴

൅
ሺ 𝐽 ൈ 𝑈௏ሻ௃

𝐽! ൈ ሺ1 െ 𝑈௏ሻ
቏൘  
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𝑃ሺ𝑛ሻ ൌ

⎩
⎪
⎨

⎪
⎧𝑃ሺ0ሻ ൈ

ሺ𝐽 ൈ 𝑈௏ሻ௡

𝑛!
 , 𝑖𝑓 0 ൏ 𝑛 ൏ 𝐽

𝑃ሺ0ሻ ൈ
ሺ𝐽 ൈ 𝑈௏ሻ௡

𝐽ሺ௡ି௃ሻ ൈ 𝐽!
 ,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The expected number in system is estimated as the weighted sum of number in system by the 

corresponding probabilities. Because the maximum number in the TT system is limited to ሺ𝑋 െ 𝐽ሻ 

by definition of tier-transfer task, probabilities with 𝑛 ൐ ሺ𝑋 െ 𝐽ሻ are accumulated to 𝑛 ൌ ሺ𝑋 െ 𝐽ሻ 

in order to approximate the patterns of the tier-transfer services. Then, once a shuttle is selected, 

the system no longer allow other tier-transfer tasks to be served in parallel – thus the expected 

number of tasks in service equals 𝑈்். The expected queue length of overall tier-transfer tasks in 

the aisle 𝑄்்
௏  is thus estimated, and the waiting time 𝑊்்

௏  is then estimated based on Little’s Law. 

The waiting time estimation is complex for dual cycle mode, as each shuttle serves its task 

queues in interleaving patterns. In Figure 4.14, the waiting time situations are illustrated for an 

arrival task 𝑛∗ depending on the type of task 𝑛∗, the type and progress of the shuttle’s current 

service task (𝑠଴ or 𝑟଴), the shuttle’s current queues of both task types, and also the future task 

arrivals after task 𝑛∗. In the examples illustrated in this figure, the retrieval task queue is larger 

(three) than the storage task queue (two) at the moment that task 𝑛∗ arrives. Because the DC policy 

only applies when the shuttle is busy, the expected lengths of the two queues are estimated as 

𝑄ௌ௫
௏ U୚⁄  and 𝑄ோ௫

௏ U୚⁄ , respectively, where 𝑄ௌ௫
௏  and 𝑄ோ௫

௏  are the expected numbers of waiting tasks 

on tier 𝑥 and U୚ is the expected utilization of each shuttle. Note that all the tasks in the current 

task queues are in-tier tasks because tier-transfer tasks are only assigned to idle shuttles, while the 

current task in service can either be an in-tier task or a tier-transfer task targeting at tier 𝑥. Thus, 

this figure applies to both tier-captive configurations and tier-to-tier configurations. 
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Figure 4.14 Shuttle task waiting times in Dual Cycle Mode 

In Figure 4.14, all the waiting time situations are presented when the shuttle is busy. For 

example, if the current task in service is storage (𝑠଴ ) and the current arrival task  𝑛∗  is also 

storage, 𝑛∗ will be served prior to the retrieval task 𝑟ଷ even though it arrives after the arrival time 

of 𝑟ଷ due to the DC scheduling rule – in this case, the waiting time of 𝑛∗ equals the time the shuttle 

completes two dual-cycles ([𝑟ଵ → 𝑠ଵ] and [𝑟ଶ → 𝑠ଶ]) plus the remaining service time of 𝑠଴, and 𝑛∗ 

itself will be an DC task (because its previous task 𝑟ଶ is of the different task type). On the other 

hand, if the current task in service is storage (𝑠଴) and 𝑛∗ is retrieval, 𝑛∗ has to wait in queue until 
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the shuttle completes serving all previous tasks in DC patterns, and two of the following cases may 

happen: if the next storage task arrival (𝑠ଷ) occurs after the completion of task 𝑟ଷ, task 𝑛∗ will be 

served right after 𝑟ଷ, and its waiting time equals the service time sum of two dual cycles and a 

single-cycle retrieval task plus the remaining service time of 𝑠଴; otherwise, task 𝑠ଷ will be served 

prior to task 𝑛∗ even though its arrival time is later than that of  𝑛∗ due to the DC scheduling rule, 

and the waiting time of 𝑛∗ equals the service time sum of three dual cycles plus the remaining 

service time of 𝑠଴. An important observation here is that, if the waiting queue length of one task 

type (either 𝑄ௌ௫
௏  or 𝑄ோ௫

௏ ) is larger than the other task type, then the waiting time for shuttle service 

of this task type is expected to be longer. Based on the previous assumptions made in estimating 

for 𝑄ௌ௢
௏  and 𝑄ோ௢

௏ , there is: 

𝑄ௌ௫
௏  

 𝑄ோ௫
௏ ൌ

𝑄ௌ
௏ 

 𝑄ோ
௏ ൌ

𝑐𝑜𝑣௔ௌ
௏ ଶ

൅ 𝑐𝑜𝑣௦ௌ
௏ ଶ

𝑐𝑜𝑣௔ோ
௏ ଶ

൅ 𝑐𝑜𝑣௦ோ
௏ ଶ 

The above equations bring some insights on system design and control. As discussed previously, 

𝑐𝑜𝑣௔ௌ
௏  and 𝑐𝑜𝑣௔ோ

௏  have equal lower bounds, and both approximate 1 when the shuttle quantity is 

large. Reducing the variance of the external arrival sources does not help much here, when the 

storage assignment to tiers is random with equal probabilities (assuming COL or PRS only apply 

within each tier). For 1-deep racks using COL-type storage policies, 𝑐𝑜𝑣௦ௌ
௏  is generally slightly 

larger than 𝑐𝑜𝑣௦ோ
௏ , because retrieval service times have less variation due to the fact that retrievals 

occurs randomly with equal probabilities to inventory totes. However, when the rack is 2-deep, 

𝑐𝑜𝑣௦ோ௜
௏  is usually larger because the dual-cycle operations introduce even larger variation to the 

retrieval service times, as a result 𝑄ோ
௏ is typically slightly larger than 𝑄ௌ

௏ for 2-deep configurations.  

By studying the waiting time situations illustrated in Figure 4.14, an approximation method 

is proposed here to estimate the waiting times of in-tier tasks according to the relative sizes of 𝑄ௌ௢
௏  

and 𝑄ோ௢
௏ . When the shuttle is idle, the waiting time of 𝑛∗ is obviously zero. When the shuttle is 

busy, the probability that the task currently being served is storage or retrieval can be estimated 

as 𝑇ௌ
௏ 2𝑇௏⁄  and 𝑇ோ

௏ 2𝑇௏⁄ , respectively, where 𝑇ௌ
௏ and 𝑇ோ

௏ are average shuttle service times of the 

storage/retrieval tasks and 𝑇௏  is the overall average shuttle service time computed previously. 

Thus, when a shuttle is busy, the expected remaining service time of its current task can be 

estimated as  0.5𝑇ௌ
௏ሺ𝑇ௌ

௏ 2𝑇௏⁄ ሻ ൅ 0.5𝑇ோ
௏ሺ𝑇ோ

௏ 2𝑇௏⁄ ሻ ൌ ቀ𝑇ௌ
௏ଶ

൅ 𝑇ோ
௏ଶ

ቁ 4𝑇௏⁄ . Denote 𝑡஽஼  as the 
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average dual-cycle time, and 𝑡ௌ஼ௌ  and 𝑡ௌ஼ோ  are average single-cycle times of storage tasks and 

retrieval tasks, respectively. Based on the means and probabilities of the shuttle service cases 

illustrated previous, they are estimated as followed: 

𝑡஽஼ ൌ 𝑡ଵ ൅ ሺ1 െ 𝜃ோሻ𝑡ଽ ൅ 𝜃ோ𝑡ଵ଴; 𝑡ௌ஼ௌ ൌ 𝑡ଷ; 𝑡ௌ஼ோ ൌ ሺ1 െ 𝜃ோሻ𝑡ହ ൅ 𝜃ோ𝑡଺ 

Where 𝑡ଵ is for the R-S case, 𝑡ଽ for S-R, 𝑡ଵ଴ for S-Re-R, 𝑡ଷ for S-S, 𝑡ହ for R-R and 𝑡଺ for R-Re-R 

– these are the six in-tier service cases. Assuming the shuttle is currently on the target tier of the 

arriving in-tier task (thus situation 1 from Figure 4.13), and depending on the type of the arrival 

task (storage or retrieval) the waiting time of an in-tier task are estimated as followed: 

𝑊ௌ௫
௏ ൎ

⎩
⎪
⎨

⎪
⎧

 
𝑄ௌ௫

௏ 𝑡஽஼ ൅
𝑈௏ ቀ𝑇ௌ

௏ଶ
൅ 𝑇ோ

௏ଶ
ቁ

4𝑇௏ ,                                         𝑖𝑓 𝑄ௌ௫
௏ ൏ 𝑄ோ௫

௏

𝑄ோ௫
௏ 𝑡஽஼ ൅ ሺ𝑄ௌ௫

௏ െ 𝑄ோ௫
௏ ሻ𝑡ௌ஼ௌ ൅

𝑈௏ ቀ𝑇ௌ
௏ଶ

൅ 𝑇ோ
௏ଶ

ቁ

4𝑇௏ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑊ோ௫
௏ ൎ

⎩
⎪
⎨

⎪
⎧

 
𝑄ௌ௫

௏ 𝑡஽஼ ൅ ሺ𝑄ோ௫
௏ െ 𝑄ௌ௫

௏ ሻ𝑡ௌ஼ோ ൅
𝑈௏ ቀ𝑇ௌ

௏ଶ
൅ 𝑇ோ

௏ଶ
ቁ

4𝑇௏ ,    𝑖𝑓 𝑄ௌ௫
௏ ൏ 𝑄ோ௫

௏

𝑄ோ௫
௏ 𝑡஽஼ ൅

U୚ ቀ𝑇ௌ
௏ଶ

൅ 𝑇ோ
௏ଶ

ቁ

4𝑇௏ ,                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Note that the above equations only describe the waiting times for situation 1 from Figure 4.13. 

With tier-captive configurations, because every task is an in-tier task and the service shuttle is 

always on the task’s target tier (thus always in situation 1), the task waiting times are simply 𝑊ௌ
௏ ൌ

𝑊ௌ௫
௏  and 𝑊ோ

௏ ൌ 𝑊ோ௫
௏ . For tier-to-tier configurations, however, an in-tier task may belong to either 

situation 1 or situation 3 (where the shuttle is not yet on the target tier), and the corresponding 

probabilities are 𝐽 𝑋⁄  and  ሺ𝑋 െ 𝐽ሻ 𝑋⁄ , respectively. In tier-to-tier configurations, the expected 

waiting times of overall in-tier tasks (both situations) are estimated as: 

𝑊ௌ௜
௏ ൎ

𝐽
𝑋

𝑊ௌ௫
௏ ൅

𝑋 െ 𝐽
𝑋

൤𝑊ௌ௫
௏ ൅ max ൬𝑊்்

௏ െ
𝐽

2𝜆
, 0൰൨ 

𝑊ோ௜
௏ ൎ

𝐽
𝑋

𝑊ோ௫
௏ ൅

𝑋 െ 𝐽
𝑋

൤𝑊ோ௫
௏ ൅ max ൬𝑊்்

௏ െ
𝐽

2𝜆
, 0൰൨ 

In the above formulas, the component maxሺ𝑊்்
௏ െ 𝐽 2𝜆⁄ , 0ሻ  for both task types indicates in 

situation 3 – the shuttle is not yet transferred to the target tier, but this task is still an in-tier task 



110 

because it will be served after another tier-transfer task on this tier – the extra waiting time of this 

task for the shuttle’s arrival to the target tier. When a situation-3 in-tier task arrives to the aisle, 

there must exist one tier-transfer task on the same target tier which is not responded by the shuttle 

yet. Thus, the additional waiting time of this task is difference of the waiting time of that tier-

transfer task (𝑊்்
௏ ) and the inter-arrival time of the current task after the arrival of the former 

(𝐽 2𝜆⁄ ). 

Finally, the overall task waiting times are estimated as the weighted sums of the waiting 

times of in-tier tasks (𝑊ௌ௜
௏ or 𝑊ோ௜

௏ ) and tier-transfer tasks (𝑊்்
௏ ), as followed: 

𝑊ௌ
௏ ൌ ሺ1 െ 𝜃்ሻ𝑊ௌ௜

௏ ൅ 𝜃்𝑊்்
௏  

𝑊ோ
௏ ൌ ሺ1 െ 𝜃்ሻ𝑊ோ௜

௏ ൅ 𝜃்𝑊்்
௏  

Inputs for the Retrieval Lift Estimation 

At last, to estimate the inter-arrival time  𝜎௔
ோ௅  of the retrieval lift, the retrieval inter-

departure time of each shuttle 𝜎ௗோ
௏  need to be estimated. Based on the approximation solutions for 

Two-stage Tandem Queues by Rosenshine and Chandra (1975): 

𝜎ௗ
ଶ ൎ 1 𝑛𝜆ଶ⁄ ൅ ሺ𝑛 െ 1ሻ 𝑛𝜇ଶ⁄ ൅ ሺ1 െ 𝜌ሻሺ𝑛 െ 1ሻ 𝑚𝑛𝜇ଶ⁄ െ ሺ𝑚 െ 1ሻ 𝑚𝜇ଶ⁄  

 ൅ 0.5ሺ1 െ 𝜌ሻሺ𝑚 െ 1ሻሺ𝑛 െ 1ሻ 𝑚ଶ𝑛𝜇ଶ⁄ ൅ 2ሺ1 െ 𝜌ሻሺ𝑚 െ 1ሻሺ𝑛 െ 1ሻ 𝑚𝑛ଶ𝜇ଶ⁄  

Replace  𝜆 ,  𝜇 ,  𝜌 ,  𝑚  and  𝑛  in the above equation with  2 𝜆 𝐽⁄ , 1 𝑇௏⁄ ,  𝑈௏ ,  𝑐𝑜𝑣௦
௏  and  𝑐𝑜𝑣௔

௏ , 

respectively to estimate 𝜎ௗோ
௏ . Because all retrieval tasks depart from each shuttle are going to be 

served by a single retrieval lift, the retrieval lift’s inter-arrival time is approximated as 𝜎ௗ
ௌ௅ ൎ

𝜎ௗோ
௏ 𝐽⁄ . The task waiting time of the retrieval lift 𝑊ோ௅ is then computed according to the queuing 

approaches described in Section 4.5.1. 

4.5.3 Finalize Analytical Results 

Using the previously described approaches, the device utilizations 𝑈௏, 𝑈ௌ௅, 𝑈ோ௅ and 𝑈௏௅ 

are estimated for the shuttles (vehicles), the storage lift, the retrieval lift, and the shuttle (vehicle) 

lift, respectively. The average service times 𝑇ௌ௅ and 𝑇ோ௅, and average waiting times 𝑊ௌ௅ and 𝑊ோ௅ 

are estimated for both tote lift types. Shuttle average service time 𝑇ௌ
௏ and 𝑇ோ

௏ and average waiting 

times 𝑊ௌ
௏ and 𝑊ோ

௏ are estimated for both task types. 
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Finally, the cycle times of storage tasks and retrieval tasks are estimated as: 

𝐶𝑇ௌ ൌ 𝑊ௌ௅ ൅  𝑇ௌ௅ ൅ 𝑊ௌ
௏ ൅ 𝑇ௌ

௏ 

𝐶𝑇ோ ൌ 𝑊ோ
௏ ൅ 𝑇ோ

௏ ൅ 𝑊ோ௅ ൅  𝑇ோ௅ 

4.6 Validation with Simulation Experiment 

4.6.1 Experiment Settings 

In this section, the accuracy and precision of the travel time model will be examined 

through simulation-based experiments. In all systems to be examined, the tier-interval and column-

interval are 500mm and 550mm, respectively. The maximum velocity, acceleration, and L/U times 

of each device type are listed in Table 4.5. 

Table 4.5 S/R devices performance parameters in validation experiment 

Device Type Max Velocity 
(𝒎/𝒔) 

Acceleration 
(𝒎/𝒔𝟐) 

Load/unload Time  
(𝒔) 

Tote Lift 4 6 1.75 

Shuttle 4 1.5 4 (I/O; 1-deep); 6 (2-deep) 

Shuttle Lift 3 3 5 

 

As listed in Table 4.6, 25 rack designs with different capacities and different aspect ratios 

(presented as number of columns / number of tiers) will be examined. For each rack design, the 

system is further examined under four levels of vehicle deployment rate, approximately 33%, 50%, 

67% and 100% of the number of tiers, respectively – a system is a tier-captive system when vehicle 

deployment rate is 100%, otherwise it is a tier-to-tier system. Thus, there are totally 25ൈ4 = 100 

system configurations. All of the designs are 2-deep (Z=4), and the tote lift capacity is 2. The 

control assumptions are COL for storage assignment and DC for shuttle scheduling. Finally, the 

throughput of each system configuration is estimated by the travel time model. In this experiment, 

the throughput of a system is assumed as its overall service rate when the utilization of any device 

type reached 90%. 
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Table 4.6 Rack designs in validation experiment 

Rack 
Design

# 

Rack 
Design 

ሾ𝑿, 𝒀, 𝒁ሿ 

Rack 
Capacity 
ൌ 𝑿𝒀𝒁 

Aspect 
Ratio 
𝒀 𝑿⁄  

Vehicles  
Deployed 

 𝑱 

Estimated 
Throughput  

(per hr.) 
1 [10, 40, 4] 1600 4 3 5 7 10 164 320 496 628 
2 [10, 80, 4] 3200 8 3 5 7 10 126 249 394 628 
3 [10, 120, 4] 4800 12 3 5 7 10 103 204 327 588 
4 [10, 160, 4] 6400 16 3 5 7 10 86 175 280 514 
5 [10, 200, 4] 8000 20 3 5 7 10 74 153 244 456 
6 [12, 48, 4] 2304 4 4 6 8 12 218 372 541 604 
7 [12, 96, 4] 4608 8 4 6 8 12 163 289 419 604 
8 [12, 144, 4] 6912 12 4 6 8 12 131 239 347 604 
9 [12, 192, 4] 9216 16 4 6 8 12 111 203 297 560 

10 [12, 240, 4] 11520 20 4 6 8 12 96 177 259 493 
11 [14, 56, 4] 3136 4 5 7 9 14 277 431 583 583 
12 [14, 112, 4] 6272 8 5 7 9 14 211 332 453 583 
13 [14, 168, 4] 9408 12 5 7 9 14 171 269 370 583 
14 [14, 224, 4] 12544 16 5 7 9 14 143 228 314 583 
15 [14, 280, 4] 15680 20 5 7 9 14 124 197 272 522 
16 [16, 64, 4] 4096 4 5 8 11 16 265 487 564 564 
17 [16, 128, 4] 8192 8 5 8 11 16 197 369 540 563 
18 [16, 192, 4] 12288 12 5 8 11 16 158 297 437 564 
19 [16, 256, 4] 16384 16 5 8 11 16 131 249 367 563 
20 [16, 320, 4] 20480 20 5 8 11 16 113 214 317 547 
21 [18, 72, 4] 5184 4 6 9 12 18 325 540 546 546 
22 [18, 144, 4] 10368 8 6 9 12 18 240 402 546 546 
23 [18, 216, 4] 15552 12 6 9 12 18 190 322 453 546 
24 [18, 288, 4] 20736 16 6 9 12 18 158 268 377 546 
25 [18, 360, 4] 25920 20 6 9 12 18 135 230 324 545 

 

With each of the 100 configurations, 6 demand levels are tested, with task arrival rate 𝜆 set 

at 50%, 60%, 70%, 80%, 90% and 100% of the estimated throughput, respectively (note that the 

arrival rate of storage tasks and retrieval tasks are both 𝜆). In this experiment, the coefficients of 

variation of inter-arrival times for storage tasks and retrieval tasks are consistently 1.0, which 

means both of the standard deviations of inter-arrival times 𝜎ௌ and 𝜎ோ equal to 1 𝜆⁄  in all demand 

levels. Finally, in order to validate the analytical results, 10 simulation replications are conducted 

for each configuration-demand scenario, each with 500-hour running length plus 100-hour warm-

up period, thus the total number of simulation runs are 100ൈ6ൈ10 = 6000. The system control 

policies in the simulation model is consistent with the corresponding control assumptions of the 
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travel-time model. The task arrival rates will slightly vary around the default values to control the 

inventory levels by the same method introduced in Section 4.4.6. 

4.6.2 Experiment Results 

Travel Time Model Outputs 

Three types of outputs from the travel time model are viewed as performance indicators 

for each system design and configuration under each demand scenario. First of all, the utilization 

outputs 𝑈ௌ௅, 𝑈ோ௅, 𝑈௏and 𝑈௏௅ are examined to measure the quality of system throughput estimate. 

Secondly, the cycle time outputs 𝐶𝑇ௌ and 𝐶𝑇ோ for storage tasks and retrieval tasks, respectively are 

examined to measure the quality of system responsiveness estimates. In addition, the three critical 

coefficients: relocation ratio 𝜃ோ , dual-cycle ratio 𝜃஽  and tier-transfer ratio 𝜃்  are examined in 

order to evaluate the validity of the queuing-network analysis approaches in the travel-time model. 

Some initial interpretations can be made by observing the analytical results. In Figure 4.15, 

the estimates for the maximum throughputs of the 25 rack designs (obtained when all tiers are 

deployed with shuttles, thus 𝐽 ൌ 𝑋) are categorized by the number of tiers (𝑋) and aspect ratios 

(𝑌 𝑋⁄ ) of the designs. The throughput curves for 𝑌 𝑋⁄ ൌ 4  and 𝑌 𝑋⁄ ൌ 8  completely overlap 

because the bottlenecks of such short rack designs are the tote lifts – as shown in Figure 4.17, the 

tote lift utilizations (because 𝑈ௌ௅ ൎ 𝑈ோ௅, we did not display them separately here) reached 90% in 

all these designs regardless of the number of tiers. As the number of tiers increase, each shuttle 

utilization curve decreases (Figure 4.16), while each tote lift utilization curve (Figure 4.17) 

increases until it reaches 90%, indicating that the tote lift utilizations become more constraining 

(of the throughput) as the racks get taller (in this experiment, we use the terms “tall” and “short” 

to describe the number of tiers 𝑋, and the terms “deep” and “shallow” to describe the number of 

columns 𝑌). In Figure 4.15, all the throughput curves merge at 𝑋 ൌ 18 – which means with 18 

tiers, the tote lifts become the bottleneck of the entire aisle for all the aspect ratios under 

consideration. 
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Figure 4.15 Estimated maximum throughputs (𝐽 ൌ 𝑋) for the rack designs 

 

Figure 4.16 Estimated shuttle utilizations of the rack designs at maximum throughputs 
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Figure 4.17 Estimated tote lift utilizations of the rack designs at maximum throughputs 

The above result interpretations illustrate the maximum throughputs of the rack designs 

when all tiers have tier-captive shuttles. It can be inferred that the shape of the rack has significant 

and complex impact to the maximum throughput of the design: in general, the tote lifts will become 

the bottleneck when the rack is taller and shallower, while the shuttles will become the bottleneck 

when the rack is shorter and longer – which matches common intuition. In addition, the device 

utilizations at maximum throughput to some extent indicate the potential effects of tier-to-tier 

configurations (thus not deploying the full number of shuttles): for example, with the  𝑋 ൌ

18, 𝑌 𝑋⁄ ൌ 4 design (tall and shallow) where the utilizations are 90% for the tote lifts but only 

40% for the shuttles, it can be assumed that reducing the number of shuttles will not decrease the 

aisle’s throughput until this number reached a lower bound (however, that will increase the task 

cycle times). 

Take the 18-tier designs as an example to further illustrate the results from its tier-to-tier 

configurations. There are totally 20 configurations here: four shuttle deployment levels for each of 

the five aspect ratios. Figure 4.18 shows the estimated throughputs of each rack design when 

different numbers of shuttles are deployed. It can be inferred that for 𝑌 𝑋⁄ ൌ 4 and 8 designs (tall 

and shallow racks), 12 shuttles are adequate to maintain the maximum throughputs of the aisles. 

However, as shown in Figure 4.19, increasing the number of shuttles from 12 to 18 is expected to 
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significantly reduce the retrieval tasks’ cycle times for both designs, although not improving their 

throughputs. 

 

Figure 4.18 Estimated throughputs of shuttle configurations 

 

Figure 4.19 Estimated cycle times (retrieval) at throughput levels of shuttle configurations 
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At last, the estimated relocation ratio 𝜃ோ, dual-cycle ratio 𝜃஽ and tier-transfer ratio 𝜃் (at 

throughput levels) of the 18-tier designs are illustrated in Figure 4.20. Relocation ratio 𝜃ோ is a 

constant: as explained in Section 4.4 given the storage policy, it is only determined by the rack 

utilization distribution assumption. As illustrated in the approximation approaches in Section 

4.5.2, 𝜃஽ and 𝜃் are complex functions. In general, the tier-transfer ratio 𝜃் gets smaller when 

there are more shuttles deployed in the aisle, and its upper bound is 𝑋 െ 𝐽 𝑋⁄ . The dual-cycle 

ratio 𝜃஽ typically gets larger when the shuttle utilization gets higher, and its lower bound is 0.5. 

Generally speaking, high 𝜃஽ and low 𝜃் are favorable and probably indicate good system designs 

or/and shuttle configurations. 

 

Figure 4.20 Estimated relocation ratio 𝜃ோ, dual-cycle ratio 𝜃஽ and tier-transfer ratio 𝜃்at 

throughput levels of shuttle configurations 

Analytical Results Quality Interpretations 

The quality of the travel time model results is measured as the differences between its 

analytical outputs and the simulation outputs. For each performance indicator 𝐼, its error 𝐼ா  is 

presented as 𝐼ா ൌ ሺ𝐼ௌ െ 𝐼஺ሻ 𝐼ௌ⁄ , where 𝐼஺  is analytical estimate and 𝐼ௌ  is simulation output. For 

0.80

0.75

0.70

0.65

0.60

18151296

0.42

0.39

0.36

0.33

18151296

0.24

0.18

0.12

0.06

0.00

θD

NumShuttle J

θR

θT

4
8

12
16
20

Ratio Y/X
Aspect

θD, θR, θT vs NumShuttle



118 

example, if in a particular configuration and scenario the estimated utilization of the shuttle lift is 

44% and the simulation result (average over 10 simulation replications) is 40%, then 𝐼ாሺ𝑈௏௅ሻ ൌ

െ10%. 

Table 4.7 shows the validation results in terms of the absolute estimation errors |𝐼ா|. The 

results are categorized by the indices of demand scenarios – for each of the 100 system 

configurations, scenario 6 is corresponding to the arrival rates 𝜆௠௔௫ at the throughput levels, and 

scenarios 1 to 5 are corresponding to the arrival rates equals to 50%, 60%, 70%, 80% and 90% of 

the 𝜆௠௔௫, respectively. Based on analytical and simulation results, the absolute errors of the nine 

indicators are computed for each configuration-scenario (totally 600 combinations). Then, the 

averages of the absolute errors are computed for each scenario index. The results are listed 

separately for tier-captive configurations (𝐽 ൌ 𝑋) and tier-to-tier configurations (𝐽 ൏ 𝑋) because 

the latter is based on a more complex queuing model.  

Table 4.7 Travel time model average estimation errors (absolute) by demand scenarios 

SCE. Absolute error |𝑰𝑬| ൌ |𝑰𝑺 െ 𝑰𝑨| 𝑰𝑺⁄  
[Tier-captive (1 shuttle deployment level),  

Tier-to-tier (average from 3 shuttle deployment levels)] 
𝑈ௌ௅ 𝑈ோ௅ 𝑈௏ 𝑈௏௅ 𝐶𝑇ௌ 𝐶𝑇ோ  𝜃஽ 𝜃ோ 𝜃் 

1 [2.3%, 
2.0%] 

[0.6%, 
0.4%] 

[1.0%, 
2.0%] 

[N/A, 
5.5%] 

[6.2%, 
8.3%] 

[6.7%, 
8.0%] 

[7.1%, 
1.8%] 

[1.7%, 
1.7%] 

[N/A, 
5.5%] 

2 [2.0%, 
2.1%] 

[0.8%, 
0.5%] 

[0.9%, 
1.6%] 

[N/A, 
4.4%] 

[5.4%, 
8.6%] 

[6.8%, 
8.7%] 

[4.4%, 
2.8%] 

[1.8%, 
1.7%] 

[N/A, 
4.4%] 

3 [1.5%, 
2.1%] 

[0.8%, 
0.6%] 

[0.8%, 
1.2%] 

[N/A, 
3.5%] 

[3.9%, 
7.6%] 

[6.2%, 
7.9%] 

[4.0%, 
3.2%] 

[1.7%, 
1.7%] 

[N/A, 
3.5%] 

4 [1.0%, 
2.1%] 

[0.9%, 
0.7%] 

[0.7%, 
1.1%] 

[N/A, 
3.7%] 

[2.1%, 
6.1%] 

[4.9%, 
6.3%] 

[3.4%, 
2.0%] 

[1.7%, 
1.7%] 

[N/A, 
3.5%] 

5 [0.6%, 
2.0%] 

[0.9%, 
0.8%] 

[0.6%, 
1.3%] 

[N/A, 
6.3%] 

[2.1%, 
5.7%] 

[3.4%, 
4.9%] 

[2.4%, 
3.0%] 

[1.7%, 
1.7%] 

[N/A, 
5.8%] 

6 [0.2%, 
1.9%] 

[0.8%, 
0.8%] 

[0.6%, 
1.9%] 

[N/A, 
13.6%] 

[7.2%, 
11.2%] 

[3.8%, 
9.7%] 

[2.2%, 
8.9%] 

[1.8%, 
1.7%] 

[N/A, 
12.9%] 

AVG [1.3%, 
2.0%] 

[0.8%, 
0.6%] 

[0.8%, 
1.5%] 

[N/A, 
6.2%] 

[4.5%, 
7.9%] 

[5.3%, 
7.6%] 

[3.9%, 
3.6%] 

[1.7%, 
1.7%] 

[N/A, 
5.9%] 

It can be observed that the utilization estimates for the storage lift (𝑈ௌ௅), the retrieval lift 

(𝑈ோ௅) and the shuttles (𝑈௏) are reasonable – the error is within 2% in general. This is strong 

evidence that the travel-time model is valid for throughput estimation. Also, the estimation for the 

three critical coefficients: relocation ratio 𝜃ோ, dual-cycle ratio 𝜃஽ and tier-transfer ratio 𝜃், are 

also reasonable. Although these coefficients do not directly affect the throughput or responsiveness 
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indicators, good estimation of them is more evidence of the validity of the techniques applied in 

the analytical modeling processes – otherwise, it would be very difficult to examine the model 

given its complexity. The estimates for shuttle lift utilization (𝑈௏௅ ) at higher demand levels 

(scenario 6) have larger error for tier-to-tier configurations, but that will not affect the throughput 

estimation because  𝑈௏௅  is generally small, and according to the control assumptions made 

previously the shuttle lift will never become the bottleneck of the system because there is 

always  𝑈௏௅ ൏ 𝑈௏ . Similarly, the relatively high error for  𝜃்  at high demand levels is not 

concerned as a significant problem: as illustrated previously,  𝜃்  is typically small when the 

demand levels are high. (In fact, it is observed that the estimation error of  𝜃் have strong positive 

correlation with that of 𝑈௏௅, which is believed as originated from the approximation techniques in 

obtaining 𝜃். We view this as a future opportunity to improve the model. Thus, the error of 𝑈௏௅ 

is not considered in evaluating the quality of the throughput estimates (however, just like the three 

ratios, 𝑈௏௅ is still viewed as one indicator of the validity of the analytical model). At the highest 

demand levels (Scenario 6, under which at least one device utilization reached 90% for each design 

configuration, and thus the corresponding task arrival rate 𝜆 is viewed as the throughput of the 

design configuration), the estimation errors of the maximum utilizations among all devices (excl. 

shuttle lifts’) are 1.3% for tier-captive configurations and 2.0% for tier-to-tier configurations – 

although the device utilizations are just intermediate measure of the throughputs, we interpret these 

results as indicating that the estimation precisions of the throughput performance are in general 

over 98.7% and 98.0%, respectively. 

The estimation quality for the systems’ responsiveness indicators are presented as the 

absolute errors of the cycle time estimates. With the tier-captive configurations, the average 

estimation errors for task cycle times are 4.5% and 5.3% for storage tasks and retrieval tasks, 

respectively. The overall estimation precision for the cycle times are thus viewed as 100% െ

ሺ4.5% ൅ 5.3%ሻ 2⁄ ൌ 95.1%. For the tier-to-tier configurations, these numbers are 7.9% and 7.6% 

for storage tasks and retrieval tasks, respectively, and the overall precision is 92.2%. Recall that 

the system is a tandem queuing system with inter-leaving entities, and that single-server and multi-

server queuing system characteristics both exist in the system, estimating the task waiting times at 

different service stages is very difficult, and over 90% precision in general is concerned as 

acceptable for the cycle times. 
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Further Exploration of Estimation Errors 

As discussed before, the quality of throughput estimation is viewed as satisfactory. Here 

we further explore the errors observed in the cycle time estimates. Figure 4.21 illustrates the 

estimation errors of retrieval cycle times 𝐶𝑇ோ – the estimation errors of storage cycle times 𝐶𝑇ௌ 

have very similar patterns to those of 𝐶𝑇ோ, thus are not further demonstrated here.  The error data 

points include all 100 system configurations: 25 designs each with three levels of tier-to-tier 

configurations and one tier-captive configuration, in which configurations #1, 5…4(n-1)+1…97 

are tier-to-tier configurations with shuttle deployment level 1 for designs #1, 2…n…25 (as listed 

in Table 4.6), respectively, configurations #4, 8…4(n-1)+4…100 are tier captive configurations 

(shuttle deployment level 4), etc. All the data points are categorized by six demand scenarios, 

where 6 is the highest demand level. Figure 4.22 and Figure 4.23 further display the error data 

separately for the 25 tier-captive configurations (150 data points) and the 75 tier-to-tier 

configurations (450 data points). Among the 600 data points the errors range from -25.1% to 

+35.7%, where a negative error indicates overestimation and a positive error indicates 

underestimation (with respect to simulation results). Obviously, the error range for the tier-captive 

configurations ([-7.9%, 14.7]) are in general much smaller than that for the tier-to-tier 

configurations ([-25.1%, 35.7%]). The average of the 600 data points is 3.0% (4.7% for tier-captive, 

2.4% for tier-to-tier), and the average of their absolute values is 7.0% (5.3% for tier-captive, 7.6% 

for tier-to-tier).  

The error estimation for tier-captive configurations is viewed as satisfactory. For tier-to-

tier configurations, it can be observed from the chart that when the demand levels are high, the 

model tend to overestimate the cycle times. It can also be observed that with tier-to-tier 

configurations, the cycle times of systems with taller racks (configurations with larger ID) are in 

general underestimated when the demand levels are low. Furthermore, the shuttle deployment 

levels appear to have significant effects on the errors. Thus, we select the following four factors 

and analyze their effects to the estimation error of 𝐶𝑇ோ: 

1. Demand Scenario: 1 to 6 indicate 𝜆 corresponding to 50%, 60%, 70%, 80%, 90% and 

100% of the estimated throughput, respectively; 

2. Number of tiers 𝑋 of the rack; 
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3. Aspect ratio 𝑌 𝑋⁄  between number of columns 𝑌 and number of tiers 𝑋: smaller and 

larger aspect ratios indicate shallower and deeper racks, respectively; 

4. Shuttle deployment level in the rack: 1, 2, 3 corresponding to 𝐽 = 33.3%, 50% and 66.7% 

of 𝑋 (round up/down to the closest integers). 

The main effects of the four selected factors are demonstrated in Figure 4.24. Consistent with the 

previous observations, in general 𝐶𝑇ோ is overestimated at the highest demand level (where 𝜆 = 

throughput) – we further observed that it is highly related to the overestimation of the tier-transfer 

ratio 𝜃் at high demand levels when the approximations for the virtual TT system become less 

precise. Also, 𝐶𝑇ோ appears to be underestimated for tall rack systems in which the tote lifts are 

more burdened. The error of 𝐶𝑇ோ is also affected by the aspect ratios and the shuttle deployment 

levels, while the direct effects from all four factors are relatively minor (with in [-10%, 10%]). 

Interaction effects of the factors need to be further analyzed. 

Figure 4.25 demonstrates the interaction effects of the four selected factors. Strong 

interaction is observed between the number of tiers and the shuttle deployment levels: when the 

deploy level is low (level 1), 𝐶𝑇ோ is tend to be underestimated for taller racks (e.g. 𝑋 ൌ 18, 𝐽 ൌ

6) but overestimated for shorter racks (e.g. 𝑋 ൌ 10, 𝐽 ൌ 3). We assume this is again related to the 

approximation of the virtual TT system – because it is approximated as a bounded M/M/c system 

where 𝑐 ൌ 𝐽, the task waiting times might be underestimated with larger 𝐽’s and overestimated 

with smaller 𝐽’s. Together with the effects from the other factors, such interaction effects lead to 

the -25.1% lower bound and +37.1% upper bound of the estimation errors for 𝐶𝑇ோ . These 

observations provide insights for further improving the validity of the travel time model. 
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Figure 4.21 Estimation Error of 𝐶𝑇ோ by System Configurations and Demand Scenarios 

 

Figure 4.22 Estimation Error of 𝐶𝑇ோ by System Configurations and Demand Scenarios  

(Tier-captive) 
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Figure 4.23 Estimation Error of 𝐶𝑇ோ by System Configurations and Demand Scenarios  

(Tier-to-tier) 

 

Figure 4.24 Main Effects for Estimation Error of 𝐶𝑇ோ (Tier-to-tier) 
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Figure 4.25 Interaction Effects for Estimation Error of 𝐶𝑇ோ (Tier-to-tier) 

In conclusion, the travel time model of the analytical approach is considered as acceptable 

based on the simulation-based validation experiment results. Both the throughput estimates and 

the responsiveness estimates are viewed as with adequate preciseness for conceptual design 

purpose. To further validate the analytical techniques applied, critical intermediate results from 

the travel time model are also examined by comparing to corresponding simulation outputs, and 

the results are satisfying. 

4.7 Application Example 

In this section, an example of the proposed application in system design decisions is 

presented with regard to the analytical approach. Assume the decision-maker plans to build an 

SBS/RS for an E-commerce distribution center. To deal with the seasonality of the demand and 

possible expanding of the business in the future, the decision-maker chooses to implement tier-to-

tier configurations in the system. In this example, the goal is to find design(s) that minimize the 

overall capital expenditures while also satisfying the space constraints and performance 

requirements. Because the demand may increase in the future, the decision-maker need to consider 

about the expandability of the system and the related costs as well. 
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Space Constraints 

For the simplicity of illustration, all the aisles in the expected system are assumed 2-deep 

(thus 4 slots per column) and have identical rack designs. Also, the aisles are all tier-to-tier 

configurations to accommodate for future demand changes. Due to the space constraints of the 

distribution center, the maximum system scale is limited to 12 aisles, 25 tiers and 400 columns.  

Demand Scenarios and Performance Requirements 

The inter-arrival times of both types of tasks to each aisle are assumed exponential. Each 

task is related to an independent customer order, and each task is related to a single tote. The target 

rack capacity of the overall system is 200,000 slots, and the expected rack utilization is 0.8 for 

each aisle. The target throughput of the overall system is 3,000 storage tasks and 3,000 retrieval 

tasks per hour for now. In addition, because the demand may grow in the future, the system’s 

throughput is required to be expandable up to 5,000 S/R tasks per hour by adding shuttles in the 

future. This can be interpreted as the system throughput when all aisles are deployed full numbers 

of shuttles. Finally, the expected cycle time of both task types should be less than 600 seconds. 

Objective Function 

The capital expenditure of an SBS/RS aisle is viewed as the sum of the lift costs (which is 

fixed costs per aisle), rack costs (which is a function of rack size), and the shuttle costs (which is 

determined by the number of shuttles purchased and deployed). In this example, the cost function 

of the overall system is assumed given as: 

 𝐹௖௢௦௧ ൌ  𝐴ሺ20,000 ൅ 2,000X ൅ 50XY ൅ 5,000Jሻ US dollars, where A is the number of 

aisles, X and Y are the number of tiers and number of columns per aisle, respectively, and J is the 

number of shuttles per aisle. We are working with our industry partner to verify these estimates, 

but the specific cost numbers are not critical for the demonstration of our analysis (but they would 

be very important when applying the methodology in a production environment). 

Analytical Approach and Results Interpretation 

According to the space constraints, the maximum possible rack capacity of a single aisle is 

25ൈ400ൈ4 = 40,000, thus a minimum of 5 aisles are needed to meet the target capacity 200,000 

of the overall system. Designs including 5, 6, 7…12 aisles will be evaluated. Two throughput 
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targets are considered in searching the designs: the required throughput 𝑇𝐻𝑃଴ to fulfill the current 

demand (3,000/hr.), and the required throughput to fulfill the expected expanded demand 𝑇𝐻𝑃ெ௔௫ 

(5,000/hr.). Because the configurations are assumed identical for all aisles, the capacity targets and 

the throughput targets per aisle are listed in Table 4.8. 

Table 4.8 Analytical approach example: Design candidates screening 

#Aisles 5 6 7 8 9 10 11 12 
Capacity Target 

𝐾 40000 33334 28572 25000 22223 20000 18182 16667 
Throughput target 

𝑇𝐻𝑃଴ 600.00 500.00 428.57 375.00 333.33 300.00 272.73 250.00 
Throughput target 

𝑇𝐻𝑃ெ௔௫ 1000.00 833.33 714.29 625.00 555.56 500.00 454.55 416.67 
# Designs 1 5 8 10 12 13 14 15 
# Eligible Designs 0 0 0 0 0 8 12 13 
# Eligible Configs 0 0 0 0 0 85 140 155 

The search problem is then simplified as evaluating single-aisle designs given different 

throughput requirements. All designs that satisfy 𝑋 ൑ 25, 𝑌 ൑ 400, 𝑋𝑌𝑍 ൒ 𝐾 and 𝑋ሺ𝑌 െ 1ሻ𝑍 ൏

𝐾 are evaluated, where 𝑋 is the number of tiers, 𝑌 is the number of columns, and 𝑍 = 4. Thus, 78 

single-aisle designs are evaluated. (Note that this number is small for illustration purposes, because 

the aisles are assumed identical, and the search space only includes the minimum designs that meet 

the capacity requirements. In practice, the designer may need to face much larger search spaces 

with larger capacity range and heterogeneous aisle). Then, a single-aisle design is considered 

eligible in meeting the demands when it meets all of the following requirements: 

1. When the maximum number of shuttles are deployed, the maximum sustainable 

throughput is no less than  𝑻𝑯𝑷𝒎𝒂𝒙 /hr. (in this example, “sustainable” means the 

maximum device utilization is less than 90%); 

2. When the maximum number of shuttles are deployed and task arrivals at 𝑻𝑯𝑷𝒎𝒂𝒙/hr., 

the expected task cycle times are no larger than 600 seconds. 

Among the 78 designs that meet the capacity requirements, 33 designs that meet the 

expanded throughput requirements 𝑇𝐻𝑃ெ௔௫ and cycle time requirements are considered as eligible 

– these designs are only found in the 10, 11 and 12 aisle cases. In the next step, the aisle 

configurations with different numbers of shuttles deployed are evaluated. 380 eligible 

configurations that meet the current throughput requirements  𝑇𝐻𝑃଴  and the cycle time 
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requirements are found for each eligible design. Table 4.9 shows the high-level analytical results 

for the 33 eligible designs. For each design, the minimum numbers of shuttles 𝐽௠௜௡ that required 

to meet the current and future throughput targets are listed – these are the minimum configurations 

of each rack design. The maximum sustainable throughputs of the designs are obtained at the 

maximum configurations (when  𝐽 ൌ 𝑋 , thus every tier is deployed a shuttle). The capital 

expenditures of the minimum configurations for both the current demands and the future demands 

are computed according to the given cost function 𝐹௖௢௦௧ — it is assumed that the decision-maker 

will only purchase the minimum number of shuttles for now to meet the current demand, if the 

demand increases in the future, more shuttles will be purchased as needed. Finally, task cycle times 

are estimated under the minimum configurations of the current demands. 

From the results, the 10-aisle, 18-tier, 278-column design requires the least capital 

expenditure to meet the current demands. However, the 11-aisle, 14-tier, 325-column design 

appears to be more economical if the future demands increase as expected. Moreover, the 12-aisle, 

16-tier, 261-column design have the highest potential throughput, which indicates higher 

flexibility against unexpected demand surges. The criteria become more complicated if the 

responsiveness (cycle times) concerns are incorporated in the cost function, and the user might be 

interested in exploring more analytical details – for example, the user can obtain the throughput / 

cycle time curves plotted as functions of number of shuttles to further explore configuration 

performance with the presence of demand uncertainty and seasonality, and even develop a shuttle-

deployment strategy – we will not discuss those in depth. The point of this example is that, our 

analytical approach can rapidly and systematically evaluate large number of system designs and 

configurations according to different design requirements and knowledge of the demands, and 

provide performance indicators which allow the decision-maker to flexibly develop the most 

appropriate evaluation criteria for his business. 
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Table 4.9 Analytical approach example: Design candidate evaluation 

# 
Aisles 

[X, Y] Capacity 𝑱𝒎𝒊𝒏 
(per aisle) 

Max λ / 
hr. 

(𝑱 ൌ 𝑿) 

𝑭𝒄𝒐𝒔𝒕ሺ𝑱 ൌ 𝑱𝒎𝒊𝒏ሻ 
($) 

Cycle 
Times 
 (sec) 

λ = 
3,000 

λ = 
5,000 

λ = 3,000 λ = 5,000 𝑪𝑻𝑺 𝑪𝑻𝑹 

10 [16, 313] 200320 11 16 5555 3,574,000 3,824,000 197 225 

[17, 295] 200600 11 16 5548 3,597,500 3,847,500 177 203 

[18, 278] 200160 10 16 5461 3,562,000 3,862,000 216 245 

[19, 264] 200640 10 15 5377 3,588,000 3,838,000 196 221 

[20, 250] 200000 10 15 5297 3,600,000 3,850,000 178 202 

[21, 239] 200760 9 14 5219 3,579,500 3,829,500 233 261 

[22, 228] 200640 9 14 5143 3,598,000 3,848,000 208 233 

[23, 218] 200560 9 14 5070 3,617,000 3,867,000 191 214 

11 [14, 325] 200200 10 14 5209 3,580,500 3,800,500 223 256 

[15, 304] 200640 10 15 5833 3,608,000 3,883,000 191 220 

[16, 285] 200640 10 15 6203 3,630,000 3,905,000 172 197 

[17, 268] 200464 9 14 6103 3,594,800 3,869,800 217 246 

[18, 253] 200376 9 14 6007 3,615,700 3,890,700 192 218 

[19, 240] 200640 9 13 5915 3,641,000 3,861,000 177 200 

[20, 228] 200640 9 13 5826 3,663,000 3,883,000 165 186 

[21, 217] 200508 8 13 5740 3,628,350 3,903,350 216 241 

[22, 207] 200376 8 12 5657 3,648,700 3,868,700 195 218 

[23, 198] 200376 8 12 5577 3,670,700 3,890,700 179 201 

[24, 190] 200640 8 12 5499 3,696,000 3,916,000 168 187 

[25, 182] 200200 8 12 5424 3,712,500 3,932,500 158 176 

12 [13, 321] 200304 10 13 5322 3,655,800 3,835,800 162 190 

[14, 298] 200256 9 13 6017 3,619,200 3,859,200 203 233 

[15, 278] 200160 9 13 6749 3,642,000 3,882,000 178 204 

[16, 261] 200448 9 13 6767 3,669,600 3,909,600 164 188 

[17, 246] 200736 8 12 6658 3,637,200 3,877,200 211 238 

[18, 232] 200448 8 12 6554 3,657,600 3,897,600 188 212 

[19, 220] 200640 8 12 6453 3,684,000 3,924,000 173 195 

[20, 209] 200640 8 12 6356 3,708,000 3,948,000 161 181 

[21, 199] 200592 8 11 6262 3,731,400 3,911,400 152 170 

[22, 190] 200640 7 11 6172 3,696,000 3,936,000 206 230 

[23, 182] 200928 7 11 6084 3,723,600 3,963,600 190 211 

[24, 174] 200448 7 11 5999 3,741,600 3,981,600 175 195 

[25, 167] 200400 7 10 5917 3,765,000 3,945,000 163 182 
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4.8 Summary 

In this chapter, a general analytical approach is established to support the conceptual design 

of SBS/RSs. System performance under evaluation is indicated by system throughput and 

responsiveness, interpreted in this research as device utilizations and task cycle times, respectively. 

In our analytical approach, system design/configuration options involving tier-to-tier 

configurations, different rack depths, and different tote lift capacities, etc. are included. In order to 

improve the precision of the estimates, both Pure-Random-Storage policy and Closest-Open-

Location policy are considered. Various demand scenarios are studied, and the shuttles’ dual-cycle 

performances are evaluated. A precise and efficient three-stage iterative analytical approach is 

proposed. In the first stage, the task visit probabilities of the rack slots are estimated based on the 

demand and storage policy assumptions. In the second stage, queuing analysis is conducted with 

integrated considerations for the tandem queuing and multi-server queuing characteristics of the 

system and approximations of relocation, dual-cycle scheduling, and tier-transfer service 

processes. In the third stage, the candidate design is evaluated, and the program systematically 

iterates the search and estimation process to find the best candidate(s).  

The animated, data-driven and data-generated simulation model developed in Chapter 3 

has played a very important role in the development of this analytical approach: due to the 

complexity of the travel time model, the assumptions and approximations made in the analytical 

approach are continuously improved and fine-tuned by the simulation model. At last, the travel 

time model is validated by Monte-Carlo experiments based on the simulation model. Experiment 

results show that for both tier-captive and tier-to-tier configurations, the validation results are still 

satisfactory in term of estimation precision of the throughput and task cycle time. The analytical 

approach is thus viewed acceptable as a precise and efficient tool for design evaluation purpose. 

Finally, techniques applied in this analytical approach are expected to be the baseline and 

foundation of the control strategy development – to be explored in Chapter 5. 
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Chapter 5 Operational Control 

Strategy Development 

5.1 Overview 

In this chapter, operational control strategies are studied aiming at optimizing the 

throughput and responsiveness performance of SBS/RS. Two types of control policies discussed 

in the previous chapter – storage assignment and device scheduling – are further explored based 

on the observations from the proposed analytical approach. Due to the nature of the dynamics of 

SBS/RS operations, the control policies are highly coupled with each other. In addition, the SKU 

(stock keeping unit)-level characteristics like turn-over rates and demand correlations further 

increase the complexity of the control problem but also bring opportunities for improvements. 

Both the short-term effects and long-term effects of the control policies need to be 

considered – the former refers to the control performances in reducing the makespan of the current 

tasks in the system, and the later refers to the control performances in improving the sustainable 

throughput and responsiveness of the system. Thus, mathematical programming approaches and 

dynamic dispatching approaches are explored to improve the overall performance of the control 

strategies. In addition, the SKU-level characteristics are incorporated in the research scope to guide 

the development of the control strategies. 

The control strategy development is based on the data-driven and data-generated 

simulation model introduced in Chapter 3. The simulation model provides a comprehensive 

experimental platform to simulate combinations of demand scenarios, designs and configurations, 

and control strategies, to facilitate system performance evaluation with critical indicators presented 

in numerical and graphical forms. 

5.2 Operational Control Decisions in SBS/RS 

In SBS/RS-based warehouse systems, both storage and retrieval tasks are performed to 

fulfill the requests posed by pickup and replenishment functionalities. The sequences of the tasks 
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form schedules for each device in the aisle. A schedule describes the sequence and timings that a 

specific S/R device serves tasks. With a traditional crane-based AS/RS, the crane serves complete 

storage and retrieval tasks so the schedule is simply a sequence of storage and retrieval tasks. 

However, in SBS/RS, the scheduling is more complex since the storage and retrieval tasks require 

multiple independent S/R devices (lifts and shuttles) with buffers in between. Lastly, the schedule 

of the shuttle lift is defined by a sequence of tier-to-tier operations, describing the shuttle to be 

selected and destination tier in each operation. As discussed in Chapter 4, those schedules are 

dynamic and highly coupled with each other due to the service patterns of the SBS/RS: the 

schedule of the storage lift breaks into storage tasks for each shuttle, while the retrieval tasks from 

each shuttle converge into a single schedule for the retrieval lift. Thus, delays with the first-stage 

device may lead to delays on the next-stage device. Also, if the tote lift capacities are larger than 

one, the lift may carry one or multiple totes at a time, thus tours of different sizes will occur. The 

problem is more complicated in tier-to-tier configurations where shuttles’ tier-transfer services are 

introduced. Figure 5.1 illustrates the schedules of each device type and the correlations between 

the schedules. Also, as studied in Chapter 4, the assignment of storage locations (either for both 

storage totes or for blocker totes in retrieval tasks) largely affects not only the cycle times of the 

current storage tasks but also the cycle times of future retrieval tasks, thus affects the system’s 

throughput and responsiveness performances. Moreover, the SKU-level characteristics like 

turnover rates and demand correlations further complicate the control problems, while wise control 

policies based on these characteristics are expected to reduce both the device travel times and the 

relocation times significantly, thus reduce the overall task cycle times. 

A task describes the information required for the devices to fulfill S/R demands within the 

same SBS/RS aisle. Both types of tasks need to be performed by shuttles and lifts. The releasing 

of those tasks, scheduling of devices, and flowing of products, all need to be guided by specific 

algorithms. In the context of this research, an “algorithm” can be realized either through 

Mathematical Programming (MP) approaches or through Dynamic Dispatching (DD) approaches 

– or even some mixed or heuristic approaches. No matter in which form, an algorithm can always 

be defined in three aspects: Select – Serve – Evaluate, among which the critical aspect is “Select”. 

Given a set of storage totes, how to “select” the storage locations in order to maximize the system’s 

throughput? For a set of retrieval tasks, which sequence should be selected by the retrieval lift so 

that the makespan is minimized? For a particular shuttle, how should it select the next task 
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considering that both task types exist in its queue? When a tier-transfer service is required, which 

shuttle is the best candidate to be selected? Generally speaking, these decisions are made based on 

the knowledge of the system’s current state, and to some extent the forecast of the system’s future 

states. After the current service is performed, the quality of this decision is evaluated, and both 

short-term effects and long-term effects to system performance are considered and updated as the 

basis for the upcoming decisions.  

 

Figure 5.1  Operational Control Decisions in an SBS/RS aisle 

As with the previous chapter, the focus of this chapter is on single SBS/RS aisles, thus 

higher-level decisions like material resource planning or global coordination are not discussed 

here. As illustrated in Figure 5.1, the operational control decisions under study in this chapter are 

categorized into two types: 
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Storage Assignment decisions, which create storage tasks by specifying the target storage location 

(slot) for each tote to be stored. It is assumed that the inbound totes are delivered to the aisle by a 

single conveying mechanism in First-Come-First-Serve (FCFS) patterns (which is the most 

common case). The storage assignment decision is made when the tote is loaded to the storage lift 

(except in dedicated storage policy). In addition, with 2-deep racks, the new storage location for 

the blocker tote to be relocated also need to be assigned if the target slot of the retrieval task is 

blocked. 

Device Scheduling decisions, which determine the operation sequences for all four types of devices 

in order to complete the tasks. The device scheduling process takes tasks created from slotting and 

dispatching decisions as inputs and make the following decisions: 

a) The sequence that each shuttle serves storage and retrieval tasks on its current tier; 

b) The sequence and tours that the retrieval lift serves retrieval tasks; 

c) The sequence and tours that the storage lift serves storage tasks; and 

d) The sequence that the shuttle lift provides tier-transfer services and the shuttle to be 

selected in each service. 

As illustrated in Figure 5.1, the control decisions are highly dependent on each other. 

Theoretically – given a known set of retrieval and storage tasks, and assuming the device service 

times are deterministic and there are no device failures – there exists at least one optimal solution 

that creates and completes tasks for a given objective (e.g., makespan or total tardiness). In such 

cases, the two types of control decisions are made simultaneously in a single MP form algorithm. 

However, different from the batching approaches widely applied in single-crane AS/RSs, with a 

given task set the start times and end times of the devices will be different. Because the task set is 

always dynamic as tasks continuously arrive to the aisle, it can be expected that such all-in-one 

approaches will not ensure the overall optimality for SBS/RSs. Moreover, concerning the 

complexity in device interactions, the difficulty of combining the storage assignment problem and 

the scheduling problem, as well as the stochasticity from the demands, the “all-in-one” approach 

is mathematically impractical in improving the system’s sustainable performance. A good control 

strategy is expected to divide-and-conquer those control problems and provide the system with 

effective, efficient, robust, and sustainable control solutions. 
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Before further introducing our approaches for developing the operational control strategies, 

it is necessary to clarify at first the differences between the assumptions made here and the 

assumptions made in the previous chapter when developing the queuing-based analytical 

approach. In the previous chapter, both the storage assignment policies and the device scheduling 

policies are simplified based on a set of assumptions. The storage assignment policies were 

assumed as random with equal probabilities between tiers and assumed as either Pure-Random-

Storage or Closest-Open-Location for slots within tiers. Also, the relocation services for retrieval 

tasks were assumed as consistent with the storage assignment policies. For the device scheduling 

policies, the tote lifts were assumed to serve the tasks in FCFS patterns and try to load as many 

totes as possible to their current tour (if capacity > 1). The shuttles were assumed to serve the tasks 

in FCFS, at the same time perform dual-cycles as much as possible. With tier-to-tier 

configurations, tier-transfer tasks were assumed to be served in FCFS, and the shuttle to be 

transferred in each task was assumed to be selected randomly from all idle shuttles. SKU-level 

characteristics were not considered in the last chapter – the task arrivals were only described by 

the means and variances of their inter-arrival times, and each task was assumed as corresponding 

to a unique tote. Finally, the capacities of the input buffer and the output buffer on each tier were 

both assumed infinite.  

The simplification assumptions mentioned above made it possible (although still difficult) 

to establish a generalized travel-time model for the systems. The estimation results obtained from 

that analytical approach are viewed as reasonable baselines of the systems’ performances, and thus 

valid and efficient for evaluating large numbers of designs/configurations during the early design 

conceptualization (screening) phase. In this chapter, the focus is the later operational control phase, 

in which the objectives are further exploration of the systems’ potentials and optimization of the 

systems’ performance by customizing the control strategy according to the actual operational 

environments. In this chapter, the control strategy focuses on the SBS/RS operations and does not 

include the coordination with the upstream/downstream systems. Thus, the previous assumptions 

are relaxed to present the practical situations more accurately. The assumptions for the control 

strategy development are updated as follows: 

1. Each tote contains a single SKU-type. Each task, either storage or retrieval, corresponds 

to one specific tote. The probability that a storage task stores a particular SKU-type, as 
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well as the probability that a tote of a particular SKU-type is requested by a retrieval 

task, are both subject to known distributions based on the SKU-level characteristics.  

2. Storage assignment decisions and relocation decisions need to be specified for each 

storage tote / blocker tote based on the SKU-type and various indicators of the systems’ 

current states. 

3. Schedules for storage lifts are always FCFS due to the nature of this process, but the 

tours need to be specified. 

4. Schedules for retrieval lifts need to be determined based on various indicators of the 

systems’ current states, and the tours need to be specified. 

5. Schedules for each shuttle, which may include both storage tasks and retrieval tasks, 

need to be determined based on various indicators of the systems’ current states. 

6. For tier-transfer services, both the shuttle to be transferred and the target tier need to 

be determined based on various indicators of the systems’ current states. 

7. I/O buffers have limited capacities: a storage lift will be suspended if the input buffer 

of the target tier of the current task is full; a shuttle will be suspended if the output 

buffer of the tier of the current task is full. 

5.3 Formulation of the Control Problems 

5.3.1 Device Scheduling 

At a high level, the device scheduling approaches in SBS/RS are dealing with a scheduling 

problem with heterogeneous resources. Figure 5.2 illustrates the task schedule patterns for each 

device type: assuming four storage tasks (S1 to S4) and four retrieval tasks (R1 to R4) 

simultaneously arrive to an aisle deployed with two shuttles, and the initial states of all devices are 

idle. There are various precedence constraints in this scheduling problem. First of all, the shuttles 

interact with tote lift services through I/O buffers positioned at the front side of each tier, and the 

downstream services (shuttle services for storage tasks, lift services for retrieval tasks) cannot be 

started prior to the completion of the upstream services (lift services for storage tasks, shuttle 

services for retrieval tasks) – as indicated by the shadowed areas in the above schedule charts. 

Secondly, because those I/O buffers are usually roller conveyors on which tote sequences cannot 

be altered, the sequences of the downstream services are also constrained by those of the upstream 

services. Thirdly, the touring characteristics the lift services further increase the complexity of the 



136 

problem – in this example, both tote lifts have tour capacity of two, and each tote lift has performed 

two full-size tours (thus the service times of the tasks in the same tour overlap). Moreover, the 

planning of tier-transfer operations adds another subset of constraints – in this example, after 

Shuttle.1 completed task S1, it is transferred to another tier to proceed with task R2. The shuttle 

lift is occupied then and no other tier-transfer operation can be processed until Shuttle.1 is 

transported to the target tier. At last, all the constraints discussed above were assumed independent 

from the storage assignment problem (including the relocation decisions). If integrated with the 

storage assignment decision for each task, it will be impractical to obtain mathematical optimality 

for the scheduling problem even for small systems and moderate sizes of task sets (e.g. 24 tasks 

for a 12-tier, 6-shuttle rack). 

 

Figure 5.2 Task Schedules of SBS/RS device (W: waiting device response; To L: moving 

to load point; L: load; To U: transporting tote to unload point; U: unload; TT: tier-transfer 

operation; SL/Shuttle: in previous service stage)  
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5.3.2 Storage Assignment 

The storage assignment problems in various types of warehousing systems are based on a 

common ground that the costs (primarily travel times) for accessing different storage locations are 

different. In traditional AS/RSs with one crane in each aisle, the storage locations are visited by a 

single crane, the tasks are performed sequentially, and the distances of the tasks’ target slots from 

the rack’s I/O point(s) are the primary factors that determine the crane’s travel times. Because the 

crane is the only L/U device that accesses the storage locations (slots), the time costs for accessing 

each slot in the rack can be presented in relatively simple mathematical expressions described by 

the slots’ ሺ𝑥, 𝑦ሻ coordinates and crane velocity and acceleration, etc. In many classic storage 

assignment approaches, differences in such accessibilities and differences in SKU-level 

characteristics are considered together to minimize the overall travel costs – for example, SKUs 

with higher demands or/and turnover rates are usually stored to locations easier to access (e.g., 

closer to I/O). 

In an SBS/RS aisle, the time costs for accessing the slots are more difficult to evaluate due 

to the complexity of the service patterns. Tasks are served in sequence by the tote lifts but served 

in parallel by the shuttles – the vertical and horizontal service stages are more decoupled than the 

diagonal service patterns in traditional AS/RSs, but still to some extent coupled due to factors like 

the buffer characteristics as discussed earlier this section. Figure 5.3 presents a general map to 

illustrate the slot accessibilities within an aisle. Each slot location in the aisle can be described as 

three-dimension coordinates ሺ𝑥, 𝑦, 𝑧ሻ, where 𝑥 is the tier index, 𝑦 is the column index and 𝑧 is the 

depth index. The time costs to access a slot ሺ𝑥, 𝑦, 𝑧ሻ is determined by both the tote lift travel times 

from their I/O terminals (function of 𝑥) and the shuttle travel times from the I/O buffers on the 

tiers (function of 𝑦)  – it is noticeable that these two factors are not necessarily evaluated with the 

same importance. For example, if the shuttle utilizations are much larger than the tote lift 

utilizations in a particular system configuration under a particular demand scenario, then it is 

probably more important to assign totes to slots more accessible for the shuttles rather than for the 

tote lifts (thus more weight regarding 𝑦 and less weight regarding 𝑥). With 2-deep racks, the 

accessibility of each 2-deep slot (𝑧 ∈ ሾ3,4ሿ) needs to include not only the longer load/unload times, 

but also the occurrence of relocation operations and the corresponding time costs – as discussed in 

Chapter 4 the relocation factor is usually much more significant to task cycle times. With tier-to-
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tier configurations, the time costs for accessing the slot are also subject to the number of shuttles 

deployed as well as the occurrence of tier-transfer operations. 

 

 

Figure 5.3 Illustration of time costs for accessing rack slots in a 2-deep SBS/RS aisle 

5.3.3 Insights obtained from the Travel Time Model 

As discussed above, multiple decisions need to be made for different task types, different 

device types, by the control strategies. First, based on the complexities of the system discussed 

previously, it is impractical to develop an effective and economic all-in-one mathematical 

programming (MP) approach that optimizes the sustainable performance of the systems. Secondly, 

it is impractical to explore and evaluate all the possible combinations of all types of dynamic 

dispatching (DD) approaches, as well as proving their effectiveness for various system designs 

and system configurations under different demand scenarios. However, from the analytical 

approach introduced in Chapter 4 many important insights are obtained from the processes of the 

travel time model development and from the validation experiment results, summarized as 

followed: 
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1. Both the utilizations of the shuttles (𝑈௏) and the utilizations of the tote lifts (𝑈ௌ௅ and 𝑈ோ௅) 

could form bottlenecks on the systems’ throughput. With the same rack capacities, 𝑈ௌ௅ 

and 𝑈ோ௅ are typically higher for taller racks (larger 𝑋). Also, 𝑈௏ is in general larger for deeper 

racks (larger 𝑌), but the number of shuttles deployed (𝐽) is a more significant factor to it. Thus, 

the control approaches should be designed to accommodate to different system designs and 

configurations. 

2. With the same demand scenarios, system throughput is primarily determined by the average 

service times of the devices 𝑇௏, 𝑇ௌ௅ and 𝑇ோ௅, in which 𝑇௏ is generally the most significant 

especially for deeper racks (larger 𝑌). Good control approaches, including storage assignment 

and device scheduling, can reduce the average service times and thus improve the system’s 

throughput performance. 

3. In order to reduce the service times, storage assignment approaches should aim at increasing 

the task visit probabilities of the slots (𝑃ௌ, 𝑃ோ, 𝑃ோ௘ூ, 𝑃ோ௘ை) that are easier to access (e.g., slots 

closer to the I/O buffers) and decreasing the probabilities of the slots that are harder to access. 

Moreover, with the presence of relocation services (2-deep racks), minimizing the occurrence 

of relocation operations (𝜃ோ) is expected to be beneficial. Finally, knowledge of SKU-level 

characteristics should be incorporated in the storage assignment approaches, if possible (e.g., 

SKUs with higher demands should be stored to slots that are easier to access). 

4. In order to reduce the service times, because the load/unload times are deterministic, device 

scheduling approaches should aim at reducing the travel times in serving the tasks. For the 

shuttles, this resembles a Traveling Salesman Problem (TSP) in which each shuttle task is 

viewed as a node to be visited, and the travel costs between such nodes are deterministic, and 

larger portion of dual-cycles (𝜃஽) is expected to be beneficial. For the retrieval lifts, it is 

speculated beneficial to schedule the tasks in a way that minimizes the total travel time of each 

tour. For the storage lifts, there is no scheduling flexibility because the storage arrivals are 

FCFS, but the tour times are affected by the storage assignment approaches.  

5. A shuttle cannot start serving a storage task prior to the end of storage lift service of that task; 

likewise, a retrieval lift cannot start serving a retrieval lift prior to the end of shuttle service of 

that task. Such coupling effects between the shuttle services and the tote lift services need to 

be considered in the scheduling approaches to minimize the intermediate task waiting times on 

the I/O buffers, and the buffer capacities need to be concerned. 
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6. With tier-to-tier configurations, the occurrence of tier-transfer tasks (𝜃்) should be minimized 

to reduce the overall shuttle service times. The scheduling decisions for tier-transfer services 

are two-stage, in which both the target tier and the service shuttle need to be determined. The 

storage assignment decisions should also avoid introducing unnecessary tier-transfer 

workloads.  

7. Given the system configuration and demand scenario, the task waiting times are largely 

affected by the coefficient of variations of task inter-arrival times (𝑐𝑜𝑣௔) and task service times 

(𝑐𝑜𝑣௦) for each device. Good control approaches are expected to reduce such variances in the 

long term and improve the system’s responsiveness performance. 

5.4 Exploration of Scheduling Algorithms based on MP Approaches 

As discussed in Section 5.2, there are generally two types of operational control options to 

improve the performances of an SBS/RS aisle:  

1) Mathematical Programming (MP) Algorithms (Top-down approaches) 

According to the definitions by Chandra and Grabis (2007), the general purpose of 

mathematical programming is finding an optimal solution for allocation of limited 

resources to perform competing activities. Mathematical programming uses a compact 

mathematical model for describing the problem of concern. The solution is searched among 

all feasible alternatives. In our context, the term “solution” here includes both the task 

schedules of all devices and the target slots of the storage assignment decisions.  

2) Dynamic Dispatching (DD) Algorithms (Bottom-up approaches) 

In our context, dynamic dispatching algorithms refer to the approaches in which decisions 

are made dynamically and step by step. Instead of searching for optimal solutions, the focus 

here is on providing “good-enough” solutions that ensure robust and sustainable system 

performance.  

As discussed before, MP approaches alone are not practical here considering the 

complexity inherent in the system service patterns and the dynamic and stochastic nature of 

demands. The DD approaches appear to be more feasible and easier to formulate. However, 

considering the large number of potential inputs for the dynamic dispatching algorithms (device 
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status, task progresses, slots occupancies, SKU characteristics…), it is impossible to explore and 

evaluate all the possible combinations of all types of the DD approaches.  

The operational control strategy development approach proposed in this research integrates 

explorations of both MP algorithms and DD algorithms. Based on the observations and insights 

obtained from both the analytical approaches and simulation approaches, the following 

assumptions are made: the DD algorithms need to be developed systematically and guided with 

some baselines or/and benchmarks to evaluate their qualities and to narrow down the search scopes 

for improving the algorithms – and such baselines/benchmarks are expected to be provided by MP 

approaches.  

In this section, a divide-and-conquer methodology is applied, and the problem scope is 

expanded gradually. The problem scope is first narrowed to the scheduling of a single, tier-captive 

shuttle – which is the most rudimental form of the system – based on a set of simplifying 

assumptions. The MP formulation is developed for that basic system. The complexity of the MP 

formulation is gradually increased along with the increasing of the problem scope and the 

elimination of the previous simplifying assumptions – the MP solution techniques applied here 

involve both classic ones like Integer Programming and heuristic ones like Ant-Colony-

Optimization – until a point that the MP is no longer practical to form or solve. On the other hand, 

the DD algorithms are developed, evaluated, and fine-tuned by comparing the DD solutions with 

the MP solutions along the entire scope-expansion process. This process is fully simulation-based, 

and the solution qualities of both MP and DD are examined under various system 

designs/configurations and demand scenarios. 

5.4.1 Shuttle scheduling in tier-captive SBS/RS 

In this subsection we focus on the scheduling problem of a single shuttle in a tier-captive 

system. The coupling affects from the tote lifts, the tier-transfer operations, and advanced storage 

assignment approaches are not included in the current scope. As illustrated in Figure 5.4, four 

problem formulations are identified for the tier-captive shuttle scheduling problem according to 

task complexity and control assumptions. Problem 1a is the most basic formulation and uses a 

classic Traveling Salesman Problem (TSP) which is solvable through Integer Programming (IP) 

approaches. Problem 1b and 1c are more complicated formulations developed based on Problem 

1a, in which precedence constraints between tasks are added according to assumptions for storage 
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assignment and relocation, respectively – these problems already become much more costly for IP 

approaches compared to the basic problem. Problem 1d is the most complicated formulation in the 

current context which integrates the mathematical complexities from Problem 1b and 1c. Note that 

in this dissertation, our focus is on exploring the complexity of the scheduling problems rather 

than on solving these problems. 

Problem 1a: Scheduling of a single, tier-captive shuttle with indistinctive storage assignment 

and no relocation 

This Problem 1a is identified as the baseline for the Problems 1b, 1c and 1d to be introduced 

later in this section. The problems’ scopes are limited to a single shuttle on a single rack tier. Given 

the target slots of the storage tasks and the retrieval tasks, each problem identified in this section 

here can all be presented as Traveling Salesman Problem (TSP) where each task is viewed as a 

node to be visited. Precedence constraints may exist between nodes. For example, from the 

perspective of the totes to be stored, due to the roller-conveyor characteristics of the input buffer, 

their service sequence by the shuttle cannot be altered from the original sequence when they 

entered the input buffer, thus introducing precedence between storage totes. 

However, in this Problem 1a the storage totes are assumed indistinctive, which means all 

empty slots in the rack tier are equally available to each incoming storage tote, and the tote’s target 

slot is determined when the shuttle starts serving the storage task instead of predetermined at the 

beginning. With this assumption, the problem becomes a classic TSP and the storage precedencies 

are removed from the formulation. This assumption is solid when relatively simple storage 

assignment rules are applied to the system, e.g., Pure Random Storage (PRS) or Closest-Open-

Location (COL) regardless of the SKU-level characteristics – in such cases, a set of available slots 

is assumed selected according to the storage assignment rule, and the size of this set equals the 

number of totes to be stored. Moreover, blocker-relocation for retrieval tasks is not considered in 

this baseline problem, which means the target slot of each retrieval task can be accessed without 

extra relocation efforts. 
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Figure 5.4 Problem formulations of shuttle scheduling in Tier-captive SBS/RS (1a, 1b, 1c, 1d) 
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Problem Inputs: 

𝑆 : Number of storage tasks; 

𝑅 : Number of retrieval tasks; 

𝑨𝑺 : A set of slot locations selected for the 𝑆 storage tasks according to some given storage 

assignment policy, where the size of the set |𝑨𝑺| ൌ 𝑆. It is assumed that the storage totes are 

indistinctive thus each tote can be assigned to any slot ሾ𝑥௜, 𝑦௜, 𝑧௜ሿ ∈ 𝑨𝑺.  

𝑖 : Task index, where 𝑖 ∈ ሼ0, 1 ⋯ ሺ𝑆 ൅ 𝑅ሻሽ. The subset ሼ1,2 ⋯ 𝑆ሽ are for storage tasks and 

the subset ሼሺ𝑆 ൅ 1ሻ, ሺ𝑆 ൅ 2ሻ ⋯ ሺ𝑆 ൅ 𝑅ሻሽ are for retrieval tasks. In addition, an index 𝑖 ൌ 0 is a 

dummy task that indicates the starting point of the schedule. In the following steps, for the 

simplicity of formulation, the task type 𝜋௜ is used to indicate the subset that task 𝑖 belongs to, 

where: 

 ൜
 𝜋௜ ൌ 1      𝑖𝑓 𝑖 ∈ ሼ1, 2 ⋯ 𝑆ሽ                              ሺ𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑡𝑎𝑠𝑘𝑠ሻ
 𝜋௜ ൌ 2      𝑖𝑓 𝑖 ∈ ሼ𝑆 ൅ 1, 𝑆 ൅ 2 ⋯ 𝑆 ൅ 𝑅ሽ   ሺ𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 𝑡𝑎𝑠𝑘𝑠ሻ

 

ሾ𝑥௜, 𝑦௜, 𝑧௜ሿ : Target slot location of task 𝑖 – for a retrieval task, the target slot is the slot from 

where the tote is to be retrieved; for a storage task, the target slot is the slot where the tote is to be 

stored, and ሾ𝑥௜, 𝑦௜, 𝑧௜ሿ ∈ 𝑨𝑺 for ∀𝑖 ∈ ሾ1, 2 … 𝑆ሿ. According to the problem definition, all tasks are 

assumed to be at the same tier, thus 𝑥ଵ ൌ 𝑥ଶ ൌ ⋯ ൌ 𝑥ௌାோ. For simplicity of problem formulation, 

it is assumed that in this problem that the target slots are all different, thus 𝑦௜భ
് 𝑦௜మ

 𝑜𝑟 𝑧௜భ
്

𝑧௜మ
 for ∀𝑖 ∈ ሾ1, 2 … 𝑆 ൅ 𝑅ሿ (which means for the given task set, a storage tote cannot be assigned 

to the target slot of a retrieval task even if this slot became empty after the retrieval). It is further 

assumed that if the rack is 2-deep, all slots ∈ 𝑨𝑺 are not neighboring slots in the same column, thus 

𝑦௜భ
് 𝑦௜మ

 𝑜𝑟 𝑧௜భ
് ൫𝑧௜మ

൅ 2൯ for ∀𝑖 ∈ ሾ1, 2 … 𝑆ሿ  (otherwise the storage tasks will be subject to 

precedence constraints). Finally, it is assumed in this problem that all retrieval tasks will not need 

relocation (thus the totes to be retrieved are either stored in 1-deep slots or stored in non-blocked 

2-deep slots). 

𝑑௜ : The remaining service time of task 𝑖 from the time the shuttle arrived its load point, 

computed as: 

𝑑଴ ൌ 0, because the initial state of the shuttle is assumed idle; 
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𝑑௜ ൌ 𝜏଴, ௬೔
௏ ൅ 𝜔଴

௏ ൅ 𝜔௭೔
௏      ∀ 𝑖 ∈ ሾ1, 2 … ሺ𝑆 ൅ 𝑅ሻሿ  

Where 𝜏଴, ௬೔
௏  is the shuttle travel time between I/O location and the target column 𝑦௜,  𝜔଴

௏ is the 

shuttle L/U time from/to input/output buffers, and 𝜔௭
௏ is the shuttle L/U time from/to slot of depth 

index 𝑧. It can be inferred that in any feasible schedule, 𝑑௜’s are the same. Denote 𝐷 as the fixed 

costs of the scheduling problem, where: 

𝐷 ൌ ෍ 𝑑௜

ௌାோ

௜ୀ଴

 

𝑦଴ : The initial column location of the shuttle when it becomes idle to the task set – in this 

problem, the shuttle is assumed idle at the beginning. 

𝑐௜భ, ௜మ
 : If task 𝑖ଶ is served after task 𝑖ଵ, the total time costs from the start (load point) of 

task 𝑖ଵ to the start location (load point) of task 𝑖ଶ (incl. service time of 𝑖ଵ), computed as: 

𝐼𝑓 𝑖ଵ ൌ 0 ሺ𝑡ℎ𝑢𝑠 𝑖ଶ 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑎𝑠𝑘 𝑖𝑛 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒ሻ: 

𝑐௜భ, ௜మ
ൌ 𝑐଴,  ௜మ

ൌ ቊ
 𝜏௬బ, ଴

௏          𝑖𝑓 𝑖 ∈ ሼ1 ⋯ 𝑆ሽ ሺ𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑠ሻ

 𝜏௬బ, ௬೔మ

௏       𝑖𝑓 𝑖 ∈ ሼ𝑆 ൅ 1 ⋯ 𝑆 ൅ 𝑅ሽ ሺ𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑠ሻ
  

𝐸𝑙𝑠𝑒 𝐼𝑓 𝑖ଶ ൌ 0 ሺ𝑡ℎ𝑢𝑠 𝑖ଵ 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑡𝑎𝑠𝑘 𝑖𝑛 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒ሻ: 

𝑐௜భ, ௜మ
ൌ 𝑐௜భ, ଴ ൌ 𝑑௜భ

 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒: 

 𝑐௜భ, ௜మ
ൌ

⎩
⎪
⎨

⎪
⎧

 𝑑௜భ
              𝑖𝑓 𝜋௜భ

ൌ 2, 𝜋௜మ
ൌ 1   ሺ𝑅 െ 𝑆 𝑐𝑎𝑠𝑒ሻ

𝑑௜భ
൅ 𝜏௬೔భ, ௬೔మ

௏     𝑖𝑓 𝜋௜భ
ൌ 1, 𝜋௜మ

ൌ 2   ሺ𝑆 െ 𝑅 𝑐𝑎𝑠𝑒ሻ

𝑑௜భ
൅ 𝜏௬೔భ, ଴

௏        𝑖𝑓 𝜋௜భ
ൌ 1, 𝜋௜మ

ൌ 1   ሺ𝑆 െ 𝑆 𝑐𝑎𝑠𝑒ሻ

𝑑௜భ
൅ 𝜏଴, ௬೔మ

௏        𝑖𝑓 𝜋௜భ
ൌ 2, 𝜋௜మ

ൌ 2   ሺ𝑅 െ 𝑅 𝑐𝑎𝑠𝑒ሻ

 

Where 𝜏௬భ, ௬మ
௏  is the shuttle travel time between column 𝑦ଵ and 𝑦ଶ, and obviously 𝜏௬భ, ௬మ

௏ ൌ 𝜏௬మ, ௬భ
௏ ; 

Task arrival time assumptions:  

All retrieval tasks are assumed available for shuttle service from time 0. Also, there is 

assumed always one storage task already arrived the exit point of the input buffer and thus available 
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for shuttle service (which means the storage lift never delays the shuttle’s schedule). Together with 

the previous assumption that all 𝑆 storage totes are indistinctive in storage assignment to the 𝑆 

storage locations, the shuttle scheduling problem is simplified into a classic Traveling Salesman 

Problem (TSP) with ሺ𝑆 ൅ 𝑅 ൅ 1ሻ nodes: each task is viewed as a node to be visited where the node 

is the load location of the task, and the distance between each pair of task nodes is the service time 

of the previous task since the shuttle arrived its load point, plus the travel time from the unload 

location of the previous task to the load location of the current task. It is noticeable that the costs 

between nodes are asymmetric. 

Decision Variables: 

𝑥௜భ, ௜మ
 : Binary variable (BV) indicating if task  𝑖ଶ  immediately follows task  𝑖ଵ  in the 

shuttle’s schedule, where 𝑖ଵ, 𝑖ଶ ∈ ሾ0, 1, 2 … 𝑆 ൅ 𝑅ሿ. 

 (Note: the character 𝑥 in 𝑥௜భ, ௜మ
 here is the notation for BVs in Integer Programming (IP), which is 

distinguished from the tier index 𝑥 for indicating in slot location ሾ𝑥, 𝑦, 𝑧ሿ – the BVs are noted 

with 𝑥 – to be consistent with traditional TSP-IP formulation. These two notations will not appear 

at the same time within any formula in this research.) 

𝑢௜  : Integer variables for excluding sub-tours based on Miller–Tucker–Zemlin (MTZ) 

formulation, where 𝑖 ∈ ሾ0, 1, … 𝑆, ሺ𝑆 ൅ 1ሻ … ሺ𝑆 ൅ 𝑅ሻሿ.  

Objective Function: 

In this problem, the focus is only on scheduling of a single, in-tier shuttle, and the storage 

locations of all storage tasks are assumed determined at the beginning. Thus, the shuttle’s schedule 

and the corresponding objective function are only determined by the decision variables 𝑥௜భ, ௜మ
. The 

total makespan of all tasks is determined as the objective to be minimized: according to the 

problem definitions, the shuttle is always busy until all tasks are completed, thus minimizing the 

total makespan is equivalent to maximizing the average task service rate of the shuttle. Hence, the 

objective function is presented as: 

𝑀𝐼𝑁  𝐹ሺ𝑥ሻ , where: 
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𝐹ሺ𝑥ሻ ൌ ෍ ෍ ൫𝑐௜భ, ௜మ
ൈ 𝑥௜భ, ௜మ

൯

ௌାோ

௜మୀ଴,
௜మஷ௜భ

ௌାோ

௜భୀ଴

ሺ1ሻ 

The above formulation complies with the classic Integer Programming (IP) form for 

solving TSP. As discussed before, the lower bound of this problem is the fixed costs 𝐷 ൌ ∑ 𝑑௜
ௌାோ
௜ୀଵ . 

Constraints: 

The constraints of this basic single-shuttle scheduling problem mostly comply with the 

constraint forms in the classic IP-TSP problems. First of all, the binary variables 𝑥௜భ, ௜మ
 must subject 

to the following constraints to ensure the schedule is valid and each task is only visited once: 

෍ 𝑥௜భ, ௜మ

ௌାோ

௜మୀ଴

ൌ 1   ∀𝑖ଵ ሺ2ሻ 

෍ 𝑥௜భ, ௜మ

ௌାோ

௜భୀ଴

ൌ 1   ∀𝑖ଶ ሺ3ሻ 

0 ൑ 𝑥௜భ, ௜మ
൑ 1, 𝑥௜భ, ௜మ

 𝑖𝑛𝑡𝑒𝑔𝑒𝑟     ∀𝑖ଵ, 𝑖ଶ ሺ4ሻ 

In addition, the following constraints are formulated to exclude sub-tours from the schedule:  

𝑢଴ ൌ 1 ሺ5ሻ 

2 ൑ 𝑢௜ ൑ 𝑆 ൅ 𝑅 ൅ 1   ∀𝑖 ൐ 0 ሺ6ሻ 

𝑢௜భ
െ 𝑢௜మ

൅ 1 ൑ ሺ𝑆 ൅ 𝑅ሻ൫1 െ 𝑥௜భ, ௜మ
൯   ∀𝑖ଵ, 𝑖ଶ ൐ 0 ሺ7ሻ 

The integer constraints and sub-tour exclusion constraints above together with the previous 

objective function formulation construct a Miller–Tucker–Zemlin (MTZ) formulation of TSP, 

where the last inequality is the arc-constraint.  

It is noticeable that the above MTZ formulation still does not ensure optimality of the 

schedule, because the target slots of storages and retrievals are assumed not overlapping in this 

problem – consider the situation that a storage tote could be assigned to a slot from which a 

retrieval is made earlier in the schedule. In such situations, the problem is expected to be 

complicated by additional precedence constraints: some storages must wait for the completion of 

some retrievals so that the slots of the latter ones become available. However, we will not explore 
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such situations considering the fact that the number of available slots is usually much larger than 

the number of waiting tasks on an SBS/RS tier. 

Evaluation: 

In the above MTZ-TSP formulation,  ሺ𝑆 ൅ 𝑅 ൅ 1ሻଶ  binary variables plus ሺ𝑆 ൅ 𝑅 ൅ 1ሻ 

integer variables are defined, and totally  ሺ𝑆 ൅ 𝑅 ൅ 1ሻଶ ൅ 2ሺ𝑆 ൅ 𝑅 ൅ 1ሻ  constraint rows are 

formulated to find the optimal solution. Given a task set with 10 storages and 10 retrievals, that 

will be 462 decision variables and 483 constraint rows – with this problem size, it takes roughly 

one second to solve the problem on an average 2.60GHz clock speed and 8GB RAM. The 

optimization problems formulated are solved using the SCIP Optimization Suit for Mixed Integer 

Programming (The SCIP Optimization Suite 8.0, 2021). This optimization approach may become 

costly with large problems, because the numbers of decision variables and the numbers of 

constraint rows both increase exponentially to the sizes of the task sets. Moreover, the problem 

discussed here is just a simplified problem formulated for a single shuttle, and the interactions with 

other devices as well as relocations are not taken into consideration yet. In addition, the stochastic 

characteristics of task arrivals require the optimization algorithm to be called iteratively whenever 

the contents in the task set is changed – not to mention that the “optimal solution” found in each 

iteration could be much less meaningful for the system’s long-term, sustainable, and robust 

performance. Considering the timing requirements for device scheduling decisions of SBS/RS are 

typically within a few hundred milliseconds per task, the MP approach like this problem appear to 

be less practical when either the problem size or the problem complexity increases. 

However, important observations can be made based on the optimization formulation to 

guide the development of more practical control algorithms – which is the goal of all the efforts of 

exploring MP approaches in this chapter. As observed in the formulation, the lower bound of the 

scheduling solution is a fixed cost 𝐷 ൌ ∑ 𝑑௜
ௌାோ
௜ୀଵ . Also, considering the rectilinear travel pattern of 

the shuttle within a tier, the solution space of the shuttle scheduling problem formulated here is 

expected to be relatively smooth – which means, near-optimal solutions may be obtained through 

some much less costly and more sustainable scheduling approaches like Dynamic Dispatching 

(DD). For example, the Dual-Cycle approach introduced in Chapter 4 is one of the typical DD 

approaches based on the shuttles’ service patterns and increasing the DC occurrences could 
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potentially improve both the throughput performance and the responsiveness performance of the 

system. To evaluate the potential of DD approaches, three simple DD rules are tested: 

1) FCFS-DC Policy: the shuttle performs tasks in Dual Cycles and in first come-first serve pattern 

as the scheduling assumptions made in Chapter 4. Once a task is completed, the next task to 

be served is the first task of the different type in the remaining tasks – if no different type task 

exists, then the next task to be served is the first task of the same type. In addition, the first task 

to be served is either the first storage task ሺ𝑖 ൌ 1ሻ  or the first retrieval task ሺ𝑖 ൌ 𝑆 ൅ 1ሻ 

whichever the travel time from the shuttle’s initial location 𝑦଴ is smaller. For example, with 

two storage tasks ሺ𝑖 ∈ ሼ1,2ሽሻ and retrieval tasks ሺ𝑖 ∈ ሼ3,4,5ሽሻ (assuming the indices of both 

task types are consistent with task arrival times, respectively) and 𝑦଴ ൌ 0 (thus the shuttle is at 

I/O), then task 1 (storage) will be selected as the first task, and the resulting schedule will 

be ሾ1 → 3 → 2 → 4 → 5ሿ. 

2) Closest-First Policy: the shuttle selects the next task whichever the travel time from the 

shuttle’s current location is smaller among all the remaining tasks. The first task to be served 

is the one with the smallest 𝑐଴,௜ from the shuttle’s initial location. Once a task 𝑖ଵ is completed, 

the next task 𝑖ଶ to be served is the one with the smallest 𝑐௜భ,௜మ
, where 𝑖ଶ ∈ ሼ𝑅𝑒𝑚𝑎𝑛𝑖𝑛𝑔 𝑇𝑎𝑠𝑘𝑠ሽ. 

3) Dijkstra’s Algorithm: which is a greedy algorithm for finding the shortest path to visit a set of 

nodes. In our implementation of the algorithm for the current problem formulation, the shuttle 

selects each task in the schedule based on two components: firstly, the travel time from the 

shuttle’s current location to the load point of the candidate task; and secondly, the travel time 

from the unload point of the candidate task to the closest load point among all remaining tasks. 

Thus, once a task 𝑖ଵ is completed, the shuttle selects the next task 𝑖ଶ whichever has the smallest 

tentative distance value  𝑓ሺ𝑖2ሻ ൌ 𝑐௜భ,௜మ
൅ min ሺ𝑐௜మ,௜య

ሻ , where 𝑖ଶ, 𝑖ଷ ∈ ሼ𝑅𝑒𝑚𝑎𝑛𝑖𝑛𝑔 𝑇𝑎𝑠𝑘𝑠ሽ 

and 𝑖ଷ ് 𝑖ଶ. 

Based on a single tier of 200 columns, 40 task sets of different sizes are created randomly 

to test the MP approach (optimization) as well as the DD approaches. The task sets include 10 

random sets for each of the four cases ሺ𝑆 ൌ 5, 𝑅 ൌ 5ሻ, ሺ𝑆 ൌ 5, 𝑅 ൌ 10ሻ, ሺ𝑆 ൌ 10, 𝑅 ൌ 5ሻ, ሺ𝑆 ൌ

10, 𝑅 ൌ 10ሻ, thus the sizes of storages and retrievals are not necessarily equal. The target slots of 

the tasks are selected randomly with equal probabilities. To present the typical shuttle service 

pattern as discussed in Chapter 4 the shuttle’s initial location is either the I/O column ሺ𝑦଴ ൌ 0ሻ 
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with 50% probability, or one of the rack columns ሺ𝑦଴ ൌ 𝑦 ∈ ሾ1,2 … 𝑌ሿሻ with equal probability of 

50% 𝑌⁄  for each column. The system parameters including rack dimensions, shuttle 

velocity/acceleration and load/unload times are the same settings as in 4.6.1. The optimization and 

DD results (makespan of the task sets) are obtained for each task set, and the result averages of the 

40 task sets are illustrated in Figure 5.5. In addition, the average fixed costs of the task sets are 

displayed as baselines of the scheduling results, and the average results of full random scheduling 

are presented as references. 

 

Figure 5.5 Dynamic Dispatching Results vs. Optimal Solution (Problem 1a, algorithm averages 

of 10 problems for each task size) 

In Figure 5.5, it can be observed that the results from the Dijkstra’s Algorithm are very 

close to the optimization results. As discussed before, the fixed costs make up the majority of the 

makespan. For the three DD approaches: Dijkstra’s, Closest-First and FCFS-DC, their gaps to the 

optimization results are 1.3%, 3.9% and 11.6%, respectively. All three DD approaches appear to 

be effective compared with random scheduling, while both the Dijkstra’s Algorithm and the 

Closest First policy further outperformed the FCFS-DC (which is the default scheduling policy in 
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the analytical approaches proposed in Chapter 4). It is noticeable that the results here do not 

indicate any direct conclusion for the control strategy development, because the problem 

formulated here is based on many simplifying assumptions that do not apply in practical system 

operations. Instead, both the Dijkstra’s Algorithm and the Closest-First Policy are viewed as 

attractive candidates based on which the control strategy may be developed. 

Problem 1b: Storage tasks with dedicated slots and precedence constraints 

Regarding the storage assignment techniques applied in the system, more constraints may 

need to be considered in the MP formulations. Because the buffers are assumed to be roller-

conveyors, the service sequence of storage tasks cannot be altered from the original sequence that 

the totes entered the input buffer. As a result, service precedencies exist between every two storage 

totes that arrive the input buffer one after another. In Problem 1a, because the storage totes were 

assumed indistinctive, such precedencies were neutralized by the flexibilities in choosing the slot 

for each storage tote and thus not need to be formulated as constraints. However, in situations 

where the slot is predetermined for each storage tote at the beginning, such precedencies need to 

be formulated to ensure feasible schedules. 

For the simplicity of the formulation, it is again assumed that the storage slots and the 

retrieval slots do not overlap in the given task set (otherwise, additional precedencies need to be 

introduced between storage tasks and retrieval tasks). 

Problem Inputs: 

The same as in Problem 1a, except for that the storage totes are distinctive, thus each 

storage slot ሾ𝑥௜, 𝑦௜, 𝑧௜ሿ ∈ 𝑨𝑺 of all storage tasks 𝑖 ∈ ሼ1, 2 ⋯ 𝑆ሽ is dedicated for the corresponding 

tote. Storage task 𝑖 cannot be served by the shuttle before storage task ሺ𝑖 െ 1ሻ, ∀𝑖 ∈ ሼ2, 3 ⋯ 𝑆ሽ due 

to the roller-conveyor characteristics of the input buffer, 

Decision Variables: 

With the presence of the storage precedence identified above, we decide to apply the Two-

commodity Network Flow Model purposed by Moon et al. (2002) for formulating TSP with 

precedence constraints. In this model, a commodity 𝑝 is supplied by ሺ𝑛 െ 1ሻ units at a selected 

starting node and consumed by one unit at each node that is not the starting node, and a 
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commodity 𝑞 is consumed by ሺ𝑛 െ 1ሻ units at a selected starting node and supplied by one unit at 

each node that is not the starting node – in our context, 𝑛 ൌ ሺ𝑆 ൅ 𝑅 ൅ 1ሻ, and the starting node is 

always the dummy task with 𝑖 ൌ 0.  

With this approach, two additional sets of integer variables 𝑥௜భ, ௜మ

௣  and 𝑥௜భ, ௜మ

௤  are introduced 

to the problem formulation which will be explained later.  Same as in Problem 1a, variables 𝑥௜భ, ௜మ
 

is an ሺ𝑆 ൅ 𝑅 ൅ 1ሻ ൈ ሺ𝑆 ൅ 𝑅 ൅ 1ሻ matrix of binary variables indicating if task 𝑖ଶ is the next task 

after task 𝑖ଵ in the shuttle’s schedule. The tour-feasibility variables 𝑢௜ are not used here and the 

tour-feasibility constraints will be formulated with the new variables 𝑥௜భ, ௜మ

௣  and 𝑥௜భ, ௜మ

௤  instead. 

Objective Function: 

Assume the optimization objective is still to minimize the total makespan of all tasks (incl. 

relocations), with the Two-commodity Network Flow Model approach, the objective function is 

presented as: 

𝑀𝐼𝑁  𝐹ሺ𝑥ሻ , where: 

𝐹ሺ𝑥ሻ ൌ ෍ ෍ ቆ𝑐௜భ, ௜మ
ൈ

𝑥௜భ, ௜మ

௣ ൅ 𝑥௜భ, ௜మ

௤

𝑆 ൅ 𝑅
ቇ

ௌାோ

௜మୀ଴,
௜మஷ௜భ

ௌାோ

௜భୀ଴

ሺ1ሻ 

Like in Problem 1a, the later part of the objective function is a constant because all 𝑑௜ ’s are 

computed previously. 

Constraints: 

෍ 𝑥௜భ, ௜మ

௣
ௌାோ

௜మୀ଴

െ ෍ 𝑥௜మ, ௜భ

௣
ௌାோ

௜మୀ଴

ൌ ቄ ሺ𝑆 ൅ 𝑅ሻ   𝑖𝑓 𝑖ଵ ൌ 0
െ1               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ሺ2ሻ 

෍ 𝑥௜భ, ௜మ

௤
ௌାோ

௜మୀ଴

െ ෍ 𝑥௜మ, ௜భ

௤
ௌାோ

௜మୀ଴

ൌ ቄ െሺ𝑆 ൅ 𝑅ሻ   𝑖𝑓 𝑖ଵ ൌ 0
1               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ሺ3ሻ 

෍ ൫𝑥௜భ, ௜మ

௣ ൅ 𝑥௜భ, ௜మ

௤ ൯

ௌାோ

௜మୀ଴

ൌ ሺ𝑆 ൅ 𝑅ሻ    ∀𝑖ଵ ሺ4ሻ 
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𝑥௜భ, ௜మ

௣ ൅ 𝑥௜భ, ௜మ

௤ ൌ ሺ𝑆 ൅ 𝑅ሻ ൈ 𝑥௜భ, ௜మ
   ∀𝑖ଵ, 𝑖ଶ ሺ5ሻ 

෍ 𝑥௜భିଵ, ௜మ

௣
ௌାோ

௜మୀ଴

െ ෍ 𝑥௜భ, ௜మ

௣
ௌାோ

௜మୀ଴

൒ 1    ∀𝑖ଵ ∈ ሼ2, 3 ⋯ 𝑆ሽ ሺ6ሻ 

𝑥௜భ, ௜మ

௣ ൒ 0,   𝑥௜భ, ௜మ

௣  𝑖𝑛𝑡𝑒𝑔𝑒𝑟     ∀𝑖ଵ, 𝑖ଶ ሺ7ሻ 

𝑥௜భ, ௜మ

௤ ൒ 0,   𝑥௜భ, ௜మ

௤  𝑖𝑛𝑡𝑒𝑔𝑒𝑟     ∀𝑖ଵ, 𝑖ଶ ሺ8ሻ 

0 ൑ 𝑥௜భ, ௜మ
൑ 1,   𝑥௜భ, ௜మ

 𝑖𝑛𝑡𝑒𝑔𝑒𝑟     ∀𝑖ଵ, 𝑖ଶ ሺ9ሻ 

It can be inferred from the earlier definitions that, the sum of commodities 𝑝 and 𝑞 on any 

arc ሺ𝑖ଵ,  𝑖ଶሻ should both equal ሺ𝑆 ൅ 𝑅ሻ for any feasible solution (recall that ሺ𝑆 ൅ 𝑅ሻ is the total task 

size incl. relocations but excl. the virtual task 𝑖 ൌ 0). Constraints (2) and (7) are used to ensure the 

feasibility of flow of commodity  𝑝 , while Constraints (3) and (8) are for the feasibility of 

commodity  𝑞 . Constraint (4) is for tour feasibility. Constraint (5) ensures that the sum of 

commodities equals ሺ𝑆 ൅ 𝑅ሻ if the arc ሺ𝑖ଵ,  𝑖ଶሻ is in the schedule (thus task 𝑖ଶ is visited following 

the completion of task 𝑖ଵ). The precedence between storage tasks is ensured by constraint (6). 

Constraint (9) is for the binary variables just as in Problem 1a. 

Evaluation: 

In the above Two Commodity Network Flow formulation for the TSP problem with 

precedencies,  ሺ𝑆 ൅ 𝑅 ൅ 1ሻଶ  binary variables plus 2ሺ𝑆 ൅ 𝑅 ൅ 1ሻଶ  integer variables are defined, 

and totally 3ሺ𝑆 ൅ 𝑅 ൅ 1ሻଶ ൅ 3ሺ𝑆 ൅ 𝑅 ൅ 1ሻ ൅ ሺ𝑆 െ 1ሻ constraint rows are formulated to find the 

optimal solution (in which only the last ሺ𝑆 െ 1ሻ rows are for the precedence constraints). Given a 

task set with 10 storages and 10 retrievals, these will be 1323 decision variables and 1395 

constraint rows (incl. 9 precedence rows) – with problems of this size, the computational time 

ranges from 20-ish seconds to over a few minutes to solve the problem on the 2.60GHz, 8GB RAM 

test computer (over 20 times of that for Problem 1a), which is impractical to be implemented for 

real-time control of the SBS/RS. Dealing with the precedencies is very costly in terms of 

computational effort: note that both the size of the DVs and the size of the constraint rows are 

about tripled in this formulation comparing with those in the MTZ-TSP formulated in Problem 1a, 
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indicating the fact that handling the task precedencies introduces much computational efforts in 

finding the optimal schedule of the TSP. 

Just like in Problem 1a, the main purpose of the problem formulation here is to provide 

baselines and insights for the control strategy development. Again, three Dynamic Dispatching 

policies are tested and compared to optimization results to explore the potential of DD approaches: 

FCFS-DC policy, Closest First policy, and A* Search Algorithm. The former two policies are the 

same as those in Problem 1a except for that the storage precedencies are considered in each search. 

The A* Search Algorithm can be viewed as an extension of the Dijkstra’s Algorithm introduced 

in Problem 1a, because the original Dijkstra’s Algorithm is not effective with the presence of 

precedencies based on our observations and tests. In the Dijkstra’s Algorithm implementation in 

the previous problem, after the completion of task 𝑖ଵ, the next task 𝑖ଶ is selected based on the 

tentative distance function 𝑓ሺ𝑖ଶሻ ൌ 𝑐௜భ,௜మ
൅ min ሺ𝑐௜మ,௜య

ሻ, where 𝑖ଷ ∈ ሼ𝑅𝑒𝑚𝑎𝑛𝑖𝑛𝑔 𝑇𝑎𝑠𝑘𝑠ሽ and 𝑖ଷ ്

𝑖ଶ. In the A* Search Algorithm implementation here, the tentative distance function is modified 

as 𝑓ሺ𝑖ଶሻ ൌ 𝑔ሺ𝑖ଶሻ ൅ ℎሺ𝑖ଶሻ, where 𝑔ሺ𝑖ଶሻ ൌ 𝑐௜భ,௜మ
 and ℎሺ𝑖ଶሻ is a heuristic function which estimates 

the remaining makespan starting from the candidate task 𝑖ଶ  by temporarily assuming that the 

Closest First policy is applied for the rest of the schedule (with storage precedencies considered). 

The A* Search Algorithm will be improved gradually in the later problem formulations, and the 

algorithm will be illustrated in detail later in Section 5.5 where the development of the DD-based 

strategies is further discussed. The optimization and DD results of different task sizes are 

illustrated in Figure 5.6.  

It can be observed that the results of both the A* algorithm and the Closest First policy are 

very close to the optimization results: the average gaps are 0.8% and 2.4%, respectively. The 

average gap between FCFS-DC and optimization is 10.3%. The A* Search Algorithm appears to 

be the best one among all three DD approaches for the current problem formulation. In addition, 

the A* Search Algorithm is potentially flexible in accommodating more complex decision making 

in the operational control of practical systems (as opposed to the simplified systems presented in 

the problem formulations in this section) by integrating various system state indicators into the 

algorithm formulation. Thus, the A* Search Algorithm viewed as another promising option for the 

control strategy development, especially with the presence of predetermined storage assignment 

and storage task precedencies. 
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Figure 5.6 Dynamic Dispatching Results vs. Optimal Solution (Problem 1b, algorithm averages 

of 10 problems for each task size) 

Problem 1c: Dedicated blocker-relocation for retrieval tasks 

If the tote of a retrieval task is located at a blocked 2-deep slot, the blocker tote must be 

relocated before accessing the retrieval tote. The shuttle cannot start retrieving a blocked tote prior 

to the completion of the relocation process. A relocation task is defined as the procedure that the 

shuttle moves to the blocker’s column, loads the blocker, moves to the column of the relocation 

target slot, and unloads the tote. Thus, unlike the formulations in Chapter 4 relocation processes 

are now viewed as individual tasks instead of components of their corresponding retrieval tasks. 

Another difference from the approaches in Chapter 4 is that, in the problem formulated here each 

retrieval task does not need to be made directly following its corresponding relocation task: 

instead, it can be started at a later point in the schedule as long as the relocation task is completed 

– such relaxation is made to discover any potential opportunities in improving the scheduling 

performance. With these assumptions, the relocation-retrieval relationships are described as task 

precedencies just like our approaches in Problem 1b. 
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For the simplicity of explanation, it is assumed here that the storage totes are indistinctive 

just like in Problem 1a, thus the relocation-retrieval relationships are the only precedencies 

considered in this problem. Also, it is assumed that each blocked tote is blocked by an existing 

blocker tote instead of by an incoming storage tote, and each blocker tote is not requested by any 

other retrieval task – if these two assumptions do not stand, then additional task precedencies need 

to be considered. This Problem 1c is formulated by modifying the Problem 1a formulations as 

follows: 

Problem Inputs: 

𝑆, 𝑅, 𝑨𝑺, 𝑦଴: Same definitions as in Problem 1a. 

Denote 𝑅𝑒 as the number of relocation tasks, where 𝑅𝑒 ൑ 𝑅.  

𝑖 : Task index, where 𝑖 ∈ ሼ0, 1 ⋯ ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒ሻሽ. The index 𝑖 ൌ 0 indicates the start point 

of the schedule. The subset ሼ1, 2 ⋯ 𝑆ሽ are for the 𝑆 storage tasks. It is assumed that the retrieval 

task set is sorted so that the first 𝑅𝑒 tasks in the set are those which require relocations, hence the 

subset ሼሺ𝑆 ൅ 1ሻ, ሺ𝑆 ൅ 2ሻ ⋯ ሺ𝑆 ൅ 𝑅𝑒ሻሽ are for the 𝑅𝑒 retrieval tasks which require relocation, and 

the subset  ሼሺ𝑆 ൅ 𝑅𝑒 ൅ 1ሻ, ሺ𝑆 ൅ 𝑅𝑒 ൅ 2ሻ ⋯ ሺ𝑆 ൅ 𝑅ሻሽ  are for the  ሺ𝑅 െ 𝑅𝑒ሻ  retrieval tasks not 

require relocation. Finally, the last subset 𝑖 ∈ ሼሺ𝑆 ൅ 𝑅 ൅ 1ሻ, ሺ𝑆 ൅ 𝑅 ൅ 2ሻ ⋯ ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒ሻሽ are the 

indices of the relocation tasks, where each 𝑖 corresponds to the retrieval task of index ሺ𝑖 െ 𝑅ሻ.  

𝜋௜  and ሾ𝑥௜, 𝑦௜, 𝑧௜ሿ: For each relocation task 𝑖 , define its task type 𝜋௜ ൌ 3 and its target 

slot ሾ𝑥௜, 𝑦௜, 𝑧௜ሿ indicating the slot to which the blocker tote will be relocated. For storage and 

retrieval tasks the definitions are the same as in Problem 1a. 

𝑨𝑹𝒆 : A set of slot locations selected for the 𝑅𝑒 blocked retrieval tasks according to some 

given storage assignment policy. The size of the set |𝑨𝑹𝒆| ൌ 𝑅𝑒. For the simplicity of problem 

formulation, unlike the assumption made in Problem 1a where all storage totes are indistinctive, 

here each relocation target slot ሾ𝑥௜, 𝑦௜, 𝑧௜ሿ ∈ 𝑨𝑹𝒆 is assumed pre-determined for each relocation 

task 𝑖 ∈ ሼሺ𝑆 ൅ 𝑅 ൅ 1ሻ, ሺ𝑆 ൅ 𝑅 ൅ 2ሻ ⋯ ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒ሻሽ , and  𝑨𝑹𝒆 ∩ 𝑨𝑺 ൌ ∅ . Like in the previous 

problems, this assumption is also based on the fact that the number of available slots is usually 

much larger than the number of waiting tasks on a tier. Each relocation task is either a direct 

predecessor or indirect predecessor of the corresponding retrieval task. A schedule is feasible if 
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each retrieval is performed later than the corresponding relocation. Thus, the 𝑆 ൅ 𝑅 tasks construct 

a ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻ nodes’ Travelling Salesman Problem with precedence constraints. The travel 

time elements are then modified based on their formulations in Problem 1a (note that only the 

modified formulations are showed). 

𝑑௜ : The remaining service time of task 𝑖 from the time the shuttle arrived its load point, 

computed as: 

𝑑଴ ൌ 0, because the initial state of the shuttle is assumed idle; 

𝑑௜ ൌ ቊ 
𝜏଴, ௬೔

௏ ൅ 𝜔଴
௏ ൅ 𝜔௭೔

௏  , 𝑖𝑓 𝜋௜ ൌ 1 𝑜𝑟 2

𝜏௬ሺ೔షೃሻ, ௬೔
௏ ൅ 𝜔଴

௏ ൅ 𝜔௭೔
௏  ,      𝑖𝑓 𝜋௜ ൌ 3

  

The fixed costs 𝐷 ൌ ∑ 𝑑௜
ௌାோାோ௘
௜ୀଵ  

𝑐௜భ, ௜మ
 : Shuttle travel time from the start location (load point) of task 𝑖ଵ to the start location 

(load point) of task 𝑖ଶ. Obviously, the load point of each relocation task 𝑖 is always the same as the 

target column of its corresponding retrieval task  ሺ𝑖 െ 𝑅ሻ , thus the travel times involving 

relocations can be formulated as followed: 

𝐼𝑓 𝑖ଵ ൌ 0 ሺ𝑡ℎ𝑢𝑠 𝑖ଶ 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑎𝑠𝑘 𝑖𝑛 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒ሻ: 

𝑐௜భ, ௜మ
ൌ 𝜏଴,  ௜మ

ൌ 𝜏௬బ, ௬ሺ೔మషೃሻ
௏      𝑖𝑓 𝜋௜మ

ൌ 3    ሺ𝑅𝑒𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛ሻ 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒: 

 𝑐௜భ, ௜మ
ൌ

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

 𝜏௬೔భ, ௬ሺ೔మషೃሻ
௏        𝑖𝑓 𝜋௜భ

ൌ 1, 𝜋௜మ
ൌ  3                         ሺ𝑆 െ 𝑅𝑒 𝑐𝑎𝑠𝑒ሻ

 𝜏଴, ௬ሺ೔మషೃሻ
௏         𝑖𝑓 𝜋௜భ

ൌ 2, 𝜋௜మ
ൌ 3, 𝑖ଵ ് 𝑖ଶ ൅ 𝑅   ሺ𝑅 െ 𝑅𝑒 𝑐𝑎𝑠𝑒ሻ

𝑀                     𝑖𝑓 𝜋௜భ
ൌ 2, 𝜋௜మ

ൌ 3, 𝑖ଵ ൌ 𝑖ଶ ൅ 𝑅   ሺ𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒ሻ

 𝜏௬ሺ೔భషೃሻ, ଴
௏         𝑖𝑓 𝜋௜భ

ൌ 3, 𝜋௜మ
ൌ 1                          ሺ𝑅𝑒 െ 𝑆 𝑐𝑎𝑠𝑒ሻ

 𝜏௬ሺ೔భషೃሻ, ௬೔మ

௏       𝑖𝑓 𝜋௜భ
ൌ 2, 𝜋௜మ

ൌ 2                          ሺ𝑅𝑒 െ 𝑅 𝑐𝑎𝑠𝑒ሻ

 𝜏௬ሺ೔భషೃሻ, ௬ሺ೔మషೃሻ
௏     𝑖𝑓 𝜋௜భ

ൌ 3, 𝜋௜మ
ൌ 3                          ሺ𝑅𝑒 െ 𝑅𝑒 𝑐𝑎𝑠𝑒ሻ

 

Where 𝑀 is a sufficiently large number to indicate infeasible retrieval-relocation paths due to 

blocking. The travel time elements for other service cases remain the same as in Problem 1a. 

Decision Variables: 
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Just like in Problem 1b, Two Commodity Network Flow formulation is applied to handle 

the precedence constraints between retrievals and relocations. The binary variables  𝑥௜భ, ௜మ
 and 

integer variables 𝑥௜భ, ௜మ

௣  and 𝑥௜భ, ௜మ

௤  are defined in the same way as in Problem 1b, except for that all 

of them are ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻ ൈ ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻ matrices instead of ሺ𝑆 ൅ 𝑅 ൅ 1ሻ ൈ ሺ𝑆 ൅ 𝑅 ൅

1ሻ matrices here. 

Objective Function: 

The objective function of Problem 1c is the same as that of Problem 1b except for that all 

ሺ𝑆 ൅ 𝑅ሻ are replaced by ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒ሻ, as follows: 

𝑀𝐼𝑁  𝐹ሺ𝑥ሻ , where: 

𝐹ሺ𝑥ሻ ൌ ෍ ෍ ቆ𝑐௜భ, ௜మ
ൈ

𝑥௜భ, ௜మ

௣ ൅ 𝑥௜భ, ௜మ

௤

𝑆 ൅ 𝑅 ൅ 𝑅𝑒
ቇ

ௌାோାோ௘

௜మୀ଴,
௜మஷ௜భ

ௌାோାோ௘

௜భୀ଴

ሺ1ሻ 

Like in Problem 1a and 1b, the later part of the objective function is a constant because all 𝑑௜’s are 

computed previously. 

Constraints: 

Constraints (2) to (5) are the same as those in Problem 1b except for that all ሺ𝑆 ൅ 𝑅ሻ are 

replaced by ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒ሻ. Constraint (6) which was for the storage precedencies in Problem 1b is 

modified as followed for the relocation-retrieval precedencies: 

෍ 𝑥௜భାோ, ௜మ

௣
ௌାோାோ௘

௜మୀ଴

െ ෍ 𝑥௜భ, ௜మ

௣
ௌାோାோ௘

௜మୀ଴

൒ 1    ∀𝑖ଵ ∈ ሼሺ𝑆 ൅ 1ሻ, ሺ𝑆 ൅ 2ሻ ⋯ ሺ𝑆 ൅ 𝑅𝑒ሻሽ ሺ6ሻ 

Constraints (7) to (9) are the same as those in Problem 1b. 

Evaluation: 

In the above Two Commodity Network Flow formulation for the TSP problem with 

precedencies, ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻଶ binary variables plus 2ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻଶ integer variables are 

defined, and totally  3ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻଶ ൅ 3ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻ ൅ 𝑅𝑒  constraint rows are 

formulated to find the optimal solution (in which only the last 𝑅𝑒 rows are for the precedence 
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constraints) – these numbers are typically more than those in Problem 1b because the nodes size 

here is increased from ሺ𝑆 ൅ 𝑅 ൅ 1ሻ to ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻ even when the relocations precedencies 

(𝑅𝑒) are relatively few and the storage precedencies are not concerned. Given a task set with 10 

storages and 10 retrievals among which 4 retrievals require relocations, that will be 1875 decision 

variables and 1954 constraint rows (incl. 4 precedence rows) – with problems of this size, the 

computational time ranges from 30-ish seconds to a few minutes to solve the problem on the same 

8GB RAM computer in the previous problems, which is again impractical to be implemented for 

real-time control of the SBS/RS. Thus, just like in Problem 1b, the optimization approach 

formulated here is viewed as impractical for real-time control of the SBS/RS.  

 

Figure 5.7 Dynamic Dispatching Results vs. Optimal Solution (Problem 1c, algorithm averages 

of 10 problems for each task size) 

Like in the previous problems, three Dynamic Dispatching policies are tested and 

compared to optimization results to explore the potential of DD approaches: FCFS-DC policy, 

Closest First policy, and A* Search Algorithm. All the DD approaches obtain their solutions in the 

same ways as in Problem 1b, except for that the relocation tasks are treated as additional tasks and 
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precedence constraints are considered for the relocation-retrievals instead of for the storages (for 

FCFS-DC, each relocation task is performed right before its corresponding retrieval task). The 

optimization and DD results of different task sizes are illustrated in Figure 5.7. The number of 

relocation tasks are determined as 40% of the number of retrieval tasks (which is the expected 

value of relocation ratio 𝜃ோ given the average inventory level is 83.3% according to the analytical 

approaches and assumptions in Section 4.4. 

It can be observed that the results of both the A* algorithm and the Closest First policy are 

very close to the optimization results: the average gaps are 0.9% and 3.9%, respectively – both 

outperformed the FCFS-DC policy (average gap is 14.1%) especially for larger problem sizes. 

Like in the previous problems, the A* Search Algorithm is again considered as an attractive option 

for the control strategy development.  

 

Problem 1d: Precedencies for both dedicated storage and dedicated blocker-relocation 

With the presence of both types of precedencies described in Problem 1b and 1c, the 

problem can still be formulated with the same Two-Commodity Network Flow approach. The 

problem inputs, decision variables and objective function are the same as in Problem 1c. The 

constraints are also the same except for the precedence constraint (6), which is formulated for both 

precedence constraint types as follows: 

⎩
⎪
⎨

⎪
⎧ ෍ 𝑥௜భିଵ, ௜మ

௣
ௌାோ

௜మୀ଴

െ ෍ 𝑥௜భ, ௜మ

௣
ௌାோ

௜మୀ଴

൒ 1    ∀𝑖ଵ ∈ ሼ2, 3 ⋯ 𝑆ሽ

෍ 𝑥௜భାோ, ௜మ

௣
ௌାோାோ௘

௜మୀ଴

െ ෍ 𝑥௜భ, ௜మ

௣
ௌାோାோ௘

௜మୀ଴

൒ 1    ∀𝑖ଵ ∈ ሼሺ𝑆 ൅ 1ሻ, ሺ𝑆 ൅ 2ሻ ⋯ ሺ𝑆 ൅ 𝑅𝑒ሻሽ

ሺ6ሻ 

Evaluation: 

In this problem,  ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻଶ  binary variables plus 2ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻଶ  integer 

variables are defined, and totally  3ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻଶ ൅ 3ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻ ൅ ሺ𝑆 െ 1 ൅ 𝑅𝑒ሻ 

constraint rows are formulated to find the optimal solution (in which only the last ሺ𝑆 െ 1 ൅ 𝑅𝑒ሻ 

rows are for the precedence constraints). Comparing with Problem 1c, the DVs are the same and 

the constraint rows are just slightly more due to the additional ሺ𝑆 െ 1ሻ constraint rows for storage 
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precedencies. Given a task set with 10 storages and 10 retrievals among which 4 retrievals require 

relocations, there will be 1875 decision variables and 1963 constraint rows (incl. 13 precedence 

rows), thus the optimization approach is again viewed as impractical for real-time system control 

because the computation times are in general over a few minutes (8GB RAM computer) for this 

problem size. Three Dynamic Dispatching policies that consider both storage precedencies and 

relocation precedencies are tested and compared with optimization results, as illustrated in Figure 

5.8. The performances of the DD policies are similar to those in Problem 1b and 1c in which only 

one type of precedencies is considered. The average gaps of A* algorithm and the Closest First 

policy results to optimization results are 0.8% and 3.4%, respectively, both outperformed the 

FCFS-DC policy (average gap is 12.9%) especially for larger problem sizes. 

 

Figure 5.8 Dynamic Dispatching Results vs. Optimal Solution (Problem 1d, algorithm averages 

of 10 problems for each task size) 

5.4.2 Scheduling of multiple shuttles and different types of lifts 

The device scheduling problem gets much more complicated when the scope is expanded 

from a single shuttle to all devices in the aisle, mainly caused by the additional task precedencies 
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between different service stages. More specifically, a storage task cannot be served by the shuttle 

before its service by the storage lift is completed, and similarly a retrieval task cannot be served 

by a retrieval lift before its service by the shuttle is completed. Moreover, the touring service 

patterns of the multi-unit tote lifts and the roller-conveyor characteristics of both input buffers and 

output buffers introduce additional complexity to the scheduling problem. 

Problem 2a: Single shuttle scheduling with storage time windows 

 

Figure 5.9 Problem formulations of shuttle scheduling in Tier-captive SBS/RS (2a) 

The storage totes are delivered to the target tiers by the storage lift. The shuttle cannot start 

serving a storage task until the storage tote arrives at the exit of the input buffer of the tier. Such 

lift-shuttle interaction determines the earliest available time for each storage task for shuttle 

service. As illustrated in the example in Figure 5.9, the start time for each storage task cannot be 

earlier than the earliest available time for shuttle service, and waiting times may occur in the 
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shuttle’s schedule (between task 2 and 3 in Figure 5.9).We observed such complexity resembles 

the Traveling Salesman Problem with Time Windows (TSPTW). In TSPTW, a time window 

ሾ𝑎௜, 𝑏௜ሿ is described for each node 𝑖 to be visited as problem input. A schedule is feasible only if 

each node 𝑖 is visited no earlier than its earliest visit time 𝑎௜ and no later than its latest visit time 𝑏௜. 

The various precedence constraints discussed in Problem 1b, 1c and 1d can all be integrated to 

TSPTW formulations, thus there is no need to apply the Two-Commodity Network Flow 

formulation if time windows are involved. On the other hand, the TSPTW is much more 

computationally costly than the Two-Commodity Network Flow TSP. Thus, in this section, we 

explore the TSPTW formulation only to provide baselines for the design and evaluation of 

Dynamic Dispatching approaches. 

Decision Variables: 

The Asymmetric TSPTW formulation proposed by Kara and Derya (2015) is applied. Like 

in the previous problems, define  𝑥௜భ, ௜మ
 as a  ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻ ൈ ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻ  matrix of 

binary variables (BVs) indicating if task 𝑖ଶ is the next task after task 𝑖ଵ in the shuttle’s schedule, 

where 𝑖ଵ, 𝑖ଶ ∈ ሾ0, 1, 2 … 𝑆 ൅ 𝑅ሿ. Then, denote 𝑡௜  as an ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒ሻ array of numeric variables 

indicating the start time of task 𝑖 ∈ ሼ1, 2 … 𝑆 ൅ 𝑅 ൅ 𝑅𝑒ሽ. At last, define 𝑡௘௡ௗ as a numeric variable 

indicating the completion time of the schedule. 

Objective Function: 

Considering the possible waiting times in the schedule, the objective function (total 

makespan) cannot be formulated in the ∑ ∑൫𝑐௜భ, ௜మ
𝑥௜భ, ௜మ

൯ forms as in Problem 1. Instead, it is 

formulated as the completion time of the schedule, as follows: 

𝑀𝐼𝑁  𝐹ሺ𝑥ሻ , where: 

𝐹ሺ𝑥ሻ ൌ 𝑡௘௡ௗ ሺ1ሻ 

Constraints: 

𝑡௜ െ 𝑐଴,௜𝑥଴,௜ ൒ 0, ∀𝑖 ൐ 0 ሺ2ሻ 

𝑡௜ ൒ 𝑎௜, ∀𝑖 ൐ 0 ሺ3ሻ 

𝑡௜ ൑ 𝑏௜, ∀𝑖 ൐ 0 ሺ4ሻ 
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𝑡௜భ
െ 𝑡௜మ

൅ ൫𝑏௜భ
െ 𝑎௜మ

൅ 𝑐௜భ, ௜మ
൯𝑥௜భ, ௜మ

൑ 𝑏௜భ
െ 𝑎௜మ

, ∀𝑖ଵ, 𝑖ଶ ൐ 0, 𝑖ଵ ് 𝑖ଶ ሺ5ሻ 

൜ 
𝑡௜ ൒ 𝑡௜ିଵ ൅ 𝑑௜ିଵ, ∀𝑖 ∈ ሼ2, 3 … 𝑆ሽ 
𝑡௜ ൒ 𝑡௜ାோ ൅ 𝑑௜ାோ, ∀𝑖 ∈ ሼ𝑆 ൅ 1, 𝑆 ൅ 2 … 𝑆 ൅ 𝑅 ൅ 𝑅𝑒ሽ

ሺ6ሻ 

𝑡௜ ൅ 𝑐௜,଴ ൑ 𝑡௘௡ௗ, ∀𝑖 ൐ 0 ሺ7ሻ 

෍ 𝑥௜భ, ௜మ

ௌାோାோ௘

௜మୀ଴

൑ 1, ∀𝑖ଵ ൐ 0 ሺ8ሻ 

෍ 𝑥௜భ, ௜మ

ௌାோାோ௘

௜భୀ଴

൑ 1, ∀𝑖ଶ ൐ 0 ሺ9ሻ 

0 ൑ 𝑥௜భ, ௜మ
൑ 1, 𝑥௜భ, ௜మ

 𝑖𝑛𝑡𝑒𝑔𝑒𝑟     ∀𝑖ଵ, 𝑖ଶ ሺ10ሻ 

Constraint (2) guarantees that the start time of each task cannot be earlier than time zero 

plus the shuttle travel time from the shuttle’s initial location. Constraint (3) and (4) guarantee that 

the start times of tasks are within the corresponding time windows. Constraint (5) ensures 𝑡௜మ
൒

𝑡௜భ
൅ 𝑐௜భ, ௜మ

 if the arc (𝑖ଵ,  𝑖ଶ) exist in the schedule. Also, constraint (5) guarantees that start times 

in the schedule constitute an increasing step function, which means that these inequalities prohibit 

illegal subtours, i.e., they are the subtour elimination constraints of our formulation. Constraints 

(6) are precedence constraints, where 𝑑௜ିଵ and 𝑑௜ାோ are the service times of the corresponding 

predecessors for storages and relocations, respectively. Constraint (7) guarantees that the 

makespan is less than or equal to the start time plus the service time of last task in the schedule. 

Constraints (8), (9) and (10) are standard constraints for the binary variables. 

Evaluation: 

In this problem,  ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻଶ  binary variables plus ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻ  numeric 

variables are defined. Totally  2ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻଶ ൅ 5ሺ𝑆 ൅ 𝑅 ൅ 𝑅𝑒 ൅ 1ሻ ൅ ሺ𝑆 െ 1 ൅ 𝑅𝑒ሻ 

constraint rows are formulated to find the optimal solution, which looks at the first glance simpler 

than the Two-Commodity Network Flow formulation in Problem 1d. However, based on our tests 

on the same 2.60GHz clock speed, 8GB RAM computer for testing the previous problem 

formulations, we found that the TSPTW formulated here is very computational expensive – even 

with the smallest task size (5 storages, 5 retrievals, 2 relocations), in most cases it took more than 
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10 minutes for the TSPTW to find the optimal solution. We speculate that it is because the TSPTW 

becomes a Mixed Integer Programming problem where both integer variables and non-integer 

variables exist, which increases the solver’s iteration efforts significantly (note that all the previous 

problems only have integer variables). Because the computation time for larger problem sizes 

could be extremely large, we determine a time limit of 600,000 milliseconds (10 minutes) for the 

optimization solver – we assume it is adequate for the solver to obtain at least “satisfactory” 

solutions, based on the assumption that the solution space is relatively smooth considering the 

rectilinear pattern of shuttle services. The optimal or near-optimal makespan from the TSPTW is 

collected for each task set, and viewed as the baseline for evaluating Dynamic Dispatching 

performances. 

Just like in the previous problems, Random Scheduling, FCFS-DC, Closest First, and A* 

Search Algorithm are determined as the DD approaches to be evaluated, where the next task to the 

schedule is selected once the previous task is completed. The Random Scheduling, FCFS-DC and 

Closest First policies select the next task in the same way as in Problem 1d, while the search space 

is limited to the tasks currently available by the time the previous task is completed. If no tasks are 

available at that time, the shuttle waits until at least one task becomes available. The A* Search 

Algorithm implemented here is more complex than its implementations in the previous problems. 

Once a task 𝑖ଵ is completed, the tentative distance function of a candidate task 𝑖ଶ is presented 

as 𝑓ሺ𝑖ଶሻ ൌ 𝑔ሺ𝑖ଶሻ ൅ ℎሺ𝑖ଶሻ, where 𝑔ሺ𝑖ଶሻ is the time costs 𝑐௜భ, ௜మ
 from the start location (unload point) 

of 𝑖ଵ to the start location (load point) of task 𝑖ଶ (incl. the service time of 𝑖ଵ) plus the waiting time 

incurred if 𝑖ଶ is not available yet, and ℎሺ𝑖ଶሻ is a heuristic function that estimates the remaining 

makespan starting from the candidate task 𝑖ଶ by temporarily assuming that the Closest First policy 

is applied for the rest of the schedule (with available times and precedencies considered). The 

candidate with the smallest tentative distance is then selected as the next task. The details of the 

A* Search Algorithm will be introduced later in Section 5.5 where the development of the DD-

based strategies is further discussed.  

Four task sizes are decided to test the optimization and DD approaches, and 10 task sets 

are generated randomly for each task size. Note that the optimization results found by the TSPTW 

are not necessarily true optimal results, because the solver time is limited 10 minutes. It is observed 

that with larger task sizes, the optimization results found within the time limits could be worse 
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than the best solutions found through the DD approaches. Particularly for the largest task size (10 

storages, 10 retrievals, 4 relocations, totally 25 nodes incl. the virtual task 0), the optimization 

results found are significantly worse than the best DD results. We extended the solver time limits 

for this problem size to 60 minutes and updated the results, but that seems not very helpful in 

finding the optimal solutions.  

 

Figure 5.10 Dynamic Dispatching Results vs. Optimization Results (Problem 2a, algorithm 

averages of 10 problems for each task size) 

The optimization and DD results (averages for 10 task sets from each task size) are 

illustrated in Figure 5.10. Although the optimization results are no longer exact baselines as in 

previous problems, the Closest First policy and A* Search Algorithm results are viewed as 

satisfactory by compared to the optimization results found and, the FCFS-DC and Random 

Scheduling results. Moreover, the A* Search Algorithm (adapted for the time window constraints 

here) appears to perform better than the Closest First policy, which is consistent with our 

observations in the previous problem formulations. We later rerun the experiments using Ant 

Colony Optimization (ACO, which is a heuristic optimization approach, to be introduced in detail 
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later this section) and found that the average gaps in shuttle makespan are within 1% between the 

A* Search Algorithm results and the ACO results. Hence, the A* Search Algorithm approach for 

single shuttle scheduling is viewed as not only effective in obtaining near-optimal results but also 

robust for various system/task assumptions. We also speculate that A* Search Algorithm approach 

is potentially adaptive for various operational environments. Thus, the A* Search Algorithm is 

determined as the prototype DD policy for shuttle scheduling, assuming that the development of 

the shuttle scheduling policy will be based on the fine-tuning of the A*’s tentative distance 

function 𝐹ሺ𝑖ሻ ൌ 𝐺ሺ𝑖ሻ ൅ 𝐻ሺ𝑖ሻ. In the later sections, this development methodology will be further 

explored and evaluated together with the lifts scheduling approaches as well as storage assignment 

approaches under various demand scenarios. 

Problem 2b: Scheduling all devices in aisle for Tier-captive SBS/RS 

The scheduling problem for all devices of the SBS/RS aisle is much more complicated 

because the schedule for each device needs to be specified (as discussed in Section 5.2 and 

illustrated in Figure 5.2). Let us temporarily assume the total makespan of all tasks in a given task 

set is the objective function to be minimized and assume that the tasks are deterministic and that 

no new tasks will be added to the task set before the completion of the task set. As all devices 

involved in serving the task set are considered, the total makespan is now defined as the completion 

time of the last task in the task set. Obviously, the total makespan here considers not only each 

task’s service time in each service stage by the corresponding device, but also its possible waiting 

times between service stages (on the input or output buffer). Moreover, because the devices 

(shuttles and tote lifts) serve their own parts of tasks in parallel, the completion time of the task set 

can be either one of the two cases: 1) the time when the retrieval lift completes the last retrieval 

task from the task set and then the set becomes empty, or 2) the time when one of the shuttles 

completes the last storage task from the task set and then the set becomes empty. Due to this fact, 

the total makespan cannot be formulated in the relatively simple TSP forms as in the previous 

problems for single shuttle scheduling. Also, precedence and time window constraints exist 

between shuttle services and tote lift services. The objective function for minimizing the overall 

makespan can be presented at high level as follows: 

𝑀𝐼𝑁 maxൣ𝐹ோ௅, 𝑚𝑎𝑥൫𝐹௝
௏൯൧ ሺ1ሻ 
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In the above objective function, 𝐹ோ௅ is the makespan of the retrieval lift’s schedule, and 𝐹௝
௏ is the 

makespan of the schedule of each shuttle 𝑗 ∈ ሼ1,2 … 𝐽ሽ. 

The schedule of the retrieval lift is described in two aspects: the sequences and timings that 

the lift serves the retrieval tasks completed by the shuttle, and the tours of those tasks. It is 

noticeable that the retrieval lift’s task sequences need to be consistent with the schedules of all the 

shuttles involved for serving the task set. Figure 5.11 illustrates such consistency constraints, for 

example, the retrieval lift cannot serve task 13 before task 12, because task 13 is served by the 

shuttle (V4) after task 12. As the I/O buffers are assumed to be roller-conveyors, task 13’s tote 

cannot arrive the exit of the output buffer until task 12’s tote is loaded by the retrieval lift. 

 

Figure 5.11 Problem formulation of all-device scheduling in Tier-captive SBS/RS (2b) 

An Ant Colony Optimization (ACO) heuristic optimization approach is applied for this 

problem. ACO algorithm is a probabilistic technique for solving computational problems that can 

be reduced to finding good paths through graphs, where multi-agent methods inspired by the 

pheromone-based communication behavior of real ants are used to solve numerous optimization 

problems (Monmarché, et al, 2010). In our implementation of ACO approach, the task sequence 

of the retrieval lift is determined as the solution of the problem – note that the task sequence is not 
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equivalent to the retrieval lift’s schedule, because the tasks’ completion times from the upstream 

shuttle services are not yet known. Instead, the schedules and makespan of each device are derived 

from a retrieval task sequence which is defined as a “Solution” under specific system and control 

assumptions – to be introduced later.  

 

Figure 5.12 Ant Colony Optimization Implementation and Development of Dynamic 

Dispatching Rules 

Although ACO is a heuristic optimization approach that cannot guarantee optimality, the 

ACO results obtained for reasonable problem sizes and under proper algorithm settings are 

assumed to be near-optimal. Thus, the ACO results are used as baselines for the development of 

Dynamic Dispatching rules. Our ACO implementation is illustrated in Figure 5.12. Simplification 

assumptions are made for the devices in the aisle. It is assumed that the retrieval lift selects the 

next retrieval task according to the task sequence solution found by the current ant, and if the next 

task in sequence is not yet completed shuttle service, the retrieval lift stays idle until its completion. 
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It is assumed that storage totes going to the aisle are delivered to the load point of the storage lift 

by a single roller conveyor, and the target slots of each storage tote are predetermined before 

storage lift services. In addition, it is assumed that the 2-capacity tote lifts (either type) always 

perform full-size tours (this assumption is reasonable here because the objective is minimizing the 

overall makespan). Finally, the capacities of the I/O buffer on tiers are assumed to be adequately 

large, thus the service flows from upstream to downstream will not be suspended due to the buffer 

sizes. 

Under the above assumptions, the schedule of the storage lift is deterministic given a 

specific task set, and thus the storage time windows for shuttle tasks are known at the beginning. 

It is assumed that the shuttle selects its next task based on the A* Search Algorithm (which is 

viewed as near-optimal for single shuttle scheduling in the previous problems), while the search 

space is subject to three types of precedence constraints: 

1) Storage precedence and time windows as introduced in Problem 1b and 2a, respectively; 

2) Relocation-retrieval precedence as introduced in Problem 1c; 

3) Consistency with the retrieval task sequence in the solution. 

The makespan of each shuttle schedule (𝐹௝
௏) is thus obtained. Finally, the completion time of 

retrieval tasks from shuttle services are recorded, and their available times (release times) for 

retrieval lift service are obtained by adding the fixed transportation time on the output buffer 

conveyors. 

The retrieval lift selects its next task in one of the three cases: 1) a retrieval task is just 

released for retrieval lift service when the retrieval lift is idle; 2) the retrieval lift has just completed 

its current tour and there exists at least one waiting task to be added to a new tour; 3) the retrieval 

lift has just loaded the first task in tour and there exists at least one waiting task to be added to the 

same tour. In our ACO implementation, the retrieval lift schedule is constructed where the next 

task is the first available task from the remaining tasks according to the solution sequence. Thus, 

given the solution and the retrieval tasks’ available times obtained in the previous step, the retrieval 

lift’s schedule can also be developed deterministically, and the retrieval lift’s makespan (𝐹ோ௅) is 

obtained. Finally, each ACO solution is mapped to deterministic device schedules as well as the 

overall makespan, as illustrated in Figure 5.13. 
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Figure 5.13 Mapping an ACO solution to device schedules 

Problem Inputs: 

𝑆 : Number of total storage tasks; 

𝑅 : Number of total retrieval tasks; 

𝑅𝑒 : Number of total relocation tasks; 

𝐽 : Number of shuttles; 

𝑆௝ : Number of storage tasks to shuttle 𝑗, there is ∑ 𝑆௝
௃
௝ୀଵ ൌ 𝑆; 

𝑅௝ : Number of retrieval tasks to shuttle 𝑗, there is ∑ 𝑅௝
௃
௝ୀଵ ൌ 𝑅; 

𝑅𝑒௝ : Number of relocation tasks to shuttle 𝑗, there is ∑ 𝑅𝑒௝
௃
௝ୀଵ ൌ 𝑅𝑒 and 𝑅𝑒௝ ൏ 𝑅௝, ∀𝑗; 
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In this scheduling problem where multiple devices are considered, some device might be 

still processing tasks assigned earlier that are not described in the current task set. Thus, the earliest 

available time for each device must be defined as problem inputs: 

𝑡0௝
௏ : The earliest available time of shuttle 𝑗;  

𝑦0௝
௏ : The initial 𝑌 location of shuttle 𝑗 on its tier (if it is busy, defined as the end location 

of its current task); 

𝑡0ௌ௅ : The earliest available time of the storage lift (if it is busy, defined as the time when 

it returned to the I/O floor after completed its current tour); 

𝑡0ோ௅ : The earliest available time of the retrieval lift (if it is busy, defined as the time when 

it completed its current tour at the I/O floor); 

𝑡஻ : The tote transportation time on each I/O buffer conveyor. 

Denote 𝑖 ∈ ሼ1,2 … 𝑆ሽ as the storage tasks with fixed sequence for storage lift services, their 

earliest available times for shuttle services are obtained as follows: 

𝑎௜∗
௏ ൌ

⎩
⎪
⎨

⎪
⎧ 𝜏଴, ௫೔∗

்௅ ൅ 3𝜔்௅ ൅ ෍ ൫𝜏଴, ௫೔
்௅ ൅ 𝜏௫೔, ௫೔శభ

்௅ ൅ 𝜏௫೔శభ,଴
்௅ ൅ 4𝜔்௅൯

௜ழ௜∗ିଵ

௜ୀଵ

, 𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑

𝜏଴, ௫೔∗షభ
்௅ ൅ 𝜏௫೔∗షభ, ௫೔∗

்௅ ൅ 4𝜔்௅ ൅ ෍ ൫𝜏଴, ௫೔
்௅ ൅ 𝜏௫೔, ௫೔శభ

்௅ ൅ 𝜏௫೔శభ,଴
்௅ ൅ 4𝜔்௅൯

௜ழ௜∗ିଶ

௜ୀଵ

, 𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛

 

൅𝑡0ௌ௅ ൅ 𝑡஻ 

In the equations above, it is assumed in the current problem formulations that the next incoming 

tote to the storage lift is always ready at the input of the system, which means the upstream 

conveyor system will not cause any delay to the SBS/RS. Relaxation of this assumption can be 

formulated easily as task time windows for storage lift services, but we do not expand our scope 

to there because the current problem aims at minimizing the overall makespan assuming all tasks 

are ready for its first-stage service (lift services as for storages, shuttle services as for retrievals) in 

the SBS/RS. 

ACO Formulation: 
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In each search iteration, each ant constructs a feasible solution randomly based on both the 

Visibility matrix and the Pheromone matrix. In our approach, the Visibility matrix 𝑉 is evaluated 

dynamically according to the current tour size. The solution is then mapped to the device schedules 

to obtain the objective function (overall makespan) in three steps. The solutions found in each 

iteration are then compared to the historical best solutions, and the Pheromone matrix is updated 

according to the solution qualities. The formulation details of the Ant Colony Optimization 

heuristics are further described in Appendix II. In addition, multiple ACO replications are 

performed to solve each problem – the settings are viewed as robust when no significant 

differences can be observed between the results found by different replications (within േ0.2% of 

the replication average). As the ACO approach here is designed to provide baselines for the 

development and evaluation of DD policies (instead of providing direct system control solutions), 

we will not further explore the approaches for improving the computational efficiency of the 

proposed ACO algorithm. 

Evaluation: 

A 16-tier, 200-column, 2-deep Tier-captive configuration is chosen as the system for 

testing the ACO and the candidate Dynamic Dispatching approaches. Four problem sizes are 

determined: [75 S, 75 R, 20 Re], [75 S, 100 R, 40 Re], [100 S, 75 R, 30 Re] and [100 S, 100 R, 40 

Re], and 10 task sets are generated randomly for each problem size. Note that for each task set, 

because the target slots are assigned randomly among all slot locations in the rack, the task sizes 

vary by tier and thus by shuttle. 

Two Dynamic Dispatching approaches are determined as the DD candidates under 

evaluation. In both DD approaches, the shuttle schedules are developed using A* Search 

Algorithm described in Problem 2a (with storage precedence and time windows and relocation 

precedence) – note that there are no additional retrieval precedence constraints here, because 

unlike in the ACO, in the DD approaches, the shuttles’ schedules are determined initially, and the 

retrieval lift services are then scheduled based on the shuttles’ schedules. Hence, the two DD 

candidates only differ from the perspective of retrieval lift scheduling: 

1) A*-FCFS: Using A* Search Algorithm for shuttle scheduling, and First-come-first-serve rule 

for retrieval lift scheduling. The retrieval lift serves tasks by the times the totes arrive to the 
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exit of the output buffers, and always perform full-size tours until there are no remaining 

retrieval tasks in the task set; 

2) A*-Closest: Using A* Search Algorithm for shuttle scheduling and Closest-First rule for 

retrieval lift scheduling. The retrieval lift’s scheduling decision is triggered in three situations: 

1) A tote just arrived the buffer exit when the lift is idle; 2) The lift just completed a tour and 

there is at least one tote standing by for service; and 3) The lift has just loaded the first tote of 

its current tour while there is still tour space for a second tote, and there is at least one tote 

standing by – if there is no tote standing by at the moment, the lift will proceed with single-

tote tour. The retrieval lift selects the next task from currently available candidates (totes 

standing-by at the exit of the output buffer) by the vertical distances from the lift’s current 

location, and break-tie by the original sequence in the task set.  

The ACO results are viewed as baselines for the DD approaches. Recall that the objective 

function is 𝐹 ൌ maxൣ𝐹ோ௅, 𝑚𝑎𝑥൫𝐹௝
௏൯൧. In each ACO run, both the overall makespan (𝐹) and the 

device makespans (𝐹ோ௅ and𝐹௝
௏) are recorded and compared with the DD results. The ACO search 

patterns (in terms of best results found as well as the dynamics of the Pheromone matrix along the 

ACO iterations) are studied to make sure the ACO algorithm is working properly. By studying the 

ACO’s search patterns, important insights are obtained regarding the scheduling problem: in some 

problems the best 𝐹  is found when either 𝐹ோ௅ ൐ 𝐵𝑒𝑠𝑡𝑅𝐿  or 𝑚𝑎𝑥൫𝐹௝
௏൯ ൐ 𝐵𝑒𝑠𝑡𝑉𝑚𝑎𝑥  (thus the 

best overall makespan does not necessarily have the best shuttle/retrieval makespans), which 

indicates the complex interaction between shuttle scheduling and retrieval lift scheduling. To 

further secure the optimization qualities of the ACO results, five independent ACO replications 

are performed for each task set, and the best results among replications are selected. We observed 

that the replication error ranges are very small for all problems (typically within േ0.2% of the 

replication averages), indicating that the ACO has explored the solution space adequately for each 

problem. The tests are conducted on the same 2.60GHz clock speed, 8GB RAM computer for 

testing the previous problem. Each of the 40 problems takes about 200,000 iterations (roughly one 

hour) to solve, and the best solution is found within 50,000 iterations (roughly 15 minutes) on 

average. The ACO and DD results are illustrated in Figure 5.14. The lower bounds of each problem 

size determined as max ሺ2𝑆𝜔்௅, 2𝑅𝜔்௅ሻ are also displayed. 
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It is observed that all best ACO results found are at least as good as the DD results (in term 

of both the overall makespan 𝐹 and the device makespans 𝐹ோ௅ and 𝑚𝑎𝑥൫𝐹௝
௏൯) in all 40 problems. 

In most problems, better results are found by ACO than by the DD approaches – these better results 

are usually found after larger numbers of ACO iterations, while the gaps between ACO and DD 

results are very small for all makespan indicators. For the two DD approaches, the average gaps 

(in term of 𝐹) of A*-Closest and A*-FCFS results to ACO results are both 0.9%, and no significant 

difference is observed between the makespan results from the DD approaches in each problem. In 

addition, the average gaps for 𝐹ோ௅ and 𝑚𝑎𝑥൫𝐹௝
௏൯ between DD and ACO are also very small (1.2% 

and 0.9%, respectively). It is noticeable that the ACO results may not be “true optimal”, not only 

due to the heuristic nature of this optimization algorithm, but also because the shuttle schedules 

are constructed using A* Search Algorithm (which is implemented differently from its 

implementation in the DD approaches as illustrated previously in Figure 5.12) in each solution. 

 

Figure 5.14 Dynamic Dispatching Results vs. Optimization Results (Problem 2b, algorithm 

averages of 10 problems for each task size) 
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But still, in many problems the ACO found better shuttle schedules than those found in the 

DD approaches – although the A* Search Algorithm in ACO is subject to additional consistency 

constraints with each ACO solution, schedules with better overall makespan might be found 

through heuristically exploring large numbers of feasible ACO solutions. Figure 5.15 illustrates 

the retrieval lift makespan 𝐹ோ௅ and the maximum shuttle makespan max൫𝐹௝
௏൯ from the best results 

found in each ACO iteration (logarithmic scale in the x-axis) for an ACO replication of a [100 S, 

100 R, 40 Re] problem, and the results obtained from the A*-Closest approach are posted as 

horizontal lines for comparison. In this problem, 𝐹ோ௅ ൐ max൫𝐹௝
௏൯ is observed in both A*-Closest 

results and ACO results, which means the storage tasks (whose final service stages are shuttle 

services) are completed earlier than the retrieval tasks (whose final service stages are retrieval lift 

services). This observation indicates the system is in general more burdened by the retrieval tasks 

(incl. the relocation workloads) rather than by the storage tasks (note that it is not always the case 

for different problems). It can also be observed that 𝑚𝑎𝑥൫𝐹௝
௏൯ in the best ACO results once got 

larger in later iterations, which indicates better 𝐹௝
௏’s not necessarily bring better overall makespan 

because there is generally 𝐹ோ௅ ൐ max൫𝐹௝
௏൯ in this problem. As the figure illustrates, the ACO 

found results as good as those obtained by A*-Closest in a few hundred iterations (a few seconds 

on the test computer). However, it became increasingly difficult for the ACO to explore further 

improvements – the best solution is found at iteration 43,973 (about 15 minutes on the test 

computer) with only 0.9% improvement comparing to the A*-Closest solution. Then, the ACO 

could not find further improvements in the next 100,000 iterations (about 40 minutes) and get 

terminated. Similar ACO search patterns are found with other problems, and the gaps between DD 

and ACO results are mostly stable around the aforementioned averages. 

As discussed above, average gap between the DD and ACO results is 0.9%. Considering 

the best results pattern of our ACO implementation (as previously illustrated by the example in 

Figure 5.15), it is reasonable to view the DD results as satisfactorily close to the “true optimal 

solution” which may not yet found by the ACO. Considering the simplifying assumptions made in 

this problem as well as in the previous problems (e.g. all tasks are known at the beginning, and all 

storage assignment decisions are already made), both of the proposed DD approaches that perform 

shuttle scheduling and retrieval lift scheduling are viewed as solid bases for further control strategy 
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development in dynamic environments (continuous task arrivals) and with the presence of storage 

assignment decisions and tier-transfer scheduling. 

 

Figure 5.15 ACO best results by iteration of a [100 S, 100 R, 40 Re] problem 

Problem 2c: Scheduling all devices in aisle for Tier-to-tier SBS/RS 

In tier-to-tier configurations, shuttles are transferred between tiers by the shuttle lift 

through tier-transfer operations. The selected shuttle moves to the transfer station located at the 

opposite end of the aisle (from the storage and retrieval lifts) and then waits for the shuttle lift. 

Then, the shuttle is loaded by the lift, transported to the target tier, and then unloaded to the transfer 

station of the target tier. Tier-transfer services are time-costly, and the occurrence of tier-transfer 

operations should be minimized through control approaches. Figure 5.16 illustrates an example of 

devices scheduling for a deterministic task set in a 2-deep, 8-tier, 3-shuttle aisle. 8 storage tasks 

and 8 retrieval tasks (3 relocations) are targeting 7 of the 8 tiers, and 4 tier-transfer operations are 

performed. Note that one shuttle (V1) is transferred twice in this example (tier 1 to tier 3, and tier 

3 to tier 6). The occurrence rate of tier-transfer operations (𝜃்) is as high as 4 ሺ8 ൅ 8ሻ⁄ ൌ 25% in 

this example because the task set is relatively small. It can be inferred that with a tier-to-tier aisle 
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of 𝑋 tiers, 𝐽 shuttles and given a deterministic task set in which 𝑋ᇱ tiers are involved, the minimum 

occurrences of tier-transfer operations are ሺ𝑋ᇱ െ 𝐽ሻ – obviously, the tier-transfer occurrences are 

minimized if the shuttles are selected for tier-transfer only after there are no remaining tasks on 

the selected shuttles’ current tiers. In addition, it can be inferred that the storage assignment policy 

is potentially more significant in Tier-to-tier configurations than in Tier-captive configurations. In 

the same example in Figure 5.16, the storage totes are arranged and assigned to different tiers in 

“good” locations so that the shuttles are never suspended waiting for the upstream storage lift 

services. Image if the storage tasks are served in the reverse sequence (𝑆଼, 𝑆଻ … 𝑆ଵ) by the storage 

lift, the shuttle makespans on the shuttles’ initial tiers will be longer due to less scheduling 

flexibility and the possible waiting times, as a result the overall makespan will also be worse.  

 

Figure 5.16 A devices scheduling example in a Tier-to-tier aisle 



179 

Because the tier-transfer operations are time costly, it is assumed that a shuttle will be 

selected for tier-transfer only after it has completed all the tasks on its current tier, thus the total 

number of tier-transfer operations equals 𝑇 ൌ ሺ𝑋ᇱ െ 𝐽ሻ. In some extreme cases with regard to the 

storage task arrivals, it is possible that doing more than 𝑇 transfers will be better decisions for 

minimizing the overall makespan, while such extreme cases are not concerned for now as the 

storage assignment decisions are assumed to be well made. Note that in the current phase where 

MP approaches are applied to provide baselines for control strategy development, various 

simplification assumptions are made, in particular the task sets to the problems are assumed 

deterministic which is not the case when the control strategies are finally implemented for serving 

continuously arriving tasks in practical environments. 

The tier-transfer assignment problem consists of two decision aspects. First, the target tier 

of each operation needs to be determined. Second, a shuttle is selected for each tier-transfer 

operation. In each of the 𝑇 tier-transfer decisions, a single shuttle is selected from 𝐽 shuttles in the 

aisle, and a single tier is selected from the remaining tiers that need a tier-transfer. When 𝐽 ൏ 𝑇, 

the tier-transfer assignment problem resembles a resource allocation problem subject to initial 

resource availabilities – 𝐽 resources (shuttles) are allocated to 𝑇 jobs (tiers), where each resource 

is not available until a specific time (when the shuttle completes all tasks on its initial tier). The 

resource allocation problem is also subject to setup times, where the “setup time” of each allocation 

is the sum of three elements: 1) the shuttle travel time from its end location after served its current 

tier to the transfer tier location; 2) the shuttle lift travel time from the tier of the last allocation to 

the shuttle’s current tier; and 3) the total tier-transfer service time including loading the shuttle, 

travel time from the shuttle’s current tier to the target tier of the current allocation, and unloading 

the shuttle. Obviously, the setup times of this resource allocation problem are sequence-dependent 

because the devices’ end locations and thus travel times are subject to the previous tier-transfer 

operations. The total number of decision combinations is obtained as 𝐽𝑇 ൈ 𝐽ሺ𝑇 െ 1ሻ ൈ 𝐽ሺ𝑇 െ 2ሻ ൈ

… ൈ 𝐽 ൌ 𝐽் ൈ 𝑇! even if the scheduling details of the shuttle tasks on each tier are not considered 

in the decisions. The solution space of this problem could be extremely large for typical Tier-to-

tier configurations (e.g., 8.036 ൈ 10ଵହ for 𝑋 ൌ 16, 𝐽 ൌ 4, 𝑇 ൌ 12). However, this problem can be 

reasonably simplified in the form of a single-resource scheduling problem where 𝑇 tiers are to be 

visited by tier-transfer operations. Each feasible solution can be presented as a size- 𝑇 
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array ሾ𝑢ଵ, 𝑢ଶ … 𝑢்ሿ where 𝑢௜ indicates the tier index of the 𝑖th transfer, and the solution space size 

is thus reduced to 𝑇!. The simplification assumptions are stated as follows: 

1) When a shuttle is available to each tier, the shuttle service sequence for that tier’s tasks is 

assumed to follow a predefined scheduling rule. Under this assumption, given the available 

time and the initial location of the shuttle, the schedule and makespan of shuttle tasks on each 

tier can be estimated regardless of which shuttle is selected for tier-transfer operations. The 

predefined rule here is determined as A* Search Algorithm as it is viewed as near-optimal in 

the previous problems. 

2) The storage lift serves tasks in FCFS and the storage locations are predefined. The storage 

assignment decisions are assumed to be “good” so that the makespan estimates based on 

assumption 1 are acceptable (recall the observations from Problem 1d that the makespan is 

subject to task time windows). Also, good storage assignment decisions indicates that the 

shuttle waiting times for storage task arrivals are in general smaller than the tier-transfer service 

times (otherwise, the best solutions might be obtained by performing more than 𝑇 transfers, 

but the overall control approach is poor because such cases should be minimized from the 

storage assignment side).  

3) The target tier of the next tier-transfer service is selected according to the sequence defined in 

the solution, but the shuttle for this service is selected from all shuttles according to a 

predefined rule. Under this assumption, the shuttle for each tier-transfer service is deterministic, 

and the shuttle arrival times (available times) and initial locations for each tier’s shuttle tasks 

are both known. Then, each shuttle’s schedules on all its allocated tiers, as well as its total can 

be estimated under assumptions 1) and 2), and its total makespan 𝐹௝
௏(incl. tier-transfer travel 

and waiting times) is obtained. The predefined rule here is determined as follows: given the 

shuttle lift’s current tier 𝑥଴ and the next transfer’s target tier 𝑥, select the shuttle 𝑗 ∈ ሼ1 … 𝐽ሽ 

currently on tier 𝑥௝which has the minimum value of 𝐷௫బ, ௫ೕ,௫ estimated as the sum of waiting 

time and service time for this tier-transfer service. 

4) The retrieval lift schedule is assumed to follow a predefined rule deterministic if given the 

shuttle schedules, and its makespan 𝐹ோ௅ is obtained. This assumption is consistent with the 

previous problem 2b, and the overall makespan is also obtained as 𝐹 ൌ maxൣ𝐹ோ௅, 𝑚𝑎𝑥൫𝐹௝
௏൯൧. 

In the previous problem, both FCFS and Closest-First are viewed as near-optimal for retrieval 
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lift scheduling (when integrated with A* Search Algorithm on the shuttles side). The FCFS 

rule is determined as the predefined retrieval scheduling rule here. 

Problem Inputs: 

𝑇 : The number of transfer-needed tiers (equals the number of tier-transfer operations), 

there is 𝑇 ൌ 𝑋ᇱ െ 𝐽; 

𝑿𝑰 : Set of tiers with initial shuttle availabilities, there is |𝑿𝑰| ൌ 𝐽; 

𝑿𝑻 : Set of tiers without initial shuttle availabilities, there is |𝑿𝑻| ൌ 𝑇 and 𝑿𝑰 ∩ 𝑿𝑻 ൌ ∅; 

𝑡0௏௅ : The earliest retrieval lift available time; 

𝑥0௏௅ : The initial tier of the retrieval lift when it becomes available; 

𝑡0௫
௏ : The earliest shuttle available time for transfer tier after it has completed the tasks on 

tier 𝑥 ∈ 𝑿𝑰 according to A* Search Algorithm;  

𝑦0௫
௏ : The initial column of the shuttle on tier 𝑥 ∈ 𝑿𝑰 when the shuttle becomes available; 

𝑀௫ : The estimated service time of the tasks on tier 𝑥 ∈ 𝑿𝑰 ∪ 𝑿𝑻 from the time when a 

shuttle is available on this tier. Denote function 𝑓஺∗
௏ ሺ𝑥, 𝑦଴ሻ as the estimated makespan for tier 𝑥’s 

task set according to the A* Search Algorithm and assuming a shuttle is initially available at 

column 𝑦଴. If 𝑥 ∈ 𝑿𝑻, the makespan is estimated by temporarily assuming all storage tasks to this 

tier are already delivered to the input buffer. There are: 

𝑀௫ ൌ ቊ
𝑓஺∗

௏ ሺ𝑥, 𝑦0௫ሻ , 𝑖𝑓 𝑥 ∈ 𝑿𝑰

𝑓஺∗
௏ ሺ𝑥, 𝑌ሻ , 𝑖𝑓 𝑥 ∈ 𝑿𝑻 

𝑌௫  : The shuttle’s end location on tier 𝑥 ∈ 𝑿𝑰 ∪ 𝑿𝑻  after completing this tier’s task set 

according to A* Search Algorithm; 

𝐷௫బ, ௫ೕ,௫ : The tier-transfer costs from tier 𝑥௝ to 𝑥 when the shuttle lift is at tier 𝑥଴, consists 

of three components: 1) the shuttle travel time from its end location after completing its current 

tier 𝑥௝’s tasks to the transfer tier location, 2) the shuttle lift travel time from its end location 𝑥଴ 

after its previous tier-transfer service to the shuttle’s current tier 𝑥௝, and 3) the total tier-transfer 
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service time including loading the shuttle, travel time from the shuttle’s current tier to the target 

tier 𝑥ଶ, and unloading the shuttle. Computed as follows: 

𝐷௫బ, ௫ೕ,௫  ൌ 𝜏௒ೣ
ೕ

,௒
௏ ൅ 𝜏௫బ, ௫ೕ

௏௅ ൅ ቀ𝜏௫ೕ,௫
௏௅ ൅ 2𝜔௏௅ቁ 

Where 𝜏௒ೣ
ೕ

,௒
௏  is the shuttle travel time from its end location  𝑌௫ೕ

 to the transfer station, 𝜏௫బ, ௫ೕ
௏௅  

and 𝜏௫ೕ,௫
௏௅  are shuttle lift travel times, and 𝜔௏௅ is the load/unload time of the shuttle lift. 

Solution Coding: 

A size-𝑇 array ሾ𝑢ଵ, 𝑢ଶ … 𝑢்ሿ where 𝑢௜ ∈ 𝑿𝑻 indicates the tier index of the 𝑖th transfer. 

Search Method: 

Based on the previous assumptions, the objective function is formulated as  𝐹 ൌ

maxൣ𝐹ோ௅, 𝑚𝑎𝑥൫𝐹௝
௏൯൧ , where  𝐹ோ௅  is the retrieval lift makespan and 𝐹௝

௏  is total makespan of 

shuttle 𝑗 ∈ ሼ1. . . 𝐽ሽ. The total size of the solution space equals 𝑇! – because it is not a very large 

number with typical Tier-to-tier configurations (e.g. for a 16 tiers aisle,  𝑇! ൌ 4.79 ൈ 10଼ with 4 

shuttles, 40,320 with 8 shuttles, and 24 with 12 shuttles: assuming all tiers are involved in the 

tasks), an enumeration search algorithm is applied to find the best solutions. A simple Discrete 

Event Simulation (DES) model is integrated in the search algorithm to return the makespan of each 

solution, described in pseudocodes as follows: 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ൌ ሾ𝑢ଵ, 𝑢ଶ … 𝑢்ሿ  

/* location and time when each shuttle finished serving tasks on its current tier */ 

𝑥௝
௏ ൌ 𝑿𝑰ሺ𝑗ሻ,   𝑦௝

௏ ൌ 𝑌𝑿𝑰ሺ௝ሻ,   𝑡௝
௏ ൌ 𝑡0𝑿𝑰ሺ௝ሻ

௏ ൅ 𝑀𝑿𝑰ሺ௝ሻ, ∀𝑗 ∈ ሼ1,2 … 𝐽ሽ  

/* location and time when the shuttle lift finished its current tier-transfer service */ 

𝑥௏௅ ൌ 𝑥0௏௅,   𝑡௏௅ ൌ 𝑡0௏௅  

FOR ሺ1 ൑ 𝑖 ൑ 𝑇ሻ  

/* earliest time to start the next tier-transfer service*/ 

𝑡𝑖𝑚𝑒 ൌ maxൣ𝑚𝑖𝑛൫𝑡௝
௏൯ , 𝑡௏௅൧  

FOR ሺ1 ൑ 𝑗 ൑ 𝐽ሻ  

𝑓ሺ𝑗ሻ ൌ max൫𝑡௝
௏ െ 𝑡𝑖𝑚𝑒, 0൯ ൅ 𝐷௫ೇಽ, ௫ೕ

ೇ, 𝑿𝑻ሺ௨೔ሻ  
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END FOR 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ൌ 𝑗| minሾ𝑓ሺ𝑗ሻሿ  

/* update device states */ 

𝑥௏௅ ൌ  𝑿𝑻ሺ𝑢௜ሻ,  𝑡௏௅ ൌ 𝑡𝑖𝑚𝑒 ൅ 𝑓ሺ𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑ሻ 

𝑥ௌ௘௟௘௖௧௘ௗ
௏ ൌ  𝑿𝑻ሺ𝑢௜ሻ,  𝑦ௌ௘௟௘௖௧௘ௗ

௏ ൌ 𝑌𝑿𝑻ሺ௨೔ሻ,  𝑡ௌ௘௟௘௖௧௘ௗ
௏ ൌ 𝑡௏௅ ൅ 𝑀𝑿𝑻ሺ௨೔ሻ  

END FOR 

𝐹௝
௏ ൌ 𝑡௝

௏, ∀𝑗  

Compute 𝐹𝑅𝐿 based on the resulting shuttle schedules according to FCFS 

Return Makespan: 𝐹 ൌ maxൣ𝐹ோ௅, 𝑚𝑎𝑥൫𝐹௝
௏൯൧  

Evaluation: 

A 2-deep, 16-tier, 200-column aisle design is determined as the system for testing this 

problem. Five shuttle configurations are selected for testing: 4, 6, 8, 10 and 12 shuttles, and 10 

task sets with [100 S, 100 R, 40 Re] are generated randomly with equal probabilities to each tier. 

Thus, totally 50 test problems are created. Because the enumeration approach explores the full 

solution space of each problem, mean, max, average, and standard deviation statistics of the 

solution spaces are also recorded, denoted as MIN(SS), MAX(SS), AVG(SS) and STD(SS), 

respectively.  

Four Dynamic Dispatching rules are determined as evaluation candidates: 

1) MaxNT-Closest: Select the next tier with the largest number of tasks (incl. relocations), then 

select the shuttle with the smallest travel costs  𝑓ሺ𝑗ሻ ൌ max൫𝑡௝
௏ െ 𝑡𝑖𝑚𝑒, 0൯ ൅  𝐷௫బ, ௫ೕ,௫ , 𝑗 ∈

ሼ1 … 𝐽ሽ. Note that the first part of the equation is the time waiting for the shuttle to complete 

serving its current tier, and the second part is the total tier-transfer service time. 

2) MaxMS-Closest: Select the next tier with the largest estimated makespan 𝑀௫, then select the 

shuttle with the smallest travel costs 𝑓ሺ𝑗ሻ ൌ max൫𝑡௝
௏ െ 𝑡𝑖𝑚𝑒, 0൯ ൅ 𝐷௫బ, ௫ೕ,௫ , 𝑗 ∈ ሼ1 … 𝐽ሽ. 

3) 𝑃||𝐶௠௔௫ -Closest: Pre-allocate tiers to shuttles. Denote set 𝑻𝒋
𝑽  as the transfer-needed tiers 

allocated to shuttle 𝑗 ∈ ሼ1 … 𝐽ሽ. The total workload (excl. tier-transfer costs) of shuttle 𝑗 is 

estimated as 𝐶௝ ൌ ቂ𝑡0𝑿𝑰ሺ௝ሻ
௏ ൅ 𝑀𝑿𝑰ሺ௝ሻቃ ൅ ∑ 𝑀௫௫∈𝑻𝒋

𝑽 , where the first part of the equation is the 

shuttle’s makespan on its initial tier 𝑿𝑰ሺ𝑗ሻ. The allocation is performed by temporarily viewing 
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the problem as a P||C୫ୟ୶ problem. According to definition by Graham et al. (1979), a P||C୫ୟ୶ 

problem is described as follows: given n jobs each characterized by a processing time 𝑝௝ ( j = 

1, . . . , n), and m identical parallel processors each of which can process at most one job at a 

time, assigning each job to a processor so that the maximum completion time of a job 

(makespan) is minimized. In our approach, 𝑻𝒋
𝑽’s are developed using a Move-Swap local 

search heuristics trying to minimize the maximum shuttle workload 𝑚𝑎𝑥൫𝐶௝൯ , 𝑗 ∈ ሼ1 … 𝐽ሽ – 

this heuristic approach will be introduced in detail in Section 5.5. Then, in each tier-transfer 

assignment decision when the shuttle lift is currently at tier 𝑥଴, the next tier to be served is 

determined as the one has the smallest time costs  𝑓ሺ𝑥ሻ ൌ max൫𝑡௝
௏ െ 𝑡𝑖𝑚𝑒, 0൯ ൅  𝐷௫బ, ௫ೕ,௫ , 

where 𝑗 ∈ ሼ1 … 𝐽ሽ and 𝑥 ∈ 𝑻𝒋
𝑽. 

4) 𝑃||𝐶௠௔௫ -A*: An A* Search Algorithm based on P||C୫ୟ୶  approach. The main idea of this 

approach is very similar to the A* Search Algorithms applied in the single-shuttle scheduling 

problems studied earlier. Tiers are pre-allocated to shuttles in the same heuristic as in the 

previous 𝑃||𝐶௠௔௫-Closest approach. Then, in each tier-transfer assignment decision when the 

shuttle lift is currently at tier 𝑥଴, the next tier is determined as 𝑥∗ ൌ minሾ𝑔ሺ𝑥ሻ ൅ ℎሺ𝑥ሻሿ | 𝑥 ∈

ሼ𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑒𝑟𝑠ሽ , where  𝑔ሺ𝑥ሻ ൌ max൫𝑡௝
௏ െ 𝑡𝑖𝑚𝑒, 0൯ ൅ 𝐷௫బ, ௫ೕ,௫  (same as 𝑓ሺ𝑥ሻ  in the 

P||C୫ୟ୶ -Closest policy), and ℎሺ𝑥ሻ  is the estimated overall makespan by temporarily 

assuming P||C୫ୟ୶-Closest will be applied for all the remaining tiers.  

The statistics of the solution spaces as well as the dynamic dispatching results are 

illustrated in Figure 5.17. The problem averages of the solution spaces’ MIN, MAX, AVG and 

STD are presented. The MIN(SS)’s are viewed as the baselines for the evaluation. Also, it is 

reasonable to view the AVG(SS) results as indicators of random solution performances when no 

prioritization for tiers is applied (but still, a greedy-search method is applied for shuttle selection 

as described previously in the search method pseudocode) – the overall gap between MIN(SS) and 

AVG(SS) is 13.1%. Two DD policies appear to be more advantageous than the other two: the 

MaxMS-Closest and the P||C୫ୟ୶-A*, and their overall gaps to MIN(SS) are 2.4% and 1.3%, 

respectively, and both cost less than 10 milliseconds computational time in all problems. It is 

further observed that with the 𝐽 ൐ 𝑇  configurations ( 𝐽 ൌ 10, 12  and  𝑇 ൌ 6, 4 ), the MaxMS-

Closest policy found the optimal solutions (gaps to MIN(SS) are 0 for all problems) – this is 

reasonable because in such cases, this greedy method which always assigns the shuttle with the 



185 

smallest travel costs to the most burdened tier will generally guarantee the minimum overall 

makespan. However, with 𝐽 ൌ 𝑇 ൌ 8, P||C୫ୟ୶ -A* (average gap to MIN(SS) = 0.6%) slightly 

outperforms MaxMS-Closest (average gap = 1.2%). Then, with 𝐽 ൏ 𝑇 cases configurations (𝐽 ൌ

4, 6 and 𝑇 ൌ 12, 10), the performance of MaxMS-Closest deteriorates to 3.6% and 7.3% in terms 

of average gaps, while for P||C୫ୟ୶-A* the numbers are 2.0% and 2.7%. Such observations indicate 

that control strategies may need to be customized for tier-to-tier configurations according to the 

aisles’ shuttle fill rates. At this point, with control strategy development for more complex dynamic 

operations under practical environments (as opposite to the MP analysis in this section where task 

sets are assumed deterministic), we view the MaxMS-Closest policy as promising for 𝐽 ൐ 𝑋 െ 𝐽 

configurations and view the P||C୫ୟ୶-A* policy as a promising for 𝐽 ൑ 𝑋 െ 𝐽 configurations. 

 

Figure 5.17 Dynamic Dispatching Results vs. Solution Space Statistics (Problem 2c, algorithm 

averages of 10 problems for each shuttle deployment quantity) 
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5.5 Development and Analysis of Storage Assignment and 

Relocation Algorithms 

The development of storage assignment and relocation approaches needs to consider both 

short-term and long-term effects to the system performance, described as follows: 

1) Short-term effects: the instantaneous effects to current tasks (e.g., increment to the expected 

overall makespan of device schedules) if specific assignment decision(s) are made for the 

current storage task(s); and 

2) Long-term effects: the expected system performance regarding future storage and retrieval task 

arrivals (e.g., expected throughput or task cycle times) if assignment decisions are made 

according to specific rules. 

As studied in Chapter 4, the system performances is dependent on the utilization of the S/R 

devices, which is primarily determined by the task arrival rates and rack utilizations. Generally 

speaking, the short-term effects are more important when the device utilizations are relatively low 

– particularly in manufacturing environments where responsiveness requirements are posed by 

time-constrained processing orders. On the other hand, in application environments like E-

commerce distribution centers, the long-term effects are more important to achieve better 

sustainable system performances like overall throughputs, and the tasks are usually less time- 

sensitive in such environments. 

Just like in the previous section where device scheduling problems are studied, we attempt 

to analyze the storage assignment/relocation problems in increasing complexities regarding system 

designs and demand assumptions. On the other hand, compared to the device scheduling decisions, 

storage assignment/relocation decisions are more subject to demand scenario assumptions, 

including but not limited to S/R arrival patterns, rack utilization, SKU-level characteristics (turn-

over rates, affinities, etc.). Thus, unlike the mathematical formulation and benchmarking 

approaches conducted for the scheduling problems, in this section the focus is primarily on 

providing general insights and high-level procedures for developing the storage 

assignment/relocation policies. 
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5.5.1 Storage Assignment and Relocation without explicit SKU-level Characteristics 

This subsection studies storage assignment and relocation decision-making in demand 

scenarios where SKU-level characteristics are not explicitly known to the decision-maker – for 

example, the SKU turnover rates, SKU affinities (correlations in orders), as well as order time 

constraints (due-date, lateness, etc.) are not considered in the storage assignment decisions. Thus, 

totes stored in the racks have equal time-dependent probabilities to be retrieved in the future. 

Closest Open Location (COL)-type policies are the primary focus in the development 

storage assignment/relocation approaches. In traditional crane-based AS/RSs, the COL policy can 

potentially provide optimal throughput performance under the assumptions for implicit SKU-level 

characteristics (“potentially” because other factors like dual-cycle operations, device dwell 

location control, and multi-capacity crane scheduling, etc. still need to be considered). This is 

because in each aisle of such AS/RSs, the crane is the only S/R device responsible for both 

horizontal and vertical movements, and all the slots can be prioritized by deterministic travel times 

from/to I/O for COL implementation. As discussed in the previous chapters, such prioritization is 

more complicated in SBS/RS due to the service patterns of heterogonous, interacting S/R devices. 

Tier-captive Aisles 

In tier-captive 1-deep aisles, each tier has an identical, captive shuttle, the expected service 

and waiting times on the shuttles’ sides for both task types (𝑇ௌ
௏, 𝑊ௌ

௏, 𝑇ோ
௏, 𝑊ோ

௏) are minimized from 

the storage assignment perspective by balancing the shuttle workloads. Call this approach 

horizontal-focused COL, it is achieved through two steps:  

1) Assign the next storage tote to the tier with the most available slots; and 

2) Apply COL policy that selects the closest available slot to the I/O buffers on the selected 

tier.  

On the other hand, the service performance on the tote lifts (both types) sides are dependent 

on the storage or retrieval arrival rates to each tier – under the SKU assumptions here, those task 

arrival rates are proportional to the rack utilization on different tiers. Storing more totes to the 

lower tiers is expected to reduce the lifts’ service/waiting times (𝑇ௌ௅, 𝑊ௌ௅, 𝑇ோ௅, 𝑊ோ௅). With multi-

capacity tote lifts cases, the retrieval lift service times can be further reduced through scheduling 
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approaches (as studied in Problem 2a, Section 5.4). As for the storage lifts, although the sequence 

of storage totes is assumed inflexible due to the roller-conveyor characteristics of the upstream 

system, the service/waiting times (𝑇ௌ௅, 𝑊ௌ௅) can be reduced through storage assignment decisions. 

For example, when the tasks in the storage lift’s queue is larger than one, assigning slots on the 

same tier in the same tour will reduce the service times. Call the above approach vertical-focused 

COL, the following procedure are performed periodically (e.g., hourly) in the routine system 

operations: 

1. Initialize array ሾ𝜌ଵ, 𝜌ଶ … 𝜌௫ … 𝜌௑ሿ where 𝜌ଵ ൌ 𝜌ଶ … 𝜌௫ … ൌ 𝜌௑ ൌ 𝜌; 

2. Use array for slot task visit probability estimation in the analytical model (introduced 

in Chapter 4), estimate system performance; 

3. Update array so that it satisfies 0 ൏ 𝜌ଵ ൏ 𝜌ଶ … 𝜌௫ … ൏ 𝜌௑ ൏ 1 and ∑ 𝜌௫ ൌ 𝑋𝜌; 

4. Use array for slot task visit probability estimation in the analytical model, estimate 

system performance; 

5. Compare performance estimates, go back to 3 or stop (return array). 

Then, vertical-focused COL is described through modifying step 1 of horizontal-focused 

COL as follows: 

1) Assign the next storage tote to tier 𝑥 ൌ maxሼሺ𝜌௫𝑌𝑍 െ 𝑁௫ሻ : 𝑥 ൌ 1 … 𝑋ሽ , where 𝑁௫ is 

the number of currently occupied slots on tier 𝑥; 

The vertical-focused COL will lead to larger service times on the shuttles’ sides because 

the tier/shuttle workloads are less balanced. Theoretically, it is preferable for system designs where 

the tote lifts are the bottleneck rather than the shuttles. According to the simulation experiment 

results in Chapter 4 using the parameters provided by the sponsor, we illustrated in Figure 5.18 the 

ratios of shuttle utilizations (𝑈௏) and tote lift utilizations (𝑈்௅) as measures of bottlenecks in 

different designs (thus the shuttles are the bottleneck if 𝑈௏ 𝑈்௅⁄ ൐ 1). We observed that both the 

shuttles and the tote lifts can become the bottleneck, while the shuttles are more constraining the 

system performances when rack aspect ratios (𝑌/𝑋) get larger – which is consistent with general 

intuition. 

However, unlike the shuttles, the tote lifts’ travel times are usually relatively small portions 

of their service times. When the SKUs are assumed implicit, we found in simulation experiments 
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that unbalancing tier workloads with vertical-focused COL is not very effective in improving the 

system performance, especially when the overall rack utilization of the aisle is large (e.g., 𝜌 ൐

0.8). Thus, the horizontal-focused COL approach is viewed as preferable for most tier-captive 

designs with implicit SKU-level characteristics. On the other hand, the general procedure of the 

vertical-focused COL approach provides a basis for storage assignment policies when SKUs are 

explicit. 

 

Figure 5.18 Tier-captive aisles’ bottleneck patterns by designs, measured as dividing shuttle 

utilization by tote lift utilization: 𝑈௏ 𝑈்௅⁄ , based on simulation experiments that the aisle is in 

steady-state with maxሺ𝑈௏, 𝑈்௅ሻ ൌ 0.9 

Tier-to-tier Aisles 

In tier-to-tier SBS/RS, the number of shuttles is less than the number of tiers in each aisle, 

thus shuttles are transferred between tiers by the shuttle lifts when necessary. Because the shuttles 

are not captive to the tiers, the decision maker has additional options here in using the tiers 

according to the rack utilization dynamics. Figure 5.19 illustrates four general types of storage 

assignment options in a tier-to-tier aisle: 
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Figure 5.19 Storage assignment options for Tier-to-tier systems 

a) Store totes uniformly to all tiers: the average workloads on each tier are minimized, while the 

relocation workloads are expected to be maximized. In the example, 5 shuttles are serving a 

10-tier aisle where 𝜌௫ ൌ 0.8; 

b) Store totes to lower tiers as much as possible: the relocation workloads are expected to be 

minimized, while the workloads on the utilized (lower) tiers are maximized. In the example, 

the system can be approximated as 5 shuttles serving an 8-tier aisle where 𝜌௫ ൌ 1.0; 
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c) Store totes uniformly to lower tiers: balance the in-tier workloads and tier-transfer workloads 

so that to minimize the overall service times. In the example, the system can be approximated 

as 5 shuttles serving a 9-tier aisle where 𝜌௫ ൌ 0.889; 

d) Vertical-focused COL. 

 

Figure 5.20 Tier-to-tier aisles’ bottleneck patterns by design configurations, measured as 

dividing shuttle utilization by tote lift utilization: 𝑈௏ 𝑈்௅⁄ , based on simulation experiments that 

the aisle is in steady-state with maxሺ𝑈௏, 𝑈்௅ሻ ൌ 0.9 

When overall rack utilization is high (e.g., 𝜌 ൐ 0.9), options a), b) and c) are approximately 

identical. When 𝜌 is expected to stay low in a sufficiently long duration (e.g., several days), options 

b) and c) can usually provide better system performances than option a). The decision maker can 

select the option whichever have better performance estimates using the analytical model proposed 

in Chapter 4, and always flexible to switch options when the expectation for 𝜌 changes. Vertical-

focused-COL (option d)) introduced previously for tier-captive systems is usually not necessary 

for tier-to-tier systems. According to the analytical approaches and simulation experiments from 

the previous chapters, the shuttles are always the bottlenecks in tier-to-tier systems (as illustrated 

in Figure 5.20, when 𝐽 𝑋⁄ ൏ 1 there is 𝑈௏ ൐ 𝑈்௅ in most design configurations) – thus reducing 
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lift travel times is a minor concern here in storage assignment decisions. This is also consistent 

with the common practice: the numbers of shuttles are configurable to accommodate the seasoning 

demands, but the tote lifts are fixed and expected to support the full-scale operations (when all 

tiers are deployed with shuttles).  

2-deep racks 

In aisles with 2-deep racks (either tier-captive or tier-to-tier), relocation services are 

performed by the shuttles. As analyzed in Chapter 4 and earlier this chapter, relocation services 

are usually as time-costly as storage or retrieval tasks, thus they should be minimized through 

storage assignment decisions. On the other hand, as discussed in the previous chapters, relocation 

decisions are similar to storage assignment decisions and follow the same rules. As illustrated in 

Figure 5.21, some general criteria should be followed in storage assignment and relocation 

decision makings in 2-deep aisles: 

 

Figure 5.21  General storage/relocation criteria with 2-deep SBS/RS 

1) Storage/relocation should not be assigned with any 1-deep slot who’s neighboring 2-deep slot 

is empty (tote.1); 

2) Storage/relocation should not be assigned with any 1-deep slot that will block existing retrieval 

tasks from its neighboring 2-deep slot waiting to be served by the shuttles (tote.2); 
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3) When a retrieval is blocked (tote.3), relocation of the blocker (tote.3*) should only be assigned 

to a slot within the tier of the corresponding retrieval task. 

The first step of storage assignment decisions here (selecting the target tier) is the same as 

the step 1 in tier-captive 1-deep aisles (either horizontal or vertical-focused), while the second step 

(selecting the slot) is more complicated due to concerns for further relocations. In Chapter 4, when 

COL policy is assumed, the slot selection step is based on predetermined prioritization orders – all 

the 2-deep slots are prioritized than any 1-deep slots to minimize relocation occurrences, and then 

1-deep and 2-deep slots are prioritized separately by the distances to the I/O buffers. A question 

that comes up is whether in racks of long horizontal distances (more columns), minimizing 

relocation guarantees minimization of the overall shuttle service times – considering the longer 

shuttle travel times, selecting 1-deep slots closer to I/O might be less time costly than selecting 2-

deep slots at the far end of the aisle even when the future relocation costs from those 1-deep slots 

are taken into consideration. If such situation applies, there must exist a critical column 𝑦∗ ∈ ሾ1, 𝑌ሿ 

that makes 1-deep slot ሾ𝑥, 𝑦∗, 𝑧ሿ at column 𝑦∗ become preferable in storage assignment decisions 

than 2-deep slot ሾ𝑥, 1, 𝑧 ൅ 2ሿ at column 1, 𝑧 ∈ ሾ1,2ሿ. The two COL options for 2-deep rack storage 

assignment and relocation decision making are illustrated in Figure 5.22 – in option 2, 1-deep slots 

15/16 closer to I/O will be preferable over 2-deep slots 17/18 at the far end if the additional travel 

time is larger than the expected relocation time costs (that will occur in the future when slot 1/2 

are retrieved). If a critical column 𝑦∗ does exist for a particular rack design, it can be approximated 

as follows: 

𝑦∗ ൌ minሺ𝑦ሻ | ቂ൫𝜏଴, ௬
௏ െ 𝜏଴, ଵ

௏ ൯ ൐ ቀ2𝜌𝜏଴, ௒ ଶ⁄
௏ ൅ 2𝜔௏ቁቃ , 𝑦 ∈ ሾ1, 𝑌ሿ 

Where 𝜏଴, ௬
௏  is the shuttle travel time from I/O to column y, and 𝜔௏ is the average L/U time in 

relocation services, and  𝜌  is the expected rack utilization. Considering the shuttles’ 

acceleration/deceleration patterns, there is always  2𝜏଴, ௒ ଶ⁄
௏ ൐ 𝜏଴,௒

௏ ൐ 𝜏଴, ௬
௏ , ∀𝑦 . Thus, it can be 

inferred that, when 𝜌 is large, COL option 1 is usually more effective in the long-term because the 

critical column 𝑦∗ either does not exist or is found on the very far end which does not make COL 

option 2 significantly preferable. Hence, option 1 is considered as the primary storage/relocation 

rule for evaluating slots in the same tiers. However, the observations here are viewed as meaningful 

for future research especially when SKU-level characteristics like turn-over rates are considered. 
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Figure 5.22 Two COL options for storage assignment & relocation in 2-deep racks 

5.5.2 Storage Assignment and Relocation with Considerations for SKU-level 

Characteristics 

SKU-level characteristics refer to product demand patterns which can be described as turn-

over rates (popularity), demand correlations/dependencies (affinity), and demand trends 

(seasonality). The operational control of the system primarily focuses on the former two aspects. 

The popularity metrics are usually measured by the Cube per Order Index (COI) defined as the 

ratio between the space requirements and demand of a product (Goetschalckx and Ratliff, 1990), 

and popular products are expected to be assigned to more desirable storage locations that minimize 

the S/R service times. The affinity metrics represent how often two products are requested together 

in the same order, within the same time window or within a Bill of Materials (BOM) (Kofler, 

2014). Data mining techniques that extract rules or patterns from the Warehouse Management 

System (WMS) database are often applied in the recent years to explore such SKU-level 

characteristics (Han et al, 2011). 
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As discussed in the previous section, the storage assignment decisions need to consider 

both the system designs/configurations and the devices’ service patterns in SBS/RS. Particularly, 

the preference or desirability of each slot is determined by multiple factors including rack shapes, 

device speed/acceleration performances, and number of shuttles deployed. In general, we consider 

the following storage assignment/relocation criteria when SKU-level characteristics are explicit to 

decision-making: 

1) Assign popular SKUs to preferable locations in the rack, which are slots closer to the I/O 

buffers to reduce shuttle service times, or/and slots on lower tiers to reduce lift service 

times; 

2) In 2-deep aisles, assign SKUs of the same types in neighboring 1-deep and 2-deep slots to 

reduce relocation efforts; 

3) In tier-captive aisles, assign SKUs to tiers in ways that balance the tier/shuttle workloads; 

4) In tier-to-tier aisles, assign SKUs of high affinity in the same tier to reduce tier-transfer 

efforts. 

ABC three-class-based (3-CBS) storage assignment is a comprised policy that classifies 

SKU types into three classes A, B and C according to their popularity, where class A refers to the 

most popular ones and class C refers to the least popular ones. According to Kofler (2014), a small 

number of top-selling products (for instance 20%) are responsible for most picks (for instance 

80%) in many warehouses, and a common 3-CBS practice for allocating the classes is a 10%-20%-

70% split by popularity. Then, the SKUs are assigned with simple storage policies (e.g., COL) 

within the corresponding classes. Ekren et al. (2015) applied simulation modeling approaches to 

study tier-captive SBS/RS, and rack design criteria are explored based on simulation results under 

their ABC storage assumption. In their model, the lifts were assumed as the system bottleneck and 

the class-allocation only considers the vertical aspect, thus class A items are stored to the lower 

tiers (closer to lifts’ I/O points) and class C to the higher tiers. As discussed earlier this section, 

tote lifts are more likely to be the bottlenecks in tier-captive systems (Figure 5.18), while in tier-

to-tier systems the shuttles are usually the bottleneck (Figure 5.20).  

Three options of allocating the ABC classes for a single aisle of tier-captive SBS/RS is 

proposed as illustrated in Figure 5.23. Incoming storage totes are first randomly assigned to tiers 

corresponding to the SKUs’ classes, and then assigned according to COL within the selected tiers. 
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In option 1, the classes are distributed vertically, and the fast-moving products are stored to lower 

tiers. This option is appropriate when the tote lifts are the dominating bottlenecks of the aisle – in 

this way, the workloads of the tote lifts are minimized. However, the risk is that the shuttles on the 

lower tiers might be overloaded and become the new bottlenecks. In option 2, the classes are 

distributed horizontally and in the same way for all tiers – thus the shuttle workloads are balanced. 

This option applies to cases where the shuttles are the dominating bottlenecks of the aisle. 

Moreover, a third option that considers both horizontal and vertical aspects are proposed. In option 

3, the classes are distributed in a radiation pattern – this is similar to common class-based storage 

practices in crane-based AS/RS. Option 3 is proposed for cases where the tote lift utilizations and 

shuttle utilizations are expected to be close at the maximum demands (thus all the devices are fully 

utilized, which is ideal from the design perspective discussed in Chapter 4). Essentially, option 3 

seeks for a balance point between options 1 and 2. Through simulation experiments, we found that 

option 3 can potentially provide better system performances comparing to options 1 and 2 for Tier-

captive systems. However, further study on exact methods (e.g., deciding the sizes and shapes of 

the classes’ storage areas) still need to be explored and formalized. 

 

Figure 5.23 ABC Class-based Storage Options for Tier-captive SBS/RS 
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In a tier-to-tier aisle, 𝐽 shuttles are transferred between 𝑋 tiers. As discussed in Section 

5.5.1, the shuttles are usually the bottlenecks of tier-to-tier aisles, thus the storage assignment 

approaches should aim at balancing the shuttle workloads. As discussed in the previous chapters 

and sections, the shuttle performances here can be improved with two goals: 1) reduce shuttle 

travel times on each tier; and 2) reduce occurrences of tier-transfers. With explicit SKU-level 

characteristics, the first goal can be achieved by applying the same horizontal class-based storage 

policy as the option 2 introduced above, and goal 2 can be achieved by assigning SKUs of high 

affinity in the same tier to reduce tier-transfer efforts. 

5.5.3 Dynamic Approaches for Improving both Short-term and Long-term Performances  

The COL approaches and the class-based approaches introduced previously are static 

storage assignment rules that mainly focus on the system’s long-term performance metrics (e.g., 

sustainable throughput, average cycle time). During system operations, there are also control 

opportunities to improve the short-term performance (e.g. makespan of a set of tasks) by making 

use of dynamic system information and cooperating with the dynamic scheduling approaches. 

Based on the previous discussions, storage assignment/relocation policies based on dynamic 

dispatching approaches are proposed in the following section. 

5.6 Control Strategy Integration Based on Dynamic Dispatching 

Approaches 

In this section, a set of control policies based on dynamic dispatching (DD) approaches are 

proposed according to the observations and conclusions obtained in the previous sections. These 

policies involve both device scheduling and storage assignment/relocation aspects. An integrated 

control strategy is developed by systematically integrating different DD algorithms, as illustrated 

in Figure 5.24.  

According to Section 5.5, Class-based COL storage policy is selected for storage 

assignment and relocation decisions: the SKUs and rack slots are assigned with ABC classes based 

on SKU popularities – the class assignment is assumed static within short periods – and COL 

policy is applied during operations in selecting the slots corresponding to the SKUs’ classes. It is 

noticeable that the ABC classification is not mandatory: if SKU-level characteristics are not 



198 

explicit to the decision maker, s/he may only consider the COL aspect in storage assignment / 

relocation decisions. Finally, the storage lift loads as many totes as possible to its current tour from 

its queue, and delivers the totes to tiers in FCFS patterns. 

In tier-captive systems, shuttle schedules are determined by A* Search Algorithm that the 

next task is selected by service time and estimated remaining makespan. This algorithm is viewed 

near-optimal in this research as discussed in Section 5.4.1. For tier-to-tier systems, a P||C୫ୟ୶-A* 

Algorithm is applied for tier-transfer decision-making to minimize the overall makespan of aisle 

tasks. As introduced in Section 5.4.2, the P||C୫ୟ୶-A* Algorithm takes in-tier estimates from the 

A* Search Algorithm as inputs, and then allocates shuttles to tiers so that to balance tier workloads 

with P||C୫ୟ୶ techniques. 

As the downstream processes of the shuttle services, the retrieval lift services are applied 

using either Closest-First or FCFS – our previous analysis in Section 5.4 did not observe significant 

performance differences between these two policies.  

The control strategy dynamically updates device schedules and makespan estimates 

whenever the system states need to be reevaluated, e.g., when a new task arrives to the aisle or a 

tier-transfer service is completed, or when an unexpected device failure occurs, and only updates 

the partial task information that is related to the state changes.  
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Figure 5.24 Integrated Control Strategy based on Dynamic Dispatching Algorithms 
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5.6.1 Dynamic Storage Assignment and Relocation 

The dynamic storage assignment and relocation algorithm proposed here determines the 

target slot of each incoming storage tote along with the target slot of each blocker tote of blocked 

2-deep retrieval tasks. In each storage task or relocation task, only one available slot is selected, 

and the selection is based on the tote’s SKU information and the system’s current state. The 

algorithm applies COL rule with prioritization for 2-deep slots, while also considers the device 

and inventory states.  

The SKU-level characteristics are either assumed explicit or implicit. For the explicit case, 

SKUs are preassigned to one of three classes A, B, C according to turn-over rates when they arrived 

at the system, and each slot ሾ𝑥, 𝑦, 𝑧ሿ in the rack belongs to a single class. The search scope of each 

storage/relocation is limited to the slots in the corresponding class. In 2-deep racks, the algorithm 

will first check the inventory totes of the same SKU type as the target tote and attempt to assign 

them in neighboring deep slots so that to minimize future relocations. The logics of storage 

assignment and relocation are the same except for that the search space of relocation is further 

limited to the current tier of the blocker tote. The details of the algorithm is described in 

pseudocode form in Appendix III.a. 

5.6.2 A* Search Algorithm for Shuttle In-tier Scheduling 

The A* Search Algorithm proposed here creates proposed shuttle schedules as well as 

makespan estimates for in-tier storage, retrieval and relocation tasks that currently exist in the 

aisle, and dynamically updates those schedules and estimates whenever a new task arrives. Inputs 

to this algorithm include the current task set and the current states of the shuttles. Denote 

𝑓஺∗
௏ ሺ𝑥, 𝑦0௫ሻ as the function that creates in-tier shuttle task schedule for tier 𝑥, given the shuttle’s 

initial location 𝑦0௫. Based on the existing 𝑆 storage tasks, 𝑅 retrieval tasks and 𝑅𝑒 relocation tasks 

expected to be served by the current shuttle on tier 𝑥 (excluding the shuttle’s current task if it is 

busy), schedule for in-tier shuttle tasks on each tier is developed, and the makespan is estimated. 

The details of the algorithm is described in pseudocode form in Appendix III.b. 

Tier-transfer decisions are not made here, but the outputs of this algorithm will be used as 

inputs to the Tier-transfer Allocation and Scheduling algorithm (to be introduced in Section 5.6.3).  
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5.6.3 𝐏||𝐂𝐦𝐚𝐱-A* Algorithm for Tier-transfer Allocation and Scheduling 

The P||C୫ୟ୶-A* Algorithm proposed here only applies to tier-to-tier systems. It creates 

tier-transfer plans by dynamically allocating shuttles between tiers and scheduling shuttle lift 

services. The algorithm make use of makespan estimates from the previous shuttle scheduling 

algorithm as one part of its inputs. The algorithm works in different ways depending on the shuttle 

fill rates in the aisle: if 𝐽 ൑ 𝑋/2, the algorithm first allocate transfer-needed tiers to the shuttles so 

that the shuttles’ estimated workloads are balanced, and then determines the shuttle lift’s pickup 

sequence; otherwise, the algorithm always selects the tier with most estimated workload, and then 

selects the shuttle with the shorted estimated travel time for the next service. 

Consider a tier-to-tier system of 𝑋 tiers, 𝐽 shuttles (𝐽 ൏ 𝑋) and 𝑇 transfer-needed tiers (𝑇 ൑

𝑋 െ 𝐽). Record the following system states: the tiers that need tier-transfer services 𝑿𝑻 and tiers 

currently have shuttles  𝑿𝑰 , shuttles’ expected available times 𝑡0௫
௏  and initial locations when 

become available 𝑦0௫
௏  on their current tiers 𝑥 ∈  𝑿𝑰 , and the shuttle lift’s expected available 

time 𝑡0௏௅ and initial location when become available 𝑥0௏௅. Denote 𝑀௫ as the estimated service 

time of the tasks on each tier from the time when a shuttle is available on this tier. Based on A* 

Search Algorithm illustrated in Section 5.6.2, there are: 

𝑀௫ ൌ 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛: ቊ
 𝑓஺∗

௏ ሺ𝑥, 𝑦0௫ሻ  , 𝑖𝑓 𝑥 ∈ 𝑿𝑰

 𝑓஺∗
௏ ሺ𝑥, 𝑌ሻ 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 ∀𝑎௜ ൌ 0, 𝑖𝑓 𝑥 ∈ 𝑿𝑻 

Based on the in-tier estimates and devices’ start locations, the algorithm returns shuttle 

allocation decisions and shuttle lift schedule. The details of the algorithm is described in 

pseudocode form in Appendix III.c. 

5.7 Summary 

In this chapter, two types of control decisions identified in the previous chapter – storage 

assignment and device scheduling – are further studied. The command and information flows of 

the control decisions, as well as the complexities due to various factors (device interactions, 

demand/SKU characteristics, etc.), are identified and studied in depth. Control policies are 

developed to accommodate different system designs/configurations and operation environments, 

and to improve both short-term and long-term system performance.  
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The device scheduling algorithm is developed based on Mathematical Programming (MP) 

approaches and Dynamic Dispatching (DD) approaches. The development process starts with 

simple assumptions and established MP models using Integer Programming and Ant Colony 

Optimization techniques, and gradually increase model complexity to approximate practical 

operations. The MP solutions are viewed as baselines based on which the DD-based scheduling 

policies are formulated, evaluated, and fine-tuned along this incremental development process. An 

A* Search Algorithm and a P||C୫ୟ୶-A* Algorithm that customized for SBS/RS scheduling control 

are proposed as outcomes of this process. 

The development of storage assignment/relocation decisions also follows incremental 

process. SKU-level characteristics are first assumed to be implicit, and a Closest-Open-Location 

(COL) policy that accommodates to different designs/configurations (1 and 2-deep, tier-captive 

and tier-to-tier) are proposed. When SKU-level characteristics are explicit, a policy that applies 

ABC classifications and in-class COL is proposed. 

The development processes are largely based on the data-driven and data-generated 

simulation model introduced in Chapter 3. Finally, a control strategy that systematically integrates 

these algorithms is proposed for practical implementation by industrial practitioners. We observe 

from simulation experiments that the proposed control strategy is computationally efficient, 

adaptive to various system design/configurations and demand scenario assumptions, and 

significantly improves the system performance. In addition, the time estimates from and updated 

by the control algorithms are expected to provide useful information for the downstream processes 

of the SBS/RS. 
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Chapter 6 Conclusions and Future 

Research 

6.1 Conclusions 

By using separate vertical and horizontal robotic S/R devices, Shuttle-based Storage and 

Retrieval System (SBS/RS) technology shows great potential in improving warehousing system 

efficiency to adapt to the variety, stochasticity, and timing requirements brought by the rising e-

commerce. However, the heterogeneous S/R devices and the multi-stage service processes of 

SBS/RS, the technology options involving tier-captive/ tier-to-tier configurations and multi-deep 

rack design, etc., as well as the stochastic and changing demands in different operational 

environments, all bring challenges to both the design configuration aspect and operational control 

aspect of SBS/RS. Aiming at facilitating both the system design practices and the control strategy 

development of SBS/RS-based warehouses, a comprehensive methodology is proposed by 

exploring research approaches including analytical modeling, simulation modeling, mathematical 

programming, dynamic dispatching, and statistical analysis.  

In this research, simulation modeling is the key part which plays significant role in both 

the design methodology development and control strategy development. The simulation model is 

generic, data-generated, and accommodates all SBS/RS designs and technology options studied in 

this research. System objects and service processes, demand scenarios, as well as control decisions 

are modeled, and verified and validated in cooperation with our industrial sponsors. Control 

decisions including storage assignment, retrieval lift scheduling, shuttles in-tier scheduling, 

relocation, and tier-transfer are identified, and multiple alternative and configurable control 

approaches are implemented. In addition, the simulation techniques applied are viewed as 

potentially expandable to similar warehousing systems of larger scopes or/and applying different 

AS/R technologies. 

Based on the insights obtained from the simulation modeling approach, a general analytical 

approach is established to support the conceptual design of SBS/RS-based warehouses. A queuing 
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network-based travel time model that accommodates to different system design/configuration 

options involving tier-to-tier configurations, different rack depths, and different tote lift capacities, 

etc., is developed. To improve the precision of the estimates, the queuing model also 

accommodates different assumptions regarding the demand scenarios and the operational control 

policies. A precise and efficient three-stage iterative analytical approach is developed. In the first 

stage, the task visit probabilities of the rack slots are estimated based on the assumption for storage 

policies. In the second stage, queuing analysis is conducted for each device type. The SBS/RS aisle 

is viewed as integrated of both the characteristics from tandem queuing systems and the 

characteristics from multi-server queuing systems. 12 shuttle service cases are identified, and the 

device utilizations and task cycle times are estimated based on the approximation of the shuttles’ 

dual-cycle scheduling patterns as well as the approximation of the tier-transfer service patterns. In 

the third stage, the device utilizations and task cycle times estimated by the travel time model are 

evaluated, and the system’s throughput and the corresponding task cycle times are found through 

increasing the task arrival rates iteratively. Finally, the travel time model is validated by Monte-

Carlo experiments based on the simulation model. Experiment results show satisfactory precision 

on both the throughput and task cycle time estimates comparing with simulation results. Thus, the 

analytical approach is thus viewed acceptable as a precise and efficient tool for conceptual design 

practices. 

Then, based on observations from the analytical and simulation approaches, an operational 

control strategy is proposed. Two types of control decisions – storage assignment and device 

scheduling – are further studied. The command and information flows of the control decisions, as 

well as the complexities due to various factors (device interactions, demand/SKU characteristics, 

etc.), are identified and studied in depth. Control policies are developed to accommodate different 

system designs/configurations and operation environments, and to improve both short-term and 

long-term system performance. The device scheduling algorithm is developed based on both 

Mathematical Programming (MP) approaches and Dynamic Dispatching (DD) approaches. The 

development process starts with simple assumptions and established MP models using Integer 

Programming and Ant Colony Optimization techniques, and gradually increase model complexity 

to approximate practical operations. The MP solutions are viewed as baselines based on which the 

DD-based scheduling policies are formulated, evaluated, and fine-tuned along this incremental 

development process. An A* Search Algorithm and a P||C୫ୟ୶-A* Algorithm that customized for 
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SBS/RS scheduling control are proposed as outcomes of this process. The development of storage 

assignment/relocation decisions also follows incremental process, and a policy that applies ABC 

classifications and COL policy is proposed. Finally, a control strategy that systematically 

integrates these algorithms is proposed for practical implementation by industrial practitioners. 

6.2 Future Research 

6.2.1 Order dispatching for different application environments 

Besides storage assignment and device scheduling, order dispatching is viewed as another 

major control aspect in this research. Order dispatching determines how demand orders for SKUs 

are decomposed into tasks, as well as the timing of releasing those tasks to different S/R devices. 

Depending on the application environment, additional complexities like date requirements and 

precedence constraints may be introduced. In this research, for the generosity of the proposed 

design methodology and control strategy, simple assumptions are made regarding order structure 

and dispatching. However, in practical systems, the order structures could be very dependent on 

the application environment: as illustrated in Figure 6.1, the time constraints, SKU assortment 

(variety), and precedence complexity can be very different. Thus, the order dispatching approaches 

(and even the storage assignment and scheduling approaches) may need to be customized by the 

demand patterns in the application environment, and failure in doing so may lead to long waiting 

times and even deadlocks with S/R devices. Moreover, complex pickup operations on the 

workstation side may introduce further challenges to all control aspects (as illustrated in Figure 

6.2). These observations provide a future research direction, while only feasible when adequate 

order data from different industrial applications are collected. 
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Figure 6.1 Order Structures in different application environments 

 

 

Figure 6.2 Illustration of pick-up processes in workstations 

 

6.2.2 Global coordination with encompassing systems  

In distribution center applications or manufacturing applications, the SBS/RS aisles are 

subsystems that interact with other subsystems upstream and downstream within the larger 
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distribution or manufacturing system. Depending on the features of the larger system, the 

operational control of the SBS/RS need to be coordinated with their encompassing subsystems to 

improve overall system performance and robustness. We have conducted initial research regarding 

the coordination of SBS/RS-based warehouses in Li et al. (2019) using simulation modelling 

approaches. Figure 6.3 shows a distribution center example in which pick-up processes are 

performed. The storage subsystem consists of multiple SBS/RS aisles, each has its own set of 

vehicles and lifts. Mini-load bins containing SKUs are stored in the racks of the aisles. The two-

layer conveyor subsystem interacts with both the storage subsystem and the pick-up subsystem, 

and controls the replenishment flow of new bins. The bins are retrieved and delivered to the pick-

up stations by the out-store conveyor (on 2nd floor) to fulfill customer orders. Once a pick-up order 

is completed, each bin may either leave the system if empty, or return to storage if not. Both the 

returning bins and the new bins are merged to the in-store conveyor (on 1st floor) and then stored 

to the aisles. In Li et al. (2019), we proposed a dynamic coordination rule to control the tote flows 

between the aisles and the conveyor network to avoid blocking and deadlocking (Figure 6.4). 

 For SBS/RS applications in manufacturing environments, the SBS/RS aisles usually play 

the roles of intermediate buffers between consecutive manufacturing processes. Thus, the 

responsiveness requirements to the SBS/RS may be more constraining than in distribution center, 

as delays within the racks will suspend the entire production line. Moreover, in demand scenarios 

where product variety is high and/or manufacturing processes are complicated, the SBS/RS control 

is subject to strict sorting requirements that it must not only deliver the right SKUs, but also deliver 

those in the correct sequence, Just-In-Time. We view the global coordination of SBS/RS with 

encompassing systems in different practical applications as promising research directions that 

could be extended in the future. 
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Figure 6.3  A distribution warehousing system consist of SBS/RS subsystem, Pick-up subystem, 

and Conveyor subsystem 

 

 

Figure 6.4 Illustration of blocking effects on conveyor network 
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APPENDICES 

Appendix I Estimate Rack Utilization Probability Distribution 

Function 

𝑰ሺ𝝆ሻ Estimation based on Monte Carlo simulation Pseudocode: 

𝜌 # Target expected rack utilization 

𝑇 # Time window, assume num. storages = num. retrievals within it  

𝑁 ൌ 𝑇𝜆  # Number of arrivals (each type) to be generated within T 

𝐾 ൌ 𝜌𝑋𝑌𝑍  # Total slots occupied initially 

𝐾௫ ൌ 𝜌𝑌𝑍  # Slots occupied initially on an arbitrary tier x 

𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ൌ 20  # An adequate number for typical designs and scenarios 

FOR (𝑅𝑒𝑝 ൑ 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠) 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑁 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒𝑠 𝒕𝑺 ൌ ൣ𝑡ଵ
ௌ, 𝑡ଶ

ௌ … 𝑡ே
ௌ ൧ 𝑓𝑟𝑜𝑚 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙ሺ𝜆, 𝜎ௌሻ  

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑁 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒𝑠 𝒕𝑹 ൌ  ሾ𝑡ଵ
ோ, 𝑡ଶ

ோ … 𝑡ே
ோሿ 𝑓𝑟𝑜𝑚 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙ሺ𝜆, 𝜎ோሻ  

𝑆𝑐𝑎𝑙𝑒 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒𝑠: ቊ
𝑡௜

ௌ ൌ 𝑡௜
ௌ ൈ 𝑇 𝑡ே

ௌ⁄

𝑡௜
ோ ൌ 𝑡௜

ோ ൈ 𝑇 𝑡ே
ோ⁄

, ∀𝑖 ∈ ሾ1 … 𝑁ሿ  

WHILE (𝒕𝑺 ് ∅ OR 𝒕𝑹 ് ∅) 

IF (Next event is 𝑡௜
ௌ) 

IF (𝐾 ൌ 𝑋𝑌𝑍) 

 𝑆𝑒𝑡 𝑡௜
ௌ ൌ 𝑡௜ାଵ

ௌ  

ELSE 

𝑅𝑒𝑚𝑜𝑣𝑒 𝑡௜
ௌ 𝑓𝑟𝑜𝑚 𝒕𝑺  

𝐾 ൌ 𝐾 ൅ 1, 𝑟𝑒𝑐𝑜𝑟𝑑 𝜌 ൌ 𝐾 𝑋𝑌𝑍⁄   

IF ( 𝑟𝑎𝑛𝑑𝑜𝑚ሺ0,1ሻ ൏ ሺ𝑌𝑍 െ 𝐾௫ሻ ሺ𝑋𝑌𝑍 െ 𝐾ሻ⁄  ) 

𝐾௫ ൌ 𝐾௫ ൅ 1, 𝑟𝑒𝑐𝑜𝑟𝑑 𝜌௫ ൌ 𝐾௫ 𝑌𝑍⁄   

END IF 

END IF 

ELSE IF (Next event is 𝑡௜
ோ) 
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IF (𝐾 ൌ 0) 

 𝑆𝑒𝑡 𝑡௜
ோ ൌ 𝑡௜ାଵ

ோ  

ELSE 

𝑅𝑒𝑚𝑜𝑣𝑒 𝑡௜
ோ 𝑓𝑟𝑜𝑚 𝒕𝑹  

𝐾 ൌ 𝐾 െ 1, 𝑟𝑒𝑐𝑜𝑟𝑑 𝜌 ൌ 𝐾 𝑋𝑌𝑍⁄   

IF ( 𝑟𝑎𝑛𝑑𝑜𝑚ሺ0,1ሻ ൏ 𝐾௫ 𝐾⁄  ) 

𝐾௫ ൌ 𝐾௫ െ 1, 𝑟𝑒𝑐𝑜𝑟𝑑 𝜌௫ ൌ 𝐾௫ 𝑌𝑍⁄   

END IF 

END IF 

END IF 

END WHILE 

END FOR 

𝑅𝑒𝑡𝑢𝑟𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠: 𝐼ሺ𝜌ሻ 𝑎𝑛𝑑 𝐼ሺ𝜌௫ሻ  

 

Figure A.1 Effects of design and demand parameters to 𝜎௫ሺ𝜌ሻ 
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Appendix II Scheduling and Makespan Estimation using Ant 

Colony Optimization 

Solution Coding: 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 : An array of ∀𝑖 ∈ ሼ1 … 𝑅ሽ indicating a retrieval task sequence. 

ACO Parameters and Variables: 

𝐾 : Number of Ants (default value: 20). In each iteration, each ant constructs a feasible 

retrieval lift task sequence by randomly selecting the next task from the remaining retrieval tasks 

(candidates). In each selection, the probability that a task is selected is determined by the 

Pheromone matrix and the Visibility matrix; 

𝑃௜భ, ௜మ
 : Pheromone (trail level) for the path from task 𝑖ଵ (the previous task in sequence) to 

𝑖ଶ (the candidate task to be added to the sequence) of the retrieval lift. A virtual task 𝑖ଵ ൌ 0 is 

defined to indicate the start of the sequence. The pheromone values updates at the end of each 

iteration according to the qualities of solutions found by the ants; 

𝑉௜భ, ௜మ
 : Visibility (desirability) of the path from task 𝑖ଵ to 𝑖ଶ in the task sequence of the 

retrieval lift. There is 𝑖ଵ, 𝑖ଶ ∈ ሼ0 … 𝑅ሽ, 𝑖ଵ ് 𝑖ଶ for all 𝑃 and 𝑉.  

ρ : Pheromone evaporation coefficient (default value: 0.001); 

𝑁 : Maximum number of iterations without improvement in best makespan found (default 

value: 100000). 

Pseudocode of ACO implementation 

Initialize 𝑃௜భ, ௜మ
ൌ ൜

1.0, 𝑖ଵ ് 𝑖ଶ
0, 𝑖ଵ ൌ 𝑖ଶ

  

Solution lower bound: 𝐵 ൌ max ሺ2𝑆𝜔்௅, 2𝑅𝜔்௅ሻ  /*baseline to evaluate solutions*/ 

𝐵𝑒𝑠𝑡 ൌ Infinity  /*historical best overall makespan*/ 

𝐵𝑒𝑠𝑡𝑅𝐿 ൌ Infinity /*historical best retrieval lift makespan*/ 

𝐵𝑒𝑠𝑡𝑉𝑀𝑎𝑥 ൌ Infinity /*historical best shuttle makespan (maximum of all shuttles)*/ 

𝑁𝑢𝑚𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ൌ 0 

WHILE (𝑁𝑢𝑚𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ൑ 𝑁)  
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FOR (Ant 𝑘 ൌ 1,2 … 𝐾)   

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ൌ ሼ1,2 … 𝑅ሽ  

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ൌ  ∅  

𝑖ଵ ൌ 0  

𝑡𝑜𝑢𝑟 ൌ 1, 𝑡𝑜𝑢𝑟𝑠𝑖𝑧𝑒 ൌ 0  

WHILE ሺ𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦ሻ  

FOR (Task 𝑖ଶ in 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)  

𝑉௜భ, ௜మ
ൌ ൝

𝜏଴, ௫೔మ

்௅ ൅ 𝜔்௅, 𝑖𝑓 𝑡𝑜𝑢𝑟𝑖𝑧𝑒 ൌ 0

𝜏 ௫೔భ, ௫೔మ
்௅ ൅ 𝜏 ௫೔మ,଴

்௅ ൅ 3𝜔்௅, 𝑒𝑙𝑠𝑒𝑤𝑖𝑠𝑒
  

IF (𝑥௜మ
ൌ 𝑥௜భ

)  

𝑉௜భ, ௜మ
ൌ 𝑉௜భ, ௜మ

൅ 𝜏଴, ௬೔మ

௏ ൅ 𝜔଴
௏ ൅ 𝜔௭೔మ

௏    

END IF 

𝑟௜భ,௜మ
ൌ

௉೔భ, ೔మൈ௏೔భ, ೔మ

෍ ൫௉೔భ, ೔మൈ௏೔భ, ೔మ൯
∀೔మ∈ሼ೎ೌ೙೏೔೏ೌ೟೐ೞሽ

  

 END FOR 

𝑅𝑁𝐷 ൌ 𝑟𝑎𝑛𝑑𝑜𝑚ሺ0,1ሻ  

𝐶𝑢𝑚𝑃 ൌ 0  

FOR (Task 𝑖ଶ in 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)  

IF (𝑅𝑁𝐷 ൏ 𝐶𝑢𝑚𝑃)  

Add 𝑖ଶ to 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

Remove 𝑖ଶ from 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 

BREAK FOR 

ELSE  

𝐶𝑢𝑚𝑃 ← 𝐶𝑢𝑚𝑃 ൅ 𝑟௜భ,௜మ
  

END IF 

END FOR 

END WHILE 

FOR ሺShuttle 𝑗 ൌ 1,2 … 𝐽ሻ 

Create shuttle schedules with the 𝑆௝  storage tasks, 𝑅௝ retrieval tasks 
and 𝑅𝑒௝  relocation tasks assigned to it. The schedule is developed 
according to A* Search Algorithm, and subject to constraints for 
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consistency with the current  𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 , storage precedence and 
earliest available times, and relocation precedence; 

Record makespan 𝐹௞,௝
௏  of this shuttle. 

END FOR 

Record maximum shuttle makespan  𝐹௞
௏ெ௔௫ ൌ max൫𝐹௞,௝

௏ , ∀𝑗൯  from this 
schedule. 

Record completion times from shuttle services 𝑐௜
௏  of all retrieval tasks 𝑖 ∈

ሼ1 … 𝑅ሽ, and assign earliest available times for retrieval lift services as 𝑎௜
ோ௅ ൌ

𝑐௜
௏ ൅ 𝑡஻; 

Create retrieval lift schedule according to the sequence in the 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 and 
subject to 𝑎௜

ோ௅; 

Record retrieval lift makespan 𝐹௞
ோ௅ from this schedule; 

Record ant 𝑘’s solution value: 𝐹௞ ൌ maxൣ𝐹௞
ோ௅, 𝐹௞

௏ெ௔௫൧  

END FOR 

Update pheromone matrix:  

𝑃௜భ, ௜మ
← ሺ1 െ ρሻ𝑃௜భ, ௜మ

൅ ∑ ∆𝑃௜భ, ௜మ
௞௄

௞ , where ∆𝑃௜భ, ௜మ
௞  is determined as follows: 

∆𝑃௜భ, ௜మ
௞ ൌ

⎩
⎪
⎨

⎪
⎧

ଵ଴஻ ௄⁄

ிೖି஻
, 𝑖𝑓 𝐹௞ ൏ 𝐵𝑒𝑠𝑡 𝑜𝑟 𝐹௞

ோ௅ ൏ 𝐵𝑒𝑠𝑡𝑅𝐿 𝑜𝑟 𝐹௞
௏ெ௔௫ ൏ 𝐵𝑒𝑠𝑡𝑉𝑀𝑎𝑥

ଷ஻ ௄⁄

ிೖି஻
, 𝑖𝑓 𝐹௞ െ 𝐵𝑒𝑠𝑡 ൏ 0.01𝐿𝐵

஻ ௄⁄

ிೖି஻
,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Control pheromone values to stay above a lower limit to avoid stuck in local 
optimality: 

𝑃௜భ, ௜మ
ൌ max൫1.0, 𝑃௜భ, ௜మ

൯ , 𝑖𝑓 𝑖ଵ ് 𝑖ଶ  

/* Update best RL and Shuttle makespan*/ 

IF ሺmin൫𝐹௞
ோ௅, ∀𝑘൯ ൏ 𝐵𝑒𝑠𝑡𝑅𝐿ሻ 

𝐵𝑒𝑠𝑡𝑅𝐿 ൌ min൫𝐹௞
ோ௅, ∀𝑘൯ 

END IF 

IF ሺmin൫𝐹௞
௏ெ௔௫, ∀𝑘൯ ൏ 𝐵𝑒𝑠𝑡𝑉𝑀𝑎𝑥ሻ 

𝐵𝑒𝑠𝑡𝑉𝑀𝑎𝑥 ൌ min൫𝐹௞
௏ெ௔௫, ∀𝑘൯ 

END IF 

/* Update best overall makespan*/ 

IF ሺminሺ𝐹௞, ∀𝑘ሻ ൏ 𝐵𝑒𝑠𝑡ሻ 
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𝐵𝑒𝑠𝑡 ൌ minሺ𝐹௞, ∀𝑘ሻ  

𝑁𝑢𝑚𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ൌ 0  

ELSE 

𝑁𝑢𝑚𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ൌ 𝑁𝑢𝑚𝑁𝑜𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ൅ 1  

END IF 

END WHILE 

RETURN 𝐵𝑒𝑠𝑡 

In each iteration, each ant constructs a feasible solution randomly based on both the 

Visibility matrix and the Pheromone matrix. In our approach, the Visibility matrix 𝑉 is evaluated 

dynamically according to the current tour size. As illustrated in the pseudocode, the 𝑉௜భ, ௜మ
 values 

are determined corresponding to the expected increment to the retrieval lift’s makespan if 

candidate task 𝑖ଶ  is selected after the previous task 𝑖ଵ . If 𝑖ଵ, 𝑖ଶ  are from the same tier, 𝑉௜భ, ௜మ
 is 

further increased by the expected shuttle service time in order to prevent unnecessary waiting time 

on the retrieval lift’s side. The solution is then mapped to the device schedules to obtain the 

objective function (overall makespan) in three steps. First of all, shuttle schedules are developed 

based on the current solution using A* Search Algorithm, subject to constraints for consistency 

with the retrieval sequence in the solution, storage precedence and earliest available times, and 

relocation precedence services (with consideration of the shuttle’s earliest available time 𝑡0௝
௏). 

According to the observations in the previous problems, it is assumed that each shuttle  𝑗 ’s 

makespan  𝐹௞,௝
௏  obtained with A* Search Algorithm is near-optimal given the consistency 

constraints in ant 𝑘’s solution. The maximum shuttle makespan 𝐹௞
௏ெ௔௫ is then obtained. In the 

second step, the retrieval lift schedule is developed according to the sequence in the solution and 

subject to the task completion times from shuttle services (with consideration of the lift’s earliest 

available time 𝑡0ோ௅), and the retrieval lift’s makespan 𝐹௞
ோ௅ is obtained. In the third step, the quality 

of the ant’s solution 𝐹௞  is obtained as the maximum makespan among all devices, and the 

corresponding 𝐹௞
ோ௅ and 𝐹௞

௏ெ௔௫ are also recorded.  

The solutions found in each iteration are then compared to both the historical best overall 

makespan and the historical bests of  𝐹௞
ோ௅  and  𝐹௞

௏ெ௔௫ , and the Pheromone matrix is updated 

according to the solution qualities. In our ACO implementation, a solution that is better than the 

historical bests in either of the makespan indicators will deposit large amount of additional 
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pheromone for the paths visited – we found this approach to be more effective in exploring better 

solutions than using a single indicator (the overall makespan). On the other hand, even when both 

𝐹௞
ோ௅  and 𝐹௞

௏ெ௔௫  are no better than the corresponding historical bests, a solution is allowed to 

deposit some additional pheromone if it is close to historical best in overall makespan – as such 

solutions may still be important for future explorations considering the rectilinear service patterns 

of the devices. The Pheromone of unvisited paths in the iteration are reduced by the evaporation 

factor. Additional lower/upper limits are set for the Pheromone matrix to prevent the heuristic from 

stuck in local optimal solutions. Finally, if no improvement to the historical best solution is found 

for the last 𝑁 iterations, the ACO is terminated and the historical best solution is returned as the 

final solution. 

The values of the ACO parameters and mechanisms here (𝐾, 𝑁, ρ, pheromone update 

mechanism, etc.) are mostly determined empirically which we view as acceptably efficient and 

robust for various problem sizes. In determining the parameter/mechanism settings, the historical 

best solutions as well as Pheromone values are tracked along iterations – the settings are viewed 

as efficient if the best solutions are more likely to be found within fewer iterations (thus the 

iterations afterwards are not likely to bring further improvements). In addition, multiple ACO 

replications are performed to solve each problem – the settings are viewed as robust when no 

significant differences can be observed among the final results found by different replications 

(within േ0.2% of the replication average). As the ACO approach here is supposed to provide 

baselines for the development and evaluation of DD policies (instead of providing direct system 

control solutions), thus we will not further explore the approaches for improving the computational 

efficiency of the proposed ACO algorithm. 
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Appendix III Pseudocode of Control Strategy Algorithms 

Appendix III.a Dynamic storage assignment and relocation 

The algorithm applies COL rule with prioritization for 2-deep slots, while also considers the device 

and inventory states. Each slot is initially assigned a local priority index within its tier, illustrated 

as follows. 

 

Figure A.2 Local Priority Indices for Storage assignment and Relocation 

The SKU-level characteristics are either assumed explicit or implicit. For the explicit case, SKUs 

are preassigned to one of three classes A, B, C according to turn-over rates when they arrived at the 

system, and each slot ሾ𝑥, 𝑦, 𝑧ሿ in the rack belongs to a single class. The search scope of each 

storage/relocation is limited to the slots in the corresponding class. In 2-deep racks, the algorithm 

will first check the inventory totes of the same SKU type as the target tote and attempt to assign 

them in neighboring deep slots so that to minimize future relocations. The logics of storage 

assignment and relocation are the same except for that the search space of relocation is further 

limited to the current tier of the blocker tote. If SKU-level information is not explicit, the following 

algorithm can be applied by skipping the SKU-related evaluation logic. 
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Pseudocode 

𝑆𝐾𝑈 𝑖𝑛𝑑𝑒𝑥: 𝑖  

𝑆𝐾𝑈 𝑐𝑙𝑎𝑠𝑠: 𝑘 ∈ ሼ"A", "B", "C"ሽ  

𝐷𝑒𝑛𝑜𝑡𝑒 𝑠𝑙𝑜𝑡𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑘 𝑎𝑠: 𝑨𝒌  

𝐷𝑒𝑛𝑜𝑡𝑒 𝑡𝑖𝑒𝑟𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝑨𝒌 𝑎𝑠: 𝑿𝒌   

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ൌ ∅  

FOR (2-deep slot ሾ𝑥, 𝑦, 𝑧ሿ  ∈ 𝑨𝒌 occupied by tote with the same SKU index 𝑖 as the target tote) 

IF (neighboring 1-deep slot ሾ𝑥, 𝑦, 𝑧 െ 2ሿ is available) 

Add neighboring 1-deep slot ሾ𝑥, 𝑦, 𝑧 െ 2ሿ To 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 

END IF 

IF (𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ൌ ∅) 

FOR (tier 𝑥 in 𝑿𝒌) 

Select best available slot ሾ𝑥, 𝑦∗, 𝑧∗ሿ according to COL (prioritize 2-deep) 

Add ሾ𝑥, 𝑦∗, 𝑧∗ሿ To 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 

END FOR 

END IF 

/* choose the tier of the least utilization*/ 

Select slot ሾ𝑥∗, 𝑦∗, 𝑧∗ሿ ∈ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 where 𝑥∗ ൌ min൫𝜌𝑥൯ |𝑥 ∈ 𝑿𝒌   
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Appendix III.b A* Search Algorithm for Shuttle In-tier Scheduling 

Denote 𝑓஺∗
௏ ሺ𝑥, 𝑦0௫ሻ as the function that creates in-tier shuttle task schedule for tier 𝑥, given the 

shuttle’s initial location  𝑦0௫ . Based on the existing  𝑆  storage tasks,  𝑅  retrieval tasks and 𝑅𝑒 

relocation tasks expected to be served by the current shuttle on tier 𝑥 (excluding the shuttle’s 

current task if it is busy), schedules for in-tier shuttle tasks on each tier are developed, and the 

makespans are estimated.  

The following algorithm inputs are developed: 

1. Task sets: 

Storage Tasks:  ሼ1 … 𝑆ሽ, indexed by arrival times to the aisle (assuming storage assignment 

decisions are already made). Denote task type 𝜋 ൌ 1. 

Retrieval Tasks: ሼ𝑆 ൅ 1, … 𝑆 ൅ 𝑅ሽ, in which the subset ሼ𝑆 ൅ 1, … 𝑆 ൅ 𝑅𝑒ሽ are tasks which need 

relocation. Denote task type 𝜋 ൌ 2. 

Relocation Tasks: ሼ𝑆 ൅ 𝑅 ൅ 1, … 𝑆 ൅ 𝑅 ൅ 𝑅𝑒ሽ  with one-to-one relationship to retrieval 

tasks ሼ𝑆 ൅ 1, … 𝑆 ൅ 𝑅𝑒ሽ. Denote task type 𝜋 ൌ 3. 

Denote task targets as ሼ𝑥, 𝑦௜, 𝑧௜ሽ. The target of a task is the storage tote’s assigned slot for each 

storages task, the SKU’s stored slot for each retrieval task, and the blocker tote’s assigned slot 

for each relocation task. Denote 𝑖 ൌ 0 as a virtual task indicating the start and end of the 

schedule, and assign 𝑦଴ ൌ 𝑦0௫. 

2. Task costs: 

𝑑௜ : The remaining service time of task 𝑖  from the time the shuttle arrived its load point, 

computed as: 

𝑑଴ ൌ 0; 

𝑑௜ ൌ ቊ 
𝜏଴, ௬೔

௏ ൅ 𝜔଴
௏ ൅ 𝜔௭೔

௏  , 𝑖𝑓 𝜋௜ ൌ 1 𝑜𝑟 2

𝜏௬ሺ೔షೃሻ, ௬೔
௏ ൅ 𝜔଴

௏ ൅ 𝜔௭೔
௏  ,      𝑖𝑓 𝜋௜ ൌ 3

  

Where 𝜏௬భ, ௬మ
௏  is the shuttle travel time between columns 𝑦ଵ and 𝑦ଶ,  𝜔଴

௏ is the shuttle L/U time 

from/to input/output buffers, and 𝜔௭
௏ is the shuttle L/U time from/to slot of depth index 𝑧. 
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𝑐௜భ, ௜మ
 : If task 𝑖ଶ is served after task 𝑖ଵ, the total time costs from the start (load point) of task 𝑖ଵ 

to the start location (load point) of task 𝑖ଶ, including the service time of task 𝑖ଵ, computed as: 

𝑐௜భ, ଴ ൌ 𝑑௜భ
  

𝑐଴,  ௜మ
ൌ ൞

 𝜏௬బ, ଴
௏          𝑖𝑓 𝜋௜మ

ൌ 1 

 𝜏௬బ, ௬೔మ

௏       𝑖𝑓 𝜋௜మ
ൌ 2

𝜏௬బ, ௬ሺ೔మషೃሻ
௏      𝑖𝑓 𝜋௜మ

ൌ 3

  

𝑐௜భ, ௜మ
ൌ

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

 𝑑௜భ
              𝑖𝑓 𝜋௜భ

ൌ 2, 𝜋௜మ
ൌ 1   ሺ𝑅 െ 𝑆 𝑐𝑎𝑠𝑒ሻ

𝑑௜భ
൅ 𝜏௬೔భ, ௬೔మ

௏     𝑖𝑓 𝜋௜భ
ൌ 1, 𝜋௜మ

ൌ 2   ሺ𝑆 െ 𝑅 𝑐𝑎𝑠𝑒ሻ

𝑑௜భ
൅ 𝜏௬೔భ, ଴

௏        𝑖𝑓 𝜋௜భ
ൌ 1, 𝜋௜మ

ൌ 1   ሺ𝑆 െ 𝑆 𝑐𝑎𝑠𝑒ሻ

𝑑௜భ
൅ 𝜏଴, ௬೔మ

௏        𝑖𝑓 𝜋௜భ
ൌ 2, 𝜋௜మ

ൌ 2   ሺ𝑅 െ 𝑅 𝑐𝑎𝑠𝑒ሻ

𝜏௬೔భ, ௬ሺ೔మషೃሻ
௏        𝑖𝑓 𝜋௜భ

ൌ 1, 𝜋௜మ
ൌ 3   ሺ𝑆 െ 𝑅𝑒 𝑐𝑎𝑠𝑒ሻ

𝜏଴, ௬ሺ೔మషೃሻ
௏         𝑖𝑓 𝜋௜భ

ൌ 2, 𝜋௜మ
ൌ 3   ሺ𝑅 െ 𝑅𝑒 𝑐𝑎𝑠𝑒ሻ

 𝜏௬ሺ೔భషೃሻ, ଴
௏         𝑖𝑓 𝜋௜భ

ൌ 3, 𝜋௜మ
ൌ 1   ሺ𝑅𝑒 െ 𝑆 𝑐𝑎𝑠𝑒ሻ

 𝜏௬ሺ೔భషೃሻ, ௬೔మ

௏       𝑖𝑓 𝜋௜భ
ൌ 2, 𝜋௜మ

ൌ 2   ሺ𝑅𝑒 െ 𝑅 𝑐𝑎𝑠𝑒ሻ

𝜏௬ሺ೔భషೃሻ, ௬ሺ೔మషೃሻ
௏     𝑖𝑓 𝜋௜భ

ൌ 3, 𝜋௜మ
ൌ 3   ሺ𝑅𝑒 െ 𝑅𝑒 𝑐𝑎𝑠𝑒ሻ

  

3. Task earliest available times (relative to the time when the shuttle becomes available): 

For ∀𝑖 ∈ ሼ1 … 𝑆ሽ, estimate 𝑎௜ based on current SL schedule and queue: if the storage tote is 

expected to arrive to the input buffer at time 𝑡௜ (with respect to the current time), then 𝑎௜ ൌ

maxሺ0, 𝑡௜ െ 𝑡0௫ሻ  where  𝑡0௫  is the shuttle’s earliest available time. Assign𝑎௜ ൌ 0  for  ∀𝑖 ∈

ሼ𝑆 ൅ 1 … 𝑆 ൅ 𝑅ሽ and ∀𝑖 ∈ ሼ𝑆 ൅ 𝑅 ൅ 1 … 𝑆 ൅ 𝑅 ൅ 𝑅𝑒ሽ. 

Pseudocode 

𝑇𝑎𝑠𝑘𝑠 ൌ ሼ1 … 𝑆 ൅ 𝑅 ൅ 𝑅𝑒ሽ  

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 ൌ ∅  

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ൌ 0  

𝐸௜ ൌ 0, 𝑖 ∈ 𝑇𝑎𝑠𝑘𝑠 /* estimated task completion times */ 

WHILE (𝑇𝑎𝑠𝑘𝑠 ് ∅) 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ൌ 0  

𝐿𝑎𝑠𝑡 ൌ 0  

𝑓௕௘௦௧ ൌ 𝐼𝑁𝐹𝐼𝑁𝐼𝑇𝑌  
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FOR ( 𝑖 ∈ 𝑇𝑎𝑠𝑘𝑠 )  

/* Skip task in FOR loop if it cannot be started due to storage precedence or 
relocation-retrieval precedence */ 

IF ((𝑖 ൑ 𝑆 AND 𝑖 ൐ 1) OR (𝑖 ∈ ሼ𝑆 ൅ 1 … 𝑆 ൅ 𝑅𝑒ሽ)) 

SKIP 𝑖 

END IF 

/* Time costs g(i) to start task i after completion of the last task */ 

𝑔ሺ𝑖ሻ ൌ maxሺ0, 𝑎௜ െ 𝑇𝑖𝑚𝑒ሻ ൅ 𝑐௅௔௦௧,௜  

/* Estimate the remaining makespan h(i) after task i is started, by temporarily 
assuming Closest-First rule is applied for scheduling the remaining tasks*/ 

ℎሺ𝑖ሻ ൌ 0  

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠 ൌ 𝑇𝑎𝑠𝑘𝑠 െ ሼ𝑖ሽ  

𝑡 ൌ 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ൅ 𝑔ሺ𝑖ሻ   /* Time progress in the remaining task services */ 

𝑖ଵ ൌ 𝑖  

WHILE ( 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠 ൌ ∅ )  

/* Record index of the first S task 𝑖ௌ in remaining: all other S tasks cannot 
be started earlier due to storage precedence*/ 

𝑖ௌ ൌ minሺ𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠ሻ  

𝑁𝑒𝑥𝑡 ൌ 0  

𝑓௕௘௦௧
ᇱ ൌ 𝐼𝑁𝐹𝐼𝑁𝐼𝑇𝑌  

FOR ( 𝑖ଶ ∈ 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠 )  

/* Skip task in FOR loop if it cannot be selected at the current 
sequence due to storage precedence or relocation precedence */ 

IF ((𝑖ଶ ൑ 𝑆 AND 𝑖ଶ ൐ 𝑖ௌ) OR 

(𝑖ଶ ∈ ሼ𝑆 ൅ 1 … 𝑆 ൅ 𝑅𝑒ሽ AND 

 𝑖ଶ ൅ 𝑅 ∈ 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠)) 

SKIP 𝑖ଶ 

END IF 

/* Select the next task which is expected to cause the smallest 
increment to remaining makespan*/ 

𝑓ᇱሺ𝑖ଶሻ ൌ maxሺ0, 𝑎𝑖2 െ 𝑡ሻ  ൅ 𝑐𝑖1, 𝑖2  

IF ( 𝑓ᇱሺ𝑖ଶሻ ൏ 𝑓௕௘௦௧
ᇱ  )  

𝑁𝑒𝑥𝑡 ൌ 𝑖ଶ 
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𝑓௕௘௦௧
ᇱ ൌ 𝑓ᇱሺ𝑖ଶሻ  

END IF 

END FOR 

/* Update the estimates for remaining makespan*/ 

Remove 𝑁𝑒𝑥𝑡 From 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠 

𝑡 ൌ 𝑡 ൅ maxሺ0, 𝑎ே௘௫௧ െ 𝑡ሻ ൅ 𝑐𝑖1,ே௘௫௧  

𝑖ଵ ൌ 𝑁𝑒𝑥𝑡  

END WHILE 

/* Add the service time of the last task to remaining makespan */ 

ℎሺ𝑖ሻ ൌ ℎሺ𝑖ሻ ൅ 𝑐𝑖1,଴  

/* Select the task with best (lowest) final compare value f = g + h */ 

𝑓ሺ𝑖ሻ ൌ 𝑔ሺ𝑖ሻ ൅ ℎሺ𝑖ሻ  

IF ( 𝑓ሺ𝑖ሻ ൏ 𝑓௕௘௦௧ )  

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ൌ 𝑖 

𝑓௕௘௦௧ ൌ 𝑓ሺ𝑖ሻ  

END IF 

END FOR 

Add  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 To 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 

Remove  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 from 𝑇𝑎𝑠𝑘𝑠 

𝐸௜ ൌ 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ൅ maxሺ0, 𝑎ௌ௘௟௘௖௧௘ௗ െ 𝑇𝑖𝑚𝑒ሻ ൅ 𝑐𝐿𝑎𝑠𝑡,ௌ௘௟௘௖௧௘ௗ  

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ൌ 𝐸௜   

𝐿𝑎𝑠𝑡 ൌ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑  

END WHILE 

/* Y: shuttle end location */ 

𝑖ி ൌ 𝑇ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑡𝑎𝑠𝑘 𝑖𝑛 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑   

𝑌 ൌ ൜
𝑦௜ಷ

 ,      𝑖𝑓 𝑖ி 𝑖𝑠 𝑆
0 ,      𝑖𝑓 𝑖ி 𝑖𝑠 𝑅

  

RETURN  𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑, 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛, 𝐸௜ , 𝑌  
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Appendix III.c 𝐏||𝐂𝐦𝐚𝐱-A* Algorithm for Tier-transfer Allocation and Scheduling 

Consider a tier-to-tier system of 𝑋 tiers, 𝐽 shuttles (𝐽 ൏ 𝑋) and 𝑇 transfer-needed tiers (𝑇 ൑ 𝑋 െ

𝐽 ). Record the following system states: the tiers that need tier-transfer services  𝑿𝑻  and tiers 

currently have shuttles  𝑿𝑰 , shuttles’ expected available times 𝑡0௫
௏  and initial locations when 

become available 𝑦0௫
௏  on their current tiers 𝑥 ∈  𝑿𝑰 , and the shuttle lift’s expected available 

time 𝑡0௏௅ and initial location when become available 𝑥0௏௅.  

The following algorithm inputs are developed: 

𝑀௫ : The estimated service time of the tasks on each tier from the time when a shuttle is available 

on this tier. Based on A* Search Algorithm illustrated in Section 5.6.2, there are: 

𝑀௫ ൌ 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛: ቊ
 𝑓஺∗

௏ ሺ𝑥, 𝑦0௫ሻ  , 𝑖𝑓 𝑥 ∈ 𝑿𝑰

 𝑓஺∗
௏ ሺ𝑥, 𝑌ሻ 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 ∀𝑎௜ ൌ 0, 𝑖𝑓 𝑥 ∈ 𝑿𝑻 

𝑌௫ : The shuttle’s end location on each tier after completing this tier’s task set according to A* 

Search Algorithm, returned from the above 𝑓஺∗
௏  functions. 

𝐷௫బ, ௫ೕ,௫ : The tier-transfer time costs from the shuttle’s current tier 𝑥௝ to the target tier 𝑥, given the 

shuttle lift is initially at tier 𝑥଴. Computed as follows: 

𝐷௫బ, ௫ೕ,௫  ൌ 𝜏௒ೣ
ೕ

,௒
௏ ൅ 𝜏௫బ, ௫ೕ

௏௅ ൅ ቀ𝜏௫ೕ,௫
௏௅ ൅ 2𝜔௏௅ቁ 

Pseudocode 

STEP 1: Allocate Tiers to Shuttles (only necessary for 𝑱 ൑ 𝑻 cases, otherwise skip to STEP 2) 

𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑ሾ𝑗ሿ ൌ ∅, ∀𝑗 ∈ ሼ1 … 𝐽ሽ  

𝑇𝑜𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒 ൌ 𝑿𝑻  

Sort 𝑇𝑜𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒 By 𝑀௫  values in non-decreasing order. 

/* estimated initial makespan of each shuttle */ 

𝐹௝
௏ ൌ 𝑡0௫

௏ ൅ 𝑀௫ , ∀𝑥 ∈ 𝑿𝑰  

/* create an initial allocation solution by allocating transfer tiers to shuttles with minimum 
workloads */ 

FOR (𝑥 𝑖𝑛 𝑿𝑻)  

𝑗∗ ൌ 𝑗 | min 𝐹௝
௏ , ∀𝑗  
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𝐹௝∗
௏ ൌ 𝐹௝∗

௏ ൅ 𝑌௫  

Add 𝑥 To 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑ሾ𝑗ሿ  

END FOR 

𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 ൌ
∑ ሺ𝑡0௫

௏ ൅ 𝑀௫ሻ௫∈𝑿𝑰 ൅ ∑ 𝑀௫௫∈𝑿𝑻

𝐽 ൅ 𝑇
 

𝑆𝑡𝑜𝑝𝑆𝑒𝑎𝑟𝑐ℎ ൌ FALSE 

𝑇𝑖𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ൌ 1  

𝑆𝑘𝑖𝑝𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑠 ൌ ∅  

WHILE (𝑆𝑡𝑜𝑝𝑆𝑒𝑎𝑟𝑐ℎ ൌ FALSE) 

/* Initialize search scope and search results */ 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ൌ ሼ1 … 𝐽ሽ െ 𝑆𝑘𝑖𝑝𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑠  

𝑉ெ௢௩௘ ൌ 𝐼𝑁𝐹𝐼𝑁𝐼𝑇𝑌  

𝑉ௌ௪௔௣ ൌ 𝐼𝑁𝐹𝐼𝑁𝐼𝑇𝑌  

Sort 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 By 𝐹௝
௏ values in non-decreasing order. 

𝐽௠௔௫ ൌ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠ሾ1ሿ  

𝐽௠௜௡ ൌ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠ሾ𝐿𝑎𝑠𝑡ሿ  

Sort 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑ሾ 𝐽௠௔௫ሿ By 𝑀௫ values in non-decreasing order. 

 

/* Search for the best tier to Move from shuttle 𝐽௠௔௫  to 𝐽௠௜௡  in order to reduce max 
makespan, which is the tier with minimum makespan in 𝐽௠௔௫*/ 

IF (𝑇𝑖𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ൌ 1) 

𝑥ெ௢௩௘ ൌ 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑ሾ 𝐽௠௔௫ሿሾ𝐿𝑎𝑠𝑡ሿ  

END IF 

/* Search for the best tiers to Swap between shuttle 𝐽௠௔௫ and 𝐽௠௜௡ in order to reduce max 
makespan: 𝑥ௌ௪௔௣ଵ denotes a single tier in 𝐽௠௔௫  while  𝑥ௌ௪௔௣ଶ denotes a tier set in 𝐽௠௜௡*/ 

𝑥ௌ௪௔௣ଵ ൌ 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑ሾ 𝐽௠௔௫ሿሾ𝑇𝑖𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟ሿ , 𝑊ௌ௪௔௣ଵ ൌ 𝑀௫ೄೢೌ೛భ
, 

𝑥ௌ௪௔௣ଶ ൌ ∅ ,  𝑊ௌ௪௔௣ଶ ൌ 0   

FOR ( 𝑥 ∈ 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑ሾ 𝐽௠௜௡ሿ )  

IF (𝑀௫ ൅ 𝑊ௌ௪௔௣ଶ ൏ 𝑊ௌ௪௔௣ଵ) 

Add 𝑥 To 𝑥ௌ௪௔௣ଶ 

𝑊ௌ௪௔௣ଶ ൌ 𝑊ௌ௪௔௣ଶ ൅ 𝑀௫  
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ELSE  

BREAK FOR 

END IF 

END FOR 

/* Evaluate Move and Swap options by improvements to maximum makespan*/ 

𝑉ெ௢௩௘ ൌ maxൣ൫𝐹௃೘ೌೣ
௏ െ 𝑀௫ಾ೚ೡ೐

൯, ൫𝐹௃೘೔೙
௏ ൅ 𝑀௫ಾ೚ೡ೐

൯൧  

𝑉ௌ௪௔௣ ൌ max ቂቀ𝐹௃೘ೌೣ
௏ െ 𝑀௫ೞೢೌ೛భ

൅ 𝑊௫ೞೢೌ೛మ
ቁ , ቀ𝐹௃೘೔೙

௏ ൅ 𝑀௫ೞೢೌ೛భ
െ 𝑊௫ೞೢೌ೛మ

ቁቃ   

 

/* Compare Move and Swap options */ 

IF (minሺ𝑉ெ௢௩௘, 𝑉ௌ௪௔௣ሻ ൏ 𝐹௃೘ೌೣ
௏ ) 

IF (𝑉ௌ௪௔௣ ൏ 𝑉ெ௢௩௘) 

Move tier 𝑥௠௢௩௘ from 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑ሾ 𝐽௠௔௫ሿ to 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑ሾ 𝐽௠௜௡ሿ 

𝐹௃೘ೌೣ
௏ ൌ 𝐹௃೘ೌೣ

௏ െ 𝑀௫ಾ೚ೡ೐
  

𝐹௃೘೔೙
௏ ൌ 𝐹௃೘೔೙

௏ ൅ 𝑀௫ಾ೚ೡ೐
  

ELSE 

Swap tier  𝑥௦௪௔௣ଵ  from  𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑ሾ 𝐽௠௔௫ሿ  and tier(s)  𝑥ௌ௪௔௣ଶ from 
 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑ሾ 𝐽௠௜௡ሿ 

𝐹௃೘ೌೣ
௏ െ 𝑀௫ೞೢೌ೛భ

൅ 𝑊௫ೞೢೌ೛మ
  

𝐹௃೘೔೙
௏ ൅ 𝑀௫ೞೢೌ೛భ

െ 𝑊௫ೞೢೌ೛మ
  

END IF 

/* Initialize search scope for the next iteration */ 

𝑆𝑘𝑖𝑝𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑠 ൌ ∅  

𝑇𝑖𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ൌ 1  

ELSE 

/* If no improvement is found in both options, check the shuttle with the second 
smallest workload */ 

IF ( |𝑆𝑘𝑖𝑝𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑠| ൏ 𝐽 െ 1) 

Add 𝐽௠௜௡ To 𝑆𝑘𝑖𝑝𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑠 

/* If no improvement is found after all shuttles are searched, check the tier with 
the second largest makespan in 𝐽௠௔௫ */ 

ELSE IF ( 𝑇𝑖𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ൏ |𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑ሾ 𝐽௠௔௫ሿ| ) 
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𝑇𝑖𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ൌ 𝑇𝑖𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ൅ 1  

𝑆𝑘𝑖𝑝𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑠 ൌ ∅  

ELSE 

𝑆𝑡𝑜𝑝𝑆𝑒𝑎𝑟𝑐ℎ ൌ TRUE 

END IF 

END IF 

END WHILE 

STEP 2: Shuttle Lift Scheduling and Estimate Shuttle Makespans 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 ൌ 𝑿𝑻  

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 ൌ ∅  

/* location and time when each shuttle finished serving tasks on its current tier */ 

𝑥௝
௏ ൌ 𝑿𝑰ሺ𝑗ሻ,   𝑦௝

௏ ൌ 𝑌𝑿𝑰ሺ௝ሻ,   𝑡௝
௏ ൌ 𝑡0𝑿𝑰ሺ௝ሻ

௏ ൅ 𝑀𝑿𝑰ሺ௝ሻ, ∀𝑗 ∈ ሼ1,2 … 𝐽ሽ  

/* location and time when the shuttle lift finished its current tier-transfer service */ 

𝑥௏௅ ൌ 𝑥0௏௅,   𝑡௏௅ ൌ 𝑡0௏௅  

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ൌ 0  

WHILE (𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 ് ∅) 

/* check earliest time to start the next tier-transfer service*/ 

𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡 ൌ maxൣ𝑚𝑖𝑛൫𝑡௝
௏൯ , 𝑡௏௅൧  

𝐷𝑒𝑛𝑜𝑡𝑒 𝑥∗, 𝑗∗ 𝑎𝑠 𝑡ℎ𝑒 𝑡𝑖𝑒𝑟 𝑎𝑛𝑑 𝑠ℎ𝑢𝑡𝑡𝑙𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑠𝑒𝑟𝑣𝑖𝑐𝑒  

IF ( 𝐽 ൑ 𝑇)  

/* Apply A* Search Algorithm for 𝐽 ൑ 𝑇 cases based on allocations from STEP 1*/ 

𝐷𝑒𝑛𝑜𝑡𝑒 𝑗௫ 𝑎𝑠 𝑡ℎ𝑒 𝑠ℎ𝑢𝑡𝑡𝑙𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡𝑖𝑒𝑟 𝑥 𝑖𝑛 𝑆𝑇𝐸𝑃 1  

FOR (𝑥 ∈ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠) 

𝐷𝑒𝑛𝑜𝑡𝑒 𝑔ሺ𝑥ሻ 𝑎𝑠 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑥  

𝐷𝑒𝑛𝑜𝑡𝑒 𝑓ሺ𝑥ሻ 𝑎𝑠 𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑖𝑓 𝑥 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑛𝑜𝑤   

𝑔ሺ𝑥ሻ ൌ max൫𝑡௝ೣ
௏ െ 𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡, 0൯ ൅ 𝐷௫ೇಽ , ௫ೕೣ 

ೇ ,   ௫  

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑒𝑟𝑠 ൌ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 െ ሼ𝑥ሽ  

/* creates initial device states for remaining makespan estimation */ 

𝑟𝑥௏௅ ൌ 𝑥,   𝑟𝑡௏௅ ൌ 𝑔ሺ𝑥ሻ  
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ቊ
𝑟𝑥௝

௏ ൌ 𝑥,   𝑟𝑦௝
௏ ൌ 𝑌௫ ,   𝑟𝑡௝

௏ ൌ  𝑟𝑡௏௅ ൅ 𝑀௫ ,   𝑖𝑓 𝑗 ൌ 𝑗௫

 𝑟𝑥௝
௏ ൌ 𝑥௝

௏,   𝑟𝑦௝
௏ ൌ 𝑦௝

௏,   𝑟𝑡௝
௏ ൌ 𝑡௝

௏, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

/* estimate makespan by temporarily assuming the remaining tiers are 
selected one-at-a-time by the smallest transfer service time */ 

WHILE (𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑒𝑟𝑠 ് ∅) 

𝑡 ൌ maxൣ𝑚𝑖𝑛൫𝑟𝑡௝
௏൯ , 𝑟𝑡௏௅൧  

𝑟∗ ൌ  𝑟 |  min ቂmax൫𝑡௝ೝ
௏ െ 𝑡, 0൯ ൅ 𝐷௥௫ೇಽ , ௥௫ೕೝ 

ೇ ,   ௥ ቃ, 

∀𝑟 ∈ 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑒𝑟𝑠  

/* update device states in the estimation */ 

𝑟𝑡௏௅ ൌ max ቀ𝑡௝ೝ∗
௏ െ 𝑡, 0ቁ ൅ 𝐷௥௫ೇಽ , ௫ೕೝ∗

ೇ ,   ௥∗  

𝑟𝑡௝ೝ∗
௏ ൌ 𝑟𝑡௏௅ ൅ 𝑀௥∗  

𝑟𝑥௏௅ ൌ 𝑟∗,  𝑥௝ೝ∗
௏ ൌ 𝑟∗,   𝑦௝ೝ∗

௏ ൌ 𝑌௥∗ 

Remove 𝑟∗ From 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑒𝑟𝑠 

END WHILE 

/* record estimated total makespan if tier 𝑥 is selected*/ 

𝑓ሺ𝑥ሻ ൌ max൫𝑟𝑡௝
௏൯  

END FOR 

𝑥∗ ൌ 𝑥 | minሾ𝑓ሺ𝑥ሻሿ , ∀𝑥 ∈ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠  

𝑗∗ ൌ 𝑗௫∗  

/* record best tier 𝑥∗ and shuttle 𝑗∗ with smallest estimated total makespan*/ 

ELSE  

/* Apply MaxMS-Closest policy for 𝐽 ൐ 𝑇 cases: select the tier with the most workload, 
then select the shuttle with smallest transfer service time*/ 

𝑥∗ ൌ 𝑥 | minሾ𝑀௫ሿ , ∀𝑥 ∈ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠  

𝑗∗ ൌ 𝑗 |  min ቂmax൫𝑡௝
௏ െ 𝑡𝑖𝑚𝑒, 0൯ ൅ 𝐷௫ೇಽ , ௫ೕ

ೇ,   ௫∗ቃ , ∀𝑗  

END IF 

/* record shuttle lift schedule as 2-dimension array: [tier, shuttle, estimated completion] */ 

Add ൣ𝑥∗, 𝑗∗, 𝑡௝∗
௏ ൧ To 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 

Remove 𝑥∗ From 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 

/* update device states */ 
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𝑡௏௅ ൌ 𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡 ൅ max൫𝑡௝∗
௏ െ 𝑡𝑖𝑚𝑒, 0൯ ൅ 𝐷௫ೇಽ , ௫ೕ∗

ೇ ,   ௫∗  

𝑡௝∗
௏ ൌ 𝑡௏௅ ൅ 𝑀௫∗  

𝑥௏௅ ൌ 𝑥∗,  𝑥௝∗
௏ ൌ 𝑥∗,   𝑦௝∗

௏ ൌ 𝑌௫∗ 

END WHILE 

RETURN 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑  
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