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Dissertation Abstract

A Novel Finite Element Discretization of Domains with Spheroidal

Geometry

Necibe Tuncer

Doctor of Philosophy, May 10, 2007
(M.A.,Dokuz Eylul University, 2001)
(B.S., Dokuz Eylul University, 1999)

66 Typed Pages

Directed by Amnon J. Meir

We describe and analyze a new finite element discretizations for domains with spheroidal

geometry. In particular, we describe how the method can be used to approximate solutions

as well as eigenvalues and eigenfunctions of partial differential equations posed on the sphere,

ellipsoidal shell, and cylindrical shell. These novel, so-called, “radially projected finite ele-

ments” are particularly attractive for numerical simulations since the resulting finite element

discretization is “logically rectangular” and may be easily implemented or incorporated into

existing finite element codes.

iv



Style manual or journal used Journal of Approximation Theory (together with the style

known as “aums”). Bibliograpy follows van Leunen’s A Handbook for Scholars.

Computer software used The document preparation package TEX (specifically LATEX)

together with the departmental style-file aums.sty.

v



Table of Contents

List of Figures vii

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Discretization of the Domain and Basis Elements . . . . . . . . . . . 7
1.2.2 Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Smooth Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 The Radial Projection 24
2.1 Properties of the Radial Projection . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Some Examples of Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Mesh on the Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Meshes on Ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 Mesh on the Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.4 Mesh on the Disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Analysis 37
3.1 Finite Element Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Numerical Experimetns 50
4.1 Finite elements on the sphere . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Conclusion 57

Bibliography 58

vi



List of Figures

1.1 A uniform triangulation of the square . . . . . . . . . . . . . . . . . . . . . 9

1.2 Linear basis element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 A transition map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Mesh on the box and the sphere. . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Faces of the box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 F+1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 F+1 and P (F+1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Geodesic distance between a and b. . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Geodesic and Euclidean distance of a and b . . . . . . . . . . . . . . . . . . 32

2.7 Mesh on the ellipsoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Mesh on the cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 Mesh on the disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Spherical triangle, K and planar triangle Kh. . . . . . . . . . . . . . . . . . 42

4.1 Basis functions on the sphere . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Numerical approximation to µ(a) = cosa1. . . . . . . . . . . . . . . . . . . . 53

vii



Chapter 1

Introduction

1.1 Overview

Mathematical models of many engineering and scientific problems usually consist of

partial differential equations and some given conditions. The solution of such problems can

be approximated by numerical solution techniques. Scientific computing gained significant

importance in studies of physical problems. The Finite Element Method (FEM) is a nu-

merical approach to approximate the solution of a partial differential equation. Compared

to the Finite Difference Method, the FEM is a fairly new method. FEM has become a

favorite method immediately, since it is very easy to use even for complex domains, for

general boundary value problems, and also has a strong theoretical basis which yields easy

derivation of error estimates. The FEM is very nicely structured so that a general computer

program can be used to approximate solutions of various problems easily. Despite all the ad-

vantages of the FEM, it is mainly convenient for domains that have a polyhedral geometry.

Thus, it has mainly been applied to the polygonal and polyhedral domains. Many studies

have been performed for FEM disretization of curved domains or domains with spherical

geometry. However, the results of these studies have focused on approximating the domain

by a polygonal domain, rather than applying FEM to these exact domains. Recently, there

has been growing interest in finite element discretization of partial differential equations de-

fined on the sphere, since these equations have many applications in areas such as climate

modeling or weather forecast and various engineering problems.
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1.1.1 Background

Mathematical weather models or climate models consist of partial differential equations

posed on a domain which is assumed to be a sphere for the obvious reason. Lately, the study

of numerically approximating the solution of partial differential equations defined on the

sphere has become a favorite subject. However, this is a challenging problem no matter

which numerical method is being applied to approximate the solutions of the equations

because of the geometry of the sphere. Finite difference methods, spectral methods, finite

element methods, finite volume methods are all numerical techniques that have been applied

to approximate the solutions of the partial differential equations on the sphere. Grid gener-

ation is an important part of approximating solutions of partial differential equations, since

the accuracy of numerical solutions depend on the quality of the grid. Various researchers

have used different methods for mesh generations on the sphere, such as, constructing the

finite element basis directly on spherical triangles by using barycentric coordinate systems

[10], approximating, not just the sphere, but any surface with a polyhedral surface, [9] also

[6] and [7]. Both of these approaches, described in [10],[9], yield the optimal convergence

rate (which is 2 if linear finite elements are used to approximate the solution, the error

is measured in the L2 norm, and the solution is smooth enough). Although all these ap-

proaches result in a nice mesh, they suffer from some weaknesses, such as not discretizing

the sphere exactly or requiring multiple computations for each refinement step. Our work

aims to overcome these difficulties by developing a new method that discretizes the sphere

exactly and that can also be easily implemented and incorporated into existing finite element

codes.
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1.1.2 Our Contribution

Our work is motivated by a desire for exact finite element discretization of the sphere

which is yielding a conforming finite element method. We develop and analyze a method

which can also be easily implemented and incorporated into an existing code. In our ap-

proach, we disceretize the sphere exactly, rather than approximate it, which has not been

done before. The method is also very easy to implement if one knows how to implement

finite element methods on planar domains. It requires very little computational effort since

all computations are done on a logically rectangular domain. Our primary objective is to

develop a finite element discretization of a sphere or a ball. Our method can easily be gen-

eralized to other domains, such as cylinders, ellipsoids or tori, and can be used for problems

posed on domains with spherical, cylindrical, or toroidal holes. In this work we present our

approach for the discretization of the sphere, and the same method can be also used for

cylinders, ellipsoids and tori. Basically, one can apply this discretization to any domain

that has a spherical, cylindrical, ellipsoidal, or toroidal geometry, which we call spheroidal

geometry.

We develop and analyze a novel finite element discretization of domains with spheroidal

geometry .We present some computational examples related to some of these domains. We

first give an introduction to finite element method in section 1.2, introduce smooth manifolds

and Laplace Beltrami operator in section 1.3. In chapter 2 we introduce our new method,

in chapter 3 we analyze the method, derive error estimates, and in chapter 4 we present

numerical results from computer experiments.
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1.2 The Finite Element Method

In this section, we introduce the finite element method and illustrate it with the classical

Laplace’s equation on a bounded, connected, open domain Ω in R
n. Consider the following

boundary value problem,

−∆u = f in Ω (1.1)

u = 0 on ∂Ω (1.2)

which is also known as Poisson’s equation. In (1.1), ∆ is the Laplacian, ∂Ω is the boundary

of the domain Ω, and u is the unknown function. The right hand side f is a real valued

function defined on the open subset Ω of R
n, we say that f ∈ C

r(Ω), if all the kth order

(classical) partial derivatives exist and are continuous for k ≤ r, where r, k are positive

integers. We call any function u ∈ C
2(Ω) that satisfies the differential equation and the

boundary condition a classical solution.

Consider the Lebesgue measure of R
n, let Ω be a Lebesgue measurable domain, and

let f be a Lebesgue-integrable function, then we denote the Lebesgue integral by

∫

Ω
fdΩ

where dΩ denotes the Lebesgue measure. We say that f is in Lp(Ω) , for 1 ≤ p < ∞ if
(∫

Ω
|f |pdΩ

)1/p

<∞. The set, Lp(Ω) is a Banach space, with the following norm,

‖f‖Lp(Ω) :=

(∫

Ω
|f |pdΩ

)1/p

.

4



The Sobolev spaces Wm,p(Ω) are defined to be the set of all functions f ∈ Lp(Ω) that have

weak derivatives in Lp(Ω) up to order m.

Wm,p(Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) |α| ≤ m},

whereDα is a multi index notation for partial derivatives (in the weak sense), α = (α1, α2, . . . , αn)

is an n-tuple of non-negative integers, and the length of α is denoted by |α| = α1 + α2 +

· · · + αn. The Sobolev space Wm,p(Ω) equipped with the norm

‖f‖W m,p(Ω) :=





∑

|α|≤m

‖Dαf‖p
Lp(Ω)





1/p

,

is a Banach Space. We denote by Wm,p
0 (Ω) the closure of C

m
c (Ω) in Wm,p(Ω). We denote

by C
m
c (Ω) the space of functions u ∈ C

m(Ω) that have compact support. Also, we denote

by Hm(Ω), the spaces Hm(Ω) = Wm,2(Ω), these are the Hilbert spaces. Note that H1
0 (Ω)

is the subspace of H1(Ω) and consists of the functions that are zero on ∂Ω in the sense of

traces.

A variational formulation of problem (1.1), can be derived by multiplying the both

sides of (1.1) by functions v in H1
0 (Ω). Then by integration by parts we get,

∫

Ω
∇u · ∇vdΩ =

∫

Ω
f · vdΩ.

5



Now the solution u is required to only be in H1
0 (Ω), which means we look for a solution in

a bigger set. In this case we say that u is a weak solution of (1.1). The new problem:

Find u ∈ H1
0 (Ω) such that

∫

Ω
∇u · ∇vdΩ =

∫

Ω
f · vdΩ ∀v ∈ H1

0 (Ω) (1.3)

This is called a weak or variational formulation of (1.1). We define the bilinear form

a(u, v) : H1
0 (Ω)×H1

0(Ω) → R as a(u, v) :=

∫

Ω
∇u ·∇vdΩ, which is also known as the energy

inner product. Similarly, (f, v) :=

∫

Ω
f · vdΩ, is the standard inner product in L2(Ω). We

say that a bilinear form a(u, v) : H1
0 (Ω) ×H1

0 (Ω) → R is elliptic if there exists α > 0 such

that

a(v, v) ≥ α‖v‖2
H1(Ω) ∀v ∈ H1

0 (Ω).

We say that the the bilinear form is continuous or bounded if there exists a constant C > 0

such that

a(u, v) ≤ C‖u‖H1
0 (Ω)‖v‖H1

0 (Ω).

Clearly, a(·, ·) induces a norm, which is equivalent to the norm of the Hilbert space H1
0 (Ω).

This norm

‖v‖a =
√

a(v, v)

is called the energy norm. The question we need to answer is the relationship between (1.1)

and its variational problem (1.3). Let f ∈ L2(Ω) and u ∈ H2(Ω) then u satisfies (1.3) if

and only if u is a solution of (1.1).

Within the theory of functional analysis, one can prove the following theorem, which

is known as Riesz Representation theorem in the literature [12].

6



Theorem 1.1 Let H be a Hilbert space and let L be a continuous linear functional L : H →

R, s.t. L(u) = (u, v) ∀u ∈ H then L is an isomorphism.

Theorem 1.2 There exists a unique solution to (1.3).

Proof: The bilinear form a(·, ·) is a bounded, elliptic such that (H1
0 (Ω), a(·, ·))is a Hilbert

space. Then the theorem follows as a consequence of Riesz representation theorem. �

To approximate the solution of (1.3), we construct the discrete variational problem in

a finite dimensional subspace of H1
0 (Ω). Let χ be the finite dimensional subspace of H1

0 (Ω),

then the discrete analog of problem (1.3) is :

Find uh ∈ χ such that

∫

Ω
∇uh · ∇vhdΩ =

∫

Ω
f · vhdΩ ∀vh ∈ χ. (1.4)

It is worth noting that by (1.4), we construct a discrete scheme for approximating the

solution of (1.1). Also, at this point we need to remark that (1.4) has a unique solution,

since χ together with the bilinear form, ah(uh, vh) :=
∫

Ω ∇uh · ∇vhdΩ is a Hilbert space.

1.2.1 Discretization of the Domain and Basis Elements

Finite element method can be used to solve the discrete problem (1.4). One important

step is to define, χ, the finite dimensional subspace of H1
0 (Ω) . We define χ by first parti-

tioning the domain. For simplicity, hereinafter let Ω be a convex polygonal domain in R
2.

Let K1,K2, . . . ,Kn be triangles or quadrilaterals such that they form a partition of Ω, i.e

Ω =

n
⋃

i=1

Ki and K̊i

⋂

K̊j = ∅.

7



For any intersection of two triangles or quadrilaterals Ki and Kj , if the intersection consists

of one point then it is a common vertex, if the intersection consists of more than one

point then it is a common edge. Let T j = {Kj
1,Kj

2, . . . ,Kj
nj} , j ∈ N denote the family

of triangulation where j denotes the refinement step. We say that the mesh size of the

triangulation T at the jth refinement step is hj where

hj = max
Kj

i∈T j

hKj
i

, and hKj
i

= diam(Kj
i ),

here diam(Kj
i ) = sup

x,y∈Kj
i

‖x− y‖.

The quantity hj is a measure of how refined the mesh is. The smaller hj is, the finer

the mesh. Let ρKj
i

denote the radius of inscribed circle in Kj
i . We say that a family of

triangulation T j , j ∈ N is shape regular if there exists a constant κ > 0, independent of j

such that for each Kj
i ∈ T j, we have

hKj
i

ρKj
i

≤ κ.

Figure 1.1 shows a uniform triangulation of the square. Usually we choose the finite

dimensional subspace to be the space of piecewise polynomials on the domain Ω. Piece-

wise linear or quadratic functions are widely used in defining these subspaces. Figure 1.2

shows the linear basis element. For instance, define χ to be the space of piecewise linear

polynomials, that is:

χ = {ω : ω is piecewise linear continuous polynomials and ω = 0 on ∂Ω}.

8
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Figure 1.1: A uniform triangulation of the square

Let {ωi}n
i be a basis for χ, then for any uh ∈ χ we have uh =

n
∑

i

uiωi. Thus, (1.4)

reduces to a linear system of equations of the following form

Au = f

where A is a n×n matrix whose entries are Aij = ah(ωj, ωi), and u and f are n× 1 vectors

of the form u(i) = ui, f(i) = (f, ωi). Since the bilinear form ah(·, ·) is symmetric and elliptic,

the matrix A is symmetric and positive definite, which assures the existence and uniqueness

of a solution of (1.4). The matrix A is also a sparse matrix, if the basis functions are chosen

to have compact support. In the following section we talk about the error estimates in the

finite element method.
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Figure 1.2: Linear basis element

1.2.2 Error Estimates

Let uh be the solution of (1.4) and u be the exact solution of (1.3), we first observe

the orthogonality between u − uh and uh in terms of the energy inner product. Simply,

subtracting, (1.4) from (1.3), we get,

a(u− uh, vh) = 0, ∀vh ∈ χ. (1.5)

The following lemma, which is known as Cea’s lemma, plays a significant role in estab-

lishing error estimates in finite element method.

Lemma 1.1 (Cea’s Lemma) Let uh be the solution of (1.4) and u be the exact solution of

(1.3), then

‖u− uh‖H1(Ω) ≤
C

α
inf

vh∈χ
‖u− vh‖H1(Ω).

10



Proof: The bilinear form is elliptic, a(u−uh, u−uh) ≥ α‖u−uh‖2
H1(Ω) and a(u−uh, u−uh) =

a(u−uh, u−vh), since a(u−uh, uh−vh) = 0 from (1.5) and the bilinear form is continuous,

that is,

a(u− uh, u− vh) ≤ C‖u− uh‖H1(Ω)‖u− vh‖H1(Ω)

α‖u− uh‖2
H1(Ω) ≤ C‖u− uh‖H1(Ω)‖u− vh‖H1(Ω)

‖u− uh‖H1(Ω) ≤ C

α
‖u− vh‖H1(Ω).

�

Cea’s Lemma states that the solution of (1.4) is a best approximation to the solution of

(1.3) by an element of χ. Since, Ω is a convex polygonal domain in R
2, by Sobolev Embed-

ding theorem, H2(Ω) is continuously imbedded in C(Ω̄). Thus, for every u ∈ H2(Ω), there

exists a uniquely defined interpolation operator, Iu, associated with the nodal points. In the

theory of finite elements one can prove the following theorem which states the convergence

rates of the finite element method [11].

Theorem 1.3 Let u ∈ H2(Ω) and T be a shape regular triangulation of Ω, and I be

an interpolation operator I : H2(Ω) → Pt−1, where Pt−1 denotes the space of piecewise

polynomial functions of degree ≤ t− 1, then there exists a constant c such that

‖u− Iu‖Hm(Ki) ≤ cht−m|u|Ht(Ki) for u ∈ H2(Ω), 0 ≤ m ≤ t, t = 2.

11



1.3 Smooth Manifolds

We are interested in finite element discretization of spheres, ellipsoids, cylinders and tori

or geometries that we generally call spheroidal geometries. Spheres are smooth manifolds in

R
3, or genereally in R

n. In this section, we give a brief introduction to manifolds and define

the Laplace-Beltrami operator on smooth manifolds. Before introducing smooth manifolds,

let’s first define topological manifolds.

Definition 1.1 A set X together with the collection of its subsets, J , form a topology if

• X, ∅ ∈ J ,

• union of any sets that are in J is also in J

• the intersection of any two sets that are in J is also in J .

We call these sets that are in J the open sets.

A special case of topological spaces is a Hausdorff space. It is a topological space with

the property that for every two distinct points x, y in X, there exists an open neighborhood

U of x and an open neighborhood V of y, which are distinct as well. The definition of

k-dimensional topological manifold, M 6= ∅, M ⊂ R
n, is given in [1] as a Haussdorff, second

countable topological space that is locally homeomorphic (one-to-one, onto, continuous and

has a continuous inverse) to R
k. In other words, topological manifolds are the spaces that

locally look like Euclidean spaces.

Example The unit sphere, S2, in R
3 is a 2-dimensional topological manifold.

The unit sphere, S2, is the set of unit vectors in R
3, that is

S2 = {x = (x1, x2, x3), x ∈ R
3 : |x| = 1}.

12



The unit sphere, S2, is by definition a topological subspace of R
3. Thus, it is Haussdorff

and second countable. We need to show that it is locally Euclidean. To show that it is

locally homeomorphic to R
2, we need to show that for every point p in S2, there exists a

homeomorphism, ϕ : U ⊂ S2 → V ⊂ R
2 between the open neighborhood U of p and a open

subset V of R
2. Let U+

i denote the subset of S2 such that ith coordinate is positive, for

i = 1, 2, 3. Similarly, let U−
i denote the subset of S2 such that ith coordinate is negative, for

i = 1, 2, 3,

U+
i = {(x1, x2, x3) ∈ S2 : xi > 0} i = 1, 2, 3,

U−
i = {(x1, x2, x3) ∈ S2 : xi < 0} i = 1, 2, 3.

Let ϕU+
i

: U+
i → R

2 denote the homeomorphisms from U+
i to ϕU+

i
(U+

i ) ⊂ R
2, for i = 1, 2, 3,

which are defined as

ϕU+
1

(x1, x2, x3) = (x2, x3), ϕ−1
U+

1

(x2, x3) = (
√

1 − (x2
2 + x2

3), x2, x3),

ϕU+
2

(x1, x2, x3) = (x1, x3), ϕ−1
U+

2

(x1, x3) = (x1,
√

1 − (x2
1 + x2

3), x3),

ϕU+
3

(x1, x2, x3) = (x1, x2), ϕ−1
U+

3

(x1, x2) = (x1, x2,
√

1 − (x2
1 + x2

2)),

ϕU−

1
(x1, x2, x3) = (x2, x3), ϕ−1

U−

1

(x2, x3) = (−
√

1 − (x2
2 + x2

3), x2, x3),

ϕU−

2
(x1, x2, x3) = (x1, x3), ϕ−1

U−

2

(x1, x3) = (x1,−
√

1 − (x2
1 + x2

3), x3),

ϕU−

3
(x1, x2, x3) = (x1, x2), ϕ−1

U−

3

(x1, x2) = (x1, x2,−
√

1 − (x2
1 + x2

2)).

Thus, the unit sphere in R
3 is 2-dimensional topological manifold.

13



Let U be an open subset of M and let ϕ : U → ϕ(U) ⊂ R
k be a homeomorphism then

we call the pair (U,ϕ) a chart. If p is a point in U we say that the pair (U,ϕ) is a chart at

p, and we call U the coordinate neighborhood of p, and we call the Cartesian coordinates

of p, ϕ(p) = (ϕ1(p), ϕ2(p), . . . , ϕk(p)) = (x1, x2, . . . , xk) ∈ R
k the coordinates of p.

Definition 1.2 A function f : M → R is continuous at p ∈M , if for some chart (U,ϕ) at

p, f ◦ ϕ−1 : ϕ(U) → R is continuous at ϕ(p). The function f : M → R is continuous on

the open set U ⊂M , if it is continuous at all points p in U .

If M is a topological manifold, the notion of a continuous function f : M → R makes

sense, but the notion of a differentiable function does not, since differentiablity property

of a function is not invariant under homeomorphism. We need to add more features to a

topological manifold and get a smooth manifold. We say that f is smooth, if f ∈ C
∞(U),

that is if f ∈ C
r(U) for every r. The function f is said to be a diffeomorphism, if f and its

inverse f−1 are smooth.

Definition 1.3 Let (U,ϕ) and (V,ψ) be two charts, such that U
⋂

V 6= ∅, the charts (U,ϕ)

and (V,ψ) are called C
∞-compatible if the transition map ψ ◦ ϕ−1 : ϕ(U

⋂

V ) → ψ(U
⋂

V )

is a diffeomorphism.

If we index the charts, (Ui, ϕi), i ∈ I where i ranges over some index set I, such that

the sets Ui cover M , then we call such a collection of charts an atlas and denote it by A. An

atlas A is called a differential structure if (U,ϕ) is a chart in M such that it is compatible

with every chart in M , then (U,ϕ) is in A.

Definition 1.4 The pair (M,A) is a smooth manifold, where M is a topological manifold

and A is a differential structure [2].
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M
U V

ϕ ψ

ϕ(U) ⊂ R
n ψ(V ) ⊂ R

n

ψ ◦ ϕ−1

Figure 1.3: A transition map

We usually omit the differential structure and say M is a smooth manifold. A smooth

manifold is a topological manifold whose transitions maps are all smooth. For more detailed

information on smooth manifolds see [2].

Example The unit sphere, S2, in R
3 is a 2-dimensional smooth manifold. Since, it

is clear from the previous example that {U+
i , U

−
i , i = 1, 2, 3} is an open cover for S2. For

simplicity, let’s consider, U+
1

⋂

U−
1 = {(x1, x2, x3) ∈ S2 : x1 > 0, x2 > 0}, then the transi-

tion maps, ϕU+
1
◦ ϕ−1

U+
2

= (
√

1 − (x2
1 + x2

2), x3) and ϕU+
2
◦ ϕ−1

U+
1

= (
√

1 − (x2
2 + x2

3), x3) are

compatible. Any other pair can be shown to be compatible, in a similar way. Furthermore,

the unit sphere is a compact smooth manifold.

Definition 1.5 A function f : M → R is smooth (C∞(M)) if and only if f is continuous

and for every p in M , and there exists a chart (U,ϕ) at p such that f ◦ ϕ−1 : ϕ(U) → R is

smooth (C∞((ϕ(U)).
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This definition is well defined, since it is independent of the choice of the the chart at

p. We can generalize this definition easily to smooth maps between smooth manifolds. Let

M 6= ∅, M ⊂ R
n, be k-dimensional smooth manifold and N 6= ∅, N ⊂ R

n be l-dimensional

smooth manifold, the mapping F : M → N is a smooth mapping, if and only if F is

continuous and for every p ∈ M , there exists a chart (U,ϕ) in M and a chart (V,ψ) in N

such that F (U) ⊂ V , and the mapping ψ ◦ F ◦ ϕ−1 : ϕ(U) → ψ(V ) is smooth.

Tangent Spaces

Hereinafter M denotes k-dimensional smooth submanifold of R
n. We first, define the

partial derivatives of a differentiable function f : M → R with respect to the coordinate

system (U,ϕ). At this point, it is worth recalling the limit definition of partial derivatives

of the function f : R
k → R. Let x = (x1, . . . , xk) ∈ R

k, then we denote by Dif(x1, . . . .xk),

the number

lim
h→0

f(x1, . . . , xi + h, . . . , xk) − f(x1, . . . .xk)

h
.

For a function f : M → R and local charts (U,ϕ), we define

Dif(p) = Di

(

f ◦ ϕ−1)(ϕ(p)
)

. (1.6)

Thus, Dif(p) is the number

lim
h→0

f
(

ϕ−1
1 (x), . . . , ϕ−1

i (x) + h, . . . , ϕ−1
k (x)

)

− f(ϕ−1(x))

h
.
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If we define the curve γi : (−ǫ, ǫ) → M by γi(h) = (ϕ−1
1 (x), . . . , ϕ−1

i (x) + h, . . . , ϕ−1
k (x)),

then (1.6) is just

(f ◦ γi)
′

(0) = lim
h→0

f(γi(h)) − f(γi(0))

h
.

Define the collection of all such C
1 curves in M by

Cp = {γ ∈ C
1 ((ǫ, ǫ),M) , ǫ > 0, γ(0) = p}.

We say that x ∈ R
n is tangent to M at the point p, if and only if there exists a γ ∈ Cp such

that x = γ
′

(0).

Definition 1.6 We define the tangent space at p as TpM = {(γ′

(0)) : γ ∈ Cp}, and tangent

bundle TM as TM :=
⋃

p∈M

TpM. An element of TM is an ordered pair (p, x) with p ∈

M x ∈ TpM. The projection map π : TM → M maps each vector in TpM to the point at

which it is tangent as π(p, x) = p.

Remark 1.1 For any p ∈ M , TpM is a k-dimensional vector space, and if (U,ϕ) is chart

containing p, then (D1ϕ
−1,D2ϕ

−1, . . . ,Dkϕ
−1) forms a basis for TpM.

Remark 1.2 Tangent bundle TM is a 2k-dimensional manifold and the π : TM → M is

a smooth map.

Definition 1.7 The tangent map TF : TM → TN for a C
1-map F : M → N is defined by

TF (γ(0), γ
′

(0)) = (γ(0), (F ◦ γ)′(0)).
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The differential of F , is a linear mapping DF : TpM → TF (p)N which is defined as:

F (γ′(0)) = (F ◦ γ)′(0).

Define gp(·, ·) : TpM × TpM → R as gp(x, y) = x · y, where x ∈ TpM y ∈ TpM and x · y

is the inner product TpM inherited from R
n. Recall that (D − 1ϕ−1,D2ϕ

−1, . . . Dkϕ
−1) is

a basis for TpM , and define the metric tensor G = gij as

gij = Diϕ
−1 ·Djϕ

−1

and g = det(G) is called the Gramm determinant and is strictly positive. Let f : M → R

be a differentiable function, then the differential of f is a linear mapping TpM to R, thus

it is a functional on TpM. So, by the Riesz Representation (Theorem 1.1), there exists a

unique vector in TpM , call it gradient of f , and denote it by ∇f , such that Df(p)v =

∇f · v for every v ∈ TpM.

Remark 1.3 Let f : M → R and (U,ϕ) a chart containg p, then ∇f(p) is defined as

∇f(p) =

k
∑

i=1

k
∑

j=1

gijDj(f ◦ ϕ−1)(ϕ(p)). (1.7)

Definition 1.8 A vector field is a continuous map X : M → TM , such that π ◦X = IdM ,

that is

X(p) = (p, x(p)) ∀p ∈M

such that x(p) is a tangent vector to p.
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Let X be C
1-vector field on M with local representation X ◦ ϕ =

k
∑

i=1

Xi∂iϕ, define a

scalar function ∇ ·X : M → R as

(∇ ·X) ◦ ϕ =
1√
g

k
∑

i=1

∂i

(

Xi
)

.

For any C
2 function f : M → R define Laplace-Beltrami operator as

∆f = ∇ · ∇f.

Let ϕ be a local chart then the local representation is

(∆f) ◦ ϕ = (∇ · ∇f) ◦ ϕ =
1
√

|g|

k
∑

j=1

∂j(
√

|g|
k
∑

i=1

gij∂i(f ◦ ϕ)) (1.8)

where gij are the components of g−1.

The Laplace Beltrami Operator on the Sphere

Let ϕ(θ1, θ2) = (sin θ1 cos θ2, sin θ1 sin θ2, cos θ1) 0 ≤ θ1 ≤ π, 0 ≤ θ2 < 2π be a local

chart of the sphere, then

g =







∂θ1ϕ · ∂θ1ϕ ∂θ1ϕ · ∂θ2ϕ

∂θ2ϕ · ∂θ1ϕ ∂θ2ϕ · ∂θ2ϕ






=







1 0

0 sin2 θ1







and also,

g−1 =







1 0

0 1
sin2 θ1






and |g| = sin2 θ1.
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We obtain the local representation of the Laplace-Beltrami ∆Sf of any C
2 function f

on the sphere as

(∆Sf) ◦ ϕ =
1

√

|g|

2
∑

j=1

∂j(
√

|g|
2
∑

i=1

gij∂i(f ◦ ϕ))

=
1

sin θ1
[∂θ1(sin θ1∂θ1) + ∂θ2(

1

sin θ1
∂θ2)](f ◦ ϕ) (1.9)

=
1

sin θ1
∂θ1(sin θ1∂θ1) +

1

sin2 θ1
∂θ2(∂θ2)f ◦ ϕ.

1.4 Eigenvalue Problem

Let ∆S be the Laplace operator on the sphere, then the eigenvalue problem is to find

a scalar λ such that −∆Sµ = λµ. If the local representation of Laplace-Beltrami operator

is obtained using polar coordinate charts (1.9), then the eigenvalue problem is given by

1

sin θ1
∂θ1(sin θ1∂θ1µ) +

1

sin2 θ1
∂θ2(∂θ2µ) = −λµ. (1.10)

Writing µ in separable form µ(θ1, θ2) = ν(θ1)ρ(θ2), we obtain the following two eigenvalue

problems

d2ρ

dθ2
2

+ ζρ = 0 ρ(0) = ρ(2π),
dρ

dθ2
(0) =

dρ

dθ2
(2π) (1.11)

and

sin θ1
d

dθ1
(sin θ1

dν

dθ1
) + (λ sin2 θ1 − ζ)ν = 0, lim

θ1→0
ν <∞, lim

θ1→π
ν <∞. (1.12)
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Eigenvalues and the corresponding eigenfunctions of the problem (1.11) are

ζm = m2, ρ(θ2) = Am cosmθ2 +Bm sinmθ2, m = 0, 1, 2 . . . .

Substituting the eigenvalues ζm and t = cos θ1 into (1.12), and setting P (t) = ν(θ1(t)) we

get the associated Legendre equation

(1 − t2)
d

dt

[

(1 − t2)
dP

dt

]

+
[

(1 − t2)λ−m2
]

P = 0 − 1 ≤ t ≤ 1, m = 0, 1, 2, . . . . (1.13)

The associated Legendre Equation (1.13) has solutions that are bounded everywhere if and

only if the eigenvalues λ are of the form, λn = n(n+1), n = 0, 1, 2, . . . . The eigenfunctions

associated with such an eigenvalue λn are the Legendre functions Pm
n of degree n order m.

Thus eigenvalues λn of (1.10) are λn = n(n + 1), n = 0, 1, . . . and the corresponding

eigenfunctions are Sm
n (θ1, θ2) = (Am cosmθ2 +Bm sinmθ2)P

m
n (cos θ1).

The weak formulation of (1.10) is, find λ ∈ R, and 0 6= µ ∈ H1(S) such that

a(µ, ν) = λ(µ, ν) (1.14)

holds for every ν ∈ H1(S), where a(·, ·) : H1(S) × H1(S) → R is a continuous, elliptic

bilinear form given by

a(µ, ν) =

∫

S
∇Sµ · ∇Sν.

The problem (1.14) has a sequence of eigenvalues,

λ0 ≤ λ1,1 = λ1,2 = λ1,3 ≤ . . . ≤ λk,1 = λk,2 = . . . = λk,2k+1 ≤ . . .→ ∞,
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and the corresponding eigenfunctions, which are spherical harmonics,

µ0, µ1, . . . .

These eigenfunctions are orthogonal in the energy inner product

a(µi, µj) = λi(µi, µj) = λiδij ,

where δij is the Kronecker-delta function. Let µ with ‖µ‖a = 1 denote an eigenfunction

corresponding to λ and let M(λ) denote the space of eigenfunctions corresponding to λ.

We are interested in approximating eigenvalues and eigenfunctions of (1.14) by the

finite element method. We consider the following eigenvalue problem: Find λh ∈ R and

0 6= µh ∈ χ such that

ah(µh, νh) = λh(µh, νh) (1.15)

for every νh ∈ χ where χ is a finite dimensional subspace χ ⊂ H1(S). Problem (1.15) has

a sequence of eigenvalues,

λh
0 ≤ λh

1 ≤ . . . ≤ λh
n n = dimχ

and corresponding eigenfunctions

µh
0 , µ

h
1 , . . . , µ

h
n

which are also orthogonal in the energy inner product.

a(µ
h
i , µ

h
j ) = λi(µ

h
i , µ

h
j ) = λiδij i, j = 1, . . . n.
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Let µh
k,1, µ

h
k,2, . . . , µ

h
k,2k+1 with ‖µh

k‖ = 1 denote the finite element approximate eigen-

functions of λh
k,1, λ

h
k,1, . . . λ

h
k,2k+1 respectively. The eigenpairs (λh, µh) of (1.15) are approx-

imates of the eigenpairs (λ, µ) of (1.14). The eigenvalues λk and their approximates λh
k

satisfy the following well-known minmax principles.

λk = min
Uk⊂H1(S)

max
µ∈Sk

a(µ, µ)

(µ, µ)
λh

k = min
Sk⊂X

max
µh∈Sk

a(µh, µh)

(µh, µh)
.

The minimum is taken over all k-dimensional subspaces, Uk, and Sk of H1(S), and X re-

spectively. It follows immediately from the minmax principles that every eigenvalue is

approximated from above by 2k + 1 of the approximated eigenvalues [5].

λk ≤ λh
k,1 ≤ λh

k,2 ≤ . . . λh
k,2k+1 λk ≃ λh

k,1, λ
h
k,2, . . . λ

h
k,2k+1.

It is well known that,

λh
k,q − λk ≤ C sup

µ∈M(λ)
inf

νh∈χ
‖µ− νh‖a q = 1, . . . , 2k + 1. (1.16)

Here ‖ · ‖a denotes the energy norm [13],[14],[15].
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Chapter 2

The Radial Projection

The aim of our work is to develop an exact finite element discretization of the sphere.

This new method can be easily applied to other domains, e.g. cylinders, ellipsoids, and tori.

The principal idea behind our new method is to radially project the finite elements

constructed on the surface of the cube onto the sphere. The cube is used as a tool in

our approach, so that all the calculations are done on logically rectangular grids. We call

these spherical triangles and the associated finite element functions formed by this radial

projection as “radially projected finite elements”. The radial projection is a mapping from

the cube to the ball, or can be modified such that it is also a mapping from the surface of

the cube (which we will call box) to the sphere, cylinder, ellipsoid, etc.

For definiteness we illustrate the method on the sphere. In order to make our termi-

nology clearer, we will use box to indicate the surface of the cube. The relation between the

box and the cube is similar to the relation between the sphere and the ball. We denote the

sphere centered at the origin with radius r by Sr and the box centered at the origin with a

side length 2d by Bd. We denote points on the box by x and y and points on the sphere by

a and b. Functions defined on Bd will be denoted by u or v, and similarly, functions defined

on the Sr will be denoted by µ or ν. We now define the box Bd, cube Cd, sphere Sr, and

ball Br, to emphasize our terminology.
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Bd = {x = (x1, x2, . . . , xn) ∈ R
n : ‖x‖∞ = d},

Cd = {x = (x1, x2, . . . , xn) ∈ R
n : ‖x‖∞ ≤ d},

Sr = {a = (a1, a2, . . . , an) ∈ R
n : ‖a‖2 = r},

Br = {a = (a1, a2, . . . , an) ∈ R
n : ‖a‖2 ≤ r},

where ‖a‖2 =
√

a2
1 + a2

2 + . . . + a2
n is the Euclidean norm and ‖x‖∞ = max(|x1|, |x2|, . . . , |xn|)

is the maximum norm. Unless otherwise mentioned, hereinafter ‖ · ‖ will denote ‖ · ‖2; and

S will denote the unit sphere in R
3 centered at the origin and B will denote the box in R

3

with d = 1 centered at the origin.

The radial projection from a box to a sphere is denoted by P : Bd → Sr and is given

by

P(x) = r
x

d‖x‖2
,

and the inverse projection is P−1 : Sr → Bd, is

P−1(a) = d
a

r‖a‖∞
.

In section 2.1 we list some properties of the radial projection and in section 2.2 we generate

meshes on spheres, ellipsoids and cylinders.

25



2.1 Properties of the Radial Projection

The radial projection P is a one-to-one mapping from the box onto the sphere. In the

following Lemma we show that both P and P−1 are Lipschitz continuous mappings.

Lemma 2.1 The radial projection P and its inverse P−1 satisfy the inequalities

‖P (x) − P (y)‖ ≤ 2r

‖x‖‖x− y‖ (2.1)

and

‖P−1(a) − P−1(b)‖∞ ≤ 2d

‖a‖∞
‖a− b‖∞ . (2.2)

Proof:

‖P (x) − P (y)‖ = ‖ r

‖x‖x− r

‖y‖y‖

=
r

‖x‖‖y‖
∥

∥

∥
‖y‖x− ‖x‖y

∥

∥

∥

=
r

‖x‖‖y‖

∥

∥

∥

∥

∥

‖y‖(x − y) + y
(

‖y‖ − ‖x‖
)

∥

∥

∥

∥

∥

≤ r

‖x‖‖y‖
[

‖y‖‖x− y‖ + ‖y‖
∣

∣

∣
‖y‖ − ‖x‖

∣

∣

∣

]

≤ 2r

‖x‖‖x− y‖

Similary, ‖P−1(a) − P−1(b)‖∞ ≤ 2d
‖a‖∞ ‖a− b‖∞. �
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Figure 2.1: Mesh on the box and the sphere.

Corollary 2.1 The radial projection P and its inverse P−1, are globally Lipschitz contin-

uous mappings,

‖P (x) − P (y)‖ ≤ 2r

d
‖x− y‖, (2.3)

and

‖P−1(a) − P−1(b)‖ ≤ 2dn‖a− b‖. (2.4)

Proof: For any x ∈ R
n, we have ‖x‖∞ ≤ ‖x‖ ≤ √

n‖x‖∞, and for any a ∈ S we have

1√
n
≤ ‖a‖∞ ≤ 1, and similarly, for any x ∈ B 1 ≤ ‖x‖ ≤ √

n. Thus, the corollary is direct

consequence of the lemma 2.1. �
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2.2 Some Examples of Mapping

2.2.1 Mesh on the Sphere

Let B denote the box in R
3 centered at the origin with side length 2, that is B = {x =

(x1, x2, x3) ∈ R
3 : ‖x‖∞ = 1}, and let S denote the unit sphere in R

3 centered at the origin,

that is S = {a = (a1, a2, a3) ∈ R
3 : ‖a‖ = 1}. The mapping from the box B to the sphere

S is given by,

P(x) =
x

‖x‖ ,

and the inverse mapping from sphere S to B is,

P−1(a) =
a

‖a‖∞
.

Figure 2.1 shows the finite element triangulation on B and the corresponding triangu-

lation on S. We can think of the box, B, as a union of 6 faces. Let F±i, i = 1 . . . 3 denote

the faces of the box such that, F+i corresponds to the xi = 1 plane, and F−i corresponds to

the xi = −1 plane. Since on each face one of the variables is constant, the mesh generation

on these faces is the same as mesh generation on a 2-dimension planar square. The radial

projection of any of these faces F±i i = 1 . . . 3 onto the sphere is given as

PF±i
(x1, x2, x3) =

(

x1
√

x2
1 + x2

2 + x2
3

,
x2

√

x2
1 + x2

2 + x2
3

,
x3

√

x2
1 + x2

2 + x2
3

)

i = 1, . . . , 3
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x1
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x3

F+1
F+2

F+3

Figure 2.2: Faces of the box

and the inverse projection onto these faces are given as

P−1
F±1

(a1, a2, a3) =

(

±1,±a2

a1
,±a3

a1

)

,

P−1
F±2

(a1, a2, a3) =

(

±a1

a2
,±1,±a3

a2

)

,

P−1
F±3

(a1, a2, a3) =

(

±a1

a3
,±a2

a3
,±1

)

.

Figure 2.3 and 2.4 show the triangulation on F+1 and its radial projection onto the

sphere.

Let K = {K1,K2, . . . ,Kn} be a triangulation of the box, then T = P(K), is a triangu-

lation of the sphere. Let T = {T1,T2, . . . ,Tn} denote the corresponding triangulation of the

sphere where {Ti : Ti = P(Ki), i = 1, . . . , n} are the spherical triangles covering the sphere,

such that S =
n
⋃

i=1

Ti.
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d(a, b) = αr

Figure 2.5: Geodesic distance between a and b.
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We measure the distance between two points on the sphere by the geodesic distance.

Let a and b be two points on Sr, then the geodesic distance is defined by

d(a, b) = r cos−1(
a · b
r2

). (2.5)

The geodesic distance between two points, a and b on a sphere is the length of the arc of

the great circle connecting them. This great circle lies on a plane, figure 2.5 shows a 2D

cross section of the sphere. Let α be the angle between a, the center of the sphere O and b

as shown in the figure, then d(a, b) = αr.

Proposition 2.1 Let a and b be two distinct points on the unit sphere centered at the origin

in R
3, then we have the following estimate,

1

2
d(a, b) ≤ ‖a− b‖ ≤ d(a, b). (2.6)

Proof: The geodesic distance between a and b is d(a, b) = α, which is the distance

along the great circle connecting them. Figure (2.6) shows that ‖a−b‖ = 2 sin
(

α
2

)

. Clearly,

‖a− b‖
d(a, b)

=
2 sin

(

α
2

)

α
.

Let f(α) =
2 sin(α

2 )
α , then f ′(α) =

α cos(α
2 )−2 sin(α

2 )
α2 . The function f is a decreasing function

on the interval α ∈ [0, π], since f ′(α) < 0 α ∈ (0, π) which is equivalent to x − tan(x) <

0 x ∈ (0, π/2). Clearly, f(α) has a maximum at α = 0, f(0) = 1 and a minimum at

α = π, f(π) = 2
π , that is 1

2 ≤ ‖a−b‖
d(a,b) ≤ 1. �
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Figure 2.6: Geodesic and Euclidean distance of a and b

With the following proposition, we prove that radially projected finite elements form

a shape regular triangulation of the sphere.

Proposition 2.2 Let T j, j ∈ N denote the family of triangulations of the sphere S, and

let Kj , j ∈ N denote the family of triangulations of the box B, such that P(Kj) = T j. If Kj

is a shape regular triangulation of B, then T j is a shape regular triangulation of S.

Proof: Let T j = {T1,T2, . . . ,Tnj
}, j ∈ N denote the triangulation of the sphere and let

Kj = {K1,K2, . . . ,Knj
}, j ∈ N be a triangulation of the box such that P (Ki) = Ti, i =

1, . . . , nj . Let a and b be two points on the sphere such that hTi
= d(a, b). Since d(a, b) ≤

2‖a− b‖ ≤ 2‖x− y‖, where x = P−1(a) and y = P−1(b) we get that hTi
≤ 2hKi

. Similarly,

let ρKi
denote the radius of inscribed circle in the triangle Ki and consider two points x and

y in the triangle Ki, such that ρKi
= ‖x− y‖. Let a and b be two pints on the sphere such

that a = P (x) and b = P (y), then ρTi
≥ d(a, b). Since, d(a, b) ≥ ‖a − b‖ ≥ 1

6‖x − y‖, we

conclude that ρTi
≥ 1

6ρKi
. �
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Figure 2.7: Mesh on the ellipsoid

2.2.2 Meshes on Ellipsoids

Let B denote the box in R
3 with side length 2, that is B = {x ∈ R3 : ‖x‖∞ = 1}, and

let S denote the sphere in R
3 with radius 1, that is S = {a ∈ R3 : ‖a‖ = 1} and let E denote

the ellipsoid in R
3 such that E = {b = (b1, b2, b3) ∈ R3 :

b21
k2 +

b22
l2 +

b23
m2 = 1}. The mapping

M from box B to ellipsoid E is the composition of the radial projection P of B onto sphere

S with the linear mapping L from sphere S to the ellipsoid E . The mapping L : S → E is

given as

L(a) = (ka1, la2,ma3) ,

thus M : B → E is

M(x) =

(

k‖x‖∞
‖x‖ x1,

l‖x‖∞
‖x‖ x2,

m‖x‖∞
‖x‖ x3

)

,

and M−1 : E → B is

M−1(b) =

(

1,
kb2
lb1

,
kb3
mb1

)

,

if ‖L−1(b)‖∞ = b1
k .
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Let K = {K1,K2, . . . ,Kn} be the triangulation of the box, then T = M(K), is the

triangulation of the ellipsoid. Let T = {T1,T2, . . . ,Tn} denote the corresponding triangu-

lation of the ellipsoid where {Ti : Ti = M(Ki), i = 1, . . . , n} are the triangles covering the

ellipsoid, such that E =
n
⋃

i=1

Ti.

2.2.3 Mesh on the Cylinder

Let B denote the surface of the cube in R
3 with side length 2 and centered at the

origin, that is B = {x ∈ R3 : ‖x‖∞ = 1}, and let C denote the surface of the circular right

cylinder in R
3 of height 2 and radius 1. By cylinder we mean the following: C = {a =

(a1, a2, a3), a ∈ R3 : a2
1 + a2

2 = 1, −1 < a3 < 1, and a2
1 + a2

2 ≤ 1, a3 = ±1}. In other words

it is a cylinder with top and bottom faces. The mapping from box B to sphere C is given

by,

P(x) =

(‖x‖∞
‖x‖ x1,

‖x‖∞
‖x‖ x2, x3

)

.

and the inverse mapping from the cylinder C to the box B is given by,

P−1(a) =

( ‖a‖
‖a‖∞

a1,
‖a‖
‖a‖∞

a2, a3

)

.

Let K = {K1,K2, . . . ,Kn} be the triangulation of the box, then T = P(K), is the tri-

angulation of the cylinder. Let T = {T1,T2, . . . ,Tn} denote the corresponding triangulation

of the cylinder where {Ti : Ti = P(Ki), i = 1, . . . , n} are the triangles covering the cylinder,

such that C =

n
⋃

i=1

Ti. One may also prove that, mesh generated on the cylinder in such way,

is also a shape regular mesh.
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Figure 2.8: Mesh on the cylinder

2.2.4 Mesh on the Disc

Let B denote the square in R
2 such that B = {x = (x1, x2) ∈ R

2 : ‖x‖∞ ≤ 1}, and

let D denote the unit disc in R
2, such that D = {a = (a1, a2) ∈ R

2 : ‖a‖ ≤ 1}, then the

mapping from the square B to the unit disc D is given by

P(x) =
‖x‖∞
‖x‖ x

and the inverse mapping is given as

P−1(a) =
‖a‖
‖a‖∞

a.
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Chapter 3

Analysis

In this chapter, we consider the problem of determining error estimates in L2 and H1

norms. We estimate the difference (µ−µh) where µ is the solution of a second order elliptic

problem and µh is the discrete solution obtained using the proposed finite element method.

In section (3.1) we analyze our finite element discretization and in section (3.2) we derive

error estimates.

3.1 Finite Element Construction

We describe our method in the context of the Laplace-Beltrami equation defined on

the sphere S. We consider the following second order elliptic equation on the sphere,

−∆Sµ+ µ = f, (3.1)

where −∆S is the Laplace-Beltami operator

∆S = ∇S · ∇S .

Here ∇S is the tangential gradient which is defined as

∇Sµ = ∇µ̃− (∇µ̃ · n)n
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where n is the unit outer normal to the sphere at the point a and µ̃ is a smooth extension of

µ to a neighborhood of S. Since S is a smooth compact manifold without boundary, there

are no boundary conditions needed.

We use the standard notation Lp(S), Wm,p(S) for Sobolev spaces defined on the sphere.

Lp(S) = {µ :

∫

S
|µ|p <∞}

Wm,p(S) = {µ ∈ Lp(S) :

∫

S
|∇α

Sµ|p <∞ , for 0 < |α| ≤ m},

where α = (α1, α2, α3) is a multi index notation with norm |α| = α1 +α2 +α3. W
m,p(S) is

a Banach space equipped with the norm

‖µ‖W m,p(S) =





∑

0<|α|≤m

‖∇α
Sµ‖p

Lp(S)





1
p

1 ≤ p <∞.

Let Hm(S) denote Wm,2(S), then the semi-norms on Hm(S) are |µ|Hm(S) =




∑

|α|=m

‖∇α
Sµ‖2

L2(S)





1
p

. Let f ∈ L2(S), then there exist an exact solution µ ∈ H2(S)

to (3.1). There exist a constant c, such that[16],

‖µ‖H2(S) ≤ c‖f‖L2(S).

A weak formulation of (3.1): find a solution µ ∈ H1(S) such that the following holds,

∫

S
∇Sµ · ∇Sν + µ · ν =

∫

S
f · ν ∀ν ∈ H1(S). (3.2)
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Let f ∈ L2(S) and µ ∈ H2(S), then µ is a solution of (3.2) iff µ is a solution of (3.1). Let

a(·, ·) : H1(S) ×H1(S) → R be the bilinear form defined by

a(µ, ν) :=

∫

S
∇Sµ · ∇Sν + µ · ν. (3.3)

Notice that a(·, ·) is continuous, elliptic bilinear form, since ‖µ‖H1(S) =
√

a(µ, µ), and

(f, ν) :=

∫

S
f · ν

is the standard inner product in L2(S).

Theorem 3.1 There exists a unique solution to (3.2).

Proof: The symmetric, elliptic bilinear form a(·, ·) (3.3) induces a norm on H1(S). The

space (H1(S), a(·, ·)) is a Hilbert space, so the conclusion is a direct consequence of the

Riesz Representation theorem. �

We approximate the solution µ by µh ∈ χ, where χ is in a finite dimensional subspace

of H1(S). We solve the following discrete problem:

find a function µh ∈ χ such that

∫

S
∇Sµh · ∇Sνh + µh · νh =

∫

S
f · νh ∀νh ∈ χ. (3.4)

Let ah(·, ·) : χ× χ→ R denote the bilinear form defined as

ah(µh, νh) :=

∫

S
∇Sµh · ∇Sνh + µh · νh,
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and let (f, ·) : χ → R denote the linear functional defined as (f, νh) :=
∫

S f · νh, then the

discrete problem is: find µh ∈ χ such that ah(µh, νh) = (f, νh) for every νh ∈ χ. Define χ as

χ = {µh : µh = u ◦ P−1, u is a piecewise linear continuous polynomial}. (3.5)

This dicrete problem has a unique solution. Since χ is a finite dimensional subspace of

H1(S), let {ϕi}n
i=1 be a basis for χ. Letting µh =

n
∑

i=1

µhiϕi, leads to following linear system

of equations

Aµ = f. (3.6)

Here, Aij = a(ϕj , ϕi) is a sparse, symmetric, positive definite matrix, (µ)i = µhi is the

unknown vector, (f)i = (f, ϕi) is the right hand side vector.

3.2 Error Analysis

Let µ be the solution of (3.2) and µh be the solution of (3.4). We want to get an error

estimate of the form,

‖µ− µh‖Hk(S) ≤ chp, k = 0, 1,

where p is the order of convergence for the method and depends on the the regularity of

the solution, degree of the finite elements used (on the planar triangles in the construction

of the finite elements) and the Sobolev norm used to measure the error.

If we let T = {K1,K2, . . . ,Kn} denote the partition of the sphere, such that S = ∪n
i=1Ki,

then

‖µ‖Hk(S) =

(

n
∑

i=1

‖µ‖2
Hk(Ki)

)1/2

.
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Cea’s Lemma has a significant role in describing error estimates in finite element anal-

ysis, since it reduces the problem of estimating the error ‖µ − µh‖H1(S) to a problem of

estimating the distance between the function µ ∈ H1(S) and a function µh in its subspace

χ ⊂ H1(S). By Cea’s Lemma we know that

‖µ− µh‖H1(K) ≤ C inf
ξ∈χ

‖µ− ξ‖H1(K).

Thus, µh is the best approximation of µ with respect to H1-norm within the space χ.

We can replace ξ on right hand side by the interpolant of the exact solution Iµ and we get,

‖µ− µh‖H1(K) ≤ C‖µ− Iµ‖H1(K).

We wish to consider the size of the error in ‖µ−µh‖L2(K). To estimate the error µ−µh

in L2-norm, we use so called “duality” argument thus,

‖µ− µh‖L2(K) ≤ Ch‖µ− µh‖H1(K).

Therefore, rather than estimating the difference ‖µ − µh‖L2(K), ‖µ− µh‖H1(K), we will be

estimating ‖µ− Iµ‖L2(K), ‖µ− Iµ‖H1(K).

Consider a spherical triangle K in T and consider a planar triangle Kh such that for

every x ∈ Kh
x

‖x‖ ∈ K. In other words, K is the radial projection of Kh onto the sphere, i.e.,

P(Kh) = K. Moreover, suppose that the spherical triangle, K, and the planar triangle Kh

share the same nodes. Figure (3.1) shows the planar triangle Kh and the spherical triangle

K. The union of the spherical triangles covers the sphere, and the union of planar triangles
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K

Kh

Figure 3.1: Spherical triangle, K and planar triangle Kh.

forms a polygonal surface Ω, i.e.,

S = ∪n
i=1Ki and Ω = ∪n

i=1Khi
.

If {ηi}m
i=1 denote the nodes of spherical triangles covering the sphere, then Ω∩S = {ηi}m

i=1.

Define U = {x = (x1, x2, x3) ∈ R
3 : 1

2 ≤ ‖x‖ ≤ 3
2}, so that both K ⊂ U, and Kh ⊂ U ,

then we may extend a function µ defined on the S uniquely to the three dimensional domain

U by

Eµ(x) = µ(
x

‖x‖) for every x ∈ U. (3.7)

Clearly Eµ(a) = µ(a) if a ∈ S and note that Eµ is constant along the normal direction to

the sphere, that is Eµ does not depend on r, if spherical coordinates are used, so

∇Eµ · n = 0,

where n = (a1, a2, a3) is the normal to the sphere S at the point a.
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The tangential gradient of the real valued function µ on S is the orthogonal projection

of the gradient of µ onto the tangent plane at the point a. Let n = (a1, a2, a3) denote the unit

outward normal at the point a on S, then tangential gradient, ∇Sµ = ∇Eµ− (∇Eµ · n)n,

can be expressed as:

∇Sµ = A∇µ (3.8)

where A is the 3 × 3 matrix matrix with

(A)ij =











1 − a2
i i = j

aiaj i 6= j.

(3.9)

Since ∇Sµ is the projection of ∇µ on to the tangent plane, ∇Sµ · n = 0, we have

‖∇Sµ‖2 = ‖∇µ‖2 − |n · ∇µ|2.

Thus, ‖∇Sµ‖ ≤ ‖∇µ‖.

Proposition 3.1 We have the following identities for the second order tangential deriva-

tives of µ

∇2
Sµ = ∇ (∇Sµ) + ∇Sµn, (3.10)

and

∇2
Sµn = A∇Sµ, (3.11)

where A is given in (3.9). Note that unlike the Hessian, ∇2
Sµ is not symmetric.
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Proof: Since

a1∇S,1µ+ a2∇S,2µ+ a3∇S,3µ = 0, (3.12)

taking the gradient of both sides of (3.12), we have

a1Di∇S,1µ+ a2Di∇S,2µ+ a3Di∇S,3µ = −Di∇Si
µ i = 1, 2, 3. (3.13)

(3.10) is direct consequence of (3.13). Let ν be a real valued function differentiable at a ∈ S,

then ∇S (µν) = µ∇Sν + ν∇Sµ. Taking tangential derivative of both sides of (3.12), we get

a1∇S (∇S,1µ) + a2∇S (∇S,2µ) + a3∇S (∇S,3µ) = −∇Sa1∇Sµ+ ∇Sa2∇Sµ+ ∇Sa3∇Sµ

Since, ∇Sa1 =















1 − a2
1

−a1a2

−a1a3















, ∇Sa2 =















−a1a2

−1 − a2
2

−a2a3















, and ∇Sa3 =















−a3a1

−a3a2

1 − a2
3















, from which

(3.11) follows immediately. �

Proposition 3.2 Let Eµ : U → R be defined by (3.7) for x ∈ U , let a = x
‖x‖ ∈ S then we

have the following identities;

∇Sµ = ∇aEµ, (3.14)

∇xEµ =
1

‖x‖∇Sµ, (3.15)

∇x (∇Sµ) =
1

‖x‖A∇a (∇Sµ) , (3.16)

∇2
Sµ = A∇a (∇Sµ) . (3.17)
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Here ∇x = (Dx1,Dx2 ,Dx3) denotes the ordinary gradient with respect to the variable x and

similarly ∇a = (Da1 ,Da2 ,Da3) denotes the ordinary gradient with respect to the variable a.

Proof: For any a ∈ S, we have

∇Sµ(a) = ∇SEµ(a) = ∇aEµ(a) − (∇aEµ(a) · n)n = ∇aEµ(a).

Since Eµ(x) = Eµ( x
‖x‖ ), by applying the chain rule we get,

∂Eµ

∂xi
=
∂Eµ

∂a1

∂a1

∂xi
+
∂Eµ

∂a2

∂a2

∂xi
+
∂Eµ

∂a3

∂a3

∂xi
i = 1, 2, 3.

So,

∇xEµ(x) = JT∇Eµ(a), (3.18)

where JT is the transpose of Jacobian matrix of the projection P(x) = x
‖x‖ and,

JT =















1
‖x‖ − x2

1
‖x‖3 −x1x2

‖x‖3 −x1x3

‖x‖3

−x2x1
‖x‖3

1
‖x‖ −

x2
2

‖x‖3 −x2x3
‖x‖3

−x3x1
‖x‖3 −x3x2

‖x‖3
1

‖x‖ −
x2
3

‖x‖3















=
1

‖x‖A

Thus ∇xEµ(x) = 1
‖x‖∇Sµ(a).

Since Dx1Eµ = 1
‖x‖Da1Eµ(a) and a = P(x), by chain rule we have the following

Dxi

(

Daj
Eµ(a)

)

= Da1(Daj
Eµ)

∂a1

∂xi
+Da2(Daj

Eµ)
∂a2

∂xi
+Da3(Daj

Eµ)
∂a3

∂xi
i, j = 1, 2, 3.

(3.19)

45



In matrix form, (3.19) and (3.16) are the same. Applying the tangential gradient twice to

the real valued function µ we get (3.17). �

Let χh denote the finite element space on a polygonal domain, Ω, consisting of piecewise

linear continuous functions, i.e;

χh = {v : v is piecewise linear continuous polynomial}.

Let {φi}n
i=1 be basis for χh, such that φi(ηj) = δij where δij is the Kronecker-delta. Let χ

be the finite element space in (3.5), define ϕi = φi ◦ P−1, i = 1, . . . , n, then {ϕi}n
i=1 is a

basis for χ.

For any piecewise linear function v on Ω, we have

v(x) =

n
∑

i=1

ciφ(x) x ∈ Ω ⊂ U

thus,

µ(a) =

n
∑

i=1

ciϕ(a) =

n
∑

i=1

ciφ(P−1(a)) a ∈ S.

Let Eµ be defined by (3.7), then Eµ(x) = v(x), x ∈ Ω. Clearly, if x ∈ Kh, then a = x
‖x‖ ∈

K.

Lemma 3.1 Let µ and v be real valued functions, then for some constants ci, i = 1, . . . , 5

we have the following relations for the equivalence of norms,

c1‖v‖L2(Kh) ≤ ‖µ‖L2(K) ≤ c2‖v‖L2(Kh)

c3‖v‖H1(Kh) ≤ ‖µ‖H1(K) ≤ c4‖v‖H1(Kh)
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|v|H2(Kh) ≤ c5‖µ‖H2(K).

Proof: Let J denote the Jacobian matrix of the projection P, then there exists constants

c1 > 0, c2 > 0 such that |J | ≤ c1 and |J−1| ≤ 1
c2
.Thus

‖µ‖2
L2(K) =

∫

K
|µ|2

=

∫

Kh

|µ ◦ P|2|J |

≤ c1

∫

Kh

|v|2

= c1‖v‖2
L2(Kh).

Similarly,

‖v‖2
L2(Kh) ≤

1

c2
‖µ‖2

L2(K).

For any x ∈ Kh, there exists constants such that d1 ≤ 1
‖x‖ ≤ d2, then by (3.14) we get

d1|∇aEµ(a)| ≤ |∇xEµ(x)| ≤ d2|∇aEµ(a)|. Thus,

∫

K
|∇Sµ|2 =

∫

K
|∇Eµ|2

=

∫

Kh

|∇Eµ ◦ P)|2|J |

≤ c1
d1

∫

Kh

|∇v|2.

So, there exists some constants c3 > 0, and c4 > 0 such that

c3‖v‖H1(Kh) ≤ ‖µ‖H1(K) ≤ c4‖v‖H1(Kh).
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Taking the gradient of both sides of (3.14), we get

∇2
xEµ(x) = ∇x

(

1

‖x‖

)

∇aEµ(a) +
1

‖x‖2
A∇a (∇aEµ(a)) .

So for some constant c5 we get the following estimate,

|v|H2(Kh) ≤ c5‖µ‖H2(K).

�

Let I denote the linear interpolation operator for continuous functions defined on S,

then Iµ(a) =
m
∑

i=1

µ(ηi)ϕi(a) is uniquely determined by the interpolation conditions. De-

note the restriction of I to the spherical triangle K by IT = I|T , then ITµ =
3
∑

i=1

µ(ηi)ϕi.

Let Ih denote the linear interpolation operator for continuous functions defined on Ω, then

Ihu(x) =

m
∑

i=1

u(ηi)φi(x), is also uniquely determined by the interpolation conditions. Simi-

larly, let IKh
= Ih|Kh

denote the restriction of Ih onto the planar triangle Kh. The linear

interpolation operator Ih on Ω and interpolation operator I on S are related to each other,

in particular

I = Ih ◦ P−1.

Theorem 3.2 Let µ ∈ H2(S), then we have the following estimates

‖µ− µh‖L2(K) ≤ h2‖µ‖H2(K),

and

‖µ− µh‖H1(K) ≤ h‖µ‖H2(K)

48



Proof:

‖µ− µh‖H1(K) ≤ ‖µ− IKµ‖H1(K),

≤ c‖u− IKh
u‖H1(Kh),

≤ ch|u|H2(Kh),

≤ ch‖µ‖H2(K).

Similarly,

‖µ− µh‖L2(K) ≤ ch‖µ− µh‖H1(K),

≤ ch2‖µ‖H2(K).

�
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Chapter 4

Numerical Experimetns

4.1 Finite elements on the sphere

Consider the unit sphere, S of R
3, centered at the origin and consider the box B in

R
3, with side length 2 which is also centered at the origin. Let {K1, . . . ,Kn} denote a

triangulation of the box and recall that the box is radially projected onto the sphere. Let

{T1, . . . ,Tn} denote the corresponding finite element discretization of the sphere.

For simplicity, we use linear finite elements for the box, so χh denotes the finite element

space of the box such that it consists of piecewise linear continuous polynomials: χh = {v :

B → R s.t. v is a piece wise continuous linear polynomial }. Let {ξi}m
i=1 denote nodes of

the finite element discretization of the box and let {φi}m
i=1 denote the basis functions of

the finite element space χh with φi(ξj) = δij where δij is the Kronecker-delta. The support

of the basis function φi consists of all the triangles which share the node ξi. Since, φi are

linear basis functions, for any point x = (x1, x2, x3) on the box, we have φi(x1, x2, x3) =

kx1 +mx2 + nx3 + d for some constants k,m,n and d. For example, if x = (x1, x2, x3) is on

F1, then φi(1, x2, x3) = mx2 + nx3 + c

Let χ denote the finite element space on the unit sphere. We denote the basis function

of χ by {ϕi}m
i=1. Let a be any point on the sphere then there exists a point x on the box with

P(x) = a, we define the basis functions on the sphere as ϕi = φi ◦P−1. For example, let the

inverse projection of a = (a1, a2, a3) be on the face F1, then ϕi(a1, a2, a3) = φi(1,
a2
a1
, a3

a1
) =

ma2
a1

+ na3
a1

+ c. So, the basis functions on the sphere are rational functions. Figure (4.1)

shows a basis function on the sphere.
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Figure 4.1: Basis functions on the sphere

4.2 Example 1

To illustrate our method and to verify the theoretical results, we present numerical

experiments for the following model problem

−∆Sµ+ µ = f, on S.

We choose a classical solution of the above problem to be µ(a1, a2, a3) = cos a1, then

we calculate the right hand side, f by

f = −∇S · ∇S + µ, ∇S = ∇µ− (∇µ · n)n −∇S · ∇S = ∇ · ∇S −
3
∑

i=1

(∇S,i · n)ni (4.1)

and get that f(a) = a4
1cos(a1) − (1 + a2

1)a
2
1cos(a1) + 2cos(a1) + 2a3

1sin(a1) − (2 + 2a −

12)a1sin(a1). We denote by µh the approximate solution, and by h the largest diameter of
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the spherical triangles at the jth refinement step. The experimentally observed convergence

rate, p is

p =
ln
(

Ej

Ej+1

)

ln
(

hj

hj+1

) ,

where Ej denotes the error in the L2-norm at jth refinement step. Similarly, q is the

experimentally observed convergence rate when the error is measured in the H1-norm. We

present the results in the following table (4.2).

j n h ‖µ− µh‖L2(S) p ‖µ− µh‖H1(S) q

1 48 0.9553 0.0439 - 0.3466 -

2 192 0.6155 0.0300 0.8661 0.2763 0.5157

3 768 0.3398 0.0087 2.0837 0.1478 1.0531

4 3072 0.1750 0.0023 2.0049 0.0757 1.0083

5 12288 0.0882 0.0005848 1.9986 0.0382 0.9982

6 49152 0.0441 0.000147 1.9987 0.0191 1.0033

7 196,608 0.0221 0.000036799 1.9981 0.0096 0.9925

Table 4.1: Numerical results.

In this table j denotes the refinement step, h denotes the largest diameter of the

spherical triangles measured using geodesic distance formula (2.5), n deontes the number of

spherical triangles, p denotes the experimentally observed convergence rate in the L2-norm,

and q denotes the experimentally observed convergence rate in the H1-norm . Figure (4.2)

is a plot of the approximate solution µh.
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Figure 4.2: Numerical approximation to µ(a) = cosa1.

4.3 Example 2

Next consider the following second order elliptic equation defined on the ellipsoid,

whose equation is given by a2
1 +

a2
2
4 +

a2
3
4 = 1

−∆Eµ+ µ = f, on E .

We chose the exact solution to be µ(a) = cos(a1), then the right hand side f is calculated

by using (4.1), where n = (2a2
1,

2a2
2

4 ,
2a2

3
4 ). As in the previous example, µh denotes the

approximate solution, and h denotes the largest diameter of the finite element at the jth

refinement step. We calculate the experimentally observed convergence rate and the results

are presented in table (4.3).
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j n h ‖µ− µh‖L2(S) p ‖µ− µh‖H1(S) q

1 48 0.9553 0.0439 - 0.3466 -

2 192 0.6155 0.0300 0.8661 0.2763 0.5157

3 768 0.3398 0.0087 2.0837 0.1478 1.0531

4 3072 0.1750 0.0023 2.0049 0.0757 1.0083

5 12288 0.0882 0.0005848 1.9986 0.0382 0.9982

6 49152 0.0441 0.000147 1.9987 0.0191 1.0033

7 196,608 0.0221 0.000036799 1.9981 0.0096 0.9925

Table 4.2: Numerical results

4.4 Example 3

Consider the following eigenvalue problem,

−∆Sµ = λµ. (4.2)

Eigenvalues of the problem (4.2) are λk = k(k + 1) k = 0, 1, . . . and the eigenvalue λk has

a multiplicity of 2k + 1. Galerkin approximation of the variational problem is find λh ∈ R

and 0 6= µh ∈ χ s.t.

ah(µh, νh) = λh(µh, νh) ∀νh ∈ χ.

Here ah(·, ·) is as in (1.15) and χ is as in (3.5). Exact eigenvalues 2, 6, 12, 20 and their

approximates with the finite element method is presented in table (4.4). Here n denotes

the number of elements in each refinement step.
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n 2 6 12 20

48

2.2325 6.5237 14.8632 29.3408
2.2325 6.5237 18.3974 30.1297
2.2325 9.015 18.3974 30.1297

9.015 18.3974 35.6114
9.015 22.2659 35.6114

22.2659 35.6114
22.2659 35.6114

51.311
51.311
51.311

192

2.0568 6.3224 13.437 24.192
2.0568 6.3224 13.656 24.192
2.0568 6.5956 13.656 24.385

6.5956 13.656 25.108
6.5956 14.362 25.108

14.362 25.108
14.362 26.483

26.483
26.483

768

2.0146 6.0912 12.416 21.248
2.0146 6.0912 12.444 21.248
2.0146 6.1491 12.444 21.341

6.1491 12.444 21.341
6.1491 12.581 21.341

12.581 21.371
12.581 21.502

21.502
21.502

3072

2.0037 6.0239 12.107 20.324
2.0037 6.0239 12.115 20.324
2.0037 6.0375 12.115 20.341

6.0375 12.115 20.341
6.0375 12.146 20.341

12.146 20.358
12.146 20.376

20.376
20.376

Table 4.3: Exact eigenvalues and their approximates
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2 6 12 20
emin/emax pmin/pmax emin/emax pmin/ pmax emin/emax pmin/pmax emin/emax pmin/pmax

0.2325/ 0.2325 0.5237 / 3.015 2.8632/10.266 9.3408/31.311
0.0568/0.0568 3.2061/3.2061 0.3224/0.5956 1.1036/3.6893 1.437/2.362 1.5682/3.3425 4.192 /6.483 1.8226/3.5824
0.0146/ 0.0146 2.2868/2.2868 0.0912/0.1491 2.1255 / 2.3313 0.416 /0.581 2.0866/ 2.3608 1.248/1.502 2.0395/2.4616
0.0037/ 0.0037 2.0686/2.0686 0.0239/0.0375 2.0181/2.0801 0.107/0.146 2.0463/2.0814 0.324/0.376 2.0323/2.0871

Table 4.4: Experimentally calculated convergence rates.
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Chapter 5

Conclusion

We developed and analyzed a new method for exactly discretizing spheroidal domains

and constructing finite element spaces on such domains, thus yielding conforming finite

element discretizations. This method may be used to approximate solutions of partial

differential equations, as well as eigenvalues and eigenfunctions of differential operators de-

fined on such domains (spherical, ellipsoidal, cylindrical, and toroidal shells). This method

which was described for the Laplace-Beltrami equation can be easily generalized to approx-

imate solutions of other partial differential equations and eigenvalue problems defined on

the spheroidal domains. The methods is easy to implement and can be easily incorporated

into existing finite element codes. Moreover, the method can be generalized to other convex

domains by means of generalized projections, provided these are available analytically.
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