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Thesis Abstract 
 

 
 Minimizing crop yield losses caused by plant pathogens is one way of increasing 

agricultural productivity. To that end, I developed an automated classifier of digital images of 

soybean diseases to assist with early and accurate detection of pathogens. This application, based 

on a convolutional neural network, distinguishes between eight soybean disease/deficiency 

classes with an overall accuracy of 96.75%, which may help minimize pesticide usage and 

improve overall productivity. I also performed a quantitative integration of the existing research 

characterizing the relationship between virulence and within-host pathogen accumulation. By 

doing so, I aimed to help increase our ability to foresee and manage the evolution of highly-

virulent pathogen genotypes. In these two ways, I pursued my overarching goal of developing 

tools and gaining insights for the sustainable management of plant pathogens. 
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Chapter I: Background 
 

Introduction and Problem Statement 

 

Agronomic crops are cultivated for an expanding assortment of usages such as food, fiber, oil, 

fuel, medicine, recreation, ecosystem conservation, and other industrial applications (Naz et al. 

2019). Maintaining food security and meeting the demands for bio-materials from an expected 

growing human population (Hofstra and Vermeulen 2016) is a constantly evolving challenge that 

will require a dynamic and diverse set of solutions from multiple sectors. In recent decades, the 

global area of cultivated land has been increasing to meet the demand for agricultural materials 

(Frona et al. 2019), but it is uncertain how long this practice can be soundly continued. 

Moreover, this demand needs to be balanced against the need to conserve natural resources and 

natural ecosystem functions (Mehrabi et al. 2018). Ultimately, there is a limit to just how much 

land can be allocated to agriculture, and in some areas there is already fierce competition (Frona 

et al. 2019). To keep pace with current global consumption trends, agricultural yields need to 

increase at a rate higher than that of population growth while also minimizing negative 

environmental or socio-economic impacts (Frona et al. 2019). Without increasing the area of 

land for farming, production gains depend on increases in productivity (Kalaitzandonakes et al. 

2019). 

 

One way of increasing productivity is to minimize production losses caused by pests and 

pathogens. This is the overarching goal of my thesis research; I sought to develop tools and gain 

insights that could promote sustainable management of the pests and pathogens of plants. In 

pursuit of this broad goal, I performed two specific research projects: I explored the possibility of 
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using artificial intelligence to make it easier to diagnose diseases of soybeans, and I performed a 

quantitative integration of the existing research to get a clearer picture of the nature of virulence 

evolution in plant pathosystems. Before we turn to those specific projects, let us first consider in 

more detail the challenges that pests and pathogens pose for sustainable agriculture.  

 

Agricultural Challenges: Pests and Pathogens 

 

The large monoculture-heavy farms that predominate today are particularly vulnerable to  

outbreaks of pests and pathogens (Zadoks and Schein 1979, Bebber et al. 2019, Savary et al. 

2019a). Furthermore, the expanding connectedness of global trade brings increased risk of rapid 

pest and pathogen emergences as former natural migration boundaries are dissolved (Savary et 

al. 2019b). And, as climate changes, so will the favorable environmental conditions for crop 

pathogens and pests as their latitudinal ranges are expected to shift (Chaloner et al. 2021). It is 

estimated that most countries currently only report approximately 20% of the pests that could 

theoretically be supported based on available host plants (Bebber et al. 2014). This allows a lot 

of room for invasion by potential pests and underscores the importance of quickly identifying 

and controlling newcomers. Microbial pathogens can be particularly difficult to notice upon 

inspection and the detection of plant pests may lag behind their establishment within a country or 

region by several years (Poland and Mccullough 2005, Liebhold and Tobin 2006, Eschen et al. 

2019). For example, it is predicted that there are extensive but unrecognized pest faunas in  

China, India, Brazil, and Russia (Bebber et al. 2019). In summary, as our farms have become 

larger and more uniform, they have also become more vulnerable to pest outbreaks, and as our 

economies have become more globalized and connected, the total pest pressure on our farms has 
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increased. Simply put, the risk posed by pests and plant diseases in agriculture has never been 

greater.   

 

Pests and pathogens cost billions of dollars in crop losses every year (Fried et al. 2017). Research 

focusing on five major crops – wheat, rice, maize, potato, and soybean – found that pests and 

pathogens caused global crop losses between 17 and 23% for all crops except for rice, which was 

closer to 30% (Savary et al. 2019b). Combined, these five crops contribute approximately 48.1% 

of the global human calorie consumption (2013 estimates) (Savary et al. 2019b, FAOSTAT 

2021). Pests and pathogens can directly damage plant tissues making them largely unusable, 

inedible, or unmarketable. They can also reduce yield by competing with crops for limited 

environmental resources such as sun light, water, nutrients, and space (Fried et al. 2017). 

Overall, pests and pathogens can cause an average estimated crop yield reduction of 10-40% 

(Fried et al. 2017). To reiterate, every unit of crop production can be vital, especially in regions 

with high levels of food insecurity. Growing populations need reliable access to food and fiber. 

 

Pesticide Usage 

 

In the recent past, crop losses due to pests and pathogens have largely been mitigated by the 

economical usage of pesticides (Fried et al. 2017). Pesticides have proven to be an effective way 

to kill insects, pests, pathogens, and weeds and to enhance crop yield and quality (Sharma et al. 

2019, 2020). It’s estimated that about one-third of agricultural production depends upon the 

application of pesticides (Tudi et al. 2021); therefore, they have greatly assisted in keeping the 

world’s population fed, clothed, and sheltered (Sharma et al. 2019, Tudi et al. 2021). Conversely, 
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yields can be substantially diminished when plants are not protected by pesticides, especially by 

pathogens with high mobility and environmental flexibility (Fried et al. 2017). Currently, 

approximately 3 billion kilograms of pesticides are used worldwide each year at a cost of 

approximately $40 billion USD (Hayes and Hansen 2017, Sharma et al. 2020, Tudi et al. 2021).  

 

To reiterate, this extensive use of pesticides has helped to meet the demand for agricultural 

products, but it has come at a cost to ecosystem and human health (Sharma et al. 2019, 2020). 

Various pesticides have been reported to have adverse effects on the overall ecosystem including 

pollution of water sources, contamination of soils, volatilization into the atmosphere, and causing 

toxicity to non-target plants and organisms (Hayes and Hansen 2017, Sharma et al. 2019, 2020, 

Hashimi et al. 2020, Tudi et al. 2021). Chemical residues on food and in the environment also 

raise concerns regarding the harmful effects on human health (Nicolopoulou-Stamati et al. 2016, 

Abolhassani et al. 2019, Hashimi et al. 2020, Sharma et al. 2020). Putting these concerns aside, 

the heavy use of pesticides also poses challenges for sustainability. The continuous use of 

pesticides favors the development of resistance among pests and ultimately, renders these 

chemical compounds ineffective (Fried et al. 2017, Sharma et al. 2020).  

 

Pesticides play a large and important role in our agricultural systems, but their adverse 

consequences and their overall effectiveness is best maintained when we do not over rely upon 

them. Developing tools and theory to help use pesticides more strategically will be key for more 

sustainable integrated pest management strategies.    

 

Soybean Pests and Pathogens 



 11 

 

One of my thesis chapters focuses on the development of more efficient disease diagnostics in 

soybean. Here, I provide some background on the scope of soybean farming, along with a 

general overview of current soybean pest and pathogen problems.  

 

Soybean (Glycine max L. Merrill) is considered one of the five most important global food crops 

(Savary et al. 2019) and contributes approximately 3.3% of the annual global calories consumed 

(2013 estimates) (Savary et al. 2019b, FAOSTAT 2021). In roughly the last five years, from 

2015-2019, there was approximately 21.3 billion bushels of soybeans produced in the United 

States and Ontario, Canada alone (Bradley et al. 2020). This is an average of approximately 

$38.3 billion USD each year (Bradley et al. 2020). Nevertheless, much of the crop is lost due to 

soybean diseases. Diseases may reduce overall yield, but can also reduce the quality of seed 

(Kalaitzandonakes et al. 2019, Bradley et al. 2020). From 2015 through 2019, it’s estimated that 

soybean losses from the 28 most important pests and pathogens averaged approximately $3.9 

billion USD each year (Bradley et al. 2020), with an average loss per acre of  $45 USD (Bradley 

et al. 2020). Overall, the annual average loss of yield in the USA due to soybean diseases is 

estimated to range between 8 - 25% (Hartman et al. 2016, Savary et al. 2019b, Bradley et al. 

2020).  

 

Soybean diseases are caused by a variety of organisms, including bacteria, viruses, plant-

parasitic nematodes, and fungi (Bandara et al. 2020, Bradley et al. 2020). Diseases which pose an 

economic threat vary each season and may depend on several factors such as local environmental 

conditions, previous disease history, plant variety selections, and farm management 
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methodologies (Bandara et al. 2020, Bradley et al. 2020). For example, foliar diseases have been 

reported to have greater impacts on yields in the southern USA as compared to the northern USA 

(Bradley et al. 2020). Another example, from 2015 to 2019, the fungal disease known as frogeye 

leaf spot, Cercospora sojina, generated more than double the yield loss as compared to the five 

years prior (Allen et al. 2017, Bradley et al. 2020). Being able to reliably identify and predict the 

diseases that are present during the growing season can be the difference between profits and 

losses. For example, consider the introduction of soybean rust into the USA in 2004 (Sikora et al. 

2014). Soybean rust is a fungal disease, Phakopsora pachyrhizi Sydow, originally reported in 

Japan, where it is known to reduce yields by as much as half (Pan et al. 2006). In 2003, The 

disease was destroying 5% of the annual soybean production in Brazil after its introduction in the 

country in 2003. A similar fate was feared if the disease were to be introduced into the  USA 

(Sikora et al. 2014, Fried et al. 2017). However, upon the arrival of soybean rust in the USA in 

2004, a nationwide response that included a disease monitoring program, a coordinated warning 

system, and preventative education and management were able to mitigate the spread of the 

disease (Sikora et al. 2014). This is estimated to have saved farmers more than $200 million 

USD annually when considering unnecessary fungicide usage and minimized chemical exposure 

in the environment (Hershman et al. 2011, Sikora et al. 2014, Fried et al. 2017). Even with wide-

spread success, isolated incidences can still occur. Reported losses from soybean rust of 40-60% 

in over 500 acres of poorly managed fields in south Alabama in 2012 and 2013 (Sikora et al. 

2014). Proper and swift local farm management is key for protecting on-site yields and plays a 

pivotal role in preventing large-scale or regional outbreaks of disease.  
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Early detection of disease presence in the field is one of the principal features of good crop 

management. The earlier a disease is recognized, the stronger of a position a manager will be in 

to mitigate the disease’s effect on yield, as immediate treatments can be made and preventative 

plans can be put in place, such as using crop rotation or resistant cultivars. Proper and timely 

identification also helps to minimize any unnecessary pesticide applications and therefore serves 

to conserve their efficacy by slowing down the development of pesticide resistance. Soybean 

diseases often present foliar symptoms with distinguishing visual cues such as changes in color, 

spotting, or development of pustules or lesions. Identifying these diseases upon visual inspection 

in the field can be quite challenging and in some cases even a professional plant pathologist 

cannot make a diagnosis without lab work (Miller et al. 2009). For example, sometimes 

symptoms caused by pathogens are mistaken as herbicide injuries (Bradley et al. 2020). 

Unfortunately, diagnostic services can be costly for growers as they include third party field 

scouting, lab work, or consultancy (Bradley et al. 2020). Extending high-accuracy disease 

diagnostics further into the field by leveraging smartphone and web technologies is a promising 

approach for democratizing pest management. With this in mind, I set out to develop a 

computer-aided soybean disease identification tool capable of identifying soybean diseases by 

using photographs/images taken directly in the farm field.  

 

The details of this research process and the involved model building components are explored in 

Chapter 2, which contains the article prepared for publication entitled “Soybean Disease 

Identification Using Original Field Images and Transfer Learning with Convolutional Neural 

Networks”. 
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Virulence Evolution 

 

Developing sustainable management practices for our crop systems will also require a deeper 

theoretical understanding of the coevolutionary processes between pathogens and their infected 

host plants. New and unfamiliar virulent host-pathogen interactions are arising more frequently 

due to increasing global connectedness and a warming climate (Anderson et al. 2020, 2021). For 

example, the bacterial pathogen, Xylella fastidiosa, has a long history of causing disease in a 

range of American agricultural crops, but recently, in 2013, it was detected in southern Italy 

causing severe disease and killing many olive trees; some of which have survived since the 

Roman Empire (Almeida et al. 2019). Since then, variants of the same pathogen have been 

linked to other emerging disease systems in Europe and elsewhere (Almeida et al. 2019). Other 

examples include the emergence of new virulent pathogens that have disrupted he production of 

cavendish banana in Central America, cassava in sub-Saharan Africa, corn in Kenya, and coffee 

in Central and South America (Anderson et al. 2021). These few examples are far from an 

exhaustive list and the threat of plant pathogens is vast and constantly changing. The evolution of 

virulence is of enormous importance to agriculture. We need to thoroughly understand it, so we 

can better predict and prevent the evolution of new highly-virulent genotypes and populations. 

 

The term virulence refers to the extent to which pathogens harm their host or, more specifically, 

to the amount of excess mortality caused by infection (D’arcy et al. 2001, Pagan and Garcia-

Arenal 2020). A centerpiece of the theoretical  work on virulence evolution  is the ‘virulence-

transmission trade-off’ hypothesis (Anderson and May 1982, Sacristán and García-Arenal 2008). 

This hypothesis posits that virulence (harm to the host) is positively linked to within-host 
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pathogen accumulation (population) and that increases in accumulation will also lead to 

increases in pathogen transmission by vectors between hosts (Anderson and May 1982, Sacristán 

and García-Arenal 2008). Pathogen transmission comes at the cost of a shorter infection period; 

therefore, pathogen virulence involves a fitness ‘trade-off’ between pathogen accumulation and 

between-host transmission (Sacristán and García-Arenal 2008). Despite its prevalence in the 

theoretical work, the available empirical evidence has not been able to confirm or refute the 

existence of a transmission-virulence trade-off for plant pathogens (Sacristán and García-Arenal 

2008, Froissart et al. 2010). To gain clarity regarding the usefulness of the virulence-

transmission trade-off hypothesis for plant pathosystems, we analyzed prior experimental studies 

and performed a meta-analysis testing the assumption of a direct positive relationship between 

pathogen accumulation and virulence. Further related background and details regarding the meta-

analysis can be found in Chapter 3 which contains the article submitted for publication entitled 

“Virulence uncorrelated with pathogen accumulation in plants”. 

 

Thesis Thumbnail 

Meeting the growing demand for agricultural products will require increased production on a 

limited land area. Focusing on the reduction of yield losses due to pests and pathogens is a 

straightforward approach to increasing production in our current agricultural systems. I 

developed an automated classifier of digital images of soybean diseases, based on convolutional 

neural networks (CNN), to assist with early and accurate detection of pathogens. This may help 

to minimize pesticide usage and thus boost overall productivity. Furthermore, evolution of 

virulence in plant pathogens is of great importance to agriculture, so I performed a quantitative 

integration of the existing research to gain insights into the coevolutionary process. With a 
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thorough understanding of virulence, we can better predict and prevent the evolution of new 

highly-virulent genotypes and pathogen populations in our crop systems. Extended throughout 

my research thesis is the primary goal; to develop tools and gain insights that can promote 

sustainable management of the pests and pathogens of plants. 
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Abstract 

Meeting the growing demand for soybeans will require increased production. One approach 

would be to reduce yield loss from plant diseases. In the U.S., soybean diseases account for 

approximately 8-25% of average annual yield loss. Early and accurate detection of pathogens is 

key for effective disease management strategies and can help to minimize pesticide usage and 

thus boost overall productivity. Recent advancements in computer vision could move us towards 

that goal by making disease diagnostics expertise more readily accessible to everyone. To that 

end, we developed an automated classifier of digital images of soybean diseases, based on 

convolutional neural networks (CNN). For model training and validation, we acquired more than 

9,500 original soybean images, representing eight distinct disease and deficiency classes: (1) 

healthy/asymptomatic, (2) bacterial blight, (3) Cercospora leaf blight, (4) downy mildew, (5) 

frogeye leaf spot, (6) soybean rust, (7) target spot, and (8) potassium deficiency. To make 
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training more efficient we experimented with a variety of approaches to transfer learning, data 

engineering, and data augmentation. Our best performing model was based on the DenseNet201 

architecture. After training from scratch, it achieved an overall testing accuracy of 96.8%. 

Experimenting with full or partial freezing of core DenseNet201 model weights did not improve 

performance. Neither did a deliberate effort to increase the diversity of subject backgrounds in 

the digital images. On the other hand, data augmentation to increase representational parity 

across disease classes provided a substantial performance boost. Our development experience 

may provide useful insights for researchers considering the development of similar applications.  

 

Keywords 

Convolution, transfer learning, augmentation, soybean, disease diagnostics, image classification 

 

Introduction 

Over the last 60 years, soybean (Glycine max (L) Merrill) has become the world’s premier 

oilseed crop and one of the five most important food crops worldwide (Savary et al. 2019). The 

land area devoted to soybean production has increased by 2.7% per year since 1964; a growth 

rate higher than that for any other major crop (Hartman et al. 2011, Kalaitzandonakes et al. 2019) 

Soybeans are usually processed into meal or oil (Ali 2010). The meal is high in protein and is 

used primarily as feed for livestock, in particular, poultry and swine; it is also commonly used in 

aquacultural production systems (Hartman et al. 2011). Soybean oil is mostly used for human 

consumption, but it is also used for a variety of industrial applications including the formulation 

of inks, paints, detergents, and lubricants (Kalaitzandonakes et al. 2019). Use in biodiesel 

production may also soon be significant (Kalaitzandonakes et al. 2019). But the most likely 
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increases in demand will come from the challenge of keeping growing human populations fed. 

Meeting these future demands for soybean will require creative solutions to current production 

limitations. Here, we focus on production losses caused by pathogens. 

 

Plant pathogens cause hundreds of billions of dollars in crop losses per year (Fried et al. 2017). 

Soybean farms are no exception; in the United States (Hartman et al. 2016), and abroad  (Oerke 

2006, Wrather et al. 2010, Kalaitzandonakes et al. 2019), soybean diseases account for 

approximately 8-25% of the average annual yield loss (Hartman et al. 2016, Savary et al. 2019, 

Bradley et al. 2020). Across the USA, an estimated $45 USD per acre is lost annually due to the 

presence of 28 soybean diseases and pathogens; resulting in approximately $3.9 billion USD in 

annual yield losses (Bradley et al. 2020). Added to these direct costs are the costs of pesticide 

application and concomitant environmental degradation. Moreover, the liberal application of 

pesticides hastens the evolution of resistance in pest populations, and thus threatens the long-

term sustainability of soybean farming. For example, in several regions of the USA, heavy 

reliance on quinone outside inhibitor (QoI) fungicides for the control of frogeye leaf spot disease 

in soybean has led to the development of several QoI fungicide-resistant isolates of the disease's 

causal agent, Cercospora sojina (Zeng et al. 2015). This has rendered QoI fungicides useless in 

some areas. The cost of developing a new pesticide for regulated usage can be up to $286 million 

USD (Kalaitzandonakes et al. 2019). Soybean farming would be more sustainable and better able 

to meet global food demands if soybean pesticide applications were more precise. 

 

EError! Bookmark not defined.arly and accurate detection of pathogens is crucial for applying 

effective management strategies and for developing coordinated disease and resistance 
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monitoring programs at local, regional, national, and global scales (Sikora et al. 2014). Early 

detection can also help to minimize pesticide usage which may ultimately slow the development 

of pesticide resistance. Many soybean diseases display progressive visual symptoms on the 

leaves of the plant such as discoloration, blotching, spotting, and lesion formation. Some of these 

diseases can be diagnosed by the trained eye of an experienced farmer, extension agent, or 

professional plant pathologist (Miller et al. 2009). But soybean producers may lack such 

expertise, and in some cases even an expert’s eye is not enough. Thus, there is a need to improve 

the speed and accuracy of disease diagnostics. That need could be met with new technologies 

(Miller et al. 2009).  

 

Recent advancements in deep learning and computer vision have the potential of democratizing 

disease diagnostics expertise and thereby increasing the precision and economy of pest control. 

In the last decade, a variety of computational modeling methods have been applied in attempts to 

automate disease diagnostics from digital images (Shrivastava and Hooda 2014, Garcia et al. 

2015, Mohanty et al. 2016, Shrivastava and Singh 2017, Wu et al. 2019, Karlekar and Seal 2020, 

Sagar and Dheeba 2020, Sahu et al. 2021). At the core of the most successful advancements are 

convolutional neural networks (CNNs) (Lecun et al. 2015).  

 

Artificial neural networks are meta-models composed of many computational nodes, each of 

which is (or is akin to) a logistic regression model. Nodes are arranged in layers, and each node 

in a layer is connected to all nodes in each adjacent layer. More specifically, each node receives 

output signals from nodes in the upstream layer, integrates those inputs in a way that depends on 

activation weights and bias values assigned by the model, and then outputs a signal to nodes in 
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the downstream layer. Such models can be trained to learn the rules – which can be complex and 

non-linear – for making certain predictions or classifications from data, using an algorithm 

known as backpropagation to optimize a set of activation weights for the connections between 

nodes in the network. All artificial neural networks have an input layer (which takes a data 

vector), an output layer (which gives predictions or classifications), and one or more hidden 

layers that map inputs to outputs (Lecun et al. 2015). CNNs are a type of artificial neural 

network in which there can be several distinct types of hidden layers, among which are special 

convolutional layers (Albawi et al. 2017). A convolutional layer applies a convolution to the 

outputs of the layer upstream, with convolution being the technical term for what is essentially a 

filter that accentuates certain data features and makes it easier for subsequent layers to extract 

their meaning. For example, a convolution might sharpen the vertical edges of a digital image, or 

increase the light-dark contrast across all image pixels (Lecun et al. 2015, Albawi et al. 2017). 

CNNs have been used for speech recognition, object segmentation, and visual object recognition 

and classification (Lecun et al. 2015). In summary, CNNs are a type of artificial neural network 

that are good at solving problems that involve ‘seeing,’ that is parsing and interpreting a grid of 

light intensity values (Kim 2017).  

 

The diagnosis of many soybean diseases entails expert visual assessment of infected tissues. This 

appears to be a classification problem well suited for a CNN. Our goal was to develop such an 

application, that is, a CNN-based automated classifier of digital images of soybean diseases.  

 

Materials and Methods 

Set Up 
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Previous work on building an automated soybean disease image classifier has been based on 

publicly available image databases which are of limited scope (disease classes) and depth 

(images per disease class), with only a few hundred images available for model training across 

all disease categories (Shrivastava and Hooda 2014, Garcia et al. 2015, Karlekar and Seal 2020). 

Furthermore, many of these images are dated, of low quality, and rather uniform in terms of their 

background/environmental conditions. Generally, CNNs perform best when trained on large data 

sets with a variety of image conditions (Barbedo 2018). Hence, we sought to develop a better 

training data set of soybean diseases. Of course, training data acquisition can be slow-going and 

expensive, and the training of models on large data sets can take an inordinate amount of 

computational resources and energy (Strubell et al. 2020). For these reasons, a key area in CNN 

research is figuring out how to train models more efficiently. So, in addition to building a better 

training data set, we experimented with several approaches for making the training process more 

efficient.  

 

Over the course of two seasons of soybean production, we collected over 9,500 original field 

images of soybean leaves in eight distinct disease categories. These were (1) healthy-looking 

plants, and those displaying the symptoms of (2) bacterial blight, (3) cercospora leaf blight, (4) 

downey mildew, (5) frogeye leaf spot, (6) soybean rust, (7) target spot, and (8) potassium 

deficiency. We explored the effects of varying image backgrounds, and we also experimented 

with data augmentation techniques. After training data sets were assembled, we explored the 

effects of varying model architectural parameters, and in particular we leveraged transfer 

learning methods (Shin et al. 2016). With transfer learning, models that have been trained on 

large data sets to solve one type of classification problem are adapted to a related type of 
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classification problem (Tan et al. 2018). Such transferred models can apply the higher-level, 

more abstract lessons they have learned about seeing something in general to the problem of 

telling a few specific things apart. The upshot is that they work well when training data sets are 

relatively small. For the general problem of digital image classification, several high-performing 

models are available (Krizhevsky et al. 2012, Shin et al. 2016), all of which have been trained on 

the ImageNet dataset, which contains over fourteen million well-annotated images, representing 

over twenty thousand image classes (Fei-Fei et al. 2010, Krizhevsky et al. 2012). We explored 

the application of several of these high-performing image classifier models, namely, VGG16 

(Simonyan and Zisserman 2015), ResNet50 (He et al. 2016), Xception (Chollet 2017), and 

DenseNet201 (Huang et al. 2017).   

 

Data Collection 

Soybean leaves were photographed during the 2020 and 2021 Alabama (southeastern USA) 

growing seasons in the months of August, September, and October. Examples of images can be 

seen in Figure 2.1. During the 2020 season, all photographs were captured using a Canon EOS 

7D Mark II Digital SLR Camera (made in Japan) at the EV Smith Agricultural Research Station 

in Tallassee, Alabama, USA. The primary method was to walk through rows of planted soybean 

fields and capture images of a single soybean leaf showing symptoms of a known disease with 

the leaf still attached to the plant. The leaves photographed were ‘taken opportunistically’ in a 

known diseased area. We attempted to photograph leaves at various heights in the canopy in 

proportion to how disease symptoms were distributed. At the end of each such walk, 10-20 

leaves of each different represented disease category were detached from the plant and then 



 30 

immediately photographed while laid flat on the ground in trimmed grass or on a white surface 

(car hood).  

 

The diseases photographed were limited to those that naturally occurred in the field. During 

2020, we captured 4,181 images across five disease categories, namely, healthy (asymptomatic) 

plants, bacterial blight, Cercospora leaf blight, frogeye leaf spot, and soybean rust.  

 

During the 2021 season, we captured 5,413 original images. To the five disease categories 

represented in the 2020 data set, we added two new diseases – downy mildew and target spot – 

along with a nutrient deficiency, namely potassium. All images of the potassium deficiency were 

taken at Cullars Rotation in Auburn, AL (Patterson et al. 2019). Images of target spot were from 

Brewton Agricultural Research Unit in Brewton, AL. All other disease categories were from the 

EV Smith Research station. We used a slightly modified version of the data acquisition process 

we had used the year prior. For about 70% of cases, the same Digital SLR camera was used, but 

for the other 30% we used a Motorola Moto Z2 Play smartphone (Motorola, Inc. in Chicago, 

Illinois). This was done to better approximate the types of images that might be taken by users of 

the application in the field, and to add variety to the dataset which might help the CNN 

distinguish between signal and noise. Another modification was to increase the proportion of 

images of detached leaves on varying backgrounds. Approximately 30% of images were of a 

single detached leaf in 2021. About half of the detached leaves were photographed with the leaf 

laid flat on the ground in trimmed grass and the other half laid flat on a white table. We also 

deliberately varied light conditions, with a close to even mix of subjects in full sun and in shade.  
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Across both seasons we amassed a total of 9,594 original images collected across eight 

disease/deficiency categories. To these original images, we added an average of 80 images per 

disease category from extension resources and the publicly available “Image Database of Plant 

Disease Symptoms (PDDB)” (Barbedo et al. 2016). See Table 2.1 for count details and Figure 

2.1 for sample images.  

 

Data Preprocessing and Augmentation 

 

The dataset of images used for the training and testing of CNN models included 10,722 total 

images. A Python script was used to randomly apportion the data into a training set and a testing 

set. Specifically, ~85% (9,113) of the images were used to train models, and ~15% (1609) were 

used to test them. The testing set was further subdivided in a validation set of 533 images (33% 

of the testing set), used to compare the performance of different model architectures, and an 

assessment set of 1076 images (66% of the testing set) used to assess the accuracy of the 

optimized model. These ratios are fairly standard, and tend to strike a balance between model 

over-fitting and under-fitting (Karlekar and Seal 2020).  

 

CNN models tend to learn best when each classification category has roughly the same number 

of images (Li et al. 2018). Image augmentation is a common practice used to artificially increase 

the number of images in a data set by applying various transformation to original images, such as 

rotating, zooming, reflecting, adjusting brightness, and adding noise. In addition to increasing 

parity across classes, data augmentation can also be used to simply increase the overall volume 

of training data. 
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In our data set, bacterial blight was represented by roughly half as many images as the other 

categories. To increase parity, we augmented the bacterial blight set by horizontally reflecting 

each original image. On top of that, image augmentation was performed across the training data 

set during all model training using the Keras ImagaDataGenerator class (Chollet 2015). This 

library class acts as a template of sorts and allows the models to use a new transformation of 

each original image during each epoch of the training process. After some initial 

experimentation, all CNN models were trained using ImagaDataGenerator settings that allowed 

for width and height shifts [0.2] (fraction of total width/height), brightness adjustment [0.9,1.1] 

(range for picking a shift value from), rotation [30] (degree range for random rotations), and 

vertical and horizontal reflection. Another image pre-processing step was to standardize image 

size. This size was 224 x 224 x 3 (RGB) for all models except for Xception, which used 299 x 

299 x 3. Image normalization was performed to make sure that there was uniform data 

distribution in the range of [0,1] (Gianchandani et al. 2020). This was done automatically within 

ImageDataGenerator by rescaling image pixel values by the number of channels, i.e., 1/255 

(Chollet 2015).  

 

Other possible pre-processing techniques such as object segmentation or grayscaling were not 

implemented, following previous work (Mohanty et al. 2016, Ferentinos 2018) demonstrating 

that they do not tend to improve final model performance for foliar disease diagnostics.  

 

Model Design 

Training  
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TError! Bookmark not defined.raining a CNN is a special case of supervised machine 

learning. We provide the model with labeled training data – here, a set of classified images – and 

the model learns rules for classification that it can then apply to unlabeled data. In CNNs, this 

learning process is made more efficient by some elements of the model architecture. Concretely, 

feature extraction is performed via convolutional layers, feature reduction is then performed by 

pooling layers, and then classification is done with a softmax layer (Wang et al. 2018, Chen et al. 

2020).  

   

Training and testing of the models was implemented using Tensorflow (Abadi et al. 2016) and 

Keras (Chollet 2015) in a Linux environment on a shared computer cluster using an NVIDIA T4 

Tensor Core GPU. Following the transfer-learning approach, baseline CNN architectures with 

weights pre-trained on the ImageNet dataset (Fei-Fei et al. 2010) were slightly altered with 

additional layers and then re-trained on our soybean image dataset. We compared the 

performance of several general-purpose CNN architectures while varying model parameters and 

data augmentation techniques.   

 

Model Comparisons and Parameters -Base Models from Scratch 

There are two main approaches to transfer learning. In the first, which we refer to as the ‘frozen-

core’ approach, the pre-trained, core fully-connected model weights are fixed, and only the 

newly appended fully-connected layers of the network are trained on a new data set. In the 

second, known as ‘training from scratch’ the pre-trained layer weights are not fixed, but rather 

are used as a starting point, and all model weights are updated while training on new data. In 

other words, the entire model is trained. A previous study investigating CNN model performance 



 34 

trained with over 900 ferrograph images found that DenseNet and ResNet base model 

architectures had higher accuracy when ’trained from scratch’ (Peng and Wang 2020). We began 

with that approach.  

 

The general template for the CNN architectures we implemented is shown in Figure 2.2. The 

base models (VGG16, ResNet50, Xception, and DenseNet201) initiated with pre-trained 

ImageNet weights and their respective layers were used for feature extraction. The last, fully-

connected layer of each model was dropped. In its place we added architectural elements 

following the work of Gianchandani 2020 (Gianchandani et al. 2020). This comprised four new 

layers: (1) a global average pooling layer to reduce the number of parameters, (2) a fully 

connected layer of 128 neurons with a relu activation function and dropout of 0.2, (3) another 

fully connected layer of 64 neurons with relu activation and a dropout of 0.3, and (4) a fully- 

connected layer with softmax activation for eight-class classification of the different soybean 

disease categories. To reiterate, while training such models from scratch, none of the core layers 

are frozen; the pre-trained ImageNet weights are starting points for whole-network training.  

 

After experimenting with various hyperparameter values to optimize accuracy on partial datasets, 

we standardized them across model experiments in order to allow for fair comparison. The 

hyperparameters used across all base models were: Learning rate: 0.0001, Optimizer = Stochastic 

Gradient Descent, Momentum = 0.9, Loss = Categorical Cross-Entropy, Batch size = 32, Epochs 

= 100.  Additionally, upon literature review, we decided to use stochastic gradient descent as our 

optimization method because it has been shown to have higher generalization performance as 

compared to other adaptative optimization methods (Keskar and Socher 2017).  
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Alternative Fine-Tuning Strategies 

After comparing the performance of the different base model architectures trained from scratch, 

we decided to further investigate the potential of transfer learning with other fine-tuning 

strategies. For this, we used the architecture which performed best when trained from scratch, 

namely, that with DenseNet201 as the base. First, we tried freezing the frozen-core approach. For 

this, we kept learning rate at 0.0001, but allowed for more training time, setting the number of 

training epochs to 150. With this approach, we sought to fully leverage the pre-trained ImageNet 

weights. 

 

Next, we implemented a fine-tuning strategy with partial freezing. Initially, we again froze the 

core layers and only allowed the added fully-connected layers to update. For this stage, we 

increased the learning rate to 0.001 and trained for 90 epochs. Then, we unfroze all layers of the 

model, lowered the learning rate back to 0.0001, and trained for a further 10 epochs (for a total 

of 100 epochs). Thus, this approach can be seen as combination of the frozen-core and from-

scratch approaches.  

  

Model sensitivity to variation in training data 

We also wanted to get a sense for how model performance was affected by variation in the 

training data. In particular, we were curious about the impact of adding the augmented 

(horizontally flipped) bacterial images on model performance, as well as the impact of the mix of 

subject backgrounds, that is, whether attached or severed leaves were photographed. For the 
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former, we removed the 484 additional bacterial blight augmented images from the training 

dataset and retrained from scratch the architecture using the DenseNet201 base model.   

 

To quantify the effect of different subject backgrounds, we curated three different training 

datasets consisting of varying proportions of attached and severed leaf images. To reiterate, 

severed leaves were detached from the plant and photographed on either the ground in trimmed 

grass or on a white background of a (tabletop or car hood). The three datasets consisted of (100% 

attached/ 0% severed), (75% attached/ 25% severed), and (50% attached/ 50% severed).  

 

In order to maximize the variety of proportions of attached and severed leaves that we could 

analyze, each of the image databases contained 4500 original images. As for the main analyses, a 

Python script was used to randomly apportion the data into a training set and a testing set with a 

85:15 split. For these comparisons, as an expediency we used a ResNet50 base model trained 

from scratch implementing the same hyperparameters as previously described for scratch 

models. Models based on ResNet50 performed nearly as well as those based on DenseNet201 

but were trained more efficiently.  

 

Performance Metrics 

Model performances were tested using 1076 previously unseen test images and were evaluated 

using quantitative metrics derived from a confusion matrix. These metrics include accuracy, 

precision, recall, and F-1 scores. Accuracy is often considered the model’s overall performance 

and calculates the correctly predicted labels by the equation (Basavegowda and Dagnew 2020, 

Gianchandani et al. 2020): 
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Accuracy = !"#$	&'()*)+$(	,	!"#$	-$./*)+$(
!"#$	&'()*)+$(	,	!"#$	-$./*)+$(	,	0/1($	&'()*)+$(	,	0/1($	-$./*)+$(

 

  

Precision is used to evaluate the exactness of the predictions by comparing the correctly 

predicted number of images in a disease category with the total number predicted in that 

category by the model (Gianchandani et al. 2020):  Precision = !"#$	&'()*)+$(
!"#$	&'()*)+$(	,	0/1($	&'()*)+$(

 

 

Recall uses a ratio for the number of correctly predicted images in a disease category compared 

to all actual observations of that category. A higher recall implies better ability to predict both 

positive and negative observations (Goutte and Gaussier 2005, Gianchandani et al. 2020): 

Recall = !"#$	&'()*)+$(
!"#$	&'()*)+$(	,	0/1($	-$./*)+$(

 

 

The F1-score is an integrative measure that combines precision and recall (Gianchandani et al. 

2020): F1-Score = 2	3	&"$4)()'5	3	6$4/11
&"$4)()'5	,	6$4/11

 

 

Loss and accuracy plots were generated using ggplot2 (Wickham 2011) in R studio (R Core 

Team 2019).  

 

Results 

Model Performance Comparisons 

The relative performances of transfer-learning architectures trained from scratch and based on 

VGG16, Xception, ResNet50, and DenseNet201, as well as the additional fine-tuning and 

augmentation models using DenseNet201 are summarized in Table 2.2. The highest overall 
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testing accuracy, 96.8%, was achieved with the base model architecture of DenseNet201 trained 

from scratch (Figure 2.3). This model was closely followed by the model based on ResNet50, 

and then next by the Xception and VGG16 architectures. The DenseNet201 from-scratch model 

also had the highest precision, recall, and F1-score metrics. The ResNet50 model was the fastest 

to train for the from-scratch models. The DenseNet201 models that implemented full or partial 

freezing of the core model weights both decreased the amount of total training time but 

diminished the overall model performance. The partial-freezing approach had the shortest total 

training time.   

 

The training and validation loss for the from-scratch DenseNet201 model can be seen in Figure 

2.4 where both plots follow a similar trend with approximately similar values; training and 

validation are simultaneously and continuously maximizing accuracy while minimizing loss. 

This is desirable and it appears that any slight over-fitting that may be occurring between 

training and validation did not significantly impact the model’s ability to make correct 

predictions and maintain high accuracy (96.8%) on unseen test data. 

 

Figure 2.5 shows a confusion matrix for the DenseNet201 from-scratch model (Cipriano 2018). 

The model’s worst precision was bacterial blight. It predicted bacterial blight as the disease 118 

times when there were only 108 actual bacterial blight images. The model’s worst recall was for 

soybean rust. The model correctly predicted 163 out of 175 soybean rust images (93.14%). The 

model had the best performance on potassium deficiency, which it correctly identified in all 109 

cases.    
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Model sensitivity to variation in training data 

Removing the additional augmented bacterial blight images had slightly negative effects on the 

overall model performance using the scratch DenseNet201 base model architecture (as seen in 

Table 2.2). The effect was more pronounced on the bacterial blight category specifically. 

Removal of the additional augmented images resulted in a precision decrease for bacterial blight 

images from 89.83% to 82.86% and a recall decrease from 98.15% to 96.67%. The model trained 

without the additional augmented images was not as good at being able to predict or recognize 

bacterial blight. 

 

Comparisons of model performances depending on the mix of attached and severed leaf images 

are summarized in Table 2.3. As a reminder, these models used a ResNet50 base model 

architecture to save on computing time. The best performance was from the dataset that included 

only attached leaf field images (100% Attached / 0% Severed). In fact, the trend appears to be 

that overall model performance slightly decreased as more severed leaf images were included in 

the datasets.  

Error! Bookmark not defined. 

We have deployed our soybean foliar disease classifier to the web at 

http://sickbeans.skullisland.info. Codes used for model specification and training are available in 

a github repository (https://github.com/nzb0054/RoboCrop-CNN-WebApp). 

 

Discussion 

Our goal was to develop an application to make soybean disease identification more accessible 

and to assist with early and accurate detection of pathogens as part of an effective management 
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strategy. Our approach was to train a CNN, and to explore ways of making that training process 

more efficient. We focused on the application of transfer learning. Several high-performing, 

general-purpose computer vision networks are available for this purpose. We found that, for 

soybean foliar disease classification, the best performing base model was DenseNet201, using 

the from-scratch training approach. Using that model, we were able to develop an application 

that distinguishes between eight soybean disease/deficiency classes with an overall accuracy of 

96.75%. Moreover, we could do so with a training data set that although significantly larger than 

what has been previously available, was still quite feasible to assemble. Hence, we find that the 

state of deep learning technology has advanced to the point where high-performance automated 

plant disease diagnostics is quite a reachable goal. With freely-available general-purpose 

computer vision models it would seem possible to develop custom computer vision applications 

with only about 1000 images of each class. Of course training data acquisition and model 

training still take substantial investments, but once the model is trained, its application is rather 

simple (Mohanty et al. 2016). We have deployed our model, which we call RoboCrop, to the 

web at http://sickbeans.skullisland.info. 

 

With a smartphone, users can take a picture of a diseased soybean leaf in the field, upload the 

image to the web application, then the app will return a diagnosis almost instantly along with 

links to further extension resources for confirmation and management options. Pathogen 

identification is an important first step in determining if pesticide or fungicide application is 

necessary. In the southern USA, for example, spraying fungicides is often required for the 

treatment of soybean rust, frogeye leaf spot, and, occasionally, target spot. In comparison, 

spraying is not usually recommended or economical for bacterial blight, downey mildew, and 
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cercospora leaf blight. Being able to distinguish between these diseases can help to inform a 

farmer whether or not they should be considering fungicide applications. Hopefully, our 

application will assist with reducing excessive use of pesticides and thereby forestall the 

evolution of pesticide resistance. 

 

Some caveats are in order. We sought to collect a comprehensive set of images, portraying the 

symptoms of soybean diseases that are common in our area, under a variety of field conditions. 

Nevertheless, given logistical constrains, our training data set still has strong spatial and 

temporal biases. We will get a better sense for the robustness of the model as it is deployed more 

broadly over space and time. That being said, because our web application retains user 

submission, we are optimistic that with iterative model training, the application will become 

more robust and comprehensive as it is more widely deployed (Shin et al. 2016).  

 

While assembling our training data, we deliberately sought to acquire images of subjects in a 

variety of settings, that is, with different backgrounds. We put special emphasis on 

photographing a mix of attached and severed leaves. We expected that this would help the CNN 

learn to disregard spurious background information and hone in on subject features.  Contra to 

this expectation, we found that models perform better when they are trained exclusively on 

images of attached leaves. Conversely, increasing the proportion of severed leaf images reduces 

model performance. It is possible that this is an artifact of reducing the total size of the training 

dataset so that we could manipulate the ratios of attached and severed leaf images. It is also 

possible that there is genuinely useful information in the background of an image about the 

health state of a subject, for example, the overall structure of the canopy or the contrast of leaf 
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colors. If the inferred positive effects of attached leaf images are reliable, this would make 

further data collection easier, and best practices for obtaining query images more convenient. It 

is less work to take a picture of an attached leaf.   

  

Our development experience suggests that researchers planning to develop similar diagnostic 

applications should consider data augmentation as a way of increasing parity among classes. Our 

top-performing model has the most difficulty (in the sense of the lowest precision) recognizing 

bacterial blight. Simply put, the model often predicted bacterial blight as the disease category 

when that was not the case. CNNs typically perform best with large, balanced datasets (Li et al. 

2018) and bacterial blight had the least representation of any category. We attempted to remedy 

this by doubling the bacterial blight images used in the original training set through data 

augmentation (horizontal flipping). This technique appears to have been effective. Omitting 

these additional, augmented images diminished overall model performance and caused a 

noticeable decline in the precision and recall scores for the bacterial blight disease category. 

Experimenting more deeply with the further addition of augmented original images for all 

disease categories might allow for further increases in model performance. In sum, it appears that 

training data limitations underlie some of the shortcomings in model performance, and hence 

additional data should continue to improve its performance.  

 

Developers might also consider frozen-core approaches for the initial stages of model training 

and evaluation. In our experiments with these approaches, in comparison to from-scratch 

training, model performance was somewhat diminished, but the training time was considerably 
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reduced. Thus, frozen-core approaches could alleviate some of the computational cost of model 

training.   

Conclusion 

In conclusion, with mostly off-the-shelf neural network architectures, and with digital images of 

diseased soybean plants taken by a single researcher over the course of two seasons, we were 

able to develop an automated classifier of soybean foliar diseases that accurately predicted 

disease classes in more than 95% of the cases. Ideally, for the application to be developed further 

into a tool that farmers will find useful, a comprehensive collection of soybean diseases can be 

acquired as the seasons progress. The identification application should be further tested with 

various camera devices in a geographically diverse set of field environments to quantify more 

generalized performance. Application functionality and optimization of user interface ought to be 

updated based on the practical needs and suggestions of growers. Ideally, continuous iterations 

of model building and upgrading of the application will take place. There is certainly the 

opportunity for more user-related and field specific information to be integrated into the 

application. This could potentially push the application beyond just disease identification and 

lead to a more extensive management resource and decision-making tool for agricultural 

systems. The soybean disease classifier presented here is an optimistic step toward the goal of 

making high-performance automated plant disease diagnostics more accessible to all. 
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Figures and Tables – Chapter II 
 
Disease 
Category 

2020 
Original 
Images 

2021 
Original 
Images 

Total 
Original 
Images 

Additional 
Augmented 
Images 

Extension 
Images 

Images 
Used in 
Models 

Bacterial Blight 484 0 484 484 104 1072 
Cercospora 
Leaf Blight 

1163 435 1598 0 38 1636 

Downey 
Mildew 

0 652 652 0 104 756 

Frogeye Leaf 
Spot 

495 1045 1540 0 110 1650 

Healthy 
(Asymptomatic) 

908 724 1632 0 31 1663 

Potassium 
Deficiency 

0 1034 1034 0 49 1083 

Soybean Rust 1131 496 1627 0 127 1754 
Target Spot 0 1081 1081 0 27 1108 
Total 4181 5467 9648 484 590 10722 

 
Table 2.1: Image Collection. Displays the total number of images for each disease category that 

were photographed for each season. Bacterial blight was the only category that used the addition 

of augmented images prior to model training. Image augmentation applies various 

transformations to original images, such as rotating, zooming, reflecting, adjusting brightness, 

and adding noise. Total images used across both training and testing can be seen in the far-right 

column.  

 

Base Model 
Architecture  

Accuracy Precision Recall F1 Secs/Step Secs/Epoch Total 
Secs 

VGG16 
(Scratch) 

90.8 91.0 90.9 90.4 34.5 9868 986800 

Xception 
(Scratch) 

92.4 93.0 91.9 92.4 37.1 10621 1062100 

ResNet50 
(Scratch) 

95.9 95.9 96.4 96.1 20.0 5783 578300 

DenseNet201 
(Scratch) 

96.8 96.6 97.1 96.8 29.3 8398 839800 
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DenseNet (No 
Extra 
Augmentation) 

96.7 95.9 97.1 96.4 29.0 7974 797400 

DenseNet 
(Fine-Tune 
90/10 Epochs) 

94.9 95.5 94.9 95.1 12.8 3718 371800 

DenseNet 
(Freeze 150 
Epochs) 

84.6 85.2 86.0 85.4 11.1 3270 490500 

 
Table 2.2: Model Performance Comparison. Test evaluation of each of base model 

architectures implemented.  

 

Images Used in 
Dataset 
(ResNet50 
Models) 

Accuracy Precision Recall F1 

50% Attached / 
50% Severed 

95.18 95.51 95.93 95.60 

75% Attached / 
25% Severed 

96.48 96.54 96.53 96.50 

100% Attached / 
0% Severed 

97.58 97.66 97.75 97.69 

 
Table 2.3: Model Performance of Differing Proportion of Attached and Severed Images. 

All models implemented an identical base model ResNet50 architecture from scratch with 4500 

image datasets. 
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Figure 2.1: Sample Images. Examples of the photographed soybean leaves for all eight disease 

categories. Starting from left to right, top to bottom: bacterial blight, Cercospora leaf blight, 

downy mildew, frogeye, healthy/asymptomatic, potassium deficiency, soybean rust, target spot. 

Note some cropping was used here for display purposes.     

 

 
Figure 2.2: Convolutional Neural Network Model Architecture. A simplified 

graphic/template for all model architectures and standardized parameters. Within the base model 

‘box’ is, in reality, each respective base model’s full architecture without the last layer. All 
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models are initiated with the pre-trained ImageNet weights. For the ‘scratch’ models, all layer 

weights, including those inside the base model box are allowed to update (i.e., they are not 

frozen). For the additional DenseNet201 transfer learning models, the layers inside the box are 

frozen for a certain number of epochs.  

 

 
Figure 2.3: Accuracy Comparison. Accuracy of each model while trained through 100 epochs. 

Note that DenseNet_Freeze150 was trained for an additional 50 epochs not seen here, but it still 

maintained the lowest accuracy.  
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Figure 2.4: DenseNet201 Training Loss vs Validation Loss. Minimization of the loss function 

through 100 epochs for the training dataset compared to the validation dataset for DenseNet201. 

 
Figure 2.5: Confusion Matrix for DenseNet201 Base Model. The performance of trained 

models was tested using 1076 previously unseen test images. Model predicted categories for 

each test image can be read on the row values of the left (y-axis) as compared to the actual 

disease categories on the column values of the bottom (x-axis). The green diagonal boxes are 

filled with the correct number of predictions for that category. White boxes filled with red 

numbers are the number of incorrect predictions. The green numbers in the black boxes display 
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the precision and recall scores for each disease category. Precision scores are the green numbers 

within the black far-right column. Recall scores are within the black bottom right row. Overall 

model performance is in the blue bottom right box. 1041 correct predictions out of 1076 total test 

images; 96.75% accuracy.  
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Abstract 

Although simple epidemiological theory predicts that selection should be against it, pathogen 

populations often evolve high levels of virulence. According to the Trade-off Hypothesis this is 

because of pleiotropy; virulence is the byproduct of aggressive pathogen replication which 

increases instantaneous transmission rates. This hypothesis permeates theoretical work on 

virulence evolution and has broad empirical support from animal pathosystems. But the evidence 

from plants is conflicting. Moreover, two common features of plant pathosystems could break 

down a direct causal relationship between pathogen accumulation and virulence, to wit, 

immunopathology, and the preponderance of host genotypes that are tolerant to infection. To get 

a clearer view of the relationship between pathogen accumulation and virulence in plant 

pathosystems, we conducted a meta-analysis of 282 effect sizes from 18 empirical studies. We 

found that the overall relationship was positive and significant. We also found that the 

relationship varied widely across studies, and most of that variation could not be explained by 

the moderators in our model. Thus, the Trade-off Hypothesis predicts levels of virulence in plant 

pathosystems, but there are limits to its predictive power, and a deeper understanding virulence 
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evolution requires a more nuanced view of infection physiology, ecology, and population 

genetics. 

 

Introduction 

Pathogen strains vary in virulence, that is, the extent to which they harm their host (D’arcy et al. 

2001, Sacristán and García-Arenal 2008). The Trade-off Hypothesis posits that virulence is the 

byproduct of aggressive pathogen replication (Anderson and May 1982, Bull and Lauring 2014). 

High within-host pathogen abundance increases the instantaneous rate of transmission between 

hosts. But it also increases host mortality and thereby decreases the overall time in which any 

one host can infect another. A variant of the Trade-off Hypothesis also allows for trade-offs 

involving the rate at which hosts recover from infection, but this complicates the analysis of 

virulence evolution, and in practice, theorists tend to fix recovery rates and focus on pathogen 

transmission rates and excess host-mortality (Cressler et al. 2016). With this constrain, the Trade-

off Hypothesis predicts that every pathosystem has a level of virulence that optimizes overall 

pathogen transmission. 

 

The Trade-off Hypothesis hinges on two fundamental assumptions about pathogen ecology: (i) 

virulence increases with within-host pathogen accumulation, and (ii) so do the odds of 

transmission for each contact between hosts, or between hosts and vectors (Bull 1994, Frank 

1996, Froissart et al. 2010). For animal pathosystems, it would seem that these assumptions hold; 

a recent meta-analysis (Acevedo et al. 2019) recovered significant positive relationships between 

within-host pathogen accumulation and virulence, and between pathogen accumulation and 

transmission rate. But the validity of these assumptions for plant pathosystems is uncertain. 
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Researchers have consistently found a positive relationship between pathogen accumulation and 

transmission rate (Froissart et al. 2010), but the evidence is conflicting for how accumulation 

maps to virulence (eg, (Ebert and Mangin 1997, Lipsitch and Moxon 1997, Mackinnon and Read 

2004, Jensen et al. 2006, Sacristán and García-Arenal 2008)). 

 

In fact, two common features of plant pathosystems could break-down a direct causal 

relationship between pathogen accumulation and virulence. The first is tolerance; relative to 

susceptible host genotypes, tolerant genotypes are harmed less by a given pathogen load (Råberg 

2014). Variation in tolerance among hosts can muddle the host-population-level link between 

pathogen accumulation and virulence (Miller et al. 2006, Pagan and Garcia-Arenal 2020). The 

second is immunopathology; much of the harm induced by plant pathogens is not through direct 

exploitation of host resources, but rather through the induction of self-harming immune 

responses, for example hypersensitive responses (Graham et al. 2005). Such immunopathological 

effects can depend little on pathogen load. To be clear, animal pathosystems can also entail 

tolerance and immunopathology; indeed, in animal-virus systems, viral replication often depends 

on inhibition of apoptosis (Lam et al. 2001). But since plants lack mobile and adaptive immune 

factors, the scope for tolerance variation and immunopathology might be greater. 

 

The evolution of virulence in plant pathogens has enormous economic and social impacts. Each 

year, plant pathogens cause hundreds of billions of dollars in losses (Fried et al. 2017), and with 

climate change and global trade, new virulent host-pathogen interactions are emerging with 

increasing frequency (Anderson et al. 2020). The development of more sustainable agricultural 

practices will largely hinge on our ability to more effectively predict and prevent the evolution of 
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virulence in plant pathogens. We need a practical theory of virulence evolution that works for 

plants. 

 

Here, we use meta-analysis to try to improve our view of the potential usefulness of the Trade-off 

Hypothesis for plant pathosystems. More concretely, we aim to test the assumption of a direct 

causal relationship between pathogen accumulation and virulence. 

 

Methods 

To assemble a set of relevant studies we conducted a literature search using the various search 

parameters “plant AND virulence* AND (transmission OR population OR trade off OR fitness 

effects OR pathogen density OR titer OR replication rate OR aggressiveness).” Literature 

searches were conducted from 7 October 2020 to 18 February 2021 using Web of Science and 

Google Scholar. Studies were also identified from the citations of two review papers (Sacristán 

and García-Arenal 2008, Froissart et al. 2010). To be included in the meta-analysis, a study had 

to measure both virulence and pathogen accumulation in the same host plants. Additionally, 

studies had to report means and measures of variance for both variables. By reading the abstracts 

of studies returned by the literature searches, we identified 210 candidate studies. Of this 

candidate set, 192 were excluded because they did not meet the criteria for inclusion, leaving 18 

suitable studies (bibliography provided in S3.8), most of which reported on multiple experiments 

and thus yielded multiple effect sizes, the total of which was 282 (S2). Further details on the 

search are presented as a PRISMA flow diagram (Moher et al. 2009) in Figure 3.3.  
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The included studies quantify plant vigor in a variety of ways, specifically, by measuring (i) 

plant life span, (ii) the extent of diseased tissue, or (iii) the biomass of some part of a plant. 

Likewise, virulence effects are also expressed in variety of ways, specifically (i) differences 

between mean values of vigor variables in infected and uninfected plants, (ii) the ratio of vigor 

values between infected and uninfected plants, (iii) the absolute proportion of diseased tissue, 

and (iv) categorical ratings of disease severity. The most commonly-used measure of virulence 

by far is a ratio of biomass in infected versus uninfected plants (253 out of 282 effect sizes), with 

much emphasis on the mass of reproductive structures such as seeds and inflorescences (228 

effect sizes) (Figure 3.1). 

The study systems also vary; researchers have examined 10 pathogen species, including viruses, 

fungi, and bacteria, along with 11 host plant species representing six plant families (Figure 3.1). 

But some systems have been studied more than others; indeed, 240 of 282 effect sizes come from 

studies of Arabidopsis thaliana, and 262 effect sizes come from studies of either cucumber 

mosaic virus or turnip mosaic virus. Hence, our current view of the interactions between plant 

pathogens and their hosts is strongly biased towards a few model systems. 

Wherever possible, experimental effects were taken from the original text and tables. Otherwise, 

data were extracted from graphs with WebPlotDigitizer (Rohatgi 2020). To make experimental 

effects comparable across studies, we used the R package metafor (Viechtbauer 2010) to 

calculate standardized mean differences. For studies in which virulence effects were expressed as 

ratios of biomass of infected versus uninfected plants, we calculated the standardized mean 

difference by dividing the mean by the standard deviation, and we calculated the variance 

following Hedges (1981) (Hedges 1981). When virulence effects were provided as ratings of 

disease severity, they were converted into proportional effects by dividing each rating by the 
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maximum possible rating. In some studies, there was no uninfected control treatment per se, but 

rather, virulence was compared between infections by different pathogen strains, or with 

different pathogen densities. In these cases, we contrasted virulence levels between the 

experimental treatment with the lowest and highest levels of pathogen accumulation. For studies 

where standard errors were used to measure effect dispersion these were converted to standard 

deviations. For combinability and ease of interpretation, we standardized virulence measures so 

that larger values always corresponded to higher levels of virulence.  

Mixed-effect, multi-level meta-analytic models were fit with metafor. We tested for a correlation 

between standard mean differences in virulence and pathogen accumulation by including the 

latter as a fixed effect in the model, that is, as a moderator. We also examined several additional 

fixed effect moderators that we suspected could explain variation across studies: (i) host 

genotype (tolerant or susceptible), (ii) host age at infection (in days), (iii) the time after 

inoculation at which pathogen accumulation and virulence were measured (in days), (iv) host 

vigor variable type (biomass, life span, disease severity), and (v) the publication year of the 

study. We also included three pairs of nested random effects: (i) plant species within plant family, 

(ii) pathogen species within pathogen phylum (virus, bacteria, fungus), and (iii) study within lab 

group. For the study effect, when authors examined multiple plant vigor variables, each was 

apportioned to a separate factor level; hence, there were 23 study levels from 18 publications. 

Our main, “all variables,” model included all types of vigor variables, virulence measures, and 

each of the mentioned fixed and random effects. For some of the fixed effects – namely, host 

genotype, host age at infection, and the time at which virulence and pathogen accumulation were 

measured – data were not available for all studies. The main model excluded studies lacking 

these data. We also fit an “all studies” model in which these effects were omitted, and therefore 



 62 

all studies could be included. To further our sense of the heterogeneity across studies, we also fit 

models restricted to each type of vigor variable. In these models, some of the fixed or random 

effects included in the main model were invariant, and therefore were omitted. See the model 

specifications in S3 for further details. 

For each model, to test for publication bias, which occurs when significant results are more 

likely to be published than non-significant results, we used a version of Egger’s test (Egger et al. 

1997), implemented in metafor. 

 

Results 

By and large, across models, increasing pathogen accumulation maps to increasing virulence 

(Table 3.1). In the main, “all variables” model, based on 71 effect sizes, we found a significant 

positive correlation between virulence and pathogen accumulation. The effect of pathogen 

accumulation on virulence was 0.38 standard mean difference (SMD) (± 0.12 se, p-value 

<<0.001; Figure 3.2, Table 3.2). Likewise, although diminished in magnitude, the correlation 

between pathogen accumulation and virulence was positive and significant in the “all studies” 

model; specifically, across 271 observations, the mean effect of pathogen accumulation was 0.13 

SMD (± 0.053 se, p-value = 0.013; Figure 3.2, Table 3.3). A positive effect was also estimated 

in analyzes restricted to studies in which virulence was measured as changes in plant biomass 

(199 effects sizes; Table 3.4). By contrast the effect was insignificant when we looked only at 

studies which characterized virulence by symptom severity (13 effect sizes; Table 3.5), and 

when we analyzed only studies in which virulence was measured as changes in plant life span, 

the effect of pathogen accumulation was strongly negative, -1.59 SMD (± 0.63 se, p-value = 
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0.011; Table 3.6), although this was based on only ten effect sizes. With this exception, the 

Trade-off Hypothesis would seem to hold for plant pathosystems. 

Although that is the general trend, studies and pathosystems vary widely. In the “all variables” 

model, two fixed effect moderators other than pathogen accumulation predict virulence: (i) 

virulence is reduced by -1.36 SMD (± 0.42 se, p-value = 0.0011) when it is measured as changes 

in life span, and (ii) virulence declines by -0.41 SMD (± 0.15 se, p-value = 0.0063) with each 

increasing study year. Moreover, the random effect variance components are considerable: (i) σ2 

across plant families = 0.058, (ii) σ2 across plant species within families = 2.02, (iii) σ2 across lab 

groups = 0.06, (iv) σ2 across studies within lab groups = 0.17, (v) σ2 across pathogen phyla = 

0.058, (vi) σ2 across pathogen species within phyla = 1.58. If we constrain each of these random 

variance components to be zero, it reduces the model fit by 39.74 AICc units. The I2 estimator of 

the amount of effect size variation that occurs between (as opposed to within) studies is 67%, and 

after apportioning effect size variation across random effects, there is still a significant amount of 

residual heterogeneity across studies (QE=214.8, p-value < 0.0001). 

If we look only at studies in which virulence was measured as changes in biomass, increasing the 

study year has a -0.19 SMD effect on virulence (± 0.04 se, p-value = 0.0001). Also, the estimated 

effect of tolerant host genotypes on virulence was significant and positive (0.2 SMD; ± 0.08 se, 

p-value =0.012). This effect had the same sign in the main, “all-variables,” model, although in 

that case it was not significant. Here we should note that an Egger’s test indicated significant 

publication bias in the biomass-only data set (p-value < 0.0001). This was also the case for the 

model restricted to characterizations of virulence based on symptom severity; Egger’s tests on 

the other models did not indicate significant bias (Table 3.1). No fixed effect moderators were 
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significant in a model restricted to studies of changes in disease severity, and none other than 

pathogen accumulation was significant in the life-span only model. 

In the “all variables” model, there was a high ratio of fixed and random effect moderators to 

effect sizes: 13 moderator to 71 effect sizes. In the “all studies” model this ratio was less 

extreme: 10 moderators to 271 effect size. But the total number of levels across categorical 

random effect variables was 66. The upshot is that our estimates of fixed and random effects 

were spread thin. The ‘study’ random effect had 24 levels, which was 12 more than the next most 

complex random effect, plant species, with 11 levels. To get a sense for the robustness of our 

inferences, we fit a “simple” version of the “all variables” model in which the random study 

effect was omitted, summarized in Table 3.7. This caused one additional fixed effect to be 

significant: adding a day to the time post inoculation at which virulence and pathogen 

accumulation were measured caused a -0.24SMD change in virulence (± 0.09 se, p-value 

< .0001). But statistically, this model was a worse fit to the data (deltaAICc = 6.86; Likelihood  

Ratio Test p-value = 0.0015). 

 

Discussion 

Our meta-analysis of the empirical research literature suggests that in plant pathosystems, as 

posited by the Trade-off Hypothesis, there is a general positive link between pathogen 

accumulation and virulence. That being said, our analysis could potentially be limited by our 

search terms, even though we attempted to be as comprehensive and inclusive as possible. Our 

analysis also foregrounds that much of what we know about the relationship between pathogen 

accumulation and virulence is based on a few model systems, in particular, infections of 

Arabidopsis thaliana by cucumber mosaic virus and turnip mosaic virus. Moreover, what 
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happens in those model systems is not necessarily what happens in other systems; in fact, we 

found a wide variety of pathogen effects on their hosts. The optimization of general life history 

trade-offs in pathogen populations is only part of what drives the evolution of virulence.  

 

Two seemingly aberrant statistical relationships warrant special consideration. First, when we 

analyzed the subset of the studies for which virulence was measured as changes in life span, we 

found that pathogen accumulation had a strong negative effect. At first glance, this seems 

counter-intuitive, and it could be a sampling artifact; with only ten effect sizes, there is a high 

potential of mistaking statistical noise for signal. It could also be explained by reversing the 

arrow of causation; a negative relationship between pathogen accumulation and virulence could 

reflect that pathogens tend to have more time to accumulate when infections are less virulent and 

host live longer (O’Keefe and Antonovics 2002, Ebert et al. 2004, Montes et al. 2020). If this 

were the case, it would be contra the Trade-off Hypothesis. But another possibility is that 

infection by a pathogen increases host life span while reducing overall reproductive fitness. In 

other words, physiological trade-offs in hosts mask demographic trade-offs in pathogen 

populations. Indeed, the viral pathogens most strongly represented in the meta-data set can in 

some cases sterilize their hosts (Pagán et al. 2007, Vijayan et al. 2017, Montes et al. 2019, 2020) 

which may redirect resources away from reproduction and toward survival (Lafferty and Kuris 

2009, Vijayan et al. 2017).  

 

We found a second seemingly aberrant relationship when we restricted our analysis to studies in 

which virulence was characterized by changes in biomass. In that case, we found that 

purportedly tolerant host genotypes tended to exhibit more pronounced signs of virulence – not 
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what one would expect. This could also be explained as a statistical artifact, or, as for the 

anomalous effects of pathogen accumulation on life span, it could also be interpreted as evidence 

of pathogen-induced physiological trade-offs. The lion’s share of studies that view virulence as 

changes in plant biomass focus on changes in seed or inflorescence biomass. It could be that the 

plant genotypes classified as tolerant maintain vegetative vigor at the cost of decreased seed 

production. 

 

These aberrant inferences drive home something that has been noted by many previous authors, 

namely, that empirical characterizations of virulence – such as differences in biomass or ratings 

of disease severity – are only indirect reflections of the standard theoretical concept of virulence 

as the excess death caused by infection (Read 1994, Alizon et al. 2009, 2015, Pagan and Garcia-

Arenal 2020). For evolutionary studies, that theoretical concept might also be too reductive, 

especially if virulence involves trade-offs between longevity and fecundity (Schürch and Roy 

2004, Pagán et al. 2007, Sacristán and García-Arenal 2008). Concretely, if infected hosts are less 

fecund, and that causes a demographic decline, pathogen transmission rates and meta-

population-level fitness should be adversely affected. Hence, as for reductions in longevity, 

reductions in fecundity should also select against high virulence. Regardless, for the theory to be 

applicable, the empirical measure of virulence needs to be sufficiently integrative to approximate 

its fitness effects on a pathogen population. To reiterate, when we look across all of the published 

research, we find that by and large, there is a positive correlation between pathogen 

accumulation and virulence, however it is measured, which suggests that relatively simple 

measures of virulence can be useful. But when that correlation breaks down or reverses sign, it 

could indicate that virulence measures are too simple. 
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Since published studies have mostly focused on a few model systems, we were unable to explore 

the effects of several additional factors that could affect the relationship between pathogen 

accumulation and virulence. For example, the ecological apparency and longevity of host plants 

could affect virulence evolution (Choo et al. 2003), but only relatively short-lived annual species 

have been studied. As another example, the phenological stage of the host at the time of infection 

can influence virulence (Bingham et al. 2009, Pagan and Garcia-Arenal 2020), but we were 

unable to include this as a moderator, as it varied little across studies. Furthermore, pathogen 

loads can fluctuate over the infection period and our single-value measures of accumulation miss 

much of this variation. As more empirical research accumulates, the scope for more sophisticated 

meta-analysis will expand. 

 

At the onset, we suspected that in plants a preponderance of tolerant genotypes (Baucom and De 

Roode 2011), and immunopathological responses (Maekawa et al. 2011) might be sufficient to 

erase any sign of a general positive relationship between pathogen accumulation and virulence. 

Although that does not appear to be the case, those factors might explain some of the wide 

variation we observed across studies and systems. Indeed, although the extent of 

immunopathology was not characterized in any of the examined studies, host genotype was one 

of the strongest predictors of virulence. The wide variety of virulence effects could also be 

telling us that some of the observed levels of virulence are non-adaptive, or are adaptive only in 

un-examined ecological contexts. Most theoretical investigations of virulence evolution are 

based on evolutionary invasion analyses that predict long-term evolutionary equilibria, but it can 

take a long time for populations to reach such states and in non-equilibrium conditions, alleles 
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that increase or decrease virulence can be under positive selection (Day and Gandon 2007, 

Parker et al. 2012, Vanhove et al. 2019). And there have been multiple theoretical demonstrations 

of how competition between pathogen strains can cause the evolution of virulence above the 

level that would optimize fitness in the absence of competition (Frank 1996, Buckling and 

Brockhurst 2008, Leggett et al. 2013). Life history optimization in a single pathogen population 

is only part of the story. 

 

Conclusion 

In simple systems near equilibrium, virulence reduces the fitness of hosts and pathogens alike; 

alleles that increase virulence should be selected against. And yet many pathogens are highly 

virulent. The evolution of such virulence tends to be explained by assuming a hard-and-fast 

trade-off between pathogen accumulation, which governs instantaneous transmission efficiency, 

and host health. Although there had been some doubt, here we show that such a trade-off does 

appear to apply to plant pathosystems. We also show considerable variation in virulence effects, 

which may reflect the preponderance of plant immunopathology and the wide range of tolerance 

phenotypes in plant populations, as well as the non-equilibrium status and complex ecology of 

many plant pathosystems. The Trade-off Hypothesis is something to build on. More empirical 

studies are highly welcomed, especially those comparing several strains of pathogen in a single 

host genotype with simultaneous measures of pathogen accumulation, transmission rates, and 

virulence taken several times throughout multiple host generations. Repeating such studies 

across pathosystems would provide great insight into the extent of how generalizable the trade-

off hypothesis truly is.   
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Figures and Tables – Chapter III 

 
Figure 3.1: Study System Variation. Lollipop plots showing the number of effect sizes from 

studies with (A) different measures of host plant vigor, (B) different host plant species, and (C) 

different pathogen species. Interpretation: Most studies have measured virulence as changes in 

plant biomass and have examined infections of Arabidopsis thaliana by either cucumber mosaic 

virus or turnip mosaic virus. 

 

   
                                                                                                                                               

Figure 3.2: Effect of Pathogen Accumulation on Virulence. Shown are the effects in standard 

mean differences (SMD) of pathogen accumulation on virulence estimated from each of the 

models described in the main text. Whiskers show confidence intervals. The number beside each 

point is the number of effect sizes from which it was estimated.  The “all studies” model 

excludes the host-plant-age and infection-duration covariates. The “all variables” model excludes 

studies without data for host-plant-age and infection-duration. The “all variables simple” model 

is like the previous except that it has a simpler set of random effects, specifically, it does not 
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include a study effect nested within the random lab group effect. The remaining models are of 

subsets of the data, each restricted to a particular measure of host plant vigor. Interpretation: 

With the exception of the model restricted to studies of virulence measured as changes in life 

span, there is a significant positive relationship between pathogen accumulation and virulence. 

 

 

Figure 3.3: Prisma Flow Chart. Documents the step-by-step process of the literature review 
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Table 3.1: Estimates Effects of Pathogen Accumulation on Virulence. Each row gives (1) the 
estimated effect (SMD) for a model, along with (2) its p-value (p.val), (3) upper bound of the 
95% confidence interval (ci.ub), (4) lower bound of the 95% confidence interval (ci.lb), (5) the 
number of effect sizes it was estimated from (k), (6) the number of fixed effect coefficients in the 
model (p), (7) the model’s log likelihood (logLik), (8) AICc score, (9) the I2 estimator of 
proportion of effect size variation across versus within studies, and (10) the p-value of Egger’s 
test for publication bias (pub.bias). All figures were rounded to two significant digits. 
 
model SMD p.val ci.ub ci.lb se k p logLik AICc i2 pub.bias 
all studies 0.13 0.01 0.23 0.03 0.05 271 6 -720.27 1465.75 0.85 0.27 
all variables 0.38 0 0.61 0.14 0.12 71 7 -105.1 242.58 0.67 0.21 
all variables 
simple 0.38 0 0.61 0.14 0.12 71 7 -107.91 245.2 0.67 0.21 
life span -1.59 0.01 -0.36 -2.82 0.63 10 3 -23.47 71.93 0.89 0.73 
disease severity -0.07 0.92 1.31 -1.45 0.7 13 4 -50.67 137.74 0.92 0.01 
biomass 0.27 0 0.41 0.14 0.07 199 5 -471.42 966.26 0.8 0 
 
 
Table 3.2. Summary of “All Variables” Model. 
 
 beta se ci.lb ci.ub p.val 
intercept 830.04 304.36 233.51 1426.57 0.01 
pathogen accumulation 0.38 0.12 0.14 0.61 0 
host genotype: tolerant 0.16 0.26 -0.36 0.67 0.55 
vigor variable: life_span -1.36 0.42 -2.18 -0.54 0 
days post inoculation -0.2 0.15 -0.49 0.08 0.16 
study year -0.41 0.15 -0.7 -0.12 0.01 
age at infection -0.19 0.24 -0.66 0.27 0.42 
 
 
Table 3.3. Summary of “All Studies” Model. 
 
 beta se ci.lb ci.ub p.val 
intercept 136.54 81.05 -22.31 295.4 0.09 
pathogen accumulation 0.13 0.05 0.03 0.23 0.01 
vigor_variable-life_span -1.58 0.48 -2.53 -0.64 0 
vigor_variable-severity_area -0.73 10.59 -21.48 20.03 0.95 
vigor_variable-severity_percentage 11.32 9.43 -7.15 29.79 0.23 
study_year -0.07 0.04 -0.15 0.01 0.09 
 
 
 
Table 3.4. Summary of Model Restricted to Measures of Biomass. 
 
 beta se ci.lb ci.ub p.val 
intercept 379.61 72.1 238.3 520.92 0 
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pathogen accumulation 0.27 0.07 0.14 0.41 0 
host genotype: tolerant 0.2 0.08 0.04 0.36 0.01 
study year -0.19 0.04 -0.26 -0.12 0 
age at infection 0.03 0.15 -0.27 0.33 0.84 
 
 
Table 3.5. Summary of Model Restricted to Measures of Disease Severity. 
 
 beta se ci.lb ci.ub p.val 
intercept 1651.33 4255.13 -6688.58 9991.23 0.7 
pathogen accumulation -0.07 0.7 -1.45 1.31 0.92 
study year -0.82 2.12 -4.98 3.33 0.7 
age at infection 0.89 1.37 -1.79 3.57 0.51 
 
 
Table 3.6. Summary of Model Restricted to Measures of Life Span. 
 
 beta se ci.lb ci.ub p.val 
intercept -1.7 1.52 -4.69 1.29 0.26 
pathogen accumulation -1.59 0.63 -2.82 -0.36 0.01 
host genotype: tolerant 0.79 0.41 -0.02 1.6 0.06 
 
 
Table 3.7. Summary of “All Variables Simple” Model. 
 
 beta se cilb ciub pval 
intercept 928.12 205.39 525.56 1330.68 0 
pathogen accumulation 0.38 0.12 0.14 0.61 0 
host genotype: tolerant 0.15 0.26 -0.36 0.67 0.56 
vigor variable: life_span -1.2 0.17 -1.53 -0.88 0 
days post inoculation -0.24 0.09 -0.41 -0.07 0 
study year -0.46 0.1 -0.65 -0.26 0 
age at infection -0.24 0.2 -0.63 0.14 0.22 
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