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Striae distensae, otherwise known as stretch marks, are common skin lesions found

in a variety of clinical settings. They occur frequently during adolescence or pregnancy

when there is rapid tissue expansion, but may also occur in severe weight loss and in corti-

costeroid excess. Despite a considerable volume of investigative research, the pathogenesis

of striae distensae remains obscure. The interpretation of histologic samples, the major

investigative tool, demonstrates an association between dermal lymphocytic inflammation,

elastolysis and a scarring response. In this thesis, we investigate the pathogenesis of striae

distensae by addressing the coupling between mechanical forces and dermal pathology. We

develop a mathematical model for illustrating the effect of fibroblasts and the extracellu-

lar matrix in the formation of striae, use linear stability analytical theory to predict the

range of parameter values where instability sets in and confirm them using finite difference

schemes. We show how a mathematical approach provides a realistic framework that may

account for the formation of the stretch marks.

Keywords: Striae Distensae, Mechanochemical model, Stretch marks, Diffusion-driven in-

stability, Finite Difference.
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Chapter 1

INTRODUCTION

1.1 Striae Distensae: An overview and motivation

Striae distensae, commonly known as stretch marks is a skin condition that does not

cause any significant medical problem but causes sizable distress to those affected. Striae

distensae results when the skin is subjected to continuous stretching; increased stress is

placed on the connective tissue due to increased size of the various parts of the body. It oc-

curs on the abdomen and the breasts of pregnant women, on the shoulders of body builders,

in adolescence, and in individuals who are overweight. Skin elastolysis leads to excessive

mast cell degranulation with subsequent damage of collagen and elastin. Prolonged use

of oral or topical corticosteroids or Cushing syndrome (increased adrenal cortical activity)

leads to the development of striae. Histological findings suggest that in the early stages,

inflammatory changes may predominate; edema is present in the dermis. In the later stages,

the epidermis becomes thin and flattened with loss of the rete ridges. The dermis has thin,

densely packed collagen bundles arranged in a parallel array horizontal to the epidermis at

the level of the papillary dermis. Elastic stains show breakage and retraction of the elastic

fibers in the reticular dermis. The broken elastic fibers curl at the sides of the striae to

form a distinctive pattern. Scanning electron microscopy shows extensive tangles of fine,

curled elastic fibers with a random arrangement. This arrangement is in contrast to nor-

mal skin, which has thick, elastic fibers with a regular distribution. When viewed by a

transmission electron microscope, the ultrastructure of elastic and collagen fibers in striae

is similar to that of healthy skin. The factors that lead to the development of striae are
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poorly understood. No general consensus exists as to what causes striae. One suggestion

is that they develop as a result of stress rupture of the connective tissue framework. It has

also been suggested that they develop more easily in skin that has a high proportion of rigid

cross-linked collagen, for example, in early adult life. This is evident in the striae caused by

pregnancy, lactation, weight lifting, and other stressful activities. Increased adrenal cortical

activity has been implicated in the formation of striae, as in the case of Cushing syndrome.

Additionally, the cellular and extracellular matrix (ECM) alterations that mediate the clin-

ical phenotype of stretch marks remain poorly understood [1]. There have been several

detailed studies involving the effects and even temporary treatments for this problem, but

the pathogenesis is still a mere speculation. It has been established, though, that the cause

for striae distensae could be predominantly mechanical and in certain cases such as the

Cushing’s syndrome, it is due to corticosteroid excess. Furthermore, it has also been estab-

lished that pattern forming processes of striae distensae have lots of similarities to those

of wound healing, for which a mechanochemical model has been successfully devised and

studied by Maini [2]. This also serves as motivation for devising a mathematical framework

for striae distensae.

1.2 Ways of expressing the problem mathematically

Histological samples suggest rupture of the connective tissue framework and the ECM

alterations to facilitate the phenotype of striae. The most common cells in the connective

tissue are the fibroblasts. A fibroblast is a type of cell that synthesizes and maintains the

ECM of many animal tissues. Fibroblasts provide a structural framework (stroma) for many

tissues. The main function of fibroblasts is to maintain the structural integrity of connective
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tissue by continuously secreting precursors of the ECM. Fibroblasts have a branched cyto-

plasm surrounding an elliptical, speckled nucleus having 1 or 2 nucleoli. Though disjointed

and scattered when they have to cover a large space, fibroblasts when crowded often locally

align paralleled in clusters. Fibroblasts make collagen, glycosaminoglycans, reticular and

elastic fibers, and glycoproteins found in the extracellular matrix. In growing individuals,

fibroblasts are dividing and synthesizing the ECM. The composition of the extracellular

matrix determines the physical properties of connective tissues. Fibroblasts are morpho-

logically heterogeneous, with diverse appearances depending on their location and activity.

Though morphologically inconspicuous, ecotypically transplanted fibroblasts can often re-

tain positional memory of the location and tissue context where they had previously resided.

Fibroblasts can also migrate slowly over substratum as individual cells. While epithelial

cells form the lining of body structures it is fibroblasts and related connective tissues which

sculpt the bulk of an organism.

The basic mechanochemical model for striae relies on two of the following experimen-

tal results: (i) fibroblasts migrate within a tissue substratum, which is made up of fibrous

extracellular matrix [3], and (ii) these cells generate large traction forces during the for-

mative stages of stretch marks [4]. Hence the mechanism we shall develop will model the

mechanical interaction between the motile cells and the elastic substratum within which

they move. Fibroblast cells move by exerting forces on their surroundings, consisting of

ECM and the surface of other cells. They use their cellular protrusions, filopodia, which

stretch out from the cells in all directions and pulling everything in its path. The biology of

these protrusions is available in [5]. As the fibroblasts move through the ECM, they deform
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it by virtue of their traction forces. These deformations induce anisotropy effects which in

turn affect the cell motion. The effects of these various coordinations results in spatially

organized cell aggregations in striae (refer to [13] and [14] for further details).

A continuum model for striae has three governing equations:

1. The conservation equation for the fibroblast density,

2. The conservation law governing the ECM and

3. The mechanical balance of forces between the cells and the ECM.

This thesis is organized as follows: In Section 1.3, we derive the mathematical models that

describe pattern formation in striae. These models are then non-dimensionalized; as illus-

trated in Section 1.4. In Section 2, we carry out detailed linear stability studies in order to

determine ranges for parameter values that will give rise to striae. The predictions of linear

stability theory are then verified through finite difference schemes to provide approximate

solutions to the model equations. Finally, in Section 4, we present our numerical results,

conclusions and highlight future research ideas.

1.3 Derivation of the mathematical models

Let V ⊂ R3 be a simply connected bounded volume at time t ∈ (0, T ), T > 0 and

S ⊂ R2 be the surface closing the volume V . Throughout the course of this work, we

denote N(x, t) and S(x, t) as the fibroblast and ECM densities respectively at position

x ∈ V at time t. U(x, t) denotes the displacement vector of the ECM, that is a material

point in the matrix initially at position x and undergoes a displacement to x + U. The

following equations are thus derived.
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1.3.1 Fibroblast density conservation equation

Let c(x,t) be the density of any material. The general conservation equation says the

rate of change of amount of material in V equals the rate of flow of material across S into

V plus the material created in V . Thus

d

dt

∫

V
c(x, t)dV = −

∫

V
J · dS +

∫

V
fdV, (1.1)

where J is the flux of material and f represents the source of material which maybe a

function of c(x, t). Applying divergence theorem to the surface integral and assuming c(x, t)

is continuous and assuming V is continuous for all time t, the above equation becomes

∫

V
(
∂c

∂t
+∇ · J − f(c,x, t))dV = 0. (1.2)

Since the volume is arbitrary at all times, the integral must be 0 and so the conservation

equation for c(x, t) is

∂c

∂t
+∇ · J = f(c,x, t). (1.3)

If classical diffusion is the process then the generalization, for example, is J = −D∇c [11].

We can also generalize the above to a case where we have several interacting materials,

species or chemicals. We will then have a vector ci(x, t) each diffusing with its own diffusion

coefficient Di and interacting according to the vector source term f . For simplicity, we will

restrict our studies to a one-dimensional model. The above obtained equation represents

a reaction-diffusion system. We will use this conservation equation to model the fibroblast

density. Since N represents the fibroblast density, the general form of the conservation
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equation is

∂N

∂t
= −∇ · J + M, (1.4)

where J is the flux of cells, that is, the number of fibroblast cells crossing a unit area per

unit time and M is cell proliferation. For simplicity, we will assume that there is no cell

proliferation. The inclusion of cell proliferation should be trivial. The flux can be expressed

as

J = Jd + Jc

where Jd = −D∇N represent the flux due to Fick’s law. The diffusion term models random

motion, and the flux term models directed orientation [11]. Biologically it is known that

fibroblasts move up ridges in the substratum and more specifically, experiments by Guido

and Tranquillo [11] show that, within oriented collagen gels, fibroblasts move preferentially

in the direction of collagen orientation by pulling themselves along the fibers. Thus the flux

term is due to this tendency of fibroblasts to move in the direction of collagen fibers, so

that if there is a gradient of collagen, the fibroblasts tend to re-orient so as to move up that

gradient. With U(x, t) representing the displacement vector of the ECM, the convective

flux contribution Jc is

Jc = N
∂U

∂t
. (1.5)

Here the velocity of deformation of the matrix is ∂U
∂t and the amount of cells transported is

simply N times the velocity. The convective flux is the most important contributor to the

fibroblast transport [11].

Cells also tend to disperse randomly in a homogenous isotropic medium. Classical dif-

fusion contributes a flux term −D∇N which models the random motion in which fibroblasts
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respond to local variations in fibroblast density and tend to move down the density gradient

[19]. Also, in the case of striae, the motility of the fibroblasts is enhanced along the strain

lines and hence D (Ux) = D0 (1+γ Ux) where γ > 0 is a constant. Combining all the results

obtained above, we derive the conservation equation for fibroblast density as

Nt = (D Nx)x − (N Ut)x. (1.6)

It can be easily deduced therefore that the equation simplifies to

Nt = D0 Nxx + D0 γ (Nxx Ux + Nx Uxx)−Nx Ut −N Utx. (1.7)

1.3.2 Conservation equation for the ECM density

The next governing equation that we model is the conservation equation for the ECM

density. Within the extracellular matrix, collagen takes the form of a fibrous network with

an elaborate structure including cross links, and consequently there is essentially no random

re-orientation of the collagen. Because the fibroblasts degrade and produce collagen, thus

reforming the network with collagen oriented in the direction of the fibroblasts, the equation

for ECM has an angular flux term. For simplicity, in our system we do not allow any net

change in the amount of collagen; the fibroblasts simply remodel the existing network. As a

result there is only one term in the ECM equation which involves the density of ECM, the

interaction of ECM with fibroblast, and the gradient of interaction with fibroblasts. This

term is similar to the flux term in the equation for the fibroblasts and it also contains an

additional term which arises because the rate of collagen remodeling depends on the density

of fibroblasts doing that re-modeling [19]. The ECM primarily moves by advection and we
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mathematically model its conservation. The conservation equation for the matrix material

S(x, t) is

∂S

∂t
+∇ · (SU) = P (N,S, U). (1.8)

where matrix flux is taken to be mainly via convection and P (N,S, U) is the rate of secretion

of matrix by the cells [11]. As already discussed, secretion and degradation is thought to

play a role in certain situations involving fibroblast organization and in wound healing [15].

However, on the time scale of cell motions that we consider, we can neglect this effect and

hence we can assume that P = 0. Also experiments by [16] indicate P = 0 during pattern

formation. Hence the conservation equation for striae is taken as

St = − (S Ut)x = −Sx Ut − S Utx. (1.9)

1.3.3 Fibroblast: ECM interaction equation

The composition of the ECM within which the fibroblasts move is a lot more complex

and moreover its constituents change as development proceeds. Its mechanical properties

have not been well studied either. In this case though, we are interested only in the mechan-

ical interaction between the fibroblasts and the matrix. Also the mechanical deformations

are very small [11], so as a reasonable approximation, we take the composite material of

fibroblasts plus matrix to be modeled as a linear, isotropic visco-elastic continuum with

stress tensor σ. We assume that the traction forces generated by the cell are in mechanical

equilibrium with the elastic restoring forces developed in the matrix and any external forces
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present. The mechanical force balance fibroblast-matrix equation is then [17],

∇ · σ + KF = 0, (1.10)

where F is the external force acting on the matrix (per unit matrix) and σ is the stress

tensor. K is a measure of the anchoring force that resists the movement of the ECM

relative to the subcutis [11]. This equation, when applied to a spring loaded with a weight,

simply says that the applied force is balanced by the elastic forces from the extended spring.

Considering the stress tensor σ that has contributions both from the ECM and the cells,

we have

σ = σECM + σcell. (1.11)

The expression for a linear visco-elastic material as derived in [17], gives the stress strain

constitutive relation as

σECM = [(µ1 + µ2)εt + E
′
ε[1 + ν

′
], (1.12)

where E
′

= E
1+ν , ν

′
= ν

1−2ν , µ1 and µ2 are the shear and bulk viscosities of the ECM,

ε = Ux is the strain tensor, and E and ν are the Young’s modulus and the Poisson ratio

respectively. Denoting B = E 1−ν
(1+ν)(1−2ν) and A = µ1 + µ2, we have

σECM = Aεt + Bε. (1.13)

Next we consider the contribution to the stress tensor from the fibroblast tractions, that is

σcell. The more fibroblasts there are, the greater the traction force. Also the traction force

is enhanced along the strain lines, hence the measure of the traction force as a function of

9



Ux is modeled as φ(Ux) = τ0(1 + δUx) where the dimensionless parameter δ quantifies the

increase in traction along the strain lines [11]. If the filopodia, with which the fibroblasts

attach to the ECM extend beyond their immediate neighborhood, as they probably do, we

need to include a long range diffusion effect. Hence combining all these parameters, we get

the stress tensor to be

σcell = φSN, (1.14)

where φ is as defined above and S is replaced by S + h0Sxx to include a long range effect

in the cell traction term [11]. Finally we consider the body force F . The matrix material is

attached to a substratum of underlying tissue or the epidermis, like ropes. We model these

restraining forces as body forces proportional to the density of the ECM and the displace-

ment of the matrix from its unrestrained position and thus take F = −SU . Combining all

the above the force balance equation (1.10) reduces to:

(Aεt + Bε + φSN) = KSU. (1.15)

This equation reduces to

K S U = (AUxt + B Ux + τ0 (1 + δUx)(S + h0 Sxx) N)x

= AUxxt + B Uxx + τ0 (S N)x + τ0 δ (S N Ux)x + τ0 h0 (N Sxx)x + τ0 h0 δ (N Ux Sxx)x

= AUxxt + B Uxx + τ0 N Sx + τ0 S Nx + τ0 δ N Sx Ux + τ0 δ S Nx Ux + τ0 δ N S Uxx

+ τ0 h0 Nx Sxx + τ0 h0 N Sxxx + τ0 h0 δ Nx Ux Sxx + τ0 h0 δ N Uxx Sxx

+ τ0 h0 δ N Ux Sxxx. (1.16)
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1.4 Non-dimensionalization of the Model Equations

Let us define the following new variables and time- and spatial-scales

n(t̂, x̂) = N∗N, s(t̂, x̂) = S∗S, u(t̂, x̂) = U∗U, t̂ = t∗ t and x̂ = x∗ x. (1.17)

We can therefore compute the following derivatives

∂t

∂t̂
=

1
t∗

,
∂x

∂x̂
=

1
x∗

,

then it follows that

nt̂ =
N∗

t∗
Nt, nx̂ =

N∗

x∗
Nx, nx̂x̂ =

N∗

x∗2
Nxx,

ut̂ =
U∗

t∗
Ut, ux̂ =

U∗

x∗
Ux, Ut̂x̂ =

U∗

t∗x∗
Utx, ux̂x̂ =

U∗

x∗2
Uxx,

ux̂x̂x̂ =
U∗

x∗3
Uxxx, ux̂x̂t̂ =

U∗

x∗2t∗
Uxxt,

st̂ =
S∗

t∗
St, sx̂ =

S∗

x∗
Sx, sx̂x̂ =

S∗

x∗2
Sxx, sx̂x̂x̂ =

S∗

x∗3
Sxxx. (1.18)

Equation (1.7) can be written as

nt̂ =
N∗

t∗
(D0 Nxx + D0 γ (Nxx Ux + Nx Uxx)−Nx Ut −N Utx)

=
D0

t∗
N∗Nxx +

D0 γ

t∗
N∗Nxx Ux +

D0 γ

t∗
N∗Nx Uxx − 1

t∗
N∗Nx Ut − 1

t∗
N∗N Utx

=
D0x

∗2

t∗
N∗

x∗2
Nxx +

D0 γx∗2

t∗
N∗

x∗2
Nxx

x∗ Ux

x∗
+

D0 γx∗

t∗
N∗

x∗
Nx

x∗2 Uxx

x∗2

− N∗

x∗
Nx

x∗

t∗
Ut −N∗N

x∗

t∗x∗
Utx.
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Define

t∗ =
1
T

, x∗ =
1
L

, d =
D0 T

L2
, U∗ = x∗ =

1
L

where T and L are defined time and length scales. Using the definitions in (1.17) - (1.18)

we obtain the non- dimensionalized equation

(A) nt̂ = dnx̂x̂ + d γ (nx̂x̂ ux̂ + nx̂ ux̂x̂)− (nut̂)x̂ . (1.19)

Equation (1.9) can be written as

StS
∗

x∗
U∗

t∗
=

SxS∗

x∗
U∗Ut

t∗
− S∗S

U∗Utx

t∗x∗
. (1.20)

The above representation for Equation (1.20) is valid since all we have done is multiply

both sides by S∗U∗
t∗x∗ > 0. Using the definitions (1.17) - (1.18) we obtain the equation

(B) st̂ = −sx̂ ut̂ − s ut̂x̂. (1.21)

Similarly equation (1.16) is multiplied by U∗

x∗2 t∗
> 0 yields

K
S

t∗x∗2
U∗U =A

U∗Uxxt

x∗2t∗
+ B

U∗Uxx

x∗2t∗
+ τ0

1
t∗

Sx

x∗
U∗

x∗
N + τ0

S

t∗
Nx

x∗
U∗

x∗
+ τ0δ

N

t∗
Sx

x∗
U∗Nx

x∗

+ τ0δ
S

t∗
Nx

x∗
U∗Ux

x∗
+ τ0δ

S

t∗
N

U∗Uxx

x∗2
+ τ0h0Nx

Sxx

x∗2
U∗

t∗
+ τ0h0

N

t∗
Sxxx

x∗2
U∗

+ τ0h0
δ

t∗
Nx

x∗
U∗Ux

x∗
Sxx + τ0h0

N

t∗
U∗Uxx

x∗2
Sxx + τ0h0

N

t∗
U∗Ux

x∗
Sxxx

x∗
.
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Multiplying both sides by 1
S0

where S∗ = 1
S0

and defining N∗ = 1
N0

and applying definitions

(1.17) - (1.18) we obtain

KTL2su =
A

S0
ux̂x̂t̂ +

B

S0
Tux̂x̂ + τ0N0Tsx̂n + τ0N0Tsnx̂ + τ0N0δTnsx̂ux̂ + τ0N0δTsnx̂ux̂

+ τ0N0δTsnux̂x̂ + τ0N0Th0x
∗2nx̂sx̂x̂ + τ0N0Th0x

∗2nsx̂x̂x̂ + τ0N0Th0x
∗2δnx̂ux̂sx̂x̂

+ τ0N0Th0x
∗2δnux̂x̂sx̂x̂ + τ0N0Th0x

∗2δnux̂sx̂x̂x̂. (1.22)

Dividing both sides by KTL2 and defining

a =
A

K S0 T L2
, b =

B

K S0 L2
, τ =

τ0 N0

K L2
, h =

h0

L2

we get the following equation

(C) a ux̂x̂t̂ + b ux̂x̂ + τ (n sx̂ + s nx̂ + hnx̂ sx̂x̂ + hn sx̂x̂x̂)

+ τ δ (n sx̂ ux̂ + s nx̂ ux̂ + s nux̂x̂ + hnx̂ ux̂ sx̂x̂ + hnux̂x̂ sx̂x̂ + hn ux̂ sx̂x̂x̂) = s u. (1.23)

We can drop the ŝ above all the new variables and also set τ = t without any loss of

generality to obtain the following non-dimensionalized equations

nt = dnxx + d γ (nxx ux + nx uxx)− (nut)x , (1.24)

st = −sx ut − s utx (1.25)

a uxxt + b uxx + τ (n sx + s nx + hnx sxx + hn sxxx)

+ τ δ (n sx ux + s nx ux + s nuxx + hnx ux sxx + hnuxx sxx + hn ux sxxx) = s u. (1.26)
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These new equations would be our governing equations for the rest of the work. To close the

system, we prescribe initial conditions as small random perturbations around the uniform

steady state, if it exists. Boundary conditions are taken as zero-flux. Zero-flux boundary

conditions imply self-organizing processes. As it can be seen, there are a number of pa-

rameter values throughout these system of equations, each having a physical meaning even

though they are dimensionless. We set the following parameter values based on experimental

results obtained from our collaborators.





A = 108Ns cm−2, D0 = 10−9cm2 s−1, N0 = 104cm−3

S0 = 10−1g cm−3, δ = 1, h0 = 10−1cm2, K = 103N cm−4 S−1
0 ,

B = 1, 12, 100 N cm−2,

τ0 = 0.001, 0.0075, 0.01, 0.045, 0.1, 0.2 N cm−2 N−1
0 S−1

0 ,

γ = 0.01, 0.05.

(1.27)

Also L = 1 cm and T = 106.5 s. The values corresponding to the non-dimensional parame-

ters can be shown to be given by:





d = 10−2.5, a = 10−0.5, δ = 1, h = 0.1

b = 0.01, 0.12, 1,

τ = 0.01, 0.075, 0.1, 0.45, 1, 2,

γ = 0.01, 0.05.

(1.28)

The parameters with variable values suggest different systems independent of each other

and are in relation to common situations encountered by biologists and dermatologists. For

example, increasing values for the parameter τ correspond to an increase in the traction force
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exerted by the fibroblasts on the ECM and decreasing b values correspond to a decrease

in Young’s modulus, which may occur in cases of corticosteroid excess. The rest of the

parameters are kept constant since their increase or decrease does not have much physical

significance and the studies are assumed to in with relation to varying τ , b and γ, since

they would have direct biological consequences which would help us to better understanding

the causes of striae distensae. The process of non-dimensionalization has many advantages,

the evident one being that the number of relevant parameters has significantly reduced

dimensionless groupings, from 10 to 7. This would ease the task of determining the dynamics

of the system [11]. The reader is referred to [12] for a detailed record on the advantages of

non-dimensionalization. One thing to be noted here is that all the dimensionless parameters,

all of which are positive, can be divided into those associated with the fibroblast properties

such as τ and those related to the matrix properties, such as b, γ etc. In particular we vary

b and τ , since these signify important physical concepts of the Young’s modulus and the

cell traction force respectively. Therefore, we will concentrate on these parameters in order

to get an idea of the restraints that both the fibroblasts and the ECM experience. We also

vary γ to see if it has any effect on these parameters and the patterns generated.

Although we have modeled an analytically formidable system, the conceptual frame-

work is pretty clear. We have not included all the effects that might be relevant such as

cell proliferation and the effects of matrix secretion. However, it is presumed that if this

model works out well, more complex features that dermatologists feel are important can be

incorporated. We have also made sure that all the essential features for the generation of

stretch marks have been incorporated and hence the model generated will be very realistic.
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Chapter 2

LINEAR STABILITY ANALYSIS

In a seminal paper, Turing [21] showed mathematically that small random spatial

fluctuations in an otherwise well-mixed system of reacting and diffusing chemicals could

be driven unstable in the presence of diffusion to give rise to a spatial pre-pattern [11].

This process is now widely known as diffusion-driven instability. Turing’s discovery was

ground-breaking; not only was it mathematically counter-intuitive but also it gave rise to

explaining mathematically the development of form or structure in an organism.

Our biological problem is very much concerned with pattern development and structure.

Using Turing’s theory in order to model spatial aspects observed during pattern formation

of striae, the equation system (1.24) - (1.26) must admit spatially inhomogeneous solutions.

Considering their complexity, it is highly unlikely that useful analytical solutions can be

found to these systems. However, it is known that much of any pattern formation potential is

predicted by linear analysis about the uniform steady state solutions close to the bifurcation

points [11]. It is also known that such linear predictions are not infallible and must be backed

up by numerical simulations if finite amplitude structures are required [11]. Therefore it is

worthwhile, from a practical standpoint, to carry out a detailed linear stability analysis of

the governing equations, not only as a first analytical step to indicate spatial pattern forming

potentialities but also because striae may involve solutions that effectively fall within the

linear regime. The latter case is shown to be effectively those from a nonlinear theory close

to bifurcation from uniformity [11]. So, even though this process is quite messy and unduly

complicated, if we wish to demonstrate the powerful pattern forming capabilities of striae,
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the effort is worthwhile. To investigate solution behavior we first examine the linearization

of equations (1.24) - (1.26) about the normalized steady state ω0 = (n0, s0, u0)T = (1, 1, 0)T

looking for solutions

ω1 = n(t, x)− n0, ω2 = s(t, x)− s0, and ω3 = u(t, x)− u0, (2.1)

which are proportional to eλ t+i k x where k is the wave number and λ is the linear growth

factor. Here we assume zero flux boundary conditions for the system of partial differential

equations which correspond to the case of a closed cylindrical or spherical surface in three

dimensions. Zero-flux boundary conditions imply no external input (a case of self-organizing

process) which is the case in striae distensae. Hence we now have

n(t, x) = n0 eλ t+i k x, s(t, x) = s0 eλ t+i k x, and u(t, x) = u0 eλ t+i k x. (2.2)

Using the above obtained forms, we compute the following derivatives:

nt = λn(t, x), st = λ s(t, x), ut = λu(t, x),

nx = i k n(t, x), sx = i k s(t, x), ux = i k u(t, x),

nxx = −k2 n(t, x), sxx = −k2 s(t, x), uxx = −k2 u(t, x),

sxxx = −i k3 s(t, x), uxxx = −i k3 u(t, x),

utx = i k λ u(t, x), uxxt = −k2 λu(t, x). (2.3)
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The above derivatives are identical to the derivatives of the new variables ω1, ω2 and ω3.

Let us consider equation (1.24) and linearise about the steady state:

nt = dnxx + d γ (nx ux)x − (n ut)x,

(ω1 + n0)t = d(ω1 + n0)xx + d γ ((ω1 + n0)x (ω3 + u0)x)x − ((ω1 + n0) (ω3 + u0)t)x and

ω1 t = dω1 xx + d γ (ω1 x ω3 x)x − (ω1 ω3 t)x − ω3 tx.

Substituting the definitions (2.2) and derivatives (2.3) and simplifying where non-linear

terms are ignored we have

(λ + d k2) n0 + i λ k u0 = 0. (2.4)

Similarly consider the equation (1.25). Linearizing about the steady state we have the

following

st = −(sut)x = −((ω2 + 1)(ω3t))x = −(ω2ω3t)x − ω3tx = ω2t.

Substituting the derivatives and simplifying yields

λ s0 + i λ k u0 = 0. (2.5)

For equation (1.26), linearizing about the steady state, we obtain the following equation

su = auxxt + buxx + τ(nsx + snx + hnxsxx + hnsxxx)+

τδ(snxux + nsxux + nsuxx + hnxuxsxx + hnuxxsxx + hnuxxsxxx).
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Hence

(ω2 + s0)(ω3 + u0) = aω3xxt + bω3xx + τ [(ω1 + 1)(ω2 + 1)x + (ω2 + 1)(ω1 + 1)x+

h(ω1 + 1)x(ω2 + 1)xx + h(ω1 + 1)(ω2 + 1)xxx]+

τδ[(ω2 + 1)(ω1 + 1)xω3x + (ω1 + 1)(ω2 + 1)xω3x+

(ω1 + 1)(ω2 + 1)(ω3 + 1)xx + h(ω1 + 1)xω3x(ω2 + 1)xx+

h(ω1 + 1)ω3xx(ω2 + 1)xx + hnω3x(ω2 + 1)xxx].

Ignoring non-linear terms, we have

aω3xxt + bω3xx + τ [ω2x + ω1x + hω2xxx] + τδ[ω3xx] = u0.

Re-arranging terms after substituting the values of the derivatives (2.3) and canceling com-

mon terms on both sides, we get

i τ k n0 + iτ
(
k − h k3

)
s0 −

(
aλ k2 + b k2 + τ δ k2 + 1

)
u0 = 0. (2.6)

Combining equations (2.4) - (2.6) in matrix form:




λ + d k2 0 i λ k

0 λ i λ k

i τ k i τ
(
k − h k3

) − (
aλ k2 + b k2 + τ δ k2 + 1

)







n0

s0

u0




=




0

0

0




. (2.7)
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The (3 × 3) matrix is known as the Jacobian matrix. The characteristic equation for the

Jacobian matrix can be shown to be given by

−λ
(
λ + dk2

) (
aλk2 + bk2 + τ δk2 + 1

)
+ λ k

(
τk − h τk3

) (
λ + dk2

)
+ τλ2k2 = 0

Clearly λ = 0 is a trivial root. The quadratic equation

a(k) λ2 + b(k) λ + c(k) = 0 (2.8)

gives rise to the non trivial roots, where

a(k) = a k2, (2.9)

b(k) = (a d + τ h) k4 + (τ (δ − 2) + b) k2 + 1, (2.10)

c(k) = d τ h k6 + (d τ (δ − 1) + bd)k4 + d k2. (2.11)

The roots of the characteristic equation (2.8) are given by

2 a(k) λ1, 2 = −b(k)±
√

b(k)2 − 4a(k)c(k). (2.12)

Spatially heterogeneous solutions of the linear system are characterized by the dispersion

relation λ(k) which has Re(λ(k)) ≤ 0 but which exhibits a range of unstable modes with

Re(λ(k)) > 0 for some k 6= 0. If k = 0, then λ = 0, the only spatially stable homoge-

neous solution. Although these are stable solutions, for our purposes, we are interested in

stable spatially inhomogeneous solutions. At the onset of diffusion-driven instability, the
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stable homogeneous solution becomes unstable, instead the spatially inhomogeneous solu-

tion becomes stable thereby characterizing the phenotype for pattern formation. For this

to occur we require that Re(λ(k)) > 0 to be satisfied for some k 6= 0. All the solutions

with these k’s are then linearly unstable and grow exponentially with time. These unstable

heterogeneous solutions will evolve into finite amplitude spatially structured solutions [11].

The key assumption here is that these linearly unstable eigenfunctions which are growing

exponentially with time will be eventually bounded by the non linear terms of the reaction

diffusion system of equations and ultimately steady state spatially inhomogeneous solution

will emerge [11]. We would intuitively expect that if a confined set exists for the kinetics,

the same set would also contain the solutions when diffusion is included [20]. So, part of

the analysis of this mechanism involves proving the presence of a confined state within the

positive quadrant. As it can be seen from the dispersion relation, the only way a solution

with Re(λ(k)) > 0 can exist is if b(k) < 0 or c(k) < 0 or both, from Descartes’s rule of signs.

Since the only negative terms involve τ , it becomes necessary that τ > 0. Biologically too,

this makes sense, since the cell traction forces are the only contributors to the aggregative

process in the matrix-fibroblast equation and hence τ > 0. Because of the central role of the

cell traction, we shall use τ as the bifurcation parameter, while varying other parameters

such as b and γ. Experimentally, it is also known that, in vitro, the traction generated by

the cell increases with time for a limited period and hence τ would be the ideal parameter to

study bifurcation. The expressions for λ, b(k) and c(k), determine the domains in parameter

space where spatially inhomogeneous linearly unstable solution exist. They also give the

bifurcation surfaces in parameter space, that is, the surface which separates homogeneous

from inhomogeneous solutions. In general it is algebraically complicated to determine these
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surfaces. However, because of the dimensionality of the parameter space, it would be of

little conceptual help in understanding the basic features of forming striae. We could make

such kinds of analysis relatively simple by neglecting one or more factors affecting fibroblast

motion and ECM deformation. However, as already mentioned previously, we have as such

included only the essential factors that would form a realistic model. Simpler models are

also capable of generating spatial models but we are interested in the one that will solve the

problem of striae to a feasible extent and hence we will not venture much into analyzing the

domain surface spaces. With the polynomial complexity of b(k) and c(k) in the dispersion

relation, we can look forward to complex linear growth behavior.

2.1 Mode selection and parameter values

In order to carry out a detailed analysis of the mode selection and determination of the

parameter values, we plot the zeros of the characteristic equation (2.8). It must be observed

that equation (2.8) has two roots given the ± sign as shown in equation (2.12). Therefore it

is important to consider each case separately. However, here is a proof that shows that the

negative root is not appropriate for our case study. From previous discussions, it is evident

that we are interested in solutions where Re(λ(k)) > 0, since these are the ones that exhibit

unstable modes and hence generate pattern. From Descartes’s rule of sign, we also inferred

that b(k) and c(k) cannot be simultaneously positive, since in this case there would be no

positive real roots to the dispersion relation. Hence consider the roots of the characteristic

equation,

2 a(k) λ1, 2 = −b(k)±
√

b(k)2 − 4a(k)c(k). (2.13)
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The terms under the square root are positive. If b(k) is positive, then−b(k)−
√

b(k)2 − 4a(k)c(k)

is negative and Re(λ(k)) < 0 which is of no use to us since it implies that only spatially

homogeneous solutions are stable. If b(k) is negative and c(k) is also negative, −4a(k)c(k)

is positive and hence we once again arrive at the same conclusion with Re(λ(k)) < 0. If

b(k) is negative and c(k) is positive, we will use the fact that the characteristic equation

yields to the dispersion relation leading to pattern formation only for the solution with the

largest Re(λ(k)) ≥ 0 [13]. In the case when b(k) is negative and c(k) positive, the positive

root would most definitely lead to the largest positive value for the Re(λ(k)). Hence, the

negative root does not serve the purpose for pattern formation in our case and we shall

not consider it. The polynomial corresponding to the positive root can be plotted easily

in MATLAB and one can then look at possible wave numbers k2
n = n2 π2, since the time

independent solution of the spatial eigenvalue problem is proportional to cos
(

nπx
L

)
which

satisfies zero-flux boundary conditions at x = 0 and x = 1. The eigenvalue in this case is

k = nπ and 1/k = 1/(nπ) is a measure of the wave like pattern and the eigenvalue k is the

wave number. On finite domains there is a discrete set of possible wave numbers [11]. To

study instability we look for Re(λ(k2
n)) > 0 for k2− < k2

n < k2
+ where k2− and k2

+ are the roots

of the polynomial equations in some finite interval. Note that the order of the polynomials

obtained is greater than two and there are possibilities of having more than two real roots

to the polynomials. We however rely on MATLAB to consider possible roots that can be

isolated, whatever their number may be.
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Positive root

Let us consider first the equation

2 a(k) λ1, 2 = −b(k) +
√

b(k)2 − 4a(k)c(k) = 0. (2.14)

At the outset, we fix all the parameter values other than τ as follows

d = 10−2.5, a = 10−0.5, b = 0.01, γ = 0.01, δ = 1 and h = 0.1.

It can be shown that the critical value of τ for which Re(λ(k2)) > 0 i.e the region where

instability starts occurring, is given by τ ≈ 0.4291, the critical bifurcation point (Appendix

A). By increasing the value of τ beyond this value we obtain the results illustrated in Table

2.1 and Figure 2.1 respectively. Also we can see that when the value of τ ≥ 16, we can

isolate wave numbers of the form nπ but are not able to go beyond n = 1. Increasing τ

does not seem to have much effect as the upper bound seems to saturate very close to the

value of π. Besides τ signifies the cell traction force and it is usually less than 1 in normal

skin, around 0.01 [11], so increasing τ would have no meaning physically. We have included

very high values for τ in order to see the increase in regions of instability. In order for the

system to exhibit spatially inhomogeneous solutions, τ must be greater than 16 but this

has no physical meaning. Non-uniform solutions cannot be observed for τ ≤ 16.

Clearly, as expected, the isolated values of k do not exponentially blow up and heuristi-

cally we can conclude that they are bounded by the square root term. The fact to be noted

here is that a bifurcation to instability occurs at τ ≈ 0.4291. Increasing τ corresponds
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Figure 2.1: Dispersion relation for the positive root by fixing all the parameter values other
than τ as listed in the text with b=0.01, γ = 0.01 and varying τ : (a) τ = 0.01, (b) τ = 0.1,
(c) τ = 0.4, (d) τ = 0.5, (e) τ = 1, (f) τ = 16.
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Value of τ Region of instability Wave number of form nπ isolated
0.01 None None
0.075 None None
0.1 None None
0.4 None None

0.429 None None
0.4291 [2.18,2.19] None
1.00 [1.07,2.94] None
15.0 [0.26,3.14] None
16.0 [0.26,3.15] π

50.0 [0.15,3.15] π

100.0 [0.11,3.15] π

Table 2.1: Regions of instability for the linearized system obtained for increasing values of
τ and the wave numbers isolated.

to an increase in the traction force exerted by fibroblasts on the ECM, and with all other

parameters fixed as above, we find that the threshold value of τ ≈ 0.4291.

Now take b = 0.12 and keep all the parameters fixed other than τ . Repeat the same

exercise as above to find the threshold value of τ for onset of instability. The results are

generated and shown in Table 2.2 and Figure 2.2 respectively. The onset of instability for

these parameter values occurs at the threshold value of τ ≈ 0.624. The value of τ where

we can isolate the wave number π is around τ ≈ 29 and hence for values of τ ≤ 29 non-

uniform spatially inhomogeneous solutions cannot be observed (Table 2.2 and Figure 2.2).

Increasing b corresponds to increase in Young’s modulus of fibroblasts.

Similarly for b = 1, we apply the same procedure. In Table 2.3, we vary b, γ and search

for a region of τ to isolate wave numbers. It turns out that only π can be isolated as before

(see Figure 4.1 for the plot of the dispersion relation). The notable fact here is that a change

in the value of γ does not affect the threshold value of τ to a great extent. This indicates
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Figure 2.2: Dispersion relation for the positive root by fixing all the parameter values other
than τ as shown in the text with b = 0.12, γ = 0.01 and varying τ : (a) τ = 0.01, (b)
τ = 0.1, (c) τ = 0.6, (d) τ = 0.7, (e) τ = 1, (f) τ = 30, and (g) τ = 50.
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Value of τ Region of instability Wave number of form nπ isolated
0.01 None None
0.075 None None
0.1 None None
0.4 None None

0.623 None None
0.624 [1.96,2.03] None
1.00 [1.16,2.71] None
29.0 [0.19,3.14] None
30.0 [0.19,3.15] π

50.0 [0.15,3.15] π

100.0 [0.11,3.15] π

Table 2.2: Regions of instability for the linearised system obtained for increasing values of
τ and the wave numbers isolated.

that the factor contributing to the random re-orientation of the fibroblasts does not have

a significant effect on the formation of striae, since γ is related to this factor. The values

of γ chosen, γ = 0.01 and γ = 0.05, are typical values as mentioned in [19]. Combining all

the results obtained above, we can confidently say that increasing τ beyond the respective

threshold values leads to an increase in the traction force exerted by the fibroblasts on

the ECM and hence would produce stable spatially inhomogeneous solutions which in turn

produce patterns as observed in striae. These findings will be validated through numerical

solutions as illustrated in Chapter 3.

Having dealt with the mechanical aspect for modeling the pathogenesis of striae, we

now try to reason out the experimental result of corticosteroid excess leading to striae. For

this, we fix τ = 0.05, since we know the onset of instability occurs around this value and

take γ to be 0.01. We the vary b = 1, 0.12, 0.04, 0.01 as shown in Table 2.4 and Figure 2.3

respectively. Decreasing b from 1, 0.12, 0.05 and to 0.01 leads to a bifurcation to instability
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Value of b Value of γ Bifurcation Value of τ Wave number isolation value of τ

0.01 0.01 0.43 30
0.12 0.01 0.63 30
1 0.01 1.87 145

0.01 0.05 0.43 16
0.12 0.05 0.63 30
1 0.05 1.87 147

Table 2.3: Regions of τ when b and γ are varied.

Value of b Region of instability Wave number of form nπ isolated
1 None None

0.12 None None
0.04 [1.72,2.58] None
0.001 [1.68,2.74] None

Table 2.4: Regions of instability for the linearised system obtained for decreasing values of
b and the wave numbers isolated.

at b = 0.04 and larger instability at b = 0.01. The spatially homogeneous solution is the

only stable solution for b = 1 and 0.12. Hence decreasing b leads to instability with the

threshold value of b = 0.05. This implies a decrease in Young’s modulus of the fibroblast

cells, which in turn occurs during corticosteroid excess. Now, all that remains is to validate

predictions obtained from the linear stability theory through appropriate numerical schemes

in order to complete the framework for the pathogenesis of striae.
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Figure 2.3: Dispersion relation for the positive root by fixing the parameter values other
than b with as listed in the text with τ = 0.5, γ = 0.01 and taking (a) b = 1, (b) b = 0.04, (c)
and b = 0.001 to illustrate the effect that a decrease in b implies an increase in corticosteroid
excess thereby giving rising to the formation of striae.
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Chapter 3

FINITE DIFFERENCE SCHEMES

3.1 Introduction

Having shown the existence of confined sets within the positive quadrant and hav-

ing isolated regions of instability, and also the corresponding set of threshold values for

τ thereon, we have now got an indication of what set of parameter values would lead to

diffusion-driven instability. Hence the linearly unstable eigenfunctions which are growing

exponentially with time will be eventually bounded by the non linear terms of the reaction

diffusion system of equations and we can ultimately expect to obtain stable spatially inho-

mogeneous steady state set of solutions. From Smoller’s result, since there exists a confined

set in the absence of diffusion, it would also exist in the presence of diffusion. The aim of

this chapter is to find out these solutions numerically for different set of parameter values.

Due to the complexity of the model equations derived in (1.24)-(1.26), it is only pru-

dent to look for numerical approximate solutions. We will use finite difference schemes as

these are simpler to implement and are known to handle boundary conditions a lot easier

than finite elements and spectral methods [10]. In order to efficiently implement numerical

methods to the model equations (1.24)-(1.26), it is convenient to first assign v to be the

velocity

∂u

∂t
= v (3.1)
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and therefore the equations can be re-written conveniently as

nt = dnxx + d γ (nxxux + nxuxx)− (nv)x, (3.2)

st = −sx v − s vx, (3.3)

a vxx + b uxx + τ (n sx + s nx + hnx sxx + hn sxxx)

+ τ δ (n sx ux + s nx ux + s n uxx + h nx ux sxx + huxx sxx + hux sxxx) = s u. (3.4)

3.1.1 Derivation of finite difference schemes

To implement the finite difference schemes, approximate finite difference stencils to the

derivatives have to be derived. These are derived from Taylor series expansions as illustrated

below [10]. In all our derivations, it is enough to derive only the following expansions

ω(x + δx, t) = ω(x, t) +
δx

1!
ωx(x, t) +

δx2

2!
ωxx(x, t) +

δx3

3!
ωxxx(x, t) + O(δx4) (3.5)

ω(x− δx, t) = ω(x, t)− δx

1!
ωx(x, t) +

δx2

2!
ωxx(x, t)− δx3

3!
ωxxx(x, t) + O(δx4) (3.6)

ω(x + 2δx, t) = ω(x, t) + 2
δx

1!
ωx(x, t) +

(2δx)2

2!
ωxx(x, t) +

(2δx)3

3!
ωxxx(x, t) + O(δx4) (3.7)

ω(x− 2δx, t) = ω(x, t)− 2
δx

1!
ωx(x, t) +

(2δx)2

2!
ωxx(x, t)− (2δx)3

3!
ωxxx(x, t) + O(δx4) (3.8)

that will be used to derive all the approximate finite difference stencils. We first derive the

forward, backward and centred finite differences

ωx =
ω(x + δx, t)− ω(x, t)

δx
+ O(δx), (3.9)

ωx =
ω(x, t)− ω(x− δx, t)

δx
+ O(δx), (3.10)

32



ωx =
ω(x + δx, t)− ω(x− δx, t)

2δx
+ O(δx2). (3.11)

The forward and backward finite differences are only first order accurate while the centred

finite difference is second order accurate and hence yields a better accuracy. Similarly, we

derive the rest of the necessary finite difference approximations focussing on minimizing the

error growth and increasing the order of approximation. It can be shown that

[ω(x + δx, t) + ω(x, t)][z(x + δx, t) + z(x, t)] = 4ω(x, t)z(x, t) + 2δx(ωzx + zωx)

+ δx2(ωzxx + ωxzx + zωxx) + O(δx3), (3.12)

and

[ω(x− δx, t) + ω(x, t)][z(x− δx, t) + z(x, t)] = 4ω(x, t)z(x, t)− 2δx(ωzx + zωx)

+ δx2(ωzxx + ωxzx + zωxx)−O(δx3). (3.13)

Subtracting (3.13) from (3.12) we obtain the finite difference approximation to the derivative

∂(ωz)
∂x

= ωzx + zωx =
[ω(x + δx, t) + ω(x, t)][z(x + δx, t) + z(x, t)]

4δx

− [ω(x− δx, t) + ω(x, t)][z(x− δx, t) + z(x, t)]
4δx

+ O(δx2). (3.14)

The second derivative of ω can be easily obtained as

ωxx =
ω(x + δx, t)− 2ω(x, t) + ω(x− δx, t)

(δx)2
+ O(δx2). (3.15)
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It can be shown that a second order accurate finite difference approximation to the third

derivative can be derived by observing that

ω(x + 2δx, t)− 2ω(x + δx, t) + 2ω(x− δx, t)− ω(x− 2δx, t)

= (
8
3!
− 2

3!
− 2

3!
+

8
3!

)δx3ωxxx + O(δx5), (3.16)

which when re-arranged conveniently yields

ωxxx =
ω(x + 2δx, t)− 2ω(x + δx, t) + 2ω(x− δx, t)− ω(x− 2δx, t)

2(δx)3
+ O(δx2). (3.17)

Similar derivations can be obtained for the time-derivatives and in particular, it can be easily

shown that a second order finite difference scheme can be derived for the time-derivative of

the form

ωt =
3ω(x, t + δt)− 4ω(x, t) + ω(x, t− δt)

2δt
+ O(δt2). (3.18)

Having developed these preliminary results, we are now in a position to apply these

finite difference approximations to our model equations. Also note that we will take only

those finite difference approximations with at least second order accuracy. It must be

noted that taking finite difference approximations of higher order accuracies leads to long

computational times due to the restrictions of the time-step ∆t and this has not been

possible to implement on the machine we were working with. Equally important, we will

not use first order finite difference approximations simply because they fail to converge for

our model problems.
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3.1.2 Equation (A): n(x, t)

Consider Equation 3.2

nt = dnxx + d γ (nxx ux + nx uxx)− (n v)x.

We consider two finite difference schemes for equation (A), both second order accurate in

time and space. The first scheme is the well-known IMEX scheme (implicit-explicit [9, 18]):

the second order finite backward differentiation formula (2-SBDF) and the second scheme

is a modified version of the first scheme. We will denote this scheme: the second order

almost fully implicit finite differentiation formula (2-SAFBDF). Implicit-explicit (IMEX)

schemes use an implicit scheme to approximate the diffusion term and an explicit scheme

to approximate the reaction terms. Such schemes have been shown to be more stable and

more accurate than most schemes for reaction-diffusion systems [9, 18]. First order accurate

finite difference schemes blow-up for the choice of any time-steps and space-steps around

10−2 and 10−4 and even lower (results not shown) and hence we will not discuss them

in this thesis. These two feasible schemes will be devised, both of which do not allow

numerical error magnification. We discuss these two methods in detail for our particular

model equation below and compare the results obtained from the two schemes later on. For

the derivations below, it is important to introduce appropriate notations. We assume that

the one-dimensional mesh connectivity covering the interval Ω = [0, 1] is a uniform mesh of

n elements such that

0 = x0 < x1 < · · · < xn−1 < xn = 1
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where for each i, i = 1, · · ·n, xi = xi−1 + δx, where δx = 1
n . An unstructured mesh can also

be used. For the time t ∈ [0, T ], T > 0, let δt be a typical time-step such that tq = tq−1 +δt,

with q = 1, 2, · · · and t0 = 0. Therefore we will denote by ωq
j = ω(xj , tq) where the point

(xj , tq), (j = 0, 1, · · · , n and q = 0, 1, · · · ) coincides with the finite difference grid points.

Also, the subscripts j and superscripts q indicate the space-step and time-step respectively.

For example, ω(x + δx, t− δt) will be denoted as ωq−1
j+1 = ω(xj+1, tq−1).

The second order finite backward differentiation formula: 2-SBDF

This scheme has been referenced from [9, 18]. The 2-SBDF scheme can be shown to

be given by (see [9] for specific details)

3nq+1
j − 4nq

j + nq−1
j

2δt
= d

nq+1
j+1 − 2nq+1

j + nq+1
j−1

δx2
+ 2F (nq

j , u
q
j , v

q
j )− F (nq−1

j , uq−1
j , vq−1

j )

where

F (nq
j , u

q
j , v

q
j ) =

dγ

2δx3
(nq

j+1 − 2nq
j + nq

j−1)(u
q
j+1 − uq

j−1)

+
dγ

2δx3
(nq

j+1 − nq
j−1)(u

q
j+1 − 2uq

j + uq
j−1)

− 1
4δx

[(nq
j+1 + nq

j)(v
q
j+1 + vq

j )− (nq
j + nq

j−1)(v
q
j + vq

j−1). (3.19)

Notice that this scheme involves calculating the values of the variable n(x, t) at time tq+1

given the values of the solutions at the previous two time-levels tq and tq−1, requiring us

to keep in memory, solutions at two different time-levels. Define λ1 = 2d δt
δx2 . Re-arranging
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terms, we get

−λ1n
q+1
j−1 + (3 + 2λ1)n

q+1
j − λ1n

q+1
j+1 =4nq

j − nq−1
j + 4δtF (nq

j , u
q
j , v

q
j )

− 2δtF (nq−1
j , uq−1

j , vq−1
j ). (3.20)

Hence (3.20) can be written as

Ajn
q+1
j−1 + Bjn

q+1
j + Cjn

q+1
j+1 = Dj (3.21)

where j = 0, 1, · · · , n and q = 0, 1, · · · and

Aj = −λ1, Bj = (3 + 2λ1), Cj = −λ1,

and the right-hand side is defined by

Dj = 4nq
j − nq−1

j + 2δt
(
2F (nq

j , u
q
j , v

q
j )− F (nq−1

j , uq−1
j , vq−1

j )
)

We impose zero-flux boundary conditions on the system. The coefficients Aj , Bj , Cj how-

ever, are not functions of the solution values. Equation (3.21) gives rise to a tridiagonal

system with the coefficients satisfying the diagonally dominant criteria

|Bj | > |Aj |+ |Cj |, j = 0, 1, · · · , n.

Hence the system is in perfect structure to be solved efficiently using the Thomas algorithm

[10]. Therefore when j = 0 for the first row of the tridiagonal matrix, C0 is replaced by
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A0 +C0 and similarly when j = m for the last row of the tridiagonal matrix Am is replaced

by Am +Cm for zero flux boundary conditions. We next derive the second scheme based on

modifying the 2-SBDF scheme such that Aj , Bj , Cj are functions of the previous solution

values.

The second order almost fully implicit finite backward differentiation formula:

2-SAFBDF

The second scheme is an almost fully implicit scheme. The motive behind this is to

construct a scheme that exploits the implicitness from every single term in equation (B) but

at the same time, requiring at least second order accuracy both in time and space. This idea

was originally proposed and implemented in papers by Madzvamuse [9, 8]. The second order

scheme is used to approximate the time derivative (3.18) as shown in the previous section.

Similarly the second order spatial derivative is approximated implicitly using a second order

finite difference scheme. The remaining derivative terms are then approximated by finite

difference schemes such that only at least second or higher order accurate schemes are used.

The 2-SAFBDF is therefore derived as

3nq+1
j − 4nq

j + nq−1
j

2δt
= d(

nq+1
j+1 − 2nq+1

j + nq+1
j−1

δx2
+ dγ

(
uq

j+1 − uq
j−1

2δx

)(
nq+1

j+1 − 2nq+1
j + nq+1

j−1

δx2

)

+ dγ

(
uq

j+1 − 2uq
j + uq

j−1

δx2

) (
nq+1

j+1 − nq+1
j−1

2δx

)

− 1
4δx

[
(nq+1

j+1 + nq+1
j )(vq

j+1 + vq
j )− (nq+1

j + nq+1
j−1)(v

q
j + vq

j−1)
]

(3.22)

Observe that fully implicit schemes are used to approximate spatial derivatives as illus-

trated on the right-hand side. It is important, as observed from numerous experiments,
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to first multiply by (δx)2 both sides. This is to balance the terms ranging from O(δx) to

O(δx)3. Experience has shown us that any other way results in a highly unbalanced system.

Therefore multiplying both sides by (δx)2 and re-arranging terms we obtain a tri-diagonal

system of the form

Ajn
q+1
j−1 + Bjn

q+1
j + Cjn

q+1
j+1 = Dj (3.23)

where

Aj = −
[
d + dγ

uq
j+1 − uq

j−1

2δx
− dγ

uq
j+1 − 2uq

j + uq
j−1

2δx
+

δx

4
(vq

j + vq
j−1)

]
,

Bj =
3δx2

2δt
+ 2d + dγ

uq
j+1 − uq

j−1

δx
+

δx

4
(vq

j+1 − vq
j−1),

Cj = −
[
d + dγ

uq
j+1 − uq

j−1

2δx
+ dγ

uq
j+1 − 2uq

j + uq
j−1

2δx
− δx

4
(vq

j+1 + vq
j )

]
,

and the right-hand side is given by

Dj = (4nq
j − nq−1

j )
δx2

2δt
. (3.24)

Clearly, now Aj , Bj and Cj are functions of the solution values at the previous time tq. This

is the key advantage of this scheme. The Thomas algorithm is then used, just as before,

taking into account the boundary conditions by replacing C0 by A0 +C0 when j = 0and Am

by Am + Cm when j = m to give numerical approximate solutions. However, this equation

does not exist independently and is influenced at every time step by the other two equations

and we impose the same kind of boundary conditions for other equations also. Details and

computer implementation of the Thomas algorithm are given in Appendix B.
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3.1.3 Equation (B): s(x, t)

Let us consider equation (B) that models the ECM given by (3.3)

st = −sxut − sutx = −∂(sv)
∂x

.

We use the results derived in Section 3.1.1 to approximate the derivatives as

sq+1
j − sq

j

δt
= −vq

j (
sq+1
j+1 − sq+1

j

δx
)− sq+1

j (
vq
j+1 − vq

j−1

2δx
) (3.25)

if vj is positive and

sq+1
j − sq

j

δt
= −vq

j (
sq+1
j − sq+1

j−1

δx
)− sq+1

j (
vq
j+1 − vq

j−1

2δx
) (3.26)

if vj is negative. The above schemes depend on whether vj is positive or negative and

depending on the case, an equivalent tri-diagonal system is formed. Since the v′s are

updated at every stage due to dependencies on the other equations, it is important that if

vj is positive, the solver automatically chooses the finite difference scheme. Re-arranging

the finite difference schemes (3.25) and (3.26) results in tri-diagonal systems who coefficients

are given below depending on the sign of vj .

• If vj > 0 then

Aj = 0, Bj = 1 + λ2(vj+1 − vj−1)− 2λ2vj , Cj = 2λ2vj ,

where λ2 = δt
2δx .
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• If vj < 0 then

Aj = −2λ2vj , Bj = 1 + λ2(vj+1 − vj − 1) + 2λ2vj , Cj = 0,

for j = 0, 1, · · · , n. Note that the right-hand side is Dj = 0 for both schemes.

Hence we can use the same tri-diagonal solver as explained in the Appendix B with C0 =

−2λ2v(j) when v(j) < 0 and j = 0 and Am = 2λ2v(j) when v(j) > 0 and j = m to impose

the zero-flux boundary conditions.

3.1.4 Equation (C): v(x, t)

Consider the finite difference scheme for equation (C) given by (3.4).

a vxx + b uxxx + τ (n sx + s nx + hnx sxx + h n sxxx)

+ τ δ (n sx ux + s nx ux + s n uxx + hsnx ux sxx + hnuxx sxx + hnux sxxx) = s u. (3.27)

Since we are only interested in the solution values of v(x, t) from this equation, a fully

implicit scheme is used to approximate the spatial derivative. There is no time-derivative

explicit in this equation. Therefore we use a centred finite difference scheme for vxx at

time tq+1 and compute the rest of the derivatives at the previous time tq. It is crucially

important also to balance the δx terms. This can be achieved by simply multiplying by

(δx)2 throughout the scheme to obtain a tri-diagonal system whose coefficients are

Aj = −a, Bj = 2a, Cj = −a,
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and whose right-hand side is given by

Dj = b(uj+1 − 2uj + uj−1)

+
τδx

4

[
(sj+1 + sj)(nj+1 + nj)− (sj + sj−1)(nj + nj−1)

]

+
τh

2δx
(nj+1 − nj−1)(sj+1 − 2sj + sj−1)

+
τh

2δx
nj(sj+2 − 2sj+1 + 2sj−1 − sj−2)

+
δτ

8
(uj+1 − uj−1)

[
(sj+1 + sj)(nj+1 + nj)− (sj + sj−1)(nj + nj−1)

]

+ δτnisj(uj+1 − 2uj + uj−1)

+
δτh

4(δx)2
(uj+1 − uj−1)(nj+1 − nj−1)(sj+1 − 2sj + sj−1)

+
δτ h

(δx)2
nj(uj+1 − 2uj + uj−1)(sj+1 − 2sj + sj−1)

+
δτh

4(δx)2
nj(uj+1 − uj−1)(sj+2 − 2sj+1 + 2sj−1 − sj−2)

− siujδx
2.

The boundary conditions are implemented by replacing Cj by Aj + Cj when j = 0 and Aj

by Aj + Cj when j = m. Since |Bj | = |Aj | + |Cj |, a small perturbation is added to Bj to

make the matrix diagonally dominant so that the same Thomas algorithm solver can be

used to solve each of the tri-diagonal systems. The algorithm is based on Gaussian forward

and backward elimination [10]. It is very efficient because to solve per mesh point, it needs

3(add) + 3(multiply) + 2(divide) operations.
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3.1.5 Updating u(x, t)

Once the main equations have been dealt with, we update the value of uj since the third

equation has given solution values for vj which have been defined to simplify computations.

A first order finite difference scheme in time applied to the equation

v =
∂u

∂t

gives the updated scheme

uq+1
j = uq

j + δtvq
j , j = 0, 1, · · · , n. (3.28)

Initial and boundary conditions

We take initial conditions as small random perturbations around the uniform steady

state. At time t = 0, we take

nj = 1 +
0.50d0− ε

100
sj = 1, vj = 0, uj = 0, with ε = random.

We prescribe zero-flux boundary conditions, for example, for u(x, t) these are of the form

u(−1, t) = u(1, t),

u(m + 1, t) = u(m− 1, t)

for all t > 0. Similar boundary conditions are applied to n, s and v.
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3.1.6 Computer implementation

We describe the implementation of the algorithm to solve the model equations here.

1. We are interested in global model parameter values (in double precision) given by





d = 10−2.5, a = 10−0.5, δ = 1, h = 0.1,

b = 0.01, 0.12, 1,

τ = 0.01, 0.075, 0.1, 0.45, 1, 2,

γ = 0.01, 0.05.

2. Global solution variables are n, s, v and u. Also dummy global variables are required

to store solution values at times tq and tq−1. We define these as nn, sn, vn and un.

3. We also need to define global numerical parameter values: dt, dx and length.

4. Results are stored in the four files: nfinsol.dat (n(x, t)), sfinsol.dat (s(x, t)), ufinsol.dat

(u(x, t)) and x.dat (xj mesh points). We also store the solution values at each time

step in the files: wnsol.m, wssol.m and wusol.m which correspond to solution values

n, s and u. These files are huge arrays of size (m × n) where m = T
δt , and n = L

δx

where T is the final time and L = 1 is the length of the computational interval. These

results are used in computing the error decay and the transient solutions.

5. The two sets of data are written to their respective opened files, they are formatted to

the needed level of accuracy and they are closed once all the iterations are completed.
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6. An error control is made by observing the convergence of the errors by calculating

||e|| =

√∑(
ui

q − uq−1
i

)2
where uq

i and uq−1
i are two successive numerical solutions

at times tq−1 and tq.

7. Each set of data values are plotted using MATLAB and graphs of the solution states

at the final time and the transient solution states are obtained. The numerical error

graph is also plotted from the files with the iterative solutions (wnsol.m wssol.m and

wusol.m)

8. The time-step and the space-steps are then varied and some parameter values are

changed (based on the results obtained from linear stability theory) and different sets

of results are then presented.
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Chapter 4

RESULTS, CONCLUSIONS AND FUTURE DIRECTIONS

4.1 Numerical results

4.1.1 The 2-SBDF scheme

We first compile the results obtained by solving the set of equations using the 2-SBDF

scheme for equation (A). Set δt = 10−4 and δx = 0.5∗10−2 and fix all the parameter values

other than τ as follows

d = 10−2.5, a = 10−0.5, b = 0.01, γ = 0.01, δ = 1, h = 0.1.

Let us take τ = 0.01 and 0.7. The corresponding results of the numerical simulations are

illustrated in Figures 4.1 - 4.2 respectively. For the above set of parameters, the bifurcation

value for instability for τ was approximately 0.43, as predicted by linear stability analysis.

As we can see, when τ = 0.01, we get solutions very close to the homogeneous steady state

solution with deviation of the order of 10−5. For τ = 0.7, the scheme converges to a uniform

steady state. This is consistent with the results obtained from linear stability analysis, since

no wave number is isolated for this value of τ and hence the uniform steady state is actually

the solution of the system at the final time. This scheme is stable and the numerical errors

and the transient solutions converge. It is also seen that this scheme blows up for values

of τ > 0.8 and hence we are not able to illustrate the existence of spatially inhomogeneous

solutions for large values of τ . We perform the same experiments with b = 0.12 and b = 1

and get similar results with the uniform steady state obtained at the final time for different
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values of τ above and below the bifurcation values, as predicted by linear stability theory.

We also illustrate the results obtained using the 2-SAFBDF scheme next.

4.1.2 The 2-SAFBDF scheme

We test the 2-SAFBDF scheme applied to equation (A) in a similar way to the 2-SBDF

scheme. We choose two sets of model parameters values

d = 10−2.5, a = 10−0.5, b = 0.01, γ = 0.01, δ = 1, h = 0.1.

and

d = 10−2.5, a = 10−0.5, b = 0.12, γ = 0.01, δ = 1, h = 0.1.

for the same δx and δt as chosen for the 2-SBDF scheme and vary τ = 0.01 and 0.7. The

results are shown in Figures 4.3 - 4.6. As we can see, these numerical results are very

similar to the ones presented using the 2-SBDF scheme. For the first set of parameter

values chosen, the threshold value of τ was predicted as 0.43 and in the second case the

threshold value was predicted as 0.63. In both the cases we are able to see the homogeneous

steady state solution for τ = 0.01. The scheme also converges to the uniform steady state

when τ = 0.7 for both values of b and is consistent with the results obtained using linear

stability theory, since no wave number is isolated. It was also observed that a decrease in

δx and δt yielded a similar pattern of solution behavior for the both of the above schemes,

only that it was more resolved. Also the schemes seemed to converge only if the ratio δt
(δx)2

was less than 1.3 (approximately) else they blew up. If the length L is increased from 1 to
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10 and m is changed from 100 to 1000 to increase the number of space steps for the first

set of parameter values, we are able to see the onset of spatially inhomogeneous solutions

(figure 4.8) especially for n, but they are not prominent enough to be classified as finite

amplitude structures. Nevertheless, we are able to see a tendency towards formation of

spatial patterns. Hence we conclude that increase in τ leads to an increase to instability

beyond the bifurcation values in each case which implies that the cell traction force is also

increased. This shows that the pathogenesis of striae is indeed mechanical!

We now turn our attention to the other experimental hypothesis for the pathogenesis of

striae, corticosteroid excess. We have linked corticosteroid excess to be characterized by a

decrease in Young’s modulus of the fibroblast which in turn is characterized by a decrease in

parameter b. We shall see how decreasing b responds to the numerical approximations. We

take b = 1 with τ fixed as 0.5 and the results are illustrated in figure 4.7. Linear stability

theory predicted that the threshold value was 0.04 and hence values greater than this

should exhibit homogeneous state solutions which is seen clearly. It has also been observed

that when b = 0.01, the scheme converges to the uniform steady state at the final time

solution. Hence we have shown computationally that corticosteroid excess, characterized

by decrease in Young’s modulus in turn characterized by b, when decreased below the

instability bifurcation value of 0.04 yields patterns as seen in striae. We do not see spatially

inhomogeneous solutions that isolate a wave number since the code blows up for extremely

small values of b, where the wave number π is isolated.
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4.2 Conclusion and future directions

The problem of striae distensae was successfully studied and it was derived from a

realistic model that an increase in traction force beyond a certain threshold value leads

to the formation of stretch marks, accounting for the mechanical aspect of pathogenesis

of striae and decreasing the Young’s Modulus beyond a certain threshold value may also

leads to stretch mark pattern exhibition and this accounts for the experimental evidence

suggesting that corticosteroid excess, in certain cases, may cause striae . Detailed linear

stability analysis was applied to the proposed model and results were predicted as obtained

in Tables 1 - 4 in Chapter 2 in a certain range of parameter values. These results were

confirmed using novel finite difference schemes. Linear stability analysis indicates that

pattern formation is possible in a certain parameter regime and this was validated by

numerical computations. We require that Re(λ(k)) > 0 for some k > 0, but the results for

k=1 occur for very high values of τ which have no physical significance since the typical

value of τ in normal humans is around 0.01. Hence even though we were not able to isolate

finite amplitude spatially inhomogeneous structures due to blow up of the schemes, we

have been successful in showing that when k 6= 1, the uniform steady state is reached by

convergent schemes. Two different schemes were tested for the first equation, and both

yielded convergent and similar solutions. The main conclusions derived are significant and

their biological interpretation may have direct consequences to a daily life problem faced

by millions of people.

These results have to be validated by experiments which is important before preventive

measures can be taken to resolve the problem of striae distensae. The parameter values

arrived at could serve as guidelines for experiments to search for threshold values around
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this region. The same model can also be extended to incorporate other features. This

work is a stepping stone and we have been successful in predicting values of characteristic

parameters that would lead to pattern formation in striae and hopefully these will find their

way in fostering future research in this area.
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Figure 4.1: Solutions obtained by fixing all the parameters with τ = 0.01 and b=0.01 (a)
n, s, u solution values, (b)-(d) error graph, (e)-(g) transient solution for n, s and u using
the 2-SBDF scheme for equation (A).
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Figure 4.2: Solutions obtained by fixing all the parameters with τ = 0.7 and b=0.01 (a) n,
s, u solution values, (b)-(d) error graph, (e)-(g) transient solution for n, s and u using the
2-SBDF scheme for equation (A).
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Figure 4.3: Solutions obtained by fixing all the parameters with τ = 0.01 and b=0.01 (a)
n, s, u solution values, (b)-(d) error graph, (e)-(g) transient solution for n, s and u using
the 2-SAFBDF scheme for equation (A).
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Figure 4.4: Solutions obtained by fixing all the parameters with τ = 0.7 and b=0.01 (a) n,
s, u solution values, (b)-(d) error graph, (e)-(g) transient solution for n, s and u using the
2-SAFBDF scheme for equation (A).
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Figure 4.5: Solutions obtained by fixing all the parameters with τ = 0.01 and b=0.12 (a)
n, s, u solution values, (b)-(d) error graph, (e)-(g) transient solution for n, s and u using
the 2-SAFBDF scheme for equation (A).
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Figure 4.6: Solutions obtained by fixing all the parameters with τ = 0.7 and b=0.12 (a) n,
s, u solution values, (b)-(d) error graph, (e)-(g) transient solution for n, s and u using the
2-SAFBDF scheme for equation (A).
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Figure 4.7: Solutions obtained by fixing all the parameters with τ = 0.5 and b=1 (a) n, s,
u solution values, (b)-(d) error graph, (e)-(g) transient solutions for n, s and u using the
2-SAFBDF scheme for Equation (A).
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Figure 4.8: Solutions obtained by fixing all the parameters with τ = 0.7, b= 0.01, L=10
and m=1000 (a) n, s, u solution values, (b)-(d) error graph, (e)-(g) transient solutions for
n, s and u using the 2-SAFBDF scheme for Equation (A).
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Appendix A

Linear Stability Analysis: MATLAB

clear all; clear variables; clf; hold on;

axes(’FontSize’,16);

a=10^(-0.5); b=1; d=10^(-2.5); h=0.1; delta=1; tau=1.86;

gamma=0.01; r=1; j=1; l=1; g=1; f=1; count=1;

for k=0:0.01:40

alpha=a*k.^2;

beta=(a*d+tau*h)*k.^4+(tau*(delta-2)+b)*k.^2+1;

sigma=d*tau*h*k.^6+(d*tau*(delta-1)+b*d)*k.^4+d*k.^2;

H(g)=(-beta+real(sqrt((beta).^2-4*alpha*sigma)));

if(H(g)>0)

c(r)=g-1;

n(r)=c(r)/100;

if(r>1)

if((n(r-1)<pi)&&(n(r)>pi))

count=count+1;

end end

S(r)=H(g-1);

r=r+1;

S(r)=H(c(r-1)+1);

end
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j=j+1;

g=g+1;

end

if(r==1)

fprintf(’No Wave Numbers Can be Isolated\n’)

else

S(r+1)=H(c(r-1)+2);

o=[S(2:r)];

fid=fopen(’isowave1.txt’,’wt’);

fprintf(fid,’The isolated wave numbers when TAU=%d are\n’,tau);

fprintf(fid,’%2.10f\n’,o);

fprintf(fid,’The isolated wave numbers along with the lower and

higher boundary limits are\n’);

fprintf(fid,’%2.10f\n’,S);

fprintf(fid,’The approxiamate interval in which these wave numbers

are situated is\n’);

fprintf(fid,’[%2.10f\t %2.10f\t]’,(-S(1)+S(2))/2,(S(r)-S(r+1))/2);

fclose(fid);

n(1)n(r-1)end count g=1

for k=0:0.01:40

plot(k,H(g),’k’);

g=g+1;

end
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Appendix B

The thomas algorithm

The Thomas algorithm is a simplified form of Gaussian elimination that can be used

to solve a tridiagonal systems of equations. A tridiagonal system is written as

aixi−1 + bixi + cixi+1 = di (B.1)

where a1 = 0 and cn = 0. Hence when the each of the coefficients ai, bi, ci and di are

defined for values of i ranging from 0 to m, which are the number of unknowns, Thomas

Algorithm can be used in solving these system of equations. In matrix form, these system

of equations are written as




b1 c1 0

a2 b2 c2

a3 b3 ·

· · cn−1

0 an bn







x1

x2

·

·

xn




=




d1

d2

·

·

dn




The solution of these system of equations can be obtained in O(n) steps instead of 0(n3)

steps, as a result of normal Gaussian Elimination. Also this algorithm works only for

diagonally dominant matrices and this check is made. The algorithm is implemented in

two phases, a forward elimination phase in which the ai’s are eliminated and a backward

substitution phase where the solution is got.
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B.1 Description of the algorithm

B.1.1 The forward elimination phase

• Preserve B and D(also called as forcing vectors) by copying them to new arrays for

i=0 to step m

• For i = 1 to m do

m =
ai

bi−1

bi = bi −m ∗ ci−1

di = dk −mdi−1

B.1.2 The backward substitution phase

• Compute

xm =
dm

bm

• For i = m-1 step down to 1 do

xk =
dk − ckxk+1

bk
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Appendix C

Implementation of the Finite Difference and Tri-Diagonal Solver: Fortran

implicit none

! ------------------------------------

! Parameters

! ------------------------------------

integer i,m,simultime, timestep,snapshot, k,max, j, maxn

parameter (max=50000,maxn=10**6)

double precision paramA, paramB, paramD, delta, paramh, gamma, kappa

double precision phi, gary, mary, lary, pary, dary, cary

double precision tau, theta

double precision lambda1, lambda2

double precision dt, dx, dx2, dx3, length, finaltime,alpha,beta

double precision random,epsilon

double precision An(0:max), Bn(0:max), Cn(0:max)

double precision Dn(0:max), As(0:max), Bs(0:max)

double precision Cs(0:max), Ds(0:max), Av(0:max)

double precision Bv(0:max), Cv(0:max), Dv(0:max)

double precision err1(1:maxn), err2(1:maxn), err3(1:maxn)

double precision errn, errs, erru

double precision Fq(0:max),Fqmin(0:max)
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double precision P1(0:max),P2(0:max)

double precision P3(0:max),P4(0:max)

double precision P5(0:max),P6(0:max)

double precision P7(0:max),P8(0:max)

double precision P9(0:max),P10(0:max)

double precision P11(0:max),P12(0:max)

double precision P13(0:max),P14(0:max)

double precision P21(0:max),P31(0:max)

double precision P41(0:max),P51(0:max)

double precision P61(0:max),P71(0:max)

double precision P81(0:max)

double precision TempBNew1(0:max), TempBNew2(0:max), TempBNew3(0:max)

double precision ResNew1(0:max),ResNew2(0:max),ResNew3(0:max)

double precision mult1,mult2, mult3

double precision n(-1:max), nn(-1:max), nold(-1:max)

double precision s(-2:max), sn(-2:max)

double precision v(-1:max), vn(-1:max), vold(-1:max)

double precision u(-1:max), un(-1:max), uold(-1:max)

! --------------------------------------

! data

! --------------------------------------

paramA= 10.0d0**(-0.50d0)

paramB=1.0d0
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paramD=10.0d0**(-2.50d0)

delta=1.0d0

paramh=0.10d0

gamma=0.010d0

tau=0.50d0

dt=10.0d0**(-4d0)

length=1.0d0

m=210

snapshot=10

finaltime=2.0d0

! --------------------------------------

! The constant parameters

! --------------------------------------

dx= length/m

dx2= dx*dx

dx3= dx*dx*dx

simultime=INT(finaltime/dt)

print*, simultime

lambda1= 2.0d0*paramD*dt/dx2

lambda2=dt/(2.0d0*dx)

alpha=paramD*gamma/(2.0d0*dx3)

beta=1.0d0/(4.0d0*dx)

theta=(3.0d0*dx2/(2.0d0*dt))
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kappa=paramD*gamma

phi=(dx/4.0d0)

gary=kappa/(2.0d0*dx)

mary=dx2/(2.0d0*dt)

lary=(tau*dx/4.0d0)

pary=(tau*paramh/(2.0d0*dx))

dary=(delta*tau/8.0d0)

cary=(delta*tau*paramh/(4.0d0*dx2))

! ---------------------------------------------

! Open Files for storing Results

! ---------------------------------------------

open(25, file=’wnsol.m’, status=’unknown’)

open(26, file=’wssol.m’, status=’unknown’)

open(27, file=’wusol.m’, status=’unknown’)

open(50, file=’nerr.dat’, status=’unknown’)

open(51, file=’serr.dat’, status=’unknown’)

open(52, file=’uerr.dat’, status=’unknown’)

write(25,8)

write(26,9)

write(27,10)

8 format(/,’N=[’)

9 format(/,’S=[’)

10 format(/,’U=[’)
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! ----------------------------------

! define initial condition

! ----------------------------------

do 1 i=0,m

epsilon=random()

n(i)=1.0d0+(0.5d0-epsilon)/10.0d0

s(i)=1.0d0

u(i)=0.0d0

v(i)=0.0d0

nn(i)=0.0d0

sn(i)=0.0d0

vn(i)=0.0d0

un(i)=0.0d0

nold(i)=1.0d0+(0.50d0-epsilon)/10.0d0

uold(i)=0.0d0

vold(i)=v(i)

1 continue

! ------------------------------------

! Starting The Iterations

! -----------------------------------

do 50 timestep= 1,simultime

!do 50 timestep=1,1

do 25 i=0,m
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An(i)=0.0d0

Bn(i)=0.0d0

Cn(i)=0.0d0

Dn(i)=0.0d0

As(i)=0.0d0

Bs(i)=0.0d0

Cs(i)=0.0d0

Ds(i)=0.0d0

Av(i)=0.0d0

Bv(i)=0.0d0

Cv(i)=0.0d0

Dv(i)=0.0d0

25 continue

! ---------------------------------------

! Zero Flux Boundary Conditions

! ---------------------------------------

n(-1)=n(1)

n(m+1)=n(m-1)

nold(-1)=nold(1)

nold(m+1)=nold(m-1)
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s(-2)=s(2)

s(-1)=s(1)

s(m+1)=s(m-1)

s(m+2)=s(m-2)

u(-1)=u(1)

u(m+1)=u(m-1)

uold(-1)=uold(1)

uold(m+1)=uold(m-1)

v(-1)=v(1)

v(m+1)=v(m-1)

vold(-1)=vold(1)

vold(m+1)=vold(m-1)

! ------------------------------------------

! Coefficients A,B,C,D, Solving and Errors

! ------------------------------------------

do 2 i=0,m

P1(i)=(n(i+1)-2.0d0*n(i)+n(i-1))

P2(i)=(u(i+1)-u(i-1))
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P3(i)=(n(i+1)-n(i-1))

P4(i)=(u(i+1)-2.0d0*u(i)+u(i-1))

P5(i)=(n(i+1)+n(i))

P6(i)=(v(i+1)+v(i))

P7(i)=(n(i)+n(i-1))

P8(i)=(v(i)+v(i-1))

P9(i)=(v(i+1)-v(i-1))

P10(i)=(s(i+1)+s(i))

P12(i)=(s(i)+s(i-1))

P13(i)=(s(i+1)-2.0d0*s(i)+s(i-1))

P14(i)=(s(i+2)-2.0d0*s(i+1)+2.0d0*s(i-1)-s(i-2))

P11(i)=(nold(i+1)-2.0d0*nold(i)+nold(i-1))

P21(i)=(uold(i+1)-uold(i-1))

P31(i)=(nold(i+1)-nold(i-1))

P41(i)=(uold(i+1)-2.0d0*uold(i)+uold(i-1))

P51(i)=(nold(i+1)+nold(i))

P61(i)=(vold(i+1)+vold(i))

P71(i)=(nold(i)+nold(i-1))

P81(i)=(vold(i)+vold(i-1))

!SAFBDF

if (i .eq. 0) then

Bn(i)=theta+2.0d0*paramD+2.0d0*gary*P2(i)+phi*P9(i)
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Cn(i)=-paramD-gary*P2(i)+gary*P4(i)-phi*P8(i)-&

paramD-gary*P2(i)-gary*P4(i)+phi*P6(i)

elseif (i .eq. m) then

An(i)=-paramD-gary*P2(i)+gary*P4(i)-phi*P8(i)-&

paramD-gary*P2(i)-gary*P4(i)+phi*P6(i)

Bn(i)=theta+2.0d0*paramD+2.0d0*gary*P2(i)+phi*P9(i)

else

An(i)=-(paramD+gary*P2(i)-gary*P4(i)+phi*P8(i))

Bn(i)=theta+2.0d0*paramD+2.0d0*gary*P2(i)+phi*P9(i)

Cn(i)=-(paramD+gary*P2(i)+gary*P4(i)-phi*P6(i))

endif

Dn(i)=(-nold(i)+4.0d0*n(i))*mary

!$$$$$$ !SBDF

!$$$$$$ Fq(i)=alpha*P1(i)*P2(i)+alpha*P3(i)*P4(i)-&

!$$$$$$ beta*(P5(i)*P6(i)-P7(i)*P8(i))

!$$$$$$ Fqmin(i)=alpha*P11(i)*P21(i)+alpha*P31(i)*P41(i)-&

!$$$$$$ beta*(P51(i)*P61(i)-P71(i)*P81(i))

!$$$$$$ if (i .eq. 0) then

!$$$$$$ Bn(i)=3.0d0+2.0d0*lambda1

!$$$$$$ Cn(i)=-2.0d0*lambda1
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!$$$$$$ elseif (i .eq. m) then

!$$$$$$ An(i)=-2.0d0*lambda1

!$$$$$$ Bn(i)=3.0d0+2.0d0*lambda1

!$$$$$$ else

!$$$$$$ An(i)=-lambda1

!$$$$$$ Bn(i)=3.0d0+2.0d0*lambda1

!$$$$$$ Cn(i)=-lambda1

!$$$$$$ endif

!$$$$$$ Dn(i)=4.0d0*n(i)-nold(i)+4.0d0*dt*Fq(i)-2.0d0*dt*Fqmin(i)

2 continue

!--- Preserve B and forcing vectors by copying them to new arrays

DO i = 0, m

TempBNew1(i) = Bn(i)

ResNew1(i) = Dn(i)

END DO

!--- Calculating solution to tridiagonal matrix

DO i = 1, m

mult1 = An(i)/TempBNew1(i-1)

TempBNew1(i) = TempBNew1(i) - Cn(i-1) * mult1

ResNew1(i) = ResNew1(i) - ResNew1(i-1) * mult1

END DO
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nn(m) = ResNew1(m)/TempBNew1(m)

DO i = m-1, 0, -1

nn(i) = (ResNew1(i) - Cn(i) * nn(i+1)) / &

TempBNew1(i)

END DO

!error n

errn=0.0d0

do j=0,m

errn=errn+(nn(j)-n(j))**(2.0d0)

end do

err1(timestep)=sqrt(errn)

!update n

do i=0,m

nold(i)=n(i)

n(i)=nn(i)

nn(i)=0.0d0

end do

! Hyperbolic Equation: s

do 30 i=0,m
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if(v(i) .le. 0.0d0)then

if (i .eq. 0) then

Bs(i)=1.0d0+lambda2*(v(i+1)-v(i-1))+2.0d0*lambda2*v(i)

Cs(i)=-2.0d0*lambda2*v(i)

else

As(i)=-2.0d0*lambda2*v(i)

Bs(i)=1.0d0+lambda2*(v(i+1)-v(i-1))+2.0d0*lambda2*v(i)

Cs(i)=0.0d0

endif

else

if (i .eq. m) then

As(i)=2.0d0*lambda2*v(i)

Bs(i)=1.0d0+lambda2*(v(i+1)-v(i-1))-2.0d0*lambda2*v(i)

else

As(i)=0.0d0

Bs(i)=1.0d0+lambda2*(v(i+1)-v(i-1))-2.0d0*lambda2*v(i)

Cs(i)=2.0d0*lambda2*v(i)

endif

endif

Ds(i)=s(i)

30 continue

!--- Preserve B and forcing vectors by copying them to new arrays

DO i = 0, m
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TempBNew2(i) = Bs(i)

ResNew2(i) = Ds(i)

END DO

!--- Calculating solution to tridiagonal matrix

DO i = 1, m

mult2 = As(i)/TempBNew2(i-1)

TempBNew2(i) = TempBNew2(i) - Cs(i-1) * mult2

ResNew2(i) = ResNew2(i) - ResNew2(i-1) * mult2

END DO

sn(m) = ResNew2(m)/TempBNew2(m)

DO i = m-1, 0, -1

sn(i) = (ResNew2(i) - Cs(i) * sn(i+1)) / &

TempBNew2(i)

END DO

! errors for s(x,t)

errs=0.0d0

do j=0,m

errs=errs+(sn(j)-s(j))**(2.0d0)

end do
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err2(timestep)=sqrt(errs)

!update s

do i=0,m

s(i)=sn(i)

sn(i)=0.0d0

end do

! Elliptic Equation

do 4 i=0,m

if (i .eq. 0) then

Bv(i)=2.0d0*paramA+0.00010d0

Cv(i)=-2.0d0*paramA

elseif (i .eq. m) then

Av(i)=-2.0d0*paramA

Bv(i)=2.0d0*paramA+0.00010d0

else

Av(i)=-paramA

Bv(i)=2.0d0*paramA+0.00010d0

Cv(i)=-paramA

endif
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Dv(i)=paramB*P4(i)+lary*(P10(i)*P5(i)-P12(i)*P7(i)) &

+pary*P3(i)*P13(i)+pary*n(i)*P14(i)&

+dary*P2(i)*(P10(i)*P5(i)-P12(i)*P7(i)) &

+8.0d0*dary*n(i)*s(i)*P4(i)+cary*P2(i)*P3(i)*P13(i) &

+4.0d0*cary*n(i)*P4(i)*P13(i)+cary*n(i)*P2(i)*P14(i) &

-s(i)*u(i)*dx2

4 continue

! --- Preserve B and forcing vectors by copying them to new arrays

DO i = 0, m

TempBNew3(i) = Bv(i)

ResNew3(i) = Dv(i)

END DO

!--- Calculating solution to tridiagonal matrix

DO i = 1, m

mult3 = Av(i)/TempBNew3(i-1)

TempBNew3(i) = TempBNew3(i) - Cv(i-1) * mult3

ResNew3(i) = ResNew3(i) - ResNew3(i-1) * mult3

END DO

vn(m) = ResNew3(m)/TempBNew3(m)
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DO i = m-1, 0, -1

vn(i) = (ResNew3(i) - Cv(i) * vn(i+1)) / &

TempBNew3(i)

END DO

!Update v

do i=0,m

vold(i)=v(i)

v(i)=vn(i)

vn(i)=0.0d0

end do

!Calculate u

do 6 i=0,m

un(i)=v(i)*dt+u(i)

6 continue

! errors for u(x,t)

erru=0.0d0

do j=0,m

erru=erru+(un(j)-u(j))**(2.0d0)

end do

err3(timestep)=sqrt(erru)
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!Update u

do i=0,m

uold(i)=u(i)

u(i)=un(i)

un(i)=0.0d0

end do

! -------------------------------------

! Store the results in a file

! -------------------------------------

k=mod(timestep,snapshot)

if(k.eq.0)then

write(25,42) (n(i),i=0,m)

write(26,43) (s(i),i=0,m)

write(27,44) (u(i),i=0,m)

42 format(1505f15.8,’;’)

43 format(1505f15.8,’;’)

44 format(1505f15.8,’;’)

endif

write(50,77) err1(timestep)

write(51,78) err2(timestep)
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write(52,79) err3(timestep)

77 format(f15.8)

78 format(f15.8)

79 format(f15.8)

do i=0,m

if(ABS(u(i)).gt.5.0d0) then

print*,’Blow up for u values:u(i)=’,ABS(u(i))

print*,’Number of iterations for blow up=’, timestep

stop

elseif(ABS(v(i)).gt.5.0d0) then

print*,’Blow up for v values:v(i)=’,ABS(v(i))

print*,’Number of iterations for blow up=’, timestep

stop

elseif(ABS(n(i)).gt.5.0d0) then

print*,’Blow up for n values:n(i)=’,ABS(n(i))

print*,’Number of iterations for blow up=’, timestep

stop

elseif(ABS(s(i)).gt.5.0d0) then

print*,’Blow up for s values:s(i)=’,ABS(s(i))

print*,’Number of iterations for blow up=’, timestep

82



stop

end if

end do

50 continue

close(53)

close(54)

close(55)

close(60)

close(61)

! Write the output of the solutions at the final time

open(70, file=’nfinsol.dat’, status=’unknown’)

open(71, file=’sfinsol.dat’, status=’unknown’)

open(72, file=’ufinsol.dat’, status=’unknown’)

write(70,74) (n(i),i=0,m)

write(71,75) (s(i),i=0,m)

write(72,76) (u(i),i=0,m)

74 format(f15.8)

75 format(f15.8)

76 format(f15.8)
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close(70)

close(71)

close(72)

write(25,200)

write(26,201)

write(27,202)

200 format(/,’];’)

201 format(/,’];’)

202 format(/,’];’)

close(25)

close(26)

close(27)

stop

end
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Appendix D

Graphs of the solutions obtained: MATLAB

clear variables; clf; close all; format long;

axes(’FontSize’,18);

hold on;

load nfinsol.dat;

load sfinsol.dat;

load ufinsol.dat;

plot(nfinsol,’r.’);

plot(sfinsol,’b:’);

plot(ufinsol,’k’);

ylabel(’n, s, u solution values’);

xlabel(’x-axis’);
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Appendix E

Error Convergence: MATLAB

clear variables;

clf;

close all;

format long;

axes(’FontSize’,18);

load nerr.dat;

load serr.dat;

load uerr.dat;

figure(1);

plot(nerr,’r.’);

ylabel(’n errors’);

xlabel(’x-axis’);

legend(’n’);

figure(2);

plot(serr,’b’);

ylabel(’s errors’);

xlabel(’x-axis’);

legend(’s’);

figure(3);

plot(uerr,’k’);
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ylabel(’u errors’);

xlabel(’x-axis’);

legend(’u’)
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Appendix F

Transient Solutions: MATLAB

clear variables;

close all; clf; whitebg(’w’)

axes(’FontSize’,18);

fprintf(’READING INPUT PLOTING VALUES \n’);

fprintf(’1 is to plot n solution \n’);

fprintf(’2 is to plot s solution \n’);

fprintf(’3 is to plot u solution \n’);

nsu = input(’Type your choice \n’);

finaltime=2.0;

snapshot=10;

dt=10^(-4);

m=100;

length=1.0;

dx=length/m;

for i=0:(finaltime/(snapshot*dt))-1

time(i+1)=i*dt;

end

for j=0:m

x(j+1)=j*dx;

end
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hold on;

fprintf(’Begin plotting \n’);

if nsu == 1

wnsol;

[r,c]=size(N);

ONE=ones(c,1);

Time=time’*ONE’;

ONE1=ones(r,1);

X=x’*ONE1’;

surfl(X’,10*Time,N);

shading interp;

colormap autumn;

elseif nsu == 2

wssol;

[r,c]=size(S);

ONE=ones(c,1);

Time=time’*ONE’;

ONE1=ones(r,1);

X=x’*ONE1’;

surfl(X’,10*Time,S)

shading interp;

colormap autumn;

elseif nsu == 3
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wusol;

[r,c]=size(U);

ONE=ones(c,1);

Time=time’*ONE’;

ONE1=ones(r,1);

X=x’*ONE1’;

surfl(X’,10*Time,U)

shading interp;

colormap autumn;

end

ylabel(’Time t’);

xlabel(’Domain x(t)’);
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