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Abstract

Modern applications often need to have very short time-to-market and upgrade cycles,

and thus, short development time. To address this requirement, application developers often

rely heavily on API frameworks and libraries when developing apps. However, learning the

usages of API methods and objects is often challenging due to the fast-changing nature

of API frameworks and the insufficiency of API documentation and source code examples.

In our research, we focus on API usage patterns, i.e., frequently occurring patterns that

appeared when using API objects and methods. Specifically, we develop statistical models

that capture API usage patterns and use those models to improve programming productivity.

This dissertation has three contributions. One is Salad, a novel approach to address the

problem of learning API mobile frameworks. Salad can learn complex API usages involving

several API objects and methods. Salad learns the usages from bytecode of Android mobile

apps, of which millions are publicly available. The main component of Salad is HAPI, a

statistical model of API usages and three algorithms to extract method call sequences from

apps’ bytecode, to train HAPI based on those sequences, and to recommend method calls

using the trained HAPIs. Salad can automatically generate recommendations for incomplete

API usages, thus it could reduce the chance of API usage errors and improve code quality.

The other main contribution of this dissertation is FuzzyCatch, a code recommendation

approach for exception handling. FuzzyCatch learns usage rules involving API methods,

exceptions, and handling actions from a large collection of high-quality apps publicly available.

Based on fuzzy logic rules learned from thousands of those apps, Salad can predict if a

runtime exception potentially occurs in a code snippet. Then, as the programmer requests, it

can generate the try-catch statement with catch block containing code to catch that exception

and the exception handling actions to recover from the exception.
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The final contribution is Persona, a novel code recommendation model that focuses

on the personal coding patterns of programmers while also combines with project-specific

and common code patterns. As a personalized model, Persona is built and updated for

each programmer. It is composed of three sub-models: a model that captures personal code

patterns of a programmer; a model that captures the project-level code patterns that the

programmer is working on; and a general model that captures code patterns shared between

multiple projects. Persona incorporates code patterns learned from the three sub-models

together and utilizes those patterns for recommending code elements including variable names,

class names, methods, and parameters.
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Chapter 1

Introduction

Software systems and services are increasingly important, involving and improving the

work and lives of billions of people. With the huge demand, modern applications often need

to have very short time-to-market and upgrade cycles, and thus, short development time.

To address this requirement, application developers often rely heavily on API frameworks

and libraries such as Android and iOS frameworks, Java APIs, etc and new applications

extensively re-use API components.

However, learning to use API objects and methods is usually challenging for developers

due to several reasons. First, an API framework often consists of a large number of API

methods and objects. Moreover, common API usage scenarios often involve several API

elements and follow special rules for pre and post-conditions or control and data flows. The

API documentation of such usages is generally insufficient. Thirdly, popular API libraries

are often upgraded quickly and include very large changes. Thus, it is difficult for developers

to keep up with all the changes and new APIs.

In our research, we focus on API usage patterns, i.e., frequently occurring patterns that

appeared when using API objects and methods. Specially, we develop statistical models that

capture API usage patterns and use those models to improve programming productivity.

One is Salad [82] (“Statistical Approach for Learning APIs from DVM bytecode”),

a novel approach to address the problem of learning API mobile frameworks. To address

the problem of insufficient documentation and source code examples, Salad learns API

usages from bytecode of Android mobile apps, of which millions are publicly available. As a

statistical approach, Salad can learn complex API usages involving several API objects and
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methods. Finally, Salad can automatically generate recommendations for incomplete API

usages, thus it could reduce the chance of API usage errors and improve code quality.

Our core contributions include HAPI, a statistical model of API usages and three

algorithms to extract method call sequences from apps’ bytecode, to train HAPI based on

those sequences, and to recommend method calls in code completion using the trained HAPIs.

Our empirical evaluation shows that our prototype tool can effectively learn API usages from

200 thousand apps containing 350 million method sequences. It recommends next method

calls with top-3 accuracy of 90% and outperforms baseline approaches on average 10-20%.

Based on Salad, we have developed DroidAssist [79], a recommendation tool for API

usages of Android mobile apps. DroidAssist is released as a plugin of Android Studio, the

standard IDE for Android apps development. It is incorporated with Android Studio and

users can invoke it directly from the current editing view (for method call recommendation)

or via the menu (for method sequence validation). The details about our approach and the

tool could be found at [82, 79].

Secondly, we introduced FuzzyCatch [75], a code recommendation approach for ex-

ception handling. As a statistical approach, FuzzyCatch learns usage rules involving API

methods, exceptions, and handling actions from a large collection of high-quality programs

publicly available. Based on learned rules, FuzzyCatch can predict if a runtime excep-

tion would occur in a given code snippet and recommend code to handle that exception.

Additionally, FuzzyCatch could be used in detecting and fixing real exception bugs.

The empirical evaluation suggests that FuzzyCatch is highly effective. For example, it

has top-1 accuracy of 77% on recommending what exception to catch in a try-catch block

and of 70% on recommending what method should be called when such an exception occurs.

FuzzyCatch also achieves a high level of accuracy and outperforms baselines significantly

on detecting and fixing real exception bugs.

Based on FuzzyCatch, we have developed ExAssist [74], a code recommendation tool

for exception handling. Similar to DroidAssist, ExAssist is released as a plugin of Android
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Studio. ExAssist predicts what types of exceptions could occur in a given piece of code

and recommends proper exception handling code for such exceptions. The details about our

approach and the tool could be found at [75, 74, 84].

Finally, we proposed Persona, a lightweight code recommendation model that focuses

on the personal coding patterns of programmers. Persona is built and updated for each

programmer. To learn personal coding patterns, it utilizes fuzzy logic to model correlation/as-

sociation between code elements in the code history written by the programmer. Persona

also incorporates project-specific and common code patterns efficiently to further improve

the recommendation accuracy.

We implemented a robust code recommendation system based on Persona. The system

includes a module to extract the usages of variables, methods, classes, parameters from the

code history of a programmer, as well as from a large codebase. The system is designed to

train Persona efficiently. Furthermore, it also allows Persona to be re-trained easily to

update the coding preferences of programmers as more training data becomes available.

We performed an extensive evaluation that shows the effectiveness of the approach in

code recommendation. Persona is trained on a dataset containing 14,807 Java projects,

with over 350 million lines. We evaluated the model on 10 big Java projects with the number

of commits in each project is ranging from 23,000 to over 400,000. The evaluation results

show that Persona could achieve high accuracy in code recommendation and outperforms

the baselines significantly. We also showed that the model could be re-trained and improves

the recommendation accuracy over time as more code of the programmer is available. The

details about our approach could be found at [78, 72]
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Chapter 2

Literature Review

2.1 Statistical modeling for code

Statistical models for capturing rules and patterns in source code become a hot research

topic in software engineering in the recent years. Hassan et al. [36] indicated “natural”

software analytics based on statistical modeling will become one of the most important of

aspects of software analytics. Hindle et al. [39] shows that source code is repetitive and

predictable like natural language, and they adopted n-gram model on lexical tokens to suggest

the next token. SLAMC [76] represents code by semantic tokens, i.e., annotations of data

types, method/field signatures, etc. rather than lexical tokens. SLAMC combines n-gram

modeling of consecutive semantic tokens, topic modeling of the whole code corpus, and

bi-gram of related API functions. Tu et al. [104] exploited the localness of source code. White

et al. [110] proposed deep learning approach modeling source code. Allamanis and Sutton

[5] trains n-gram language model a giga-token source code corpus. NATURALIZE [3] use

n-gram language model to learns the style of a codebase and suggest natural identifier names

and formatting conventions. Jacob et al. [47] uses n-gram model to learn code templates.

Hidden Markov Model has been used infer the next token from user-provided abbreviations

[35] and detect coded information islands, such as source code, stack traces, and patches,

from free text [20]. Maddison et al. [61] proposed tree-based generative models for source

code. Hsiao et al. [42] learns n-gram language model on program dependence graph and uses

the model for finding plagiarized code pairs.

Fuzzy-based approaches have been proposed to solve problems in software engineering,

such as bug triaging problem [101, 102], automatic tagging [2], bug categorization [22].

Overall, the approaches focus on modeling textual software artifacts.
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2.2 API usage patterns

There exist several works that proposed statistical models for learning API usages.

SLANG uses n-gram and recurrent neural networks (RNN) to learn API usage patterns per

object which are used to predict and suggest next API calls. Nguyen et al. [71] introduced

GraLan, a graph-based statistical language model that learns common API usage (sub)graphs

from a source code corpus and computes the probabilities of generating new usage graphs

given the observed (sub)graphs. Although graphs are better than sequences in capturing

context information, the number of sub-graphs can grow exponentially. That means, training

sequence-based models would be more time- and space-efficient.

Pattern mining approaches represent usage patterns using various data structure such as

sequences, sets, trees, and graphs. JADET [107] extracted a usage model as a set of partial

order pairs of method calls. MAPO [116] mined frequent API call sequences and suggests

associated code examples. Wang et al. [105] mines succinct and high-coverage API usage

patterns from source code. Acharya et al. [1] proposed an approach to mine partial orders

among APIs. Buse and Weimer [18] propose an automatic technique for mining succinct and

representative human-readable API examples. Other techniques include mining associate

rules [60], item sets [16], subgraphs [77], [21], code idioms [6], topic modeling [68], etc.

2.3 Code recommendation

One application of usage patterns mined from existing code is to support code completion.

Grapacc [70] mines and stores API usage patterns as graphs and suggest these graphs in

current editing code. Bruch et al. proposed three approaches for code completion. First,

FreqCCS recommends the most frequently used method call. Second, ArCCS mines associate

rules and suggest methods that often occur together. Finally, a best matching neighbors

code completion technique that makes used k-nearest-neighbor algorithm. SLANG [92] uses

n-gram to suggest the next API call based on a window of n− 1 previous methods. Precise
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[113] mines existing code bases and builds a parameter usage database. Upon request, it

queries the database and recommends API parameters. Graphite [88] allows library developers

to introduce interactive and highly-specialized code generation interfaces that could interact

with users and generates appropriate source code.

Other approaches have been proposed to improve code completion tasks. Robbes et

al. [93] improves code completion with program history. They measure the accuracy of

replaying entire change history of programs with completion engine and gather information

for improvement. In [41], the authors found that ranking method calls by frequency of past

usages is effective and propose new strategies for organizing APIs in the code completion

proposals. Hill and Rideout [38] match the code fragment under editing with small similar-

structure code segments that frequently exist in large software projects. The authors of [63]

and [99] use API documentation to suggest source code examples to developers. Holmes and

Murphy [40] describe an approach for locating relevant code examples based on heuristically

matching with the structure of the code under editing.

2.4 Exception handling

Exception handling recommendation has been studied in several research efforts [91,

14, 12, 15, 66, 32, 67]. Barbosa et al. [14] proposed a set of three heuristic strategies used to

recommend exception handling code. Rahman et al. [91] proposed a context-aware approach

that recommends exception handling code examples from a number of GitHub projects. Filho

et al. [32] proposed ArCatch, an architectural conformance checking solution to deal with the

exception handling design erosion. Lie et al. [59] proposed an approach, named EXPSOL,

which recommends online threads as solutions for a newly reported exception-related bug.

Kistner et al. [54] built a tool that reveals possible sources of exceptions in the code. This tool

also provides project-specific recommendations and detects common bad exception handling

practices. Montenegro et al. [67] proposed an “exception policy expert” tool which alerts

developers about policy violations and can suggest possible handlers for the exceptions. Li
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et al. [56] devised a method that automatically recommends exception handling strategies,

based on program context.

There exist several methods for mining exception-handling rules. WN-miner [109] and

CAR-miner [103] are approaches that use association mining techniques to mine association

rules between method calls of try and catch blocks in exception handling code. Both models

are used to detect bugs related to exceptions. Zhong et al. [114] proposed an approach

named MiMo, that mines repair models for exception-related bugs. Approaches based on

association rule mining mines only most frequent rules, i.e. rules that satisfy certain support

and confidence. Thus, rules involving rare exceptions or methods with lower support and

confidence are undiscoverable.

Exception handling has been studied extensively in software engineering research [95,

30, 85, 25, 23, 13, 87, 62, 28, 27, 49, 50, 51, 17, 26, 64]. We mention here several notable

studies. Sena et al. [95] presents an empirical study to investigate the exception handling

strategies adopted by Java libraries. Ebert et al. [30] presented an exploratory study on

exception handling bugs by surveying of 154 developers and an analysis of 220 exception

handling bugs from two Java programs, Eclipse and Tomcat. Similarly, Nguyen et al. [85]

performed an empirical study on nearly 300 exception-related bugs and fixes from 10 mobile

apps. Coelho et al. [25] performed a detailed empirical study on exception-related issues of

over 6,000 Java exception stack traces extracted from over 600 open-source Android projects.

Padua et al. [27] studied exception handling practices with exception flow analysis. Kechagia

et al. [49] investigated the exception handling mechanisms of the Android APIs.

There are several research efforts focus on the global impact of exceptions [94, 33, 19, 96].

Robillard et al. [94] studied the current Java exception handling mechanism. They argued

that exceptions are a global design problem, and exceptions source are difficult to predict in

advance. Cacho et al. [19] presented an aspect-oriented model for exception handling.
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2.5 Personalized models

In general, personalized models have been studied extensively in the fields of recommender

systems [24, 46] and collaborative filtering [98, 97]. For example, Hwang et al. [46] proposed

a new recommender system, which employs a genetic algorithm to learn personal preferences

of customers and provide tailored suggestions. In software engineering, several personalized

approached has been proposed. Jiang et al. [48] developed a separate prediction model for

each developer to predict software defects. In [31], the author proposed a personalized defect

prediction framework that gives instant feedback to the developer at change level, based on

historical defect and change data. Wang et al. [106] proposed a context-aware personalized

task recommendation approach to aid dynamic worker decision in crowd-testing tasks.
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Chapter 3

Statistical Approach for Learning API Usages

3.1 Introduction

Mobile apps are software applications developed specially for mobile devices like smart-

phones and tablets. Due to the exploding in popularity and usage of those devices, millions

of mobile apps have been developed and made available to end-users. Due to the fierce

competition, those mobile apps often need to have very short time-to-market and upgrade

cycles, and thus, short development time. To address this requirement, mobile app developers

often rely heavily on API application frameworks and libraries such as Android and iOS

frameworks, Java APIs, etc and mobile apps extensively re-use API components. For example,

a prior study reports some Android apps having up to 42% of their external dependencies to

Android APIs and 68% to Java APIs [100].

Learning API usages is usually challenging due to several reasons. First, an API

framework often consists of a large number of components. For example, the Android

application framework contains over 3,400 classes and 35,000 methods which are organized in

more than 250 packages [57]. Moreover, while common API usage scenarios often involve

several API elements and follow special rules for pre- and post-conditions or for control and

data flows [77, 70, 29], documentation of such usages is generally insufficient. For example,

the Javadoc of a class mainly contains only descriptions of its fields and methods and rarely

has code examples describing in detail the usages of its objects and methods [52]. Descriptions

and code examples for API usages involving several objects are usually non-existed.

These challenges are even more severe for learning APIs of mobile frameworks. Due

to the fast development of mobile devices and the strong competition between software

and hardware vendors, those frameworks are often upgraded quickly and include very large
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changes. For example, 17 major versions of Android framework containing nearly 100,000

method-level changes have been released within five years [57]. Additionally, source code

of most mobile apps is not publicly available. With few apps with source code available,

finding and learning code examples from existing mobile app projects would be difficult and

insufficient.

We introduce Salad (“Statistical Approach for Learning APIs from DVM bytecode”),

a novel approach to address the problem of learning API mobile frameworks. To address

the problem of insufficient documentation and source code examples, Salad learns API

usages from bytecode of Android mobile apps, of which millions are publicly available. As a

statistical approach, Salad can learn complex API usages involving several API objects and

methods. Finally, Salad can automatically generate recommendations for incomplete API

usages, thus it could reduce the chance of API usage errors and improve code quality.

The key component of our approach is HAPI, standing for “Hidden Markov Model of API

usages”. A HAPI is a Hidden Markov Model (HMM) [90] representing method call sequences

involving one or multiple related API objects. It has several states aimed to represent the

internal states of the represented API objects. It also associates with probabilities for selecting

the starting state for transiting from one state to another, and for calling a method at a given

state. Those probabilities describe the statistical patterns of API states and method calls.

Salad also consists of three new algorithms involving HAPI. One algorithm is designated

to train a HAPI i.e. inferring its internal states and estimating the associated probabilities

from a very large collection of method call sequences. Another algorithm uses a trained HAPI

to compute the generating probabilities of several method sequences and rank those sequences

based on those probabilities. This ranking result is used for API usage recommendation.

The last algorithm extracts API method sequences from apps’ bytecode which are

then used for training HAPIs. It first analyzes bytecode and builds GROUMs. A GROUM

(“GRaph-based Object Uasge Model”) [77] is a graph-based model in which the nodes represent

method calls and data objects and the edges indicate control and data flows between those
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methods and objects. With that design, a GROUM can represent an usage scenario including

many objects and methods and complex control and data flows between them. Once a

GROUM is built, our algorithm can travel all its paths following the control and data

dependencies and extracts the corresponding method sequences.

We have conducted several experiments to evaluate the usefulness and effectiveness of

Salad. The experiment results show several important points. First, our approach Salad

is highly efficient and scalable. It is able to extract nearly 350 million method sequences

and train 24 thousands HAPIs from more than 200 thousands mobile apps downloaded from

Google’s Android app market. With that huge amount of training data, Salad can predict

and recommend the next method call for a given API method call sequence with a top-3

accuracy of nearly 90% and a top-10 accuracy of more than 98%. In addition, our model

HAPI consistently outperforms two baseline models n-gram and recurrent neural network [92]

with the average improvement around 10-20%.

Based on Salad, we have developed an API usage recommendation tool named DroidAs-

sist. This tool is implemented as a plug-in of Android Studio and available online at

http://useal.cs.usu.edu/droidassist. More information about this tool can be found

in [80] and that website. Source code and experiment data of this work (e.g., extracted API

method sequences, GROUMs, and HAPIs) are also made available there.

3.2 Motivation examples

This section briefly introduces API usages and HAPI via an example. Figure 3.1,

reproduced from Android Developer website [43], illustrates usages of a MediaRecorder object

in Android API framework as a state diagram. This state diagram is a finite state machine

in which each node (drawn as a rounded rectangle) represents an internal state of the

MediaRecorder object and each edge (drawn as an arrow) represents a state transition when a

method (drawn as the label of the edge) is called.
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Error occurs or 
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Figure 3.1: State diagram of MediaRecorder object

We learn from this state diagram that a MediaRecorder object has seven states during

its lifetime. It is at one state at a time and can change to another state if a method is

called. For example, as after being created, the MediaRecorder object is in the Initial state. If

method setAudioSource or setVideoSource is called, it changes to the Initialized state. Then,

it will change from the Initialized state to the DataSourceConfigured state if we call method

setOutputFormat. However, at any time, if method reset is called, the object will come back

to its Initial state.

It could be seen from this example that state diagrams can represent usages of API

objects precisely and concisely. Thus, they are useful to learn and understand API usages.

For example, we could infer from Figure 3.1 the following method call sequence to perform

an audio recording task.

setAudioSource(...)

setOutputFormat(...)

setAudioEncoder(...)

setOutputFile(...)

prepare()

start()

stop()
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Figure 3.2: HAPI model for usages of MediaRecorder object

Unfortunately, documentation of most of API objects does not contain state diagrams

representing their usages. In addition, state diagrams can be used to to check for the validity

of method call sequences, but not their popularity. For example, we cannot know from a

state diagram that a sequence is valid but has never been used, or compare if a sequence is

more likely to be used in practice than another. Last but not least, current code completion

engines like the built-in engine in Android Studio IDE do not incorporate state diagrams in

their recommendations.

We design HAPI to take advantages of the usefulness of state diagrams in representing

API usages and address their discussed limitations. In essential, a HAPI is a probabilistic state

diagram. Its nodes and edges associate with probabilities which can be used to estimate the

probability of any method call sequences. More importantly, its structure and probabilistic

parameters can be learned directly from data.
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Figure 3.2 illustrates a HAPI model learned by Salad to represent the usages of a

MediaRecorder object. In this figure, each node of the HAPI represents a state of the object.

But different from the state diagram in Figure 3.1, each state of a HAPI has a probability π

for being the starting state in a method sequence. It also has a distribution specifying the

probability to call a particular method (i.e. emission probabilities) and another distribution

specifying the probability to change to another state (i.e. transition probabilities). To simplify

the drawing, we only show method calls and transition edges with significant probabilities in

the figure. By design, the states of a HAPI model aim to represent the internal states of the

corresponding API objects. The transition probabilities capture switching patterns of those

internal states; and the emission probabilities describe the method calling patterns at each of

those states.

For example, accordingly to the HAPI model in Figure 3.2, a MediaRecorder object starts

in state (1) with probability of 83%. In this state, method setAudioSource can be called

with a probability of 82% and when that happens, the object can change to state (2) with a

probability of 52%. In state (2), setOutputFormat can be called with a probability of 99% and

so on. Technically, a HAPI is a Hidden Markov Model [90] which can be trained, i.e. inferring

its structure and the associating probabilities, from a given collection of method call sequences.

Once trained, we can use it to compute and compare the probabilities of any given method

sequences. For example, the sequence setAudioSource, setOutputFormat, setAudioEncoder

would have higher probability than the sequence setAudioSource, setOutputFormat, start.

HAPI models have several advantages over plain state diagrams. First, the state diagram

only specifies the general rules for using objects but not specify the common usages. In

contrast, once learned from code examples, HAPI could infer common usages of an API

object by searching for the method sequences that have highest probabilities. Second, a

HAPI could be used to predict the most likely next method call in a given API method call

sequence. Thus, we can use HAPI to recommend API usages while developers are writing

code.
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3.3 API usage model

In this section, we will discuss HAPI, our proposed statistical model for API usages in

more details. We also re-introduce GROUM, a graph-based model for object usages developed

previously by Nguyen et al. [77]. Salad uses GROUM as a temporary representation for

API usages extracted from mobile apps’ bytecode.

3.3.1 HMM-based API usage model

A HAPI is a generative, probabilistic model that describes the process of generating

method call sequences involving one or multiple API objects. As a Hidden Markov Model [90],

a HAPI formally has a set Q = {q1, q2, ..., qK} of K hidden states and associates with a set

V = {v1, v2, ..., vM} of M API methods of the API object(s) it is modeling. Each state qi

has a probability πi to be selected as the starting state of the model. When being in one

state, a HAPI can emit (i.e. generate) a method call and/or switch to another state. The

transition matrix A = {aij|i, j ∈ 1..K} specifies the state transition probabilities. That

means, aij is the probability that the model changes from state qi to state qj . The generating

matrix B = {bik|i ∈ 1..K, k ∈ 1..M} specifies the emission probabilities. Specially, bik is the

probability to call method vk when the model is in state qi. As seen, this HAPI model has

K +K2 +KM parameters.

With those parameters, the HAPI model can generate a sequence Y = (y1, y2, .., yT ) via

the following generating process:

1. Set t = 1 and sample the state qit from the initial state distribution π = {π1, π2, ..., πK}

2. Sample a method call yt from the calling distribution of state qit , i.e. {bit1, bit2, ..., bitM}

3. Sample the next state qit+1 from the distribution of state qit , i.e. {ait1, ait2, ..., aitK}

4. Increase t and loop back step 2 for T iterations.

Modeling API usages using HAPI involves two problems. The first problem is training

(i.e. estimate the parameters of) a HAPI model for one or multiple API objects from existing

method call sequences involving. The second problem is using the trained HAPI models to

15



protected void startRecording(String file) {
MediaRecorder recorder = new MediaRecorder();
recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE GPP);
recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR NB);
recorder.setOutputFile(file);
try {

recorder.prepare();
} catch (IllegalStateException e) {

e.printStackTrace();
} catch (IOException e) {

e.printStackTrace();
}
recorder.start();
}

Figure 3.3: Code example using MediaRecorder object

compute the generating probabilities of any method call sequences for recommending API

usages. In Section 4, we will present two algorithms we developed in Salad to solve those

two problems.

3.3.2 Graph-based object usage model

A HAPI model for one or multiple API objects is trained by a collection of method

sequences involving those objects. To extract those sequences from bytecode, we employ

GROUM, a graph-based model of object usages [77], as a temporary representation of API

usages.

Figure 3.3 lists a code example with the usage of a MediaRecorder object. Figure 3.4

illustrates the GROUM built for the main execution path of that code example. As seen in

this figure, a GROUM is a labeled, directed graph. It has two kinds of nodes: object nodes

and action nodes. An object node represents an object. It is labeled by the name of the object

type (e.g. MediaRecorder) and illustrated as a rounded rectangle in the figure. An action node

represents a method call. It is labeled the method qualified name (e.g. MediaRecorder.start)

and illustrated as a flat rectangle. There are two kinds of edges representing control flow and
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MediaRecorder.<init>
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MediaRecorder.outputFormat
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MediaRecorder.setOutputFile

MediaRecorder.prepare
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String

int

int

int

Figure 3.4: GROUM model for usages of MediaRecorder object

data flow. In the figure, solid arrows illustrate control flow edges between action nodes while

dashed arrows illustrate data flow edges between object nodes and other nodes.

Using GROUM to represent API usage scenarios has two main advantages. First, we can

easily identify all action nodes having data-dependency with a given object node or set of

object nodes, from which we can extract method sequences. Second, we could determine if a

given set of object nodes have usage-dependency. A set of object nodes has usage-dependency

if there is at least one action node that have data-dependency with all of them. Salad

only extracts method sequences of usage-dependent objects because they are more likely to

represent legitimate API usages involving multiple objects.

3.4 System architecture

Figure 3.5 shows the overall architecture and processing pipeline of Salad. For the

pre-processing phase, it has two components to extract GROUMs from bytecode and source

code and another component to extract API method sequences from those GROUMs. In the

training phase, the HAPI Learner component is responsible to use those method sequences

to train the HAPI models. Once trained, those models can use two components Method Call
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Recommender and Method Sequence Analyzer to recommend a next method calls for a given

method sequence and to estimate the likelihood of that sequence, respectively. In the rest of

this section, we will present the design and implementation details of those components.

3.4.1 Bytecode GROUM extractor

This component is responsible to extract GROUMs from apps’ bytecode instructions.

Bytecode of Android apps is stored as .dex files and available on online app markets like

Google Play Store. Thus, the extraction process has three steps: 1) Downloading the .dex

files, 2) Parsing those files into control flow graphs (CFGs), and 3) Analyzing those CFGs to

build the GROUMs.

Downloading .dex files

Salad has a built-in app crawler developed based on the Google Play Crawler project [45].

This crawler simulates an Android device, thus it can access the app store like a normal

smartphone. We program it to download all the top free/new free apps in all categories.

For each download application package (.apk files), we extract and store the .dex files which

contain all of its bytecode.

Parsing .dex files

The next step is to parse .dex files to build control flow graphs. Salad employs smali [44],

an assembler/disassembler for Android .dex files, to obtain bytecode instructions implemented

for each class and method available in the .dex files. Based on those instructions, Salad

constructs a Control Flow Graph (CFG) for each method to simplify the further analysis

tasks. Let us discuss this in more details.

Dalvik virtual machine. Android apps are originally developed in Java and re-targeted

for execution in Dalvik Virtual Machine (DVM). DVM is a register-based virtual machine.

It has a set of 32-bit registers for storing primitive values (e.g. integers and floating point
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Figure 3.5: The overview of Salad’s architecture
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public String readTextFile(String fileName) throws IOException {
FileReader fr = new FileReader(fileName);
BufferedReader br = new BufferedReader(fr);
StringBuilder strBuilder = new StringBuilder();
String line;
while((line = br.readLine()) != null) {

strBuilder.append(line);
}
br.close();
return strBuilder.toString();

}

Figure 3.6: A source code example

|[0001dc] IOManager.readTextFile:(Ljava/lang/String;)Ljava/lang/String;
|0000: new−instance v1, Ljava/io/FileReader;
|0002: invoke−direct {v1, v6}, Ljava/io/FileReader;.<init>:(Ljava/lang/String;)V
|0005: new−instance v0, Ljava/io/BufferedReader;
|0007: invoke−direct {v0, v1}, Ljava/io/BufferedReader;.<init>:(Ljava/io/Reader;)V
|000a: new−instance v3, Ljava/lang/StringBuilder;
|000c: invoke−direct {v3}, Ljava/lang/StringBuilder;.<init>:()V
|000f: invoke−virtual {v0}, Ljava/io/BufferedReader;.readLine:()Ljava/lang/String;
|0012: move−result−object v2
|0013: if−nez v2, 001d
|0015: invoke−virtual {v0}, Ljava/io/BufferedReader;.close:()V
|0018: invoke−virtual {v3}, Ljava/lang/StringBuilder;.toString:()Ljava/lang/String;
|001b: move−result−object v4
|001c: return−object v4
|001d: invoke−virtual {v3, v2}, Ljava/lang/StringBuilder;.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
|0020: goto 000f

Figure 3.7: Dalvik bytecode of code example in Figure 3.6

numbers) and object references. A frame (activation record) of a method has a fixed size and

consists of a particular number of registers for storing local variables, parameters (including

the this reference), return values, and temporary values.

Figure 3.6 lists a code snippet and Figure 3.7 shows the Dalvik bytecode compiled for

the method readTextFile in that snippet. For execution, this method is allocated 7 registers

v0-v6. v5 is for the receiver object (i.e. this). v6 is for the parameter, a String object for

the file name. Registers v0-v4 are used for local or temporary variables. Instructions in

Dalvik bytecode operate on registers. For example, instruction mul-int v2,v5,v3 multiples

the values of registers v2 and v5 and stores the result to v3. Or instruction new-instance v1,

Ljava/io/FileReader; creates a new FileReader object and returns the reference of that object

to register v1.

Control flow graph. We construct Control Flow Graph (CFG) as a representation of

bytecode instructions. A node in the constructed CFG contains a single bytecode instruction
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1 function BuildGROUM(Method M)
2 CFG = BuildCFG(M)
3 A = ∅ //list of GROUMs
4 St = CreateStartState(CFG,M)
5 F = ∅
6 Push(F, St)
7 while F 6= ∅
8 S = Pop(F )
9 SN = GetStartNode(S)

10 while SN is not a control node
11 BuildTemporaryGROUM(S, SN)
12 AddExploredNode(S, SN)
13 CN = GetNextNode(SN)
14 if SN is the return node
15 AddGROUM(A, S)
16 else
17 for NN ∈ GetNextNodes(SN)
18 if NN /∈ GetExploredNodes(S)
19 Sc = GetCopy(S)
20 SetStartNode(Sc, NN)
21 Push(F, Sc)
22 return A

Figure 3.8: Building GROUM algorithm

and an edge is the control flow between the two instructions. There are two types of nodes in

CFG. Control nodes represent control instructions in bytecode, e.g. if, return, throw, or goto

instructions. Other instructions are normal nodes. Normal nodes in a CFG only have one

out-going edge points to the next instruction while control nodes could have several out-going

edges (if, switch nodes) or do not have any (return nodes). Techniques used for constructing

CFGs are quite standard. First, we create all nodes in the CFG, each one corresponds to an

instruction in the instruction list. Then, for each node, we use offsets to identify nodes that

are executed after it and add edges from the current node to those nodes.

Building GROUM

In this step, Salad takes a CFG as input and produce GROUMs which describes usage

scenario for each execution path. The main idea of the algorithm to construct GROUM is to
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explore all the execution path in CFG and build temporary GROUMs when exploring those

paths. Once a path has been explored, it collects the GROUM that have been built for that

path. Each CFG has a start node which is the first instruction and a termination node which

is the return node. Our algorithm needs to find all execution paths from the start node to the

termination node. One problem that the algorithm needs to consider is to handle loops that

occur in the CFG. These loops represent while or for loops in source code. The instructions

inside loops may be executed either several times or zero time, thus, could lead to infinity

number of execution paths. On the other hand, considering these instructions once can help

build usage scenario associated with loops. Therefore, our algorithm consider instructions

inside a loop to be executed either once or none. In other words, a loop is executed at most

once.

Detailed algorithm. Figure 3.8 show the pseudo-code for our algorithm. Input of the

algorithm is the bytecode of a method M . The algorithm starts with creating CFG from

the bytecode instructions using techniques described the previous section (line 1). Similar

to depth first search algorithm, we maintain a stack F to store states which are frontiers

to explore (line 4). Each state of our algorithm represents an incomplete execution path

and contains following information: 1) start node: the current node in CFG when a state is

pop from stack F , 2) explored nodes: a set of all nodes in CFG that have been visited 3) a

temporary GROUM. The initial state St is created in line 3 with start node is the begin node

of CFG, explored nodes and the temporary GROUM of this state are empty. The stack F is

initialized with St in line 4. In the main while loop of the algorithm, each time, a state S is

pop from F . We start with SN , which is the start node of S (line 8) and explore the path

from SN to the next control node in CFG. Whenever SN is a normal node in CFG, we

use SN to build and update the temporary GROUM of S (we will describe the algorithm to

build a temporary GROUM in the next section). We then add SN to the set of explored

nodes of S and update SN equal to the next node of SN in CFG (because SN is still a

normal node in CFG, it only has one next node). After the loop from line 9 to line 12. SN
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Figure 3.9: GROUMs

now is a control node in CFG. If SN is the return node of CFG then we have explored

one execution path of CFG, the temporary GROUM of S now becomes a final GROUM,

thus, it is added to the list A (line 14). If SN is not the return node, we need to consider all

unexplored out going edges of SN . For each next node NN of SN , if NN is not in the set of

all explored nodes of S, we copy all information of S into a new state Sc, set NN is the start

node of Sc, and push Sc into F . The algorithm terminates when the stack F becomes empty.

Our algorithm explores all the paths of CFG and only go through each loop at most one

time. The list A now contains all GROUM of the method M . We next describe algorithm to

build temporary GROUM.

Building temporary GROUM. Initially, before considering any instructions, we

create an empty GROUM. For each parameter of the method, we create a corresponding

object node and add to the GROUM. When an instruction is considered (line 14), it creates

a new action node and add that node to the current GROUM. After adding the new action

node, we need to update edges. We add a control edge from the last inserted action node to

the new action node. For data edges, we first need to add data edges from object nodes that
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are parameters of the instruction to the new action node. To do that, we maintain a map

Mcurrent to store the current mapping between registers and object nodes. When an action

node is created, we use Mcurrent to identify all object nodes that are used as parameters of

the action, and we add data edges from those object nodes to the action node. Consider the

instruction 000f: invoke-virtual v0, Ljava/io/BufferedReader;.readLine:() Ljava/lang/String;, it

has an input parameter, which is the register v0, using Mcurrent we know that when we create

an action node from the instruction, v0 is currenty holding a reference to a BufferedReader

object node. We then add a data edge from the object node to the newly created action

node. An instruction may return a value to a register. If it does not create a new object

i.e. it returns a reference of an object has already been created before, then we identify the

object node represent that object by Mcurrent and add a data edges from the action node to

this node. Otherwise, we create a new object, add a data edge from the action node to the

new object node and update mappings in Mcurrent.

3.4.2 API sequence extractor

In this section, we describe how to extract API method sequences for one object or

multiple objects from of a method using GROUM. For single object, sequence extractor scans

through a GROUM to find object nodes associates with Android API objects. For each

object node Oi we find all action nodes that have data edges connected with Oi and sort

these action nodes by execution order. From the sorted action sequence, we only consider

action nodes that represent API methods to get an API method sequence. For example, in

Figure 3.9, for the first GROUM, there are three action nodes related to the object node

BufferedReader and all of them are Android API methods, thus, the API method sequence

associates the object node BufferedReader is (BufferedReader.init, BufferedReader.readLine,

BufferedReader.close).

To extract action sequences that involve multiple API objects, we first identity usage-

dependent object sets. For each action node that represents API methods, we collect all
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API object nodes that have data-dependent with it, then we form the set of object types

correspond to those object nodes. In the first GROUM of Figure 3.9, there are two sets of

usage-dependent objects: (FileReader, BufferedReader) has data-dependency with the action

node BufferedReader.init, and (BuffedReader, String) has data-dependency with the action

node BufferedReader.readLine.After collecting usage-dependent object sets, for each object

set, we extract corresponding API method sequences using same technique for single object.

For example, the API method sequence for the set (FileReader, BufferedReader) in the first

GROUM is (FileReader.init, BufferedReader.init, BufferedReader.readLine, BufferedReader.close).

There should be only one method sequence for an object or a set of usage-dependent

objects in each GROUM of a method. Thus, after extracting method sequences in all

GROUMs of the method, we remove duplicate sequences and only keep distinctive sequences.

3.4.3 HAPI learner

The HAPI learner uses a collection of API method sequences of an object (a set of

usage-dependent objects) to learn the API usages model. In this section, we describe the

training algorithm to estimate parameters of HAPI model from training data. We also present

a method to choosing the number of hidden states.

Training algorithm

The training algorithm aims to estimate HAPI’s parameters λ = (A,B, π) given a

collection of API method sequences. In general, Baum-Welch algorithm is often used to

estimate parameters of Hidden Markov Model [90]. In this paper, we present a modified

version of Baum-Welch algorithm for the problem of learning API usages. The input of the

algorithm is a collection of API method sequences. We observed that there are many method

sequences are duplicated in the collection. Thus, to save space and speed up the training

algorithm, we store training data as a map, where each method sequence is mapped to the

number of times it occurs in the collection. Initially, the parameters of a HAPI are assigned
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1 function TrainHAPI(TrainSet S, NHiddenStates K)
2 initialize λ = (A,B, π) by random values
3 repeat
4 for (Yn = (y1, y2, ..., yT ), cn) ∈ S
5 α = Forward(λ, Yn, T )
6 β = Backward(λ, Yn, 1)
7 for i ∈ 1..K: {compute state transition probabilities}
8 γni (t) =

αi,tβi,t∑K
j=1 αj,tβj,t

9 for j ∈ 1..K, t ∈ 1..T − 1:

10 ξnij(t) =
αi,taijβj,t+1bj(yt+1)∑K

k=1
αk(t)βk,t

11 for i ∈ 1..K: {update model parameters}
12 π

(s+1)
i = 1

D

∑N
n=1 cn × γni (1)

13 for j ∈ 1..K:

14 a
(s+1)
ij =

∑N
n=1 cn×

∑T−1
t=1 ξnij(t)∑N

n=1 cn×
∑T−1

t=1 γni (t)

15 for vm ∈ V :

16 b
(s+1)
i (vm) =

∑N
n=1 cn×

∑T
t=1 1yt=vmξni (t)∑N

n=1 cn×
∑T

t=1 γ
n
i (t)

17 until convergence
18 return λ
19
20 function Forward(HAPI λ, APISequence Y, Position P)
21 α = {αi,t} 1 ≤ i ≤ K, 1 ≤ t ≤ P
22 for i ∈ 1..K: αi,1 = πibi(y1)
23 for i ∈ 1..K, t ∈ 2..P :

24 αi,t = bi(yt)
∑K
j=1 αi,t−1aij

25 return α
26
27 function Backward(HAPI λ, APISequence Y, Position P)
28 β = {βi,t} 1 ≤ i ≤ K,P ≤ t ≤ T
29 for i ∈ 1..K: βi,T = 1
30 for i ∈ 1..K, t ∈ T − 1..P :

31 βi,t =
∑K
j=1 βj,t+1aijbj(yt+1)

32 return β

Figure 3.10: Training algorithm

with random values. The main idea of the algorithm is to iteratively estimate parameters

to maximize the likelihood function (the probability of generating data given model). The

iterative process terminates when the estimated values of parameters converge.

Figure 3.10 shows the algorithm for training HAPI. Its input includes training data S

and the number of hidden states K. The parameters of the model are initialized randomly

(line 1). Let us describe steps in the main loop of the algorithm:

Step 1. Compute forward and backward probabilities. For each method sequence in training

data we use dynamic programming to compute forward probabilities αi,t (using Forward

function) and backward probabilities βi,t (using Backward function) [90]. αi,t is defined as

the probability of seeing partial method sequence y1, y2, ..., yt and being in state qi at time t
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given the model λ:

αi,t = P (y1, y2, ..., yt, it = qt|λ) (3.1)

βi(t) is the probability of seeing the ending partial sequence yt+1, ..., yT given state qi at time

t and the model λ:

βi,t = P (yt+1, ..., yT |it = qi, λ) (3.2)

Step 2. Compute state probabilities γ and state transition probabilities ξ using forward

and backward probabilities. γni (t) is probability of being at state qi at time t given method

sequence Yn and the model λ:

γni (t) = P (it = qt|Yn, λ) =
αt,iβi,t
P (Y |λ)

(3.3)

The state transition probability ξnij(t) is the probability of being in state qi at time t and

making transition to state qj at time t+ 1 given method sequence Y and the model λ:

ξnij(t) = P (it = qi, it+1 = qj |Yn, λ) (3.4)

Step 3. Reestimate model parameters. In this step, the model parameters are estimated as

expected values of probabilities that we computed in the previous step. γni (t) is computed as

the expected number of time state qi is at time 1. a
(s+1)
ij is estimated as the expected number

of transitions from state qi to state qj compared to the expected total number of transitions

from state qi. b
(s+1)
i (vm) is the expected number of times the output method have been equal

to vm while in state i over the expected total number of times in state qi. In the update

equations, D is the total number of method sequences in the training set, and 1yt=vm is the

indicator function.

Choosing the number of hidden states

When training the HAPI model for an object (or a set of objects), we need to specify

number of the hidden states as an input for the training algorithm, but we often do not

know the how many states that the object has. Our idea in choosing the number of hidden
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Figure 3.11: HAPI for FileReader and BufferedReader objects

states K is try to build models with different K and find a model that best describe new

method sequences. This problem is equivalent to finding K that maximizes the probability

of generating new data, i.e. likelihood function. In this method, we divide a training set

into two sets, one is used to train models and one is used as validation data to optimize the

number of hidden states. For each K in a range, we train a HMM model with K as the

number of hidden states. Then, for each model, we compute the likelihood of validation data

which is the probability of generating the validation data given the model. We then choose

K of the model that maximize the likelihood of the validation set. Figure 3.11 shows graph

representation the HAPI model for the pair of objects FileReader and BufferedReader as a

result of HAPI learner component. To make it easier to display, we round probabilities and

ignore probabilities that is less than 0.01.
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1 function NextAPICall(HAPI λ, APISequence Y , Location T )
2 R = ∅ // a ranked list of candidates
3 α = Forward(λ, Y, T − 1)
4 β = Backward(λ, Y, T + 1)
5 for v ∈ V :
6 for i ∈ 1..K:

7 αi,T = bi(v)
∑K

j=1 αj,T−1aij
8 βi,T =

∑K
j=1 βj,T+1aijbj(v)

9 score =
∑K

i=1 αi,Tβi,T
10 UpdateCandidateList(R, v, score)
11 return R

Figure 3.12: Algorithm for suggesting next method call

3.4.4 API usage recommendation

In this section, we present an algorithm for recommending API method call using HAPI.

The input of the algorithm is the HAPI model H of an object (set of objects) and the

incomplete API method calls Y = (y1, ..., yN) associated with the object (set of objects) in

current editing code. The location T of Y is missing. The output of the suggestion algorithm

is a ranked list of API methods that could be filled as the method call at position T . The

idea of our algorithm is to place each API method as the method call of Y at location T

and compute score of this assignment as the probability of generating the updated sequence

(including the new API method) given the HAPI model. Then we add the API method with

score to the ranked list of all candidates.

Figure 3.12 shows the algorithm. In the first part of our algorithm, we compute

forward probabilities at position T − 1 (using Forward function). We also compute backward

probabilities at position T + 1 (using Backward function). Then, we place each API method

v as the method call of Y at position T and compute forward and backward probabilities at

that position (line 6-8). The score of v is the probability of generating sequence (y1, ..., yT =

v, ..., yN) is computed by summing all product of forward and backward probabilities:

P (Y, yT = v|λ) =
K∑
i=1

P (Y, yT = v, iT = qi|λ) =
K∑
i=1

αi,Tβi,T
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The algorithm returns a ranked list of all the API method candidates with scores for suggestion.

3.5 Code recommendation tool

We develop DroidAssist, a recommending tool for API usages. When a developer is

writing code, DroidAssist can analyze the code being written and recommend (and fill-in

on request) the next or missing API method calls. To help the developer makes more

effective choices, those calls are ranked based on their likelihoods of appearance in the existing

code context. DroidAssist can also detect suspicious API usages in existing code (i.e. ones

rarely/unlikely to be used) and repair them with more probable usages. More details will

be discussed in the next sections. The tool and video demonstration are available at our

website 1.

DroidAssist is released as a plugin of Android Studio [34], the standard IDE for Android

apps development. After installation, it is incorporated with Android Studio and users can

invoke it directly from the current editing view (for method call recommendation) or via the

menu (for method sequence validation). This section presents its two usage examples.

3.5.1 Recommending next method call

Assume that the developer wants to write code for a database transaction. She has

created a database query that return a Cursor object and made a call to begin the transaction.

However, she forgets how to use the returned Cursor object properly. She invokes the built-in

code completion engine, but it just lists all methods that can be called on the Cursor, thus

does not help her to make an appropriate selection.

Now, with DroidAssist, the developer will have better recommendations. Figure 3.13

shows a screenshot of Android Studio with DroidAssist invoked (via the keystroke Ctrl +

Shift + Space) for the current editing code. As seen, DroidAssist displays a ranked list of

methods that can be called for the Cursor object. Each method has a score represents the

1http://useal.cs.usu.edu/droidassist/
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Figure 3.13: Method call recommendation by DroidAssist

probability of how likely it might be called in the given current context of the object and

other interacting objects. In this example, method moveToFirst has the highest score of

30.52%. If the developer chooses it, it will be filled in the current position in the editor.

DroidAssist uses code context including the current method calls to infer and recommend

the next call. For example, in Figure 3.14, object db already has three method calls:

beginTransaction, insert, and setTransactionSuccessful. Thus, DroidAssist predicts that the

next method call will be endTransaction with a probability of 61.38%, which is the highest

among all available methods for this object.

DroidAssist recommendations are more accurate with more context information. For

example, if the method sequence for object db has only two calls: beginTransaction and

insert, setTransactionSuccessful has a probability of 15.11%. However, if endTransaction is

already added, probability of setTransactionSuccessful increases dramatically to 65.65% (see

Figure 3.15).
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Figure 3.14: Call recommendation for object db

Figure 3.15: API call recommendation before and after calling endTransaction method

3.5.2 Analyzing method sequence

DroidAssist can analyze a given method sequence in existing code report. If it is a

suspicious API usages (i.e. is rarely used or unlikely to be used), DroidAssist can offer

fixes with more probable method sequences. Figure 3.16 shows a code example involving

a MediaRecorder object. After writing code, the developer wants to check if his usage is

acceptable. To invoke DroidAssist for that task, she moves to a line of code containing

mediaRecorder variable, opens Analyze menu and selects Analyze API Call Sequence.

DroidAssist then will analyze the API usage for that object. Figure 3.17 shows the

analyzed result. The left of the dialog shows the original method sequence. The right of the
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public void mediaRecorderExample(String fileName) {
mediaRecorder.setAudioChannels(2);
mediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE GPP);
mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR NB);
mediaRecorder.setOutputFile(fileName);
try {

mediaRecorder.prepare();
} catch (IOException e) {

e.printStackTrace();
}
...
}

Figure 3.16: Source code examples of using MediaRecorder objects

dialog shows the suggestions for repair. If DroidAssist detects a suspicious method sequence,

it will suggest three actions: replace, add, or delete a method call, to make the usage more

probable. In the example, DroidAssist detects that calling setAudioChannels at the beginning

might not be a proper usage. It recommends to replace that method by setAudioSource. If

the user choose option Replace and press Apply, DroidAssist will repair the API call sequence

in the code editor by replacing setAudioChannels with setAudioSource.

Figure 3.17: Repair suggestion for suspicious usage

3.6 Design and implementation

DroidAssist has five major components including two modules to extract API usages

(represented as graph-based object usage models - GROUM [77]) from source code and

bytecode, a module to extract method call sequences from those usage models, a module

to train HAPIs from those sequences, and two modules that use the trained HAPIs to
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Figure 3.18: A GROUM example

recommend next method calls or check/repair an existing method sequence. Let us describe

those modules in more details.

GROUM builder

DroidAssist uses GROUM (Graph-based Object Usage Model) [77], developed by the

fourth author and his colleagues to represent the raw API usages in source code and bytecode.

Thus, to collect training data, Salad has a module to extract GROUMs from bytecode of

existing Android apps and a similar module to extract GROUMs from the code being written,

which are used for its two tasks of method call recommendation and validation. Figure 3.18

shows an example of GROUM built for the code snippet in Figure 3.14.

API method sequence extractor

Because HAPI is designed based on Hidden Markov Model, it works on sequences, not

graphs. Thus, DroidAssist has a module named API Sequence Extractor to extract sequences

of method calls from the GROUMs. For a given GROUM, this module simply traverses all

its paths and extracts the method calls along those paths. However, to ensure the extracted
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method sequences are meaningful, it only keeps the sequences involving the same API objects

(i.e. have data dependency). More details can be found at [83].

HAPI learner

This module is responsible for training HAPI models from the extracted method sequences.

It first sorts those method sequences by the involving API objects. For example, all method

sequences involving the usages of a single MediaRecorder object are grouped together and

then will be used to train the HAPI representing the usage of a single MediaRecorder object.

Sequences involving the usages of a Scanner and a StringBuilder object are grouped and used

to train the HAPI for those two objects.

DroidAssist uses a modified version of Baum-Welch algorithm to train a HAPI [83]. In

the training process, it figures out the optimal number of internal state of the HAPI and

estimates all probabilities involving the HAPI’s states (i.e. how likely a state is selected as

the starting state, how likely the object changes from a state to another) and method calls

(i.e. how likely a method is called when the object is in a state). Please refer to [83] for more

details of this algorithm.

Method call recommender

This module provides the recommendations of the next method call for the currently

editing code (and performs the completion task if requested). Its input is a collection of

method sequences provided by API Sequence Extractor along with the position of the missing

call. It places every available method m at the missing position and computes the probability

of the newly created sequence based on the HAPI of the API objects involving that sequence.

It then combines those probabilities into a final score for method m. All methods then are

ranked by those scores and proposed to the developer, as seen in Figure 3.14.
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Table 3.1: Data collection

Number of apps 207,603
Number of classes 32,080,884
Number of methods 59,636,164
Number of bytecode instructions 1,759,540,508
Space for storing .dex files 689.8 GB

Method sequence analyzer

This module evaluates an API call sequence. Its input is a method sequence for one or

more API objects. This module uses the corresponding HAPI to compute the probability

of this sequence. If that probability is smaller than a threshold, the sequence is considered

to be suspicious. If that happens, the Method Sequence Analyzer will explore different

modifications on the sequence (i.e. by adding/replacing/removing a method call) to find

more probable sequences and offers them for repair.

The threshold is computed based on the distribution of probabilities of all unique method

sequences used for training the HAPI. Based on our experiment, we currently use the 75%

percentile as the threshold. That means, if the HAPI is trained with 100 unique sequences,

and 75 of them have probabilities smaller than 0.1, this value is chosen as the threshold.

3.7 Empirical evaluation

We conducted several experiments to study the run-time performance of Salad and

compare the accuracy of HAPI models and baseline models in recommending API method

calls. All experiments are executed on a computer running 64-bit Ubuntu 14.04 with Intel

Core i7 3.4Ghz CPU, 16GB RAM, and 1TB HDD storage.

3.7.1 Data collection

Table 3.1 summarizes data collected for our experiments. In total, we downloaded and

analyzed 207,603 apps from 26 categories in Google Play Store. We only downloaded apps

with the average rating of at least 3 (out of 5). This is based on the assumption that the
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Table 3.2: Extracting API method sequences

Single object Multiple object

Number of distinct object types (sets) 4,877 43,408
Total number of method sequences 195,692,154 143,678,399
Average number of method sequences 40,125 3,309
Average length of method sequences 3.32 7.72

high-rating apps would have high quality code, and thus, would contain API usages of high

interest for learning.

Since Android mobile apps are distributed as .apk files, Salad unpacked each .apk file

and kept only its .dex file. The total storage space for the .dex files of all downloaded apps

is around 700 GB. Salad parsed those .dex files and obtained 32 millions classes. It

analyzed each class and looked for all methods in the class to build GROUM models. Since

an Android mobile app is self-contained, its .dex file contains bytecode of all external libraries

it uses. That leads to the duplication of bytecode of shared libraries. Thus, Salad maintains

a dictionary of the analyzed methods, thus, is able to analyze each method only once. In the

end, it analyzed 60 millions methods which have in total nearly 1.8 billions bytecode

instructions.

3.7.2 Extracting API method sequences

Salad built GROUM for each remaining method in the dataset and extracted API

method sequences from those models. It extracted sequences for both single object usages

and multiple object usages. Since we focus on learning Android API usages, only sequences

involving classes and methods of Android application framework were extracted. Sequences

with only one method call were disregarded.

Table 3.2 summarizes the extraction result. In total, Salad has extracted nearly 195

millions method sequences involving single object usages of more than 4,800 classes.

There are more than 43,000 distinct usage-dependent object sets made from those types and

Salad has extracted over 143 millions method sequences involving them. The running
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Table 3.3: Training HAPI models

Single object Multiple object

Number of trained models 3,042 21,526
Average number of hidden states 14.07 15.65
Total training time 1h 20m 2h 30m
Total space to store trained models 30.3 MB 134.1 MB

time and space is efficient. Salad took totally 28 hours to build GROUMs and extract

method sequences for 200 thousands apps, i.e. 0.5 seconds per app on average. It needed

less than 1.5 GB of working memory.

3.7.3 Training API usage models

Once all API method sequences are extracted and stored, Salad trained HAPI models

for each object type or usage-dependent object sets. For example, a HAPI is trained for

the usages involving any MediaRecorder object and another HAPI is trained for the usages

involving any two objects {FileReader, BufferedReader}. However, some HAPIs have too few

sequences for training, making the training procedure unstable. Therefore, we do not train

usage models for API objects with less than 10 method sequences. Overall, we discarded less

than 237,170 sequences out of 350 millions.

The training process for the remaining models is summarized in Table 3.3. As seen in

the table, Salad is time- and space-efficient. It trained nearly 24,000 HAPI models in about

3 hours 50 minutes i.e. 0.55 second/model on average. The total storage for all of them is

of 160 MB, i.e. 7 KB/model on average.

Table 3.2 and Table 3.3 show that SALAD can train HAPI models for 60% (3,042/4,877)

of encountering API single object usages and 50% (21,526/43,408) of multiple object usages.

However, untrained APIs are rarely used, each has less than 10 usages in 207,603 apps

(59,636,164 methods).
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3.7.4 API usage recommendation

We performed an experiment to measure the accuracy of HAPI in recommending API

usages and compare to baseline models. In this experiment, we chose the task of recommending

the next method call. That is, given an API method sequence and the model is expected to

recommend the most probable next method call. This task has been used in the evaluation

of prior approaches [70, 11].

In the experiment, we predicted and evaluated all method calls in every method sequence

from the testing set. For a method call ci at position i, we provided its i− 1 prior method

calls as the input and used the model to infer the top-k most probable next method calls Rk =

{r1, r2, ..., rk}. If ci is in Rk, we consider it as a hit, i.e. an accurate top-k recommendation.

The top-k accuracy is the ratio of the total hits over the total number of evaluated method

calls.

Baseline models

We chose n-gram and recurrent neural network (RNN) trained for method call sequences

as two baseline models for comparison due to the following reasons. First, both of them are

statistical models, thus, is comparable to HAPI, which is also a statistical model. In addition,

n-gram is widely used in recent research on code completion [39, 76]. More importantly,

Raychev et al. recently evaluated RNN and n-gram and reported RNN as the best approach.

n-gram model is a simple statistical model for modeling sequences. An n-gram model

learns all possible conditional probabilities P (mi|mi−n+1...mi−1), where mi is the current

method call and mi−n+1...mi−1 is the sub-sequence of n− 1 prior method calls. This is the

probability that mi occurs as the next method call of mi−n+1...mi−1. Using the chaining rule,

we can use an n-gram model to compute the generating probability of any given method

sequence m1...mn. In our experiment, we used a 3-gram model (i.e. the occurrence probability

of a method call depends on its two previous calls) as used in prior work [92]. We also

implemented Witten-Bell smoothing [112] technique for this model.
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Recurrent neural network (RNN) is a class of neural networks for learning sequences.

Like a HAPI, a RNN can be trained with a collection of method sequences and then is

able to compute the probability of the next method call for any given method sequence. In

other words, RNN can compute all conditional probabilities P (mi|m1...mi−1) for any given a

method sequence m1...mn. To do that, it maintains a context vector ci represents current

context of sub-sequence up to m1...mi−1. A function f is learned from data to compute the

context vector at position i, ci = f(mi, ci−1) given the current method call mi and previous

context ci−1 while another function g is learned to compute the probability of the next call

mi+1, P (mi+1|m1...mi) = g(ci) given the current context ci. In our experiment, we used a

publicly available implementation of RNN2 with the number of hidden states of 40 which is

also used in prior work [92].

Experiment results
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Figure 3.19: Accuracy of next method call recommendation

Our experiment is a 5-fold cross validation. That is, for each object type or object set

in the experiment data, we divided its method sequences into five equal folds. HAPI and

2http://www.rnnlm.org
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two baseline models are trained in four folds and tested in the remaining folds (i.e. they

are trained and tested in the same data). We repeated this process five times, each for

an individual fold as test data and computed the average accuracy of each model in five

iterations as its final result. We chose 5-fold cross validation over the popular 10-fold cross

validation to reduce experiment time because RNN is very time-consuming.

Figure 3.19 shows the experiment results for method sequences extracted from bytecode

of 200 thousand apps downloaded from Google Play. As seen in the charts, all three models

have consistent accuracy for single and multiple object usages. More importantly, HAPI

can recommend API usages with very high levels of accuracy. For example, for single object

usage, it has a top-3 accuracy of 90% and a top-10 accuracy of 98%. In addition, HAPI

significantly outperforms RNN and n-gram models. For example, the corresponding top-3

and top-10 accuracy of n-gram model are 62% (28% lower) and 82% (16% lower). The top-3

and top-10 accuracy of RNN model are 76% (14% lower) and 93% (5% lower). On average,

HAPI has 11% improvement over RNN and 21.5% improvement over n-gram.

3.8 Discussion

Table 3.4: Experiment settings in recent research about statistical language models for code

Approach Model Code token Code form Training Testing

SALAD 3-gram, RNN, HAPI Method call (Android) Bytecode 59,636,164 methods 5-fold cross validation
SLANG [92] 3-gram, RNN Method call (Android) Source code 3,090,194 methods 20 pre-selected examples
GraLan [71] 9-gram Method call (Java) Source code 1,000 projects 5 independent projects
SLAMC [76] 3-gram Semantic token Source code 9 (Java) + 9 (C#) projects 10-fold cross validation
Tu et. al [104] 3-gram (cache) Lexical token Source code 9 (Java) + 9 (Python) projects 10-fold cross validation
Hindle et. al [39] 3-gram Lexical token Source code 5 projects 200 held-out source files

Occam’s razor principle could explain HAPI’s improvement over n-gram and RNN. To

model usages involving M methods, a HAPI with K hidden states uses K + K2 + KM

parameters, while an n-gram uses Mn parameters (i.e. all possible sub-sequences of n method

calls), and a RNN of H hidden nodes uses MH +H2 +HM parameters. Since K is often

much smaller than H and M , HAPI has less parameters thus easier to train and generalize.
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Chapter 4

Code Recommendation Model for Exception Handling

4.1 Introduction

Exceptions are unexpected errors occurring while a program is running. If not handled

properly, exceptions could lead to serious problems such as system crashes or resource leaks.

For example, when a program tries to parse an integer from a string but the string does not

represent a valid number, a NumberFormatException exception occurs. If the program ignores

that exception, it will crash. Thus, effective exception handling is important in software

development. A prior study [108] reports that correctly handling exceptions could improve

17% in the performance of software systems.

Most modern programming languages provide built-in support for exception handling.

For example, in Java, we can wrap a try block around a code fragment where an exception

might occur and add a catch block to handle that exception. However, programmers have to

determine themselves what code fragment to protect with the try block, what exception type

to handle in the catch block, and what to react when such an exception occurs.

Learning to handle exceptions properly is often challenging due to several reasons. First,

modern software development relies strongly on API libraries. An API library often defines

many specific exception types and exception handling rules. For example, in Java SDK, class

FileNotFoundException is defined for the ’file not found’ exception. When such an exception

happens, the software system could react by notifying users about the error and writing the

relevant information (timestamp, filename, caller, etc.) to a system log for future debugging.

However, a major API library often consists of a large number of components. For

example, the Android application framework contains over 3,400 classes, 35,000 methods,

and more than 260 exception types [58]. Thus, it is very difficult to learn and memorize what
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method could cause what exception and what to react when a particular exception occurs.

Secondly, popular API libraries are often upgraded quickly. For example, in 10 years from

2008 to 2018, 28 major versions of Android SDK have been released. The latest version of

Java SDK is JDK 12 is released in 3/2019. Each of those major versions often includes very

large changes, which could introduce new exceptions and new rules for exception handling.

Most importantly, the documentation for exception handling is generally insufficient.

Kechagia et al. [51] found that 69% of methods in Android SDK have undocumented exceptions

and 19% of the crashes could have been caused by insufficient documentation. Coelho et

al. [25] found that documentation for many explicitly thrown runtime exceptions (or often

called unchecked exceptions) is rarely provided.

Modern code editors can enforce catching of checked exceptions. For example, in Java,

FileNotFoundException is a checked exception. Thus, when a new FileInputStream object is

created to read from a file, Eclipse will ask the programmer to catch the FileNotFoundException

(or throw it). However, such support is not available for runtime (unchecked) exceptions

like IllegalArgumentException. In addition, popular code editors cannot suggest the reactions

when a checked or unchecked exception happens.

We introduce FuzzyCatch, a code recommendation plugin for Android Studio with

advanced support for exception handling. Based on fuzzy logic rules learned from thousands

of high-quality programs publicly available in app stores, FuzzyCatch can predict if a

runtime exception potentially occurs in a code snippet. Then, as the programmer requests, it

can generate the try-catch statement with catch block containing code to catch that exception

and recover from it.

The key idea of FuzzyCatch is based on the observation that exception handling can

be expressed by two general programming rules: i) if call method m then catch an exception

e; and ii) if an exception E occurs then perform action r to react. For example, if you call

the method Activity.unregisterReceiver then you have to catch an IllegalArgumentException.

Or, if you call the Integer.parseInt then you have to catch an NumberFormatException. And,
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when an SQLiteDatabase occurs, you call method Cursor.close as a simple reaction to close

the resource.

FuzzyCatch learns such rules from a large collection of high-quality code. For example,

assume that no available documentation specifies that if we call method m, we need to catch

an exception of type E. However, we observe from thousands of high-rated apps in Google

Android Appstore that whenever m is called, 90% of the times an exception of type E is also

caught. Such a high level of co-occurrence suggests a rule that if we call m, we should catch

E. However, because those rules are likely imperfect, fuzzy logic is used to represent and

combine them.

We have conducted several experiments to evaluate the usefulness and effectiveness of our

tool. We collected a dataset containing over 21 million methods from over 13,000 highly rated

mobile apps in Google Android Appstore. The 10-fold cross-validation of FuzzyCatch on

this dataset are promising. FuzzyCatch has the top-1 accuracy of 77% for recommending

exception types. That means, in 77% of the cases, the first exception type that FuzzyCatch

recommends catching is the one used by app developers. The top-1 accuracy of recommending

reaction code is of 70%.

We collected a second dataset of 1,000 real exception related bugs. In its strictest mode,

FuzzyCatch flags 734 cases (73%), i.e., suggesting they need exception handling. In its

loosest mode, FuzzyCatch flags 821 cases (82%). However, the loosest mode would make

around 35% unwanted warnings on code that programmers have never added exception

handling code. The strictest mode would make only 7% of unwanted warnings. On the task

of recommending handling actions, FuzzyCatch provides meaningful recommendations in

roughly 65% of the bug fixes and outperforms the baselines significantly.
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4.2 Empirical study

To understand the nature of such exception-related bugs and how programmers fix them,

we performed an empirical study of exception handling bugs and fixes. We focus on two main

research areas regarding exceptions handling.

1. Causes and effects of exceptions. Missing exception handling code or failing to handle

exceptions properly could introduce serious errors on the system. Thus, we focus on how

exception bugs affect the running apps. Secondly, we study exception bugs in several aspects

including what are object types and methods often cause exception bugs, what are exception

types that often being thrown in those bugs, and are there any correlations between object

types or methods that cause exception and exception types. The results provide insights on

exception bugs.

2. Handling exceptions. In this research area, we focus what developers do in exception

bug fixes. Swallowing exception by adding a simple try-catch block could avoid the program

crashing when exception occurs but might introduce new bugs to the program. Thus, we

study whether this type of handling occurs in the bug fixes. Next, we focus on what type of

actions developers do in their handling code such as closing or releasing objects that hold

resources, creating new objects, etc.

4.2.1 Methodology

Next, we describe how we collected and built the dataset used in our empirical study.

The dataset includes real bug fixes that related to exceptions. In particular, we focus on

bugs that are caused by not catching exceptions or adding proper exception handlers. For

convenience, we defined those bugs as exception bugs. The fix for those type of bugs is

called exception bug fixes.

We first collected a dataset consists of several open-source Android projects. Table

4.1 lists 10 subject projects used in our extraction process. Each project is an application
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Table 4.1: The empirical dataset

Mobile App Website Commits Bug Fixes Candidate Bug Fixes Exception Bug Fixes

AntennaPod antennapod.org 3,404 767 89 28
ConnectBot connectbot.org 1,450 327 39 8
Conversations conversations.im 3,318 922 123 23
FBReaderJ fbreader.org 27,944 1,403 118 30
K-9 github.com/k9mail 7,254 1,797 223 31
MozStumbler location.services.mozilla.com 2,667 692 55 7
PressureNet cumulonimbus.ca 1,017 203 31 11
Signal whispersystems.org 2,754 1,030 130 28
Surespot surespot.me 1,590 274 54 8
WordPress apps.wordpress.org 15,546 3,691 425 72

Total 66,944 11,106 1,287 246

published in Google Play Store 1. AntennaPod is an open-source podcast manager for Android.

ConnectBot is a SSH, telnet and terminal emulator. Conversations is a XMPP-based instant

messaging client. FBReader is an e-book reader. K-9 is email client focused on managing

large volumes of email. MozStumbler is a wireless network scanner developed by Mozilla.

PressureNet is a crowd-sourced barometer network. Signal and Surespot are secure instant

messaging apps. WordPress is the official Android client of WordPress. All the projects are

written in Java and have source code repositories available on GitHub. For each project, we

checked out its source code repository to retrieve all the code and commits. The number of

commits of each project (at the time we checked out the repositories) are listed in column

Commits. To ensure the reliability of our dataset, we selected medium to large projects

compared to other Android projects. Each project has at least over 1,000 commits and the

total number of commits are over 66,000.

The first step to produce the dataset is identifying bug fixes. We define a bug fix is a

commit in which the developer fixed a bug found in the project. Identifying all bug fixes in a

software project is often a hard task as issue tracking systems are incomplete to capture all

bugs, and the developers might not describe a fix explicitly. Generally, bug fixes are identified

based on two types of bugs: 1) bugs reported through issue trackers, which are called reported

bugs, and (2) those not reported to issue trackers, which are called on-demand bugs [115].

1play.google.com
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Reported bugs. All the projects have an issue tracking system to track various issues

including bugs, improvements, new features, tasks, etc. Using the system, users can report

issues or requests they encountered when they are using the software. Each reported issue has

an associated issue number and can be labeled based on the type of it (e.g. bugs, improvements,

new features, tasks, and sub-tasks). As an example, in Wordpress, an user reported a bug

with the title “Crash report 3.7: IllegalStateException in WPDrawerActivity #2372”. The

issue number for this bug is #2372 and it is labeled as [Type] Bug. In the fix commit for

the above bug, the commit’s message says “fix #2372 by catching IllegalStateException” to

indicate that, in the commit, the developer fixed the bug in the issue #2372 by catching

IllegalStateException. As the developer already fixed the bug, he marked the status of the

issue as closed or fixed. To identify bug fixes from reported bugs, [115, 53] used a pattern

to extract all commits that mention a issue number. Then they used the issue number to

determine whether it indicates a bug or not (using the label of the issue). If the issue is a bug,

the associated commits are considered bug fixes. For instance, the commit in the previous

example points to the issue #2372, and as the issue is a bug, the commit is considered as a

bug fix.

On-demand bugs. Issue trackers often do not contain all information about the bugs and

fixes. In many cases, developers might bypass the issue trackers, especially when they discover

bugs from other sources by themselves or other sources (e.g. user reviews, discussions with

other developers). In such cases, they often fix the bugs and commit the changes without

creating an issue. When they commit a change, programmers may write a message to describe

the fix. For example, in the project Wordpress, the message of a commit indicates “Fixes

crash where postID could be larger than max int value”. In the commit, the developer

added a try-catch block to handle a NumberFormatException which caused the app scraching

if postID is larger than maximum integer value. The bug that the developer referred in

the commit message is an on-demand bug. To identify bug fixes from on-demand bugs, a

number of previous studies (e.g. [115, 89, 65] used a simple keyword-based technique. They
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identified a commit is a bug fix if its message contains words such as “fix”,“bug”, or “patch”.

The method is based on assumption that when fixing a bug, developers often write commit

message to describe the fix. In the example, as the commit message contains the word “fixes”,

it is considered as a bug fix.

We identified bug fixes using both methods described above and combine the result to

form a set of bug fixes for each project. The column Bug Fixes lists the number of bug fixes

of each project. In total, there are over 11,000 bug fix commits over 10 projects.

The next step is identifying exception bug fixes from all bug fixes. Not all bug fixes are

related to exception and manually identifying exception bug fixes from all bug fixes is very

time consuming. Thus, we used a semi-automated method for identifying exception bug fixes.

First, we developed a simple filter technique to only consider bug fixes that can potentially be

exception bug fixes. As most of the exception bug fixes involving adding try-catch blocks, we

consider a commit to be candidate exception bug fixes if the changes in the commit contain

at least one adding of catch statement. For example, a change of an example bug fix is shown

in Figure 4.1.

- postContent = new SpannableStringBuilder(
-                                mEditorFragment.getSpannedContent());
+ try {
+     postContent = new SpannableStringBuilder(
+                                mEditorFragment.getSpannedContent());
+ } catch (RuntimeException e) {
+     // A core android bug might cause an out of
+     // bounds exception, if so we'll just use the current editable
+     // See https://code.google.com/p/android/issues/detail?id=5164
+     postContent = new SpannableStringBuilder(
+         StringUtils.notNullStr((String) mEditorFragment.getContent()));
+ }

COMMIT MESSAGE: "fix #2695: re-introduce a workaround we were 
using in previous versions"

Figure 4.1: An example bug fix

After using this filtering method, the number of candidate exception bug fixes are 1,287

as showed in column Candidate Bug Fixes of Table 4.1.

Next, we manually inspected the remaining 1,287 bug fixes to find exception bug fixes.We

formed an assessment group that consists of three Ph.D. students in the field of software
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engineering to do this task. A bug fix is considered an exception bug fix if an exception

is thrown on the bug and the developers fix the bug by adding proper exception handling

code. Our criteria to determine whether a bug fix is an exception bug fix is based on

commit message, changes in commit, and comments adding in source files. Figure 1 shows

an exception bug fix. We recorded several information related to exception bug fixes for the

purpose of our study, including the effects of the exception bugs, what types and methods

causing exception, the exception types, the handling action of the fixer, the logging messages,

etc. Finally, we identified 246 exception bug fixes across 10 projects. Column Fixes of Table

4.1 shows the number of exception bug fixes for each projects.

4.2.2 Empirical results

Finding 1. First, we focused on how exception bugs affect the running apps. Thus,

we classified exception bugs into different types of effects including: CRASH, UNSTABLE,

UNKNOWN. CRASH implies that the app crashed when an exception bug occurred. UNSTABLE

means that the app continued to run but in an unstable state or some features might not

function properly. If we did not have enough information to figure out the effect of an

exception bug, we labeled it as UNKNOWN. We studied the number of exception bugs

classified by the defined types. Exception bugs caused apps crashing in over 80% of the cases

(199/246). Over 13% (33/246) of the exception bugs caused the app running in a unstable

state or some features might not function properly. There are 14 exception bugs are labeled

as UNKNOWN as we did not have enough information to classify those bugs in one the two

types above. From the statistics, we can see that exception bugs often cause serious problems

for the apps such as crashing or running in a unstable state.

Finding 2. Most of exception bugs are caused by Android API methods. Table 4.2 shows

top-10 types by the number of times the methods of those types cause exceptions. Our first

observation is that all 10 classes are Android APIs (to save space, we do not show the fully

qualified name of each class). Further investigated, we found out that 51% (127/246) of
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exception bugs is caused by Android API methods. Note that, in our study, we only identified

which methods cause exceptions inside the try block of a bug fix. A third-party method that

causes an exception may be used by several Android API objects and methods inside its

implementation, and the actual cause of exception might be from those API calls. Thus, in

reality, we believe the percentage of exception bugs caused by Android APIs could be even

higher. The finding suggests that an exception-handling recommendation model should focus

on handling exceptions related to Android APIs.

Finding 3. Most of exceptions in bugs are runtime exceptions. Table 4.3 shows top-10

exception types appear in the exception bug fixes. From the table, we have several observations.

First, the java.lang.Exception class appears most often. This result could be explained as the

fact that when catching exception, developers may not know or care about what type of

exception is thrown and they just catch the most general exception. Another observation

is that most of remaining exception types are runtime exceptions. There is only one type

of runtime errors in the ranked list, which is OutOfMemoryError. Further investigation on

the type of exceptions, we find out that in 246 exception bugs, there is 58.13% (143/246) of

runtime exception, 7.31% (18/246) of checked exceptions, and 9.34% (23/246) of runtime

errors. For the 62 remaining exception bug fixes, developers catch exceptions using general

exception types such as Exception or Throwable, thus, we cannot identify types of exceptions

in these fixes. The result indicates that the majority of exceptions in the dataset are runtime

exceptions.

Finding 4. In this finding, we study what developers do in exception bug fixes. Based on

the fixes of developers in the dataset, we classify 3 types of fixes that the fixers performed:

catch the exception and do not perform any actions (SWALLOW), re-throw another exception

to transfer handling jobs to other functions (RETHROW), invoke method calls or operations

to handle exceptions (HANDLING). After analyzing each type of actions, we found that, in

total, programmers did not perform any actions to handle exception in about 16% (40/246)
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bug fixes. They re-threw another exception in about 12.6% (31/246) of the cases. Finally,

fixers handled exceptions in 41.86%(103/246) of the exception bug fixes

Table 4.2: Top-10 types

Types

android.app.Activity 14
android.content.Context 8
java.lang.Integer 5
android.database.sqlite.SQLiteDatabase 5
android.graphics.BitmapFactory 5
android.graphics.Bitmap 4
java.text.SimpleDateFormat 4
android.content.ContentResolver 3
android.database.sqlite.SQLiteDatabase 2
android.media.MediaPlayer 2
android.database.Cursor 2

Finding 5. In totals, programmers invoke method calls or operations to handle exceptions

in 41.86%(103/246) of bug fixes. We label a bug fix as HANDLING if the catch block in that

fix contains at least one statement other than a log statement. To further understanding how

programmers handle exceptions, we categorized handling actions into several categories. We

found that about 52% (54/103) of these bug fixes, programmers used default values to handle

exceptions. One example of this handling type is if an exception occurs inside a method that

returns an object, in the catch block of the fix, programmers handle exception by returning

null. Or if exceptions occur while getting or creating object, he or she will assign the result

variable to a default values such as null, true, 0, etc.

Programmers invoke method calls to handle exceptions in the remaining 47 bug fixes.

After analyzing these bug fixes, we found that in almost all of these bug fixes (40/47),

programmers invoke method calls of the same class with the method that causes exception.
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Table 4.3: Top-10 exceptions

Exceptions

java.lang.Exception 54
java.lang.NullPointerException 25
java.lang.IllegalArgumentException 22
java.lang.OutOfMemoryError 19
android.content.ActivityNotFoundException 14
java.lang.NumberFormatException 9
java.lang.IllegalStateException 9
java.lang.Throwable 8
android.database.sqlite.SQLiteException 8
java.lang.ClassCastException 8

4.3 Motivation examples

Although, most modern programming languages provide built-in support for exception

handling. Programmers still have to determine themselves what code fragment to protect

with the try block, what exception type to handle in the catch block, and what to react when

such an exception occurs. The previous studies [30, 85] shows that programmers might easily

forget to handle an exception that potentially occurs in a code snippet. Such mistakes could

cause serious issues to the developing app, i.e. crashing. For example, Figure 4.10 (Section 5)

shows a serious bug caused by not catching a RuntimeException.

Furthermore, the studies also suggest that in practice, novice and even experienced

programmers might not always handle exceptions properly. For example, Figure 4.2 shows

an exception related bug fix in the WordPress mobile app. The programmer calls method

Activity.unregisterReceiver() with variable mediaUpdate passed as its argument. At runtime,

this call causes an IllegalArgumentException and crashes the mobile app. This error is fixed

by a try catch block that handles that exception. However, the catch block has no code.

Although this bug fix makes the app not crash again, it is a bad programming practice to

catch an exception and do nothing.

Figure 4.3 shows another exception related bug fix of Cursor object. In this example, an

exception occurs when using Cursor object. To handle this bug, the programmer added a
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- unregisterReceiver(mediaUpdate);
+ try {
+     unregisterReceiver(mediaUpdate);
+ } catch (IllegalArgumentException e) { }

Figure 4.2: An example of swallowing an exception

try-catch block to cover the code portion that uses the Cursor object, and returned null in the

catch block. This action of handling may lead to memory leak bugs. After exception occurs

and the function returns, the Cursor object still lives and holds system resources until it is

collected by the garbage collector. This may prevent other parts of the program to access

the resources. The proper way to handle this exception is calling close method on the cursor

object before the return statement. The close method will release resources that hold by the

cursor object before the function lost the reference to it.

. . .
+ try {
     if (cursor.getCount() == 0) {
         return null;
     } else {
         cursor.moveToFirst();
         return new Pair<>(cursor.getLong(), cursor.getString(1));   
     }
+ } catch (Exception e) {
+    return null;
+ }

COMMIT MESSAGE: "catch exception when reading message id 
from database."

Figure 4.3: An exception related bug fix

The examples indicate the need exception handling recommendation tools for program-

mers. Such programming tools could warn programmers about potential exceptions that

might occur in the code and assist programmers to handle the exceptions correctly.

4.4 Approach

In this section, we discuss the key techniques of FuzzyCatch. We will start by

introducing XRank, a fuzzy logic system to rank and suggest exception types to catch given
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a piece of code. Then we describe XHand, a fuzzy logic system for recommending repairing

actions when a particular exception occurs in that piece of code.

4.4.1 Recommending exception types

We formulate the problem of recommending exception types as the following: Given

a code snippet C, determine of the runtime exception(s) e with a high possibility to occur

when C is executed.

Our key idea to solve this problem is to learn from the exception handling code already

written in high-quality software systems. We first collect a large collection of high-quality

code D. For each method m called in C, we look at all every call of m in D. If those calls

often associate with catching an exception e then it is likely that calling m could cause e.

Since there might be several methods called in C and several exceptions associating with

them in D, we need to combine and rank those exceptions.

This is an example from our experiment data. As discussed in detail in Section 5,

we collected roughly 13,000 highly-rated Android mobile apps. In those apps, we found

38,218 calls to method Integer.parseInt. Among them, 12,469 calls (32.6%) appear in try-catch

blocks catching NumberFormatException. And this is the exception most co-occurred with

Integer.parseInt. Thus, even without documentation, we can infer that calling Integer.parseInt

could cause NumberFormatException. Of course, Java API documentation comfirms that.

Similarly, we found that, among 23,406 method calls to Cursor.moveToFirst, 8,159 calls

(34.8%) co-occur with catching SQLiteException. That means, we could infer that the method

call Cursor.moveToFirst might cause SQLiteException. This is also confirmed by Android API

documentation. Of course, calls to Integer.parseInt and Cursor.moveToFirst often also co-occur

with catching Exception and Throwable, the most general exception in Java.

Now, assume that a programmer is writing a code snippet containing a call to Cur-

sor.moveToFirst to read data from a database query and a call to Integer.parseInt to parse

such data. The above exception handling rules learned from high quality code suggest
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him/her to catch NumberFormatException and SQLiteException (or the more general ones

Exception and Throwable). However, those rules are imperfect (e.g., recommending to catch

NumberFormatException is applicable for only 32.6% of calls to Integer.parseInt).

In this paper, we address that issue via fuzzy logic. We developed XRank, a fuzzy logic

system in FuzzyCatch to rank and recommend exception types. Basically, XRank contains

a collection of rules “if call m then catch e”, in which m is an method (e.g., Integer.parseInt)

and e is an exception type (e.g., NumberFormatException). Because those rules are imperfect,

each rule has a confidence level µm(e).

XRank uses fuzzy sets to represent those rules. For each method m, Xm is defined as

“the set of exceptions to catch when calling m”. As a fuzzy set, Xm has a membership function

µm() which calculates membership score µm(e) for every available exception type e.

In traditional fuzzy logic systems, membership functions are defined by domain experts.

However, in FuzzyCatch, we define membership functions empirically, i.e., the membership

scores µm(e) is estimated from the training data (a repository of high-quality code). The key

assumption is that the more m and e co-occur in high-quality code written by professional

programmers, the more confidence that if we call m, we should catch e (because professional

programmers often do that). Therefore, µm(e) is calculated based on the co-occurrence of m

and e in the training data. Assume that nm is the number of calls to m and nm,e is is the

number of calls to m in all try-catch blocks catching e, then:

µm(e) =
nm,e
nm

(4.1)

Formula 4.1 implies that the value of µm(e) is between [0, 1]. Table 4.4 lists the top

five exception types to catch for several methods and their membership scores estimated

from our experiment data. We could see that for Integer.parseInt, NumberFormatException is

the top-1 exception type, co-occurring with 32.6% of its method calls. The next one is the
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Table 4.4: Membership scores

Integer.parseInt (nm = 38,218) nm,e µm(e)
NumberFormatException 12,469 0.326
Exception 5,496 0.144
Throwable 687 0.018
IllegalArgumentException 470 0.012
JSONException 427 0.011

Cursor.moveToFirst (nm = 23,406) nm,e µm(e)
SQLiteException 8,159 0.349
Exception 4,288 0.183
SQLException 460 0.020
Throwable 410 0.018
SQLiteFullException 216 0.009

MediaPlayer.getDuration (nm = 1,152) nm,e µm(e)
IllegalStateException 105 0.091
Exception 44 0.038
Throwable 7 0.006
IllegalArgumentException 5 0.004
SecurityException 2 0.002

Byte.parseByte (nm = 145) nm,e µm(e)
NumberFormatException 17 0.117
Exception 8 0.055
JSONException 3 0.020
Throwable 3 0.020
NoSuchElementException 2 0.013

general exception type Exception, co-occurring with 14.4%. The remaining exception types

have much lower scores.

XRank utilizes the fuzzy sets Xm for two tasks: assessing if a given code snippet needs

a try-catch block and ranking exception types to catch in that block. To do that, for each

method m, it first calculates ρm, the exception risk of m, which is the total possibility that

calling m would cause an exception. Because Xm is the fuzzy set representing the possibility

that calling m would cause each exception e, the exception risk ρm is calculated as the total

weight of Xm:

ρm = |Xm| =
∑
e

µm(e) (4.2)
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Table 4.5: Exception risk scores

Method nm ρm
Cursor.moveToFirst 23,406 0.578
Integer.parseInt 38,218 0.512
MediaPlayer.getDuration 1,152 0.141

Table 4.5 lists the exception risk of three methods in Table 4.4. We can see that among the

three of them, Cursor.moveToFirst is the riskiest, e.g., nearly 60% of its calls associated with

catching an exception. In contrast, just 14% of calls to MediaPlayer.getDuration associate

with catching an exception, thus, its exception risk is much lower.

Fuzzy logic systems often use linguistic concepts and variables to make them easier

to use and understand for the domain experts and end-users of those systems. To make

FuzzyCatch easier to use for programmers, we classify the methods into different risk

classes based on their exception risk scores. Assume that α1, α2, and α3 are respectively the

20%, 30%, and 50% percentile of all exception risk scores. Then, if method m has ρm > α1

(i.e., m is the top-20% among all methods), it is classified as “VERY RISKY”. If α1 ≥ ρm > α2

(m is not in top-20% but in top-30%), it is classified as “RISKY”. And if If α2 ≥ ρm > α3 (m

is not in top-30% but in top-50%) it is classified as “LESS RISKY”. The remaining methods

are considered as not risky and ignored.

In the IDE (Android Studio), we color-code method calls with their risk levels. For

example, calls of “VERY RISKY” methods like Cursor.moveToFirst are colored RED. Calls

of “RISKY” methods (like Integer.parseInt) are colored ORANGE. Calls of “LESS RISKY”

methods (like IntegerMediaPlayer.getDuration) are colored YELLOW. Calls of other methods

are unchanged.

We could see that for a single method call to m, the exception risk ρm (which is

correspondingly color-coded as visual guide for programmers) and the membership scores in

the fuzzy set Xm are sufficient to suggest if a try-catch block is needed and to recommend

exceptions to catch in such a block. For example, a call to Cursor.moveToFirst should be

recommended with a try-catch block (because it is classified as “VERY RISKY” to cause an
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exception). Then, the top exception to catch when calling Cursor.moveToFirst should be

SQLiteException.

However, programmers often do not write try-catch block for each single call. We are

more likely to write a try-catch block for a code snippet which might contain several method

calls. Thus, to combine exception handling rules of all those method calls, XRank also uses a

fuzzy logic approach.

Let us discuss an example first. Assume that a code snippet C contains a call to

Cursor.moveToFirst to read data from a database query and a call to Integer.parseInt to parse

such data. Then, because both of them have high exception risk, the code snippet also has

high risk of causing exceptions. Two most potential exceptions are SQLiteException (from

calling Cursor.moveToFirst and NumberFormatException (from calling Integer.parseInt). Thus,

a programmer might write a try block around the code snippet and two catch blocks for those

two exceptions. However, he/she might also write a simpler solution by using only a catch

block catching Exception, which generalizes both NumberFormatException and SQLiteException

and also has high membership scores in the fuzzy sets of exceptions of both Cursor.moveToFirst

Integer.parseInt. In other words, when two methods Cursor.moveToFirst and Integer.parseInt

are called together, the potential exceptions are combined from those for each of that method.

In fuzzy logic, this combination is a fuzzy union.

In general, assume that C contains k method calls m1,m2...,mk. Let XC be the fuzzy

set of exceptions should be caught for C, then XC is the union of all fuzzy sets of exceptions

for m1,m2...,mk:

XC = Xm1 ∪Xm1 ∪ ... ∪Xmk (4.3)

Because XC is a fuzzy set, it has a membership function µC . The union operation in

fuzzy logic is defined via calculating µC from µm1 ...µmk . There are several formula for fuzzy

union, we use the following one:

µC(e) = 1− (1− µm1(e))× (1− µm2(e))× ...× (1− µmk(e)) (4.4)
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Similarly, we also calculate the exception risk of the whole code snippet C as the following:

ρC = 1− (1− ρm1)× (1− ρm2)× ...× (1− ρmk) (4.5)

For example, assume that e is Exception, m1 is Cursor.moveToFirst, and m2 is Inte-

ger.parseInt. From Table 4.4, µm1(e) = 0.183, µm2(e) = 0.144. Thus, µC(e) = 1 − (1 −

0.183)(1− 0.144) = 0.301. This membership score is higher suggesting that Exception is more

likely to be used in the catch block when both methods are called. Similarly, from Table 4.5,

ρm1 = 0.578, ρm2 = 0.512. Thus, ρC = 1 − (1 − 0.578)(1 − 0.512) = 0.794. This exception

risk is higher suggesting that when both methods are called, it is higher possible that an

exception will occur, which is intuitively plausible.

In summary, XRank recommends for a given code snippet C as the following. First, it

calculates the exception risk ρC . If ρC exceeds the user preset risk level (e.g., VERY RISKY

with ρC > α1), then it calculates µC(e) for every available exception type e and ranks them

descendingly. FuzzyCatch presents the top exceptions in the ranked list to the programmer.

When he/she selects one exception, FuzzyCatch will generate a try-catch block around

code snippet C.

Improvements

To improve the prediction accuracy, we incorporate several programming language

features to the XRank model. First, we observe that exceptions have hierarchical structure.

For instance, in Java, all Exceptions and Errors are sub-classes of Throwable, all runtime

exceptions are sub-classes of RuntimeException, and RuntimeException is a sub-class of

Exception. With the hierarchical structure, programmers can use a super-class exception

in any catch block of its sub-class exception. For example, in Figure 4.10, the programmer

could use Exception in the catch block instead of its subclass RuntimeException. In XRank,

we incorporate this hierarchical property by modifying the value of nm,e in the Equation
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1. Anytime m appears in a try block while e appears in the corresponding catch block, in

addition to increase the value of nm,e by 1, we also increase the value of nm,e′ by a weighted

value we′ if e′ is a super-class of e. we′ could be calculated as the frequency of e′ in all catch

blocks:

we′ =
ne′∑
ne

(4.6)

Most modern object-oriented programming languages support polymorphism. Overload-

ing methods is one form of polymorphism in which methods within a class can have the same

name if they have different parameter lists. For example, the Integer class has two methods

for parsing numbers that have the same name parseInt(String s) and parseInt(String s, int

radix). The later method has an additional parameter for radix. These overloading methods

often perform similar tasks; thus, they are likely to throw similar exceptions. Furthermore,

the later method in the example appears much less than the method parseInt(String s). Thus,

learning rules for parseInt(String s, int radix) could be challenging due to lack of data. We

improve the prediction accuracy of XRank by grouping overloading methods together and

consider each group as one method when learning the model.

Finally, Table 4.4 also shows the fuzzy set of the API method Byte.parseByte. We can see

that although parseByte is similar to parseInt and parseLong, the statistics of parseByte are small

because it appears much less than the other methods. Thus, learning rules for parseByte could

be challenging due to lack of data. To solve this problem, we group methods with the same

aspect and learn the usage rules for the group. In our implementation, we manually identify

5 groups of similar API methods: number parsing (parseInt, parseLong,...), cursor reading

(getInt, getLong,...), bitmap decoding(decodeByteArray, decodeResource,...), SQLiteDatabase

(getVersion, getPath,...), text formatting (format, formatNumber, formatFileSize,...).

4.4.2 Recommending exception reaction

In addition to recommending what exception to catch, FuzzyCatch also recommends

code to react when such an exception occurs by written in the catch block. Figures 4.10
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//Usage 1
try {
  httpConnection.openConnection();
  httpConnection.setRequestProperty();
  ...
  httpConnection.connect();
} catch (IOException e){
  in = httpConnection.getErrorStream();
  ...
}

//Usage 2
try {
  httpConnection.getInputStream();
  httpConnection.getHeaderField();
  ...
} catch (IOException e){
  int responseCode =  httpConnection.getResponseCode();
  httpConnection.disconnect();
  ...
}

Figure 4.4: Handling exceptions for HttpURLConnection

and 4.11 illustrate code examples with different ways to write the code to react when an

exception occurs. In Figure 4.10, the programmer adds the code that creates a new object

with a different parameter. In Figure 4.11, the programmer adds the code to retrieve the error

stream from the HttpURLConnection when the exception occurs. We consider the non-reaction

in Figure 4.2 as a bad practice.

The reaction code written in the catch block can be large and complicated. However,

Nguyen et al. [85] suggests that in most cases, programmers often call only one method

for each object such as printStackTrace for an Exception object, close for an SQLiteDatabase

object, or disconnect for an HttpURLConnection object. We consider creating a new object

(such as Date now = new Date()) as calling a special method new. Similarly, assigning a value

to an object (such as in = httpConnection.getErrorStream()) is like calling a special method

assign.

Therefore, FuzzyCatch recommends code in the catch block by considering all objects

appearing in the try block and providing a ranked list of methods to call for that object.

XHand is the fuzzy logic system responsible to generate that ranked list.

One observation when developing XHand is that the method r to call for reaction depends

on the method call and potentially cause the exception in the try block. For example, consider

two usages of a HttpURLConnection in Figure 4.4. In the first usage, the exception may occur

while using the HttpURLConnection for connecting to a server via connect method. In this

situation, we would want to get the error stream by calling getErrorStream to get information

about the error for further processing. In the second usage, the object is already connected to
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the server but the read timeout expires causing an exception. In this situation, the exception

handler, we would want to get the response code and disconnect from the server.

Thus, the key idea of XHand is to learn the fuzzy rule ”if call m in the try block then call

r in the catch block to react or recover”. For example, as in Figure 3, SQLiteDatabase.delete

is called in the try block, thus, SQLiteDatabase.close is called in the catch block to release

resources.

Thus, similar to XRank, we also define in XHand for each method m a fuzzy set Rm

of methods to call for reaction to exception possibly caused by calling m. Its membership

function νm is defined as:

νm(r) =
nm(r)

nm
(4.7)

In this formula, nm is again the number of calls of m and nm(r) is the number of times m is

called in a try block and r is called in the corresponding catch block.

Sometimes the method call for reaction depends on the occurring exception. For example,

if the exception is Exception, then programmers usually call its method printStackTrace or

getMessage. In other words, XHand also needs to learn the fuzzy rule ”if exception e occurs

then call r to react or recover”. Thus, for each exception e, we also define a fuzzy set Re of

methods to call for reaction if e occurs. Its membership function νe is defined as:

νe(r) =
ne(r)

ne
(4.8)

In this formula, ne is the number of times e appears in a catch block m and ne(r) is the

number of times r is called in that catch block.

Then, similar to XRank when a code snippet C calls k methods m1,m2...,mk and catches

exception e. Let RC be the fuzzy set of methods should be called for reaction, then RC is

the union of all fuzzy sets Rm1 , Rm2 ..., Rmk and Re. Its membership function is defined as:

νC(r) = 1− (1− νm1(r))× (1− µm2(r))× ...× (1− νe(r)) (4.9)
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Finally, for each object o in C, if r ∈ RC is a method callable for o (e.g., r is a method of

o, or r can accept o as an argument), it will be added to a list. The list is ranked descendingly

by the membership scores and presented to the users of FuzzyCatch.

4.5 System implementation

In this section, we discuss the implementation and usage of FuzzyCatch. Currently

available at rebrand.ly/exassist, it is released as a plugin of IntelliJ IDEA and Android Studio,

two popular IDEs for Java programs and Android mobile apps.

4.5.1 Design overview

Figure 4.5 shows the design overview of FuzzyCatch. It has a) two modules to extract

API usage models from source code and bytecode, b) one module to extract exception

handling information from those usage models, c) two modules to train XRank and XHand

from those extracted data, and d) two modules using the trained fuzzy logic systems to

recommend code for catching and reacting to exceptions. Let us describe those modules in

more detail.

GROUM extractor

FuzzyCatch employs an extension of GROUM (Graph-based Object Usage Model)

presented in [9] to represent the raw API usages with exceptions. It has a module to extract

GROUMs from the bytecode of Android apps in the training dataset. It also has a similar

module to extract GROUMs from the code being written, which are used for its two tasks of

recommending exception types and repairing actions. The extracting algorithms could be

found at [83, 81, 77].

63



Android 
Bytecode

Current 
Editing Code

Bytecode GROUM 
Extractor

Source Code 
GROUM Extractor

API Usage 
Models

API Exception 
Usage Extractor

API 
Exception 
Usages

API Usage 
Extractor

API Usages

API Usage 
Model

XRank Learner

XHand Learner

Exception Types 
Recommender

Repairing Actions 
Recommender

XRank 
Models

XHand 
Models

Figure 4.5: Design overview of FuzzyCatch

API exception usage extractor

Because XRank and XHand are trained from usages of API objects and method calls in

exception handling code, FuzzyCatch has a module named API Exception Usage Extractor

to extract from those usages from GROUMs. This module traverses each sub-graph of a

GROUM representing a try-catch block and extracts all API method calls and the catching

exception. The temporal order and data dependency between those API method calls are

also extracted. The module then stores that information as an API exception usage.

XRank and XHand learners

These modules are responsible for training XRank and XHand systems from the extracted

API exception usages. They count the raw occurrences nm, nm(e), nm(r)..., compute

membership scores µm(e), νm(r)... and exception risk scores ρm. (See Section 3 for details).
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Exception types recommender

This module provides the recommendations on unchecked exception types for a selected

code snippet C. It first extracts the set of API method calls that appeared in the under-editing

code. Then, it utilizes XRank to compute exception risk scores for each call and make them

color-coded in the IDE (e.g., red for VERY RISKY method calls). The programmer can use the

color-code to select the code snippet of his/her interest for exception handling. Once the code

is selected, XRank is used to calculate the membership scores of exceptions towards method

calls appearing in the selected code. Top-ranked exceptions are added to the recommendation

list.

Repairing actions recommender.

This module provides the recommendations for repairing actions in exception handling

code. It extracts the set of API method calls in the try block the catching exception e. It

then groups API method calls by objects. All API method calls in a group of an object

have data dependency with that object. It uses the XHand system to recommend repairing

actions for each object given the API method calls in the try block. Finally, it combines all

the predict repairing actions to produce the final recommendation. Note that, FuzzyCatch

converts special operations on objects like null check, assignments as pseudo method calls (e.g.

Cursor.CHECK NULL, String.ASSIGN ZERO). When generating code, Cursor.CHECK NULL is

generated as: if(cursor!=null).

4.5.2 Usage

In this section, we present how to use FuzzyCatch in practice. Figure 4.6 shows a

code example. Assume a programmer is writing code to open and get data from a database.

She first opens a SQLiteDatabase and assigns it to variable sqliteDB. She then runs some SQL

commands to update the database. Next, she creates a query that returns a Cursor object

and uses that Cursor object to retrieve data to a list named bookTitles.
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While the programmer is writing the code, FuzzyCatch utilizes XRank to access the

exception risks and color-code its method calls. For example, the calls cursor.moveToFirst

and cursor.moveToNext are red-flagged, bookTitles.add is orange-flagged. That makes the

programmer aware that the code is dealing with database and calling Cursor’s methods might

cause unchecked exceptions (runtime exceptions) at runtime. (Without FuzzyCatch, the

built-in exception checker in Android Studio only supports adding checked exceptions, thus,

does not help her to make appropriate action in this case).

Figure 4.6: Exception warnings by FuzzyCatch

Now, the programmer invokes FuzzyCatch by selecting the code snippet that she

wants to check for exception then pressing Ctrl + Alt + R. In Figure 4.7, FuzzyCatch is

invoked for a code snippet reading data from database with the Cursor object. It suggests

a ranked list of unchecked exceptions with SQLiteException at the top. If the programmer

chooses this exception, FuzzyCatch will wrap the currently selected code with a try-catch

block with SQLiteException in the catch expression.

Figure 4.8 demonstrates the usage of FuzzyCatch in recommending exception repairing

actions. After adding a try-catch block with SQLiteException for the code in the previous

scenario, the programmer wants to perform recovery actions. To invoke FuzzyCatch for

this task, she moves the cursor to the first line of the catch and presses Ctrl + Alt + H. In the

example, FuzzyCatch detects that the Cursor object should be closed to release all of its

resources and making it invalid for further usages. It also suggests to set bookTitles equals
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Figure 4.7: Recommending exception types

null to indicate the error while collecting data from cursor. If the programmer chooses the

recommended actions, FuzzyCatch will generate the code in the catch block as in the figure.

To save space, we show both the recommendation and generated code in a same window.

Figure 4.8: Recommending repairing actions

4.6 Empirical evaluation

We conducted several experiments to evaluate the effectiveness of FuzzyCatch on

recommending exception handling code for Android and Java APIs. All experiments are

executed on a computer running Windows 10 with Intel Core i7 3.6Ghz CPU, 8GB RAM,

and 1TB HDD storage.

67



Table 4.6: Data collection

Number of apps 13,463
Number of classes 21,527,731
Number of methods 26,235,142
Number of bytecode instructions 741,912,624
Space for storing .dex files 165.0 GB

Number of exception types 261
Number of API methods 64,685

4.6.1 Data collection

The source code of most Android apps is not publicly available. With few apps with

source code available, training FuzzyCatch from existing mobile app projects would be

difficult and insufficient. Thus, we decided to train our models with Android bytecode. Table

4.6 summaries our dataset for training the models. In total, we downloaded and analyzed

13,463 top free apps from the Google Play Store. We fetched a list of top free apps from all

the categories of the app store. Then, we only downloaded apps with an overall rating of at

least 3 (out of 5), based on the assumption that the high-rating apps would have high code

quality, and thus, would have better exception handling code. Since Android mobile apps are

distributed as .apk files, our crawler unpacked each .apk file and kept only its .dex file, which

contains the bytecode of the app. The total storage space for the .dex files of the downloaded

apps are around 165 GB. After parsing those .dex files, we obtained about 21 million classes.

Next, we developed a bytecode analyzer that analyzed each class and looked for all

methods in the class to build GROUM models. Since an Android mobile app is self-contained,

its .dex files contain the bytecode of all external libraries it uses. That leads to the duplication

of the bytecode of shared libraries. To remove that duplication, our bytecode analyzer

maintains a dictionary of the analyzed methods and analyzed each of them only once. In

the end, we analyzed over 26 million unique methods which have in total nearly 740 million

bytecode instructions. They are used to train XRank and XHand, producing fuzzy logic rules

for 261 exception types and 64,685 methods in Java and Android APIs.
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Figure 4.9: Recommendation accuracy

4.6.2 Experiments on Android bytecode

We consider the bytecode of the downloaded apps as the evaluation dataset and use

10-fold cross-validation to evaluate the accuracy of FuzzyCatch on them. We divide them

into 10 folds, each contains roughly 1400 apps. At each iteration, we choose a fold for testing

and the remaining for training. The final results are averaged from 10 iterations.

For each try-catch block in the code of the testing apps, we evaluated if FuzzyCatch

can recommend the actual exception and reaction method calls in the catch block given the

method calls in the try block. For example, if the code actually catches e and e is also in the

top-k list recommended by FuzzyCatch then it is an accurate recommendation for catching

exceptions. Similarly, if for an object o, the code calls method r for recovery, and r is also in

the top-k recommended by FuzzyCatch then it is an accurate recommendation for reaction

to exceptions.

To measure the effectiveness of FuzzyCatch, we compared it with a simple baseline.

Because no other approaches have been proposed for this recommendation problem, we design

the baseline as a simple approach based on the frequency of catching exception types and

reaction calls. That is, we count the number of times an exception (or a repair call) appears

in all try-catch blocks in the training data. Then, the exceptions (or repair calls) are ranked
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descendingly by their frequencies and recommended as such. For example, Exception is the

top-1 exception recommended by this approach. And close is the top-1 method recommended

to call for repairing (or recover) a Cursor object.

Figure 4.9 shows the experiment results (the left chart for XRank and the right chart for

XHand). From the figure, we can see that both XRank and XHand have consistently high

levels of accuracy. For example, XRank has top-1 accuracy of 77% and top-5 accuracy of

92%. For XHand, they are 69% and 87%. Also, both models significantly outperform the

baselines.

4.6.3 Experiments on real exception bugs

We conducted two more experiments to evaluate on the effectiveness of FuzzyCatch

on detecting and fixing real exception bugs.

Data collection

In this section, we describe briefly our dataset of exception handling bugs and fixes. We

focus on bugs that are caused by not catching exceptions in the code. For convenience, we

defined those bugs as exception bugs. The fix for those types of bugs is called exception

bug fixes. We first collected a dataset consists of several large open-source Android projects.

For each project, we checked out its source code repository to retrieve all the code and commits.

We developed an extraction tool to identify the bug fixes from the commits and issues of

those projects. Next, we manually inspected all the bug fixes to identify exception bug fixes.

Finally, we were able to collect a dataset of 1,000 exception bug fixes. The steps to identify

the exception bug fixes and collect the dataset are described in detail in [85]. Figure 4.10

shows an exception bug fix in our dataset. The dataset is available at rebrand.ly/ExDataset.
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- postContent = new SpannableStringBuilder(
-                                mEditorFragment.getSpannedContent());
+ try {
+     postContent = new SpannableStringBuilder(
+                                mEditorFragment.getSpannedContent());
+ } catch (RuntimeException e) {
+     // A core android bug might cause an out of
+     // bounds exception, if so we'll just use the current editable
+     // See https://code.google.com/p/android/issues/detail?id=5164
+     postContent = new SpannableStringBuilder(
+         StringUtils.notNullStr((String) mEditorFragment.getContent()));
+ }

COMMIT MESSAGE: "fix #2695: re-introduce a workaround we were 
using in previous versions"

Figure 4.10: An exception bug fix

Detecting exception bugs

By calculating exception risk scores of method calls and code snippets, FuzzyCatch

could warn programmers of missing exception handling code, i.e., it could detect exception

related bugs. For example, if a method call having a “VERY RISKY” exception risk score

is not covered by a try catch block, FuzzyCatch can warn the programmer of a potential

exception bug and recommends an exception to catch.

To evaluate FuzzyCatch on such warnings, we manually applied FuzzyCatch for the

1,000 exception bugs that we collected. We run FuzzyCatch on the buggy code version and

check if FuzzyCatch produces warnings. Then, we compare the exception recommended by

FuzzyCatch and the actual exception caught in the fixed version. The three risk levels are

defined the same as in Section 3.1.

Table 4.7 lists the results. If we set FuzzyCatch to the strictest mode, i.e., only

warning on method calls with ’VERY RISKY’ exception risk level then it produced warnings

for 734 out of 1,000 bugs (73.4%). In the loosest mode, i.e., warning on all method calls with

’LESS RISKY’ exception risk level and higher, then it produced warnings for 821 out of 1,000

bugs (82.1%).

The prior experiment on Android bytecode shows that FuzzyCatch does not always

recommend the exception actual used by the programmers. For example, the top-1 rec-

ommendation for Integer.parseInt is NumberFormatException. However, in many cases the

programmers actually use the more general Exception. Thus, it is similarly in this experiment.
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In 734 cases that FuzzyCatch warns of potential exception bugs in its strictest mode, the

top-1 recommended exception is actually used in 547 cases (74.5%).

When using FuzzyCatch, there could be a case in which the tool flags a warning on a

method that the programmer does not want to add try-catch block or catch an exception.

We defined those cases as “unwanted warnings”. To evaluate if FuzzyCatch produces

unwanted warnings, we selected 100 code snippets from the latest version of our subject

systems. We only selected code snippets of at least 10 lines of code and having no try catch

block added through the whole project history. We assumed that such code snippets will

not need exception handling code. Thus, if FuzzyCatch produces a warning (of missing

exception handling) for such a code snippet, it will be an unwanted warning. In a real-world,

large-scale system, it is nearly impossible to prove or verify that a piece of code C is free

of bugs. So we did not have a reliable method to determine if C does not need a try-catch

statement. We instead looked at its revision history. Because the subject systems have a

long history (some have up to 28,000 revisions), if a piece of code has not been enclosed by a

try-catch statement throughout such long history then we could reasonably assume that it

does not need.

In the strictest mode, FuzzyCatch produced 8 unwanted warnings (out of 100 code

snippets). In the loosest mode, FuzzyCatch produced 35 unwanted warnings. Thus, this is

a balanced trade-off. If the programmer wants to higher code quality (i.e., fewer exception

bugs), he needs to spend more time on FuzzyCatch warnings to determine if its warnings

and recommendations are necessary.

In addition, adding a try-catch statement makes the code safer. The expected loss for

an “unwanted warning” is much smaller than a bug caused by a missing try-catch statement.

Thus, we conservatively call recommendations of FuzzyCatch “unwanted warnings” because

programmers have not yet wanted to use them rather than “false positives” meaning those

recommendations are strictly wrong.
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Table 4.7: Recommendation results for 1,000 exception bugs

Risk level VERY RISKY RISKY LESS RISKY
Correct warning 734 783 821
Top-1 Accuracy 547 (75%) 587 (75%) 601 (73%)
Top-3 Accuracy 593 (81%) 618 (79%) 646 (80%)

Table 4.8: Results in recommending repairing actions

FuzzyCatch Barbosa et al. CarMiner

# of fixes 437 437 437
# of matches 287 (65%) 126 (28%) 196 (44%)

Repairing exception bugs

In this experiment, we evaluate the effectiveness of FuzzyCatch in recommending

repairing actions for real exception bug fixes. Not all of the exception bug fixes contain

handling actions, for example, the fixer could add code to swallow exceptions, add logging

messages, or re-throw another exception. We select a subset of the 1,000 exception bug fixes

which includes all the exception bug fixes that contain handling actions by programmers in

the catch block. In each bug fix of the subset, developers performed at least one repairing

action (i.e. a method call, an assignment, etc.) in the exception handling code. Figure 4.11

shows an example of a bug fix in the subset. In the bug fix, the developer performed three

method calls and one assignment to set value for postContent. In total, there are 437 out

of 1,000 exception bug fixes have handling actions, thus, we evaluate FuzzyCatch on this

subset.

For each bug fix in the dataset, we invoked FuzzyCatch to recommend repairing

actions and compare the recommendation result with the corresponding fix. If the recovery

actions recommended by FuzzyCatch exactly match with the fix, we count as a match.

Otherwise, we consider the case as a miss.

To further evaluate the effectiveness of FuzzyCatch in this task, we compare our

tool with two existing approaches presented in [14, 103]. Barbosa et al. [14] proposed a
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technique that uses exception types, method calls, and object types as heuristic strategies to

identify and recommend relevant code examples with current handling code under editing.

Although the approach does not provide actual recommendations, the examples that it

suggests could be used as a guide for programmers to fix an exception bug. Thus, we evaluate

the baseline as follows: if at least one of the top-5 relevant code examples recommended

by the baseline matches with the fix, we count as a match, otherwise, we consider the

case as a miss. We re-implemented the technique using the same configurations presented

in the work. As the approach requires a corpus of real code examples, not bytecode, we

implemented it with a dataset contains the source code of 1,514 Android projects listed on

the FDroid app repository 2. The list of all the projects in the dataset could be found at

rebrand.ly/ExDataset. Rahman et al. [91] proposed another approach that recommends

exception handling code examples from a number of GitHub projects. The method is difficult

to implement as it requires to collect 9 complex code features from each code example and to

estimate 12 weighting parameters using machine learning. We contacted the author but we

could not compile their code or collect their training and experiment data. Thus, we did not

compare the result with their work.

We also compare our method with CAR-miner [103], an approach that uses association

mining techniques to mine association rules between method calls of try and catch blocks

in exception handling code. The model was used to detect bugs related to exceptions. The

mined rules have a form (Sn, Se) in which Sn is the set of all methods in a try block while Se

is the set of repairing methods in a catch block. Se could be used as the recommendation on

handling actions. We re-implement CAR-miner with the same settings that were used in the

original paper on the same Android bytecode dataset as FuzzyCatch.

Table 4.8 shows the evaluation result of FuzzyCatch and the baseline for the task. In

a total of 437 exception bug fixes, the recommendations of FuzzyCatch match the fixes of

developers in 287 cases. Overall, FuzzyCatch could provide meaningful recommendations

2https://f-droid.org/
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in roughly 65% of the bug fixes. The first baseline only matches the fixes of developers in 126

(28%) cases. The association mining technique CAR-miner performs better with 196 cases

(44%). Overall, the result of FuzzyCatch outperforms the baseline methods substantially.

- InputStream in = new BufferedInputStream(
-                       httpURLConnection.getInputStream());
  InputStream in = null;
+ try {
+    in = new BufferedInputStream(
+                       httpURLConnection.getInputStream());
+ } catch (Exception ex) {
+    in = httpURLConnection.getErrorStream();
+ }

COMMIT MESSAGE: “Merge pull request #937 from garvankeeley/bug-
network”

Figure 4.11: An example of handling an exception

For demonstration, Figure 4.11 shows an exception bug fix in which the three techniques

have different recommendation results. In this example, FuzzyCatch recommends calling

getErrorStream on httpURLConnection object and an assignment for the InputStream object.

The result exactly matches the code of the programmer as shown in the figure. CAR-Miner

mined (getInputStream, disconnect) as a association rule, thus, it suggests calling the method

disconnect instead of getErrorStream, which is incorrect. The code examples provided by the

first baseline did not have any meaningful recommendations.

4.7 Discussion

In this section, we discuss several aspects of FuzzyCatch in more detail. From machine

learning perspective, FuzzyCatch is a simple ensemble approach to three classification

problems: Given code snippet C, (1) predict if it needs an enclosing try-catch, which is a

binary classification problem; (2) predict what exception to catch, which is a multi-class

prediction problem with classes are all exception types; (3) predict what method to call in

the catch block, which is a multi-class predict problem with classes are all API methods.

FuzzyCatch learns and predicts like Naive Bayes [37] but more flexibly. Because fuzzy
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membership functions are not probability distribution functions, FuzzyCatch does not need

to assume the independence of predictors or normalize
∑

e µC(e) = 1.

We could consider FuzzyCatch is a big code powered fuzzy logic system specially

designed for the software engineering domain. It represents exception handling knowledge

as fuzzy logic rules. It uses fuzzy set theory to model and apply those rules, and uses fuzzy

union operations to combine those rules. In the traditional fuzzy logic system, variables

are often continuous such as Temperature, Density or linguistic like LOW, VERY LOW. The

membership functions are often manually defined by domain experts with functions such as

triangular or trapezoidal. In FuzzyCatch, variables are discrete, i.e. methods, exceptions,

and the membership functions are estimated automatically from millions of code examples.

FuzzyCatch is trained from a dataset contains over 13,000 highly rated Android apps.

We assume that FuzzyCatch can learn common, statistically significant programming

patterns from its huge collection of code. Also, it is reasonable to believe that the dataset

contains high-quality code, thus, better exception handling code, because it contains apps

that are developed and frequently updated by top software companies, e.g. Google, Facebook,

which employs the best software engineers in the world. They are used daily by millions

to billions of users worldwide, any errors are likely discovered and reported quickly. Our

empirical evaluation also confirms that FuzzyCatch can be used effectively to detect and

fix exception-handling bugs.

4.8 Threats to validity

The threat to internal validity includes errors when we identified and evaluated exception

bug fixes. Firstly, we might incorrectly identify bug fixes. To reduce this threat, we could

apply more patterns (e.g. adding more filter keywords) when identifying bug fixes from

commits. Secondly, we might incorrectly identify exception bug fixes from the bug fixes. As

the evaluation process is manually carried out by three researchers, there are might be errors
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when reporting results due to human errors. The threat could be reduced by adding more

people to our labelling and evaluation process.

The threat of external validity includes our selected projects for labeling exception bugs

and fixes. Although we analyzed medium to large Android projects, the number of exception

bugs and fixes from the selected projects may still be limited. To reduce this threat, more

exceptions bugs and fixes shall be collected to increase the reliability of our results. In our

evaluation, other measures such as precision and recall should be introduced. We could not

compute such measures due to the fact that we do not have “negative” examples in the test

set, i.e. the code examples that are not needed to catch exceptions. Given a piece of code, it

is impossible to determine that the code will never throws an exception. Thus, we could not

collection these ‘negative” examples.
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Chapter 5

Personalized Code Recommendation Model

5.1 Introduction

In software development, programmers must interact with large amounts of different

types of information and perform many activities to build an application. They constantly

need to figure out which variables, objects, or methods to use next. Additionally, the number

of objects and methods to use in the current project or libraries are often huge, which

makes programmers impossible to remember all the usages. To help programmers work more

effectively, modern integrated development environments (IDEs) offer code recommendation

features. These tools help developers to complete the names of classes, methods, fields, and

keywords. Murphy et al. [69] performed a study indicates that programmers could use the

code recommender up to several times per minute when they develop applications in Eclipse.

However, the default code recommendation plugins inside current IDEs offer fairly limited

functionalities. Firstly, the current recommendation tools often provide the ranking candidates

based on alphabetical order. Certain candidates have a higher probability to appear than

others but might not be included at the top of the ranked list. The recommendation could

be time-consuming if the number of candidates is big, and the user needs to move down the

rank list to find what he wants. Secondly, the built-in tools often lack the consideration of

code context when making a recommendation. For example, let assume a user created a new

URL object in the previous line, he is likely to create a HttpURLConnection object by calling

the openConnection method on the newly created URL object. Thus, a tool should recognize

the existence of the URL object as the context when making recommendations.

To further improve the effectiveness and usefulness of current code recommendation

tools, multiple methods have been proposed [16, 83, 92, 70, 116]. Most of the techniques are
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motivated by the crowd-based approach. The approach focuses on the common code patterns

of objects and methods that are shared among multiple programmers. The idea is to build a

large dataset by collecting a large pool of available source code. Next, common code patterns

are extracted or inferred from the dataset. In the recommendation phase, the current code

context is used to match with learned code patterns to infer the recommendations.

At the same time, each programmer has certain coding preferences and styles. For

example, a programmer could prefer to use CSVReader object to read a file, while others

prefer to use BufferedReader. These different coding preferences are referred to as personal

coding patterns of programmers. In the crowd-based approach, while common code patterns

are combined and inferred, such coding preferences are blurred. This could limit the accuracy

of the code recommendation tool for a specific programmer. To capture the personal

coding patterns, a code recommendation tool should take into consideration the code history

of written the programmer. For example, which classes, objects, or code patterns that

the programmer often uses. Providing such personal recommendations could improve the

effectiveness and enhance the user satisfaction of the tool. Our preliminary study [73] shows

a recommendation model that incorporates personal code patterns provides improvements in

suggesting variable declaration and initialization code. Therefore, it is desirable to combine

both personal and common code patterns to improve current code recommendation models.

We propose Persona, a novel code recommendation model that focuses on the personal

coding patterns of programmers while also combines with project-specific and common code

patterns. As a personalized model, Persona is built and updated for each programmer. It

is composed of three sub-models: PerCR, a model that captures personal code patterns

of a programmer; ProCR, a model that captures the project-level code patterns that the

programmer is working on; and GenCR, a general model that capture code patterns shared

between multiple projects. Persona incorporates code patterns learned from the three

sub-models together and utilizes those patterns for recommending code elements including

variable names, class names, methods, and parameters.
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Persona utilizes the fuzzy set theory [55] to model correlation/association between

code elements. It defines a fuzzy set of potential recommendation candidates toward code

elements that appear in the current code context. Each candidate has a membership score,

which determines a certain degree of membership in the fuzzy set. The membership score is

calculated based on various factors such as the code history of the programmer, the project

he is working on, or common code patterns. The candidate with a higher membership score

will be ranked higher in the recommendation list.

To build the proposed recommendation model, we extract personalized object usage

instances from the code history of a programmer. We use such data to train a personalized code

recommendation model PerCR for the programmer. The code history of other programmers

in the current project is also extracted to train a project-level recommendation model ProCR.

We also train GenCR, a general model to capture common code patterns on a large code

corpus. Finally, we incorporate the sub-models together to build Persona. Once trained,

given the current editing code in which the programmer wants to invoke code recommendation,

our recommendation tool extracts its context features and utilizes Persona to compute the

recommendation rank list.

We have conducted several evaluation experiments to evaluate the usefulness and effec-

tiveness of the personalized code recommendation approach. In the evaluation, Persona is

trained on a big dataset, containing 14,807 Java projects across multiple domains, amounting

to over 350 million lines of code in over 2 million files. Next, the model is evaluated on 10

large Java projects with the number of commits in each project is ranging from 23,000 to

over 400,000. The evaluation results show that Persona could achieve high accuracy in

code recommendation. For example, when evaluating on a programmer, our approach has

top-1 accuracy of 66% and top-3 accuracy of 74%. Furthermore, our model also outperforms

the baselines significantly in top-1 accuracy in these experiments. It outperforms the first

baseline by an average of 12-15% and generates a gap of 4-6% when compared to the second

baseline. We also show that the recommendation accuracy of Persona improves over time
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as more code of the programmer is used to train. By incorporating three sub-models together,

the Persona performs reasonably well even if the code history of the programmers is thin

in the project.

5.2 Motivation

Let us start with an example that explains the challenges when using the current code

recommendation methods and motivates our approach. Fig 5.1 shows a code recommendation

scenario in which the programmer writes code to read a file. In the first line, he creates an

InputStream object from the filename. Next, he creates an InputStreamReader object from

the InputStream. Let us assume that he invokes code recommendation at the first of line

4. A code recommendation method based on the crowd-based approach would recommend

creating a BufferedReader (line 5). The reason is using BufferedReader to read file from

InputStreamReader is a common code pattern that is often shared between programmers. It

learns the pattern from mining a code corpus.

1. // Load file
2. InputStream is = testContext.getAssets().open(filename);
3. InputStreamReader inputStreamReader = new InputStreamReader(is);
4. _
5. // BufferedReader bf = new BufferedReader(inputStreamReader);
6. // CSVReader csvReader = new CSVReader(reader);

Figure 5.1: A code recommendation scenario

The preference of the programmer in the example is different. He prefers to use CSVReader

object to read file instead of BufferedReader. He has been using CSVReader throughout his

application development. Thus, an ideal code recommendation tool should prioritize the

personal code patterns and recommends CSVReader (line 6).

The example shows that programmers have preferences and styles when coding including

naming variables, using certain classes, objects, and methods, or applying certain coding

patterns. Thus, such personal preferences should be taken into consideration when providing
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code recommendations as it could improve the effectiveness and enhance user satisfaction of

the recommendation tool.

5.3 Model

In Persona, code recommendation is modeled as a ranking problem: given the current

editing code E in which a programmer is asking recommendations for a missing code element,

Φ is the set of all possible recommendation candidates, find a candidate c ∈ Φ with the

highest possibility to be filled in the current missing location.

The key idea of Persona is to rank potential candidates c toward a set of context

features F in E by modeling the correlation/association of c with each context feature in F .

The set of feature F includes object types, method calls, variable names, and parameters

that occur in E. If a candidate c has a higher correlation with features in F , c is considered

to have a higher possibility and will be rank higher in the list.

For example, in Fig 5.1, in which the programmer invokes code recommendation at

beginning of line 4. The goal of Persona is to rank CSVReader as the declaration type

with highest possibility. The set of context features F includes object types {InputStream,

InputStreamReader}, variables {is, testContext, inputStreamReader}, method calls {getAssets,

open, InputStreamReader.new }, and parameters {fileName}.

To model correlation/association between candidates and context features, Persona

utilizes the fuzzy set theory [55]. It defines a fuzzy set of potential candidates toward a

context feature as follows.

Definition 1 (Potential candidate) For a specific context feature f , a fuzzy set Cf , with

an associated membership function µf (), represents the set of potential candidates toward f ,

i.e. candidates that are highly correlated with f

Fuzzy set Cf is determined via a membership function µf() with values in the range

[0, 1]. For a candidate c, the membership score µf (c) determines the certainty degree of the
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membership of c in Cf , i.e. how likely does c belong to the fuzzy set Cf . µf(c) represents

the degree of association between c and f . µf (c) also determines the ranking of c toward f .

If µf (c) > µf(c
′) then c is considered higher correlated to f to c′. The membership score is

often computed as follows.

Definition 2 (Membership score) The membership score µf(c) is computed as the cor-

relation between the set Df representing usages of the context feature f , and the set Dc

representing usages of the candidate c:

µf (c) =
|Df ∩Dc|
|Df ∪Dc|

=
nf,c

nf + nc − nf,c
(5.1)

where, nf is the number of usages of the context feature f , nc is the number of usages of

the candidate c, and nf,c is the number of times that the candidate c co-occurs with f . As

the Equation 5.1, the value of µf(c) is between [0, 1]. If µf(c) = 1, then c always occurs on

the code snippets that contain f , thus, given a code snippet contains f , it is very likely that

c co-occurs. If µf(c) = 0, it means that c never occurs on code snippets that contains f ,

thus, given a code snippet contains f , it is unlikely to recommend c. In general, the more

frequently c co-occurs with f , the higher value of µf (c).

Based on the fuzzy logic framework described above, we develop three different code

recommendation models. Each model has its membership score function (Equation 5.1) and

is learned from different datasets. Finally, we incorporate the three models together to build

Persona. Let us describe each model as follows.

5.3.1 Personalized code recommendation model

As demonstrated Section 3, programmers have different coding preferences, styles,

experience levels, and knowledge about libraries and frameworks. For example, a programmer

might prefer using certain classes or methods than others; some programmers prefer short

variable names for a BufferedReader object such as b or bf, while others use long names such
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as bufferedReader, etc. In other words, there are personal code patterns that appear in the

code written by a programmer. Thus, a code recommendation model that utilizes those

personal code patterns could improve the code recommendation performance significantly.

Based on this observation, we design a personalized fuzzy-based code recommendation model

(or PerCR for short).

Let us assume a programmer d is working on a project P , Hd is the code history written

by the programmer in the current project. The membership score in PerCR is defined as:

µd(f, c,Hd) =
nf,c(Hd)

nf (Hd) + nc(Hd)
(5.2)

where µd(f, c,Hd) represents the membership score of candidate c in the fuzzy set Cf of the

context feature f , nf (Hd) represents the usages of f in Hd, nc(Hd) represents the usages of c

in Hd, and nf,c(Hd) represents the usages in Hd which f and c co-occur. Normally, nf (Hd) is

defined as the number of occurrences of f in Hd. However, in PerCR we also want to model

the change in code patterns of programmers over time. For example, a programmer might

start by using the BufferedReader object to read file but as he writes more code, he gradually

changes his preference to using CSVReader. Thus, in PerCR, nf (Hd) is computed as follows:

nf (Hd) =
∑

x∈Hd:f

e−
1

∆tx

where ∆tx = tx − t0 is the time decay, t0 is the timestamp in which the project start, tx is

the timestamp in which f occurs in Hd. The idea behind the formula is that the occurrence

of f later in the project has more influence over the previous occurrences. Similarly, we have:

nc(Hd) =
∑
x∈Hd:c

e−
1

∆tx and nf,c(Hd) =
∑

x∈Hd:f,c

e−
1

∆tx
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5.3.2 Project-level code recommendation model

When multiple programmers work on the same project, they read, share, and reuse the

code of each other. Thus, the code written by a programmer could be influenced by other

programmers in the same project. For example, a programmer could create and use MapUtil

class that contains several utility methods for Map. Other programmers in the same project

also reuse the class. Thus, the code patterns related to the class could be shared between

programmers in the project. We present ProCR, a fuzzy-based model that captures the

project-level code patterns in the project that the programmer is working on.

Let us assume a programmer d is working on a project P , and P −Hd is the code history

written by all other programmers (except d) in the project. ProCR is the project-level code

recommendation model defined specifically for the programmer d. The membership score in

ProCR is defined as:

µd(f, c, P −Hd) =
nf,c(P −Hd)

nf (P −Hd) + nc(P −Hd)
(5.3)

where µd(f, c, P −Hd) represents the membership score of candidate c in the fuzzy set Cf of

the context feature f . Other terms in Equation 5.3 are defined similarly to corresponded

terms in Equation 5.2. In other words, the project-level model ProCR is defined similarly

to the personalized model PerCR. The difference is that PerCR is trained from the code

history Hd of the programmer d, while ProCR is trained on the code history of other

programmers in the same project.

5.3.3 General code recommendation model

In modern application development, programmers rely heavily on shared APIs to write

code. For example, two different programmers could use the same API classes such as

BufferedReader, File to read data from a file. The usage pattern of using those objects could

be similar between the two programmers. Programmers might also share programming
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conventions of programming languages such as naming conventions. Thus, programmers do

share common code patterns and we want to incorporate these patterns to our approach

to improve the recommendation accuracy. We propose GenCR, a fuzzy-based model that

captures such common code patterns shared between multiple projects. The membership

score of GenCR is defined as follows:

µ(f, c, P ) =
nf,c(P )

nf (P ) + nc(P )− nf,c(P )
(5.4)

where P is the set contains the code of all projects in the dataset except the current project

P , nf (P ) is the number of occurrences of f in P , nc(P ) is the number of occurrences of c in

P , and nf,c(P ) is the number of times that the candidate c co-occurs with f in P .

5.3.4 Combining sub-models

Using each sub-model described above separately could yield a low-accuracy recommen-

dation. For example, if a programmer just joined the project or the project just started,

there is not much data to train PerCR and ProCR. Thus, these models could be fairly

inaccurate, while GenCR could not recommend personal or project-level code patterns.

To maximize the recommendation accuracy, we design Persona to incorporate the three

sub-models together. It defines the membership score µf (c) in Persona is as follows:

µd(f, c) = α1µd(f, c,Hd) + α2µd(f, c, P −Hd) + α3µ(f, c, P ) (5.5)

where α1 +α2 +α3 = 1 are weighting coefficients. The value of αi represents the contribution

level of a sub-model towards Persona, the higher value of αi the bigger contribution of the

sub-model. If the model defines the membership score µf(c) using Equation 5, we call the

model PersonaSum.

As the sub-models are defined in separated datasets, the membership score of Persona

could also be defined using the max function:

µd(f, c) = max(µd(f, c,Hd), µd(f, c, P −Hd), µ(f, c, P )) (5.6)
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In Equation 5.6, the sub-model with the highest value of membership score will decide the

value of µd(f, c). If the model defines the membership score using Equation 6, we call the

model PersonaMax. We experimented both approaches of calculating µd(f, c) in Persona

in our evaluation.

After defining the membership score function, we show how Persona calculates the rank

list of candidates using the fuzzy set theory. Based on the definition of potential candidates

toward a context feature f as a fuzzy set (Definition 1), Persona defines potential candidates

toward a set of context features F using the union operation of fuzzy set theory as follows.

Definition 3 Given a set of context features F , a fuzzy set CF , with an associated membership

function µF (), represents the set of potential candidates toward F , i.e. the candidates that

are highly correlated with context features of F . CF is computed as the union of the fuzzy sets

Cf of context features in F :

CF =
⋃
f∈F

Cf (5.7)

Because CF is a fuzzy set, it has a membership function µF . The union operation in

fuzzy logic is defined via calculating µF from µf1 ...µfk . There are several equations for fuzzy

union operation, we use the following one:

Definition 4 The membership score µF (c) is calculated as the combination of the membership

scores µf (c) of its associated context feature f :

µF (c) = 1−
∏
f∈F

(1− µf (c)) (5.8)

In Equation 5.8, µF (c) represents the correlation of candidate c toward a set of context

features F . As the equation, we see that the value of µF (c) is also between [0, 1] and represents

the likelihood in which the candidate c belongs to the fuzzy set CF , i.e. the set of potential

candidates for the set of context features F . µF (c) = 0 when all µf (c) = 0, which means that

c never occurs on any code contains a context feature in F . Thus, Persona considers that c
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is unlikely to occur on the code contains F . If there is any method f is F with µf(c) = 1,

then µF (c) = 1, or Persona considers that c is very likely to occur on the code contains F

as c always occurs on code contains f in F . In general, the more context features f in F with

high µf (c) values, the higher µF (c) is, or c is more likely to occur on the code contains F .

In the code recommendation phase, Persona ranks candidates based on the value of

µF (c) and provides the rank list for the user. The higher value of µF (c), the higher ranking

of the candidate c in the list.

5.4 System implementation

5.4.1 Overview

In this section, we briefly discuss the points in the design and implementation of our

recommendation system. Fig 5.2 shows an overview of the system. Overall, it consists of 3

main components. The code history extractor is the component for extracting personalized

object usage instances from the code history of a programmer. The model learner uses the

extracted data to train and incorporate the three sub-models in Persona. Finally, the

code recommender utilizes the personalized model to make recommendations on the current

editing code.

5.4.2 Code history extractor

Because our recommendation techniques are learned from the personalized code history

of programmers, we have built a code history extractor module for extracting usages of

variables, methods, classes, and parameters of a programmer from his code development

history. Typically, whenever a programmer adds a new code or updates the current existing

code, he will submit a commit to the version control system. Fig 5.3 shows an example of

code changes in a commit of a programmer. In the example, the programmer switched from

using a HTTPResponse object to a HttpUrlConnection object. In our approach, we extract

personalized code patterns from code changes in commits. In particular, for each code change
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Figure 5.2: Overview of the system

in a commit of the programmer, the code history extractor will analyze the post-commit

version, and extract object usages in the new code that the programmer added.

try {
-    HttpResponse httpResponse = getHttpClient().execute(httpGet);
-    InputStream responseInputStream = httpResponse.getEntity().getContent();
-    return new WebResourceResponse(
-                       httpResponse.getEntity().getContentType().toString(), "UTF-8",
-                       responseInputStream);
+    URL imageUrl = new URL(url);
+    HttpURLConnection conn = (HttpURLConnection) imageUrl.openConnection();
+    conn.setReadTimeout(WPRestClient.REST_TIMEOUT_MS);
+    conn.setConnectTimeout(WPRestClient.REST_TIMEOUT_MS);
+    conn.setRequestMethod("GET");
+    conn.setRequestProperty("Authorization", "Bearer " + mToken);
+    conn.setRequestProperty("User-Agent", WordPress.getUserAgent());
+    conn.connect();
+    return new WebResourceResponse(conn.getContentType(), "UTF-8", 
+                                   conn.getInputStream());
} catch (IOException e) {
-    AppLog.e(AppLog.T.READER, "Invalid reader detail request: " + e.getMessage());
+    AppLog.e(AppLog.T.READER, e);
}

COMMIT MESSAGE: “Switched to HttpURLConnection”

Figure 5.3: An example of code changes in a commit

To extract the usages of variables, methods, classes, and parameters, the extractor uses

GROUM (Graph-based Object Usage Model) [77] to represent the object usages in the source

code. GROUM is a graph that represents the object usages in source code. It has two kinds
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of nodes: object nodes and action nodes. An object node represents an object. It is labeled by

the name of the object type (e.g. HttpURLConnection). An action node represents a method

call. It is labeled the method qualified name (e.g. URL.openConnection). There are two kinds

of edges representing control flow between action nodes and data flow between action nodes

and object nodes.

In GROUM, each object created or involved during the execution is represented as

an object node. We also treat primitive variables as object nodes. Action nodes represent

any action that is performed on object nodes. Action nodes could be object instantiations,

method calls, data field accesses of one object, or other operations. Object nodes are labeled

by class names (object nodes represent primitive variables are labeled by types). Action

nodes of types object instantiations, method calls, or data field accesses are labeled as “C.m”

where C is its class name and m is the method (or field) name. Other action nodes that

represent operations are labeled as the name of the operation.

The control edges of GROUM are used to represent the temporal orders between action

nodes. A control edge from an action node A to action node B means that A is executed

before B in the execution path. Because GROUM is defined for each execution path, thus,

there is only one temporal order between action nodes, which is represented by a set of

control edges between action nodes. The data edges indicate the data dependencies between

data nodes and action nodes. A data edge from object node A to action node B means that

A is a parameter of the action that B represents. A data edge from an action node B to data

node A means the action B returns the object node A.

Fig 5.4 illustrates the GROUM of the code that the programmer added in the commit.

Rectangle nodes are action nodes, while object nodes are represented as round rectangle

nodes. Solid arrows represent the control edge between action nodes and dashed arrows

represent data edges. The algorithms are used to extract GROUM from source code could be

found at [83, 81, 77].
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Figure 5.4: The extracted GROUM of the added code

There are several advantages of using GROUM to represent and extract the usages of

variables, methods, classes, and parameters. Firstly, it removes redundant information in

code such as keywords (try, return,...), or symbols (=,+...), and only focuses on important

information such as objects, method calls. Secondly, GROUM avoids the problem of duplicated

counting when extracting the occurrences of code elements and co-occurrences between code

elements. For example, in Fig 5.4, the variable name conn appears multiple times in the

code. Using GROUM, all the appearances are traced back to a single object node. Thus, the

occurrence of conn is counted as one and the co-occurrence between conn and other code

elements also counted as one.

To produce the training data for Persona, the extractor travels through nodes in

GROUM and counts the occurrences and co-occurrences between code elements. Note that,

for each occurrence of a code element, we also store the timestamp in which the programmer

added it to the project. The time information is important when training the personalized

model. To train the sub-model GenCR, we also developed a code extractor to extract

GROUM from source files in a code corpus.
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5.4.3 Learning recommendation models

We train each sub-model in Persona separately. To train the personalized model

PerCR, we need to calculate nf,c(Hd), nf(Hd), nc(Hd) in Equation 5.2. Calculating these

values requires counting the occurrences of code elements and co-occurrences between code

elements in the code history of the programmer. We explained the counting process in the

previous section. Training the project-level model ProCR is similar to PerCR, the only

difference is that ProCR is trained on the code history of other programmers in the current

project. To train GenCR, we collect a code dataset contains multiple projects. Next, we

obtain the source files from the projects and extract GROUM from source files. GenCR

is trained by computing values nf,c(P ), nf (P ), nc(P ) described in Equation 5.4. Finally, we

incorporate the three sub-models with either Equation 5.5 or 5.6.

5.4.4 Recommending code

Let us go back to the scenario in Fig 5.1. The programmer writes code to read a file.

In the first line, he creates an InputStream object from the filename. Next, he creates an

InputStreamReader object from the InputStream. Let us assume, he invokes code recommen-

dation at the first of line 4. Upon the request, our tool will analyze the current edding code,

build a temporary GROUM, and extract the set of context features F includes object types

{InputStream, InputStreamReader}, variables {is, testContext, inputStreamReader}, method

calls {getAssets, open, InputStreamReader.new }, and parameters {fileName}.

In the next step, the tool will build a set of candidates for recommendation. It starts by

analyzing which types of code elements are asked for the recommendation. In the example,

the candidates should be a class or a variable. All classes and variables that are available

in the current editing code will be added to the set of candidates. The tool then utilizes

Persona to calculate the relevance score of each recommendation candidate towards the set

of context features F using Equation 5.8. The set of candidates will be sorted by the relevance

score. Finally, the recommendation tool returns the rank list of candidates with relevant
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scores for the programmer to consider. Note that, if the user requests recommendations for a

new variable name, the tool will consider all the variable names has been used for the object

before as the candidates. These names are stored in our model and might not be in the

editing code.

5.5 Evaluation

We conducted several experiments to evaluate the effectiveness of our approach to learning

and recommending code for programmers. All experiments are executed on a computer

running Windows 10 with Intel Core i7 3.6Ghz CPU, 16GB RAM, and 1TB HDD storage.

To conduct the evaluation, we collected a dataset consists of multiple Java projects that

have source code repositories available on GitHub. The dataset that we used was carefully

collected and studied by Allamanis et al. [5]. The corpus can be found and downloaded

online [4]. It contains 14,807 projects across a wide variety of domains amounting to over

350 million lines of code in over 2 million files. The number of code tokens in the dataset

exceeds 1.5 billion. Note that the dataset only contains the .java extension files, it does not

contains revisions or commit changes. The characteristics of the corpus are shown in Table

5.1. We call this dataset A14K.

Table 5.1: Dataset characteristics

Number of projects 14,807
Number of files 2,130,264
Number of lines of code 352,312,696
Number of code tokens 1,501,614,836

Because the A14K dataset only contains a snapshot of .java files, it is only used for

training GenCR and the baselines. For evaluating Persona, it is required to have the code

history of projects and programmers. Thus, we manually selected 10 projects in the dataset

to evaluate our model. We selected such projects by first sorting the projects in the dataset

by the number of commits. Next, we chose projects that have the highest number of commits
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while the vast majority of code is written in Java. We avoided selecting certain projects. First,

we avoided projects that share duplicated code with a previously selected project. We also

avoided projects are developed in multiple programming languages. For each selected project,

we checked out its source code repository to retrieve all the code and commit changes. Table

5.2 shows the list of selected projects along with the number of contributors and commits.

Table 5.2: Projects used in the evaluation

Name Description #Contributors #Commits

liferay-portal Enterprise web platform 553 407,015
intellij-comm IDE for Java 510 279,093
osmand Android map app 688 62,493
geogebra Multi-platform math app 24 52,750
elasticsearch Search engine 1,415 52,628
camel Middleware framework 609 45,158
lucene-solr Enterprise-search platform 181 33,654
cdt IDE for C++ 266 34,603
cassandra Database system 298 25,289
hadoop Data processing framework 278 23,877

5.5.1 Settings and baselines

For each selected project, the set of commits is sorted in chronological order. Next,

we grouped commits by programmers. When we perform an evaluation experiment for

a programmer d, his commit set is divided into a training set TRd and testing set TEd

chronologically. The training set TRd is used to train the sub-model PerCR. The code in

the testing set TEd is used to evaluate later. In our experiments, the training set is selected

as the first 70% of the initial set of commits in the chronological order, while the remaining

30% of the commits are used as the testing set. The sub-model ProCR is trained on the set

of commits of other programmers. The commits that are used to train PerCR appear before

the first commit of the testing set TEd. The sub-model GenCR is trained on the initial

dataset, which contains a snapshot of .java files (the current project is excluded). Finally, we

combine the sub-models using both Equation 5.5 and 5.6. In the first method, we set the
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weighting coefficients equally, α1 = α2 = α3 = 1
3
. The second method uses the max function

to combine sub-models. The two approaches are called PersonaSum, and PersonaMax

correspondingly.

In our evaluation, to compare our model with the baselines, we chose the task of

recommending the next identifier in a code sequence. The types of identifiers that we

considered include variable and field names, type names such as class and interface names,

method names, and parameters. Given a code sequence, a recommendation model is expected

to recommend the most probable identifier. Alamalis et al. [5] shows that learning to predict

code elements is difficult mainly because of the identifiers. Thus, we chose this task to better

compare the effectiveness of recommendation models. This evaluation task has been used

similarly in the evaluation of prior approaches [39, 104, 76].

Recommendation accuracy is measured as follows. Our evaluation tool predicts and

evaluates all identifiers in every code sequence from the testing set. At a position i, it uses

the recommendation model under evaluation to compute the top k most likely identifiers

x1, x2, ..., xk for that position based on the previous code tokens. If the actual identifier si at

position i is among k suggested results, we count this as a hit. The top-k suggestion accuracy

for a sequence is the ratio of the total hits over the sequence’s length. For example, if we

have 70 hits on a code sequence of lengths 100 for a test file, accuracy is 70%. The top-k

accuracy is the ratio of the total hits over the total number of evaluated tokens.

To compare the effectiveness of Persona, we chose two baseline models: n-gram and

recurrent neural network (RNN) for comparison due to the following reasons. First, both of

them are popular statistical models to capture common patterns in a large dataset and are

comparable with Persona. In addition, n-gram is widely used in recent research on code

recommendation [39, 104, 76]. Raychev et al. [92] and White et al. [111] recently evaluated

RNN and n-gram in code recommendation and reported RNN as the better approach. Note

that our model and the baselines use the same 14K dataset as the training set.
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An n-gram model is a simple statistical model for modeling sequences. An n-gram

model learns all possible conditional probabilities P (mi|mi−n+1...mi−1), where mi is the

current code token and mi−n+1...mi−1 is the sub-sequence of n− 1 prior tokens. This is the

probability that mi occurs as the next code tokens of mi−n+1...mi−1. Using the chaining rule,

we can use an n-gram model to compute the generating probability of any given sequence

m1...mn. To improvement the effectiveness of n-gram model, Tu et al. [104] introduced

CacheLM, a novel cache language model that consists of both an n-gram and an added

“cache” component to exploit localness. The cache is the set of code tokens that appear in the

same project with the test file. We re-implement this method for comparison. We used the

same settings with the original model, i.e. 3-gram with “5K tokens” cache size. The model is

trained on the A14K dataset with the cache is extracted from the project under test.

A Recurrent neural network (RNN) is a class of neural networks for learning se-

quences. A single-layer RNN can be trained with a collection of code token sequences and

then is able to compute the probability of the next code token for any given sequence. In

other words, the RNN can compute all conditional probabilities P (mi|m1...mi−1) for any

given sequence m1...mn. To do that, it maintains a context vector (hidden state) ci repre-

sents current context of sub-sequence up to m1...mi−1. A function f is learned from data

to compute the context vector at position i, ci = f(mi, ci−1) given the current token mi

and previous context ci−1 while another function g is learned to compute the probability

of the next token mi+1, P (mi+1|m1...mi) = g(ci) given the current context ci. To improve

the modeling performance, we could stack multiple layers of RNNs on top of each other to

create a Deep RNN. Each hidden state is continuously passed to both the next time step

of the current layer and the current time step of the next layer. The model could still be

further improved by using a special type of the hidden layer called Long Short-Term Memory

(LSTM) cell to tackle the problem of unstable gradients and handle long sequences. A Deep

RNN model with too many hidden layers is quite computationally expensive. Thus, in our

experiment, we implemented a model with a stack of 5 hidden states, each hidden state is
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an LSTM cell with 200 hidden units. We call this model DRnn200-5. We implemented

DRnn200-5 using Keras Sequential APIs, TensorFlow 2, and running a Google Colab Pro

machine. Note that, the code sequences are used to train both CacheLM and DRnn200-5

are extracted using the GROUM model as we described in Section 5.

5.5.2 Recommendation accuracy

In this section, we show the recommendation accuracy of our proposed models and the

baselines on top-contributed programmers over 10 selected projects. For each project, we

select top-5 contributed programmers by the number of commits. We train and test our

models and the baselines for each programmer. Due to a lack of space, we only report top-1

accuracy. Tables 5.3 and 5.4 show the top-1 commendation accuracy of top-contributed

programmers in the projects intellij-comm and osmand. To report the result in all the selected

projects, we compute the average top-1 accuracy of programmers in each project. Table 5.5

shows the average results in all 10 projects.

Table 5.3: Recommendation accuracy of top-contributed programmers in intellij-comm

Name #Commits PerCR ProCR GenCR PersonaSum PersonaMax CacheLM DRnn200-5

D. Jemerov 15,962 58.5% 55.7% 41.7% 64.3% 63.6% 47.0% 57.5%
Peter 14,615 55.9% 53.2% 39.2% 66.0% 62.9% 48.0% 58.3%
A. Kudravtsev 13,934 59.3% 55.3% 40.1% 64.9% 63.0% 47.1% 57.9%
A. Kozlova 12,589 57.5% 55.8% 39.8% 66.0% 61.4% 46.3% 58.4%
V. Krivosheev 11,784 55.7% 57.0% 40.8% 66.6% 62.5% 47.0% 58.8%

Table 5.4: Recommendation accuracy of top-contributed programmers in osmand

Name #Commits PerCR ProCR GenCR PersonaSum PersonaMax CacheLM DRnn200-5

Victor Shcherb 6,730 53.8% 49.6% 39.1% 63.1% 61.4% 48.2% 55.4%
Weblate 4,029 50.4% 48.8% 38.3% 61.8% 58.4% 47.0% 55.3%
Sonora 3,586 51.9% 47.8% 37.9% 60.5% 60.9% 47.2% 54.4%
Franco 2,536 52.8% 49.2% 34.3% 59.4% 60.8% 45.3% 53.2%
Jan Madsen 2,207 50.1% 46.8% 38.5% 61.7% 62.6% 46.4% 56.6%

From the tables, we can see several interesting results. Overall, the personalized model

PerCR outperforms the project-level recommendation model ProCR, and the general

model GenCR. It generates a 2-3% gap over ProCR and 12-15% gap over GenCR. When
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Table 5.5: Recommendation accuracy of top-contributed programmers in selected projects

Project PerCR ProCR GenCR PersonaSum PersonaMax CacheLM DRnn200-5

liferay-portal 53.7% 51.5% 37.5% 65.3% 63.4% 46.9% 57.9%
intellij-comm 57.4% 55.4% 40.3% 65.6% 62.7% 47.1% 58.7%
osmand 51.8% 48.0% 37.6% 61.3% 60.8% 46.8% 54.3%
geogebra 52.6% 48.5% 35.5% 61.7% 59.8% 46.7% 54.4%
elasticsearch 46.8% 43.8% 36.9% 58.4% 56.4% 42.0% 54.6%
camel 49.5% 45.6% 38.8% 58.1% 56.8% 43.3% 53.2%
lucene-solr 50.2% 49.1% 40.9% 60.5% 58.3% 42.5% 54.9%
cdt 48.3% 44.9% 37.9% 57.2% 55.5% 44.1% 51.8%
cassandra 49.5% 45.5% 37.6% 56.1% 55.2% 43.5% 52.4%
hadoop 50.5% 46.7% 40.9% 60.6% 58.5% 45.7% 54.7%

incorporating sub-models together, the recommendation accuracy increases significantly

with top-1 accuracy approaching 60-65%. The combining method using weighting coeffi-

cients (PersonaSum) yields a slightly higher result compared to using the max function

(PersonaMax) but the difference is insignificant.

About the baselines, the top-1 accuracy of DRnn200-5 is significantly higher than

CacheLM with a gap of around 10%. This shows that DRnn200-5 is a much better approach

for modeling sequences. The top-1 accuracy of DRnn200-5 is also better when compared with

each individual sub-model. However, when combining the sub-models together, PersonaSum

still has higher top-1 accuracy than DRnn200-5 by an average of 4-6%. Overall, the result

shows that by combining three simple sub-models that capture personal, project-specific,

and common code patterns together, Persona still outperforms the baselines which mostly

focus on the common code patterns.

5.5.3 Recommendation accuracy over time

In this section, we evaluate the recommendation accuracy of Persona and sub-models

overtime. We design the experiment as follows. For a programmer d, we divide his set of

commits into equal time intervals. A time interval of ti contains all the commits of the

programmer during that time. Depending on the code history of programmers, we could

divide the commits into months, quarters, or years. At time interval ti, we will use all

the commits of the programmer before ti to train PerCR, and all the commit of other
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programmers before ti to train ProCR. In other words, Persona is trained on all the

commits of the project before ti. All the commits in ti will be used for testing. With this

experiment, we want to replicate the real-world accuracy of code recommendation models.

We choose intellij-comm as the subject system. The project has 279,093 commits with

510 contributors spanning from 2005 to now. From the project, we select three programmers

with different types of contributions for evaluation. Due to the lack of presentation space, we

will use quarters as the time interval, and we only show the recommendation accuracy for

the first 20 intervals. Figs 5-7 show the top-1 recommendation accuracy overtime for three

programmers in the project. For better visualization, we only shows the top-1 accuracy of

GenCR, ProCR, and Persona in the figures. The top-1 accuracy of GenCR and the

baselines is similar to values reported in Table 5.3.
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Figure 5.5: Top-1 accuracy over time of “Dmitry Jemerov”

From the figures, we can see that the recommendation accuracy of PerCR and ProCR

increase over time as these models have more training data. This leads to an increase in

the accuracy of Persona. Another interesting observation is that the amount of training

data affects PerCR and ProCR significantly. The first programmer (Fig 5.5) is the main
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Figure 5.6: Top-1 accuracy over time of “Vladimir Krivosheev”

contributor to the project from the start. As he committed a lot of code, his personalized

model outperforms the project-level model. The second programmer (Fig 5.6) joined the

project when it already contains most of the code. Thus, his project-level recommendation

mode outperforms the personalized model in the beginning. Finally, the third programmer

(Fig 5.7) has a limited contribution at the beginning of the project. His personalized model

has low accuracy at the beginning due to a lack of training data. Overall, the experiment

shows that the recommendation accuracy of Persona improves overtime as more training

data is available.

5.5.4 Accuracy on lower-contributed programmers

We have studied the recommendation accuracy of our models on top-contributed pro-

grammers. In this section, we study how our models perform when recommending code

for lower-contributed programmers. Of course, we do not want to select programmers that

committed too little code, as we want to ensure that we have enough training and testing

data for the personalized model. Thus, we select the programmers to evaluate as follows.
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Figure 5.7: Top-1 accuracy over time of “Alexey Kudravtsev”

First, for each project, we filter out all programmers with less than 20 commits. Next, we

sort programmers by the number of commits and find the median of the list. We select five

programmers that have the number of commits right above the median for the study. We

train and test our models and the baselines for each programmer. To report the result in all

the projects, we compute the average top-1 accuracy of the five programmers in each project.

Table 5.6 shows the average results in all 10 projects. We could see that the top-1

accuracy of the personalized model PerCR is low due to the lack of training data. The

project-level model ProCR still performs reasonably well when compared to other models.

This could be explained that the lower-contributed programmers often join the project later

when the project has been developed extensively, and they might reuse the project-specific

code. Thus, the accuracy of the recommendation model is maintained. On average, Persona

still achieves the highest top-1 accuracy when compared to the baselines. For example,

PersonaSum has higher top-1 accuracy than DRnn200-5 in 8 out of 10 selected projects

with a gap of around 2-5%, while DRnn200-5 just slightly outperforms in the remaining

2 projects. Overall, by incorporating three sub-models together, the Persona performs
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reasonably well even if the programmers have low contribution in the project or did not join

the the project for a long time.

Table 5.6: Recommendation accuracy of lower-contributed programmers in selected projects

Project PerCR ProCR GenCR PersonaSum PersonaMax CacheLM DRnn200-5

liferay-portal 26.5% 48.7% 37.5% 58.6% 56.8% 46.2% 51.3%
intellij-comm 24.2% 51.4% 39.8% 57.3% 57.1% 49.8% 54.4%
osmand 22.7% 45.3% 35.7% 57.0% 52.8% 47.2% 53.4%
geogebra 20.7% 44.8% 35.5% 56.3% 54.1% 46.0% 53.7%
elasticsearch 15.3% 41.4% 36.9% 47.2% 49.7% 41.1% 47.8%
camel 20.1% 43.6% 38.8% 52.4% 47.9% 42.9% 49.6%
lucene-solr 17.5% 46.5% 40.9% 53.9% 52.5% 42.0% 51.3%
cdt 21.7% 42.0% 37.9% 48.3% 48.7% 43.5% 49.2%
cassandra 15.6% 42.9% 37.6% 51.0% 49.6% 42.6% 49.3%
hadoop 16.5% 43.1% 40.9% 55.6% 52.4% 44.9% 51.4%

5.5.5 Ablation study

In this section, we perform an ablation study to understand the contribution of the

sub-models to the recommendation performance of Persona. In particular, we focus on

the model PersonaSum. Similar to the first experiment, we measure the recommendation

accuracy of PersonaSum with different configurations on top-contributed programmers over

10 selected projects. For each project, we select top-5 contributed programmers by the number

of commits, then we compute the average top-1 accuracy of programmers in each project. As

described in Section 4, in PersonaSum, we combine sub-models using Equation 5.5 where

α1 +α2 +α3 = 1 are weighting coefficients. The values of α1, α2, α3 represent the contribution

level of PerCR, ProCR, and GenCR correspondingly. Removing a sub-model from the

system equals to setting αi = 0. For example, if we remove ProCR from the system, α2 is

set to 0, which means α1 = α3 = 1
2
. The model is called PerCR+GenCR. Similarly, if we

remove ProCR and GenCR from the system, α2 and α3 are set to 0, which means α2 = 1.

The model become PerCR.

Table 5.7 shows the average top-1 recommendation accuracy when removing one or

two sub-models from the system. Note that, as we use the same settings as the previous

experiment, the results for PerCR, ProCR, GenCR, PersonaSum are the same as in
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Table 5.5. We have several interesting observations. Firstly, if we remove two sub-models

from the system, the sub-model PerCR outperforms the project-level recommendation model

ProCR, and the general model GenCR. Secondly, if we remove a sub-model from the system,

PerCR+GenCR has the highest top-1 accuracy. PerCR+GenCR also has a significantly

higher top-1 accuracy when compared to then each individual sub-model, especially, GenCR.

This result shows that although GenCR has low top-1 accuracy, combining this sub-model

with others could improve the recommendation significantly. Finally, we could see that

PerCR+ProCR does not have much improvement when compared to each sub-model.

Table 5.7: Recommendation accuracy by removing one or two sub-models from Persona

Project PerCR ProCR GenCR PerCR+ProCR ProCR+GenCR PerCR+GenCR PersonaSum

liferay-portal 53.7% 51.5% 37.5% 56.6% 55.8% 61.1% 65.3%
intellij-comm 57.4% 55.4% 40.3% 59.1% 58.3% 60.7% 65.6%
osmand 51.8% 48.0% 37.6% 54.3% 50.2% 55.9% 61.3%
geogebra 52.6% 48.5% 35.5% 53.9% 52.1% 56.8% 61.7%
elasticsearch 46.8% 43.8% 36.9% 48.9% 47.3% 53.8% 58.4%
camel 49.5% 45.6% 38.8% 51.1% 48.5% 53.4% 58.1%
lucene-solr 50.2% 49.1% 40.9% 52.6% 51.9% 57.4% 60.5%
cdt 48.3% 44.9% 37.9% 50.6% 48.6% 54.0% 57.2%
cassandra 49.5% 45.5% 37.6% 49.9% 49.2% 53.8% 56.1%
hadoop 50.5% 46.7% 40.9% 51.5% 50.8% 56.1% 60.6%

5.5.6 Weighting coefficients

In this section, we study how the values of weighting coefficients affect the recommenda-

tion result of the model. As a personalized model, Persona is built and updated for each

programmer. We selected the top-1 programmer by the number of commits in the intellij-comm

project to study the weighting coefficients. Let us assume we choose the weighting coefficient

α1 to study. Note that the weighting coefficients have a constraint α1 + α2 + α3 = 1. For

each value of α1, we set α2 = α3 = 1−α1

2
. Next, we let α1 takes different values from 0 to 1,

and increase by 0.1. Then we evaluate the top-1 accuracy of PersonaSum based at each

value of α1. Fig 5.8 shows how top-1 accuracy changes when α1 changes. A similar process is

repeated for the remaining weighting coefficients. Figs 5.9 and 5.10 show the result for α2

and α3.
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Figure 5.8: Top-1 accuracy when α1 changes

From the figures, we have several observations. Firstly, if a weighting coefficient has

a high value (closer to 1), the top-1 accuracy tends to decrease. In such a case, the top-1

accuracy of PersonaSum is dominant by a sub-model. Secondly, the top-1 accuracy result is

most sensitive with the value of α3. When α3 is high, the result decreases significantly as the

weighting of GenCR increases in PersonaSum. Additionally, we could see that the result

is often high if all the weighting coefficients are in the range [0.3, 0.5]. These observations

are valuable in selecting the values of weighting coefficients to improve the recommendation

accuracy of Persona.

5.6 Discussion

In this section, we discuss several aspects of Persona in more detail. From the

machine learning perspective, Persona is a simple ensemble approach with three sub-

models: PerCR, a model that captures personal code patterns of a programmer; ProCR,

a model that captures the project-level code patterns that the programmer is working on;

and GenCR, a general model that capture code patterns shared between multiple projects.

Persona learns and recommends like n-gram and RNN but more flexibly. For example,
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Figure 5.9: Top-1 accuracy when α2 changes
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Figure 5.10: Top-1 accuracy when α3 changes

fuzzy membership functions are not probability distribution functions, thus, Persona does

not need to normalize
∑

e µf (c) = 1.

We could consider Persona is a fuzzy logic system specially designed for the software

engineering domain. It represents code patterns as fuzzy logic rules. It uses fuzzy set theory

to model and apply those rules and uses fuzzy union operations to combine the rules. In the

traditional fuzzy logic system, variables are often continuous such as Temperature, Density or
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linguistic like LOW, VERY LOW. The membership functions are often manually defined by

domain experts with functions such as triangular or trapezoidal. In Persona, variables are

discrete, i.e. class, method, etc., and the membership functions are estimated automatically.

In our evaluation, we re-implemented (CacheLM) as the baseline method. Although

we tried to replicate the same settings as the previous research [92, 104], the recommendation

results of the baseline models in our evaluation are different when compared to the original

research. The dissimilarity could be explained due to the differences in several factors including

the dataset, cross-validation, recommendation tasks, etc. Similarly, in our implementation

of DRnn200-5, we used different configurations with the previous studies [92, 111] so the

result is not comparable.

The evaluation suggests that Persona outperforms the baselines such as DRnn200-5

which reaffirms our earlier assumption. As a crowd-based approach, DRnn200-5 infers and

recommends common code patterns from a large code corpus while ignoring the difference in

coding preferences of programmers. When such differences are blurred, the performance of

the recommendation tool for a specific programmer is hurt. Persona achieves high accuracy

because it takes into consideration the personal coding preferences of programmers while

also captures the project-specific and common code patterns. In our future work, we plan to

incorporate personal coding patterns with the model such as DRnn200-5 to further improve

the recommendation accuracy.

In Persona, we combine the sub-models using both Equations 5.5 and 5.6. In the

first method, we set the weighting coefficients equally, α1 = α2 = α3 = 1
3
. These weighting

coefficients determine the contribution of a sub-model to Persona. We performed a study

on how values of weighting coefficients affect the recommendation result of the model, which

reveals several insights. Different combinations of weighting coefficients could be experienced

to optimize the performance of the model. In the future work, we plan to develop a method

to estimate such optimal coefficients.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Software systems and services play a vital part in the work and life of billions of people

around the world. With the huge demand, modern software development often relies heavily

on API frameworks and libraries such as Android and iOS frameworks, Java APIs, etc. and

new applications extensively re-use API components. However, learning to use API objects

and methods is usually challenging for developers due to a large number of API methods

and objects, the constant changing and complexity of APIs, and the incompleteness of API

documentation. In this dissertation, we develop three statistical models that capture API

usage patterns. The approaches were trained on thousands of code projects and help to

improve programming tasks including code recommendation, code verification, exception

handling, bug detection, and bug fixing.

One is Salad, a novel approach to learn API usages from bytecode of Android mobile

apps. the core contributions of the approach include HAPI, a statistical model of API

usages and three algorithms to extract method call sequences from apps’ bytecode, to train

HAPI based on those sequences, and to recommend method calls in code completion using

the trained HAPIs. Our empirical evaluation shows that our code recommendation tool

based on Salad can effectively learn API usages from 200 thousand apps containing 350

million method sequences. It recommends next method calls with top-3 accuracy of 90% and

outperforms baseline approaches on average 10-20%.

Secondly, we introduce FuzzyCatch, a code recommendation tool for handling ex-

ceptions. Based on fuzzy logic, FuzzyCatch can predict if a runtime exception would

occur in a given code snippet and recommend code to handle that exception. FuzzyCatch
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is implemented as a plugin for Android Studio. The empirical evaluation suggests that

FuzzyCatch is highly effective. For example, it has top-1 accuracy of 77% on recommending

what exception to catch in a try catch block and of 70% on recommending what method

should be called when such an exception occurs. FuzzyCatch also achieves a high level of

accuracy and outperforms baselines significantly on detecting and fixing real exception bugs.

Finally, we propose Persona, a personalized code recommendation model. It learns

personalized code patterns for each programmer based on their coding history, while also

combines with project-specific and common code patterns. Persona supports recommending

code elements including variable names, class names, methods, and parameters. The empirical

evaluation suggests that our recommendation tool based on Persona is highly effective. It

recommends the next identifier with top-1 accuracy of 60-65% and outperforms the baseline

approaches.

6.2 Future work

In this section, we depict some extension of our current work as follows:

Finding and fixing API misuses. Application Programming Interface (API) libraries

and frameworks play an important role in modern software development. There are certain

rules and constraints when using API objects and methods in such libraries. Violating such

constraints (i.e., API misuse) could cause serious programming errors such as system crashing

or resource leaking. To solve the problem, researchers have proposed and developed several

API misuse detectors [7, 10]. Unfortunately, recent studies show that those detectors often

still have low accuracy [8]. In addition, to the best of our knowledge, no current approach

could repair the detected API misuses automatically. To understand the nature of API

misuses, we performed a preliminary study [86] on a dataset of API misuses provided by

Amann et al. [7]. We found that the root causes of those API misuses can be classified

into five groups including incorrect temporal order of method calls, incorrect handling of

exceptions, missing pre-conditions and post-conditions, and incorrect values of arguments.

108



In the future work, we plan to propose an approach that uses several statistical models

for five factors involving the usage of any API method call: the temporal order between

method calls, exception handling, pre-condition, post-condition, and argument values. Those

statistical models are trained using a massive amount of high-quality production code available

in open-source repositories and app stores. After training, the approach can detect and repair

API misuses in a given code snippet. It first validates every method call in such code using

its trained statistical models. If one usage factor of a method call m has a sufficiently low

probability (e.g. less than a threshold), it considers the call as an API misuse. The API

misuse correction problem could be seen as an optimal search problem in which the approach

searches for repair actions that optimally eliminate those low probability usage factors.

User interface design patterns. User interface (UI) is one of the most important

components of an app because users mainly interact with the app via UI (e.g., tap/click

on an icon or scroll/swipe a page). Thus, UI strongly influences users’ perception of and

experience with the app, which could decide whether the app is successful or not. To design

beautiful, appealing apps, app development teams often hire well-trained UI/UX designers.

However, even with high-skilled UI designers, the UI design tasks are mostly manual, and

thus, very time-consuming. To address this problem, we plan to propose an approach to

(semi)-automate those tasks based on learning UI design patterns. A UI design pattern is a

design idea or template that is used in different apps (or in different places in the same app).

For example, most apps have a login screen with UI elements for user id (e.g., username,

email, or phone number), password, and sometimes third-party authentication methods (e.g.,

login via Facebook, Google, or Twitter accounts). The key idea of the approach is to develop

and deploy advanced deep learning models based on recurrent neural network (RNN) and

generative adversarial network (GAN) to learn UI design patterns from millions of mobile

apps currently available on app stores. After learning, those models can be used to support

app developers in designing UI of new apps with the UI design patterns they learned.
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