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Abstract

Machine Learning permeates all facets of our lives today. Given these models are trusted

to make important decisions in our lives, how susceptible are those models to attacks? Adver-

sarial machine learning is the study of vulnerabilities in machine learning models. Common

vulnerabilities exist in popular models because the dataset, model weights, and inference

code are all in the public domain. Adversarial Actors will probe and discover adversarial

weaknesses within these models due to the open nature of the repositories. Once these

adversarial gaps are discovered, the literature will typically stop and raise flags about the

models. In this work, the focus is to find, evaluate, and fix known vulnerabilities in pro-

duction machine learning model. This work will present six research concepts on evaluating

model vulnerabilities, structured approaches to fixing them, and team constructs that can be

used in production machine learning systems to prevent current and new adversarial attack

vectors.

The objective of this work is creating a repeatable evaluation system for production

machine learning models that focuses on identifying the underlying model vulnerabilities,

benchmarking the attack surface, and suggesting solutions to reduce the efficacy of these

adversarial issues. Each research concept progressively builds on the previous one. An

early result of this research demonstrated the vulnerabilities inherent in semantic classifiers

and showed simple mitigation strategies that can be used with these deployments. As our

research progressed, we discovered weaknesses in multiple models and multiple disciplines

existed without a repeatable methodology for fixing them. Green Team machine learning,

one our the core concepts, is an answer to this problem and will be discussed.

Each research concept in this proposal shows viable methodologies for securing a ma-

chine learning model in a production environment. Deep image and text classifiers are trained
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as example deployments. One final note: each attack surface demonstrated in this work is

detectable and preventable.
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Chapter 1

Introduction

As machine learning permeates all parts of digital life, there is an increasing need to

secure each deployed machine learning models in production. There are public vulnerabili-

ties in modern machine learning based systems and these vulnerabilities can be exploited [2].

These vulnerabilities are typically exercised and documented in a subfield of machine learning

called Adversarial Machine Learning [3]. Adversarial Machine Learning focuses on under-

standing the underlying attack surface for a model architecture and ways to protect those

models from attacks discovered [4]. There is a gap in this field though: papers focus either

on attacking the model or protecting the model [5]. This work presented in this chapter will

explore end to end systems for benchmarking, evaluating, and securing machine learning

models.

Model Security [6] is a popular topic today in modern literature. Machine Learning

models are under constant attack and require protections to be developed to protect them [7].

For the research introduced in this chapter, two popular modes of attacks on models are

selected: data poisoning [8] and adversarial examples [3]. Each of these methods can affect

the machine learning pipeline from training to deployment [9]. This work covers the basics

of each attack and provides practical protections.

Data Poisoning [8] refers to an adversarial technique that allows an attacker to change

the decision boundaries of a machine learning model by adding targeted examples into the

dataset. By adding specific examples to the dataset, an attacker can reduce the efficacy of a

model to detect a particular class or they can make certain classes easier to detect [10]. In

this attack mode, an attacker is focused on changing the model performance for their benefit.

For image classifiers, data poisoning can be harder to detect without structured techniques
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like monitoring data drift within a production environment [11]. Industry datasets [12] are

typically too large to allow for manual inspection and have led to increasing concerns that

the Data Poisoning is a top concern [13].

Adversarial Examples [3] are inputs that have been altered to provide a targeted outcome

for an attacker. Like dataset poisoning, the goal is to provide an attacker a favorable outcome

for a particular event - in a classifier, an attacker can avoid detection for a particular class

or change the detected class to another target. Adversarial examples are heavily explored

in the research community and have inspired development libraries for attacking models

in the image and text space [14]. There are two convenience libraries used in this work:

FoolBox [15] and TextFooler [16]. Each of these libraries provides access to state of the art

adversarial examples for attacking models and changing classification outputs.

Current model robustness solutions will only provide protections for a certain type of

machine learning model like an image classifier [17]. There should be a focus instead on

addressing the system level vulnerabilities within a deployed machine learning [2]. This

dissertation will focus on proposing team based strategies for evaluating, attacking, and

protecting machine learning models in a structured, repeatable manner. This research will

also build on available literature by demonstrating these strategies how two sample machine

learning models. The final research direction is an empirical evaluation of the adversarial

model risk based on a modification of the Drake equation.

Each method demonstrated can be filtered and controlled to protect the models in a

production environment [18]. Research in this dissertation seeks to expand on available

literature to close the loop - this paper is not solely about breaking models or fixing models.

This work presents a framework that can go from one end machine learning development to

the other end with monitoring and control for adversarial attacks.
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Chapter 2

Literature Review

This literature review will cover the basics of adversarial machine learning, cyber team-

ing structures, and the targeted applications of adversarial machine learning at a high level.

Each section will cover the relevant topics for the innovations included in this dissertation.

2.1 Adversarial Machine Learning

Adversarial machine learning (AML) [19] is a broad field of attacks that can manipulate

or avoid detection by machine learning models. Goodfellow et.al [3] showed practical adver-

sarial attacks in their paper and proposed structured ways to attack each model in 2014 .

Adversarial attacks can be broken into two larger categories: black box [20] and white box

attacks [21]. These style of attacks are divided by the amount of incoming knowledge an

attacker has about a system [22]. White box attacks allow an attacker to know everything

about a model: deployment, training style, inference style, dataset, and architecture. Black

box attacks are the opposite: only access to the model is supplied and no additional infor-

mation [23]. Typically, white box attacks are more successful due to the attacker’s ability

to tailor the attacks to the particular structural components of the underlying model [24].

Before diving into the specific adversarial attack vectors, we discuss the high level attack

paths that are relevant to this work.

First, data poisoning [25] is a method for manipulating the dataset itself to influence

the machine learning models built from that dataset. Data poisoning can occur in a number

of different ways. One way is for the attacker to introduce structured noise into specific

examples in the dataset [26]. This will cause the decision boundary of the models drift in

a way advantageous to an attacker [27]. Another type of dataset poisoning attack is to
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add incorrect labels to a dataset [10]. This can cause models to reduce their efficacy in

identifying classes. As a final example, an attacker can remove or duplicate data points in

an effect to influence the underlying model. Data poisoning requires access from an attacker

to the dataset itself [28].

A second common adversarial attack is to manipulate data input prior to model infer-

ence. When the input is brought to a machine learning model, the input is perturbed in

a targeted way to give advantages to an attacker. For instance, the adversarial paper by

Goodfellow et.al [3] used structured noise at inference time to move the decision boundary

of common ImageNet [29] classes to the wrong class with strikingly high effective rates. This

is the classic example of adversarial attacks. As these attacks have developed over the years,

black box and white box attacks have evolved into their own subfields within AML. The

next sections will go deeper into black box and white box attacks.

2.1.1 Black Box Attacks

A black box attack [20, 30] on a machine learning model does not have access to the

model information such as the dataset or the architecture. Black box attacks are the zero

day attacks of the machine learning world. Without any underlying knowledge of the models,

an attacker is able to avoid detection or manipulate the predictions of the machine learning

models [31]. Black box attacks come in a few different types in machine learning - dataset

poisoning, manipulation of the prediction to positively effect the attackers, and avoidance of

detection by the underlying model [32]. A current limitations OF black box models is that

they can require a large number of queries to attack the model [33].

Adversarial attacks [34] in black box models do rely on higher than usual number of

queries to establish a credible attack. The black box attacker is looking for the appropriate

reaction from the model. Production Systems can protect their models by simply reducing
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number of queries available to users for these cruder attack avenues. Recent research demon-

strated by Alzantot et.al generated a method called GenAttack that significantly reduced

the number of queries needed to effectively attack the models in their experiments. [35]

Black box attacks can manipulate the output of the a model. The simplest of these

attacks is to overlay adversarial noise on top of an image. The detected class can be changed

with imperceptible noise on top of the image for a human. The model sees the structure

it expects for a different class [36]. Recently, a new adversarial attack showed the ability

of an attacker to change the class of a model simply by changing image attributes [37].

Manipulating the output of a model can take many forms but are difficult without underlying

knowledge about the model itself. White box attacks have this information and show the

true vulnerabilities of these models.

2.1.2 White Box Attacks

With white box attacks [21], it is assumed that an attacker will have access to the

underlying model architecture, data, and even weights. Adversarial attacks efficacy relies on

a baseline knowledge of the underlying model including items like architecture, design, and

dataset [38]. A white box model makes it easier on the attacker to custom design attacks to

meet their needs. Because the attacker knows the data and/or the architecture, the attacks

can be designed to exploit either one of these properties.

Data poisoning can occur with white box attackers. A recent work proposed targeted

attacks on a model by dataset poisoning called Property Inference From Poisoning [39]. In

this work, the authors demonstrate effective attacks when the adversary has access to the

dataset itself, along with the model specifications. Instead of simply trying to avoid detection

or reduce detection efficacy, they show throughout the paper that information leakage can be

manipulated at a fine tuned level. One of the most surprising outcomes - while manipulating

approximately 10% of the data, they achieved 90% attack accuracy against classifiers looking

at global features such as sentiment of incoming text.

5



2.1.3 Taxonomy of an Attack

The study of adversarial machine learning [40] is mature field that has been studying

the effects these attacks for 30+ years. As the field matured, authors like Barreno et.al [41]

enumerated a taxonomy of attacks that an attacker can carry out. There are three categories

and six methods to discuss:

• Influence

– Causative attacks manipulate training data for advantages to the attacker

– Exploratory attacks probe a machine learning model to misclassify or avoid de-

tections by the model

• Security Violation

– Integrity attacks exploit a model via the use of false negatives

– Availability attacks are similar to denial of service attacks in Cyber. This can

be carried out by flooding the production pipeline or creating an abnormal set of

false positives as two examples.

• Specificity

– Targeted attacks focus on a specific model, dataset, or architecture

– Indiscriminate attacks should be effective against a large number of models. This

is commonly called a Universal attack in literature today.

White box and black box models can fall into multiple categories depending on their design

[42]. An attack could be designed for a single purpose but as the field has progressed, so

have the ability of the attackers to accomplish multiple goals in this taxonomy. Throughout

this work, these methods will be referred to as appropriate.
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2.2 Protections for Machine Learning Models

Machine learning models can be attacked during development and deployment [43].

There are a diverse set of ways to protect machine learning models. This section will intro-

duce two relevant topics to protecting these models with automated techniques for production

systems: Adversarial Training [44] and Dataset Poisoning Protections [45].

2.2.1 Adversarial Training

Transferability of attacks from one model to another is a crucial piece for black box

attackers - if an attack can transfer from one model to another, it is likely to be a successful

black box attack [46]. Adversarial Training [44] is the idea that adversarial images can

be used as a training augmentation for input samples to provide robustness to downstream

model [47]. Adversarial Training at Scale [44] was the first paper in 2016 to attempt to do this

at Google Scale type problems. Kurakin et.al created a technique for Adversarial Training

at Scale for larger models and datasets. Before this paper, Adversarial Training success

stories were mainly on smaller datasets or problems [48]. This paper provides suggestions

on how to properly successfully train on adversarial examples to improve the robustness of

the underlying machine learning model.

The field progressed to introduce black box and white box style attack to improve the

performance of the underlying model with a technique called Gray Box Training [49]. This

method focuses on using multiple models to understand the effects of using the different

style of attacks as training data. The authors are able to demonstrate additional robustness

in the new models using this training method. One of the largest problems with adversarial

training is the explosive computational cost to training on adversarial examples in addition

to training on regular data. The number of training samples can exponentially increase due

to optimization of the model against the attack vectors. [50] Vivek continued his research

and recently proposed Single Step Adversarial Training Dropout [51]. This method proposed

using a dropout mechanic to reduce the number of adversarial examples needed to improve
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the robustness of the model. Finally, most recently, Liu et.al. proposed a new process that

only requires a single step in the adversarial training process [52]. Instead of focusing on

different perturbations, this method proposes iterative improvements to the models that save

training time and improves text accuracy when models are attacked.

2.2.2 Dataset Poisoning Protections

Dataset Poisoning [45] is a more sinister attack method; if protections are built into the

model and pipelines, they cannot protect against adversarial examples that are contained the

dataset. Steinhardt et.al wrote on addressing losses of a diverse set of attacks with two key

assumptions . The first assumption is to compare the statistical concentration between the

train and test errors - this allowed the authors to understand the relationship between the

the models loss function and test set error. This first assumption answers the question about

whether the train and test dataset populations are close - if they are, poisoned samples can

have a large effect on the model. The second assumption is that outliers in a non-poisoned

dataset do not have a large effect on the model itself. These tests demonstrated that MNIST

style datasets were robust to attacks but the IMDB dataset could be poisoned with a low

amount of poisoned data.

2.3 Cyber Color Teams and Structures

Cyber security is built and tested by adversarial attackers every day. Borrowing from

their experience is an integral part of this work. First, this section will cover cyber color teams

[53]. These teams are formed around particular goals in protecting the underlying systems.

These concepts translate to the machine learning production teams. Second, combining

teams into new colors to combine responsibilities. Especially in Machine Learning, how the

system is built and maintained will drive what vulnerabilities are available for an attacker

to exploit. There are processes that utilize these teams called Build, Attack, Defend that

bring structure to attacking and fixing issues found during these phases.
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2.3.1 Cyber Color Teams

In cyber security, teams highlight their purpose through the use of colors [53]. A red

team will attack a cyber physical system and attempt to find vulnerabilities in the system

[54]. A blue team will take open lists of threats and discovered vulnerabilities and propose

fixes to these issues [55]. Recently, cyber color teams have been evolving to mix concepts

from each of these different teams. The Green team, for instance, will mix the jobs of Blue

and Red Teams. The Green Team discovers vulnerabilities and proposes fixes to each of those

discovered issues [56]. There is a concept around colored teams for attacking, defending, and

designing systems:

1. Red Team: Ethical hacking of a target system

2. Blue Team: A group of people building defenses against the attacks on the model

3. Green Team: A blend of the red and blue teams where the group will simultaneously

run both attacks and create defenses for those attacks.

In this work, the green team construct is used to improve the machine learning model devel-

opment process. By utilizing adversarial design knowledge (red team) and model building

knowledge (blue team), it is possible to baseline and attack a system with the goal of propos-

ing fixes to the underlying model design or production pipeline [57].

2.3.2 Build, Attack, Defend for Cyber Systems

Build, Attack, Defend [58] is a construct built around breaking down cyber security

problems into actionable problem spaces for teams to digest. There are three distinct steps

proposed by this method. First, the build phase is where the system is constructed and

designed with protections built into the underlying system. Second, the red team will at-

tack the system identify vulnerabilities and exploits that exist in the current production

deployment. Third, the final step is to defend the system by improving defenses or adding
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additional protections. This is a continuous process that is designed to evaluate, fix, and

monitor for issues with a production cyber system.

2.4 Attacks on Sentiment Analysis Models

Adversarial Attacks on natural language models will rely on exploiting general knowl-

edge about the underlying language model or language characteristics [59]. Language char-

acteristics like slang and synonyms can have the same meaning to a human but drastically

different predictions from a machine learning models [60]. Adversarial actors have figured

out how to exploit these weaknesses and use them against NLP models in the wild. A classic

example of one of these attacks is the HotFlip [61] attack. HotFlip is a set of White-Box Ad-

versarial Examples for Text Classification where the authors successfully demonstrated the

ability to drastically change the classification accuracy of the underlying model by changing

a single character in the sentence . The authors demonstrate that even word classifiers are

vulnerable to these types of attacks.

The field has evolved since the publication of simple attacks like HotFlip [61]. Belinkov

et.al [62] built methods for generating synthetic and natural noise to break neural machine

translation. The authors in this paper demonstrated simple character attacks that would

fool state of the art models. Furthermore, they showed that noisy text like misspellings were

especially difficult for the models to understand. Alzanot et. al [63] created a methodology

for Generating Natural Language Adversarial Examples for Sentiment Analysis models. By

using small perturbations in the sentences, like replacing a single word, the model detected

different semantics in the sentence. When these same changes were shown to humans, they

saw a 92.3% successful classification to the correct sentiment label by human annotators.
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Chapter 3

Datasets

There are two primary problem sets addressed in this work - Sentiment Analysis for

Natural Language Understanding [64] and Image Classification in Computer Vision [65]. The

methods demonstrated throughout this work can be applied to machine learning pipelines

and show vulnerabilities on these datasets.

3.1 Sentiment Analysis Background

Sentiment Analysis [64] is the task of analyzing text to provide a classification of such as

positive, negative, or neutral for a given string (paragraph, sentence, sub-sentence). Senti-

ment Analysis has use cases like polarity at for words, sentences, paragraphs, and documents.

Organizations use sentiment analysis to moderate their websites, apps, and comment sections

with the vast amounts of textual data [66]. These machine learning systems are susceptible

to adversarial attacks [67]. Recently, the threat of bias in the data has led the research

community to explore how to combat and understand the inherit qualities in social media

data - both positive and neutral that cause machine learning models to incorrectly classify

certain phrases [68].

The field of Sentiment Analysis has progressed rapidly due to the expansion of social

media platforms [69]. Among the numerous applications across the internet, Sentiment

Analysis is a required piece of policing social media and comment sections [70]. With state

of the art sentiment analysis systems progressively improving, it became evident that there

is unintended bias (like race, gender, sexual orientation, etc.) built into dataset of comments

and tweets [71]. This bias has led to research in how to create systems that can find negative

text in the wild without overfitting. Last year, a famous example for the Perspective API is
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the classification for the input ”I am a gay black woman” which carried a 95% toxicity [72].

Sentiment Analysis state of the art papers [73] are dominated by ensembles of transformer

technologies for this particular problem set. Each of these technologies inherits weaknesses

of the underlying language models used for the classification task.

3.2 Image Classification Background

Image classification [74] is a computer vision task where an image goes into a system and

an array of classification scores is provided back to a user [65]. Image Classifiers were based

on traditional computer vision algorithms [75]. Recently, a new class of methods relying on

deep neural network features has produced state of the art results in image classification [76].

This work presented in this chapter will focus on using deep image classifiers and exercising

those algorithms throughout the course of this paper. In this research, the following datasets

are explored using multiple experiments. These datasets are as follows:

1. CalTech101 [77]

(a) Description: A standard image classification benchmark with 101 categoies. The

number of image per category ranges from 40 to 800. This dataset was collected

in 2003 [78].

2. Icons-50 [79]

(a) Description: Icons-50 dataset has 50 classes of icons with 10K images included

in the dataset. The icons have different styles and subclasses associated with

them. [80].

3. indoorCVPR [81]

(a) Description: Indoor Scene Recognition dataset consists of indoor scenes with 67

categories and 15,000 total images. The images are categorized and each class

has at least 100 images. [81].

12



4. Stanford Dogs Dataset [82]

(a) Description: A dataset of only dogs containing 120 classes from around the world.

This dataset is a subset of the ImageNet dataset and contains approximately 20K

images. [29].

5. tiny-imagenet [83]

(a) Description: A smaller version of the ImageNet challenge that includes 100K

images with 200 classes sized to a 64x64 size for faster evaluations. [84].

In this research, seven following pretrained networks are explored using multiple exper-

iments. These pretrained networks are as follows:

1. MobileNetV2 [85]

(a) Description: MobileNetV2 is the improvement of the state of the art architec-

ture for multiple tasks in the Computer Vision world. This architecture is still

widely utilized in the community due to it’s favorable trade off between power

and performance [86].

2. NASNetMobile [87]

(a) Description: The unique part of this model architecture is that is performs a model

architecture search on a particular dataset. This model focuses on transferablity

of the architecture from the base weights to learning new weights on the target

dataset.

3. DenseNet121 [88]

(a) Description: This DenseNet architecture has a the unique features - they elim-

inated the vanishing gradient problem that plagued networks at this time, they

increased the ability of features to propagate through the network, and, finally,

reduced the size of the network since the features went through the network.
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4. ResNet50 [89]

(a) Description: The ResNet architecture uses residual net architectures with various

numbers of layer depth. In this case, the 50 layer version of the ResNet version

is explored in the experiments. In 2016, this architecture was the state of the art

architecture for many Computer Vision tasks.

5. DenseNet201 [88]

(a) Description: DenseNet201 improves the 121 architecture by adding a large net-

work size to increase the number of features used with a small degradation in

performance.

6. Xception [90]

(a) Description: Chollet interpreted the Inception models from convolutional neural

networks in a novel way - he proposed a depthwise separable convolution that

exists in between the regular convolution and the depthwise separable convolu-

tion step. In order to accomplish this, he proposed replacing Inception Modules

with depthwise separable convolutions. With the same number of parameters, the

XCeption network gained increased performance with better use of those param-

eters that the corresponding Inception network.

7. InceptionV3 [91]

(a) Description: Another novel state of the art image recognition model. The In-

ceptionV3 architecture focused on deeper networks while keeping the number of

parameters from growing too large.

Each of these networks can be exercised, trained, and evaluated using the Keras framework

with a Tensorflow backend. Using these networks provides an overview of current network

architectures and how they perform against certain styles of attacks.
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3.3 Datasets

There exist an extremely large number of datasets available in machine learning for

every topic area. Within the areas of Sentiment Analysis and Image Classification, we use

the following datasets in this work: Jigsaw Bias Dataset for Sentiment Analysis and nine

standard image classification datasets.

3.3.1 Sentiment Analysis

Sentiment Analysis has been around for decades. The JigSaw Toxic Bias dataset has

an explicit goal to combat bias in sentiment analysis. The Conversation AI Team, funded in

conjunction with Jigsaw and Google, created a dataset around toxicity, biases, and threats

in comment sections [92]. The JigSaw Toxic Bias dataset is a set of publicly released com-

ments augmented with new labels for ML tasks. It has a wide range of different toxicity

classifications such as severe toxicity, obscene, identity attack, insult, and threat. In the last

year, the Conversation AI team has augmented JigSaw with additional categories including

gender, sexual orientation, and religious identity. The new evaluation categories were added

to combat inherent biases that are included in the data but do not represent a negative sen-

timent. This dataset is part of a challenge on the Kaggle competition page for creating the

best classification models around toxicity. This is the primary Sentiment Analysis dataset

used in this dissertation.

In order to understand the data better, here are a few examples of the dataset in action.

First, here is the specification for the JigSaw dataset with possible labels:

1. Comment Input: String

(a) Toxicity (Label):

i. toxic (Label Subcategory)

ii. severe toxic (Label Subcategory)

iii. obscene (Label Subcategory)
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iv. threat (Label Subcategory)

v. insult (Label Subcategory)

vi. identity hate (Label Subcategory)

(b) Identity Attributes (Label):

i. Label Subcategories: [male, female, transgender, other gender, heterosexual,

homosexual gay or lesbian, bisexual,other sexual orientation, christian, jew-

ish, muslim, hindu, buddhist, atheist, other religion, black,white, asian,latino,

other race or ethnicity, physical disability, intellectual or learning disability,

psychiatric or mental illness, other disability]

The identity labels were not used in each of the explorations. Instead, the focus is on the

broader toxicty categories and what each of the machine learning models atyacked learned

about the distribution of the data in relation to the label. Here are three examples of data

in the JigSaw dataset:

1. Comment Input: i’m a white woman in my late 60’s and believe me, they are not too

crazy about me either!!

(a) Toxicity (Label):

i. toxic (Label Subcategory) : 0.00

ii. severe toxic (Label Subcategory) : 0.00

iii. obscene (Label Subcategory) : 0.00

iv. threat (Label Subcategory) : 0.00

v. insult (Label Subcategory) : 0.00

vi. identity hate (Label Subcategory) : 0.00

(b) Identity Attributes (Label):

i. female (Label Subcategory) : 1.0
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ii. white (Label Subcategory): 1.0

iii. NOTE: All other identity subcategories are zero

2. Comment Input: Why would you assume that the nurses in this story were women?

(a) Toxicity (Label):

i. toxic (Label Subcategory) : 0.00

ii. severe toxic (Label Subcategory) : 0.00

iii. obscene (Label Subcategory) : 0.00

iv. threat (Label Subcategory) : 0.00

v. insult (Label Subcategory) : 0.00

vi. identity hate (Label Subcategory) : 0.00

(b) Identity Attributes (Label):

i. female (Label Subcategory) : 0.8

ii. NOTE: All other identity subcategories are zero

3. Comment Input: Continue to stand strong LGBT community. Yes, indeed, you’ll

overcome and you have.

(a) Toxicity (Label):

i. toxic (Label Subcategory) : 0.00

ii. severe toxic (Label Subcategory) : 0.00

iii. obscene (Label Subcategory) : 0.00

iv. threat (Label Subcategory) : 0.00

v. insult (Label Subcategory) : 0.00

vi. identity hate (Label Subcategory) : 0.00

(b) Identity Attributes (Label):
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i. homosexual gay or lesbian (Label Subcategory) : 0.8

ii. bisexual (Label Subcategory) : 0.6

iii. transgender (Label Subcategory) : 0.3

iv. NOTE: All other identity subcategories are zero

Because of the toxic nature of the comments, only positive toxic comments (zero toxicity)

were documented in this section.
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3.3.2 Image Classification

There are nine datasets used in the Image Classification experiments in this work. The

following list will show examples and describe the common literature use case for these

datasets.

Figure 3.1: Example of the BSD100 dataset

1. BSD100 [93]

(a) Description: The Berkeley Segmentation Dataset and Benchmark is a dataset used

primarily to benchmark image segmentation and boundary detection problems

[94].

(b) Formats:

i. Image - Label

ii. Image - Mask

(c) Number of Images: 100

(d) Resolution : 481x321 pixels

(e) Sample Use Cases:

i. Image Segmentation

ii. Boundary Detection

iii. Classification
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Figure 3.2: Example of the DIV2X dataset

2. DIV2K [95]

(a) Description: DIV2K is a super-resolution dataset that contains 1,000 images and

is used primarily to benchmark differences in blur, resolution scaling, and other

computer vision tasks.

(b) Formats

i. Image - Label

ii. Image - Mask

(c) Number of Images: 2000

(d) Resolution: 2K Pixels

(e) Sample Use Cases

i. Image Segmentation

ii. Boundary Detection

iii. Classification
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Figure 3.3: Example of the Set5 dataset

3. Set5 [96]

(a) Description: A super resolution testing dataset which consists of five images:

butterfly, baby, head, woman, and bird.

(b) Formats

i. Image - Label

ii. Image - Mask

(c) Number of Images: 5

(d) Resolution: Varies by Image - for instance, 512x512, 74x112, etc.

(e) Sample Use Cases

i. Image Segmentation

ii. Boundary Detection

iii. Classification
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Figure 3.4: Example of the Set14 dataset

4. Set14 [97]

(a) Description: A super resolution testing datatset which consists of fourteen images

(b) Formats

i. Image - Label

ii. Image - Mask

(c) Number of Images: 14

(d) Resolution: Varies by Image - for instance, 512x512, 74x112, etc.

(e) Sample Use Cases

i. Image Segmentation

ii. Boundary Detection

iii. Classification
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Figure 3.5: Example of the Urban100 dataset

5. Urban100 [98]

(a) Description: 100 images of urban scenes used with super resolution problem sets.

(b) Formats

i. Image - Label

ii. Image - Mask

(c) Number of Images: 100

(d) Resolution: Multiple Resolutions for different problem sets

(e) Sample Use Cases

i. Image Segmentation

ii. Boundary Detection

iii. Classification
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Figure 3.6: Example of the Urban100 dataset

6. ImageNet64 (16k subset) [99]

(a) Description: A small subset of the ImageNet dataset used for benchmarking mod-

els and attacks.The focus of this work is to test adversarial attacks on multiple

targets so this provided a reasonable sampling of the ImageNet dataset.

(b) Format

i. Image - Label

(c) Number of Images: 1.2 million

(d) Resolution: 64x64

(e) Sample Use Cases

i. Image Classification
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VEDAI Dataset

Figure 3.7: Example of the VEDAI dataset

The VEDAI or Vehicle Detection in Aerial Imagery dataset is a benchmarking dataset

with multiple channels looking at the same locations. The dataset includes nine vehicle

classes that can be challenging to distinguish for computer vision applications. A critical

aspect of this data is the rectified Infrared images included inside of this dataset. The original

paper by Razakarivony and Jurie highlights the use of common machine learning applications

to identify the classes inside of the dataset [100]. In this paper, the goal is to extend previous

work by protecting a common image classification machine learning model from adversarial

attacks. Three primary channels are included in the dataset: visible, infrared, and gray.

For the experiments included in this paper, the Visible channel is also split into its principal

components of red, green, and blue channels to explore the color dependence of the modeling.
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Chapter 4

Black to White Box - Discovering Model Characteristics with Strategic Probing

4.1 Introduction

White Box Adversarial Machine Learning Attacks rely on knowing underlying knowledge

about the model construction and training data. In this chapter, we are able to discover the

underlying architecture from a black box model with a structured set of input probes. Once

the architecture has been discovered, the underlying dataset it was trained on can also be

determined. With imagery, we focus on classification and explore multiple architectures and

datasets commonly available in Keras. Text generation with a single transformer architecture

is explored by fine tuning off different datasets. Each of those datasets are distinguishable

from one another in the output of the transformer. Diversity in text transformer outputs

implies further research is needed to successfully classify architecture attribution in text

domain.

4.1.1 Background

Adversarial Attacks can be broken into two larger categories: black box and white box

attacks. With Black Box methods, the attacker does not have access to the model while in

White Box attacks they do have access to the model. Adversarial Attacks rely on baseline

knowledge of the underlying model architecture and/or dataset [101]. Black and White

Box attacks are divided by the amount of incoming knowledge an attacker has about the

system. In the Cyber community, it is considered a huge advantage to know the underlying

hardware, software, or network architecture when attacking a system [102]. Similarly, in

Machine Learning, understanding the dataset, model architecture, or hardware it’s running

on can provide a large advantage to an attacker [9].
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How can an adversarial agent get access to this information without access to the model?

This exploration of image and text classifiers demonstrates the ability to find the underlying

model architecture or fine tuned dataset from a set of input probes.

4.1.2 Challenges

We focus on detecting commonly used datasets and architectures applied in the text

and image space. If a machine learning development team trains their model on a com-

pletely custom dataset, then this method would only detect how similar the given dataset

or architecture is to the previously known ones.

The key limitation in this work is using published datasets and architectures to build

datasets of knowledge for each of our targeted attacks. For example, in a dogs dataset, we

choose a dog from the dataset where the model would produce a predictable output for our

detector. Specific attacks to specific model architectures or datasets are more effective for

adversarial attacks [103].

4.1.3 Contributions

Adversarial Attack papers are either universal or targeted to a particular model/dataset.

There is a prior step that is often overlooked in the adversarial attack process – discovering

which attack is effective against a target. This short paper offers a proposed process for

discovering underlying model architecture or dataset for use in an adversarial system.

4.2 Approach

To classify the underlying model architecture and dataset, the first step is to explore the

different common datasets and model architectures for the image and text space. Our ap-

proach will document the experiment’s permutations for both imagery and natural language

processing as well as a brief overview of the classifier tooling used to predict the underlying

architecture.
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Figure 4.1: Results of Dataset Attribution Experiments

4.2.1 Experiment Design

Each domain in machine learning has common architectures and datasets that are used

to create the base weights. Our goal was to identify the model architecture and the data it

was trained on strictly from probing the final model.

Architecture Attribution

There are hundreds of model architectures for each problem in a sub-domain. In the

adversarial domain, the potency of adversarial techniques relies on knowing the underlying

architecture. With our approach of determining the architecture with only access to the

model, we attempt to classify the classifier.

Dataset Attribution

Model fine tuning is defined as starting with a set of base weights and updating the

model weights based on training on a smaller, targeted dataset. This work seeks to show

that the fine tuning step actually leaves model weight nuances than can be detected by a

classifier from the smaller dataset.
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Figure 4.2: Classifier AUC for Determining Model Type

In the image space, we explored ten separate datasets. The datasets used in the image

experiments were mostly taken from super resolution datasets alongside a few subsets of

popular image datasets. Similarly, on the text side, we selected recognizable datasets taken

from popular authors to show how each model learns and generates different underlying lan-

guage models for each of the downstream tasks. The dataset in Natural Language Processing

(NLP) can be a much more diverse task as permutations with language become intractable

quickly.

4.3 Evaluation

Two domains were selected for evaluation, computer vision and natural language pro-

cessing. In Computer Vision, our experiments explored pretrained image classifiers available

in Keras while training on datasets publicly available. In Natural Language Processing,

each experiment used readily available datasets in the HuggingFace packages. Due to the

computational complexity of training transformers, we explored the smaller model versions

of the popular GPT-2 model and were able to successfully classify a fine tuned model.
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4.3.1 Dataset Attribution Results

Dataset attribution, as seen in Figure 4.1, relies on the ability of our classifier to access

the resulting feature vector in the image space and the resulting text output of the trans-

former. All datasets were download and deploy ready and provided a wide variety of outputs

to explore.

Determining the Dataset Type from a Single Image

The following datasets were used with random 50 class subsets to fine tune MobileNetV2

[85]: CalTech101 [78], Icons-50 [79], indoorCVPR [81], Stanford Dogs Dataset [82], tiny-

imagenet [83]. After training, inference was applied to the datasets: MobileNetV2 [85],NAS-

NetMobile [87],DenseNet121 [88],ResNet50 [89],DenseNet201 [88],Xception [90], and Incep-

tionV3 [91]. The inference vector output was captured alongside the fine tuned model which

was used. We then trained a classifier on each inference dataset to attempt to predict which

fine tuned model the inference came from. The results were surprisingly good. For any of

the given datasets used for inference we can predict with an AP of greater than .99 for any

of the fine tune models.

Determining the Dataset Type from a Single Text Input

The following datasets were trained with a GPT-2 small model: Churchhill [104],

Dickens [105], Fitzgerald [106], Arabian Nights [107], Darwin [108], Hemmingway, and

Flaubert [109]. The GPT-2 transformer models were trained using the HuggingFace reposi-

tory for NLP research [110]. With the dataset classifier using a Bert Large model, we were

able to achieve 81% classification accuracy against each of these authors [111]. In order

to show the shortcomings of this classifier, we chose to show the confusion matrix for the

classifier. Overall, the model is able to clearly classify each of the authors. Notably in this
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Figure 4.3: Results of Architecture Attribution Experiments

matrix, there is some difficulty in identifying Darwin. This is likely due to how the trans-

former captured their style, relative to how GPT-2 [112] is able to capture structure of prose

including whitespace and formatting.

4.3.2 Architecture Attribution Results

We attempt to classify the pretrained architectures used for particular image classifica-

tion and text generation tasks in this section. By applying different pretrained architectures

onto different datasets, we can learn a fingerprint that each pretrained model has inherent

in their weights. Once we have trained our classifier on these fingerprints, we can find the

model used from a single image or text sample. The same techniques are also used to try to

classify the model used to fine tune a base model. We take a pretrained model and fine tune

it on different datasets and proceed to apply inference on a test set of images. We then take

the inference output and try to predict the which fine tuned classifier the result came from.
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Determining the Architecture Type from a Single Image

We used the ten following datasets: General, BSD100, DIV2K, Set5, Set14, Urban100,

ImageNet64 (16k subset), ImageNet (6k subset), Manga, Historical and the seven following

pretrained networks: MobileNetV2, NASNetMobile, DenseNet121, ResNet50, DenseNet201,

Xception, InceptionV3. All pretrained models are from keras.applications which are pre-

trained on 1k classes of ImageNet [113]. Inference was performed on each of the datasets

from each of the models and the 1000-dimension output was captured. Then, for each

dataset, the model’s output was collected alongside the name of the model used. This cap-

tures the difference in each of the feature outputs and allows us to use a classifier that

predicts from the inference results onto the model on which it came from.

For each dataset, the model was able to be predicted with an Average Precision of 0.84

for the worst-case scenario of five Set5 images. All other classifiers had an Average Precision

of 0.99. Therefore, given at least five images from a dataset and a sample image classification

prediction, we can easily classify which pretrained model was used to classify it.

Determining the Architecture Type from a Text Sample

Classifying the architecture with text transformers can be harder due to hardware and

time limitations. For instance, recent research is focused on speeding up training of trans-

formers by 10-40% to make the retraining these models more approachable [114]. Our exper-

iments trained two separate models, GPT-2-small and DistilBert on the same dataset [115].

This experiment used the Wiki Text language modeling dataset - a benchmark based on

verified Wikipedia articles that provides fast and repeatable training results for many of

the transformer architectures [116]. The experiments shown in Figure 4.2 show that our

accuracy with 20,000 samples with our five probes still only shows moderate predictability

at 60% accuracy for simple classifiers. The text probes were chosen as basic, approachable

probes: ’Hello’, ’2+2’, ’A’, and ’Mario’. Given the Wikipedia input dataset, these probes
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should provide a diverse but distinguishable output. The results above demonstrate further

honing of the target phrases will lead to improved accuracy.

4.3.3 Limitations

Each of these experiments focused on demonstrating how distinguishable an architecture

or dataset are in the image and text domain. As architectures are modified, it may only

be possible to find the most similar architecture to a particular output. Or, for instance, a

model may perform similarly when trained on different datasets. The experiments outlined

in this paper do not mix datasets or modify architectures. Each of the classifier are able to be

directly downloaded from Keras or HuggingFace with no additional installations necessary.

4.4 Results and Future Work

In the text space, the technique needs to be refined down to only use the output from the

model at an API or pipeline level. It is possible to also use targeted attacks known to work

against particular models to determine the underlying architecture. If an adversarial attack is

tailored to work against a particular model (and isn’t universal), then that technique would

not be effective against tangential architecture types. For the text side, future work will

focus on determining the number of samples needed to improved the efficacy of classifying

the underlying model architecture. Larger datasets, like modern transformers are trained

on with billions of documents, will require further investigation [117]. Future experiments

would utilize larger versions of the GPT-2 model and even the recently released GPT-3 [118].

In the image space, further work with predicting families of classifier based on how

similar their outputs are will allow us to group architectures for adversarial attacks. This

will close the gap between a target attack on one model and a universal attack on all models.

Specifically in the classifier space, the prevalence on transfer learning leaves the machine

learning community at heavy risk of compromise.
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4.5 Chapter Summary

In the image space, learning the fingerprint of a model is achievable with modern classi-

fiers. Our architecture and dataset discovery method reaches high AP numbers with minimal

training. In the text domain, classifying the underlying model architecture is harder with a

single text sample. For trained datasets, the results in the text domain showed that datasets

with clear stylistic cues are distinguishable from each other.
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Chapter 5

Green Team Machine Learning to Reduce Adversarial Attack Surface

5.1 Introduction

This work proposes a structured approach to baselining a model, identifying attack vec-

tors, and securing the machine learning models after deployment. This method for securing

each model post deployment is called the BAD (Build, Attack, and Defend) Architecture.

Two implementations of the BAD architecture are evaluated to quantify the adversarial life

cycle for a black box Sentiment Analysis system. As a challenging diagnostic, the Jigsaw

Toxic Bias dataset is selected as the baseline in our performance tool. Each implementation

of the architecture will build a baseline performance report, attack a common weakness, and

defend the incoming attack. As an important note: each attack surface demonstrated in this

work is detectable and preventable. The goal is to demonstrate a viable methodology for

securing a machine learning model in a production setting.

Sentiment Analysis (SA) [64] is the task of analyzing text to provide a classification

such as positive, negative, or neutral for a given sample. SA is subdivided into categories

such as polarity, subject, and toxicity. Companies and organizations use these technologies

to moderate their websites, apps, and comment sections [119]. Adversarial attacks, in the

context of this work, refer to any input that allows an adversarial actor to trick a classification

system. Modern SA Systems use machine learning (ML) and are susceptible to adversarial

attacks [24]. Recently, the Natural Language Processing (NLP) community has explored

how to create models that can handle bias in training data; for instance, content-aware

models are an example of a system that can interpret bias in the data and correctly classify

sentiment [120]. Given the challenging nature of SA with this type of data, the goal is to
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demonstrate a simple and repeatable process for creating a model baseline, attacking the

model, and defending against the incoming attacks.

Toxicity Classification [121] is a SA technique to understand the malicious intent of text

based on words and content in the message. These SA techniques use ML and Deep Learning

(DL) to classify the toxicity or polarity of a tweet [122]. The first SA technique used in this

chapter is the Sentiment140 SA API [123]. Sentiment140 originated as a paper from the

early 2010s and was later developed into an API by a Stanford Team [124]. Perspective, the

second SA API used, is built and maintained by Google’s Jigsaw team [71]. The Perspective

API is a black box ML model that relies on a transformer and other DL technologies to

classify sentiment. The Perspective API focuses on toxicity analysis for social media-based

comments [125]. Each SA API uses ML to provide sentiment classification. We have no

connection or insight into the underlying models other than published papers or websites.

Further, there are limitations on the number of queries per second and per day.

5.1.1 Challenges

The dataset used in this work creates a unique challenge. The Conversation AI Team,

funded in conjunction with Jigsaw and Google, created a dataset around toxicity, biases, and

threats in comment sections [92]. The JigSaw Toxic Bias dataset is a set of publicly released

comments augmented with new labels for ML tasks. It has a wide range of different toxicity

classifications such as severe toxicity, obscene, identity attack, insult, and threat. In the last

year, the Conversation AI team has augmented JigSaw Toxic Bias dataset with additional

categories including gender, sexual orientation, and religious identity. The new evaluation

categories were added to combat inherent biases that are included in the data but do not

represent a negative sentiment. This dataset is part of a challenge on the Kaggle competition

page for creating the best classification models around toxicity. The top-scoring models used

ensembles of DL models to get the highest classification scores. Since the newest classification

techniques for this dataset use ML, they are susceptible to adversarial methods. Adversarial
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Figure 5.1: BAD System: Baseline, Attack, Defend for Protecting Machine Learning Models

Methods demonstrated in the Evaluation section are focused on discovering attacks that

negatively affect the classification capability of the underlying system. This chapter will

focus on the challenge of evaluating the attack surface of a single attack vector and defending

the model from this incoming attack.

5.1.2 Contributions

Single Character attacks vectors are a direct analog to single-pixel attacks in the im-

age domain - for instance, single-pixel attacks have demonstrated effects on classification,

reinforcement learning, and other state-of-the-art image technologies [126] [127]. We demon-

strate the efficacy of single character attacks (1 or many) on these sentiment text classifiers

and how to protect the underlying system. These simple attacks can reduce the ability of

systems to filter and curate online media platforms. This chapter focuses on demonstrating a

new architecture to build a baseline of the performance of each API, attack the models with

single character substitution/insertion attacks in the text domain, and provide a defense

plan for these attacks. The remainder of this chapter is as follows: Section 5.3 presents the
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related work, Section 5.4 develops the approach, Section 5.5 discusses solutions, and Section

5.6 closes with Conclusions and Future Work.

5.2 Background

There are three key background areas: Build, Defend, Attack [58] Systems from the

Cyber Security Domain, the Sentiment Analysis, and black-box models.

5.2.1 Build, Attack, Defend Systems

Build, Attack, Defend [58] is a construct built around breaking down Cyber Security

problems into actionable problem spaces for teams to digest. There are relevant team con-

structs around Color teams for attacking, defending, and designing systems:

1. Red Team: Ethical hacking of a target system

2. Blue Team: A group of people building defenses against the attacks on the model

3. Green Team: A blend of the red and blue teams where the group will simultaneously

run both attacks and create defenses for those attacks [128].

The focus is on applying the green team construct to improve ML model development.

By utilizing adversarial design knowledge (Red Team) and model building knowledge (Blue

Team), the Green Team can propose defenses to the underlying model designs or production

pipelines that secure the model from outside attacks.

5.2.2 Sentiment Analysis

The field of SA has progressed rapidly due to the expansion of social media platforms

[70]. Among internet moderation applications, SA is a required piece of policing social media

and comment sections due to the large volume of comments on these sites [129]. With state-

of-the-art SA systems improving, it became evident that there is an unintended bias built
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into the dataset of comments and tweets. Overfitting to words in bias dataset has led to

embarrassing results for production SA [123]. The famous example with Perspective API is

”I am a gay black woman” which carried a 95% toxicity in 2017 and still contains a toxicity

score of 44% as of writing this chapter [72]. State-of-the-art SA papers are dominated by

ensembles of transformer technologies for this particular problem set [73]. Each of the SA

classifiers inherits weaknesses of the underlying language models used for the classification

tasks [130].

5.2.3 Black Box Models

A black box model in ML is any model that an end-user only has access to inputs and

outputs [131]. Each ML black box model in this work allows an end-user to interact with

it through JSON inputs and outputs. There are also limitations to the number of queries

per user per system. Two black box SA systems were selected in this chapter: Sentiment140

and Perspective API. Sentiment140 [124] is based on a technical report which collected

1.6million tweets to survey ML techniques in the SA domain in 2008. The Sentiment140

team has maintained the API as a historical benchmark for future SA systems but provides

no explicit details on the exact implementation of the API. In contrast, the Perspective team

provides toxicity scores for multiple categories through their API. With Perspective, an end-

user can request classification probability scores for each class and can therefore evaluate the

efficacy of each attack. The Perspective Team does not provide details on their ML models.

5.3 Approach

There are numerous areas of modeling where an adversarial actor can attack [132]. For

simplicity, our focus is on inference-based attacks. Attacks on the inference pipeline exploit

weaknesses of data used for training and learned weights of the model [133]. For example,

there are simple attacks like substitution, replication, and insertion that easily fool current

classification models [134]. A recent paper proved universal rules for fooling text-based
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classification systems are effective for multiple tasks in NLP [126]. The Evaluation section

demonstrates a BAD architecture focused on an inference-based attack for each API. Figure

5.1 shows the general flow of implementing the BAD architecture for an inference attack

surface of a SA Model. The following sections discuss each of the BAD [58] core components

in detail.

5.3.1 Holistic Approach: Introducing the BAD Architecture

Every ML team wants to understand the model’s vulnerability to adversarial attacks

[135]. The BAD Architecture proposes three key steps. First, a team needs to understand

the baseline performance of the model by asking questions like the following:

1. How does the model act with regular and irregular data?

2. Are there known weaknesses or limitations?

3. Are those limitations and risks mitigated?

Next, a team needs to understand the impact of each attack by exercising each vulnerability

in the model. Last, after understanding the baseline performance and attacking their model,

the team will need to propose and implement those defenses to protect their production

process. In practice, this entire architecture is repeatable and expandable depending on the

scope of the team [136].

5.3.2 BUILD a baseline of our target system

A core component of a ML production system is to understand performance under

normal conditions. With the BAD Architecture, each team should also note the known

limitations of the model. For instance, some systems do not inherently return real scores for

words not in the original training data (example: Word2Vec) [137]. A team must be upfront

and understand the impact of design decisions on how a ML system has been designed.

To baseline a ML system, it is also important to experiment with data that the system
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is expected to operate on regularly. If possible, it is also expected to document any edge

cases that would be hard for the system to classify. Using an SA black-box model with the

JigSaw Toxic Bias dataset is a perfect example baseline case for the Build, Attack, Defend

Architecture. The data contains toxic edge cases where it is hard to judge the intent of

the underlying message. The advantages of creating a systematic baseline are shown in the

Evaluation section when edge cases are exploited.

5.3.3 ATTACK System weaknesses and inefficiencies

Each API has a public page and allows anyone to sign up for basic services. Even with

basic access, it is possible to circumvent these systems with a limited number of queries

and the Python programming language. Adversarial Character Attacks [138] in the NLP

field revolve around changing one or more characters while maintaining the original intent

to a human annotator. Adversarial Attacks using character attacks [139] attempt to direct

the decision boundary of the underlying detector in a way that is beneficial to the attacker.

For a SA system, this would use substitution attacks to avoid the detection of negative or

toxic comments in a social media environment. If bad actors understood how to substitute

common character and reduce their toxicity, then it becomes easy for them to use hate speech

(as an example). There are two areas in the character attack space applied here: substitution

and duplication. The example Attack system demonstrates simple substitution attacks:

1. Create a dictionary that contains vowel to alpha-numeric (for instance e:3)

2. For every vowel in the sentence, replace a single instance from the string and store in

an array

3. For every string in the array, evaluate sentiment through public-facing API

4. Evaluate the number of times a single character changed the score or decision made

by the black-box model
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And, for the duplication Attack, the same process is replicated with only a change in

the attack vector:

1. Create a dictionary that contains vowels to duplicated vowels (for instance e:ee)

2. For every vowel in the sentence, replace a single instance from the string and store in

an array

3. For every string in the array, evaluate sentiment through public-facing API

4. Evaluate the number of times a single character changed the score or decision made

by the black-box model

Given the nature of black-box models, each API only provides the probability of toxicity

or polarity without additional feedback. With Sentiment140, we are provided three states

of polarity: negative, neutral, and positive. There are no percentages of each classification;

rather the API simply provides the highest binary classification value. It is only possible

to show if a classification can move from one category to another. With Perspective, the

actual probability of each classification category is available for each request. Therefore, it

is possible to see the decrease or increase in confidence for a given input. The Evaluation

section shows the baseline and delta results for each of the attacks.

5.3.4 Hello World of the BAD Architecture

Figure 5.2 shows how the system will operate on the simplest incoming toxic phrase.

In this example, the ’I hate people’ example demonstrates the Build, Attack, and Defend

pipeline. Applying the Perspective API, this string scores an 82% toxicity and negative score

on the Sentiment140 system. When a Red Team attacks the model with a single character

substitution attack of ”a” to ”@”, the toxicity of the comment goes down to 30%. The Green

Team’s goal is to break apart each attack vector and create a more robust system against

adversarial attacks. The Defend section will cover possible strategies for combating simple

attacks.
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Figure 5.2: Hello World of Build, Attack, Defend Development Architecture

5.3.5 DEFEND System from Targeted Attack

The Green Team will summarize the baseline and adversarial results to create a defense

plan. Typically, there are simple ways to mitigate attacks. For example, a back-end developer

can create limitations around what types of requests can be made. Take the commentary

systems on a forum: if they use the Perspective API, it would be straightforward to add a

few rules to reduce the ability of an attacker to use substitution attacks (Evaluation section

covers a basic implementation). In practice, there are the following crucial steps:

1. Detect: Detect and catch the adversarial text

2. Expand: Expanding the text to include the possible meanings of the originator

3. Defend: Process each result and store for future analysis

4. Evaluate: Check each result and return tune how the team wants the system to respond

to attacks

43



This process cannot stay stationary. Bad Actors are constantly working to find new

and inventive ways to break ML systems. The goal of this process is to create development

architecture that can be deployed ML model development. In our Evaluation section, we

focus on SA and the way we use this system to evaluate the Sentiment140 and Perspective

API systems.

5.4 Evaluation

Each API provides the ability to send one query per second (1 QPS). There are limi-

tations to the number of adversarial examples we could present to the Perspective API for

instance which had a limit of 100 one-second queries. In this instance, a local model is

trained and a model is attacked. Then, the potent attacks that fooled the local SA system

are used against the black-box model. In practice, adversarial examples were drawn from the

training set as a sample of the one hundred top toxic examples for each category of JigSaw

Toxic Bias dataset. There is a section for Sentiment140 and Perspective where the Build,

Attack, Defend Architecture is explained in detail.

5.4.1 Sentiment140

The Sentiment140 API has a large limit to queries (approximately 5000 items per query

per second). There is a maximum limit of around 800,000 scored queries in a given time

period (experimentally derived). Experiments are limited to a few permutations of substi-

tution and insertion attacks per input row. In the Build section, the baseline results of the

Sentiment140 model with the JigSaw Toxic Bias dataset are covered. In the Attack section,

experimental results with simply applying substitution and insertion attacks are explored.

The baseline experiments for the JigSaw Toxic Bias dataset will be paralleled between the

two systems - choose one hundred samples from each toxic category with a 50% or above

toxicity and then attack the classification of each toxic row. For Sentiment140, we are given

binary results for each experiment. Every returned row provides a category of positive,
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Figure 5.3: Perspective API Performance Summary using the Build, Attack, Defend Devel-
opment Architecture

negative, or neutral. The baseline results are seen in Figure 5.3 in the Build Section. The

classification binary score for these toxic comments is the majority in the neutral and posi-

tive categories. For example, 69 percent of the threat category is classified as either neutral

or positive. As a note, each toxic input has been annotated by a human to include the label.

Sentiment140 does still miss out on a large chunk of the proper classifications of negative for

each one of these input rows. The next experiment will show how substitution attacks push

the decision boundaries for this model in a different direction.

ATTACK: Results with Substitution Attacks

The substitution attacks had an interesting effect. The neutral classifications almost

universally transformed into negative sentiment. The threat category, for instance, went

from 31 percent negative to a 69 percent negative for the one hundred samples included

here. In Figure 5.3, the massive change in the polarity is evident in each category. If the

goal was to simply push all polarities to positive, then additional experiments with additional

techniques would need to be explored. This work, demonstrates two things:
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1. The Sentiment140 algorithm, with this open API, is not well equipped to deal with

the bias inherent in modern social media commentary.

2. The decision boundary between neutral and negative is much closer than anticipated

with simple substitutions changing neutral polarity into negative polarity.

Sentiment140 was never meant to work with social commentary with this level of toxic

bias. Since these are black-box models, there is no opportunity to improve the performance

of the underlying system. This highlights the core advantage of applying this architecture.

With simple access, the underlying ML model can be evaluated and tested. For defense,

both APIs are covered under the Adversarial Attack Surface Reduction section.

5.4.2 ATTACK: Results with Substitution Attacks

The Perspective API allows one text field per query per second. There is a limit to the

number of daily queries but it was not a problem in the experiments. The first step is to

create a baseline performance on 100 examples from each of the toxicity categories. Then,

attack the same sample of 100 with character attacks (alpha-numeric and duplication) in

each category to understand how much degradation can be introduced with simple character

attacks.

BUILD: Baseline JigSaw Performance with Perspective

There are two separate experiments run during the baseline stage. A baseline of pro-

duction models against the JigSaw Toxic Bias data is evaluated. This data is pulled as a

sample, straight from the training set, with each toxic category measuring at 50% toxicity

or greater for that category (same process as with Sentiment140). If the model were able to

classify them appropriately, every one of the examples we pulled would be toxic (red). Our

results, shown in Figure 5.4, show that there is still work to be done in terms of getting full

coverage of even just the hundred selected training examples.
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Figure 5.4: Perspective API Performance Summary using the Build, Attack, Defend Devel-
opment Architecture

ATTACK: Results with Substitution Attacks

First, for every vowel, substitution and duplication attacks at each vowel position are

applied. The Perspective API is robust to these types of simpler attacks, as the delta between

the original score and the attacked score was less than 5% in the experiments. Only a single

example went below 4% delta in its delta score. This portion of the attack space will need

more exploration. One can think about the single character changed once in a string as a

single-pixel attack. Only a single pixel is being changed throughout the entire picture. There

is another approach to the single character problem - in this attack, consider changing the

same character and replace or duplicate it at every instance. The analog to this attack would

be changing a certain color pixel throughout the entire image. This exercise is left for a later

date. The final experiment, highlighted in Figure 4, explores changing vowels to an alpha-

numeric or simply duplicating them. Substitution and Duplication attacks are discussed

throughout the literature as rudimentary but effective tools when surveying the adversarial

surface of these models [22]. In this experiment, the focus was on vowel substitution and

duplication attacks on the 100 samples on a per-category basis. In every case, there was at

least one example of a -70% reduction in the toxicity score, effectively taking the sentiment
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from toxic to non-toxic. By using the Attack Surface Reduction steps for our Defend step, it

is possible to completely negate the original attacks demonstrated in the last two sections.

5.4.3 ATTACK SURFACE REDUCTION FOR BOTH APIs

For each of the substitution attacks, there are simple code changes offered for filtering

each of these results. In fact, by utilizing these filtering techniques, it is possible to restore

the original classification accuracy of the system. Unfortunately, this work does not focus

on improving the black box models. The goal is to demonstrate vulnerabilities inherent in

these systems and propose an architecture for production systems to protect the efficiency

of their systems.

Attack Surface Reduction: Substitution Attacks

This work features two specific types of character attacks - replacement and duplication.

The focus is limited to English in this effort although these methods should translate to other

languages. First, for detection, the user can detect all non-English words. Multiple models

will provide the nearest word or words in a corpus of available words. A simple Defend

preprocessing pipeline before inference would be as follows:

1. Find all non-English words by using standard NLP libraries such as NLTK [26]

2. For each non-English word, find nearest neighbor words using algorithms such as

Word2Vec [27]

3. Create an array of text with the non-English words replaced with the top N candidates

4. Evaluate the array of text and take the max or min score for classification

In practice, there are commonly misspelled words that can be safely ignored. Using this

Defend pipeline can increase the number of candidates for inference but provides robustness

to the attacks shown in this chapter. As another method, the systems can maintain a set of
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common substitutions such as alpha-numeric substitutions using alpha-numeric characters

or other simple dictionary lookups. Each detected ”Attack” should be stored and evaluated

by the Green Team periodically to ensure that the pipeline is working as designed.

5.4.4 Limitations

In each example, the attacks were simple character to character mappings. Zero-Day

attacks in the cyber realm refer to attacks that are not yet protected against and allow a

hacker unrestricted access to a system [30]. In the ML realm, there are adversarial ‘zero-day’

attacks that are manipulating the output of the model. These Zero-Day attacks are difficult

to anticipate and protect against in practice. This architecture currently relies on known

attacks on models for protections and does not actively search an adversarial surface for the

model.

5.5 Chapter Summary

This work demonstrates that deployed sentiment models are susceptible to simple sub-

stitution attacks on single characters and can be effectively defended from each substitution

attack using the BAD architecture. Because these substitutions are simple character to char-

acter mappings, they are mitigated by detecting non-English words, creating candidates for

sentiment analysis, and taking the maximum toxicity in our examples. Further work in this

area will focus on looking at model attacks like weight poisoning attacks on classification

systems.

Weight Poisoning Attacks on Pre-trained Models [28] is a recent paper that uses vulner-

abilities in pre-trained models and strikes me as dangerous to all black box models that are

not actively defending against those types of tasks. A future direction could be to develop a

data augmentation method or model structure that makes weight poisoning attacks reduces

the efficacy of weight poisoning attacks, During the defend phase, automated methods for
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detecting and correcting poisoned words could use transformer models to find and propose

corrected word.
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Chapter 6

Automating Defense against adversarial attacks: discovery of vulnerabilities and

applications of multi-spectral imagery to protect deployed models

6.1 Introduction

Image classification is a common step in image recognition for machine learning in over-

head applications. When applying popular model architectures like MobileNetV2, known

vulnerabilities expose the model to counter-attacks, either mislabeling a known class or al-

tering box location. This work proposes an automated approach to defend these models. We

evaluate the use of multi-spectral images to combat adversarial attacks. The original contri-

bution demonstrates the attack, proposes a remedy, and automates some key outcomes for

protecting the model’s predictions against adversaries. Similar to defending cyber-networks,

we combine techniques from both offensive (“red team”) and defensive (“blue team”) ap-

proaches, thus generating a hybrid protective outcome (“green team”). For machine learning,

we demonstrate these methods with 3-color channels plus infrared. The outcome uncovers

vulnerabilities and corrects them with supplemental data inputs commonly found in overhead

cases particularly.

Image classifiers use deep neural networks to derive features and learn class labels for

each dataset. In recent literature, adversarial patch camouflage has been used to evade de-

tection from machine learning-based detectors. These works use knowledge of the underlying

model architecture to create specialized patterns and masks that perturb or erase the nec-

essary feature patterns for the classifier. This work proposes the use of Multi-INT imagery

to overcome adversarial attack patterns. For instance, a vehicle draped with an adversarial

patch can provide a heat signature in a repeatable, recognizable pattern. A classifier that

uses both visible and infrared-based channels can distinguish the vehicle in experiments.
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Figure 6.1: Vehicle Detection in Aerial Imagery (VEDAI) sample data showing different
vehicles in different orientations from an overhead visible sensor.

6.1.1 Vehicle Detection in Aerial Imagery

The VEDAI or Vehicle Detection in Aerial Imagery dataset is a benchmarking dataset

with multiple channels looking at the same locations. The dataset includes nine vehicle

classes that can be challenging to distinguish for computer vision applications. A critical

aspect of this data is the rectified Infrared images included inside of this dataset. The

original paper by Razakarivony and Jurie highlights the use of common machine learning

applications to identify the classes inside of the dataset [100]. In this chapter, the goal

is to extend previous work by protecting a common image classification machine learning

model from adversarial attacks. Three primary channels are included in the dataset: visible,

infrared, and gray. For the experiments included in this chapter, the Visible channel is also

split into its principal components of red, green, and blue channels to explore the color

dependence of the modeling.
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6.1.2 MobileNetV2

MobileNetV2, Inverted Residuals, and Linear Bottlenecks is a recent architecture im-

provement to the MobileNet design [85]. The newest paper offers greater accuracy vs. speed

and accuracy vs. size comparisons to other state-of-the-art models. Tensorflow and other

machine learning libraries offer methods for training and shrinking the models down for

deployment on Single Board Computers/ASICs. This model is an ideal benchmark for

exploration in the overhead imagery world given its superior accuracy, size, and compute

requirements.

6.1.3 Adversarial attacks

Adversarial attacks are attacks on machine learning models that can manipulate or avoid

detection. These algorithms are typically divided into two types: white-box and black-box

attacks. With white-box attacks, the attacker knows the underlying training dataset and

model architecture. Conversely, with black-box attacks, the attacker does not know any

information about the underlying machine learning models. Universal black box attacks are

rare, especially those that can work across multiple model types in a particular machine

learning field. For the experiments conducted here, the focus is on using White box attacks

with a library called FoolBox. FoolBox uses the base machine learning model and dataset

to create tailored attacks to that model [15].

The FoolBox library has access to state-of-the-art adversarial attacks which including

six types used in the experiments:

• FGSM: Fast Gradient Sign Method [3]

• FGM: Fast Gradient Method [140]

• PGD: Projected Gradient Descent [141]

• PGD (LinfPGD, L2 PGD): Linf/L2 Projected Gradient Descent [142]
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Figure 6.2: An example of the mask generated by Foolbox for each of the attack types. For
each attack, on the left is the original image, the middle is the attack mask, and the right is
the combination of the original and masks.

• L2DeepFool [143]

6.1.4 Securing Deployed Models Against Adversarial Attacks

Recent papers focus on securing models during the development process. Green team

machine learning creates a process called “Build, Attack, Defend” to evaluate the machine

learning models during the development process and begin protecting against red team style

attacks on the models [144]. Attacks are increasingly sophisticated with their ability to

detect the underlying model architecture and therefore, exploit vulnerabilities in these mod-

els. Decision-making applications, like Automated (or Aided) Target Recognition (ATR),

requires the ability of developers to reduce adversarial risk in their systems. Using a “Build,

Attack, Defend” development process can lead to more secure models before deployment

into production.
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6.2 Methods

Automating protections for machine learning models involves a few steps. First, an

automated evaluation pipeline should be created to evaluate the performance of the models

against adversarial attacks. The methods section will cover the model types and adversarial

attacks, the evaluation framework, and simple combinations of Multi-INT imagery to protect

the models. “Build, Attack, Defend” systems for adversarial defenses are a primary inspira-

tion for this work. The experiment creates baseline models, evaluates those models against a

suite of adversarial attacks, and then proposes changes to defend the models from incoming

attacks. A tiered protection system is introduced to segment the protections needed for the

models.

To understand model heritage, the experiments must observe the underlying training

data and the model architecture. There are two primary questions:

• Is the deployed model trained on custom or novel data?

• Is the model trained from common datasets found in open source?

The concern with “download and deploy” strategies are that an attacker already has

access to the architecture and the weights of the model – these types of attacks are called

white-box attacks. It is much easier to construct attacks when the adversary has access to

this information. In contrast, without access to the model or data (black-box attacks), the

attacker will construct generic attacks and probe the model. With image classification, it is

much more difficult to get feedback on what objects are being classified and tracked when

there is no direct access to the model. In black box to white box, Ciolino et al. (2021)

were able to detect the underlying learner architecture above 95% confidence [145]. Once a

model type like MobileNetV2 is detected, a set of structured attacks can be evaluated on

the models. The experiments included in this work will only focus on covering white-box

attacks.
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Figure 6.3: A tiered structure approach to adversarial defenses for machine learning models.
Each tier represents additional work to protect the model from outside attackers.

The evaluation framework contains a workflow seen in Figure 6.3 that provides an

adversarial attack surface for a given model. There is a static set of modified images that

are provided to the model and the detections are provided back for evaluation. Each set

of images probes different adversarial susceptibility for the model. The product from this

step is a report that details the susceptibility of the model to specific adversarial attacks

– the adversarial surface. This is visualized with a Sankey diagram to highlight overall

vulnerabilities for an analyst.

After the adversarial surface is identified, the last tier is to retrain the model to re-

duce the efficacy of those attacks. There are three tiers currently in development for this

automated exploration system. Each tier represents a way to secure the model. With every

additional tier, there is a degree of complexity to protecting the model. Tier 1 protections

involve evaluating a set of models and providing recommendations on which models are least

susceptible to attack. Tier 2 takes the models and benchmarks them against a wide range of

attacks to understand vulnerable areas and provides a report back on the adversarial surface
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of the current model. Finally, Tier 3 protections will automatically do architecture search

and parameter tuning to reduce the overall efficacy of the test quite until user-defined thresh-

olds are met. Recent work presented in adversarial camouflage demonstrates an evolving set

of threats for the overhead machine learning [146]. This proposed tiered protection system

provides a structured approach to vetting and fixing known issues. This work focuses on

designing a system for aerial imagery that can provide Tier Level 1 results for Automated

Protection of these machine learning systems. The underlying AI system will recommend

which models provide the best robustness to adversarial attacks between all the methods and

channels surveyed. The advantage of this exploration is that many overhead systems will

have access to at least one visible channel and one additional imagery channel for detection.

In Tier 2 experiments, this work demonstrates the adversarial surface of the models trained.

6.3 Results

The Tensorflow-Lite library offers simple MobileNetV2 training classes for easily build-

ing, benchmarking, and deploying classification models on low-end computing devices [147].

Using this library, each model is trained on an individual channel (VIS, Gray, IR, Red,

Green, Blue) for 20 epochs with a batch size of 32. The images are 224 by 224, which is a

typical training size for deep classification models.

MobileNetV2 is a general use case tool for deep classification tasks and the parame-

ters can be tuned to provide the best performance. For this exploration, the experiments

minimized the number of perturbations to keep a level playing field between the different

models. Certain hyperparameters would provide advantageous against adversarial attacks.

These ablations are left for future work on aerial imagery.

6.3.1 Training and Test Accuracies

For the MobileNetv2 architecture in Table 1, the training accuracy for the models hovers

right around 90% for each of the channels and test accuracy is at the 80% mark. Delta
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Figure 6.4: Randomly selected samples from the dataset with predictions from the Visible
Model. The black predictions are correctly classified images and the red predictions are the
incorrect predictions with the selected class.

accuracy for each model is not more than 5% offering similar performance between channels

for the adversarial exploration.

Channel Training Accuracy Test Accuracy

Visible 90.5% 76.4%
Blue 88.1% 78.0%
Gray 88.7% 77.0%
Green 90.2% 79.8%
Red 88.7% 78.9%
IR 87.5% 73.6%

Table 6.1: Training and test accuracy for individual channels

6.3.2 Attack the models

The goal, in this section, is to understand the susceptibility of a model to attacks

generated specifically for it or by an attacker who used a different channel. For instance, if an

adversarial attacker used visible imagery as input to their attack generator, would the same

attacks translate to IR? Is IR more robust against attacks generated by certain channels?

This analysis explores the ability of an attack suite like Foolbox to create adversarial image
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Figure 6.5: Experimental Design for Foolbox Attacks on VEDAI dataset. A Foolbox Attacker
is trained on a single channel. The Foolbox model generates attacks for each channel and the
adversarial efficacy is measured as a delta accuracy from original model accuracy to attacked
model accuracy.

generators that can attack both their matched channel and the other models from the same

images.

6.3.3 Attacks Trained on a single channel and then used on all downstream

models

The general process for evaluating the adversarial surface has the following steps:

1. Select a Benchmark Channel for the Attacks to be based on (White Box Attack)

(a) For example, let’s select the Visible channel to train Foolbox.

2. Use the Adversarial Attack Generator to Attack the Benchmark Channel
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(a) The Visible Adversarial Attack Generator generates poisoned images and feeds

them into the Visible MobleNetV2 Model

(b) Measure the delta accuracy between the original inputs and poisoned inputs

(c) This is the benchmark data for Step 3 comparisons

3. Use the Adversarial Attack Generator to attack the other channels

(a) For each channel in [blue, green, red, gray, IR]

i. The Visible Adversarial Attack Generator generates poisoned examples of the

channel and feeds them to the channel model

ii. Measure delta accuracy from original samples to the poisoned examples run

through the selected model

4. Measure the Adversarial Surface of each model for each attack

This process provides a way to quantify the ability of each classification model to handle

adversarial attacks from the benchmark and attacks that were trained on similar data.

6.3.4 Observations

The output of the adversarial surface evaluation has two primary visualizations – the

overall surface and the per attack evaluations. Each one of these graphics shows the effec-

tiveness of an attack. FGM and FGSM attacks can be mitigated through the appropriate

selection of a model. For instance, a model trained on IR is resilient to attacks from FGM,

and FGSM trained attackers on any of the other channels. Figure 6.6 shows the adversarial

surface of the MobileNetV2 trained models against the Foolbox attackers.

6.3.5 Adversarial Transferability between channels

Transferability between the different imagery channels suggests that different colors

learn separate features within a given architecture. For the visible images, their network
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Figure 6.6: Adversarial Surface for MobileNetV2 Models trained on VEDAI dataset. Pas-
sive Measures included recommending a particular channel as mitigation. Active Measures
require augmentation, architecture changes, and other changes to the modeling process to
overcome the attacks.

will also learn individual features from each channel and use those features to distinguish

between classes. For the single-channel training, the model will only have access to a single

channel’s features and will learn different weights. In the experiments, there are a few notable

outcomes:

• Attacks trained with visible images and FGSM show the least reduction in model

efficiency

• FGSM and FGM had the least successful attacks

• Four of the six attack types resulted in 100% detection in classification accuracy for

most channels

The four attack methods that require active measures in the development process are

left up to future work on this topic.
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6.3.6 Recommendations from Adversarial Surface Data

The passive measure attackers can be mitigated through recommendations on available

models evaluated. Because there are six available models, it is possible to use the adversarial

surface to create a set of recommendations for which model should be used to protect against

these types of adversarial examples. In this evaluation, FGSM and FGM are identified as

attack sets that can mitigate by recommending an image classifier trained with the IR band.

6.4 Extending Work from this chapter

Future work will focus on automating an end-to-end pipeline from dataset to model

evaluations to a more robust model. Each of these individual pieces alone can protect a

model. An automated system would optimize the model for maximum robustness to external

attackers. There are trade-offs to a more robust model including complexity, accuracy, and

explain-ability. A sample trade-off analysis can be included with the results.

6.5 Chapter Summary

This work demonstrates the ability to protect machine learning models for overhead

imagery by simply using a structured approach to evaluate and reduce the adversarial surface

of the machine learning model. The experiments demonstrate a reduction in the efficiency of

adversarial attacks while maintaining original performance benchmarks. One critical issue

to address from this work is how to reduce the computational burden of retraining the

networks for every additional adversarial perturbation? In addition, further automation to

protect models using the adversarial attack surface will be included in future works.
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Chapter 7

A Modified Drake Equation For Assessing Adversarial Risk To Machine Learning Models

7.1 Introduction

Machine learning models present a risk of adversarial attack when deployed in pro-

duction. Quantifying the contributing factors and uncertainties using empirical measures

could assist the industry with assessing the risk of downloading and deploying common

model types. This work proposes modifying the traditional Drake Equation’s formalism

to estimate the number of potentially successful adversarial attacks on a deployed model.

The Drake Equation is famously used for parameterizing uncertainties and it has been used

in many research fields outside of its original intentions to estimate the number of radio-

capable extra-terrestrial civilizations. While previous work has outlined methods for discov-

ering vulnerabilities in public model architectures, the proposed equation seeks to provide

a semi-quantitative benchmark for evaluating and estimating the potential risk factors for

adversarial attacks.

This chapter explores a simple version of a probabilistic equation for machine learning

(ML), specifically to defend trained models from adversarial attacks. Probabilistic frame-

works like the Drake Equation (predicting the number of alien civilizations [148, 149]) offer

a heuristic for traditional factor analysis, particularly helpful in the face of uncertainty. In

that spirit, we adopt the basic formalism of its original population-based assessment by in-

cluding both the leading factors and their corresponding loss fractions. The goal is less to

provide a new ML risk model as much as to explore the practical factors needed to consider

before fielding a new model [150]. Other work has detailed already much of the successes and

failures in defending predictive models: 1) diversifying or augmenting training data [151] 2)

ensembling and model voting [152] 3) obfuscating [153] 4) active learning [154] 5) protecting
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model descriptions or firewalling (e.g. nation-state security) [155] All these strategies (plus

many others not included here [150]) should appear in one or more proposed terms for this

modified Drake Equation.

7.2 Modifying the Drake Equation

The format of this chapter is first to present the main factors for model defense, followed

by an explanation and examples to support each included factor. We explore the interpre-

tation of each factor where possible with an illustrative case mined from the AI Incidents

database [156]. It is worth noting that other than these early efforts [156] to catalog adver-

sarial attacks, less research has previously attempted to count or quantify systematically the

failures of a given machine learning model in the wild. For example, should an adversarial

attack be scored based on its frequency, severity, or difficulty to patch once a vulnerability

gets discovered? This paucity of data further motivates the development of a modified Drake

Equation, principally as a heuristic framework for understanding contributing factors and

assessing their uncertainties. The structure of the chapter isolates each factor in reference

to its more familiar population-based input, so for instance, the time that an attacker might

probe a model’s vulnerabilities maps to the original Drake Equation’s reference to the time

that a radio-aware civilization might broadcast its identity. An appealing aspect of the orig-

inal format stems from its hierarchical factors from large to small fractional contributions as

they change over time. One ultimately wants to understand the dependencies while solving

for the machine learning model’s attack surface, as measured by N, the number of successful

adversarial attacks.

To defend a machine learning model, the number of successful adversarial attacks, N, is

proportional to the model’s size, R, as measured by its popularity (e.g. YOLO), sponsoring

enterprise size (e.g. Microsoft, Google, Facebook), or monoculture of adoption (e.g. convo-

lutional neural networks). The proposed modifications to the Drake Equation are described

below:
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N = R ∗ fp ∗ ne ∗ fl ∗ fi ∗ fc ∗ L

N = the number of successful adversarial attacks

R = average enterprise size

fp = fraction of models published, named, open sourced, or fielded in the wild

ne = average number of engineered parameters (memory,billions of parameters)

fl = fraction of learning ratio,as training/test data or active hybrid feedback

fi = fraction of input supervisory and quality control steps

fc = fraction of completed queries that return detectable or logged answers

L = length of time that attackers can query without consequences or timeouts

7.2.1 R - Average Enterprise Size

In the original Drake Equation, this factor traditionally relates to a rate of new star

formation. We generalize the rate of new ML models created, R, by an aggregate of overall

enterprise size. This approach mirrors the literature on monoculture in computer operat-

ing systems (e.g. MS Windows) as a primary indicator to motivate cyber-attacks. The

corresponding figure in defending ML models derives from a similar feature, namely that

attacking large enterprise models like Google’s Perspective API and OpenAI’s Generative

Pretrained Transformer (GPT-3) is more likely than probing or disabling a smaller, private,

or novelty ML model.

One can hypothesize that the community’s attraction to leader boards [156] and state-of-

the-art (SOTA) competitions further drives the ML community to more singular ecosystems

that may prove more difficult to defend from adversaries than a diversified one. As a figure of

merit when describing the cyber-risks for a monopoly in operating systems [157], the entire

ecosystem may become unstable when the market share and global adoption reach 43%
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and more directed attacks garner hacker’s attention. One ML-specific metric of whether

a given type of neural network dominates its ecosystem can be approximated by search

trend monitors. For example, by using Google Trends [158], the current popularity of three

core approaches to modeling the neural architecture itself shows that convolutional networks

(CNN) capture 72% market share, compared to graph neural networks (25%) and capsule

networks (2%). An attacker that knows the unique weaknesses of CNNs (such as their

inability to grasp long-range spatial relations. complex hierarchies, and symmetries [?,159])

may profitably attack those specific design elements, particularly given their monopoly as

deployed models.

7.2.2 fp - fraction published, named, open-sourced, or fielded in the wild

In the original Drake Equation, this first factor in a hierarchical loss fraction stems from

the number of stars with planets. In an adversarial attack, this factor similarly appears at the

top of the hierarchy, namely how much is known about the model’s origins. The literature

spans model security from black-box (no knowledge) to white-box (full-knowledge), such

that given a known or discoverable model structure, the attacker may also potentially know

the weights and training dataset. This is most well-known in the release of GPT-2 versus

GPT-3, where for some time the GPT-3 API was not available to researchers. When Open

AI initially open-sourced its models, the company furthermore specifically withheld its larger

one (1554M) to suppress the possibilities for abuse.

7.2.3 ne - average number of engineered parameters

In the original Drake Equation, this second factor considers the number of planets

capable of supporting life. In an adversarial attack, the relevant context would include model

complexity, either as its memory, number of parameters, or layers of network architecture.

A breakdown of computing ne for a CNN could be as simple as a baseline of the number of

parameters or number of layers. For object detectors, the relevant complexity often arises
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from the way the model searches for its characteristic anchor sizes and bounding boxes,

whether multi-stage like a region-proposal network (R-CNN) or single-stage frameworks like

YOLO.

7.2.4 fl - fraction of learning ratio

In the original Drake Equation, this third factor refers to planets that spawn life at

some point. In an adversarial attack, this fraction includes losses for well-trained models

that possess large and diverse data. Previous work has proposed using Akaike information

criterion (AIC) and Bayesian information criterion (BIC) to evaluate model performance

against dataset diversity and this style of metric may provide a baseline for this factor [160].

7.2.5 fi - fraction of input supervisory guidance

In the original Drake Equation, this fourth factor addresses the rise of intelligent life

from more primitive forms. In the machine learning context, this fraction includes the

standard quality checks that separate a fieldable model from an experiment or lab bench

demonstration. This factor corresponds to the breakpoint in many adversarial defenses,

such that a prototype moves into production based on disciplined quality checks. Has the

model seen out-of-vocabulary terms if a natural language processor? Is there a high fraction

of augmented examples for each class? One traditional image approach augments training

data with more diverse object types, usually including different lighting, viewing angles, or

noise. Paleyes, et al. [161] describe 38 factors attacking 15 systems that contribute to a failed

productization of an ML model. At any one of these steps, ranging from data-collection to

performance monitoring, there exist adversarial attacks that can poison the entire process.

Wang et al. [9] define in detail the adversarial attack to each of these systems.
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7.2.6 fc - fraction of completed queries that return detectable or logged answers

In the original Drake Equation, this fifth factor delineates the rise of technological

capabilities such as radio transmission that travels at the speed of light and thus renders a

distant galaxy observable. For adversarial attacks, this fraction defines the likelihood that

an outside observer can understand the model type, its sensitivities, or its vulnerabilities.

Particularly in the black-box approach where an attacker must launch a question-and-answer

format to understand how the model works, this fraction restricts the obtainable universe of

effective attacks. In experiments for text and image classifiers, Kalin, et. al [145] found that

model architectures are easily discovered with strategic probing if the architecture is public.

In this new equation, fc is related proportionally to fp factor.

7.2.7 L – Length of time that attackers can query without consequence or

timeouts

In the original Drake Equation, this final factor introduces the notion of time, par-

ticularly how long a civilization might survive its technology before self-destructing or its

evolutionary time to propagate signals to an outside observer. Like the numerical count of

accepted API requests (fc), the length of time to automate or web-scrape the API with new

queries offers a secondary line of defense not in space (count) but in time. Despite a more

mature field, software engineering for APIs still suffers from vulnerable code being written

into production systems [162].

7.3 Missing but not forgotten

This modification of the Drake Equation focuses on metrics that can be directly mea-

sured in a production environment. Missing elements in this heuristic might include ad-

ditional pre-production factors for diversity, size, and quality of the input data, training

lengths (epochs), and other historical elements that may or may not propagate usefully to

the final model and its vulnerabilities. The collected metrics can then be used to refine
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the model performance against known benchmarks. For instance, common model types are

easily discoverable via their input data and/or architecture [145].

7.3.1 Axiom 1: Architecture and Dataset Metrics are related

The Learning Ratio, Parameters, and Guidance variables stem from the architectural

design of the model. This equation is divided into two primary Adversarial fractional com-

ponents: Architecture and Dataset. For teams to use the likelihood of successful adversarial

attack assessment to improve their models, they will need to understand the contribution of

architecture and dataset design to the overall adversarial risk. The first fraction defines the

key parameters related to architecture and their overall contribution to adversarial risk:

AdversarialFractionarchitecture =
fp ∗ ne ∗ fl

N

The second fraction defines the dataset metrics responsible for dataset contributions to

adversarial risk:

AdversarialFractiondataset =
fi ∗ fc ∗ L

N

7.4 Experiments

This framework is designed to work on large and small works. In the following exper-

iments, the focus is on baselining the effective ranges of the factors, showing sample risk

factors for common model architectures, and understanding the relative effect each factor

has on itself and the risk factor.

7.4.1 Experimental Design

Each factor needs to be defined in terms of operating bounds to apply this new frame-

work to current models. For the experiments, the following operating ranges for the variables
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were chosen to highlight the current capabilities that exist within the machine learning com-

munity today:

• R - Average Enterprise Size

– Range [0, n authors]

– Enterprise Size is computed as the Number of Authors as it can be difficult to

find the actual number of employees in a particular organization

• fp - fraction published, named, open-sourced, or fielded in the wild

– Three values: Not Published 0.0, Published but not open source 0.5, Published

and Open Source 1.0

– For example, GPT-3 is fielded in the wild but is not open source: 0.5

• ne - average number of engineered parameters

– Stepped Range [0,1] based on Number of Model Parameters

• fl - fraction of learning ratio

– Stepped Range [0,1] as a relative factor to State of the Art (SOTA) performance

– For example, the first benchmark in the model category is 0.1 and SOTA is 1

• fi - fraction of input supervisory guidance

– Range [0,1]

– Is training data sufficiently large and diverse?

• fc - fraction of completed queries that return detectable or logged answers

– Range [0,1]

– Estimated High Query Rate on the model
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• L – Length of time that attackers can query without consequence or timeouts

– How long has the model been in public? Years [0, n]

As with the original formulation of the Drake Equation, each parameter represents an

estimate of best guesses for factors in the wild. This modification to the Drake Equation

will provide organizations the ability to benchmark, evaluate, and track the adversarial risk

of their models in production. As a team observes the adversarial risk reduction on their

model, there are factors within this equation that can directly be attributed to that reduced

risk.

7.4.2 Empirical Results

Using the factor ranges described in the experiment design, six popular models were

estimated as samples of how to apply this formulation. Figure 7.1 is sorted from top ad-

versarial risk to lowest risk. In the example of ‘MyModel’, the model is not deployed and

therefore does not contain adversarial risk from outside actors.

When exploring this formulation, it’s incredible to see that newer, larger architectures

are less vulnerable than older models. This is on purpose though as older models will have

more vulnerabilities appear since they have been in circulation longer. There are further

improvements that could be made to these experiments – for instance, the exploration of

Figure 7.1: Summary of Models Explored with Modified Drake Equation. Six Popular model
architectures are benchmarked along with a custom model based on MobileNetV2’s design.
The table is sorted by estimated Adversarial Risk N in the last column.
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architectures could be split into text and computer vision. Each category of model architec-

tures can have its boundary conditions. For instance, transformers technologies like BERT

and GPT have revolutionized NLP problems over the last few years. Their properties may

warrant a deeper exploration of parameter dependencies.

7.4.3 Correlation Analysis

The next experiment in this work is to understand the dependency of each factor on

adversarial risk. Building a correlation matrix using the assumptions above, Figure 7.2 shows

the relative importance of each factor to itself, the other factors, and to adversarial risk.

Within Figure 7.2, there are a few surprising things that come out of the correlation

analysis.

Figure 7.2: Cross-correlation of variables to the Modified Drake Equation including Adver-
sarial Risk
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Here are the key observations:

• The most correlated variable when predicting adversarial risk is fraction of the learning

ratio (0.735)

• The fraction of learning ratio is highly correlated to the number of parameters

p(fl, ne) = 0.848

• The fraction of input supervisory guidance is highly correlated to fraction published

(0.788)

• The fraction completed queries is highly correlated to fraction published

p(fc, fp) = 1.000

Intuitively, the fraction of learning ratio being most correlated to adversarial risk represents

that the most popular models have the most people trying to attack them. The goal is

to track and reduce the adversarial risk to a model and this framework provides a starting

benchmark.

7.5 Summary and Future Work

This work supports an established heuristic framework in analogy to the traditional

Drake Equation. This simple formalism amounts to a summary of relevant factors. The basic

equation has been modified elsewhere for detecting biosignatures in planet-hunting (Seager

equation [163]), sociology (best choice problem [164]), infection risks [165], AI singularity

[166], social justice [167], and other diverse probabilistic assessments [168]. Ultimately, its

main purpose follows from assessing the multiple uncertainties that may vary by several
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orders of magnitude. For example, as ML builders consider whether to privatize or to open-

source their models, they may intuitively favor one course over another given a perceived risk

for model compromise. Is it true in practice that privatizing a model lowers the risk, or does

it increase the attack surface because the model never gets hardened by peers? One would

like to provide a framework for these important decisions and assist the ML community to

identify the data needed for sensitivity analysis and the evaluation of consequences.

The biggest challenge in finding novel utility for this framework shares much in common

with Drake’s original notion. How to quantify each factor? What if the factors show strong

correlations? How do the factors change with time, particularly if both the builders and

attackers modify their behavior? What are the appropriate units to assess ML risks, either

as the number or severity of adversarial attacks? One informative output that previous

technical papers often ignore in assessing model risk is the scale of the overall ecosystem

(R). In the literature for cybersecurity, for example, the monoculture aspect for operating

systems has proven most predictive of the next generation’s attacks. In this view, the

SOTA leader boards [156] might benefit from encouraging a more diverse model ecosystem,

such that niche YOLO attacks cannot propagate throughout the whole ML community and

its applications, particularly when a few fractional percentage improvements separate the

field into universal adoption strategies. Future work should highlight the data sources for

evaluating each factor. For instance, the publications dataset from Cornell’s arXiv supports

extensive topic analysis for extracting the popularity of ML models, their relevant attack

methods, and promising defensive styles [169]. Classification methods for attack types [170]

may also guide the practical counting or scoring for the universe of adversarial ML threats.
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Chapter 8

Using Unstructured Text Narratives to Correct Work Unit Codes in the Wild from

Collection to Decision

8.1 Introduction

The lack of accurate Work Unit Codes (WUC) in aircraft maintenance records hinders

logistical improvements given current practices of manual, free-text narratives which rou-

tinely suffer from natural language challenges, misspellings, and undocumented flight line

jargon. This work uses recent advances in machine learning (ML) to score the translation

of unstructured text narratives against ground truth data to correct WUCs in the field.

Throughout this evaluation, a set of experiments compares dictionary development of pre-

dictive keywords, statistical feature generation, and modern word embeddings pre-trained

on a much larger text corpus to evaluate effectiveness of these methods on free form text

from 10+ years of maintainer-entered records. Given the diversity of the labels, we define

and implement a two-stage decomposition of the WUC using 2-character prediction, followed

hierarchically by further sub-system and location finders. Where possible, meaningful, or

explainable rules are extracted to guide future WUC implementations. This work focuses

on a dual delivery method – as a production application programming interface (API) for

integration into end user clients and production deployment in a multi-customer Business

Intelligence solution. This methodology supports maintainers from data collection to main-

tenance leadership decision making.

Aircraft fault narratives entered by flight line managers offer valuable operator history of

inspections, maintenance, and fleet readiness metrics. As a standard part of Department of

the Army (DA) Form 2408-13-1, Aircraft Inspection and Maintenance Record, these manual

entries report maintenance, repair, removal, and replacement data on helicopter systems,
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subassemblies, and components. The fault narratives are often the only record from which

to infer important logistical indices for aviation reliability, availability, and maintainability

(RAM), which in turn affects all aspects of tactical logistics operations including metrics

for mission, cost, and safety. Natural Language Processing (NLP) methods have brought

notable successes when applied in other fields for text classification problems. One challenge

in applying these advanced methods to fault narratives stem from their multi-step catalog

of unique errors: misspellings, repair ambiguities, undocumented abbreviations, inconsistent

jargon, and record redundancies.

The Work Unit Code (WUC) correction problem affects past, present, and future RAM

logistics and manpower maintenance hours assigned to each system fault. This dual problem

of classifying unstructured text and recoding ambiguous or incorrect WUCs thus frames the

current work to provide predictors or decision variables that might guide automated WUCs

that match best, relevant practices. Automated Coding systems are heavily researched for

the medical field and represent a significant body of research to pull from. The approach to

this problem is unique in that the models are developed at the system level – each model is

optimized for the text narrative in that system’s domain.

8.2 Background

The military uses a structured, hierarchical mixed character code to describe the main-

tenance and work done on an aircraft, referred to as a WUC [171]. In the Army, WUCs

are standardized to individual aircraft weapon system documents called Legitimate Code

Files (LCF) [171]. From these documents, organizations customize their WUC structure to

align with any unique maintenance and activities they perform that are over and above the

standard conventions for that aircraft weapon system. There are two key components to

understand here - the WUC and the logistics information systems (LIS) that collect this

data. The Army collects aircraft maintenance and logistical information via a LIS known

as Aircraft Notebook (ACN), a transitional system from the Unit Level Logistics System –
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Aviation (ULLS-A), to the Global Combat Support System – Army (GCSS-A) [172]. We

discuss these domain-specific areas first, followed by a discussion of Automated Coding with

ML in other domains, and conclude with a brief background of the Automated Machine

Learning (AutoML) methods used in this work.

8.2.1 Army Aviation Maintenance Work Unit Codes

The Department of Defense MIL-STD-780G(AS) prescribes the application of the WUC

system and method of implementation for identification of, and reference to, maintenance and

logistics touchpoints on a major weapon system. WUCs serve as hierarchical codes, moving

from macro to micro levels, for the overall piece of equipment, its components, and their

subassemblies [171]. As a relevant, discrete example, the aviation platforms modeled herein

all begin with two-character, system-level WUCs: 00-aircraft, 02-airframe, 03-landing gear,

04-powerplant, and so forth. To notate a higher level of fidelity or granularity, characters are

increased out to a full 11-character representation, in some cases. For example, the WUC

04A01C09G represents the 7th disk compressor on the helicopter engine as it moves from

04-powerplant installation to 04A-gas turbine engine, assembly through 04A01-compressor

section to its most granular state as an individual compressor disk [172].

8.2.2 Army Aviation Maintenance Data Collection

The Army’s prescribed methods for collecting and logging maintenance and logistics

activities on aircraft weapon systems center on the use of digitalized DA Form in the 2408

series [172]. The primary forms used to document fault narratives and corrective actions are

the DA Form 2408-13-1, Aircraft Inspection and Maintenance Record, and its supplemen-

tal DA Form 2408-13-2, Related Maintenance Actions Record. The former documents the

initially discovered, or prescribed, maintenance event while the latter serves as the detailed

register of individual maintenance activities required to satisfy the inspection and/or cor-

rect the fault annotated on the DA Form 2408-13-1. WUCs are documented in both forms;
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however, they may not necessarily fully match one another in so much that the DA Form

2408-13-1 captures the initial overall inspection or fault area while the DA Form 2408-13-2

further elaborates on what took place and may involve touchpoints beyond the initial scope

of the effort. For example, A DA Form 2408-13-1 with stated inspection or fault narrative,

“#1(left) engine service required every 50 hrs. . . ,” would have a WUC of 04-powerplant

installation. The actual service required involves extensive documentation of more than

100 activities on a DA Form 2408-13-2, and one such activity narrative might be, “per-

formed dual chip continuity check,” with a WUC of 04A08E-chip detectors on a single entry.

Additionally, any other discovered faults in the area, perhaps cowling or airframe damage

incurred during inspection, would be documented under the same DA Form 2408-13-1 with

a potential WUC listing of 02-airframe [172].

8.2.3 Automated Coding in Other Domains

Hierarchical coding structures are prevalent in the medical field. There is active research

into predicting the diagnostic codes in multiple modalities [173]. Xu et.al. recently wrote

a paper that included predictive methods for unstructured text, semi-structured text, and

structured tabular data [174]. By using multiple modalities in their experiments, they were

able to create state of the art, explainable models for predicting ICD-10 codes in a medical

environment. Aircraft Maintainers have also had automated coding solutions in the past

using novel collection methods [175,176,177]. Using these works as basis, the next goal is to

map the Aviation codes into a machine learning problem with current AutoML and Machine

Learning Operations (MLOps) methods.

8.2.4 AutoML Methods

Automated Machine Learning methods have grown as compute has become cheaper in

the last ten years [178,179]. AutoML entails automated algorithm selection, model parameter

optimization, and, in some cases, model deployment to the respective environment [180].
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Figure 8.1: MLOps Delivery. MLOps approach provides precise microservice deployment
and integration for indexing, cataloging, reporting, and visualization.

AutoML methods are now directly built into popular machine learning packages and cloud

deployments for optimizing SciKit-Learn algorithms [181, 182]. The algorithms are selected

based on their ability to supply real time predictions to the downstream customers. One of

the hallmarks of these new systems is the ability to build trust into each system by selecting

models that are explainable with the best accuracy [183,184].

8.2.5 MLOps Methods

MLOps is the continuous development, delivery, integration, monitoring, and automa-

tion machine learning models in a production environment—effectively a Development, Secu-

rity, and Operations (DevSecOps) pipeline methodology akin to software development cycles

and tools [185, 186, 187]. In this work, MLOps is established via deployment to an Azure

cloud instance with a Representational state transfer (RESTful) application programming

interface (API). RESTful APIs are the standard for production environment deployment due

to its flexibility and ease of use for downstream applications like a web interface [188].
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8.3 Approach

The approach section will cover the Application Description and Process for cleansing

the data, creating the model, and deploying into the production environment. The machine

learning model development process uses state of the art automated machine learning tech-

niques coupled with selectable feature rich backends for discovering the best pipeline for

generating a supervised classification model. The models are then deployed in on premises

and cloud-based deployments for use case flexibility.

8.3.1 Data Cleansing

The first step is to cleanse, process, and clean the data into a simple format of: [Text,

Label], [Text, Label], [Text, Label], etc. This is a classic super-vised learning structure to

the problem data. The text data is scrubbed for stop words prior to learning; stop words

are commonly associated with words that stop the flow of information in a sentence and

common libraries like the Natural Language Tool Kit (NLTK) contain standard dictionaries

of stop words to use for filtering the text narratives.

The model input is the free form maintainer entered text and the output is a label

(a supervised classification problem). The model uses a split a 66% training and 33% test

data. Cross fold validation is applied during training to evaluate the model that performs

the best for the domain. The training set is used to train the model and the test set

evaluates the model. The team uses the following encoding techniques as feature extractors

and evaluates the best one at training: character, word, sentence, Term Frequency-Inverse

Document Frequency (TF-IDF), embedding spaces, and transformer technologies.

A key differentiator to this process is that a subject matter expert (SME) labels a subset

of the data to provide a golden dataset for learning. This dataset provides enough context for

the ML model to fill in the blanks. The SME generated dataset is built using an automated

script that looks for keywords in the fault and corrective action narratives. The largest issue

with this process is that the individual collection of keywords for each system is tedious and
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Figure 8.2: An Environmental Visualization - this graph identifies and maps keywords or
corrosion unigrams from H-60 logbook records.

cumbersome. Ultimately, a script that covers approximately 8,100 classes led to millions of

records requiring cleaning and rescoring. This process is effective but requires a SME to

label enough examples for the model to learn the classes.

8.3.2 Feature Generation

Feature Generation is a key feature for extracting a maintainability analysis with WUCs.

This character code varies between a minimum 2-digit code to 11-characters which describe

in increasing detail the functional system, the subsystem, and the location of each failed com-

ponent and the corresponding maintenance events. Anecdotal evidence suggests, however,

that the “wrong part” is coded for 50-55% of the manually entered WUCs. The inability

to automate proof-checking offers two expensive alternatives: either train (or retrain) the

operators who perform manual entries or provide SMEs to correct secondary steps.

8.3.3 N-gram Breakdown of Narratives

One of the key assumptions in this work is the use of unigram, bigram, and trigram

breakdowns. Collecting single words from a narrative, tabulating them, and finding the top

1,000 words in a corpus is how a unigram feature space is constructed. Bigram collects

two-word combinations, tabulates them, and finds the top 1,000 combination of words in the

narrative corpus. N-Gram refers to an approach where the number of word combinations
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that are important can be configured and optimized for based on needs during the modeling

phase. These raw feature sets are fed as input into the AutoML methods to select the most

optimal combination of features to get the best performance for each step in the ML process

8.3.4 Hierarchical Modeling Approach

WUC structures are hierarchical by nature. When using ML, the choice was made to

mimic this structure by creating a system predictor first to begin more precise predictions

from the highest order of the system domain. Then, a model is built for each system. The

goal of the downstream models is to predict the specific nuances of each system, which pro-

vides predictions identifying assemblies, subassemblies, components, and hardware. This

hierarchical system is made up of 70 individual models with the ability to predict approxi-

mately 8,100 unique classes.

8.4 Results

The initial results of the experiments yielded a new dictionary of commonly used words

by maintainers, a method for correctly classifying WUCs at the System and Sub-System

level, and downstream processes that use this data to continuously improve the maintenance

process. These results are applied both in hindsight (after-the-fact corrected analytics) and

in a proactive data-centric approach by assisting maintainers at the point of data entry.

8.4.1 Analysis

In a 17-million-word sample of Chinook helicopter fault records, 98.5% of the unique

words did not exist in a standard English dictionary word list (163,204 non-dictionary terms

out of 165,597 total unique words). If one includes punctuation, the number of unrecog-

nizable entries gets much worse. It is worth noting that manual entries also lack fidelity;

the Chinook sample highlights repetitive uses of the same term (average total to unique
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word ratio of greater than 100:1), which makes distinguishing one maintenance job from an-

other potentially more challenging than if each entry was more coherently distinctive. Willis

(2017) concluded that current maintenance records “lack required data and accuracy for use

in reliability analysis”.

With our dataset, the total number of faults tallies 1.7 million, of which 25% (428,293)

start as a WUC of “00” or “aircraft”. These cases are largely assumed to be incorrect as 00

is the default WUC field selection on the digital DA Form 2408 series within ACN. Existing

structured query language (SQL) rules of “CASE. . . ...WHEN” correct a fractional portion

of 116,396 (27%) from system 00-aircraft to more precise functional groups. With newly

developed ML techniques, the team exposed an additional 5% of the 00-aircraft data for

inspection. Applying the same principles to the WUC 02-airframe, the ML model suggests

changing 27% of the 294,000 maintainer entries to a different functional system above and

beyond the existing SQL rules. Regarding performance, the WUC model accomplishes record

correction at roughly 100 times that of the previous process(es). The model effectively

predicted and corrected WUCs on 2,000,000 records in 180 minutes in comparison to a

SME’s efforts entailing 1,960 hours (a USG man-year) while scoring 200,000 records.

8.4.2 Explainability in ML Models

ML model explainability is critical to understanding why a decision is made and a

key component of U.S. government AI ethics standards. With the WUC models, the goal

is to understand the decisions and ensure the model has not overfit to certain types of

speech. Decision Tree models were chosen as the primary delivery method due to their

inherently explainable nature. Using the Explain it Like I’m 5 (ELI5) tool, each prediction

is explained and linked to the contributing features in the input narrative using toolkits like

Local Interpretable Model-agnostic Explanations (LIME) [12]. Each decision is broken down

to the unigram and bigram components to which words are affecting the overall classification.
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Figure 8.3: ELI5 and LIME WUC Model Explainability. Example narrative and breakdown
of prediction methods and confidence intervals (note the misspelling in the Fault text “PER-
FROM”).

Taking it a step further, we derive feature importance and understand which of the

features in an individual prediction are driving prediction performance. Feature Importance

Analysis is a methodology where the model is probed multiple times until it is possible to

understand the individual contribution of a particular feature to a global and local feature

importance. At the global level, all predictions benefit more from certain features. These

features will affect every prediction. At the local level, each prediction is affected by certain

features more.

8.4.3 Deployment and Use

The models are deployed behind a RESTful API for flexible delivery to various down-

stream applications. Currently, the models are used across three distinct products: a custom

enterprise analytics tool called Rubix, a training and certification tool called Maintenance

Readiness Levels (MRL), and an extract, transform, and load (ETL) tool. These tools have

different purposes. Rubix calls the API directly to receive on demand predictions to help

maintainers on the flight line and in the office correctly classify their faults, illustrated in

Figure 8.4 below in the WUC Prediction module. The ETL tool batch processes WUC

record correction requests for use in the analytical products, including matching corrected
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Figure 8.4: Adversarial Surface for MobileNetV2 Models trained on VEDAI dataset. Pas-
sive Measures included recommending a particular channel as mitigation. Active Measures
require augmentation, architecture changes, and other changes to the modeling process to
overcome the attacks.

records back to originals for use in maintainer quality metrics within MRL, also depicted

below in Figure 8.4.

8.5 Future Work

As the models mature, the goal is to create a pipeline that automatically ingests and

rebuilds models as the distribution of the data changes. Monitoring the data distribution

would provide a baseline for when to trigger retraining and offers metrics on evolving free

form text fields from the maintainers. The data should inform the model deployment and use

cases. There are systems that account for a small percentage of the documented narratives

because they are assemblies, subassemblies, or components that seldom break or require
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repair. In these cases, the dataset is already inherently imbalanced and requires continuous

monitoring to affect accurate models.

8.6 Conclusion

The WUC prediction and correction effort demonstrates derived business value from

dirty data in a production environment using ML and augmented analytics. WUCs are

typical categorizations among end-user products and drive decision making processes at

many levels of the aviation maintenance process. This work demonstrates the utility of

applying data science to the general aviation community to affect end items for maintainers

and senior leaders by transforming dirty data into actionable information.
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Chapter 9

Color Teams for Machine Learning Development

9.1 Introduction

Machine learning and software development share processes and methodologies for reli-

ably delivering products to customers. This work proposes the use of a new teaming construct

for forming machine learning teams for better combatting adversarial attackers. In cyber-

security, infrastructure uses these teams to protect their systems by using system builders

and programmers to also offer more robustness to their platforms. Color teams provide clear

responsibility to the individuals on each team for which part of the baseline (Yellow), attack

(Red), and defense (Blue) breakout of the pipeline. Combining colors leads to additional

knowledge shared across the team and more robust models built during development. The

responsibilities of the new teams Orange, Green, and Purple will be outlined during this

chapter along with an overview of the necessary resources for these teams to be successful.

This chapter seeks to address the construction of a machine learning development team.

Traditionally, machine learning teams focus on investigating machine learning applications

in practical spaces, building promising architectures, and finally deploying the best models

to production. Teams can take on all of these aspects or just focus on one at a time.

Machine learning adoption in the industry affects every facet of software development from

code generation to testing [189]. The production-focused models are then evaluated for

performance in normal and adversarial settings. In this work, we propose formally assigning

responsibilities to individual parts of the team to focus on their core strength.
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9.2 Color Teams for Machine Learning Development

Cremen introduced the InfoSec Color Wheel for structuring teams in the Cyber-Physical

and Software systems [190]. The goal of this work is to apply the same concepts with

machine learning developers in mind and build more robust models from the beginning

of the development process. Focusing on including the attackers in the development loop

allows the entire team to understand the holes and vulnerabilities in the included system.

Models are so large now that it is nearly impossible to supply explanations for each sample

without massive computer resources or time delay in the answers created [191]. Due to the

complexity of explaining machine learning models, it is necessary to form teams that can

baseline, attack, and defend ML models.

9.3 Disecting the Teams: Familiar Concepts

Cybersecurity commonly uses the Red, Blue, and Yellow teams to break out clear lines

of responsibility during the hardening of cyber-physical and software systems [56]. Each

team has a distinct role to play in baselining, attacking, or defending the system as shown

in Figure 9.1. In machine learning development, these concepts generally translate to model

selection, parameter reduction, and pruning or data augmentation to protect those models

[1]. Each model development pipeline though needs a specific plan for combatting known

and predictable vulnerabilities that an attacker could exploit [192].

9.3.1 Yellow Team: Build Phase

Yellow Team or the Development Team is responsible for building the product that is

attacked and defended. In the Cyber Security domain, this is building the cyber-physical or

software system [144]. In Machine Learning, these are the model builders and creators that

train, build, and deploy the model to the appropriate systems [193]. The Yellow Team is

solely responsible for the creation and deployment of the model.
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Figure 9.1: Build, Attack, Defend is a common model in cybersecurity and is emerging as a
method to protect machine learning models in development [1].

9.3.2 Red Team: Attack Phase

The Red Team serves as system attackers. This team understands known vulnerabilities

and exploitative methods including how they may be used against your system. An expecta-

tion for the red team is its ability to attack a system and provide a list of exploits that work

on the current deployment [194]. In some cases, the Red Team can also supply suggestions

for how to circumvent these issues. For machine learning, these attacks can range from the

deployment methodology to known issues with the architecture or datasets [195].

9.3.3 Blue Team: Defend Phase

Red Team attacks and Blue Team defends. The Blue Team understands the known

exploits and vulnerabilities for the systems deployed but introduces solutions for the de-

velopment team to implement [195]. In the machine learning context, this function would

pertain to the use of machine learning libraries and the selection of architectures and datasets.
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9.3.4 Responsibilities and Roles

Each team in the classic configuration has defined and clear responsibilities in the de-

velopment of their systems. In recent years, it has become apparent that a lack of communi-

cation and understanding of vulnerabilities in common development platforms has led to a

need for blending these teams into mixtures of colors [55]. The next section will map these

additional team constructs into the machine learning development lifecycle.

9.4 Adding New Team Configurations

There are three additional team constructs typically applied to the cybersecurity field:

Orange, Purple, and Green. The focus of each team is to include attacker knowledge directly

into the team to ensure that each step includes some protections from the beginning. The

focus of this section is to describe the mapping of a machine learning development process

to these new team constructs.

9.4.1 Orange Team

Figure 9.2: Orange Team educates builders

and creates robust ML design patterns for de-

velopment

As illustrated in Figure 9.2, the Or-

ange Team is focused on bringing organi-

zational changes to a team around build-

ing more robust architectures and datasets.

In a classic configuration, the teams con-

structing datasets or developing the models

may not worry about attacks on those de-

ployments. The Orange team is establish-

ing new processes and educating develop-

ers on best practices to prevent adversarial

attackers from launching successful attacks.

In smaller organizations, this role could be
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taken on by a single person with develop-

ment and adversarial machine learning knowledge.

9.4.2 Purple Team

Figure 9.3: Purple Team creates defense

strategies from attacks launched on target

models in a production environment

As shown in Figure 9.3, the Purple

Team integrates defensive tactics based on

the adversarial results and continues to im-

prove processes established by the Orange

Team. Each attack brings a set of solu-

tions and issues that might prevent that par-

ticular attack from being successful.Purple

Team works with both Blue and Red teams

to develop strategies for understanding the

adversarial surface of a model and how to

protect both the model and datasets from

those attackers. If Orange Team is respon-

sible for maintaining processes and educating the team, then Purple Team is responsible for

keeping models robust from attacks.
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9.4.3 Green Team

Figure 9.4: Green Team builds secure mod-

els by utilizing robust design patterns with in-

formed defense strategies

As shown in Figure 9.4, the Green Team

will integrate best practices into the devel-

opment of the models and dataset. As de-

velopers continue to understand vulnerabil-

ities, they begin to integrate, use, and ap-

ply these new techniques into their new pro-

cesses. The models will be evaluated against

a statistical model for assessing adversarial

risk like the modified Drake equation [196]

to understand the risk factors in the cur-

rent model architectures. Finally, the Green

Team will continue to improve the model

over the development cycle from concept to production deployment. The Green Team will

use strategies and patterns designed by both Purple and Orange Team members.

9.5 Accounting for the Processes

Traditional software teams rely on multiple decades of lessons learned to produce effi-

cient code on flexible timelines. With machine learning and data science teams, there is a

longer learning curve if solving problems with techniques borrowed from the development

and business side [197]. As shown in Figure 9.5, this section covers the six steps in the overall

process: Strategy, Design, Development, Testing, Deployment, and Maintenance.

9.5.1 Strategy

Each machine learning development team will need to create, maintain, and update

a strategy for building and maintaining effective models in their production environments.

The strategy section will incorporate the teaming concepts to add value at each development
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Figure 9.5: The development of the machine learning models is a continuous loop of building
new and evolving strategies to build, baseline, and defend models in production environments

step. For instance, in traditional Development Operations, developers would be concerned

with choosing the correct data structures, libraries, and methodologies without considering

the security ramifications of each of those choices. Development Security Operations (De-

vSecOps) is a new process by which the developers actively design techniques that are more

secure from the input [186,198]. In the same vein, we introduce Machine Learning Security

Operations or MLSecOps as another pathway for protecting models [199]. By using these

teaming constructs, a machine learning team can build adversarial protections into their

model development from the beginning of the strategy phase.

93



9.5.2 Design

The design phase is reserved for understanding the proper structures, methodologies,

inputs, outputs, and general operations of the requirements being built with software. In a

machine learning team, the data inputs and model architectures selected can have a large

impact on the adversarial risk assigned to that particular development cycle. By using

the Green Team to inform proper datasets and architectures, the Green and Yellow Team

together can design more robust models from the beginning. Cross-functional inclusion of

team members (team members can belong to more than one group) will lead to additional

lessons learned between the steps in these processes. Design, in a machine learning team,

should be focused on solving the problem with a robust, secure solution that has the best

chance of maintaining a longer lifespan when deployed to Production [200].

9.5.3 Development

In traditional software teams, development can be straightforward and deterministic for

tasks like building frontend or backend code for websites. While there are challenges with

the implementation of tools or algorithms, estimating the number of story points can become

deterministic with Agile teams [201,202]. In machine learning development, the methods for

estimating stories do require some updating. Singla et.al. analyzed several machine learning

and non-machine learning projects to understand the difference in estimating and planning

for ML-based projects [203]. In their analysis, they discovered that ML teams had more

challenges with completing stories but the success stories included descriptive titles, clear

labeling for the ML domain used, and measurable “Done” criteria in Agile methodology.

Overall, this demonstrated that the development process for ML projects has commonality

with normal development projects with stricter adherence to Agile tenants such as clear

story descriptions and “Done” criteria.
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9.5.4 Testing

Test suites are commonly structured around the unit- and integration-testing of soft-

ware functionality. DevSecOps also adds testing for best security practices in coding and

deployment [204]. Similarly, for a machine learning project, a common suite of testing tools

is needed for evaluating machine learning models for susceptibility to incoming attacks. Each

incoming attack can be tailored to an incoming architecture and, in the same vein, a Purple

Team can devise a set of standard attacks for a team to develop or defend against. The

Green Team then develops strategies and solutions for protecting models from these incom-

ing attacks by using the Purple Team’s recommended attacks. Each team has responsibility

for mitigating attacks while still meeting performance targets. If performance cannot be met

due to fixes implemented, then those attacks must be carried forward as the risk for review

boards in a production team.

9.5.5 Deployment

The Green Team focuses on the task of defending a model while also building to meet

performance targets. After testing, the Green Team adjudicates the outstanding risks and

prepares for a release candidate for the machine learning model. The model is deployed to

production with proper evaluation of the available exploits and each of those risks is properly

included within the model documentation for the release. Hotfixes for a release are part of

the deployment phase as certain aspects of the model environment or the evaluation may

lead to additional mitigations like needing a version of a package or a way of processing data

to avoid exploits from adversarial actors.

9.5.6 Maintenance

Every machine learning project will have the burden of maintaining the models in the

face of new and changing data. To maintain a machine learning model, the deployment

platform must monitor the incoming data and detect data drift in the original model. If a
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Figure 9.6: Summary of key resource allocations steps to move a project from conception,
training, testing, and deployment.

population difference is detected, the model will need to be retrained and redeployed. This

maintenance event needs to have periodic evaluation and downtime built into the system.

Like monitoring the dataset drift and its distribution, an additional step is added to detect

possible attacks. A security patch in the machine learning world may look a lot like a new

model – except the goal of the updated model is to mitigate the effectiveness of the newly

detected attack. A running list of security exploits should be maintained and detected so

attackers can be excluded or banned from using the deployed resource.

9.6 Allocating the Resources

Machine learning projects typically have four major hurdles during development: avail-

able computer resources, available Graphical Processing Units (GPUs), appropriate time

allotted, and personnel shortages. Computer resources, including GPU, are used to process

data, train models, and evaluate performance. In this section, each of the major components

will build on the next. Note: there are many configurations of CPU and GPU assets in a

team (Figure 9.6). This work represents one such allocation of those resources.
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9.6.1 Compute Resources

Each development cycle will include an allotment of computing resources for performing

the task. To combat adversarial actors and their techniques, the Green Team will need to

employ state-of-the-art (SoTA) processes to improve the model. Adding additional steps like

parameter search and neural architecture search for improving model performance can add

burden to available compute. The team will need to evaluate the risk and reward of making

the model more robust to attacks.

9.6.2 GPUs

In small to medium organizations, GPUs are a resource for training deep networks and

transformers. As transformers begin to take over many tasks in the field of machine learning,

the high VRAM GPUs are necessary for training and inference. Due to the prohibitive cost

of cloud computing for higher-end GPUs, it’s necessary for organizations, who have security

concerns, to create and maintain internal on-premise GPU clusters. As a result, rationing

GPU use to the different targets will guide how to best apply them and what jobs get higher

priorities.

9.6.3 Personnel

The compute, GPUs, and time are all reliant on available time from personnel to utilize

those resources in each of the color teams. The personnel side of the machine learning devel-

opment team is a challenging task when there are multiple teams and competing priorities

for each project. In using this structure for building color teams with tailored tasking for

protecting models, it is important to cross-train the personnel on each color team’s respon-

sibilities to understand each of the different development requirements.
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9.6.4 Time

Model development timelines include acquisition of the data, preprocessing of the data,

building the model, and optimizing for a given task. Adding a time component of protecting

these models will add complexity which can affect the schedule and available resources. To

compound the issue, it can take considerably more resources to add additional robustness to

a model with current SoTA techniques for protecting machine learning models. Three key

time-related parameters can be monitored to support effective resource usage:

• Compute Time

– Compute time represents the entire machine use time including memory, CPU

time, GPU time, and data storage

• GPU Time

– A specific mechanism for tracking the GPU usage as defending models can involve

parameter and network-tuning to avoid certain types of attacks using, for instance,

adversarial training methods on augmented datasets

• Personnel Time

– Tracking personnel available to build, attack, and defend models is needed to fix

high-priority risks in production systems

9.7 Summary and Future Work

The theoretical rate-limiting step is the Yellow Team which builds the time-consuming

initial code. Every iteration of the code is going to improve its defenses against adversarial

attacks. The Yellow Team is charged with building the initial set of software that can meet

a mix of demands between protecting the model from attackers and meeting the customer

requirements for performance. These tradeoffs can be difficult to manage as performance
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and defense are typically at odds with each other. As the performance of a model increases,

it can be more susceptible to incoming attacks. Likewise, as the defendability of the model

increases, it can be difficult to meet performance targets like speed, accuracy, and explain-

ability.

Each step in this process is designed to create a team that can manage the demands

of creating production-ready machine learning models with security in mind. As a team

develops each new model, they will account for new and emerging threats in their model

space. Drawing on the cybersecurity analogy, examples like a formal framework (MITRE

ATT&CK [205]) should be developed for each color team. For instance, the Red Team

catalogs successful attacks based on the vulnerability while the Green Team similarly logs

the appropriate remediation or response. In this way, the rotation of personnel skills and

time management may benefit future collaborative efforts between colors and project goals.

The future work of this research should plan and model each color team’s steps to find

the rate-limiting areas and where optimizations can be found. The color teams proposed in

this work can be implemented as a system or in pieces that fit the needs of each project.

This is a framework for defending deployed models from adversarial attacks in the wild.
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Chapter 10

Limitations

There are limitations within the works presented and this chapter will go each concern

by referencing the chapter in this thesis. In all there, are two primary concerns raised in this

chapter - the limited scope of the adversarial attack methods and the limited scope of the

models/datasets used.

10.1 Limited Scope of Adversarial Attack Methods

The adversarial machine learning space is constantly growing with new and evolving

threats against machine learning models. There are always multiple ways to attack models

including at the data side, during inference, and even on delivery of the prediction. In order

to baseline the ability of these processes to work, each of the results had to establish a subset

of current attacks. The goal of each result presented was to demonstrate a repeatable process

that could protect machine learning models as the threat space grows. With additional threat

vectors, it will be important to add new process steps to protect the model at the learning,

inference, and post prediction phases of machine learning use cases. Chapter 5 relied on

simple attacks and the next section will discuss this as a limitation. In the next section, the

simple attack vectors will be discussed as a limitation from Chapter 5.

10.1.1 Assumed simple attack vectors

There are an incredible amount of adversarial attacks coming out each week in Machine

Learning. The advent of public architecture and datasets that are easily accessible make

it easy for attackers to find and develop new exploits for machine learning models. In the

Chapter 5 experiments, the simple attacks were chosen for multiple reasons.
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First, the attack method was the most basic imaginable attack - they were simple

character to character mappings. As a kid, it was easy to change an ’E’ to a ’3’ and think

it was a special coded language. In machine learning, this can be a difficult distinction to

make if the training data does not contain any knowledge of this type of string replacement.

Second, the simple character to character replacement is fast. Adversarial Methods that

rely on attacking underlying properties of the models or structure within the model require

optimizations to properly attack those models. With character to character substitution, the

attack can be carried out using built in functionality in the python libraries with dictionaries.

The dictionary can be updated to map to a new and evolving attack methodology. This can

give the attacker an advantage as the attack is a low amount of effort for high impact.

The experiments effectively demonstrated this effect by showing up to a 80% degradation in

detectability in the sentiment analysis tests. The simple attacks, though, are the limitation

in the experiments explored in Chapter 5.

Chapter 5 focused on presenting a process for evaluating a machine learning system

called Build, Attack, Defend or BAD system. This process was demonstrated using sentiment

analysis experiments with a toxicity dataset. The simple attacks chosen do not take into

account the underlying model or dataset and thus are not customized to exploit particular

peculiarities of the model or dataset themselves. The results from attacks that are customized

to the model attributes could make it much more difficult to defend against. Zero-Day attacks

in the cyber discipline refer to attacks that are not yet protected against and allow a hacker

unfettered access to a system. In the machine learning discipline, there are adversarial ‘zero-

day’ attacks that are manipulating the output of the model and no defense is yet known

for these attacks. These Zero-Day attacks are difficult to anticipate and protect against in

practice. The Chapter 5 process currently assumes known attacks on models for protections

and did not evaluate the adversarial surface of the model. There is one final limitation that

both of these chapters assume and that is the non-automated probing of the model.
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10.1.2 Assumed non-automated model probing

In the cyber discipline, cyber physical systems are increasingly attacked by automated

systems with known exploits for commonly used systems and backends. The same analog

is going to be made in the adversarial machine learning community as the machine learning

models and datasets become commoditized. The machine learning system attributes are all

widely distributed and make it easy for attackers to figure out sophisticated attacks for the

models. In Chapter 5, this is an apparent issue. The APIs used in these experiments were

black box APIs accessible to the general public. Once access was gained to explore these

APIs, the experiments quickly showed that even simple attacks could successfully steer the

output of the underlying sentiment analysis model. In a similar way, adversarial attackers

can design attack systems that can successfully probe, classify, and customize attacks for a

targeted machine learning system. The experiments carried out in this work did not launch

multiple attacks or increasingly more sophisticated attacks when previous ones failed. A

future work could explore the ability of an attacker to successfully penetration (pen) test a

machine learning system.
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10.2 Limited Scope of Models and Datasets

There are hundreds of papers being released per day in the Machine Learning section

of Arvix []. Machine Learning papers have a range of solutions from use cases for current

architectures to developing wholly new architectures in the literature. It can be difficult to

keep up with the ever evolving set of architectures and it becomes necessary to maintain a

stationary baseline for performance. For instance, in the image classification space, the top

methodology on PapersWithCode.com is ¡technique¿ which came out in ¡year¿. Chapter 4

focused on the adversarial actor portion of the attack chain and demonstrated the ability

of this actor to detect the underlying dataset and model. The next section will discuss the

limitations with the scope of this work.

10.2.1 Limited to simple model or dataset attribution

Adversarial Attacks are more effective when those attack vectors are tailored for the

model or dataset. In Chapter 4, the goal was to explore how easy it was to detect the

underlying machine learning system qualities and use them to our advantage in experiments.

Each of these experiments focused on demonstrating how distinguishable an architecture or

dataset are in the image and text domain. As architectures are modified, it may only be

possible to find the most similar architecture to a particular output. Only architectures that

have been seen in the wild can be identified in this case. And, the scope is more limited than

that. The experiments outlined in Chapter 4 do not mix datasets or modify architectures.

Each of the classifiers are able to be directly downloaded from Keras or HuggingFace with

no additional installations necessary. Model Architectures are the first limitation discussed

here.

The experiments only chose architectures that could be downloaded and deployed from

common frameworks like Tensorflow. The model architectures inside of these models has zero

customization to the layer structure, sizing, or additional layers like dropouts/normalization.

In this regard, simple customization to the models could fool or confuse this diagnostic
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system from accurately classifying the underlying machine learning system. This choice is

intentional because the wide adoption of machine learning into production systems typically

sees fast integration without optimization of the end goal. The fastest way to optimize a

problem space is to maintain both the base weights and architecture and deploy the model

to a production system. Unmodified architectures are detectable in this framework and can

be used. Once the architecture is modified or ensembled with another architecture, the

framework would need to be expanded to compensate for this new set of observations.

A similar issue occurs when a model may perform similarly when trained on differ-

ent datasets. Datasets are easily downloaded and trained on from common frameworks like

HuggingFace. These datasets have standard attributes and are widely distributed in the com-

munity for training on multiple different target architectures and areas. Different datasets

containing data from a similar population could result in very similar learned weights for

the underlying machine learning model. These experiments in Chapter 4 rely on the models

learning different distributions of weights so that the signature of the attacks used to probe

the models can return specific diagnostics. If two models trained on two different datasets

return the same data signature from the probes, they would be indistinguishable from the

current experiments. Another issue arises if the two or more datasets are mixed together

and then trained on to create the final model. If the model architecture is frozen but the

mixed datasets are trained on, is it possible to distinguish that the model learned a portion

of its weights from that dataset? It is unclear from the experiments in Chapter 4 and could

be another future work area for expansion.

10.2.2 Assume no new machine learning architectures

The limited selection of machine learning models only investigates the models that can

be downloaded and deployed in simple methods from publicly available frameworks like

HuggingFace or Tensorflow. In Chapter 6, these same assumptions hold as MobileNet was

used as the base architecture in exploring the adversarial surface of the model. This does
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become a limitation of the work as MobileNet is not State of the Art for image classification

in the overhead image category. This subsection will focus on discussing the limitations of

only using MobileNet to explore the adversarial surface.

In Chapter 6, the adversarial surface of a deployed overhead image classification model

is explored for multiple wavebands with an open source dataset. The core idea is to evaluate

if any particular band in this space can compensate better for adversarial attacks than the

other. This passive measure method to protecting models is a brute force assumption in

this space. It means that the development team needs to train multiple models and evaluate

the adversarial surface for each model. Depending on inference speed and test set size,

these experiments can be quite computationally expensive. Once all of these models are

trained and evaluated, it is possible to mitigate the attackers through recommendations on

available models. Because Chapter 6 contained six available models, it was possible to use

the adversarial surface to create a set of recommendations for which model should be used

to protect against these types of adversarial examples. In this evaluation, FGSM and FGM

are identified as attack sets that can mitigate by recommending an image classifier trained

with the IR band. Some of the attacks though could not be mitigated through passive

measures (selecting a different model to run in production). Active measures were needed

but not evaluated in this work. Examples of active measures include additional training

augmentations, modification to the architecture used, and modification to the dataset trained

on. The attacks analyzed also relied on full access to the underlying models and this is the

subject of the next discussion.

White box attacks are successful because the attacker has access to all machine learning

model attributes. The attacker is able to tailor each attack to specific vulnerabilities within

a particular architecture or dataset. In contrast, black box attackers have little knowledge of

the underlying machine learning model or system. The experiments carried out in Chapter

6 do no explore black box attacks on these models as the experiments would need to cover a

much larger set of attack vectors to understand the adversarial surface of an unknown model.
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Chapter 6 relied on the fundamental assumption that many machine learning teams are go-

ing to rely on downloadable models with good enough performance to start their production

systems. The idea was to isolate the model and dataset and focus on a methodology for un-

derstanding how pervasive existing attack vectors are and how efficient they are on currently

released models. The final limitation of the work focuses on the selection of MobileNet for

the exploration.

One additional limitation in the Chapter 6 work is the use of MobileNet - MobileNet

is multiple years old. MobileNet offered an incredible speed to accuracy trade off and led

me to choose the architecture. The goal of Chapter 6 was to show a framework for cre-

ating informational content for evaluating the adversarial vulnerabilities of a model. The

adversarial surface consisted of 200+ experiments against multiple models and adversarial

methods. Because only one model architecture was selected and trained on, it is not possible

to know if other models would have performed better against these adversarial attacks. This

work could be extended by adding in additional model architectures into the pipeline and

choosing the best of breed for dealing with all active adversarial exploits in the wild. This

does assume also that the adversarial attack is published and release to the public. In the

cyber domain, the attack vectors are usually only released after they have lost their value to

the attacker. The process is more important than the discovery of new techniques. Attackers

will continue to get more advanced and machine learning practitioners need to have a process

for evaluating adversarial risk in production environments.

10.2.3 Assume idealistic settings for machine learning systems

In Chapter 7, the modification of the Drake equation is meant to allow machine learning

teams to evaluate adversarial risk from outside attackers. A key assumption to this work

is establishing a nominal range for each parameter defined in the Drake modification and

assuming the minimum and maximum values for each one. An example is the number of

parameters in a machine learning model. This number of parameters can be specific to the
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model type, architecture, or domain. In certain domains, a large number of parameters

could be akin to overfitting the problem whereas some large, hard to learn domains could

require large numbers of parameters to effectively learn the domain distribution. The biggest

challenge in finding novel utility for this framework shares much in common with Drake’s

original notion. How to quantify each factor? What if the factors show strong correlations?

How do the factors change with time, particularly if both the builders and attackers modify

their behavior? What are the appropriate units to assess ML risks, either as the number or

severity of adversarial attacks? One informative output that previous technical papers often

ignore in assessing model risk is the scale of the overall ecosystem (R). In the literature for

cybersecurity, for example, the monoculture aspect for operating systems has proven most

predictive of the next generation’s attacks. The modifications presented in Chapter 6 were

meant to provide a framework for risk professionals to begin to assess the adversarial risk

for their machine learning models in a production environment.

10.3 What’s next?

In the next Chapter, a discussion about mitigating limitations will be presented as future

extension of the experiments presented throughout this work.
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Chapter 11

Future Work

There are two clear extensions to the work presented here. First, since we have estab-

lished that adversarial attacks represent more of an surface, the next work would focus on

understanding how many attacks can be negated with simple changes in architecture and

training methodologies. Second, if the model can be changed to thwart these adversarial

attacks, another work could explore early warning systems for adversarial attacks and finger

print their attacks based on their methodologies. Similar to how cyber security firms will

trace an IP address or code base, it should be possible to trace the origins of the adversarial

attacks to particular code bases or even groups. Each section in this Chapter will discuss

these extensions and how to approach future experiments.

11.1 Going beyond simple model or dataset attribution

In Chapter 4, the experiments focused on probing and classifying easily downloaded

models from common frameworks like Tensorflow or HuggingFace. In this section, the goal

is to cover the possibility of extending this work to finding models that have custom archi-

tectures or have a machine learning system with an ensemble of learners. These are two

distinct experiments that could be carried out to extend this work and continue to make this

methodology effective.

11.1.1 Creating custom models by mixing models and datasets

A common practice in machine learning development is to start with a downloadable

architecture, assess performance, and understand if custom architecture or datasets are nec-

essary for learning a domain distribution. Task Specific problems can require customization
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of the machine learning system. In the Chapter 4 experiments, the simple assumption was

used that the default models were good enough. In this future work, two specific experi-

ments can extend this work - mixing architectures into a single model, mixing architectures

by ensembling models, and mixing datasets by training a single model. First, let’s discuss

mixing architectures in some detail on the experiment design and expected outcomes of this

line of research.

Machine learning models have two major components to their design: architecture and

dataset. Holding the parameterization and frameworks stationary, the architecture and

dataset input contribute to what the machine learning model learns. When the architectures

and datasets are held to open source, downloadable content, it is easy for attackers to detect

and attack those models. The experiments in Chapter 4 showed this. The next logical step is

to take each of these downloadable models and ensemble them into a larger machine learning

system. The simplest ensemble is to create a voting ensemble where two or more machine

learning models vote on the answer to the problem the best one is selected. Voting ensembles

have an optimization stage where it is presented with training data and learns the best

voting strategy for the underlying models. In order to keep the experiments approachable,

the voting ensemble should be limited to pairs of machine learning models from the already

used downloadable architectures. The detectability experiments could be repeated to see

if the combination of models can be detected or if even specific models can be detected in

an ensemble. There design of the probes for the machine learning system would also need

thoughtful design as the ability to detect each underlying model would require the attacker

to plan for a combination of architectures in the target machine learning system.

Another way to expand this line of research is to modify the underlying architectures

and understand the relationship between original architecture and modified. For instance,

starting with an Xception architecture, would these experiments be able to expand and detect

a family of detectors built on Xception? This would also assume that the detectors built

are run on a similar set of permutations in the model building. Due to the large number of

109



tuneable hyperparameters and layer types, the detectors for the custom architecture would

need to be thoughtfully designed. The experiments would likely need to categorize the

baseline architectures into higher level classes i.e. multiple architectures would create a

detector family. These family detectors could be multi-category or binary depending on

performance. The experiments would focus on a single set of feature backends and analyze

the ability of a classifier to detect the type of machine learning model used. Mixing Models

or Datasets is an extension of this work that could be explored over several future papers.

Another line of research is to estimate the number of potential targets for models that are

in the wild today.

11.1.2 Estimating Number of endpoints using unmodified architectures

There are a number of open source machine learning deployment frameworks making

it increasingly easy to deploy and use machine learning models without much effort. In

the cyber domain, there are simple python scripts that can ping IP addresses and probe

those addresses for open endpoints, SSH tunnels, etc. As an analog, a pythons script could

be designed to hit websites with common deployments for machine learning models like

hyroku and test those models to see what system they have deployed. From this point,

the machine learning architecture and dataset attribution models would need to expand

capabilities in two ways: train on multiple different datasets and train on responses from

unknown architectures. First, let’s explore what it would take to expand the detectors to

train on multiple different datasets.

Image classification is used for a wide number of applications. Feature backends can

be trained on different datasets and produce state of the art performance for an image

classification task. By training on all possible datasets for higher level classes, the probes

used to find out the machine learning architecture can be used to find out if a particular

architecture is being used in the wild. The experiments would need to be constrained to

common tasks in the image classification domain like person, dog, cat, or other class detection
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that have overlap. The end result of this line of research is understand the relationship

between machine learning model output and dataset.
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Chapter 12

Conclusion

The goal of this work is to demonstrate the ability of machine learning practitioners to

use a disciplined process to protect their models by developing those models in a structured

manner. In the background section, a brief history of adversarial learning and the methods

explored are covered to provide a base knowledge for the chapters included in this work. The

models and datasets in Chapter 3 give a clear description of each architecture and dataset

explored in the proceeding works. There are enumerable datasets and architectures in the

machine learning field so a subset was chosen that allowed for repeatable, quick experiments.

One of the first ways an attacker can develop effective attacks is my classifying the underlying

machine learning model in a deployed system.

The architecture and dataset discovery method described in Chapter 4 allows an at-

tacker to find out the underlying machine learning model or architecture and develop rel-

evant attacks. In the adversarial machine learning space, attacks need to be tailored for

the underlying model/dataset. In the image space, learning the fingerprint of a model is

achievable with modern classifiers and in these experiments, the classifiers reaches high AP

numbers with minimal training. In the text domain, classifying the underlying model ar-

chitecture is harder with a single text sample. For trained datasets, the results in the text

domain showed that datasets with clear stylistic cues are distinguishable from each other.

In Chapter 4, the experiments demonstrate that it is possible for an attacker to find the

underlying model development structure and use it to their advantage when attacking the

model. Chapter 5 continues this research into single character attacks on deployed sentiment

analysis models to understand vulnerabilities in public systems.
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Sentiment Analysis models are deployed around the world to help manage the expansion

of social media platforms as toxic comments permeate those platforms. Sentiment Analysis

can detect and quarantine these comments from the platform if they can be accurately de-

tected. This work demonstrates that deployed sentiment models are susceptible to simple

substitution attacks on single characters. These single character substitutions allow attack-

ers to subvert the underlying system and still effectively spread these toxic messages. In this

work, the experiments also demonstrate that these attacks can be effectively defended by

using the Build, Attack, Defend architecture. This architecture allows the machine learning

development team to baseline a model’s performance, attack the model with known vul-

nerabilities, and defend from those attacks with known fixes. Because these substitution

attacks are simple character replacements, a character mapping can mitigate each attack by

detecting non-English words, creating sentiment analysis estimates, and taking the maxi-

mum toxicity estimate in our examples. The system would default to a risk adverse posture

because it would quarantine the highest toxic message based on these substitutions. Further

work in this area could focus on looking at model attacks like weight poisoning attacks on

classification systems. Chapter 6 starts to delve deeper into image classification systems and

how developers can assess and protect their models in those environments.

Image Classification is a common task in many machine learning systems and adver-

sarial protections are overlooked in favor of performance. In this work, the experiments

demonstrate the ability to protect machine learning models for overhead imagery by simply

using a structured approach to evaluate and reduce the adversarial surface of the machine

learning model. State of the art image classifiers are highly publicised and shared model

architectures developed by large institutions like Google and Microsoft. The datasets and

model weights have been publicly available for years in some cases. Due to the public

nature of these models, adversarial vulnerabilities exist in the wild for these models and

are exploitable by adversarial attacks. The goal of these experiments is to demonstrate

a reduction in the efficiency of adversarial attacks while maintaining original performance
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benchmarks. Maintaining the original performance of the state of the art model is key to

getting many developers on board because they don’t want to lose accuracy in favor of pro-

tecting the model from attacks. One critical issue to address from this work is how to reduce

the computational burden of retraining the networks for every additional adversarial pertur-

bation. Retraining larger networks can be computationally expensive and these experiments

used small, fast networks on purpose to allow for a high number of permutations. The next

chapters establish a heuristic methodology for evaluating machine learning model vulnera-

bilities, a best practices demonstration for machine learning model deployment, and teaming

arrangements for structuring a machine learning organization with adversarial protections

in mind. Chapter 7 creates a heuristic methodology for evaluating machine learning models

by adapting the popular Drake equation.

After developing a machine learning model, a risk team should have the ability to

baseline and benchmark the adversarial risk for this system. The Drake Equation is a

popular heuristic used to estimate terrestrial life in other solar systems. Chapter 7 creates

a heuristic framework in analogy to the traditional Drake Equation. This simple formalism

amounts to a summary of relevant factors to machine learning models that allow practitioners

to evaluate their adversarial attack risk. Ultimately, its main purpose follows from assessing

multiple uncertainties together that may vary by several orders of magnitude and creating

a metric for risk professionals to use in their assessment of the system. For example, as ML

builders consider whether to privatize or to open-source their models, they may intuitively

favor one course over another given a perceived risk for model compromise. This framework

provides a deterministic framework for evaluating multiple models and datasets against each

other to select the correct risk posture for a given business. This framework provides a

practice that can evaluate the risks to privatizing a model vs open sourcing the model and

how that potentially increases the attack surface of the model. These important decisions

need a deterministic framework that is customizable to business needs and these experiments

can assist the ML community to identify the appropriate metrics to track for benchmarking
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adversarial risk of a model. Chapter 8 flows into using these best practices in a practical

machine learning project for deploying multiple models in a customer critical environment.

Chapter 8 is all about taking these different pieces and deploying machine learning

models in a production environment. Work Unit Codes or WUCs are the essential to under-

standing maintenance events in rotocraft maintenance logs. Each Work Unit Code presents

a job done on the aircraft and documenting these events helps understand the work done

over the course of many years. Theses codes are typically put into the system via main-

tainers in maintenance bay and unfortunately are not always put in at the write code level.

Machine Learning is used in this problem to correct the dirty data. The WUC prediction

and correction effort demonstrates derived business value from dirty data in a production

environment using ML and augmented analytics. WUCs are typical categorizations among

end-user products and drive decision making processes at many levels of the aviation main-

tenance process. This work demonstrates the utility of applying data science to the general

aviation community to affect end items for maintainers and senior leaders by transform-

ing dirty data into actionable information. These machine learning models are deployed

to a business intelligence product, input data and outputs are monitored, and models are

adapted and updated based on feedback from this information. This real life deployment of

machine learning models allows the users to understand the input data, likelihood of attack

or poisoning based on real life data, and a great testing ground for all previous chapters

lessons learned. Finally, in Chapter 9, all of methods demonstrated culminate in building

a machine learning team framework for developers to use build adversarial protections into

models during the development process.

Chapter 9 establishes a set of teaming strategies for applying lessons learned in each of

the previous chapters. With all of these new processes, the development team will need to

shift how it develops machine learning models to incorporate each one. New team structures

will need to be established. Each step in this process is designed to create a team that can

manage the demands of creating production-ready machine learning models with security in
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mind. As a team develops each new model, they will account for new and emerging threats in

their model space. Drawing on the cybersecurity analogy, examples like a formal framework

(MITRE ATT&CK [205]) should be developed for each color team. For instance, the Red

Team catalogs successful attacks based on the vulnerability while the Green Team similarly

logs the appropriate remediation or response. In this way, the rotation of personnel skills and

time management may benefit future collaborative efforts between colors and project goals.

There are other considerations for the machine learning teams like personnel and compute

resources that may drive how models are protected as resources are a precious commodity

when developing new models.

This set of chapters illustrates a set of processes for evaluating adversarial risk of a model,

a framework for evaluating that risk, and finally a teaming arrangement for organizations to

adopt to help protect their deployed production models. Machine Learning is a fast evolving

field with new architectures taking over state of the art models every week. The core lesson

in these works is to understand that it is not the architecture or dataset that is important.

It is the process that machine learning practitioners follow to protect their models that will

allow them to confidently field those models into the wild.
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