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Abstract

Spatial models formulated as partial differential equations, often include space-

dependent parameters that are not readily estimable and are therefore uncertain.

There are two broad classes of methods for computing statistical quantities of inter-

est related to the model solution: Spectral methods, such as the generalized polyno-

mial chaos and stochastic collocation methods, are well-suited for systems with low

parameter complexity. However, their convergence rates deteriorate as the dimen-

sion of the parameter space increases, and hence for systems with high parameter

complexity, methods whose convergence rates are independent of the stochastic di-

mension, such as the Monte Carlo method, are more appropriate. In this work, we

propose a hybrid sampling scheme which uses conditional sampling to combine sparse

grid quadrature rules on a low-dimensional projection of the parameter space with a

Monte Carlo scheme to compensate in the remaining dimensions. Using complexity

arguments, we show that our method is more efficient than either of its constituents.

We include some numerical examples to illustrate our results.
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Chapter 1

Introduction

Many complex physical processes are described in the deterministic language

of partial differential equations (PDEs), yet operate in uncertain environments that

can only be observed partially and/or indirectly. This aleatory uncertainty mani-

fests itself in the underlying system parameters, which are often modeled as random

quantities with known distributions: constants are modeled as random variables

while spatially varying parameters are modeled as random fields. Material proper-

ties such as those of alloys, polymers, or composite materials in predictive materials

modeling, structural properties of biological tissues in biomechanics [8], or proper-

ties of porous media in subsurface geology appear commonly as complex, multi-scale,

and non-stationary random fields. For example, in a groundwater flow problem the

uncertainties in the soil and sources or sinks can be model by describing the conduc-

tivity coefficient and forcing term as a random fields, as described by the following

diffusion equation

−∇ · (θ∇u) + v · ∇u = f, for x ∈ D, (1.1)

subject to appropriate boundary conditions, where D ⊂ Rd is some bounded admis-

sible region with boundary ∂D. The solution u is the hydraulic head; The random
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field θ : D × Ω→ R is the appropriate conductivity, v is the velocity and the right-

hand side f : D × Ω → R which may also be random are sources or sinks in the

region D. Hence the solution u(x, ω) is also random. [18].

In application certain statistics and moments of u(x, ω) are of interest. For

example given statistics such as the mean Eθ and covariance Covθ of the data, we

can compute statistics of the random solution u such as Eu or Covu [9].

Various numerical approaches are available for approximating statistical quan-

tities of interest related to the associated random model output, the choice of which

usually depends on (i) the complexity of the parameter space, (ii) the regularity and

intrinsic dimension of the output, and (iii) the computational cost of solving the

PDE. In particular polynomial-based methods, such as the generalized polynomial

chaos [11], and stochastic collocation methods [21], are well-suited for systems with

low parameter complexity, i.e. those whose uncertain inputs can be expressed in

terms of a moderate number of random variables. These methods can be designed

to exploit anisotropy in the parameter space, and yield fast convergence rates when

the quantity of interest depends smoothly on the random inputs, while also allow-

ing for adaptivity in the case of limited smoothness. However, their convergence

rates deteriorate as the dimension of the parameter space increases, and hence for

systems with high parameter complexity, methods whose convergence rates are only

mildly dependent on the stochastic dimension, such as the quasi-Monte Carlo method

[28, 15, 12], or even independent thereof, such as the Monte Carlo method, are more

appropriate. The Monte Carlo approach is simple to use, permits deterministic codes

to be reused, and can be implemented in parallel. Despite this, the root mean square
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rate of convergence is often slow, decaying as σ√
n
, where σ is the standard deviation

of the quantity of interest and n is the number of random samples. To reach an

estimate within an acceptable level of tolerance, a large number of evaluations of the

quantity of interest are required, each of which involves a numerical simulation of

the underlying partial differential equation.

Even when polynomial-based methods such as stochastic collocation are not fea-

sible, e.g. when the parameter space has a meaningfully high dimension (in the case

of rough fields), or when the statistical quantity of interest depends non-smoothly on

the underlying random parameters, they can still be used as surrogate models to effi-

ciently resolve its variations over subsets of the parameter space. In this dissertation,

we propose a hybrid sampling scheme which uses conditional sampling to combine

sparse grid quadrature rules on a low-dimensional projection of the parameter space

with a Monte Carlo scheme to compensate in the remaining dimensions.

Specifically, let θ0 be some low-dimensional approximation of the underlying

parameter θ. If θ is a square integrable random field, θ0 may represent its truncated

Karhunen-Loève (KL) expansion [14, 16] or θ0 might be a local spatial average or

filtered version of θ. Using the law of total expectation, we write the statistical

quantity of interest as the iterated integral

E[J(θ)] = Eθ0
[
Eθ|θ0 [J(θ)|θ0]

]
,

where Eθ0 is the expectation over the low-dimensional parameter space and Eθ|θ0

is the conditional expectation given θ0. Since the outer integral is computed over
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a lower dimensional region, it can be approximated by polynomial-based interpola-

tory quadrature rules introduced in Chapter 3. However, evaluating its integrand

Eθ|θ0 [J(θ)|θ0] at a quadrature node requires the computation high-dimensional con-

ditional expectation, which we will approximate by Monte Carlo sampling. Despite

the fact that the computational cost of this approach (in terms of the number of

function evaluations) amounts to the product of the number of polynomial-based

quadrature points (for the outer integral) and the number of Monte Carlo samples

per quadrature point (for the inner integral). There are a two reasons to believe that

this can be done efficiently. Firstly, if the low-dimensional approximation θ0 is re-

sponsible for most of the variance of J(θ) then the conditional variance of J(θ) given

θ0 will be relatively small and hence the number of Monte Carlo samples required

at each θ0-quadrature node will also be small. Secondly, the stochastic simulation

at a given realization of the low-dimensional field θ0 can be used to form an approx-

imation of J(θ) for θ near θ0, e.g. by means of linearization at θ0, which can be

used to further improve the efficiency of the Monte Carlo sample through variance

reduction techniques (Chapter 5) or to lower the cost of function evaluations for the

conditional sample.

Using complexity arguments, we show that our method is more efficient than ei-

ther of its constituents. This is achieved through repeated evaluations of the forward

model for different realizations of the random inputs.
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1.1 Problem Setting and Notational Conventions

Throughout this dissertation we assume that the probability triple (Ω,P,F)

consisting of sample space Ω, probability measure P, and σ-algebra F , forms a com-

plete probability space. We will use uppercase letters X, Y , and Z to denote random

variables and lowercase Greek letters, such as η, θ for random fields. The expecta-

tion of a random variable X is written as E[X] while its variance is V(X). The

covariance between random variables X and Y is denoted by Cov(X, Y ) and their

correlation is given by ρ(X, Y ). We will use subscripts on these mappings when we

want to emphasize the underlying distributions. We will denote by Lp(Ω) the space

of p-integrable random variables and by Lp(Ω,W ) the space ofW -valued p-integrable

random fields, i.e.

Lp(Ω,W ) = {θ : Ω→ W |
(∫

Ω

‖θ‖pW dω

) 1
p

<∞},

where W is a normed function space with norm ‖ · ‖W . The function space Ck(D)

consists of k continuously differentiable functions on D, with C∞(D) being infinitely

differentiable functions on D. W p,s denotes the Sobolev space of functions with p-

integrable weak derivatives up to order s. Specifically, Hs(D) is the Sobolev space

of functions with square-integrable weak derivatives up to order s. We will use

boldface font to indicate vectors, e.g. X = [X1, . . . Xk]
T ∈ Rn, or multi-indices, e.g.

i = (i1, ..., id) ⊂ Nd.
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The problem discussed in this dissertation is that of estimating statistical quan-

tities of interest of the form

Q = E[J(θ)] =

∫
Ω

J(θ(ω))dω,

where J is a nonlinear functional related to the spatially varying random parameter

θ, possibly via the partial differential equation (1.1), and the parameter θ is contained

in the appropriate parameter space

Θ := L2(Ω,W (D)),

where W (D) is an appropriately defined function space determined by the parame-

ter’s underlying covariance kernel (see Section 2.2).

1.2 Outline of the Dissertation

The major goal of this dissertation is to propose a more efficient method than

Monte Carlo or sparse grid methods for estimating statistical quantities of interest

associated with a stochastic partial differential equation’s random model output.

First, Chapter 2 will cover the properties, representation, and numerical approxima-

tion of spatially varying Gaussian random fields. Stochastic sampling methods like

Monte Carlo and sparse grid methods will be explored in Chapter 3. The proposed

hybrid sampling method will be introduced in Chapter 4. The algorithm and the

error estimates will be discussed, and I will compare the hybrid sampling method

and the Monte Carlo method, and the sparse grid method. In Chapter 5, I will go

6



over variance reduction methods used in improving the convergence rate of Monte

Carlo method. Finally, to demonstrate the new method, I will conduct numerical

experiments in Chapter 6.
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Chapter 2

Spatially Varying Random Fields

In this chapter, we present some background information on spatially variable

random fields, which will be utilized to define the random inputs to the system.

We shall talk about their representation, approximation, and properties that will

be relevant in the coming chapters of this book. Further, there is a spectral form

of the square integrable random field that allows us to write it as an infinite sum

that we may truncate, which is a more particular representation. A more in-depth

discussion of Gaussian random fields is presented since they are frequently employed

in modeling and because they lend themselves well to marginalization, conditioning,

and simulation.

2.1 Preliminary Definitions and Results

We begin by introducing some standard mathematical definitions that will be

useful in the subsequent chapters. Constants are described as random variables,

whereas spatially varying parameters are modeled as random fields to represent the

uncertainty in the models underlying system parameters. We assume in this work

that the random variables and random fields are explicitly defined.

Definition 2.1 (Probability Triple [29]). A probability space is a triple (Ω,F ,P)

where Ω is a sample space (set of outcomes); F is a collection of events that include
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the sample space Ω and the empty set ∅ with the property that F is closed under

countable intersections and unions, complements; P is a probability function that

assigns probability to events in F , i.e. P(Ω) = 1 and P(∅) = 0.

Definition 2.2 (Random Variable [29]). A real valued random variableX on (Ω,F ,P)

is an F/B(R)-measurable mapping X : (Ω,F ,P)→ (R,B(R)).

Certain statistics and moments of the random variables X, such as expectations,

or higher order moments are of interest in the context of applications.

Definition 2.3 (Expectation and Variance [33] ). The expectation and variance of

a random variable X are defined by,

E[X] :=

∫
Ω

X(ω)dω, and V(X) := E
[
(X − E[X])2

]
,

respectively.

Definition 2.4 (Correlation and Covariance). Suppose we have two random vari-

ables X1 and X2 then, the covariance and correlation of X1 and X2 are defined

as

Cov(X1, X2) = E(X1X2)− E(X1)E(X2)

and

ρ(X1, X2) =
Cov(X1, X2)√
V(X1)

√
V(X2)

respectively.

As we will see in Chapter 4, the hybrid sampling method is dependent on specific

conditioning arguments, and the rate at which the conditional variance decays plays

9



a significant role in the process. As a result, we provide the following definitions and

go into greater detail about the conditioning of random fields in Section 2.4.

Definition 2.5 (Conditional Density). Given two random variables X1 and X2 with

conditional probability density function f(x1|X2). The conditional expectation of

X1 given X2 is

E[X1|X2] =

∫
Ω

x1f(x1|X2)dx1 (2.1)

and the conditional variance of X1 given X2 is given by:

V[X1|X2] =

∫
Ω

(x1 − E[X1|X2])2f(x1|X2)dx1 (2.2)

Notice that the above conditional statistics are also random variables since they

depends on X2.

The Strong Law of Large Numbers, stated below, is commonly used to show

convergence of the Monte Carlo sampling method, presented in Chapter 3.

Theorem 2.1 (Strong Law of Large Numbers [34]). let {Xi}∞i=1 be a sequence of

independent and identically distributed random variables with values in Rd. Assume

that

E[Xi] <∞, i = 1, 2, . . . ,
∞∑
i=1

V(Xi)

i2
<∞.

For n ≥ 1, denote the empirical mean of X1, . . . , Xn by

Ŝn :=
1

n

n∑
i=1

Xi

10



Then,

lim
n→∞

Ŝn = E[X1], P-almost surely.

Because Gaussian random fields and their properties are frequently used to char-

acterize the uncertainties in stochastic modeling, we will define them and their prop-

erties below. Also, Marginalization, conditioning, and simulation work effectively

with them.

Definition 2.6 (Gaussian random vector [24]). A real-valued random vector X :

Ω→ Rd is said to be Gaussian (or normally distributed) if it has the density function

ρ(x) =

(
1

2πσ

) d
2

exp−
1
2

(x−µ)TΣ−1(x−µ),

where µ ∈ Rd is the mean of X and is a positive definite covariance matrix. We

abbreviate this by writing X ∼ N(µ,Σ).

Definition 2.7 (Random Fields [33]). Let D ⊂ Rd, a random field is a mapping

θ : D × Ω → R, such that θ(x, .) is measurable for every x ∈ D. A random filed is

called centered if E[θ(x)] = 0 for all x ∈ D and is mean square continuous if

lim
y→x

E[θ(y)− θ(x)] = 0

for any x ∈ D.

Definition 2.8. Let θ : D × Ω → R be a Random Field. For a fixed ω ∈ Ω, we

define θ(·, ω) : D → R by x 7→ θ(x, ω) to be a realization of the random field.
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Definition 2.9. The covariance function R(x, y) of a random field θ is defined as

R(x, y) = E[θ(x)− Eθ(x)][θ(y)− Eθ(y)]

. [5]

Definition 2.10. Consider a random field θ. If the joint distribution

Fx1,...,xm(z1, ..., zm) = P [θ(x1) ≤ z1, ..., θ(xm) ≤ zm]

is invariant under translation

(x1, ..., xm)→ (x1 + τ, ..., xm + τ),

θ is said to be stationary or homogeneous. For a stationary random field θ, we can

show

E [θ(x)] = E [θ(0)]

and subsequently

R(x, y) = f(x− y)

for some function f . [5]

Definition 2.11. A random vector X = (X1, ..., Xm) is multivariate normal if∑m
i=1 ciXi is Gaussian for every possible ci ∈ R [5].
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Definition 2.12. A random field θ is a Gaussian random field if θ(x1), ..., θ(xm) are

multivariate normal for every (x1, ..., xm) ∈ Rm [5].

Definition 2.13. θ is a mean zero Gaussian field if Eθ(x) = 0 for all x.

Definition 2.14. The integration of Gaussian fields is also Gaussian ( see[5]).

2.2 The Karhunen-Loève Expansion

The Karhunen-Loève (KL) expansion is a spectral expansion that is frequently

used to provide a computationally feasible representation of a random field. Through

the separation of deterministic and stochastic variables in the coefficient θ(x, ω), it is

possible to reduce the problem (1.1) to a deterministic (albeit infinite dimensional)

one [9]. Specifically, let θ ∈ Θ be a second order random field on D with mean

µ(x) := E[θ(x)] and continuous, symmetric, positive semi-definite covariance kernel

k : D×D → R defined by k(x, y) = E [(θ(x)− µ(x))(θ(y)− µ(y))]. Mercer’s theorem

[19] stated below, asserts that the integral operator defined via k is a compact Hilbert-

Schmidt operator on L2(D) and therefore has a countable complete orthonormal

spectral basis.

Theorem 2.2 (Mercer’s Theorem [19]). The operator K : L2(D) → L2(D) defined

by

Ku(x) :=

∫
D

k(x, y)u(y)dy, (2.3)

where k is given as above, is a Hilbert-Schmidt operator and hence there exists a

complete set of L2(D)-orthonormal eigenfunctions {φi}∞i=1 and a decreasing set of
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eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn → 0 as n→∞, so that

k(x, y) =
∞∑
n=1

λnφn(x)φn(y).

The eigenfunctions guaranteed by Mercer’s theorem can be used to construct

the Karhunen-Loève expansion, as stated in the well-known theorem below.

Theorem 2.3 (Karhunen-Loève expansion of Random Field [9, 16]). Let θ(x, ω) ∈

Θ be a square-integrable random field with mean µ(x) continuous, symmetric, and

positive semi-definite covariance kernel k(x, y) defined on D × D. Then it can be

expanded as

θ(x, ω) = µ(x) +
∞∑
n=1

√
λnφn(x)Yn(ω) (2.4)

where

Yn(ω) =

∫
D

θ(x, ω)φn(x)dx, n = 1, 2, ...

are centered, pairwise uncorrelated random variables on the probability space (Ω,P,F)

and {λn}∞n=1 and {φn}∞n=1 are the eigenvalues and eigenvectors of the covariance

kernel K, guaranteed by Mercer’s theorem. The convergence is in the L2(Ω)-sense in

probability and uniform over D. Moreover, the variance satisfies

V(θ(x)) := E
[
(θ(x)− µ(x))2

]
=
∞∑
n=1

λn (φn(x))2 . (2.5)

As a direct result of Equation (2.5) and the orthonormality of {φn}∞n=1, we have

E
[
‖θ − µ‖2

L2(D)

]
=
∞∑
n=1

λn.
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When the underlying random field is Gaussian, then the random variables

{Yn}∞n=1 are independent standard normal. This renders Gaussian fields easy to

simulate.

Corollary 2.1 (KL Expansion of Gaussian fields). The random variables in the

Karhunen-Loève expansion of a Gaussian random field are independent standard nor-

mal random variables, i.e. Yn ∼ N(0, 1) for n = 1, 2, . . . .

Remark 2.1. In general, the joint distribution of the random variables {Yn}∞n=1 is

difficult to determine. Nevertheless, researchers often use the KL expansion as an

Ansatz, considering random fields of the form

θ(x, ω) = µ(x) +
∞∑
n=1

√
λnφn(x)Yn(ω),

where Yn ∼ U(−1, 1) are independent, identically distributed uniform random vari-

ables.

2.2.1 Karhunen-Loève Eigenvalue Decay

For purpose of computation, the Karhunen-Lève expansion given by Equation

(2.4) is impractical and is usually replaced with a truncated KL expansion θ0 of the

form

θ0(x, ω) = µ(x) +
k∑
i=1

√
λiφi(x)Yi(ω), (2.6)
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where k is some fixed truncation level. In light of Equation (2.5), the mean-squared

truncation error is given by

E
[
‖θ − θ0‖2

]
=

∞∑
i=k+1

λi, (2.7)

which in depends on the decay rate of the covariance operator’s eigenvalues. This

decay rate also influences the stochastic regularity of the random field. Here we will

discuss the decay criteria for the KL eigenvalue sequence {λj}∞j=1 since the stochastic

regularity and complexity of the stochastic methods used in solving the model are

determined by the KL eigenvalue decay (see Chapter 3). The smoother the covariance

kernel of the coefficient, the faster the KL eigenvalue decay, with analyticity giving

exponential decay and finite Sobolev regularity implying algebraic decay [9].

Definition 2.15 (Smoothness of covariance kernels [9, 26]). If D is a bounded

domain in Rd, a covariance function k : D × D → R is said to be piecewise

analytic/smooth/Hp,q on D × D if there exists a finite family (Dj)1≤j≤J ⊂ Rd of

open hypercubes such that

D̄ ⊂
J⋃
j=1

D̄j (2.8)

Dj ∩Dj′ = ∅ ∀j 6= j′ and k|Dj×Dj′ has an analytic/smooth/Hp ⊗Hq continuation

in a neighborhood of D̄j × D̄j′ for any pair (j, j′). Here D̄ denotes the closure of D.
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Proposition 2.1 (see [9]). If the covariance kernel k is piecewise analytic on D×D

with D ⊂ Rd and if (λj)j≥1 is the eigenvalue sequence associated with 2.3, then there

exist constant c1, c2 > 0 such that

0 ≤ λj ≤ c1e
−c2j1/d ∀j ≥ 1. (2.9)

Proposition 2.2 (see [9]). If k ∈ L2(D × D) is symmetric and piecewise Hp,0(D)

with p ≥ 0 and D ⊂ Rd, then for the associated symmetric, non-negative and compact

covariance operator defined by (2.3) it holds

0 ≤ λj ≤ c3j
−p/d ∀j ≥ 1, (2.10)

for some constant c3 > 0 independent of j or p.

The eigenvalue decay rate outlined in the previous two propositions, implies the

following decay rate in the truncation error of the Karhunen-Loève expansion.

Proposition 2.3 (Truncation Error (see [9])). If k(x, y) is piecewise analytic/smooth

on D ×D, then the truncated KL expansion θ0 of θ converges in L2(D × Ω) as

‖θ − θ0‖L2(D×Ω) /


c4e
−c2(1/2−s)k1/d if k piecewise analytic

c5k
1−p(1−s)/d if k piecewise smooth

(2.11)

for all k ∈ N, for any s > 0, p ≥ 0 and with constants c4 and c5 depending on d, s, c1,

and c2.
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2.2.2 Numerical Approximation of KL expansions Using Finite Element

Methods

An efficient numerical approximation of the eigenpairs of the operator connected

to the covariance kernel via (2.3) is needed for the efficient numerical approximation

of Problem (1.1) [9]. The variational form of the eigenvalue problem is:

∫
D×D

k(x, y)φj(y)v(x)dydx = λj

∫
D

φj(x)v(x)dx ∀v ∈ L2(D). (2.12)

To compute KL eigenpairs, finite elemenent (FE) discretization of (2.12) is done

with piecewise polynomial functions on a regular, quasi-uniform triangulation of D

with meshwidth h. [18], [9]. Let S0
h denote the finite element space of discontinous,

piecewise constant functions. The Galerkin approximation of (2.12) with the finite

element space S0
h ⊂ L2(D) reads: Find 0 6= λhj , φ

h
j ∈ S0

h such that

∫
D×D

k(x, y)φj(y)hv(x)dydx = λhj

∫
D

φj(x)hv(x)dx ∀v ∈ S0
h. (2.13)

For the eigenpair approximation error we have the following pointwise bound

Proposition 2.4 (see [9]).


‖φj − φhj ‖ = O(h), as h→ 0,

|λj − λhj | = O(h), as h→ 0.

(2.14)
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The calculation of KL eigenpairs involves the solution of the dense matrix eigen-

problem corresponding to proposition (2.4), i.e of

Pv = λMv, (2.15)

where both matrices P and M are symmetric and positive definite, with the mass

matrix M being diagonal if we choose as basis of S0
h the characteristic functions of

elements in the triangulation.

2.3 Approximation of Random fields by spatial averaging method

The spatial averaging approach is another method for approximating the random

field, which approximates the random field θ by a set of random variables θ̂i, i =

1 . . . , d, where each random variable represents the local average of θ over the domain

Ωi defined by the following integral. [27] [33]

θ̂i =
Ri

Vi
=

1

Vi

∫
Ωi

θ(ω)dω (2.16)

where Vi is the volume of the spatial domain Ωi. Ri is the local integral of θ(x) over

the domain Ωi.

For Gaussian random fields, the averaging random variables are fully define by

a mean vector and a covariance matrix that have been determined through spatial

integration of the Random field moment functions. The mean of the random variable

θ̂i is determined by integrating the mean Eθ(x) over the averaging domain Ωi and is
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define by:

E(θ̂i) =
1

Vi

∫
Ωi

Eθ(ω)dω (2.17)

and the variance is found by integration over the spatial autocovariance Kθ(x1, x2):

V(θ̂i) =
1

V 2
i

∫
Ωi

∫
Ωi

Kθ(ω1, ω2)dω1dω2 (2.18)

[27][33].

The spatial averaging methods’ approximation error often propagates through

the model response, and the error in the model response may be higher or smaller

than the error in the random field model, depending on the quantity of interest.

If Q and Q̂(x) represent the quantity of interest and its approximation, then the

point-wise approximation error is defined as ε(x) = Q(x) − Q̂(x). The normalized

mean bias and normalized variance bias are defined using the bias error measure as

follows [27], [31]:

εµ(X) =
E[Q(x)]− E[ ˆQ(x)]

E[Q(x)]
(2.19)

εV(X) =
V[Q(x)]− V[ ˆQ(x)]

V[Q(x)]
(2.20)

Taking the weighted integral of (2.19) and (2.20) over the domain Ω gives the corre-

sponding global error measures [27], [23]:
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ε̄µ =
1

V

∫
Ω

εµ(X)dx (2.21)

ε̄V =
1

V

∫
Ω

εV(X)dx (2.22)

2.4 Conditional Random Fields

In Chapter 4, we decompose the random field into a low dimensional approxi-

mation θ0 and a high dimensional residual. The KL expansion lends itself readily to

such a decomposition, i.e. the approximation is given by

θ0 =
k∑
j=1

√
λjφj(x)Yj(ω),

while the residual is

∆θ = θ − θ0 =
∞∑

j=k+1

√
λjφj(x)Yj(ω).

Note that for Gaussian fields, the residual is independent of the approximation, and

hence the conditional random field θ given samples of θ0 is simply

θ0 + ∆θ.
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This decomposition, while convenient may not be how the random field is usually

approximated in practice. Sometimes some prior information about the random field

may be known observations or coarse-scale simulation. The observation may take

several forms such as direct measurements of the field in a region i.e θiB = b with

ib ⊂ {1, . . . , n}, or its image under a linear mapping define by Aθ = b with A ∈ Rk

or a process D with D|θ ∼ N(Aθ,Σe) [25]. A conditioning of random field can be

on the following:

• Conditioning on a subset of points [25]: for Σ � 0, iA ⊂ {1, . . . , n}

and ib := icA be its complement and if we partition θ ∼ N(µ,Q−1) such that

θ = [θA,θB]T where

Q =

QAA QAB

QBA QBB


then θA|B := θA|{θB = θB} ∼ N(µA|B, Q

−1
A|B) where

µA|B = µA −Q−1
AAQAB(θB − µB), (2.23)

and

QA|B = QAA (2.24)

• Conditioning on Hard Constraints [25]: For θ define as above and A ∈

Rk×n a full rank matrix with 0 < k < n, the conditional distribution of θ given
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the linear constraint Aθ = e for some vector e ∈ Rk is : θ

Aθ

 ∼ N


 µ

Aµ

 ,
 Σ ΣAT

AΣ AΣAT




with

µ|{Aθ = e} = µ− ΣAT
(
AΣAT

)−1
(Aµ− e) (2.25)

and

Σ|{Aθ = e} = Σ− ΣAT
(
AΣAT

)−1
(AΣ) (2.26)

• Conditioning on the truncated Karhunen-Loève Expansion Here we

consider the conditioning of a Gaussian random field on known measurements

or samples of its truncated KL expansion as a specific instance. Because the

terms in the series are independent, the conditional mean and covariance are

calculated as follows:
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E(θ|θk0) = E(θk0) +
∞∑

j=k0+1

E(
√
λjφj(x)Yj) (2.27)

= E(Eθ(x) +

k0∑
j=1

√
λjφj(x)Yj) +

∞∑
j=k0+1

E(
√
λjφj(x)Yj)

= Eθ(x)

and

V(θ|θk0) = E[(θ|θk0 − E(θ|θk0))2] (2.28)

= E[(θk0 +
∞∑

j=k0+1

√
λjφj(x)Yj − Eθ(x))2]

= E[(Eθ(x) +

k0∑
j=1

√
λjφj(x)Yj +

∞∑
j=k0+1

√
λjφj(x)Yj − Eθ(x))2]

= E[(

k0∑
j=1

√
λjφj(x)Yj +

∞∑
j=k0+1

√
λjφj(x)Yj)

2]

= E[(
∞∑
j=1

√
λjφj(x)Yj)

2]

=
∞∑
j=1

E
(
λjφ

2
j(x)

)

• Conditioning on Soft Constraints[25] : Suppose the linear transformation

Aθ of θ is observed with some additional noise i.e e|θ ∼ N(Aθ,Σε), then θ|e ∼
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NC(bθ|eQθ|e), where

bθ|e = Qµ+ ATΣ−1
ε e (2.29)

Qθ|e = Q+ ATΣ−1
ε A (2.30)
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Chapter 3

Stochastic Sampling Methods

Let J : Θ→ R be a smooth function depending on the parameter θ ∈ Θ, possibly

via the solution u of the associated partial differential equation (1.1). Suppose we

are interested in computing a quantity of interest Q := E[J(θ)] defined by:

Q := E [J(θ)] =

∫
Ω

J(θ)dω.

This chapter will discuss two different sampling methods that are used in ap-

proximating the quantity of interest Q, specifically the Monte Carlo method and the

stochastic collocation method. Both approximate the integral Q by a weighted sum,

∫
Ω

J(θ)dω ≈
n∑
i=1

wiJ(θi),

where w1, ..., wn are a set of quadrature weights and θ1, ..., θn the corresponding

quadrature nodes. Both methods can be implemented fully in parallel, since evalu-

ations of J are computationally independent. Differences in efficiency are therefore

directly attributable to the sample size required to reach a given level of accuracy.

In Section 3.1 we will outline the Monte Carlo sampling method, based on indepen-

dent random sampling of the underlying parameter and in Section we will introduce
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stochastic collocation, an interpolation-based quadrature scheme that can be adopted

to moderate dimensional problems.

This is of the form above, were the wi =
∫

Γ
Li(y)ρ(y)dy. For one-dimensional

interpolatory quadrature rules, Gauss nodes are often preferred, i.e. the nodes corre-

sponding to the roots of polynomials that are orthogonal in the ρ- weighted L2 space.

This guarantees a precision of 2n+1, i.e. polynomials of this degree can be integrated

exactly using these quadrature rules. If we assume a Gaussian random field, then

Hermite basis is natural (orthogonal w.r.t. Gauss weights). Other useful quadrature

points are the Chebyshev points, which are applicable on bounded domains. In the

multi-dimensional setting, sparse grid methods give us a way to produce efficient

high accuracy rules by taking tensor products of appropriate one-dimensional rules.

3.1 The Monte Carlo Method

The Monte Carlo method is the most widely used method for approximating

high-dimensional integrals. Implementation of the Monte Carlo approach is straight-

forward, as it makes use of already existing deterministic codes. The rate of conver-

gence, on the other hand, is quite slow, depending on the reciprocal of the square

root of the sample size as well as the variance of the integrand. It would thus take a

hundredfold increase in the sample size to achieve every additional digit of accuracy.

On the other hand, the dimension of the underlying parameter space has only a mild

influence on the error, namely via its influence on the variance [21].
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In the classical Monte Carlo method, we estimate the statistical quantity of

interest Q by

Q ≈ QMC [J ] :=
1

n

n∑
i=1

J(θi), (3.1)

where θ1, θ2, ..., θn is a sequence of identically distributed samples of the parameter

θ, generated according to the underlying distribution P.

Since the parameter sample is independent and identically distributed (i.i.d),

the estimator QMC is an unbiased estimator of Q since

E
[
QMC [J ]

]
=

1

n

n∑
i=1

E [J(θi)] = Q

The convergence of this estimate is guaranteed by Theorem 2.1, which states

that QMC converges almost surely to the true expected value, i.e.

lim
n→∞

QMC [J ] = Q, P-a.s.,

provided the variance of the individual terms is bounded i.e V[θ] is bounded [35].

Suppose V[θ] <∞, we have

V[QMC ] = E[(Q−QMC)2] =
V(J)

N

and the root mean square error of QMC is
√
C, which means the error estimates of

the estimator is of order n−1/2 written as RMSE = O(n−1/2). The error estimate
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may be inverted to show the number of samples needed to yield a desired error ε [17]:

N =
V(J)

ε2

One of the strength of Monte Carlo Method is that the sample values can be

used for error estimation [35]. The most common used estimators of V(J) are

σ2 =
1

N − 1

N∑
i=1

(θi −QMC)2, (3.2)

σ2 =
1

N

N∑
i=1

(θi −QMC)2, (3.3)

and the estimator in (3.2) is unbiased since E[σ2] = V(J) for N ≥ 2. From the

central limit theorem, the error QMC −Q has approximately a normal distribution

with mean 0 and variance V(J)
N

[35]. we summarise the Monte Carlo Method in the

folllowing algorithm:
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Algorithm 1 Monte Carlo Sampling Algorithm
1: Identify the random Field θ form the model

2: Identify the variablity of θ by assuming a probability density function ρθ

3: Generate n ∈ N i.i.d samples from ρtheta, {θi, . . . , θN} ∼ ρtheta

4: for i = 1, ...n do

5: compute J(θi)

6: end for

7: Compute E[J(θ)] ≈ QMC =
∑n

i=1
1
N
J(θi)

.

Some variance reduction approaches are used to increase the convergence rate of

the Monte Carlo method, where the knowledge about the sensitivity of the function

J is exploited [3] (see chapter 5). Correlation between subsequent samples can also

be used to one’s advantage. Control variates employ an easy integrand to reduce

variance, and if successive random variables are negatively associated, the variance

will be less than if they were independent. The antithetic variates technique takes

use of the reduction in variance that occurs when negatively correlated samples are

purposefully formed and grouped together [17].

3.2 The Stochastic Collocation Method

Before we get onto the other component of the hybrid sampling (Sparse Grid

Methods). We shall define the various sorts of polynomials that are used in approx-

imating functions based on the type of random field we are utilizing. Polynomials
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such as the Lagrange polynomial are employed in uniform random fields, whereas

Hermite polynomials are utilized in Gaussian random fields.

3.2.1 One-Dimensional Interpolation

It is known that given n points in a plane (yk, fk), k = 1, . . . , n with distinct yk’s,

there is a unique polynomial in y of degree less than n whose graph passes through

the points. Suppose we fit a polynomial of degree n-1,

P (y) = an1y
n−1 + an−2y

n−2 + ȧ1y + a0

through the n known points (yk, fk), k = 1, . . . , n. This polynomial is called the

interpolating polynomial because it exactly reproduces the given data: P (yk) =

fk k = 1 . . . n. There are many different formulas for the polynomial, but they all

define the same function [10].

Global Polynomial Interpolation

One way to construct the polynomial P (y) is to use the Lagrange polynomials

of degree n− 1:

Definition 3.1. Let

Lk =
∏

i=1,i 6=k

(
y − yi
yk − yi

)
, k = 1, . . . , n. (3.4)

The Lagrange form of the polynomial of degree n-1 interpolating the set of points

{(yk, fk)|k = 1, . . . , n} and satisfying P (yk) = fk is defined by,
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P (y) =
n∑
k=1

fkLk(y) =
n∑
k=1

fk
∏

i=1,i 6=k

(
y − yi
yk − yi

)
(3.5)

[10].

Theorem 3.1. (The error term in global polynomial interpolation) If f is

a function that is n times differentiable in [a,b] with continuous derivatives then

∀y ∈ [a, b], there exist η ∈ (a, b), that depends on y, such that

f(y)− P (y) =
f (n)(η)

n!

n∏
k=1

(y − yk). (3.6)

Hermite Polynomial

The Hermite interpolation matches the function f , and the observed value of its

first n derivatives. The Hermite polynomial of degree n is defined as

Hn = (−1)ney
2 dn

dyn
ey

2

(3.7)

physicist’s Hermite polynomials and

Hn = (−1)ney
2/2 d

n

dyn
ey

2/2 (3.8)
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probabilist’s Hermite polynomials [6].

The Hermite polynomials are orthogonal i.e

∫ ∞
−∞

w(y)Hn(y)Hm(y)dy = 0 ifn 6= m. (3.9)

for w(y) = e−y
2 in case of physicist’s Hermite polynomials or w(y) = e−(y/2)2 for

probabilist’s Hermite polynomials. The nth Hermite polynomial satisfies the follow-

ing differential equation:

d2

dy2
[Hn+1(y)]− 2y

d

dy
[Hn(y)] + 2nHn(y) = 0 (3.10)

and have the following recurrence relation:

Hn+1(y) = 2yHn(y)− 2nHn−1(y) (3.11)

In addition we have:

H
′

n = 2nHn−1(y) (3.12)

Local Piecewise Polynomial Interpolants

The most common local piecewise polynomial interpolant are the hat functions

obtained by dividing the interval into n subinterval of equal lengths h. [20]
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Definition 3.2. The family of first (n + 1) 1D-hat basis functions on the interval

[0, T ] are defined as

φ0(x) :=


h−x
h

0 ≥ x ≥ h

0, otherwise

φi(x) :=



x−(i−1)h
h

(i− 1)h ≥ x ≥ ih

(i+1)h−x
h

ih ≥ x ≥ (i+ 1)h

0, otherwise

and

φn(x) :=


x−(T−h)

h
T − h ≥ x ≥ T

0, otherwise

3.2.2 Sparse Grid Tensorization

Here we will describe two different types of collocation techniques used in solving

numerical integrals namely the full grids methods and the sparse grid methods.

Collocation Techniques on Uniform Random Fields

Suppose J : [0, 1]d → R, To study J and to solve problems involving J , the idea

in the sparse grid methods is to replace J with another function f : [0, 1]d → R that

approximates J well and is much cheaper to evaluate[32]. f is been constructed by

interpolation of J i.e evaluate J at a small number of points xk and use the values

J(xk) to define f . We use the following definitions to show how the sparse grids

method on uniform random fileds is obtained.
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Definition 3.3 (See [32]). Suppose we discretized the domain of J by splitting it

into 2n segments of equal size. The d dimensional full grid of level n is given by the

following cartesian product:

Ωn := Ωn1 × ...× Ωnd

of the one dimensional grids Ωni and d−dimensional grid points are defined as

xn,i = (xn1i1 , ..., xndid)

.

Definition 3.4. The multivariate basis function is constructed from the univariate

basis functions φnj ,ij : [0, 1]→ R as a tensor product:

φn,i(xn,i) := φn1,i1(xn1,i1)...φnd,id(xnd,id).

Each grid point xn,i corresponds to one basis function φn,i. The most common choice

of φn,i are the hat functions defined by

φnj ,ij(x) := max(1− |2njx− ij|, 0).

[32].
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Definition 3.5. The nodal Space Vn of level n is defined as the linear span of all

basis functions φn,i:

Vn = span{φn,i|ij = 0, . . . , 2n for j = 1, ..., d}.

[32]

Therefore, the corresponding interpolant function is simply:

f(x) :=
2n1∑
i1=0

...
2nd∑
id=0

cn,iφn,i(x), cn,i ∈ R,

where cn,i = J(xn,i). The size of Ω grows rapidly in higher dimensions (curse of

dimensionality). To address this a change of basis described below is performed so

that basis functions and their grid points have different levels of importance, but the

same functions that is continuous and piecewise linear [32].

Definition 3.6. Let

In :=


{1, 3, 5, ..., 2n − 1} for n ≥ 1

{0, 1} for n = 0.

Then,

Ωn = ∪nl=0Ω̃l, Ωn := {xn,i|i ∈ In}

The corresponding interpolating function is
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f(x) :=
n∑
l=0

∑
i∈In

αn,iφn,i(x), αn,i ∈ R.

Where {φn,i|0 ≤ l ≤ n, i ∈ In} are called the hierarchical basis and {αn,i|0 ≤ n ≤

n, i ∈ In} are called hierarchical surpluses.

Definition 3.7. (Full Grids) The d-dimensional full grid

Ωn :=

n1⋃
n1=0

. . .

nd⋃
nd=0

Ω̃n1 × . . .× Ω̃nd

and the interpolant function is given by:

f(x) :=
n∑

l=0

∑
i∈In

αn,iφn,i(x), αn,i ∈ R.

Regular Sparse Grids

The size of the support of φn,i = 2−n+1 is smaller in high levels which means

that these functions only have little influence on the resulting linear combination f

whereas basis function of a low level n ≤ 1 even have a large support. In d dimension,

the area of the support of φn,i is

(2hn1)...(2hnd) = 2‖n‖1+d, ‖n‖1 := n1 + ...+ nd,

where ||n||1 is the norm of n, i.e the area decreases with increasing ||n||1. Sparse

grid supposed that functions with high ‖n‖1 only contribute little to the solution
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and omits it. Hence we only use the levels n whose 1-norm doesn’t exceed a specific

threshold n ≥ 0 :

f(x) :=
∑

‖l‖1≤n

∑
i∈In

αn,iφn,i(x), αn,i ∈ R.

The corresponding grid points from the regular sparse grid Ωs
n,d of level n is:

Ωs
n,d := {xn,i‖l‖1 ≤ n, i ∈ In}.

Smolyak Approximation

Given an ensembles {J(yi)}mi=1, the interpolation approach finds an approxi-

mation Q(J) of J that fulfils the condition Q(J)(yi) = J(yi) j = 1, . . . ,m. Such

that

Q(J)(y) =
m∑
j=1

J(yi)Li(y) (3.13)

where Li(y) are the Lagrange polynomials.

To get the approximation in multiple dimensions (k>1), the following full tensor

product rule can be use

Qm1 ⊗ · · · ⊗Qmk(J) =

m1∑
i1=1

· · ·
mk∑
i1=1

J(yi1, . . . , yik).(Lj1 ⊗ · · · ⊗ Ljk) (3.14)

.
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A more efficient method is the Smolyak grids interpolation It takes a subset

of the full tensor define by

A (w, k) =
∑

w−k+1≤|i|≤w
(−1)q−|i|

 k − 1

w − |i|

 (Qm1 ⊗ · · · ⊗Qmk) (3.15)

where w ≥ k is an integer denoting the level of construction. To compute the operator

A (w, k), one needs to evaluate J on the set of points

H (w, d) =
⋃

w−k+1≤|i|≤w
(τ i1 × · · · × τ ik) (3.16)

where τ i = {yi1, . . . , yimi} ⊂ [−1.1] is the collection of nodes used by univariate

interpolating operator Qi, where τ i denotes the set of abscissas used by Qi,the choice

of which can be the Clenshaw-Curtis abscissas or the Gaussian abscissas. The set

H (w, d) is a much smaller subset of those required by the full tensor product rule.

Collocation Techniques on Gaussian Random Fields

Suppose J : Rd → R. The procedure for getting the sparse quadrature for

E(J(θ)) When θ is a Gaussian random field is similar to what we discussed above

only that in this case the so called Gauss-Hermite quadrature rule is used [4]. The

density ρ is used as the weight function, where y0 = 0 and w0 = 1 for n = 0, and

for n ≥ 1, yi, i = 0, . . . ,mn − 1 are the roots of the orthonormal (with respect to ρ)
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Hermite polynomial Hn for n = ml, where

Hn(y) =
(−1)nρ(n)(y)√

n!ρ(y)

and the weights wi, k = 0, 1, . . . ,mn − 1 are given by

wi =
1

m2
n(Hml−1

(yi))2
(3.17)

Therefore the full tensorization of J takes the form

J(y) =
∑
m∈M

JmHm (3.18)

where the multivariate Hermite polynomials Hs and Js are define as:

Hm(y) = Hmi(yi), and Jm =

∫
J(y)Hm(y)dΩ(y) (3.19)

and the sparse quadrature is define as:

QΛ(J) =
∑
m∈Λ

⊗
k

(Qmk −Qmk−1(J)) (3.20)

3.2.3 Error Estimates

In this section we cite some well-known convergence results [21, 2] for the sparse

grid stochastic collocation method. The cited estimates were derived from inter-

polation error estimates for the constituent one-dimensional rules, which were then

combined within the Smolyak grid. For the purpose of this section, we suppose that
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the random parameter θ has been approximated by its finite noise approximation

θ0 : Γ×D → R, where Γ =
∏k

i=1 Γi ⊂ Rk is a hyper-rectangle denoting the range of

the random variables Y1, ..., Yk with joint probability density function ρ. Further, let

Q[J(θ0)] ≈ E[J(θ0)]

be the numerical approximation of the statistical quantity of interest using the sparse

grid stochastic collocation method. Since these are based on polynomial interpola-

tion, their convergence requires some degree of smoothness for J(θ0) as a function

of the random variables Y1, ..., Yk, as summarized in the following two assumptions,

which can generally be established on a case-by-case basis.

Assumption 3.1 (Bounded Mixed Derivatives). Assume that the mapping J : Γ→ R

given by y1, ..., yk 7→ J(θ0(y1, ..., yk)) is continuously differentiable in each variable

with bounded partial derivatives in each direction.

A stronger assumption is given by the following.

Assumption 3.2 (Analytic Extension). Assume that in each component yj, the func-

tion J(y1, .., yj, .., yk) has an analytic extension to a region in the complex plane for

every fixed points y1, .., yj−1, yj+1, ..., yk.

The error estimates for the low-dimensional quadrature rules depend primarily

on the dimension k of the parameter space and the smoothness of the integrand and

is stated in the following theorem.

Theorem 3.2 (Smolyak Convergence [21]). Suppose that the mapping J satisfies

Assumption 3.1 or Assumption 3.2. Then there are constants independent of the
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sample size n so that

‖Q[J(θ0)]− E[θ0]‖L2 ≤ Cn−
γ

ζ+log(k) .
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Chapter 4

The Hybrid Sampling Approach

In this chapter, we will derive the hybrid sampling method, obtain an estimate of

its error, and compare it to the error estimates obtained from each of its constituents

(Monte Carlo and Sparse Grid). We describe the conditions in which the hybrid

approach performs much better.

Suppose θ0 is a lower scale, k0-dimensional finite-noise approximation of the

random field θ, obtained for example by means of a truncated Karhunen-Loève (KL)

expansion or some other low-resolution representation. By the law of total expecta-

tion,

Q = E [J(θ)] = Eθ0
[
Eθ|θ0 [J ]

]
, (4.1)

where Eθ0 is the marginal expectation with respect to θ0 and Eθ|θ0 is the conditional

expectation of J with respect to θ, given θ0.

The hybrid sampling approach we proposed uses an efficient quadrature rule

Qθ0 suited to low dimensional parameter spaces to approximate the outer integral,

while employing a sampling method Qθ|θ0 that is more robust to the parameter

space dimensionality, such as the Monte Carlo method, to resolve the inner integral.

Specifically, let θ1
0, . . . , θ

n0
0 and w1, . . . , wn0 be the quadrature nodes and weights that

determine the low-dimensional quadrature rule Qθ0 and let {J ij}nij=1, i = 1, . . . , n0 be

independent and identically distributed samples of the quantity J(θ) given θ0 = θi0.
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Identity (4.1) now suggests the series of approximations

Eθ0 [Eθ|θ0 [J(θ)|θ0]] ≈ Qθ0
[
Eθ|θ0 [J(θ)|θ0]

]
=

n0∑
i=1

wiEθ|θ0
[
J(θ)|θ0 = θi0

]
≈ Qθ0

[
Qθ|θ0 [J(θ)|θ0]

]
=

n0∑
i=1

wi

(
1

ni

ni∑
j=1

J ij

)
.

Note that the ‘finite noise’ truncation parameter k moderates the contributions of

the sparse grid stochastic collocation and the conditional Monte Carlo sampling,

with k = 0 corresponding to a full Monte Carlo sample, and the contribution of the

sparse grid collocation growing as k → ∞. As shown in Chapter 2 on the trun-

cated Karhunen-Loève (KL) expansion, the decay rate of the covariance operator’s

eigenvalues suggests a level of k above which the contributions of successive KL

terms are negligible, i.e. a practical upper bound for the truncation level. When the

field is smooth and J is a smoothly varying function in θ, then The resulting full

tensor product quadrature rule requires ni Monte Carlo simulations for each low-

scale quadrature point θi0, i = 1, . . . , n0, amounting to a total of
∑n0

i=1 ni function

evaluations.

4.1 Hybrid Sampling Algorithm

The approach above is summarized in Algorithm 2 below.
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Algorithm 2 Hybrid sampling algorithm
1: Set truncation levels k0 � k

2: for i = 1, ...n0 do

3: Sample field θi0 on sparse grid

4: for j = 1, ..., ni do

5: Sample θj, given that θ0 = θi0

6: Compute J ij = J(θj).

7: end for

8: Qθ|θ0 [J |θi0] = 1
ni

∑ni
j=1 J

i
j

9: end for

10: Q =
∑n

i=1wiQθ|θ0 [J |θi0].

4.2 Convergence Analysis of The Hybrid Sampling Method

In this section we establish the convergence of the hybrid sampling method for

any truncation level k, as the sample sizes n0, and {ni}n0
i=1 approach infinity.

Theorem 4.1 (Convergence). For any fixed truncation level k and tolerance level

ε > 0, we can find n0 and ni, i = 1, ..., n0 large enough so that

∥∥Qθ0 [Qθ|θ0 [J(θ)|θ0]
]
− E [J(θ)]

∥∥
L2(Ω)

< ε.
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Proof. Using the law of total expectation and adding and subtractingQθ0

[
Eθ|θ0 [J(θ)|θ0]

]
,

we decompose the error

E [J(θ)]−Qθ0
[
Qθ|θ0 [J(θ)|θ0]

]
= (Eθ0 −Qθ0)

[
Eθ|θ0 [J(θ)|θ0]

]
+Qθ0

[
Eθ|θ0 [J(θ)|θ0]−Qθ|θk0 [J(θ)|θ0]

]
. (4.2)

For simplicity we do not include spatial discretization. To be more specific, we shall

require that both error contributions be of size ε.

The first term describes the quadrature error for the sparse grid method in

integrating the conditional expectation f(θ0) := Eθ|θ0 [J(θ)|θ0] over the range of θ0.

Under the appropriate smoothness assumptions, of f on θ0 it can be shown using

the results outlined in Chapter 3. That is, [21]

∥∥∥(Eθk0 −Qθk0 )
[
Eθ|θk0 [J ]

]∥∥∥2

L2
∼ Ck0n

− γ
ζ+log(k0)

0 . (4.3)

The sample size n0 needed to achieve an error of ε must therefore satisfy

n0 ≥
(
Ck0

ε

) ζ+log(k0)
γ

(4.4)

The second term is the weighted sum of quadrature errors associated with

computing various conditional expectations by means of the dimension-independent

Monte Carlo quadrature rule. To control the second error term, let σiθ|θk0 =
√

Vθ|θk0 (J),
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where Vθ|θk0 (J) is the conditional variance of J given θk0 , i.e.

Vθ|θk0 (J) = Eθ|θk0

[(
J − Eθ|θk0 [J |θk0 ]

)2

|θk0
]
.

If we choose ni ≥
(
σi
θ|θk0
ε

)2

for i = 1, . . . , n0 we have, by independence,

∥∥∥Qθk0 [Eθ|θk0 [J ]−Qθ|θk0 [J ]
]∥∥∥2

L2(Ω)
= Eθ

[(
Qθk0

[
Eθ|θk0 [J ]−Qθ|θk0 [J ]

])2
]

(4.5)

=

n0∑
i=1

w2
iEθ

[(
Eθ|θk0 [J ]−Qθ|θk0 [J ]

)2
]

=

n0∑
i=1

w2
i

(
σiθ|θk0

)2

ni
≤

n0∑
i=1

w2
i ε

2 = ε2‖w‖2
l2 ,

(4.6)

where w = [w1, . . . , wn0 ]
T is the vector of quadrature weights for Qθk0 . It can be

shown [22] that the sparse grid quadrature weights, while not non-negative in general,

are bounded in norm by

‖w‖l2 = O((log(nk00 ))k0−1) = O(log(ε)k0−1), (4.7)

if n0 is chosen as above.

Substituting (4.7), (4.5) and (4.3) into (4.2), we have

∥∥∥Eθk0 [Eθ|θk0 [J ]
]
−Qθk0

[
Qθ|θk0 [J(θ)|θk0 ]

]∥∥∥
L2(Ω)

≤ Ck0n
− γ
ζ+log(k0)

0 +

√√√√√ n0∑
i=1

w2
i

(
σiθ|θ0

)2

ni
≤ 2ε. (4.8)

47



4.3 Efficiency of The Hybrid Sampling Method

With the error estimates on hand, we can analyze the efficiency of the hybrid

sampling algorithm.

Definition 4.1. The ε-cost of a sampling algorithm is the computational work (num-

ber of samples) required to achieve an error below a given ε > 0.

For example, The ε cost of the Monte Carlo sample is

√
V(J)

n
< ε⇒ n >

V(J)

ε2
.

Letting σ2
θ|θk0 = max

i=1,...,n0

{(σiθ|θk0 )2}, the ε-cost of the hybrid approach is approxi-

mately

n0

(σθ|θk0
ε

)2

∼ σ2
θ|θk0

(
1

ε

)2+
ζ+log(k0)

γ

.

Hence, efficiency of the hybrid sampling method hinges both on:

• The efficiency of the low-dimensional quadrature rule in resolving the low-

dimensional approximation of Q,

• The efficiency of high-dimensional rule in computing the conditional expecta-

tions to sufficient accuracy.
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4.3.1 Comparison of The Hybrid Sampling Method and Monte Carlo

Method

To justify using the hybrid approach over Monte Carlo sampling in terms of

computational complexity, we compare the ε-costs of both methods and require

σ2
θ|θk0

(
1

ε

)2+
ζ+log(k0)

γ

< σ2
θ

(
1

ε

)2

⇒
σ2
θ|θk0
σ2
θ

< ε
ζ+log(k0)

γ (4.9)

In comparison with the Monte Carlo method, the hybrid sampling scheme is

thus favored when (i) the low-dimensional quadrature rule has a high convergence

rate and (ii) when the conditional variance given θk0 is low relative to the quantity

of interest’s total variance.

Lemma 4.1 (Yakasai and Van Wyk). If vθ is piecewise analytic/smooth on D×D,

and the family Y = (Yj)j ≥ 1, then the KL expansion of θ converges uniformly on

D × Ω and

V(J(θ)|θk0) . ‖J ′(θk0)‖2


e−2bk0 if vθ pw analytic

k−2r
0 if vθ pw smooth

for k0 large enough and any any b, r ≥ 0 depending on the decay of the eigenpairs of

vθ
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Proof. Let θ be a random field and dθ = θ − θk0 =
∑∞

j=k0+1

√
λjφjYj(ω)

Then,

V(J(θ)|θk0) (4.10)

=V(J(θk0 + dθ))

=V
(
J(θk0) + J ′(θk0)dθ +

J ′′(θk0)

2
dθ + ...

)
=J ′(θk0)Cov(dθ)(J ′(θk0))

T

=J ′(θk0)
∞∑

j=k0+1

E
(
λjφ

2
j(x)

)
(J ′(θk0))

T

Recall from Proposition(2.3) we have,

‖θ − θk0‖L2(D×Ω) /


e−bk0 if vθ pw analytic

k−r0 if vθ pw smooth
∀k0 ∈ N (4.11)

for any b, r ≥ 0 depending on the decay of the eigenpairs of vθ [21].

Cov(dθ) = E((dθ)2) .


e−2bk0 if vθ pw analytic

k−2r
0 if vθ pw smooth
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for k0 large enough and any s > 0, p ≥ 0.

Hence substituting in equation(4.10) we have,

V(J(θ)|θk0) . ‖J ′(θk0)‖2


e−2bk0 if vθ pw analytic

k−2r
0 if vθ pw smooth

for k0 large enough and any any b, r ≥ 0 depending on the decay of the eigenpairs

of vθ

Therefore for vθ pw analytic and using equation(4.9), we have

σ2
θ|θk0

(J)

σ2
θ(J)

< ε
ζ+log(k)

γ =⇒ ‖J ′(θk0)‖2e−2bk0

σ2
θ

< ε
ζ+log(k0)

γ (4.12)

4.3.2 Comparison of The Hybrid Sampling Method and Sparse grid

Method

Now consider a comparison of the ε-cost of the hybrid method with that of

applying the low-dimensional quadrature rule to the finite noise approximation of J0

of J . To ensure an overall error of order O(ε), we must bound both the truncation

error and the quadrature error of the resulting finite noise problem. In particular,

we decompose the approximation,

Eθ[J ]−Qθk0 [J0] = (Eθ[J ]− Eθk0 [J0]) + (Eθk0 [J0]−Qθk0 [J0]) ≈ ε, (4.13)

where the first term on the right hand side represents the truncation error and

the second represents the quadrature error. Now suppose θ is truncated then, the
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truncation error is:

Eθ[J ]− Eθk0 [J0] ≤ δ(k0) (4.14)

for some monotonic decreasing function δ(k)→ 0 as k →∞ such as in (2.3)

and the quadrature error is of the form:

(Eθk0 [J0]−Qθk0 [J0]) ≤ Ck0n
− γ
ζ+log(k0)

s ≈ ε

and given the value of k0(ε), the number of collocation points

ns(ε) ≈
(
Ck0

ε

) ζs+log(k0)
γs

(4.15)

can be found and compare with the number of samples needed to achieve accuracy

ε with hybrid sampling, which is

n(ε) ≈ σ2
θ|θk0 (J)

(
1

ε

)2+
ζ+log(k0)

γ

.

For exponential truncation error with δ(k0) = ae−bk0 , where a and b are constants,

k0(ε) =
1

b
log
(a
ε

)
(4.16)
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and

ns(ε) ≈
(
C

1
b

log(aε )

ε

) ζs+log( 1
b
log(aε ))

γs

(4.17)

n(ε) ≈ σ2
θ|θk0 (J)

(
1

ε

)2+
ζ+log( 1

b
log(aε ))
γ

.

Hence for exponential truncation error case the Hybrid sampling method would

be more efficient than sparse grid if

2 +
ζ + log(1

b
log
(
a
ε

)
)

γ
<
ζs + log(1

b
log
(
a
ε

)
)

γs
. (4.18)

Similarly, for Algebraic truncation error with ak0
−r, where a and r are positive

constants. Then,

k0(ε) =
(ε
a

)−r
(4.19)

and

ns(ε) ≈
(
C( εa)

−r

ε

) ζs+log(( εa )−r)
γs

(4.20)
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n(ε) ≈ σ2
θ|θk0 (J)

(
1

ε

)2+
ζ+log(( εa )−r)

γ

.

Hence for algebraic truncation error case wen can partially say the Hybrid sam-

pling method would be more efficient than sparse grid if

2 +
ζ + log(

(
ε
a

)−r
)

γ
<
ζs + log(

(
ε
a

)−r
)

γs
(4.21)
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Chapter 5

Sensitivity Enhanced Hybrid Methods

First-order Taylor method is used in place of a traditional Monte Carlo simu-

lation to avoid the prohibitive computational expense. Indeed, because of its slow

convergence rate and the costly generation of correlated input variables in the mul-

tivariate case, Monte Carlo methods are usually reserved to establish a reference

against which other methods are compared. However, by identifying and generat-

ing stochastic versions of only those parameters to which the output variables are

most sensitive and at the same time improving the convergence characteristics of

traditional Monte Carlo methods, it is possible to perform simulations utilizing the

original model to capture the more intricate behavior that a low-order approxima-

tion, such as a first-order Taylor expansion, might otherwise sacrifice.The modified

Monte Carlo method(s) we describe below is a step towards this goal [7]. A common

approach to improve the convergence rate of the classical Monte Carlo Method, is

known as variance-reduction methods. In this section, we review the theory under-

lying the methods and compare the convergent rate of the two methods.

5.1 Sensitivity Derivative Enhanced Monte Carlo Method (SDMC)

A variance-reduction method was developed that exploits information regarding

the sensitivity of J with respect to the random variable θ (measured via derivatives
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of J with respect to θ) to improve the convergence characteristics of the Monte

Carlo method. The result of their efforts [3] was the sensitivity derivative enhanced

sampling method (SDMC). The first-order SDES method is described below. Under

the tacit assumption that the appropriate derivatives of the function J exist, consider

the first-order Taylor expansion of J about µθ :

J1(θ) = J [u(µθ)] + Ju[u(µθ)]uθ(µθ)(θ − µθ) (5.1)

where uθ is the sensitivity u with respect to θ and E(u) = µθ.

Using∫
ρ(θ) = 1 and

∫
(θ − µθ)p(θ)dθ = 0

We have:

∫
(J [u(θ)]− J1[u(θ)])ρ(θ)dθ =

∫
(J [u(θ)])p(θ)dθ − J [u(µθ)] (5.2)

which yield the SDMC approximation of E(J):

E(J) := QSDMC ≈ J [u(µθ)] +
1

N

N∑
i=1

{J [u(θi)]− J1(θi)} (5.3)

The following inequalities illustrate the extent to which the variance of (5.3) is

reduced compared with the variance of the traditional Monte Carlo Method (3.1).
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Theorem 5.1. Let m = max |(d/dθ)J(θ)| and M = max |(d2/dθ2)J(θ)|, then:

V(J) ≤ 2m2V(θ) (5.4)

and

V(J − J1) ≤ M2

2
(V(θ)2 + E[(θ − µθ)4]) (5.5)

[3]

Equations (5.4) and (5.5) indicate that the SDMC method is more efficient when

V(θ) is small [3]. It must be emphasized that whereas the convergence rate of the

Monte Carlo method depends on
√

V(J)/N , the SDMC convergence rate for the

first-order case depends on
√
V(J − J1)/N , where the quantity V(J − J1) is simply

the variance of the first-order Taylor remainder of the objective function. If the

objective function satisfies certain smoothness properties, the variance of the Taylor

remainder V(J − J1) is always less than that of the objective function V(J) itself,

leading to an order of magnitude faster convergence of SDMC relative to that of the

Monte Carlo method. [3]

5.2 Control Variate Sensitivity Enhanced Monte Carlo Method

This method reduces the standard error of Monte Carlo Method by adding to

the approximation of Q = E(J) in (3.1) a control variate.[30]
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Let C : Rn → R be the control variate so that µC = E[C(u(θ))] is known.

Consider the random variable

J c(u(θ)) = J(θ)− α[C(u(θ))− µC ] (5.6)

for some constant α and J c(u(θ)) is an unbiased estimator for Q.

We can estimate Q with the following Monte carlo estimator

QC = E(JC) ≈ 1

N

N∑
i=1

(
JC(u(θi))

)
=

1

N

N∑
i=1

(J(θi)− α[C(u(θi))− µC ]) (5.7)

(5.7) will have a lower standard error than (3.1) if V(JC) is smaller than V(J) = σ2.

This will occur if C has a high correlation ρJ,C with J . [13]

V(JC) = V[J(θi)− α[C(u(θi))− µC ]] = σ2 + α2σ2
C − 2ασσCρJ,C (5.8)

Where V(C) = σ2
C . Hence, V(JC) will be smaller than σ2 if

ρJ,C >
ασC
2σ

(5.9)

V(JC) is minimized by setting

α =
σρJ,C
σC

(5.10)
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Therefore, from (5.8)

V(JC) = σ2(1− ρ2
J,C). (5.11)

So the convergence rate of the Covariate Sensitivity Enhanced Monte Carlo

Method depends on σ2(1− ρ2
J,C). [13].

Now, if we choose Cj = ∆JT (θ − θ̄), where θ̄ = E(θ),

then E(C) = 0 and V(c) = E[(J ′(θ̄)(θ − θ̄))2] = J ′(θ̄)2V(θj) and we have,

ρ2
J,C =

Cov2(J,C)

V(C)V(J)
(5.12)

=

(
J ′(θ̄)2V(θj) + J(θ̄)E

(
J ′′(ξ)

2
(θi − θ̄)3J ′(θ)

))2

J ′(θ̄)2V(θj)V(J)
(5.13)

≥
2J ′(θ̄)2V(θj)J(θ̄)E

(
J ′′(ξ)

2
(θi − θ̄)3J ′(θ)

)
J ′(θ̄)2V(θj)V(J)

(5.14)

=
2J(θ̄)E

(
J ′′(ξ)

2
(θi − θ̄)3J ′(θ)

)
V(J)

(5.15)

Hence,

V(J)(1− ρ2
J,C) ≤ V(J)

1−
2J(θ̄)E

(
J ′′(ξ)

2
(θi − θ̄)3J ′(θ)

)
V(J)

 (5.16)

= V(J)− 2J(θ̄)E
(
J ′′(ξ)

2
(θi − θ̄)3J ′(θ)

)
(5.17)

If we want to compare the SDMC method and the control variate method we

need to compare equation(5.11) and equation(5.4).
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Now, using equation(5.4),

V(J)(1− ρ2
J,C) ≤ 2m2V(θ)− 2J(θ̄)E

(
J ′′(ξ)

2
(θi − θ̄)3J ′(θ)

)
︸ ︷︷ ︸

K

(5.18)

Let

f(V(θ)) =
M2

2
(V(θ)2 + E[(θ − µθ)4])− 2m2V(θ) +K (5.19)

=
M2

2
V(θ)2 − 2m2V(θ) +

M2

2
(E[(θ − µθ)4]) +K (5.20)

Notice that equation(5.19) is quadratic in V(θ) with a = M2

2
> 0, b = −2m2 and

c = M2

2
(E[(θ − µθ)4]) +K.

Let ∆ = b2 − 4ac then,

• if ∆ < 0 we have no real solutions and f(V(θ)) ≥ 0 so, V(J − J1) ≥ V(J)(1−

ρ2
J,C)

• if ∆ > 0 and V(θ) is between the x-intercepts, then f(v(θ)) ≤ 0, so, V(J−J1) ≤

V(J)(1− ρ2
J,C). Otherwise,

• f(v(θ)) ≤ 0 and V(J − J1) ≥ V(J)(1− ρ2
J,C)

5.2.1 Computing Sensitivity Using Adjoint Method

Let x ∈ R and p ∈ Rnp .Suppose we have the function f(x, p) : Rnx × Rnp → R

and the relationship g(x, p) = 0 for a function g : Rnx × Rnp → R whose partial

derivative gx is eveywhere nonsingular.
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one method to approximate the gradient dpf is to compute np finite differences

over the element of p. Each finite difference computation requirea solving g(x, p) = 0.

For moderate large np, this can be quite costly. [1]

In the program to solve g(x, p) = 0, it is likely that the Jacobian matrix ∂xg is

calculated. The adjoint method uses the transpose of this matrix, gTx , to compute the

gradient dpf . The computational cost is usually no greater than solving g(x, p) = 0

once and sometimes even less costly.

Now,

dpf = dpf(x(p)) = ∂xfdpx(= fxxp) (5.21)

then,

g(x, p) = 0 everywhere implies

dpg = 0.

Expanding the derivative,

0 = dpg = g − p = gxxp + gppp

which implies;

gxxp + gp = 0 =⇒ xp = −g−1
x gp

Subtituting this relationship into the above equation yields

dpf = −fxg−1
x gp
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Notice that the expression −fxg−1
x can now be seen as the solution to the linear

equation

gTx λ = −fTx (5.22)

The matrix conjugate transpose is also called the matrix adjoint and for this reason

the vector λ is called the vector of adjoint variables and the linear equation is called

the adjoint equation. In terms of λ, dpf = λTgp. [1]

5.2.2 Adjoint Method For Elliptic Equation

Suppose we want to know the sensitivity of the flux on the right boundary with

respect to the variations in the parameter in an elliptic equation i.e we want to

compute

d

dθ
J(θ) =

d

dθ
f(x, θ) (5.23)

where u solves the equation:

g(u, θ) = 0 (5.24)

Then,

df

dθ
=
∂f

∂θ
+
∂f

∂u
uθ (5.25)
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where uθ = ∂u
∂θ

solves the sensitivity equation:

d

dθ
g(u, θ) =

d

dθ
0 (5.26)

which gives the sensitivity equation:

∂g

∂u
.uθ +

∂g

∂θ
= 0 (5.27)

Solving for uθ and pluging it back into equation(5.25) we have,

df

dθ
=
∂f

∂θ
− ∂f

∂u

(
∂g

∂u

)−1
∂g

∂θ
(5.28)

To use the Adjoint method, we let λT = df
du

(
dg
du

)−1
which gives the following

adjoint equation:

(
∂g

∂u

)T
λ =

(
∂f

∂u

)T
(5.29)

and use the following steps:

• Solve g(u, θ) = 0 for u.

• Solve adjoint equation(5.29) for λ.

• Compute df
dθ

= ∂f
∂θ
− ∂f

∂u
λT dg

dθ
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Example 5.1. Suppose f(u, θ) =
∫ 1

0.8
udu, then,

∂f

∂u
=

∫ 1

0.8

Idu and
∂f

∂θ
= 0

Hence,
∂f

∂θ
=

∫ 1

0.8

uθdu.

Now, g(x, θ) = 0

=⇒ g(u, θ) = − d

dx

(
θ
d

dx
u

)
− 1 = 0

∂g

∂θ
= − d

dx

(
I
du

dx

)
and

∂g

∂u
= − d

dx

(
θ
d

dx
I

)
and we get the following adjoint equation:

− d

dx

(
θ
dλ

dx

)
=

∫ 1

0.8

dx (5.30)

λ(0) = λ(1) = 0

with corresponding weak form

∫ 1

0

θλ′(x)v′(x)dx =

∫ 1

0.8

u(x)dx for all test functions v(x) (5.31)

λ(0) = λ(1) = 0
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Once we have λ, we compute

df

dθ
=
∂f

∂θ
− ∂f

∂u
λT
dg

dθ
(5.32)

= −
∫ 1

0

− d

dx

(
du

dx

)
λdx (5.33)

= −
∫ 1

0

Iu′(x)λ′(x)dx (5.34)
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Chapter 6

Numerical Experiment

In this chapter we present some numerical results we obtained by implementing

the Hybrid sampling Algorithm 2 on an explicit functional of a random field, and on

an elliptic partial differential equations.

6.1 Hybrid Sampling on a Functional

Here, our goal is to compute the statistical quantity of interest Q = E[J ], where

J(ω) =

∫ 1

3
4

θ(x, ω)2dx,

and θ(x, ω) is a Gaussian random field with a given covariance structure. Here, we

use the trapezoidal rule to approximate all spatial integrals, i.e.

∫ b

a

f(x)dx ≈
n∑
i=0

wif(xi),

where x0, ..., xn are n + 1 equally spaced points in the interval [a, b], and w0, ..., wn

are trapezoidal quadrature weights, i.e. w0 = wn = h
2
and w1 = ... = wn−1 = h with

h = b−a
n
.
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The random field θ is given by a Karhunen-Loeve expansion in the form

θ(x, ω) =
∞∑
i=1

√
λiYiφi(x),

where Yi ∼ N(0, 1) are iid Gaussians and {λi, φi(x)}∞i=1 are the eigenpairs of the

covariance operator K : L2[a, b] → L2[a, b] that maps u ∈ L2[a, b] to Ku(x) =∫ b
a
k(x, y)u(y)dy.

Hence, we have θ(x, ω) = θ0(x, Y1, ..., Yk) + θr(x, Yk+1, ....) and we want to com-

pute

J(θ) =

∫ 1

0.75

(θ0 + θr)
2dx

First, we approximate the eigenfunctions and eigenvalues of the covariance op-

erator K by

• Using numerical quadrature to approximate K, i.e.

Ku(x) ≈ K̂u(x) =
n∑
l=0

wlk(x, xl)u(xl),

• Estimating the ith eigenfunction φi(x) by the vector vi = [φi(x0), ...φi(xn)].

This gives rise to the eigenvalue problem

KWvi = λivi,
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where

Kij = k(xi, xj), i, j = 0, ..., n,

and

W = diag(w0, ..., wn).

Letting ui =
√
Wvi and simplifying, we can turn this into a symmetric eigenvalue

problem
√
WK
√
Wui = λiui, i = 0, ..., n.

We used the “karhunen_loeve“ module in python, which has a convenience func-

tion for computing the eigendecomposition which supports the following covariance

functions:

• Gaussian: k(x, y) = σ2 exp
(
− |x−y|2

2l2

)
• Exponential: k(x, y) = σ2 exp

(
− |x−y|

l

)
• Matern:

• Rational: k(x, y) = 1
(1+|x−y|2)a

The semilog plot of the eigenvalues of the matern covariance function is shown

in figure 6.1c.

The true mean is Q = 0.249 and the true mean on truncated field (k = 1) is

Q ≈ 0.144. We used sparse grid method on the truncated filed and got approximately

thesame value with true mean of the truncated field i.e Q ≈ 0.144 .
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(a) Matern Covariance on a
Regular Domain

(b) Matern Covariance on a
Regular Domain

(c) Semilog Plot of Eigen-
values

(d) Distribution of Quan-
tity of Interest

Figure 6.2 shows the convergence rate of the sparse grid method for a fixed k,

different depth values and for different k and different depth values, respectively.

From the graph we can see that for high value of k and depth the error is increasing.

it also shows that for different value of k the sparse grid error is basically zero because

polynomial interpolation-based quadrature rules are exact for quadratics and so it

captures the integral for truncation levels 1,5,8.

Using the hybrid sampling to calculate the quantity of interest we got Q ≈

0.24789 which is approximately thesame with the true mean. Figure 6.3a shows the

maximum Monte Carlo error obtained as k is increasing. As expected for high value

of k we have fewer MC runs.

Since the sparse grid is capturing the integral on truncated field exactly, we

don’t need a high level of sparse grid so we fix the truncated field. i.e no sparse
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(a) Convergence Plot (b) Convergent Plot For Different k

Figure 6.2: Convergence rate of the sparse grid approximation

grid error. Therefore, In figure 6.4a for tolerance = 0.1, we look at the number of

Monte Carlo runs required as k is increasing, which shows that for high value of k the

conditional variance get smaller and therefore we require fewer MC runs. Similarly

in figure 6.4b the less you worry about getting things right the less you have to work

which is true for any truncation level and if we look at the truncation levels we can

see that if k increases the total work decreases. Hence, in this case the sparse grid is

very efficient to get the integral.

(a) Histogram of the number of Monte Carlo
runs to get certain tolerance (b) Maximum Mc runs with respect to k
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(a) Efficiency (b) Total Work Required For Different k

Figure 6.4: Number of Sample Required for Different k

6.2 Hybrid Sampling on 1D PDE

Consider the problem of determining the expectation of the spatially-averaged

flux over a small region adjacent to the right endpoint, i.e.

J(q, u) = −1

h

∫ h

1−h
q(x, ω)u′(x, ω)dx, (6.1)

where u satisfies the elliptic problem

− d

dx

(
q(x, ω)

d

dx
u(x)

)
= 1, in (0, 1)

u(0) = 0, u(1) = 1.

q(x, ω) = eθ(x,ω),
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where θ is a Gaussian random field on (0, 1) with Gaussian covariance, specifically

vθ(x, y) = e−
|x−y|2

2l2 ,

with correlation length l = 0.05.

0.00 0.25 0.50 0.75 1.00

x

0.0

0.5

1.0

u

(a) Sample paths of solution.

−3 −2 −1 0

J(u)

0.0

0.5

1.0

1.5

(b) Distribution of quantity of interest.

Figure 6.5: Statistical properties of the statistic computed via Monte Carlo sample
of size 106.

The Statistical properties of the J is computed via Monte Carlo sample of size

106 in figure 6.5. Where, E[J ] ≈ −2.19206× 10−1 and variance σ̂2
J = 8.9817× 10−2.

The root mean square error is thus 2.9970× 10−4.

Figure 6.6 shows the effect of truncation on both the Monte Carlo estimates

of E[J ] and on the expected conditional variance of J , given the truncated field θ0.

The error estimates in Figure 6.6a were obtained by comparing Monte Carlo sample

averages of J using truncated KL expansions for θ with that of the full expansion.

The sample size used for each average was 106. The expected conditional variances

Eθ[Vθ|θ0 [J ]] in Figure 6.6b were computed using sparse grid approximations in the
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truncated component θ0 whose quadrature size was determined to be within ε units

of the appropriate truncated Monte Carlo estimates of size 106. At each quadrature

point θi0, the conditional variance Vθ|θ0 [J |θi0] was computed by means of a small

sample of size 100. Note that both the truncation error and the conditional variances

exhibit similar decay rate as k increases.

1 5 10 15 20

k

10−3

10−2

10−1

E
rr
o
r

mean

(a) Estimated truncation error for E[J ] us-
ing Monte Carlo samples of size 106.

1 5 10 15 20

Truncation level (k)

10−4

10−2

σ
2 θ
|θ

0

ε = 10−1

ε = 10−2

ε = 10−3

(b) Estimated expected conditional vari-
ances of J , given θ0. ε is the estimated ac-
curacy.

Figure 6.6: Conditional dependence

We investigate the accuracy of the sparse grid quadrature rule in Figure 6.7,

compared with a 106 sample Monte Carlo estimate. Note that, due to sampling

error, the error estimates are reliable only above the level 3× 10−4. As predicted

earlier, the convergence rate decays with an increase in k, requiring a greater num-

ber of quadrature nodes for the same tolerance level ε for more complex parameter

approximations.
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Figure 6.7: Log-log plot of the sparse grid quadrature error for various truncation
levels.
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Figure 6.8: Comparison of ε-costs of Monte Carlo, Sparse grids, and Hybrid sampling.

In figure 6.8 we compared the ε-costs Monte Carlo (MC), Sparse grids (SG),

Hybrid sampling (HYB), Sensitivity derivative enhanced monte carlo (SE) and the

Control variate enhanced Monte Carlo method (COV) for tolerance ε = 10−1, ε =

10−2 and ε = 10−3. From the graph it seems that combining Mc and sparse grid
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even if just using sparse grid on the first term or dominant term in the KL expansion

and the rest Mc does a better job than Mc.So the Hybrid sampling provides an

improvement of the Monte Carlo Method.
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Chapter 7

Conclusion and Future Work

We have developed the Hybrid Sampling Method which is an efficient sampling

method for estimating a statistical quantity of interest depending on a random field

in a partial differential method E[J(θ)]. This method uses conditional sampling to

combine sparse grid quadrature rules on a low-dimensional projection of the param-

eter space with a Monte Carlo scheme to compensate in the remaining dimensions.

Conditioning on coarse scale field approximations allows for the use of efficient sparse

grid methods in lower dimensions and reduces the conditional variance of the con-

ditioned quantity of interest.We analyzed the error of our method and performed a

complexity analysis where we provided conditions in which the Hybrid Sampling is

more efficient than either of it’s constituent. We extended our algorithm to incorpo-

rate sensitivity-based variance reduction techniques such as the sensitivity derivative

enhance Monte Carlo method and the control variate sensitivity enhanced Monte

Carlo method to further improve the efficiency of our algorithm. We then demon-

strated that our algorithm works by using two numerical examples.

The conditional random field θ|θ0 typically becomes less smooth and less corre-

lated as k increases (requires a finer spatial grid). Perhaps upscaling methods would

be a more appropriate way to “enrich" the sparse grid sample. It is also plausible

that some quantities of interest don’t require the random parameter to have the same
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high resolution throughout the domain. So, given a low resolution sample, can we

adaptively choose a refinement of the field in regions that determine the variance of

J? We would also like to consider more complex physical problems.
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