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 (B.M.E., Auburn University, 2004) 
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Directed by David M. Bevly 

 
 
 

This thesis develops a yaw dynamic model for a farm tractor with a hitched 

implement, which can be used to understand the effect of tractor handling characteristics 

for design applications as well as for new automated steering control systems. A model is 

found in which hitched implement conditions can be accounted for, and an improvement 

in yaw rate tracking prediction in both steady state and dynamic conditions is seen vs. 

traditional models. This model is termed the “3-wheeled” Front and Hitch Relaxation 

Length (“3-wheeled” FHRL) Model. Experimental data from a hitch force dynamometer 

are used to validate the way the hitched implement forces are derived in the “3-wheeled” 

FHRL Model and to determine if differential hitch forces can be ignored. Steady state 

and dynamic chirp data taken for a variety of implements at varying depths and speeds 
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are used to quantify the variation in the hitch parameter and to find the front and hitch 

relaxation length values. Finally, a model which accounts for four-wheel drive forces is 

derived, and experiments are taken which provide a preliminary look into the effect of 

four-wheel drive traction forces on the yaw dynamics of the tractor. 

In comparisons with other traditional models, the “3-wheeled” FHRL Model is 

shown to be superior in its steady state yaw rate tracking ability with an RMS error of 

.245 deg/s vs. 1.96-2.07 deg/s for other models at a certain depth and also superior in its 

dynamic tracking ability with an RMS error of .675 deg/s vs. .748-1.37 deg/s for the 

other models. The experimental results from the hitch force dynamometer show that the 

implement performs according to the linear tire model and that the moment caused by 

differential forces at the hitch can be ignored. The hitch parameter, hCα , ranges from 452-

3385 N/deg for various implements and depths tested in this thesis. The front tire 

relaxation length is found to be .37 m and the hitch relaxation length is found to be .4 m. 

The four-wheel drive experiments show that using four-wheel drive provided an increase 

in yaw rate from 9-21%, depending on the implement depth and speed. 
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CHAPTER 1 
  

INTRODUCTION 
 

 

1.1 Motivation 
Agriculture is the backbone of our modern society. Our stores are filled with 

items produced from crops grown in this country and elsewhere around the world. 

Needless to say, farming is important and so are the tools used in the process. Tractors 

are one of the necessary tools used in farming, and as technology has increased over the 

years, so has the level of technology in tractors. Modern tractors are starting to use GPS 

tracking and automated metering systems that allow farmers to be more efficient not only 

with the time it takes to do a job but also with wasting less product and raw material. As 

GPS tracking systems become more competitive and advanced, better understanding of 

the tractor and implement behavior is important in enabling the tracking systems to be 

more accurate and have better overall performance. Figure 1.1 shows an image of a field 

furrowed using GPS guidance. 
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Figure 1.1: Field Furrowed Using GPS Guidance 

 

Gaining a better understanding of tractor and implement behavior through 

mathematical modeling is the motivation behind the research in this thesis. A more 

accurate system model naturally creates a more accurate control system that is based on 

that model. Figure 1.2 shows a tractor pulling a hitched cultivator. 

 

 
Figure 1.2: Tractor Pulling a Cultivator 
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1.2 Background 
Much yaw dynamic modeling of tractors has been done in the past for the purpose 

of tractor control. Many of the models are based on the Traditional Bicycle (TB) Model 

form. For example, a simplification of the TB model was used by the researchers in [1] to 

form a simple kinematic model. Also, Rekow [2] used assumptions to form a simpler first 

order model called the Neutral Steer (NS) Model. Alternately, O’Connor [3] looked at a 

model used by Ellis [4] that neglects lateral tire dynamics and also a similar bicycle 

model that uses Wong’s tire model [5]; both of these models assume constant forward 

velocity. Owen and Bernard used a TB Model with added front and rear tire relaxation 

lengths for studying a tractor-loader-backhoe [6], while Bevly found that just adding 

front tire relaxation lengths was adequate for his modeling [7].  

Additionally, tractor-implement models have been looked at by different 

researchers. A tractor towed-implement dynamic model was developed by Bell [8]. Bevly 

developed a tractor towed-implement model based on the simple kinematic model [9]. 

Feng developed a tractor towed-implement model by adding a towed implement model to 

the TB model [10]. A tractor hitched implement model developed by O’Connor used 

Wong’s tire model to describe the hitch dynamics [3]. The O’Connor model is similar to 

the “3-wheeled” Bicycle Model developed in this thesis in that the hitched implement 

forces are generated using a tire model; however, the derivations of the two models are 

different. For example, the O’Connor model is a five state model, where the “3-wheeled” 

Bicycle Model developed in this thesis is a two state model. Bukta collected data on a 

tractor with and without hitched implements to determine the effects of hitch free-play on 

the tractor’s dynamics [11]. 
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1.3 Purpose of Thesis and Contribution 
The purpose of this thesis is to derive a yaw dynamic model which can capture 

and quantify the effects that a hitched implement such as a ripper imposes on the tractor. 

Deriving such a model will provide a more accurate model which can potentially improve 

a controller using this model.  

In this thesis, a number of both traditional and non-traditional models are derived 

and then compared for yaw rate tracking ability using experimental data as a basis. A 

model is found in which hitched implement conditions can be accounted for, and a great 

improvement in yaw rate tracking ability in both steady state and dynamic conditions is 

seen vs. traditional models.  

Experiments are taken where implement forces are recorded using a hitch force 

dynamometer. The data are used to validate the way the hitched implement forces are 

derived in the new hitched implement yaw dynamic model. The experiments show that 

the way the implement forces are derived is reasonably correct. 

Steady state and dynamic chirp data are taken for a variety of implements at 

varying depths and speeds. The steady state data are used to quantify the variation in the 

hitch parameter from implement to implement and depth to depth for the chosen hitched 

implement yaw dynamic model. The dynamic chirp data are used to solve for other 

unknown parameters of the new model. Once these parameters are known, a time and 

frequency analysis is done on the new hitched implement yaw dynamic model to gain 

understanding of its characteristics.  
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A model which accounts for four-wheel drive forces is also derived in this thesis. 

Experiments are taken which provide a preliminary look into the effect of four-wheel 

drive traction forces on the yaw dynamics of a tractor. A definite difference in using two-

wheel drive vs. four-wheel drive is shown.  

 

1.4  Outline of Thesis 
Chapter 2 presents a general model and then derivations of several new and 

traditional analytical yaw dynamic models for a tractor. The models are then compared 

for yaw rate tracking ability, and a model which best predicts the yaw rate of a tractor 

with a hitched implement is chosen. Chapter 3 presents a validation of the hitched 

implement lateral force equation. In Chapter 4, steady state experiments are used to 

quantify the variations of the hitched implement parameter in the new hitched implement 

yaw dynamic model for various implements at varying depths. Dynamic chirp 

experiments are used to solve for other parameters of the new hitched implement yaw 

dynamic model. Chapter 5 presents a derivation of a model which accounts for the four-

wheel drive traction forces present in the yaw dynamics of a four-wheel drive tractor. 

Experiments are used to show how much the yaw rate is actually affected in a four-wheel 

drive vs. non four-wheel drive setup. 
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CHAPTER 2 
 

ANALYTICAL MODELING OF THE TRACTOR 
 
 

2.1 Introduction 

In this chapter, a variation of the bicycle model, termed the “3 wheeled” Bicycle 

Model is developed. This model takes into account the effects of a hitched implement. 

This model with added front and hitch relaxation lengths is then compared with various 

models used by other researchers in vehicle applications. It is shown that this model can 

most accurately represent the dynamics of a tractor with a hitched implement. 

 

2.2  The General Diagram 

 The general diagram from which all the models in this chapter can be derived is 

shown in Figure 2.1. The vectors and angles in this figure show a positive sign 

convention, which associates positive forces with negative slip angles. The diagram 

represents a 4WD tractor with a hitched implement. In this general diagram, the hitched 

implement is modeled as two tires at the hitch designating that the left and right sides of 

the implement may have differing conditions. Table 2.1 describes the variables found in 

Figure 2.1. Equations (2.1-2.3) represent the dynamic equations of motion for the tractor, 

which are derived from the general diagram by summing all the forces and moments 
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acting on the tractor. Equation (2.2) takes into account the lateral acceleration from total 

vehicle sideslip through the )cos(β⋅⋅⋅ rVm  term. 

xmFFFFFFF rTfrlTflxhrxhlTrrTrlx &&=⋅+⋅+−−+=∑ )cos()cos( δδ  (2.1) 

)sin()sin( rTfrlTflyrryrlyhryhlyy FFFFFFamF δδ ⋅+⋅++++=⋅=∑  
)cos()cos()cos( βδδ ⋅⋅⋅+=⋅+⋅+ rVmVmFF yryfrlyfl

&  
 

(2.2) 

aFaFaFaFM ryfrlyflrTfrlTflCG ⋅⋅+⋅⋅+⋅⋅+⋅⋅=∑ )cos()cos()sin()sin( δδδδ  

2
)sin(

2
)sin(

222
)cos(

2
)cos( tFtFtFtFtFtF ryfrlyflTrrTrlrTfrlTfl ⋅⋅+⋅⋅−⋅−⋅+⋅⋅−⋅⋅+ δδδδ  

rILFLFbFbFcbFcbF zxhrxhlyrryrlyhryhl &⋅=⋅+⋅−⋅+⋅−+⋅−+⋅− 11)()(  
 

(2.3) 

Where zI is the mass moment of inertia of the tractor and implement. 

 

 
Figure 2.1: The General Diagram Depicting a 4WD Tractor with a Hitched Implement 



 

 8

Table 2.1: The General Diagram Parameters 

yflF & yfrF  Front tire lateral forces for the left and right side of the vehicle, 

respectively 

yrlF & yrrF  Rear tire lateral forces 

yhlF & yhrF  Implement lateral forces 

TflF & TfrF  Front tire traction forces 

TrlF  & TrrF  Rear tire traction forces 

xhlF & xhrF  Implement draft forces 

lδ & rδ  Steering angles 

flα & frα   Slip angles for the front tires 

rlα & rrα  Slip angles for the rear tires 

hlα  & hrα   Slip angles for the hitched implement 

flV & frV  Front tire velocities 

rlV & rrV   Rear tire velocities 

hlV & hrV   Hitch velocities 

V  Vehicle velocity 

xV   Vehicle forward velocity 

yV   Vehicle lateral velocity 

β   Vehicle sideslip angle 

r   Yaw rate 

a  Distance from center of front wheels to center of gravity 

b  Distance from center of rear wheels to center of gravity 

c  Distance from hitch to center of rear wheels 

t  Track width of the tractor 

1L  Distance between centers of force action on implement 
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2.3 The “3 Wheeled” Bicycle Model 

The “3-wheeled” Bicycle Model is developed from Figure 2.1 by making the 

following simplifications. It is natural to make as many simplifications as possible 

because this leads to a less computationally intensive and/or linear model.  

The tire sideslip angle is defined as the angle between the longitudinal axis of the 

tire and the velocity vector at the tire. Therefore, the tire slip angles can be calculated 

from the longitudinal and lateral velocity at the tire as shown in Equations (2.4-2.9).  

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⋅−

⋅−
= −

rtV

rbV

x

y
rl

2
1

tan 1α  (2.4) 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⋅+

⋅−
= −

rtV

rbV

x

y
rr

2
1

tan 1α  (2.5) 

l

x

y
fl

rtV

raV
δα −

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⋅−

⋅+
= −

2
1

tan 1  (2.6) 

r

x

y
fr

rtV

raV
δα −

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⋅+

⋅+
= −

2
1

tan 1  (2.7) 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⋅−

⋅+−
= −

rtV
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x

y
hl

2
1

)(
tan 1α  (2.8) 

⎟
⎟
⎟
⎟

⎠
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2
1
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If xV >> rt ⋅
2
1 , and assuming left and right steering angles are the same, =lδ rδ , then  
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≈flα δαα −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅+
== −

x

y
ffr V

raV1tan   (2.10) 

≈rlα ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅−
== −

x

y
rrr V

rbV1tanαα  (2.11) 

≈hlα ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅+−
== −

x

y
hhr V

rcbV )(
tan 1αα  (2.12) 

Also, if vehicle sideslip angle, β  is assumed to be small, then 

δα −
⋅+

=
x

y
f V

raV
 (2.13) 

 

x

y
r V

rbV ⋅−
=α  

(2.14) 

x

y
h V

rcbV ⋅+−
=

)(
α  (2.15) 

Assuming the same tires are on the left and right sides and that there is no weight 

transfer from left to right enables  

yflF tireyfyfr FF _=≈  (2.16) 

yrlF tireyryrr FF _=≈  (2.17) 

so that 

tireyfyf FF _2 ⋅=  (2.18) 

tireyryr FF _2 ⋅=  (2.19) 

The left and right tire traction forces are assumed to be the same. 
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tireTfTfrTfl FFF _=≈  (2.20) 

tireTrTrrTrl FFF _=≈  (2.21) 

tireTftrac FF _2 ⋅=  (2.22) 

tireTrTr FF _2 ⋅=  (2.23) 

The left and right draft forces are also assumed to be the same. 

sidexhxhlxhr FFF _=≈  (2.24) 

This allows any moment from the difference in the forces, shown below in Equation 

(2.25), to be dropped out. 

11 LFLFM xhlxhrdiff ⋅−⋅=  (2.25) 

Validation of this assumption is given in Chapter 3. Also, the total implement draft force 

becomes that defined by Equation (2.26) 

sidexhxh FF _2 ⋅=  (2.26) 

The left and right implement lateral forces are also assumed to be the same, and the total 

lateral implement force becomes that shown in Equation (2.28) 

sideyhyhlyhr FFF _=≈  (2.27) 

sideyhyh FF _2 ⋅=  (2.28) 
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Tractor mass and center of gravity location are assumed constant. Because diffM  

is ignored and yaw modeling, not longitudinal modeling, is being done, the summation of 

forces in the longitudinal axis is not needed and is left out. If the front traction forces are 

not neglected, a FBD for the “3-wheeled” Bicycle Model which takes into account four-

wheel drive effects can be created and is shown in Figure 2.2. This model is specifically 

dealt with in Chapter 5.  

 

Figure 2.2: “3-wheeled” Bicycle Model Which Takes Into Account Front Traction Forces 

 

However, neglecting the four-wheel drive (front axle) traction forces and using 

the other simplifications allow Figure 2.3 to be used as the FBD of the “3-wheeled” 

Bicycle Model. 

 

Figure 2.3: The “3-wheeled” Bicycle Model FBD 

 



 

 13

 

Table 2.2: The “3-wheeled” Bicycle Model Specific Parameters 

hα   Hitch side slip angle 

yhF  Lateral force at the hitch 

hCα  Hitch cornering stiffness 

rα  Tractor rear tire side slip angle 

fα  Tractor front tire side slip angle 

rCα  Tractor rear tire cornering stiffness, per axle 

fCα  Tractor front tire cornering stiffness, per axle 

δ  Steering angle 

yrF  Lateral force on the rear tractor tire 

yfF  Lateral force on the front tractor tire 

rV  Velocity of the rear tire 

fV  Velocity of the front tire 

 

Summing the forces in the lateral and vertical axes of the tractor yields Equations (2.29-

2.30). 

)cos()cos( βδ ⋅⋅⋅+=⋅++=⋅=∑ rVmVmFFFamF yyfyryhyy
& (2.29)

rIbFcbFaFM zyryhyfCG &⋅=⋅−+⋅−⋅⋅=∑ )()cos(δ  (2.30)

The small β  assumption causes 1)cos( ≈β  and assuming small steering angles 

allows 1)cos( ≈δ , so that Equations (2.29-2.30) become Equations (2.31-2.32). 
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yfyryhyy FFFamrVmVm ++=⋅=⋅⋅+&  (2.31) 

)( cbFbFaFrI yhyryfz +⋅−⋅−⋅=⋅ &  (2.32) 

Equations (2.33-2.35) represent the forces at the tires and are derived from the linear tire 

model given in Equation (3.3). 

      ffyf CF αα ⋅−=  (2.33) 

     rryr CF αα ⋅−=  (2.34) 

     hhyh CF αα ⋅−=  (2.35) 

Where 

     tireff CC _2 αα ⋅=  (2.36)

     tirerr CC _2 αα ⋅=  (2.37)

Substituting Equations (2.33-2.35) into Equations (2.31-2.32) yields Equations (2.38- 

2.39) shown below.  

ffrrhhy CCCrVmVm ααα ααα ⋅−⋅−⋅−=⋅⋅+&  (2.38) 

aCbCcbCrI ffrrhhz ⋅⋅−⋅⋅++⋅⋅=⋅ ααα ααα )(&  (2.39) 

Using the small β  assumption to say VVx ≈  , substituting Equations (2.13-2.15) into 

Equations (2.38-2.39), and organizing the resulting equations into state space form yields 

the state space form of the “3-wheeled” Bicycle Model, which is given in Equation 

(2.40). 



 

 15

( ) ( )( )

( )( ) ( )( ) δ
α

α

αααααα

αααααα

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅+⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⋅+⋅+⋅+−

⋅

⋅−⋅+⋅+

−
⋅

⋅−⋅+⋅+

⋅

++−

=⎥
⎦

⎤
⎢
⎣

⎡

z

f

f

y

z

frh

z

frh

frhfrh

y

I
Ca
m

C

r
V

VI
CaCbCcb

VI
CaCbCcb

V
Vm

CaCbCcb
Vm

CCC

r
V

222
&

&
 (2.40) 

This state space model can be transformed using a Laplace transformation to yield 

the transfer function given in Equation (2.41). This transfer function has an input of 

steering angle and an output of yaw rate. 

⎥
⎦
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(2.41) 

Where 

     
( ) )(1 frh CaCbCcbC ααα ⋅−⋅+⋅+=  

     
( )frh CCCC ααα ++=2  

     
( ) )( 222

3 aCbCCcbC frh ααα +++=  

(2.42) 

 

2.4 Other Bicycle Models 

This section lists alternative models used in vehicle dynamics. These other models 

have been developed so that the “3-wheeled” Bicycle Model can be compared to models 

used in previous research.  

2.4.1 The Traditional Bicycle Model 

The Traditional Bicycle Model is a more rudimentary form of the “3-wheeled” 

Bicycle Model [12]. It can be also viewed in the sense that the “3-wheeled” Bicycle 

Model is a more complicated version of the Traditional Bicycle Model. Both models are 
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derived in the same manner from Figure 2.1 except that the Bicycle Model neglects 

implement effects in any axis. Figure 2.4 is the free body diagram for the Traditional 

Bicycle Model. Equation (2.43) is the resulting state space form for this model.  
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(2.43) 

Likewise, Equation (2.44) is the transfer function form of Equation (2.43) derived from a 

Laplace transformation. 
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Where 

     )(1 afar CaCbC ⋅−⋅=  
     ( )afar CCC +=2  

     )( 22
3 aCbCC fr αα +=  

(2.45) 

 

 

Figure 2.4: The Traditional Bicycle Model 
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2.4.2 Neutral Steer Bicycle Model 

The Neutral Steer Bicycle Model is a special case of the Traditional Bicycle 

Model where the understeer gradient is equal to zero [2]. A neutral steer vehicle is 

defined as a vehicle whose ratio of the weight on the front wheels divided by the 

cornering stiffness of the front tire is equal to the ratio of the weight on the rear wheels 

divided by the cornering stiffness of the rear tire. A oversteer vehicle tends to spin out in 

cornering while an understeer vehicle tends to plow in cornering and a neutral steer 

vehicle does neither. The understeer gradient is defined in Equation (2.46). 

r

r

f

f
us C

W
C
W

k
αα

−=  (2.46) 

where fW  and rW  are the weights at the front and rear axles, respectively. Setting the 

understeer gradient to zero yields 

r

r

f

f

C
W

C
W

αα

=  (2.47) 

fW  and rW  in Equation (2.47) can be substituted to get 

rf C
agm

C
bgm

αα

⋅⋅
=

⋅⋅  (2.48) 

This in turn yields 

0=⋅−⋅ araf CbCa  (2.49) 
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Substituting Equation (2.49) into Equation (2.43) allows simplifications to be made and 

gives the transfer function form of the Neutral Steer Bicycle Model, shown below.  

VI
aCbC

s

I
aC

s
sr

z

fr

z

f

22)(
)(

αα

α

δ +
+

=

 

(2.50) 

As can be seen, this model is a first order model and is simpler that the Traditional 

Bicycle Model, given the simulated vehicle is approximately neutral steer. 

2.4.3 Kinematic Model 

The Kinematic Model is also a special case of the Traditional Bicycle Model as it 

neglects vehicle and wheel sideslip and assumes a constant forward velocity. It provides a 

purely kinematic relationship from steering angle to yaw rate by assuming that the yaw 

rate is directly proportional to the steering angle for a slow moving vehicle [1]. Equation 

(2.51) represents the transfer function form of the Kinematic Model. 

L
V

s
sr

=
)(
)(

δ
 (2.51) 

Where baL += , the wheelbase length. 

2.4.4 Front Tire Relaxation Length Model 

The Front Tire Relaxation Length (FRL) model is a more complicated version of 

the Traditional Bicycle Model. As the name denotes, this model has front tire relaxation 

lengths added to the bicycle model. The tire relaxation length,σ , is the amount a tire 

must roll in order to generate the steady state slip angle, 0α , at the tire [7]. 

 The equation describing the tire relaxation length is a first order model and is 

shown in Equation (2.52).                                 
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(2.52) 

Where fσ  is the front tire relaxation length. Incorporating this equation into the 

equations of motion for the bicycle model and arranging them into the state space form of 

the front tire relaxation length model yields Equation (2.53). 
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 (2.53) 

The first use of this particular model was seen by Bevly in [9]. He showed that only a 

front tire relaxation length was adequate for his modeling, whereas the authors in [6] used 

a model with front and rear relaxation lengths. Bevly also showed that the Front Tire 

Relaxation Length Model was necessary to adequately describe the tractor’s handling 

dynamics where a Traditional Bicycle Model was not adequate. 

2.4.5 “3 Wheeled” Front Tire Relaxation Length Model 

The “3 Wheeled” Front Tire Relaxation Length Model (“3-wheeled” FRL Model) 

is similar to the FRL Model in that a front tire relaxation length is added to the “3-

wheeled” Bicycle Model instead of the Traditional Bicycle Model. The equations of 

motion for the “3-wheeled” Front Tire Relaxation Length Model placed in state space 

form are shown in Equation (2.54). 
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(2.54) 

 

2.4.6 “3 Wheeled” Front and Rear Tire Relaxation Length Model 

The model shown below in Equation (2.55) is the “3-wheeled” Bicycle Model 

with added front and rear tire relaxation lengths (“3-wheeled” FRRL Model). This model 

and the next model derived are for investigating if only a front tire relaxation length is 

adequate as shown by [9]. However, it may be the case where front relaxation lengths are 

not adequate to describe the dynamics, but a model with front plus rear or hitch 

relaxations is adequate. The equation describing the rear tire relaxation length is shown 

below. 
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σ
α −⋅=&  (2.55) 

Where rσ  is the rear tire relaxation length. Both Equation (2.52) and Equation (2.55) are 

incorporated into Equations (2.38-39) to develop the state space model for the “3-

wheeled” FRRL Model shown in Equation (2.56).  

 

(2.56) 
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2.4.7 “3 Wheeled” Front, Rear, and Hitch Relaxation Length Model 

The “3-wheeled” Bicycle Model with added front and rear tire and hitch 

relaxation lengths (“3-wheeled” FRHRL Model) is similar to the “3-wheeled” FRRL 

Model except hitch relaxation lengths are also added. The equation describing the hitch 

relaxation length, hσ , is shown below.  

( )hho
h

x
h

V
αα

σ
α −⋅=&  (2.57)

Equation (2.52), Equation (2.55), and Equation (2.57) are incorporated with the 

“3-wheeled” Bicycle Model’s equations, and arranging in state space yields the state 

space form of the “3-wheeled” FRHRL Model, shown in Equation (2.58) below. 

 

(2.58)

 
 
2.4.8 “3 Wheeled” Front and Hitch Relaxation Length Model 

The “3-wheeled” Bicycle Model with added front and hitch relaxations is similar 

to the “3-wheeled” FRHRL Model except the rear relaxation lengths are left out. 

Integrating the respective relaxation lengths with Equations (2.38-39) of the “3-wheeled” 

Bicycle Model yields Equation (2.59). 
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(2.59) 

 
 
2.5 Model Comparisons 

All of the models in the previous section are compared against yaw rate data taken 

on a Deere 8420 with single rear wheels and a four shank ripper rigidly hitched to the 

rear. A full description of the tractor, sensors, and data acquisition system is given in 

Appendix A. Appendix B gives the model parameter values used in the simulation of 

these models. The steering angle profile for the yaw rate data is illustrated in Figure 2.5 

and shows that the steering maneuver creates a series of steady state yaw rate steps. The 

speed for this maneuver was four miles per hour. It should be noted that during a steady 

state maneuver, relaxation length terms drop out, the FRL Model breaks down into the 

Traditional Bicycle Model, and the “3-wheeled” FRL, FRRL, FRHRL, and FHRL 

Models break down into the “3-wheeled” Bicycle Model. Therefore, the FRL and the “3-

wheeled” FRL, FRRL, FRHRL, and FHRL Models are left out of this particular 

comparison. Figures 2.6-2.8 show the tracking response of the remaining models at 

depths of 18, 12, and 8 inches, respectively. As can be seen, the “3-wheeled” Bicycle 

Model has the best yaw rate tracking response. This visual inspection is also backed by 

the fact that the “3-wheeled” Bicycle Model has the lowest RMS errors at each depth, 

shown in Table 2.3 [13]. Note that with decreasing depth, the errors of the Traditional, 
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Neutral Steer, and Kinematic Bicycle Models decrease. Following this trend, a property 

of the “3-wheeled” Bicycle Model is that it collapses to the Traditional Bicycle Model in 

the event that there is no implement, which is the case where the hitch cornering stiffness 

is zero. 

 

Figure 2.5: Steering Angle Profile for Figure 2.6 
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Figure 2.6: Yaw Rate Comparisons, 18 Inches Deep, 4 mph 

 

 

Figure 2.7: Yaw Rate Comparisons, 12 Inches Deep, 4 mph 
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Figure 2.8: Yaw Rate Comparisons, 8 Inches Deep, 4 mph 

 

Table 2.3: RMS Errors (deg/s) of Models at Different Depths, Static 

Depth 18”  12” 8”  

“3-wheeled” Bicycle Model .24499 .4515 .49637 

Traditional Bicycle Model 1.9634 1.1505 .52977 

Neutral Steer Bicycle Model 1.8116 1.0508 .55075 

Kinematic Model 2.0736 1.2389 .6319 

 

Since the Kinematic, Traditional, and Neutral Steer Bicycle and FRL Models do 

not have adequate steady state tracking response while using an implement at depth, they 

are thrown out of the study at this point. It is repeated that the focus of this research is to 

capture and study the hitched loading effects with a given model.  
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The models left to study are the “3-wheeled” Bicycle Model, the “3-wheeled” 

FRL Model, the “3-wheeled” FRRL Model, the “3-wheeled” FHRL Model, and the “3-

wheeled” FRHRL Model. These models can be differentiated with a dynamic steering 

maneuver. The dynamic steering maneuver chosen for this comparison is a chirp steering 

input shown in Figure 2.9. This maneuver also uses a four shank ripper at a depth of 18 

inches at a speed of four miles per hour.  

 

Figure 2.9: Dynamic Steering Maneuver 

 

As a single figure would have too many models to compare at once, the 

comparison is broken down over several plots, Figures 2.10-2.12. Figure 2.10 is a 

comparison of the “3-wheeled” FRL Model and the “3-wheeled” FRRL Model. As 

shown by Bevly in [9], the two models have approximately the same response; therefore, 

the “3-wheeled” FRRL Model is thrown out of the study at this point since it is the more 

complex of the two. Figure 2.11 is a comparison of the “3-wheeled” FHRL Model and 

the “3-wheeled” FRHRL Model. Similar to the FRL and FRRL Models of Figure 2.10, 

these two models have approximately the same response, so the “3-wheeled” FRHRL 

Model is also thrown out of the study at this point. Figure 2.12 is a comparison of the   
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“3-wheeled” Bicycle Model, the “3-wheeled” FRL Model, and the “3-wheeled” FHRL 

Model. As can be seen, the model that includes hitch relaxation lengths has the best 

response, especially in the higher frequencies. This visual inspection is also backed by 

the “3-wheeled” FHRL Model having the lowest RMS error, given in Table 2.4. 

 

Figure 2.10: Yaw Rate Comparisons, Chirp 18 Inches Deep 
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Figure 2.11: Yaw Rate Comparisons, Chirp 18 Inches Deep 

 

 

Figure 2.12: Yaw Rate Comparisons, Chirp 18 Inches Deep 
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Table 2.4: RMS Errors (deg/s) of Models, Dynamic Response 

“3-wheeled” FHRL Model .67457  

“3-wheeled” FRL Model .74815  

“3-wheeled” Bicycle Model 1.3691  

 

2.6 Conclusions 

A number of different analytical mathematical models have been derived to show 

their state-space form. All of these models are based on a general diagram, and making 

different assumptions leads to each particular model. The “3-wheeled” Bicycle Model 

format is a unique derivation that is basically a bicycle model that includes hitched 

implement effects. A number of models can be derived by adding front tire, rear tire, or 

hitch relaxation lengths to the Bicycle Model or the “3-wheeled” Bicycle Model.  

Based on steady state responses, the Traditional Bicycle, Neutral Steer Bicycle, 

Kinematic, and FRL Models are shown to have inadequate yaw rate tracking ability and 

therefore are not considered further for the purposes of this research. The “3-wheeled” 

Bicycle, “3-wheeled” FRL, “3-wheeled” FRRL, “3-wheeled” FRHRL, and “3-wheeled” 

FHRL Models have been shown to have excellent yaw rate tracking in steady state.  

Based on dynamic responses, the “3-wheeled” FRL and “3-wheeled” FRRL 

Models have approximately the same response, similar to that shown by [9]. Also, the “3-

wheeled” FRHRL and “3-wheeled” FHRL Models have approximately the same 

response. Therefore, the “3-wheeled” FRL and “3-wheeled” FHRL Models are chosen 

over the “3-wheeled” FRRL and “3-wheeled” FRHRL Models, respectively. 



 

 30

Finally, the “3-wheeled” Bicycle, “3-wheeled” FRL, and “3-wheeled” FHRL 

Models are compared against each other with the same dynamic steering maneuver, and it 

is shown that the “3-wheeled” FHRL Model provides the best static and dynamic yaw 

rate tracking response.  
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CHAPTER 3 
 

HITCH MODELING 
 
 

3.1 Introduction 

This chapter validates the assumption of the implement forces being able to be 

modeled by the linear tire model. The validation is accomplished through taking force 

data from a hitch force dynomometer provided by the USDA-ARS Soil Dynamics 

Laboratory and comparing it to the sideslip of the implement to verify that the 

relationship between the two is as assumed. This chapter also shows that neglecting 

diffM , as done by the “3-wheeled” Bicycle Model derivation, is a valid assumption.  

 

3.2 Hitch Modeling 

The following figure is a graphical representation of how a tire compares to an 

implement at the hitch.  
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Figure 3.1: How the Tire Model Relates to an Implement 

 

According to the linear tire model given in Equation (3.1), a force affecting the 

yaw dynamics of a vehicle is present only when the tire is experiencing a slip angle [12].  

αα ⋅−= CFy  (3.1) 

Slip angle is defined as the angle between the lateral and longitudinal velocities of the 

body in motion, shown in Equation (3.2).  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −

xbody

ybody
body V

V1tanα  (3.2) 

Figure 3.2 below shows a schematic of a tire with the associated lateral force. As 

can be seen, a deformation of the contact patch causes a slip angle, α , and a lateral force, 

yF . The yF  and  α  of Figure 3.2 are governed by the tire curve shown in Figure 3.3. 

yF  peaks and becomes non-linear when it reaches a certain slip angle. This peak is 

determined by ground conditions. Also, within small α , the yF  is linear with the slope 

of the line defined by αC . αC  is dependent on tire characteristics such as tread, wall 

stiffness, tire pressure, etc.  
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Figure 3.2: Tire Schematic, courtesy of Gillespie [12] 

 

 

Figure 3.3: Tire Curve, courtesy of Gillespie [12] 

 

Likewise, the “3-wheeled” Bicycle Model assumes that with an implement, in the 

same manner as a tire, the lateral force is proportional to the slip angle of the implement 

so that Equation (3.1) becomes Equation (3.3).  
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hhyh CF αα ⋅−=  (3.3) 

 Section 3.4 shows that this relationship holds and the assumption is valid. 

Additionally, the longitudinal forces on the implement are assumed to be proportional to 

the implement’s longitudinal velocity.                            

             Figure 3.4 shows the schematic used to analyze the implement forces. Recall 

from Chapter 2 that the implement left and right lateral forces and slip angles are lumped 

together. This schematic demonstrates how the forces generated on the hitched 

implement affect the center of gravity of the tractor. Figure 3.4 does not assume that the 

left and right draft forces are the same. It should be noted, that for the “3-wheeled” 

Bicycle Model in Chapter 2, left and right draft forces are assumed to be the same, and 

therefore, diffM = 0, an assumption validated in Section 3.5.  

 

Figure 3.4: The Hitched Implement Schematic 

 

The FBD in Figure 3.4 is used to analyze the effect that the implement’s forces 

and moments have on the equations of motion when forming the “3-wheeled” Bicycle 
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Model. Summing the moments of the implement about the center of gravity of the tractor 

results in Equation (3.4), below. 

( ) LFLFcbFM xhlxhryhtCGimplemen ⋅−⋅++⋅=  (3.4) 

Where:   

     hhyh CF αα ⋅−=  (3.5) 

     hrxxhr VCF ⋅=  (3.6) 

     hlxxhl VCF ⋅=  (3.7) 

Note that xC  is a draft coefficient and is assumed to be equal for both sides. 

Substituting Equations (3.5-3.7) into Equation (3.4) yields: 

( ) LVCLVCcbCM hlxhrxhhtCGimplemen ⋅⋅−⋅⋅++⋅⋅−= αα  (3.8) 

Where:  

     LrVV xhr ⋅−=  (3.9) 

     LrVV xhl ⋅+=  (3.10) 

Substituting Equations (3.9-3.10) into Equation (3.8) yields: 

( ) ( ) ( )[ ]LrVLrVLCcbCM xxxhhtCGimplemen ⋅+−⋅−⋅⋅++⋅⋅−= αα   

                     ( ) 22 LrCcbC xhh ⋅⋅−+⋅⋅−= αα  (3.11) 

The term diffM = 22 LrCx ⋅⋅−  from Equation (3.11) represents the moment 

caused by the difference between the left and right longitudinal forces, xhlF  and xhrF . 

There will always be a longitudinal draft force, xhF , as long as the implement is in the 
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ground. However, if the left and right draft forces are not significantly different, they will 

not affect the tractor’s yaw dynamics.  

Equations (3.12-3.13) summarize the effect of the implement forces on the tractor 

if diffM  is ignored and yhF  can be modeled as a tire. 

hhyh CF αα ⋅−=
 (3.12) 

( )cbCM hhtCGimplemen +⋅⋅−= αα  (3.13) 

 

3.3 Data Collection 

Figures 3.5 and 3.6 show the steering profile and test trajectory for the data 

collection experiments used to validate the implement model. The experiments are 

designed such that distinct lateral forces can be recorded for distinct implement slip 

angles. In order to validate Equation (3.12), the lateral forces and also the slip angles 

must be recorded so that the relationship between the two can be determined. It should be 

noted here that hα  was calculated from the recorded yaw rate based on the kinematics of 

the tractor. The equation used to calculate hα  is shown in Equation (3.14) below. 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅−+⋅
= −

x

x
h V

Vcbr )sin(
tan 1 β

α  (3.14) 

Where ( ) )sin(β⋅−+⋅ xVcbr  is the lateral velocity at the hitch, yV  with )sin(β⋅xV  

being subtracted out as the lateral velocity caused by the total sideslip of the vehicle. The 

β  was calculated by subtracting the GPS course measurement from the heading by 

integrating the yaw rate measurement shown in Equation (3.15) below. 
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 ∫−= rGPSνβ  (3.15) 

The experiments are taken at varying depths for the purpose of defining the 

different implement cornering stiffnesses, hCα , and are limited to one speed due to data 

collection time constraints. Data was collected at 4 mph at depths of 6”, 12”, and 18” on a 

Deere 955 four-shank ripper. Multiple data runs were collected at each depth with the 

ripper. Appendix A details the experimental setup for these data collection runs.  

 

Figure 3.5: Steering Trajectory 
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Figure 3.6: Tractor Position Trajectory 

 

Figure 3.7 shows the configuration of the two load cells used to calculate the 

lateral force, yhF . They are referred to as SU4 and SL5, respectively and are 20,000 lb 

cells that are positive in compression. 
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Figure 3.7: Diagram of Load Cells Measuring the Side Forces on USDA’s Dyno 

 

The yhF  shown in Figure 3.7 is in the positive direction for the “3-wheeled” 

Bicycle Model, with SL5 in tension and SU4 in compression. The roll moment on the 

dynomometer caused by the implement must be taken into consideration when using the 

data from these two load cells. This is due to the fact that the roll moment imparts a force 

into each of the cells. For a positive yhF , the SU4 data will be positive and the SL5 data 

will be negative. A roll moment decreases the positive SU4 value and increases the 

negative SL5 value by the same amount. The lateral force, yhF , is calculated according to 

Equation (3.16). The roll effect force cancels out because what was subtracted from SU4 

has been added to SU5.  

54 SLSUFyh −=  (3.16) 
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 Figure 3.8 is a graphical demonstration of how the roll moment cancels out when 

the measured yhF  is calculated. 

 

Figure 3.8: Roll Moment Effect in yhF  Calculations 

 

Figure 3.9 shows the measured yhF  data obtained from the dynomometer on a 

particular data run. The lateral forces, as seen in the graph, increase with an increase in 

steering angle. 
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Figure 3.9: Lateral Force and Velocity taken from the Dyno 

 

Slip angle data is also used for the hitch model validation. The slip angle for the 

implement is calculated using the GPS data and yaw gyro data according to Equations 

(3.17-3.20).  

∫−= rGPSγβ  (3.17) 

( )βsin⋅=VVy  (3.18) 

( )cbrVV yyh +⋅+=  (3.19) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

x

yh
h V

V1tanα  (3.20) 

Where GPSγ  is the GPS course measurement. 
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3.4 Hitch Model Validation 

The collected force and slip angle data are compared in this section to determine 

if their relationship can be approximated by the linear tire model. Figures 3.10-3.12 show 

individual data runs of yhF  vs. slip angle for each depth at the test speed of 4 mph. Plots 

of the combined data runs fitted with a linear fit, for each depth respectively, are shown 

in Figures 3.13-3.15. Although the data runs show a high dispersion, a linear relationship 

in the data can still be seen.  Figure 3.16 shows the data for each depth plotted together. 

Based on the linear fits of Figure 3.16, the slope hCα  increases with the depth of the 

implement as one would expect. This is due to the fact that as the depth increases, there is 

more resistance to turning, meaning that more lateral force is created for a given hα  per 

each depth respectively, and an increasing hCα .  

 

Figure 3.10: yhF  vs. Slip Angle at the Hitch for 6” Depth @ 4mph (individual run) 
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Figure 3.11: yhF  vs. Slip Angle at the Hitch for 12” Depth @ 4mph (individual run) 

 

 

Figure 3.12: yhF  vs. Slip Angle at the Hitch for 18” Depth @ 4mph (individual run) 



 

 44

 

 

Figure 3.13: yhF  vs. Slip Angle at the Hitch for 6” depth @ 4mph (runs combined) 

 

 

Figure 3.14: yhF  vs. Slip Angle at the Hitch for 12” depth @ 4mph (runs combined) 
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Figure 3.15: yhF  vs. Slip Angle at the Hitch for 18” depth @ 4mph (runs combined) 

 

 

Figure 3.16: yhF  vs. Slip Angle at the Hitch for all depths @ 4mph  
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Table 3.1 lists the values of hCα  obtained for each depth using the dynamometer. 

It should be noted that these are empirically determined cornering stiffnesses strictly 

based on the slope of the fitted yhF  line of Figure 3.16. 

  

Table 3.1: Empirically Determined hCα  Values on the 8420 with a 
Deere 955 4 Shank Ripper 

Depth, inches hCα , N/deg 

6 534 

12 937 

18 1647 

 

Comparing the lines of Figure 3.16 with Figure 3.3, the linear tire curve, it can be 

seen that the hitch forces do not peak, even at rather high slip angles like the tire forces 

do. This is most likely due to the fact that an implement has parts that actually stick into 

the ground instead of riding on top like a tire. Also, where relaxation lengths are 

concerned, a small relaxation length at the implement could occur due to slop in the 3 

point hitch and/or from deformation of the dirt due to the geometry of the tine in the 

ground. 

On a different note, the implement draft force, xhF , can be seen to be a function 

of hCα , as shown in Figure 3.17 below. Moreover, it appears that there is a linear 

relationship between the two.  
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Figure 3.17: Correlation of Draft Force, xhF  with hCα  for the 4 Shank Ripper on 
the 8420 

 

3.5 Differential Hitch Forces 

The data used to validate the yhF  model can also be used to look at the moment 

created from differential hitch forces. Figure 3.18 below shows the moment from the 

lateral force about the tractor’s center of gravity, CGM  from Equation (3.13), compared 

with the moment caused by the differential forces, diffM  from a dyno run at a depth of 

18” on the four shank ripper. Figure 3.19 shows a run at 12”. As can be seen in the 

figures, the moment acting upon the tractor is dominated by the moment from the lateral 

force. The data are similar for all runs at 18” and for all runs at 12”. Based on these 
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results, the moment from the differential forces at the hitch is negligible compared to the 

effect of the lateral force moment, and neglecting diffM  in the “3-wheeled” Bicycle 

Model structure will not significantly affect its performance. This validation is also true 

for the “3-wheeled” FHRL Model because it uses the “3-wheeled” Bicycle Model in its 

structure. 

 

Figure 3.18: Yaw Moment from yhF  about CG vs. Moment from Diff Forces at 18” 
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Figure 3.19: Yaw Moment from yhF  about CG vs. Moment from Diff Forces at 12” 

 

3.6 Conclusions 

This chapter provides a more in depth derivation of the hitched implement model. 

It has been shown through the lateral force vs. slip angle data that the implement can be 

modeled as a linear tire. It has also been shown through experimental data that the 

moments due to differential longitudinal loading on the implement are negligible 

compared to the lateral implement forces. Therefore, this chapter has shown that the “3-

wheeled” bicycle model, developed in the previous chapter, accurately represents the 

hitched implement and makes reasonable assumptions about the hitched implement 

model.  
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CHAPTER 4 
 

SOLVING OF PARAMETERS WITH SYSTEM IDENTIFICATION 
 

 

4.1 Introduction 

This chapter validates the models chosen in the previous chapter against the real 

tractor. Two types of data have been collected on a variety of implements at varying 

depths and speeds for this purpose: DC gain data and dynamic chirp data. The DC gain 

data is used in conjunction with the “3-wheeled” Bicycle Model to solve for the ranges in 

hCα  with each implement and depth. The chirp data is used to create a system 

identification model in order to compare the dynamics of the “3-wheeled” Front and 

Hitch Relaxation Length (FHRL) Model and validate that it captures the critical dynamic 

responses of the real system. The front and hitch relaxation lengths are also solved for 

using the dynamic response data. 

 

4.2 Data Collection 

A John Deere 8420 tractor with single rear wheels and also a Deere 8520 with 

dual rear wheels were used to gather the DC gain and dynamic data. The experimental 

setup for these experiments is detailed in Appendix A. Table 4.1 lists the depths and 

speeds for data collected on a four shank ripper with the 8420. Table 4.2 lists the depths, 
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speeds, and implements for the data that was taken on the 8520. The implements used 

with the 8520 were a 5 shank ripper, an 18 bottom cultivator, an 11 row bedder, and the 

bedder out of the ground. The difference in using a single vs. dual wheel tractor for 

experiments is that the rear tire cornering stiffness is doubled because the dual rear wheel 

tractor has twice as many tires.  

Table 4.1: Data Collection, 8420 

Implement: 4 Shank Ripper Speed, mph 

Depths: 4, 8, 12” 2.5 3 3.5 4 4.5 5 5.5 

 

Table 4.2: Data Collection, 8520 

Implement Depth at Given Speed  

 1 mph 2.5 mph 4 mph 5.5 mph 

Bedder Out of Gnd -- -- -- -- 

11 Row Bedder 9” 9” 9” 9” 

18 Bottom Cultivator 9” 9” 9” 9” 

5 Shank Ripper 10, 15, 20” 10, 15, 20” 10, 15, 20” 10, 15, 20” 

 

The DC gain experiments consisted of a series of steady state step steering inputs 

of increasing magnitude to create a series of steady state step yaw outputs. Using these 

experiments, the DC gain from steady state steer angle to steady state yaw rate is 

identified empirically. Figure 4.1 shows the steering angle and resulting yaw rate of a 

typical DC gain run at a speed of 2.5 mph.  
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Figure 4.1: Steering Angle Profile and Yaw Rate Response for DC Gain Experiment 

 

While a steady state step steering input is useful for identifying the steady state 

characteristics, a chirp steering input is useful for identifying the dynamic response of the 

tractor [14]. A chirp steering input consists of applying a sine wave of increasing 

frequency to the steering wheels. Figure 4.2 shows a typical chirp steering angle profile 

and resulting yaw rate for the dynamic response experiments. As can be seen, the steering 

angle is not a true chirp signal at the wheels, which does affect the system identification. 

This is most likely due to the steering servo and hydraulic system on the tractor not being 

able to react fast enough to create a true chirp signal at high frequencies. 
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Figure 4.2: Steering Angle Profile and Yaw Rate Response for Dynamic Chirp 
Experiment 

 

4.3 DC Gain Response 

4.3.1 Empirical DC Gain 

The steering angle input and the yaw rate output from the steady state data is used 

to find the empirical DC gain of the system. Least squares fits are performed to determine 

the empirical DC gain of the system at each depth over the range of speed at that depth 

for each implement [15]. Equation (4.2) models the measured yaw rate as a function of 

DC gain times steering angle, a gyro bias, and white noise.  

noiserGr biasDCmeas ++⋅= δ  (4.2) 
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Note that Equation (4.2) is only valid in steady state. The DC gain and gyro bias were 

identified using recorded steering angles and yaw rates for each configuration and speed.          

After the DC gain is identified, it can be validated by comparing the fit to the 

measured response. Figure 4.3 shows a typical result for this validation. The fit from 

Figure 4.3 has an RMS error of .1726 deg/sec, where the sensor noise is the largest 

contributor to the magnitude of the RMS error.  

 

Figure 4.3: Least Squares Fit of the Steady State Yaw Rate 

 

The empirical DC gain fits obtained for the 8420 and four shank ripper at three 

different depths are shown in Figure 4.4. Figure 5.5 shows the empirical DC gain fits for 

all the implements, depths, and speeds with the 8520.  
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Figure 4.4: Empirically Determined DC Gain for All Depths, 8420 with Four Shank 
Ripper 

 

 

Figure 4.5: Empirically Determined DC Gain for All Implements at All Depths, 8520  
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4.3.2 Solving of hCα   

Once the empirical DC gains for each implement, depth, and velocity are found, 

the hCα  which best fits empirical DC gain values is found. Equation (4.2) is an analytical 

equation for the DC gain and is derived from Equation (2.33) of the “3-wheeled” Bicycle 

Model.  

( ) )()()(
12

2
123

21

C
mV

CCC
mV

CaCCC

Gdc
ff

+
−⋅

⋅+⋅

=

αα

 

(4.2) 

Where C1, C2, and C3 were defined previously in Equation (2.34), but are shown below 

for reference. 

       
( ) )(1 frh CaCbCcbC ααα ⋅−⋅+⋅+=  

                                         
( )frh CCCC ααα ++=2  

 
( ) )( 222

3 aCbCCcbC frh ααα +++=  

 

The above equation for DC gain is only a function of hCα   and velocity since the 

other parameters are already known. Therefore, hCα can be solved for by numerically 

minimizing Equation (4.3). 

2/1
2

1

))()(_(1
⎟
⎠

⎞
⎜
⎝

⎛ −⋅= ∑
N

hCGdcNempiricalGdc
N

E α  (4.3) 

Figure 4.6 shows the results of the minimization for the four shank ripper used on 

the 8420. The values obtained for hCα  at each depth are also shown: 451.65 N/deg at four 
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inches, 1002.8 N/deg at eight inches, and 1719.3 N/deg at twelve inches of depth. Figure 

4.7 and 4.8 show the results from the implements used on the 8520. The hCα  values 

obtained on the five shank ripper are: 887.3 N/deg at ten inches, 1025 N/deg at fifteen 

inches, and 3385.3 N/deg at twenty inches of depth. The value obtained for the bedder 

out of the ground is .983 N/deg, which is approximately 0, as should be in the case where 

there is no cornering stiffness from the implement. The value obtained for the eighteen 

tine cultivator is 639.8 N/deg, and the value for the eleven row bedder is 951.2 N/deg. 

The large jump in hCα  at the deepest depth in Figure 4.7 may be due to variation in soil 

compaction.  

 

Figure 4.6: Empirical and Solved DC Gain Comparison for the 4 Shank Ripper on the 
8420 at Various Depths 
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Figure 4.7: Empirical and Solved DC Gain Comparison for the 5 Shank Ripper on the 
8520 at Various Depths 

 

 

Figure 4.8: Empirical and Solved DC Gain Comparison for the Bedder out of the Ground, 
the Bedder in the Ground, and the Cultivator on the 8520. 
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Based on Figures 4.6-4.8, a trend in the value of the hitch cornering stiffness can 

be seen. As would be expected, the cornering stiffness increases with the size of the 

implement and also with the depth of each implement respectively. Additionally, hCα  

increases with the draft load as shown by Figure 3.17.   This trend corresponds to an 

implement providing a greater resistance to turning the deeper that it is in the ground and 

also corresponds to an implement with more or larger tines in the ground being harder to 

turn. 

Table 4.3 summarizes the values of hCα  obtained for all of the implements and 

their respective depths. 

Table 4.3: Empirically Determined hCα  Values for all the Implements

Implement Depth, inches hCα , N/deg 

8420, 4 Shank Ripper 4 451.65

8420, 4 Shank Ripper 8 1002.80

8420, 4 Shank Ripper 12 1719.30

8520, Bedder Out of Gnd 0 0.98 ~ 0.00

8520, Cultivator 9 639.83

8520, Bedder  9 951.24

8520, 5 Shank Ripper 10 887.33

8520, 5 Shank Ripper 15 1025.00

8520, 5 Shank Ripper 20 3385.30
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4.4 Dynamic Response: Empirical Modeling 

The interpretation and results from using the dynamic chirp input and output 

responses of Figure 4.2 and from the implements and depths of Tables 4.1 and 4.2 are 

discussed in this section. 

Experiments using a chirp input are useful for determining the dynamic 

characteristics of a system since the chirp signal excites a range of frequencies. This 

allows the magnitude and phase shift of the output vs. the input over that range of 

frequencies to be analyzed. This can be accomplished by taking an Empirical Transfer 

Function Estimate (ETFE) of the data sets using Matlab’s “etfe( )” command [14]. Figure 

4.9 shows an ETFE for the cultivator at a speed of one mile per hour. The large jump in 

noise in the graph past 100 rad/s is due to lack of input excitation frequency. This ETFE 

represents the general shape and form for all of the data sets recorded.  

 

Figure 4.9: ETFE of the Cultivator at 1 mph 
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Since the ETFE is a purely empirical model, a system identification model is 

fitted for each ETFE. For this research, a Box Jenkins model was chosen for the system 

identification model [16]. )(sG  of Equation (4.4) represents the real tractor system, 

while the Box Jenkins models represents )(ˆ sG , the approximated system. 

)(ˆ
)(
)( sG

s
sr

=
δ

 (4.4) 

 Figure 4.10 shows the ETFE of the four shank ripper with a fourth order Box 

Jenkins identified model plotted alongside. Fourth order Box Jenkins models were found 

to best fit the data sets in Tables 4.1 and 4.2. The first resonant peak of Figure 4.10 

represents the dominant dynamics of the tractor (which is of most interest); it is uncertain 

what dynamics are creating the second resonance. Both test tractors had an independent 

front suspension which may be causing this second resonance. 
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Figure 4.10: ETFE of the 4 Shank Ripper with 4th order Box Jenkins  

 

Figures 4.11-4.19 show plots of the empirical DC gains, natural frequencies, and 

damping ratios vs. velocity of the tractor-implement combination calculated from the Box 

Jenkins Models. It should be noted that the natural frequencies and damping ratios are 

those associated with the first resonant peaks. These figures also show the analytical 

values attained by adjusting the front and hitch relaxation lengths of the “3-wheeled” 

FHRL Model. Recall, however, that the DC gain values are not a function of the 

relaxation lengths. The DC gain values are for reference only and are the values shown 

for the empirical gains in the previous section.  
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Figure 4.11: DC Gain, Natural Frequency, and Damping Ratio for the 4 Shank Ripper at 
4” of depth on the 8420, 4.=fσ m, 002.=hσ m 

 

 

Figure 4.12: DC Gain, Natural Frequency, and Damping Ratio for the 4 Shank Ripper at 
8” of depth on the 8420, 4.=fσ m, 002.=hσ m 
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Figure 4.13: DC Gain, Natural Frequency, and Damping Ratio for the 4 Shank Ripper at 
12” of depth on the 8420, 4.=fσ m, 002.=hσ m 

 

 

Figure 4.14: DC Gain, Natural Frequency, and Damping Ratio for the Bedder out of the 
Ground on the 8520, 9.=fσ m, 002.=hσ m 
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Figure 4.15: DC Gain, Natural Frequency, and Damping Ratio for the Cultivator on the 
8520, 9.=fσ m, 002.=hσ m 

 

 

Figure 4.16: DC Gain, Natural Frequency, and Damping Ratio for the Bedder on the 8520, 
9.=fσ m, 002.=hσ m  
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Figure 4.17: DC Gain, Natural Frequency, and Damping Ratio for the 5 Shank Ripper at 
10” depth on the 8520, 9.=fσ m, 002.=hσ m 

 

 

Figure 4.18: DC Gain, Natural Frequency, and Damping Ratio for the 5 Shank Ripper at 
15” depth on the 8520, 9.=fσ m, 002.=hσ m 
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Figure 4.19: DC Gain, Natural Frequency, and Damping Ratio for the 5 Shank Ripper at 
20” depth on the 8520, 9.=fσ m, 002.=hσ m 

  

The resulting values for the front and hitch relaxation lengths are summarized in 

Table 4.4, below. The value of the front relaxation length for the four shank ripper at all 

depths on the 8420 was a lower value than that needed for the 8520 at all its implements 

and depths.  

Table 4.4: Front and Hitch Relaxation Length Values 

Tractor, All Implements Front Relaxation Length 

Value (m) 

Hitch Relaxation 

Length Value (m) 

8420 .9 .002 

8520 .4 .002 
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Although the relaxation lengths given in Table 4.3 match the experimental natural 

frequency, they do not capture the experimental trend in damping ratio. Additionally, 

these relaxation length values led to an RMS error (between experimental and model yaw 

rates) of 1.92 deg/s when analyzed in the same manner as Figure 2.12. Figure 4.20 shows 

the Bode velocity response of the “3-wheeled” FHRL Model at these relaxation length 

values, and it can be seen that the damping decreases with velocity, which is opposite of 

what Figures 4.11-4.19 denote.  

 

Figure 4.20: “3-wheeled” FHRL Model for the Cultivator on the 8520, 9.=fσ m, 
002.=hσ m 

 

This problem was remedied by using the relaxation length values that were used 

to obtain an RMS error of .67457 for Figure 2.12. These values are 37.=fσ m and 

4.=hσ m. Using these values in the “3-wheeled” FHRL Model also produces damping 
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that increases with velocity, seen in the Bode plots of Figure 4.21. Shown in Figures 

4.22-30 are the DC gain, natural frequency, and damping ratio comparisons for all of the 

data sets. As seen in these figures, using values of .37 and .4 m for the front and hitch 

relaxation lengths yields natural frequencies that are relatively close to the values from 

the experimental fits.  

 

Figure 4.21: “3-wheeled” FHRL Model for the Cultivator on the 8520, 37.=fσ m, 
4.=hσ m 
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Figure 4.22: DC Gain, Natural Frequency, and Damping Ratio for the 4 Shank Ripper at 
4” of depth on the 8420, 37.=fσ m, 4.=hσ m 

 

 

Figure 4.23: DC Gain, Natural Frequency, and Damping Ratio for the 4 Shank Ripper at 
8” of depth on the 8420, 37.=fσ m, 4.=hσ m 
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Figure 4.24: DC Gain, Natural Frequency, and Damping Ratio for the 4 Shank Ripper at 
12” of depth on the 8420, 37.=fσ m, 4.=hσ m 

 

 

Figure 4.25: DC Gain, Natural Frequency, and Damping Ratio for the Bedder out of the 
Ground on the 8520, 37.=fσ m, 4.=hσ m 
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Figure 4.26: DC Gain, Natural Frequency, and Damping Ratio for the Cultivator on the 
8520, 37.=fσ m, 4.=hσ m 

 

 

Figure 4.27: DC Gain, Natural Frequency, and Damping Ratio for the Bedder on the 8520, 
37.=fσ m, 4.=hσ m 
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Figure 4.28: DC Gain, Natural Frequency, and Damping Ratio for the 5 Shank Ripper at 
10” depth on the 8520, 37.=fσ m, 4.=hσ m 

 

 

Figure 4.29: DC Gain, Natural Frequency, and Damping Ratio for the 5 Shank Ripper at 
15” depth on the 8520, 37.=fσ m, 4.=hσ m 
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Figure 4.30: DC Gain, Natural Frequency, and Damping Ratio for the 5 Shank Ripper at 
20” depth on the 8520, 37.=fσ m, 4.=hσ m 

 

4.5 Conclusions 

In this chapter, steady state data were used to solve for the empirical DC gains of 

the tractor on a number of implements at a variety of depths and speeds. A minimization 

function was used to find hCα  for each implement at each depth. Dynamic chirp data was 

used to find the ETFE estimates of each data set, and then fourth order Box Jenkins 

models were fitted to the ETFE’s. The Box Jenkins models were characterized and the 

DC gains, natural frequencies, and damping ratios were plotted for each implement and 

depth. Initial values for the front and hitch relaxation lengths were found to be inadequate 

in modeling the tractor. Therefore, values of front and hitch relaxation lengths were 
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selected that produced similar damping characteristics as the Box Jenkins models and that 

also gave the least RMS error values when compared in a dynamic yaw rate tracking 

scenario as seen in Chapter 2. The values for the front and hitch relaxation lengths were 

found to be 37.=fσ m and 4.=hσ m, and the values of hCα  for the various 

implements ranged from 0 N/deg to 3385 N/deg. 
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CHAPTER 5 
 

MODELING OF FOUR-WHEEL DRIVE EFFECTS 
 
 

5.1 Introduction 

A tractor’s towing ability is greatly increased by the addition of a driven front 

axle. However, since the front axle is usually the steered axle, traction forces affect the 

tractor’s yaw dynamics. In this chapter, a lateral model is derived which takes into 

account the front axle traction forces of a four-wheel drive tractor. Data has been 

collected on a tractor both with 4WD on and off. The difference in the respective yaw 

rates is shown.  

 

5.2 Modeling Front Axle Drive Forces 

This section derives the “3-wheeled” Bicycle Model where the four-wheel drive 

traction forces are not ignored and takes up where Chapter 2 left off. The FBD for the “3-

wheeled” Bicycle Model with four-wheel drive traction forces of Figure 2.2 is shown 

again below as Figure 5.1. The “3-wheeled” Bicycle Model with four-wheel drive 

traction forces is now termed the “3-wheeled” 4-WD Bicycle Model (3W4BM).  
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Figure 5.1: “3-wheeled” 4-WD Bicycle Model Schematic 

 

Summing the forces in the Y and Z axes of the tractor yields Equations (5.1-5.2). 

)cos()sin()cos( βδδ ⋅⋅⋅+=⋅+⋅++=⋅=∑ rVmVmFFFFamF ytracyfyryhyy
&

 
(5.1) 

rIaFbFcbFaFM ztracyryhyfCG &⋅=⋅⋅+⋅−+⋅−⋅⋅=∑ )sin()()cos( δδ  (5.2) 

The small β  assumption causes 1)cos( ≈β  and assuming small steering angles 

allows 1)cos( ≈δ , so that Equations (5.1-5.2) become Equations (5.3-5.4). 

δ⋅+++=⋅=⋅⋅+ tracyfyryhyy FFFFamrVmVm &  (5.3)

aFcbFbFaFrI tracyhyryfz ⋅⋅++⋅−⋅−⋅=⋅ δ)(&  (5.4)

tracF  is defined below in Equation (5.5) 

=tracF SlipCx %⋅  (5.5)

Where Slip%  is the percent of slip along the longitudinal axis of the tire and xC  is the 

longitudinal tire stiffness. xC  is dependent on the particular tire design, but not on tire-

soil conditions. A diagram of the tire forces can be seen in Figure 5.2 below. The tractive 
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forces of a tire are highly dependent on the tire-soil interaction which affects the Slip% . 

It should be noted that Equation (5.5) is valid only below a slip of approximately 10%. 

 

Figure 5.2:  Tire Force Schematic 

 

Substituting Equations (2.33-2.35) into Equations (5.3-5.4) yields Equations (5.5-5.6).  

δααα ααα ⋅+⋅−⋅−⋅−=⋅⋅+ tracffrrhhy FCCCrVmVm &  (5.5)

aFaCbCcbCrI tracffrrhhz ⋅⋅+⋅⋅−⋅⋅++⋅⋅=⋅ δααα ααα )(&  (5.6)

Using the small β  assumption to say VVx ≈  , substituting Equations (2.13-2.15) into 

Equations (5.5-5.6) and organizing the resulting equations into state space form yields 

Equations (5.7-5.8). 
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Rearranging Equations (5.7-5.8) and assuming tracF  is a steady state value yields the 

state-space form of the “3-wheeled” 4-WD Bicycle Model, shown in Equation (5.9). 
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The transfer function form of Equation (5.9) is shown in Equation (5.10), below. 

( ) ( ) ( ) ( )( )
Den

aCbCcbCCCCaCFsaCaFVm
s
sr frhfrhftracftrac ⋅−⋅++⋅+++⋅⋅++⋅⋅+⋅⋅⋅

= αααααααα

δ
)(
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)(

 
(5.10) 

Where 

( ) ( )( ) +⋅⋅+⋅++⋅⋅++++⋅⋅⋅= saCbCcbCmCCCsVmIDen frhfrhz
2222 )( αααααα  

   ( ) ( )+⋅+⋅++⋅⋅++ 222)( aCbCcbCCCC frhfrh αααααα  
   ( ) ( )2)()( aCbCcbCaCbCcbCVm frhfrh ⋅−⋅++⋅+⋅−⋅++⋅⋅⋅ αααααα  

      

(5.11) 

 

5.3 Effects of Using Four-Wheel Drive on Yaw Rate 

Data from a typical setup using a hitched implement is recorded with and without 

using the four-wheel drive to determine the effect on yaw rate of the traction forces in 

nominal conditions. Data was taken on the 8420 with a six shank Paratil at depths of 9, 

13, and 17 inches at speeds of 4 mph and 1.5 mph at a depth of 17 inches. The Paratil can 

be seen in Figure 5.3.  
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Figure 5.3:  6 Shank Paratil Attached to the 8420 

 

Figure 5.4 shows a typical data set where yaw rate has been plotted vs. steering 

angle at the wheel. Figure 5.4 has been fitted with a linear fit and is representative of the 

other data runs at the respective depths and speeds. Figure 5.5 shows the results of 

comparing yaw rates at 4 mph and 9 inches of depth for both the 4WD on and off. The 

blue shaded area represents the difference in yaw rate between the two options. A 

summary of the difference in yaw rate slope vs. steering angle is given in Table 5.1. 

There is approximately an 8.8% difference in yaw rate between having the 4WD on vs. 

off at 9 inches depth and 4 mph with the Paratil. Figure 5.6 compares yaw rates with and 

without 4WD on the Paratil at a depth of 13 inches and a speed of 4mph. There is a 

difference of 20.6% between the respective yaw rates. Figure 5.7 compares yaw rates at a 
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depth of 17 inches and a speed of 1.5 mph. The forward velocity on this data set was 

traction limited by the tractor in 2WD mode. The difference in yaw rates for 17 inches of 

depth is 15.4%. Intuition would lead one to think that there should be more difference in 

yaw rates as the depth increases such as for the depths of 9 and 13 inches. One reason for 

17 inches being a 15.4% difference and 13 inches being a 20.6% difference is that the 

velocity at 17 inches is only 1.5 mph instead of 4 mph.  

 

Figure 5.4:  Representative Individual Data Run with Linear Fit, 2WD 9” Depth 
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Figure 5.5:  Comparison of 4WD vs. 2WD Yaw Rates per Steering Angle, 9” Depth,       
4 mph 

 

 

Figure 5.6:  Comparison of 4WD vs. 2WD Yaw Rates per Steering Angle, 13” Depth,      
4 mph 
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Figure 5.7:  Comparison of 4WD vs. 2WD Yaw Rates per Steering Angle, 17” Depth,      
1.5 mph 

 

Table 5.1: Values from 4WD Analysis 

Depth, 

inches 

Speed, mph Yaw Rate 

Slope, 1/s

% Difference in 4WD 

ON vs. OFF 

% Diff/ Velocity 

9 4 .34 4WD 

.31 2WD 

8.8 2.20 

13 4 .34 4WD 

.27 2WD 

20.6 5.15 

17 1.5 .13 4WD 

.11 2WD 

15.4 10.27 
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5.4 Conclusions 

A model which takes into account the front axle traction forces has been 

developed and termed the “3-wheeled” 4-WD Bicycle Model. Data were collected on a 

Paratil at three depths and two speeds, both with and without the four-wheel drive.  This 

data shows that under typical conditions, using four-wheel drive does significantly affect 

the yaw dynamics of the tractor. Using four-wheel drive provided an increase in yaw rate 

from 9-21%, depending on the depth and speed. 
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CHAPTER 6 
 

CONCLUSIONS 
 
 

6.1 Summary 

A number of mathematical models for the dynamics of a tractor with a hitched 

implement has been developed and compared for accuracy. A model has been developed 

which has the ability to capture changing implement conditions through a hitch cornering 

stiffness term. The model used to capture the hitched implement forces has been verified 

to be reasonably correct. The hitch cornering stiffness term has been solved for through a 

minimization for a variety of implements at varying depths. A model has also been 

developed which can take into account the effects of using four-wheel drive on the yaw 

dynamics. A summary of each chapter given in this thesis is provided below. 

In Chapter 2, a general diagram is shown from which many tractor vehicle models 

can be developed. The “3-wheeled” Bicycle Model is developed which can account for 

changing hitched implement conditions. A model is also developed where front and hitch 

relaxation lengths are added to the “3-wheeled” Bicycle Model (FHRL Model). Also a 

number of models used in previous research are derived for a comparison. It is shown 

that the FHRL Model breaks down into the “3-wheeled” Bicycle Model under steady 

state conditions. Additionally, under steady state and dynamic steering maneuvers, the 

FHRL model provides the most accurate yaw rate tracking ability. 
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In Chapter 3, the Linear Tire Model used in modeling the hitch forces of the 

FHRL Model is verified. Analysis of experimental data shows that the lateral hitch force 

vs. slip angle of the implement is relatively linear and can be represented by the Linear 

Tire Model. 

In Chapter 4, steady state experiments using various implements at various depths 

are used to derive empirical DC gain data. This empirical DC gain data are used to solve 

for the hitch cornering stiffness term for the varying implements at their varying depths. 

It is shown that the trends in the hitch cornering stiffness values behave as expected when 

related to real world behavior. Dynamic steering experiments taken with the various 

implements and their varying depths are used to derive empirical system identification 

models for the implements at each respective depth. The system identification models are 

used to find the front tire and hitch relaxation lengths of the FHRL Model.  

In Chapter 5, a “3-wheeled” 4-WD Bicycle Model is developed which takes into 

account front axle traction forces in a four-wheel drive tractor. Experimental data show 

that under typical conditions, using four-wheel drive does significantly affect the yaw 

dynamics of the tractor. Using four-wheel drive provided an increase in yaw rate from 9-

21% for a 6 shank Paratil, depending on depth and speed.  

   

6.2 Recommendations for Future Work 

Varying ground conditions such as ground moisture, type and compaction also 

affect the amount of lateral force an implement generates. These varying conditions need 

to be studied to find their effect on the implement model. The work in this thesis only 
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considers hitched implement conditions. Research could also be conducted to include 

towed implements, articulated tractors, skid steer, and even rear steer tractors.  

The four-wheel drive modeling should be researched further. It was shown that 

using four-wheel drive increases the yaw rate at a given steering angle by a significant 

amount. It needs to be determined whether this difference in yaw rate is captured by the 

analytical model. It could be the case where physically using four-wheel drive on the 

tractor reduces the slip losses enough so that the actual yaw rate and the predicted yaw 

rate from a non four-wheel drive model match since slip is neglected in the model.  
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APPENDIX A 
 

Experimental and Data Acquisition Setup 
 
 

A.1 Introduction 

 Appendix A contains information about the physical setup of the experimental 

tractors used for this research and the data acquisition setup. 
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A.2 Experimental and Data Acquisition Setup  

Two tractors were used to take data. The first tractor, shown in Figure A.1, was a 

John Deere 8420 with single rear wheels. The second tractor was a Deere 8520 with 

duals, of which a photo is not shown. Both tractors had the independent front suspension 

setup.  

 

Figure A.1: Experimental Test Tractor- John Deere 8420  

 

A data acquisition computer was used to record data from an inertial measurement 

unit (IMU), a steering angle sensor, and GPS data. The data acquisition computer is 

shown in Figure A.2. It is a Versalogic PC-104 stack computer with a Bobcat processor 

and data acquisition card enclosed in a Versatainer ruggedized enclosure. The steering 

angle sensor is shown in Figure A.3 and is a linear potentiometer. The IMU is a 6 DOF 



 

 93

system created from 3 Bosch automotive grade sensors. The Bosch sensors sense both 

yaw rate and acceleration. Figure A.4 shows how the sensors are arranged in a custom 

fabricated box to create the IMU which senses yaw, pitch, and roll, and acceleration in 

each respective axis.  The GPS data was gathered on a Starfire GPS unit shown in Figure 

A.5.  

Also, for the experiments done in conjunction with the USDA-ARS National Soil 

Dynamics Laboratory, a hitch force dynamometer was used. The dynamometer is shown 

in Figure A.6. 

 

 

Figure A.2: Versalogic Data Acquisition Computer   
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Figure A.3: Steering Angle Sensor 

 

 

Figure A.4:  Inertial Measurement Unit 
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Figure A.5: Starfire GPS Receiver 

 

 

Figure A.6: Hitch Force Dynamometer 
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APPENDIX B 
 

Model Parameter Values 
 
 

B.1 Introduction 

 Appendix B details the values of the set parameters used in the aforementioned 

models and also summarizes the values obtained for the parameters whose values were 

solved for. 
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B.2 Model Parameter Values  

Table B.1: The “3 Wheeled” Bicycle Model Parameters 

a  1.00 m 

b  2.00 m 

c  2.19 m 

t  1.20 m 

zI  18500 kgm2 

m  25,000 lb 

rCα  5000 N/deg (singles, per axle) 

rCα  10,000 N/deg (duals, per axle) 

fCα  2,400 N/deg (per axle) 

hCα  Values shown below in  Table B.2  

fσ  .34 m 

hσ  .40 m 

 

The values for a, b, zI , rCα , and fCα  were taken from previous research on a 

similar setup from Bevly [7]. The values for c and t  were obtained from physical 

measurements of the tractor. The value for m was obtained from the shipping information 

of the tractor.  
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Table B.2: hCα  Values for all the Implements 

Implement Depth, inches hCα , N/deg 

8420, Deere 955 4 Shank Ripper** 6 534.00

8420, Deere 955 4 Shank Ripper** 12 937.00

8420, Deere 955 4 Shank Ripper** 18 1647.00

8420, 4 Shank Ripper 4 451.65

8420, 4 Shank Ripper 8 1002.80

8420, 4 Shank Ripper 12 1719.30

8520, Bedder Out of Gnd 0 0.98 ~ 0.00

8520, Cultivator 9 639.83

8520, Bedder  9 951.24

8520, 5 Shank Ripper 10 887.33

8520, 5 Shank Ripper 15 1025.00

8520, 5 Shank Ripper 20 3385.30

**Note: These values were obtained in a different manner from the rest. 

The hCα  was determined directly from the yhF  vs.  hα  plot instead of a  

minimization based on empirically determined DC gains. 


