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ABSTRACT

Mafic igneous rocks are commonly associated with various metals and there are many
examples of basalts that host small amounts of native copper. Such copper is more common among
the matrix phases of basalts and could represent a final stage of a melt or a secondary alteration.
Worldwide, there are only a few occurrences of copper within early-crystallizing phenocrysts of
plagioclase, and this fact makes the ‘sunstones’ of Oregon as interesting as they are spectacularly
beautiful. The native copper in these ‘sunstones’ occurs as thin platelets (copper schiller) with
crystallographically-controlled orientations. These copper platelets appear to have formed via the
exsolution of metallic copper and are typically found in the cores of the highest-grade gemstones.
The age of the sunstone host basalts has previously been uncertain. Also, there has been little
petrographic or geochemical characterization of the basalts hosting the sunstones. The objectives
of this thesis were to determine the age and provide an improved petrographic, petrologic and
geochemical characterization of the host basalt. These labradorite megacrysts (~Ane7) have
strikingly homogeneous major and trace element distributions and internally homogeneous
87Sr/85r ratios, similar to those observed in plagioclase phenocrysts of the Columbia River Basalt
Group's Steens Basalt (~16.7 Ma). The homogeneous nature of all these data suggests that
following copper exsolution, the crystals have not experienced significant chemical change
(diffusive mass transport, alteration, weathering). This research determined the age of the basalt
hosting sunstones. The means of four matrix plateaus is 9.16+0.12 Ma (95% c.l., MSWD=1.13).
These late Miocene plateau ages are comparable to lavas of the High Lava Plains Trend but are
distinctly younger than the Steens Basalt. In addition, this research illustrated a simple sunstone

development hypothesis.
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INTRODUCTION

Although feldspar is one of the most abundant minerals found in the Earth's crust, gem-
quality feldspars are rare. Moonstone, amazonite, andesine, orthoclase, and sunstone are some of
the most well-known feldspar gemstones. Labradorite megacrysts (sunstones) which include
macroscopic inclusions of native copper are locally hosted in basaltic lavas across Central and
Eastern Oregon. As noted by Hofmeister and Rossman, (1985), the native copper forms as thin
platelets (copper schiller) with crystallographically controlled orientations in these sunstones.
These copper platelets appear to have formed by exsolution and are commonly observed in the
centers of high-quality gemstones. The research goals of this thesis are to determine the age and
provide a basic petrographic, petrologic and geochemical characterization of the host basalt in

order to enhance the understanding of the copper-bearing plagioclase.

Background
Sunstone locations, geologic setting, and possible associated basalt flows

There are currently three important gem-quality labradorite deposits in Oregon (Fig. 1). One
of the sunstone deposits is the Ponderosa Mine which is smaller and occurs in south-central Oregon
near the White Horse Ranch, in northwest Harney County (Johnston et al., 1991). The other two
deposits are the Dust Devil and Sunstone Butte mines, both of which are nearly 120 miles further
south, in Lake County. These last two deposits are referred to in the literature as the Plush,

Lakeview, Lake County, Rabbit Hills, or Rabbit Basin occurrences (Johnston et al., 1991).
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Figure 1. This map indicates three regions of occurrence for samples of copper-bearing plagioclase
in eastern Oregon. Modified illustration by Larry Lavitt (“Three Occurrences of Oregon Sunstone

| Gems & Gemology”).

Oregon Sunstones are copper-bearing feldspar most commonly found in highly
porphyritic basaltic lavas previously associated with the Columbia River Basalt Group
(CRBG). The Columbia River Basalt Group (Fig. 2) is the youngest, smallest and most
well preserved continental flood basalt province on Earth occupying more than 210,000

km?, primarily in eastern Oregon and Washington, western Idaho and part of northern
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Nevada. The Northern Great Basin (NGB) is associated with bimodal volcanism in the
middle Miocene, which is related to a mantle plume that has now migrated to the

Yellowstone Region (Brueseke et al., 2007).

Yellowstone
Plateaq;

WY

| | - |
123° 120° 17° 114° 11°

Figure 2: Map of the region for eruption of the Middle Miocene Columbia River Basalt (CRB)
Province of the Yellowstone Hotspot. The light gray shaded region shows the approximate extent
of mid-Miocene flood basalts. The (x) indicates the region of occurrence for samples of copper-
bearing plagioclase (sunstone occurrences), within the western younging High Lava Plains Trend
(HLPT) (from Hames et al., 2009). (Other abbreviations for the region are defined in Hames et al.,
2009).

The Steens Basalt is a member of the Columbia River Basalt Group, with lava flows
reaching ~50,000 km? on the Oregon Plateau (Jarboe et al., 2008) that comprises tholeiitic to
slightly alkaline basalt and basaltic andesites. Some of the products of the oldest eruptions of this
magmatic episode have been seen in this basaltic region. (Fig. 2). The Steens Basalt isa ~16.7 Ma

flood basalt sequence that erupted through the Oregon Plateau prior to shifting to the central
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location of Steens Mountain, Oregon (Brueseke et al., 2007; Camp et al., 2013). Lavas of the
Steens Basalt vary from aphyric to coarsely plagioclase phyric with some basalts that include up
to 50 percent plagioclase mega-crystals (Johnston et al., 1991; Brueseke et al., 2007; Camp et al.,
2013). Jarboe et al. (2008) showed that many erupted lava flows of the Steens Basalt formed in a
short time interval and permit detailed observations of the magnetic field direction and paths.
Comparison of “°Ar/*Ar ages and the geomagnetic polarity timescale suggests one reversal of the
geomagnetic field during the Steens Basalt's eruption. The combined studies of Brueseke et al.
(2007) and Jarboe et al. (2008) suggest that the Steens Basalt erupted during just a few hundred

thousand years on the Oregon Plateau at approximately 16.7 Ma.

The High Lava Plains (HLP) is a volcanic province that has a westward younging trend of
silicic volcanism and is characterized by bimodal volcanism (Fig. 3) (Jordan et al., 2004). The
High Lava Plains trends emerged from the axis of the Steens Basalts middle Miocene basaltic
volcanism. These basalts have been identified in varying time periods ranging from 2 to 10 Ma.
Thus, the HLP and middle Miocene flood basalts appear to be closely related. The geochronologic
results obtained by Jordan et al. (2004) confirm that the pattern of HLP silicic volcanism has a

westward migration.
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% Dust Devil Mine

- Younger Basalts O R'W'te Vommc / Volcanic Migration y Double Eagle Mine

Y Little Eagle Butte Mine

Figure 3. Map of the region Oregon High Lava Plains (HLP). The four stars, Sunstone occurrences,
illustrate where four basalt matrix samples (LEB-001, LEB-003, and DE16-001, SW19-DDO01)
were taken from. Figure Legend: The High Cascade stratovolcanoes (A), flood basalts (B),
volcanic calderas (C), renewed activity (D), Newberry Caldera (N), Yellowstone supervolcano
(YY), Abert Rim (AR), Steens Mountain (SM), Snake River Plain (SRP), Illustration by Larry
Lavitt, adapted from Long (2009) and Grunder and Meigs (2009). (“Three Occurrences of Oregon
Sunstone | Gems & Gemology”)

The basaltic lavas hosting sunstones are highly altered and oxidized (Fig. 4 and Fig. 5) and
as noted previously, the timing of extrusion for the host basalts of the sunstones is currently
unconstrained. Many plagioclase megacrysts of ~2-4 cm diameter in these basaltic lavas host

noticeable native copper inclusions (Hofmeister and Rossman, 1985a; Wierman, 2018). In addition
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to plagioclase megacrysts, altered and oxidized basaltic lavas also include non-gem quality

plagioclase crystals of several sizes.

Figure 4. Samples of basalt porphyry from Dust Devil #16 Mine. 4A: A gem quality sunstone
crystal surrounded by small and non-gem quality feldspar crystals. 4B: A highly altered porphyry
basalt consisting of large crystals of non-gem quality labradorite crystals.

Figure 5 shows microscope images of altered basalt and groundmass labradorite crystals
taken from the southern Plush area. While these fine pieces of groundmass plagioclase range from
labradorite to andesine (majorly labradorite), the megacrysts in basaltic lavas are labradorite
(Hofmeister and Rossman, 1985a). Both megacryst and groundmass labradorite crystals
were fractionated from melts with similar composition (Welch et al., 2019). According to Stewart
et al. (1966), highly porphyritic basalt hosting sunstones within the Rabbit Basin (southern
sunstone locations) are not only petrographically similar but also temporally and spatially

correlative with plagioclase-rich flows of the Steens Basalt of CRBG. The elemental composition
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of the basalts of ‘Harney County’ (the northernmost sunstone location) hosting the sunstones is
similar to the Picture Gorge basalts of the CRB suite (E. Cahoon, pers. comm., 2020), but this may
only indicate that they formed from similar sources. According to Badur (2020), results of
OAr/°Ar ages show that the basalt matrix ages of the ‘Rabbit Basin’ hosting sunstones seem

comparable to lavas of the High Lava Plain Trend but are much younger than the Steens Basalt.

Figure 5. Microscope images of altered basalt and groundmass labradorite crystals. 5A. LEB-003
- Little Eagle Butte (the southern Plush area) - Whole-rock sample. 5B. DE16-001 - Double
Eagle (the southern Plush area) - Whole-rock sample.
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Oregon Sunstones

The Oregon legislature named sunstone as the state gem in 1985 (Hofmeister and Rossman,
1985). The reason for this is that the native copper inclusions in plagioclase are found almost
exclusively in the sunstones of Oregon. The Oregon Sunstone (Fig. 6) was first characterized by
Andersen (1917) and by Hofmeister and Rossman (1985), who discovered that the copper plates
had a minimum of 90% purity. The rarest and valuable sunstone group is the colored sunstone
especially colored intense red or having a green rim or combination of these two colors
("watermelon™). Copper concentration decreases from schiller to red to pale yellow which is
similar to the observed sequence in zones (Fig. 6A) and finally, uncolored sunstones have very
low copper levels. While copper can be seen as a visible copper plate, it cannot be seen when it
gets exsolved in sub-microscopic size. Due to the uneven distribution of very thin copper
inclusions in the core of the sunstones, determining an overall precise copper concentration is
challenging. However, copper has been estimated as up to 300 ppm in high gem-quality sunstones
(Welch et al., 2019). Also, the occurrence of native copper in crystal cores lead to the suggestion
that the amount of copper in the host magmas differed over time (Hofmeister and Rossman, 1985b;

Johnston et al., 1991).
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Figure 6. Gem-quality Oregon Sunstones collected from Double Eagle #16 Mine. 6A: The
reddish copper core is surrounded by the green color of protoenstatite. 6B: Blocky labradorite
feldspar crystal within the host basalt. 6C: Some of the highest quality Oregon Sunstones have
differed in the color pink (champagne), red, green.

The highest quality gemstones differ in color (pink, red, green) and may also contain flakes
of native copper (Hofmeister and Rossman, 1985b) (Fig. 7). Some of the sunstones have copper
inclusions in them surrounded by an unusual dichroic red to green-colored rim. This distinctive
green coloring of these sunstones is interpreted to result from crystallographically oriented
nanocrystals of protoenstatite in combination with copper nanocrystals (Xu et al., 2017).
Protoenstatite is the magnesium endmember of the pyroxene mineral group and is reported to be a
high-temperature form. It is observed that the copper platelets preferentially grew within the

phenocrysts along crystallographic boundaries, and, where present, the micron-scale inclusions of
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protoenstatite (green rim, Fig. 7) are also distributed in consistent zones around copper platelets

(Xu et al., 2017).

74 (00D . (010) 7B .

Figure 7. Gem-quality Oregon Sunstone looking down along the normal of (001), and along b-axis
[010]. Notice the extremely clear rim in image 7A along with the color zoning. In some crystals,
a green border becomes brownish-red when looking down along the normal of (001). The inset in
7A illustrates the specifics of the red to green transition (~4 mm thick) (Modified from (Xu et al.,
2017). 7B: Labradoritic ‘sunstone’ samples from the Dust Devil Mine (samples of this study). (*)
Some crystals contain a green rim (protoenstatite) or a cloudy zone around the copper core.

These metal copper inclusions as preferentially oriented mineral platelets are responsible
for the aventurescence or “schiller effect”. In gemology, aventurescence is an observed optical
phenomenon when inclusions form a pattern of brilliant flashes and color spots within certain
gems. The term “schiller effect” is generally used for these special gems and types of
aventurescence (Hofmeister and Rossman, 1985). While aventurescence can be seen in many kinds
of labradorite feldspar, the effects are usually created by hematite or goethite inclusions. However,

the Oregon Sunstones (labradorite) have copper inclusions, which are formed by the exsolution
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process. The schiller in Oregon Sunstones is oriented to (001) and (010) in a transparent matrix

because of its thin, round, and highly reflective platelets (Fig. 7A).

Pleochroism is the ability of a mineral to absorb different wavelengths of transmitted
light depending upon its crystallographic orientations. Although pleochroism is absent in other
feldspars, Oregon Sunstones with green rims exhibit pleochroism which increases their unique and
valuable nature. The green part of the sunstone might seem red from another distinct direction.
Pleochroism is much more apparent in intensely colored sunstones samples. Clear parts of the
sunstone crystal do not exhibit pleochroism. Other optical properties and physical properties of

Oregon Sunstones are also shown in Table 1.

The rarest and thus the most valuable sunstone pieces are the colored ones including intense
red, green, and a combination of two-color, as well as the transparent sunstone with visible copper
inclusion. Most miners try to establish their own grading system. While colorless or pale-yellow
sunstones without copper inclusion cost approximately $20 per carat; pink, red, green, or bicolored
sunstones range from between $50 and $300 per carat. Large sunstone gemstones over 3 carats
and having intense red color can cost up to $1,700 per carat (“Oregon Sunstone Value, Price, and
Jewelry Information - Gem Society”). However, according to the International Gem Society, seven
distinct factors must be considered when pricing sunstones: Schiller, clear hues, mid-deep tones,

constellation/aventurescence, two-tone/dichroic, classic sunstone, and mystique.
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Name Oregon Sunstone
Is a Variety of Feldspar
Crystallography Triclinic
Refractive Index 1.539-1.573

Red, green, yellow, and and clear as well as

Colors .
multi-colors
Hardness 6-6.5
Wearability Poor
Fracture Uneven
Specific Gravity 2.71-2.73
Birefringence 0.008

Cleavage

Perfect two directions

Heat Sensitivity

No

Special Care Instructions

Avoid rough handling

Transparency Transparent to opaque
Phenomena Aventurescence or schiller effect
Oregon sunstone is a variety of labradorite, a
mineral in the plagioclase feldspar solid-solution
Formula : . o .
series, with a composition of 68% anorthite
(CaAl2Si208)
Pleochroism Usually absent in feldspar but notable in Oregon
sunstone
Optics a=1.559-1.563; y = 1.569-1.573. Biaxial (+)
Optic Sign Biaxial +
Etymology After the state and the “sun-like” golden red
schiller effect found in some of these stones
Occurrence Basalt flows
Inclusions Copper inclusions

Table 1. Physical Properties of Oregon Sunstones (“Oregon Sunstone Value, Price, and Jewelry
Information - Gem Society™).
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Figure 8 and figure 9 show two sunstone mines sampled in the course of this study; Double
Eagle #16 Mine and Ponderosa Mine, respectively. The Double Eagle #16 Mine produces some of
the highest quality Oregon Sunstone ever discovered. In the Lake County at the Double Eagle and
Dust Devil #16 Mines, the plagioclase megacryst in basalt flows 1-2 meters thick with lobate
margins and irregular, hummocky surfaces. Ponderosa Mine, unlike the other mines that are
located in Plush, is located in Harney County. The Ponderosa Mine is the largest producer by
volume (Johnston et al., 1991). The Ponderosa Mine occurrence is within a volcanic breccia that
could represent a debris flour or eruptive volcanic vent (Dr. Emily Cahoon, personal
communication, 2021). The lithology exposed in walls to the open pit of Ponderosa contains
angular plagioclase crystal fragments and "bombs™ of plagioclase-rich basalt that formed in

association with explosive volcanism.

=\=] ¥}

Figure 8. Double Eagle #16 Mine. 8A: Some of the top-quality schiller Oregon Sunstones. 8B:
Digging area with Mr. Aldrich who is the owner of the Double Eagle Mine.
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Figure 9. Ponderosa Mine. 9A: The mine operations. 9B: Digging area with Dr. Emily Cahoon
(flow is outlined). 9C: Note that it contains angular plagioclase crystal fragments and "bombs" of
basalt (black). Vertical gouges and scour marks are from mining equipment. 9D: The close image
of basaltic rock fragment that contains Oregon Sunstone (white arrow).
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Concerning Native Copper and lonic Copper in Minerals

Copper has a reddish color and bright metallic luster and is among the few metals that exist
as a native metal in nature. Copper has a boiling point and melting point of 2567°C and
1083.4+0.2°C respectively, and a specific gravity of 8.96 kg/dm? at 20°C. It is a transition metal
and has two different valence states. Cu** has one valence electron, Cu*? has two valence electrons.
In this study, single plagioclase megacrysts that have the copper schiller effect (Fig. 10) were cut
in various orientations (including parallel to (010) and perpendicular to (010), etc.) in order to

show the unusual abundance of native copper lamellae.

0,125mm

Figure 10. Native copper inclusions in Oregon Sunstone crystal (PMC-2) taken from Ponderosa
Mine. Magnification level increases from 10A to 10D.This section is cut parallel to (010).
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Figure 11. Higher magnification images of plagioclase megacrysts (PMC-2). 11A & 11B have
different local planes of the same area, as do 11C & 11D.

Partition coefficients (D) are measures of how an element is distributed with respect to
another phase and whether they are compatible or incompatible. According to Berzelius—
Goldschmidt classification, chalcophile elements preferentially bond with sulfur to form sulfides,
and have low affinity for oxygen. Copper is a chalcophile element and it is moderately
incompatible with plagioclase in basalt. Thus, the concentration of copper rises in a silicate melt
during the magma differentiation (Liu et al., 2014; Wierman, 2018). Liu et al. (2014) noted that
copper is moderately incompatible (Dcu < 0.2) with all the silicate minerals in the upper mantle.
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Thus, during partial melting of mantle and magmatic differentiation, if sulfide is absent, copper
should be enriched in any remaining melts. The Dcu values are important to identify the copper
behavior during mantle melting. The copper contents of mantle-derived primitive basaltic magmas
include MORBs (mid-ocean ridge basalts), arc basalts, and OIBs (ocean island basalts), with
ranges of 60—80, 50-100, and 80-120 ppm, respectively, while the copper contents of the primitive
upper mantle range approximately 20-30 ppm (Lee et al., 2012; Liu et al., 2014). Jensen (1982)
suggested that copper could substitute into an intermediate plagioclase structure as Cu* (in place

of Na) or as Cu?* (in place of Ca).

Concerning Plagioclase, and Huttenlocher Exsolution

The most common minerals in Earth's crust are feldspars of which plagioclase is the most
abundant. Plagioclase can form under a wide range of pressure and temperature conditions
depending on magma composition, temperature, and water content. These properties make it an
incredibly beneficial mineral for identifying the source, chemistry, and evolution of parental
magma. Plagioclase feldspars are a continuous series of solid solutions, ranging from pure albite,
NaAlSisOs, to pure anorthite, CaAl2Si20s, which is accomplished at high temperatures (1,200°C
to 1,500°C) by coupled substitutions. This means that Ca?* substitutes Na*, having similar ionic
radii, while the balance of charge is controlled by the substitution of AI** with Si**. For the
compositional ranges of Ans-Anzs, Anso-Anso, and Anes-Anss, three chemical exsolution gaps with
resuling exsolution are identified, which are respectively called Peristerite exsolution, Boggild
exsolution, and Huttenlocher exsolution. In non-volcanic plagioclases, with bulk compositions of
Ane7-90, Huttenlocher intergrowths are common (Willaime,1985). The plagioclase in the present

study is ~ Ane7 and can be classified as labradorite (Hofmeister and Rossman, 1985a). Stewart et
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al. (1966) also observed the plagioclase in Lake County, stating that the phenocrysts developed in
a magma chamber with a crystallizing temperature of ~ 1,100°C and cooled rapidly in lava flows,

typically not forming exsolution.

Previous Research Relevant to Copper Diffusion, and Al-Si Ordering in Lake County and
Harney County Plagioclase

Copper is known to rapidly diffuse within labradorite feldspar (Jin et al., 2021), which is
surprising in view of its ionic radius and mass. Diffusion experiments show that Cu diffusion in
plagioclase (log D = -13.0 to -11.5 m? s at 1000°C) is exceptionally rapid (Audétat et al., 2018).
Copper diffusion coefficients are 2—-3 orders of magnitude lower in olivine, clinopyroxene,
apatite, and orthopyroxene than plagioclase, but remain high in comparison to most other
elements. As noted by Audétat et al. (2018), re-equilibration experiments on melt inclusions and
quantitative modeling show that at 1000°C, plagioclase-hosted melt inclusions may re-
equilibrate their copper content with that of the surrounding magma in a few hours to a few
weeks, but similar scales of diffusion in apatite-, clinopyroxene-, orthopyroxene-, and olivine-
hosted melt inclusions would require tens of years to hundreds of years. Figures 12A and 12B
show experimentally induced copper diffusion profiles in plagioclase. To model these diffusion
profiles (Fig. 12C), Audétat et al. (2018) assumed diffusion via two mechanisms that varied in

rate.
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Figure 12. 12A: Transmitted-light photomicrographs of polished single-crystals of plagioclase.
12B: Corresponding Cu diffusion profiles were determined along with three perpendicular

directions. 12C: Measured Cu diffusion coefficients in plagioclase compared to published
diffusion coefficients of other elements (Audétat et al., 2018).

Heating experiments by Jin et al. (2019) demonstrate structural changes in portions of the
Lake County Sunstone before and after heating (Fig. 13). The tetrahedra in the framework are
shaded blue and yellow to represent Al- and Si-dominated T-sites, respectively. Note that the

distribution of Al tetrahedra (blue) is more homogeneous after heat treatment (Fig. 13B).
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The experiments by Jin et al. (2019) show that structural reorganization of Lake County

Plagioclase can occur for two weeks at ~1100°C.
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Figure 13. Lake County sunstone structures before (13A) and after (13B) heating treatment. The
center of the I11-like domain is shown by the red planes (Jin et al., 2019).

Hofmeister and Rossman (1985b) interpreted that because concentrations of copper increase
with differentiation of a host magma, higher concentrations of copper may have been incorporated
followed by exsolution of native copper in plagioclase. Jensen (1982) suggested that pressure and
temperature changes affect coppers relative compatibility, allowing a small amount of copper to

be incorporated into plagioclase. Jensen (1982) also suggested that Cul* can substitute for Na'*

while Cu?* can substitute for Ca?" in plagioclase.

Xu et al. (2017) show that copper is incorporated into the feldspar crystal associated with

formation of protoenstatite at high pressure and temperature conditions during early crystal
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formation before exsolving. In gem-quality labradorite, this structure of the protoenstatite with the
copper nanocrystals inside it is called a ‘watermelon crystal’. They infer that in these “watermelon”
crystals (Fig. 7), the cores are formed at the early phases of magma chamber formation at high-
pressure and temperature conditions, and native copper crystallizes during the last phases of the
magma chamber but prior to eruption. Also, it is suggested that clear rims are formed at a later

stage and under different temperature and pressure conditions.

As reported by Johnston et al. (1991), the inclusions are quite thin and it is remarkably
difficult to isolate and investigate distinct plates for microprobe analysis. Johnston also proposed
that sunstones of the Ponderosa Mine formed in a magma chamber that was chemically stable and
uniform for a long period of time. The melt contained an elevated amount of copper that was
integrated into the feldspar lattice. When the pressure and temperature lowered, the feldspar lattice

could not sustain the high copper levels. As a result, copper then precipitated via exsolution.

Objectives of this Study

The timing of extrusion of the basalts hosting the sunstones has not been dated previously
in the literature. Providing temporal constraints and determining the ages of the sunstone-bearing
lavas is one of the main objectives of this research. In this research, results of “°Ar/*Ar ages of
basalt hosting sunstones will be compared with the age of the Steens Basalt (~16.7 Ma; Jarboe et
al., 2008), and the age of the HLP basalts (ranging from 2 to 10 Ma) (Jordan et al., 2004). Aspects
of the petrologic and geochemical character of the sunstones will also be documented and

discussed to give some context for comparing them to plagioclase in other, regional basalts.
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MATERIALS AND METHODS

Methods of this research include mineral chemistry (electron microprobe analyzer, major
element, inductively coupled plasma mass spectrometry, trace element), and “°Ar/*®°Ar
geochronology. Samples studied in this research were obtained from the Dust Devil Mine
(provided by Don Buford), the Double Eagle #16 Mine (provided by Debbie and John Aldrich),
the Ponderosa Mine (provided John Woodmark), from the collection of Dr. George Kamenov,
from collection from these mines by Dr. Willis Hames and Dr. Emily Cahoon, and from samples
personally collected by Cisil Bengisu Badur from these mines in 2021. One sunstone sample, GK-
DD-1, mounted in epoxy (Fig. 14A) comes from Dust Devil Mine (the southern Plush area) and
was provided by Dr. George Kamenov of the University of Florida, and used for the Electron
microprobe WDS map (Fig. 14B), & Sr/%Sr variation diagram (Fig. 21), and REE/trace element
data (Fig. 22). Four samples of basaltic groundmasses (LEB-001, LEB-003, DE16-001 and SW19-
DDO01) containing sunstones, and three samples of megacryst (LEBC-1, DE16-CY, and PMC-2)
provided by Dr. Emily Cahoon were commercially prepared for EMPA (electron microprobe
analysis) (in Figures 17-20) at Spectrum Petrographics. While all samples came from the southern
Plush area, just PMC-2 was collected from Harney County, 120 miles further south. Whole-rock
and plagioclase samples used for analysis are shown in Table 2. Except for GK-DD-1 and CB-
PLJ-1, all samples of phenocrysts and matrix were prepared for separate laser “°Ar/*°Ar age studies
(in Figures 23-26), and analyzed in the Auburn Noble Isotope Mass Analysis Lab (ANIMAL) of

Auburn University. EMPA and mass spectrometry methods and data are detailed in the appendices.
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Table 2. Whole-rock and plagioclase samples used for the analyses.

Sample ID Mine Name Material Analytical Method
LEB-001 Little Eagle Butte Whole-rock EMPA, “Ar/*¥Ar
LEB-003 Little Eagle Butte Whole-rock EMPA, “Ar/*Ar
DE16-001 Double Eagle Whole-rock EMPA, “Ar/* Ar

SW19-DD01 Dust Devil Whole-rock EMPA, “Ar/ Ar
LEBC-1 Little Eagle Butte Plagioclase OAr/PAr
DE16-CY Double Eagle Plagioclase OAr/Far
CB-PLJ-1 Dust Devil Plagioclase “Ar/PAr
87 86 [ .
GK-DD1 Dust Devil Plagioclase | EMPA SH7Srvariation diagram,
and REE/trace element data
PMC-2 Ponderosa Plagioclase EMPA, “Ar/*Ar
RESULTS

Results of this research will be presented in three different sections; petrology (electron
microprobe data), geochemistry (8'Sr/%Sr data, Rare Earth Element (REE) data/trace element
data), and geochronology (“°Ar/*°Ar data).

Petrology
Electron Microprobe Data

The image of a single plagioclase megacryst (GK-DD-1) mounted in epoxy (Fig. 14A,
provided by Dr. George Kamenov) shows the copper schiller effect created by the thin lamellae of
exsolved metallic copper. The copper lamellae can be seen at higher magnification with an electron
microprobe wavelength-dispersive spectrometry (WDS) map (Fig. 14B) where ‘warmer’ colors

indicate higher copper content and an inclusion ~0.5 microns thick and 65 microns long. The white
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dots indicate positions for electron microprobe analyses presented in Figure 15.

The first result of this research is to investigate possible correlations between Huttenlocher
exsolution and the observed copper lamellae by obtaining the electron microprobe analysis in
Figure 15. Copper occurs as thin platelets (copper schiller) with crystallographically-controlled
orientations. Subtle Ca-Na changes of about 0.2 - 0.3 atoms per formula unit are consistent with

Huttenlocher exsolution in zones that appear to parallel the exsolved copper lamellae.

Plagioclase
Host

Cu Lamellae

WDS Map for Cu

Figure 14. 14A: Photograph of a plagioclase crystal (from Dust Devil Mine (GK-DD-1), the
southern Plush area) mounted in epoxy, showing the copper ‘schiller’ effect created by thin
lamellae of copper. The approximate area for ‘Cu Lamellae’ is shown (exaggerated). This study
sample was provided by Dr. George Kamenov of the University of Florida. 14B: Electron
microprobe WDS map for the distribution of copper, in and around a single copper lamellae.
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Microprobe Analyses of Copper Schiller in Plagioclase
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Figure 15. Electron microprobe analyses of plagioclase and copper, with atoms per formula unit
(pfu) indicated along section x-x' of figure 14. Electron microprobe data were obtained by using
the AU Geosciences Department EMPA.

Basaltic groundmasses (LEB-001, LEB-003, DE16-001 and SW19-DDO01) containing
sunstones, and three samples of megacryst (LEBC-1, DE16-CY, and PMC-2) prepared for electron
microprobe analysis. These samples were studied using the Auburn University Electron
Microprobe Analyzer (AU-EMPA) (Fig. 16), and several points and line analyses were carried out
on the samples for plagioclase megacryst, fine matrix plagioclase, and fine pyroxene. The electron
microprobe analyses (raw data presented in Appendix 1) were calibrated using various silicate

mineral standards (anorthite, amelia, microcline).
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Figure 16. Auburn University Electron Microprobe Analyzer (AU-EMPA).

Data obtained from the AU-EMPA confirm that plagioclase megacrysts (Fig. 17) are
labradorite. Spot analyses of megacrysts were completed for both rim and core. These data from
plagioclase megacrysts show no distinct chemical variability or zonation between core and rim for
these four samples (Fig. 17). Line traverse analyses were also conducted for each matrix
plagioclase from rim to rim. These analyses of fine matrix plagioclase show a general trend from
labradorite to andesine (Fig. 18). WDS (wavelength-dispersive spectroscopy) and BSE (back-
scattered electron) images for fine matrix plagioclases show that potassium is enriched in the rims

of fine matrix plagioclase relative to their cores (Fig. 19).

35



Plagioclase Megacrysts

X LEB-001

+ LEB-003
DE-16001

A SW19-DDO01

Anorthoclase Sanidine

Ab Or

Figure 17. A feldspar ternary diagram of EMPA analyses for plagioclase megacrysts (n=11). The
data were obtained by analyses of core and rim show no distinct differences in composition.

These measurements show that the more finely grained crystals of matrix plagioclase with
a typical tholeiitic magma series show an expected enrichment of potassium and sodium from their
cores to their rims. Microprobe results also show fine-grained phases in the mesostasis of the
basalts that are very rich in potassium and silica that appear to be sanidine and quartz. These
petrographic observations and mineral chemistry are consistent with the growth of a late generation

of plagioclase and matrix phases during fractional crystallization and eruption of the basaltic lavas.
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Figure 18. A feldspar ternary diagram of EMPA analyses for fine matrix plagioclase (n=160).
Note that the matrix plagioclase composition varies from labradorite to andesine/oligoclase in the
same samples.

— 30um
Na LEB-003b

— 30um m— 30um
K LEB-003b Fe LEB-003b

Figure 19. Backscattered Electron (BSE) images of sample of LEB-003. 'Image-J' was used in
order to assign false color. Note that increasing Na and decreasing Al contents of matrix
plagioclase from core to rim. These variations are responsible for the variations shown in Figure
18.
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Fine-grained pyroxene crystals of the matrix were also selected for EMPA spot analyses

of each sample (Fig. 20). These pyroxene crystals occur sporadically in the basalt as subhedral

crystals 0.1 - 0.3 mm in maximum dimension. The analyses show that the pyroxene is augite, with

Wo (wollastonite) value for four samples ranging between 40.96 and 45.55, and the En (enstatite)

value ranging between 32.04 and 43.99, and the Fs (ferrosillite) values as high as 23.97. Thus, the

pyroxene trend is closer to the range of diopside, and there are small ranges of Mg-Fe for each

sample.

Ca;Si,0; (Wo)

Pyroxene (fine)
x LEBO0O1-pyx
A LEBOOO3-pyx
* DE160001-pyx

= SW19DDO01-pyx

/ Diopside | Hedenbergite \
X =
. Augite
80
Pigeonite \
/ (Chino7)enstatite l (Chino7)terrosilite \
Mg;Slzoe (En) 50 Fe)slzo6 (FS)

Figure 20. Pyroxene ternary diagram of 39 pyroxene analyses from the microprobe data. Wo:

wollastonite, En: enstatite, Fs: ferrosillite.

38



Geochemistry

87Sr/%8Sr Data
Apart from the copper platelets in crystal cores, sunstones appear to have remarkably
homogeneous distributions of major and trace elements as reported by (Badur et al., 2020).
87Sr/8Sr data from high-precision thermal ionization mass spectrometry (TIMS) analyses for
Oregon Sunstones have been provided by Dr. George Kamenov at the University of Florida and
used to produce the 8'Sr/®Sr variation diagram in figure 21. Plagioclase crystals also exhibit
internally homogeneous 8Sr/®Sr ratios of ~ 0.70365 (Fig. 21), comparable to plagioclase in
Steens Basalt of the Columbia River Basalt Group (Ramos et al., 2005). In agreement with
homogeneous 8/Sr/%Sr and major element data, Laser Ablation Inductively Coupled Plasma
Mass Spectrometry (LA-ICP-MS) data also show that the trace element concentrations are not
zoned from the core to rim. The homogeneous nature of & Sr/%Sr and the major (as discussed on
pages 35-38) and trace element data indicate that the crystals have not undergone any late-stage

of chemical transformation (as could occur through alteration or weathering).
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Figure 21. Measurement locations for the 8’Sr/®Sr

Sunstone *’Sr/°Sr provided by G. Kamenov.

variation diagram in figure 21B (from A to

A’) that was obtained at the University of Florida with the plagioclase crystal sample provided
by Dr. George Kamenov. 21B: 8’Sr/®Sr variation diagram obtained by TIMS and LA-ICP-MS
analysis of a sunstone from its Cu-free rim to Cu-bearing core. This is the same crystal that

microprobe data is presented for in Figure 15.
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REE/Trace Element Data

In addition to 8’Sr/®Sr data, Chondrite-normalized Rare Earth Element (REE) data were

provided by Dr. George Kamenov. The pattern of average Steens Mountain Basalts and Oregon

Sunstones (10 sunstone crystals from the Dust Devil Mine) have an Ocean Island Basalt-like trend

on the REE diagram (Fig. 22) (Sun and McDonough, 1989; Moore et al., 2018). The sunstones

have very primitive REE compositions, and REE for several sunstone crystals with or without

copper are similar. In addition, for the sunstone crystals, there is a prominent positive anomaly for

Eu, which is typical of plagioclase fractionation (Winter, 2010).

Rock/Chondrite
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Orogen Sunstone & Steens Mountain Basalts Avg. & PM, NMORB, EMORB, OIB

Sunstone data provided by G. Kamenov. Additional data from
Ocean Island Basalt Sun and McDonough, 1989 (for the OIB, MORB, PM) and

—— Moore, N.E., 2018 (Steens Basalt).
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Figure 22. Chondrite-normalized REE diagram.
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Age Determinations

“OAr/ 3¥Ar Data

OAr/°Ar geochronology is among the most essential techniques for constraining the date
of basalt eruption. Plagioclase seems to be the most notable crystal to date in otherwise low
potassium basalt because it is abundant and can usually be separated easily. However,
phenocrysts of plagioclase can contain magmatic 'excess' “°Ar and be unsuitable for dating. The
final crystallization products of basalts - the 'groundmass'- can contain more potassic feldspars
including K-rich sanidine. Thus, many studies focus “°Ar/*Ar dating efforts on the groundmass
and this is typical of studies to date young basalts (<50 Ma or so). “°Ar/*°Ar age results in this
research (data presented in Appendix 2) were collected with three strategies: analysis of basaltic
groundmasses, analysis of relatively large broken plagioclase pieces (1-2 mm in size), analysis
of plagioclase megacrysts (up to 2 cm in maximum dimension). These samples were crushed,
sieved, and picked for irradiation. The samples were subsequently analyzed in the ANIMAL

facility (see also Appendix 2).

Aliquots of approximately 10 mg from each sample were incrementally heated using a CO2
laser to generate the “°Ar/*°Ar data (see Appendix 2). Although three different phases (plagioclase
megacrysts, smaller fragments, and matrix) were typically analyzed for each basalt sample and all
of the “°Ar/*°Ar data are in Appendix 2, only the results for the matrix samples are shown (in
Figures 23-26) as these are most useful for evaluating age for reasons as discussed below. Inverse
isochron plots are shown for the resulting data in part ‘A’ of Figures 23-26 as these are useful to
identify radiogenic and extraneous sources of “°Ar. Overall, the results for each sample define a
mixing line between a single radiogenic component (shown by the X-axis intercept) and an

extraneous component that is similar to the argon isotopic composition of modern air (the Y -axis
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intercepts). Thus, the isochron plots show the data to be suitable for ‘model age’ calculations
(where the measured “°Ar is corrected for contaminating air). In addition, part B of each figure
shows the percentage of radiogenic yield (the percentage of radiogenic “°Ar relative to
contaminating air) and the apparent Ca/K ratio defined by argon isotopes for each incremental
heating analysis. The results show that radiogenic yields of initial, lower temperature heating steps
reach ~60-90% “°Ar” by the middle of the heating experiment and then decrease to ~20% with
high-temperature steps. The apparent calcium to potassium ratios begins relatively low and then
tend to increase through the analysis. These data can be interpreted to indicate initial degassing of
a phases with more potassium (presumably finely grained feldspars) followed by derivation of
measured argon from high-calcium phases (likely the centers of plagioclase crystals and

pyroxenes).

In contrast to the complexities of argon derived from atmosphere and Ca-K sources in these
plagioclase samples, the ages defined by the groundmass material are simple and
straightforward. Plateau ages are defined for each sample, ranging from 9.40+0.18 Ma (for a
sample from the Double Eagle Mine, Figure 25) to 9.16+0.13 Ma (for a sample from the Dust
Devil Mine, Figure 26). Three of these plateau ages are essentially the same as ‘total gas’ ages
with ~100% of the 3Ark released. The mean of all four matrix plateau ages is 9.16+0.12 Ma
(95% c.l., MSWD=1.13). This mean age is interpreted to represent the timing of crystallization
for finely grained phases of the groundmass (feldspars, pyroxenes) during the eruption and

quenching of the basaltic lavas as sampled from the Lake County sunstone mines.
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DISCUSSION

Although there are many observations as summarized, a few areas of incomplete
understanding exist regarding the nature and origin of sunstones in Oregon. For example, there
was no definitive conclusion on which temperatures and pressure conditions copper substitution
in plagioclase occurs and also how fast copper exsolves. One possibility is that if copper
substitution in plagioclase is possible at high temperature and pressure, the copper might exsolve
very rapidly (perhaps on a scale of a year or less) with decreases in pressure and temperature
(Ramos et al., 2005). Such exsolution would occur along favored crystallographic lattice planes in
the plagioclase. This process of grain-scale Cu-diffusion could be consistent with the Sr zoning
profiles measured by (Ramos et al., 2005) in the Steens Basalts. Their observations are compatible
with volume diffusion at the total crystal scale, and formation with durations of high-temperature
exchange with the host magma from 5 to 1500 years intervals at constant temperatures of 1100°C
(as modeled by Ramos et al., 2005). The observations of homogeneous distributions of major,
trace and REE elements, along with the homogeneous distribution of strontium isotopes in a crystal
with a copper-rich core may indicate that mass transport of copper by diffusion occurred during
cooling and decompression, in a time scale that was too brief to form obvious (micron-scale)

redistribution of Sr isotopes and most elements.

The second discussion topic to be addressed is how copper substitution was governed. The
copper in these plagioclase (labradorite, ~ Ane7) could occur by substitution of Cu*? for Ca or Cu*?
for Na in the distorted 9-coordinated site of the plagioclase. Thus, the initial copper substitution
may have been governed by the same, well-known coupled exchange mechanism that governs the
balance of Ca and Na in plagioclase. Copper has the valences of 0, +1 and +2 and could occur in

tetrahedral (1) octahedral (V1) or 8-fold (VI11) coordination. The ionic radius is 0.74 A for +2
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Cu'vVand 0.91 A for +2 CuV'. Extrapolating those values leads to a predicted radius of ~1.05 A for
a hypothetical Cu¥""". Taking that value, the cation-anion radius ratio (Rc/Ra) for Cu¥" would be
~0.82 A. The range of radius (Rc/Ra) suitable for 8-coordination is 0.732-1.00 A (similar trends
occur for Cu*t). Thus, substitution of copper in an 8-coordinated site seems permissible. The
distorted 9-coordinated site might favor a larger cation, but this is not as straightforward as
consideration of the ideal sites. Also, higher temperatures and increased vibrational energy may
favor substitution of a smaller cation (Cu) into a larger site, as compressibility of the site at high

pressure may also favor smaller cations.

The last discussion topic is whether the sunstones formed along with the eruption of Steens-
type lavas. The age of the sunstone host basalts is not previously determined in the literature. In
this research, the mean of the basalt matrix age of the 'Plush area' of 9.16+0.12 Ma (n=4, 95% c.l.)
is distinctly younger than the Steens Basalt at Steens Mountain (~16.7 Ma). This observation
means lava flows of the 'Plush area’ are not directly part of the 'Steens-type' flows as exposed in
the Steens Mountain section. The age of 9.16 Ma is entirely consistent with the trend of ages of

the High Plains Lavas (as reported by Jordan et al. (2004); Fig. 2 and 3).

Geochronological data of plagioclase megacrysts from the Ponderosa Mine (raw data is
presented in Appendix 2) give complex age spectra with individual ages ranging from 14 to 20
Ma, results that are similar to those obtained from the megacrysts from the 'Plush area’ in this
study. However, due to the lack of basalt matrix samples from the Ponderosa Mine, the basalt
matrix age and a suitably precise estimate for the timing of eruption at the Ponderosa Mine is not

constrained by this study.
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PROPOSED ADDITIONAL RESEARCH

The first proposed additional research has to do with diffusion modeling. There are diffusion
data that can be used for modeling diffusion of major elements in plagioclase (Ramos et al., 2005),
along with copper and lithium (Audétat et al., 2018). This type of modeling could also extend to
comparisons of copper colloids to the exsolved platelets (Hofmeister and Rossman, 1985b). By
using existing diffusion data, a series of cooling paths could be modeled. The plausible cooling
paths could be sufficiently rapid to prevent diffusion of most elements (Ca, Sr, etc.), but that would
permit copper to diffuse and form exsolved platelets of copper as observed in this study.

Another line of additional research would be to determine statistically the orientation of the
exsolved copper schiller. If widespread and consistent among the sunstones, the (010) orientation
of the exsolved copper schiller differs from the plane favored for Huttenlocher exsolution, where
lamellae commonly have an angle of 16° ~ to 20° ~ against (010) that are most clearly apparent
along (100). This intergrowth pattern reflects across albite twin planes (Vernon, 1965). A similar
direction near (141) for an e-plagioclase (i.e. plagioclase with type e diffractions separated by
disordered boundaries) in a Huttenlocher intergrowth (Willaime, 1985). A systematic and non-
destructive study of the crystallographic orientation of schiller in a large number of indexed

(oriented) sunstones (>100) might be undertaken even with a simple two-circle goniometer.

In this work, it is hypothesized that the copper in plagioclase was incorporated during crystal
growth at high temperatures deep within Earth’s lithosphere. Subsequently, as the copper-bearing
plagioclase ascended and cooled, the incompatibility of Cu, Ca, and Na led to the formation of the
copper ‘schiller’ along with incipient Huttenlocher-style exsolution planes via diffusion. If this is
true, and if the original Cu-Na-Ca concentrations can be reconstructed and are provided with data

bearing on the diffusivity for these elements, then more information about the original temperature

50



of formation and rate of cooling and ascent for the sunstones can be determined. Also, the
orientation of thin copper schiller platelets should be investigated and modelled crystographically.
If platelets are usually oriented near to (010), they would be close to the ideal orientation expected

for Huttenlocher exsolution in labradorite.

Hypothesis of Sunstone Development

In figure 27, a simple sunstone development hypothesis is illustrated. It is proposed that an
early magma chamber (wherein the phenocrysts were grown) was chemically stable and uniform
for a long period of time. Plagioclase crystals floated in a denser magma and accumulated near the
top (Fig. 27). The activity of copper in this early magma was sufficient to permit Cu* and/or Cu?*
to substitute into plagioclase phenocryst where it distributed uniformly. At a high temperature (a),
labradorite with copper had a uniform distribution of major and trace elements. Subsequently,
cooling permitted copper exsolution but without significant mobility of major and trace elements
(b). It is obvious that the copper platelets are physically placed within the phenocrysts along
crystallographic boundaries that seems mostly along (010) as reported previously. After the
formation of labradorite with exsolved copper platelets, the phenocryst basalt quenched, erupted,
and reached final matrix crystallization (c) with the copper-free rim and with uniform major, trace,

REE data, and uniform &’Sr/%®Sr at the low temperature.
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Figure 27. Magma chamber wherein the phenocrysts were grown and hypothesis of sunstone
development.

CONCLUSION

The observed homogeneous distribution of major and trace elements and strontium
isotopes with cores rich in copper platelets is perplexing. In combination with previous work, our
new data indicate rapid exsolution of copper with initial cooling, but those temperatures remained
sufficiently high to prevent diffusion of almost all other elements. The age of eruption for basalts
hosting sunstones at Plush, Oregon was determined at 9.16+0.12 Ma (as 95% c.l.). The age
obtained for the sunstones at the Plush area is comparable to the lavas of the High Lava Plain
Trend. Thus, the eruptive ages for basalts at the mines of the Plush area are almost 8 million years
younger than the Steen Mountain basalt flow which has been estimated to be ~16.7 Ma. This
observation means the sunstone-bearing lava flows of the ‘Plush area’ were not directly part of
earlier eruptions that formed the ‘Steens-type’ flows of the CRBG and, instead, are part of the

High Plains Lavas.
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APPENDIX 1

The Auburn University Electron Microprobe Analysis Lab (AU-EMPA) hosts a JEOL
JXA-8600 EMPA equipped with 4 wavelength-dispersive spectrometers (WDS) and detectors
for the backscattered electron (BSE) and scanning electron microscopy (SEM) study. The
following table shows synthetic and natural standards used routinely for the analysis of feldspars
and other silicates. Beam conditions of 15 kV and 20 nA with beam sizes of 1-5 nm and 20
second counting times were used for measurement of standards and unknown phases.

EMPA Methods for Feldspar and Pyroxene

Elements 1(TAP) | 2(TAP) |3(PET)| 4(LIF) Mineral standards
Na X Amelia
Mg X Oliv-2566
Al X Anorthite
Sic X Amelia
K X Microcline
Ca, X Anorthite
Fe; X Fayalite
Ba, X Barite

Elements 1(TAP)|2(TAP) |3(PET) | 4(LIF) Mineral standards
Na X Amelia
Mg X Oliv-2566
Al; X Anorthite
Siqy X Woll-2
K X Microcline
Ca, X Woll-2
Fe, X Fayalite
Tis X IImenite
Mn X P-130
Crg X Choromite

*Crystals; TAP: Thallium acid phthalate, PET: Pentanerythritol, LIF: Lithium fluoride
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Oxide Weight Percent Values for Wollastonite and Diopside Standards Used for the

Preceding Analyses

Pt# | SiO, | TiO, | AlLOs | Cr,0;, | FEO | MnO | Mgo | CcaO | Na,O0 | K,0 | Total
Wol 1 51,14 0 0 0 0 0,0113 | 0,1376 | 48,81 | 0,0733 | 0,013 | 100,19
Wol 2 52,56 | 0,0111 0 0,0193 | 0,0777 | 0,0225 | 0,1916 | 49,09 | 0,0261 | 0,0144 | 102,01
Wol 3 51,1 | 0,0112 0 0,0162 | 0,0251 | 0,017 | 0,006 | 48,97 | 0,0053 | 0,0101 | 100,25
Wol 4 52,43 0 0,1105 | 0,0161 | 0,0194 | 0,0028 | 0,1522 | 48,72 | 0,0573 0 101,51
Wol 5 51,91 0 0 0 0 0,0927 | 0,1404 | 49,19 | 0,0156 0 101,35
Wol 6 51,66 0 0 0 0 0 0,1319 | 49,15 | 0,0208 | 0,0115 | 100,97
Wol 7 51,93 | 0,0389 | 0,0697 | 0,0257 0 0,0394 | 0,1591 | 49,03 0 0 101,29
Wol 8 51,17 0 0 0,0032 | 0,0248 0 0,0809 | 48,69 | 0,0052 0 99,98

Pt# S|02 T|02 A|203 Cr203 FeO MnO MgO CaOoO Na,O K,O Total

Diopside 1| 54,12 | 0,1435 | 0,5398 | 0,0129 | 0,8291 | 0,0397 | 19,64 25,58 | 0,3797 0 101,29
Diopside 2| 53,72 | 0,0446 | 0,4708 0 0,842 | 0,1459 | 19,71 | 25,74 | 0,4325 | 0,0031 | 1011
Diopside 3| 53,1 0,022 | 0,5589 | 0,0289 | 0,7895 | 0,0593 | 19,41 258 | 0,3882 0 100,16
Diopside 4| 53,88 0,033 | 0,4988 | 0,0289 | 0,9066 | 0,1271 19,7 25,45 | 0,3881 0 101,01
Diopside 5| 53,53 0 0,5042 0 0,8546 | 0,0339 19,5 25,21 | 0,3493 | 0,0168 100

Diopside 6| 54,17 | 0,0387 | 0,4798 | 0,0129 | 0,9059 | 0,0568 19,5 25,76 | 0,3953 | 0,0292 | 101,35
Diopside 7| 54,03 | 0,0165 | 0,5303 0 0,721 | 0,0113 | 19,37 | 25,54 | 0,3093 0 100,52
Diopside 8| 52,61 | 0,0713 | 0,5924 0 0,8182 | 0,062 19,59 25,24 | 0,3723 | 0,0152 | 99,37
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EMPA Data from Plagioclase Megacrysts

Label LEB-001m,, (megacryst) Label LEB-003m_, (megacryst)
Date 12/24/2020 Date 12/24/2020
X(mm) 62.4315 62.2893 61.4492 X(mm) 31.5713 31.2849
Y(mm) 43.7365 42.6674 43.9385 Y(mm) 44.9717 45,9552
Oxide Weight Percent: LEB-001m,, (megacryst) Oxide Weight Percent: LEB-003m,, (megacryst)
Pt 1 2 3 Pt# 1 2
Si02 49.71 49.26 49.70 Si02 49.62 50.30
Al203 31.02 31.63 31.69 Al203 31.17 30.94
FeO 0.39 0.59 0.50 FeO 0.37 0.56
MgO 0.16 0.11 0.07 MgO 0.11 0.10
MnO 0.12 0.07 0.00 MnO 0.02 0.07
Ca0 13.59 13.78 13.84 Ca0 13.66 13.38
Na20 3.77 3.35 3.47 Na20 3.70 3.57
K20 0.13 0.16 0.13 K20 0.16 0.19
Total 98.89 98.94 99.41 Total 98.82 99.12
Cations in Formula (based on 32 oxygen) Cations in Formula (based on 32 oxygen)
Si 9.18 9.10 9.13 Si 9.17 9.26
Al 6.75 6.89 6.86 Al 6.79 6.71
Fe 0.06 0.09 0.08 Fe 0.06 0.09
Mg 0.04 0.03 0.02 Mg 0.03 0.03
Mn 0.02 0.01 0.00 Mn 0.00 0.01
Ca 2.69 2.73 2.72 Ca 2.70 2.64
Na 1.35 1.20 1.24 Na 1.33 1.27
K 0.03 0.04 0.03 K 0.04 0.05
Sum IV: 15.94 15.98 15.99 Sum IV: 15.96 15.97
Sum Alk. 4.07 3.96 3.99 Sum Alk. 4.07 3.96
Ca 66.05% 68.78% 68.25% Ca 66.47% 66.66%
Na 33.17% 30.27% 30.97% Na 32.59% 32.20%
K 0.78% 0.96% 0.78% K 0.93% 1.15%




Label DE16001m_, (megacryst) Label SW19-DDO01m,, (megacryst)
Date 12/24/2020 Date | 12/23/2020

X(mm) 60.0603 58.9073 59.4518 X(mm) 31.7055 31.7055 31.6032

Y(mm) 70.4541 71.0748 71.1833 Y(mm) 69.9246 70.5424 69.783
Oxide Weight Percent: DE16001mc,r (megacryst) Oxide Weight Percent: SW19-DD01mc,r (megacryst)
Pt 1 2 3 Pt# 1 2 3
Sio2 50.27 50.05 51.60 Si02 50.73 50.62 51.71

A203 30.28 29.91 29.64 Al203 31.22 30.98 30.72
FeO 0.37 0.25 0.42 FeO 0.59 0.58 0.97
MgO 0.14 0.10 0.13 MgO 0.08 0.10 0.09
VN0 0.00 012 0.00 MnO 0.00 0.07 0.00
Ca0 14.07 13.45 13.27 Cao 13.91 13.89 13.16
Na20 3.59 3.66 3.78 Na20 3.47 3.51 3.71
K20 0.12 0.15 0.13 K20 0.12 0.12 0.19
otal 93.83 97 91 98.97 Total 100.13 99.88 100.56

Cations in Formula (based on 32 oxygen)

Cations in Formula (based on 32 oxygen)

: Si 9.24 9.25 9.37
Si 11.64 11.72 11.80 A e 71 67 6
Al 8.27 8.25 7.99 Fe 0.09 0.09 0.15
Fe 0.07 0.05 0.08 Mg 0.02 0.03 0.03
Mg 0.05 0.03 0.05 Mn 0.00 0.01 0.00
Mn 0.00 0.03 0.00 Ca 2.72 2.72 2.56
Ca 3.49 3.37 3.25 Na 1.23 1.24 1.30
Na 1.61 1.66 1.68 K 0.03 0.03 0.04
K 0.03 0.05 0.04

Sum IV: 19.91 19.97 19.80 Sum IV: 15.95 15.93 15.94

Sum Alk. 5.14 5.08 4.97 Sum Alk. 3.97 3.99 3.91
Ca 67.94% 66.40% 65.47% Ca 68.40% 68.14% 65.45%
Na 31.38% 32.71% 33.76% Na 30.89% 31.17% 33.40%
K 0.67% 0.89% 0.78% K 0.71% 0.69% 1.14%
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EMPA Data from Fine Matrix Plagioclase

Label LEB-001mp2 (matrix plag)
Date 12/25/2020
X(mm) 60.1045 60.1044 60.1043 60.1042 60.104 60.1039 60.1038 60.1037 60.1035 60.1034
Y(mm) 39.8714 39.8707 39.87 39.8693 39.8686 39.8679 39.8671 39.8665 39.8658 39.865
Oxide Weight Percent: LEB-001mp2 (matrix plag)
Pt# 1 2 3 4 5 6 7 8 9 10
Si02 50.76 51.15 51.74 51.45 50.44 50.20 50.71 50.13 50.43 50.80
Al203 30.39 30.88 30.53 31.14 31.91 30.97 31.05 31.03 31.43 31.06
FeO 0.95 1.03 0.96 1.03 1.02 0.98 1.04 1.02 1.01 0.97
MgO 0.00 0.01 0.07 0.00 0.00 0.03 0.03 0.00 0.00 0.01
MnO 0.03 0.01 0.10 0.00 0.00 0.07 0.08 0.00 0.00 0.00
Ca0 12.96 12.95 13.05 13.17 13.08 13.24 13.03 12.87 12.78 12.77
Na20 3.71 3.71 3.83 3.76 3.83 3.67 3.89 3.80 3.58 3.91
K20 0.22 0.26 0.25 0.24 0.23 0.22 0.24 0.24 0.24 0.26
Total 99.02 100.00 100.54 100.80 100.50 99.38 100.07 99.08 99.47 99.78
Cations in Formula (based on 32 oxygen)
Si 9.35 9.33 9.39 9.32 9.17 9.23 9.26 9.24 9.24 9.29
Al 6.60 6.64 6.53 6.65 6.84 6.71 6.69 6.74 6.79 6.69
Fe 0.15 0.16 0.15 0.16 0.15 0.15 0.16 0.16 0.16 0.15
Mg 0.00 0.00 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00
Mn 0.00 0.00 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00
Ca 2.56 2.53 2.54 2.56 2.55 2.61 2.55 2.54 2.51 2.50
Na 133 131 1.35 132 1.35 131 1.38 1.36 1.27 1.39
K 0.05 0.06 0.06 0.06 0.05 0.05 0.06 0.06 0.06 0.06
Sum IV: 15.95 15.97 15.92 15.96 16.01 15.95 15.95 15.98 16.03 15.98
Sum Alk. 3.94 3.90 3.94 3.93 3.95 3.97 3.98 3.96 3.84 3.95
Mole Percent
Ab 64.99% 64.84% 64.37% 64.98% 64.48% 65.71% 64.02% 64.24% 65.39% 63.35%
An 33.68% 33.63% 34.20% 33.58% 34.18% 32.97% 34.60% 34.34% 33.16% 35.11%
Or 1.33% 1.53% 1.44% 1.44% 1.34% 1.32% 1.39% 1.42% 1.46% 1.54%
Label LEB-001mp2 (matrix plag)
Date 12/25/2020
X(mm) 60.1033 60.1032 60.103 60.103 60.1028 60.1027 60.1026 60.1025 60.1023 60.1022
Y(mm) 39.8643 39.8636 39.863 39.8622 39.8615 39.8608 39.8601 39.8594 39.8587 39.858
Oxide Weight Percent: LEB-001mp2 (matrix plag)
Pt# 11 12 13 14 15 16 17 18 19 20
Si02 51.61 51.34 50.91 52.22 53.41 53.15 53.73 55.67 57.48 60.22
Al203 31.03 30.48 30.41 30.00 28.87 28.07 28.39 27.55 26.99 26.06
FeO 1.00 0.97 1.16 1.52 1.74 1.76 1.44 1.17 1.11 0.96
MgO 0.04 0.08 0.00 0.04 0.06 0.03 0.01 0.00 0.00 0.07
MnO 0.02 0.00 0.11 0.05 0.00 0.07 0.01 0.01 0.08 0.04
CaO 12.92 12.78 12.90 12.31 11.27 11.02 10.81 9.93 8.91 7.48
Na20 4.05 3.91 3.88 4.15 4.78 4.64 4.75 5.46 4.72 2.79
K20 0.27 0.22 0.25 0.30 0.33 0.37 0.40 0.40 0.60 0.93
Total 100.94 99.78 99.62 100.60 100.46 99.11 99.55 100.19 99.91 98.55
Cations in Formula (based on 32 oxygen)
Si 9.33 9.38 9.34 9.48 9.69 9.77 9.81 10.05 10.32 10.78
Al 6.61 6.56 6.58 6.42 6.18 6.08 6.11 5.86 5.71 5.50
Fe 0.15 0.15 0.18 0.23 0.26 0.27 0.22 0.18 0.17 0.14
Mg 0.01 0.02 0.00 0.01 0.02 0.01 0.00 0.00 0.00 0.02
Mn 0.00 0.00 0.02 0.01 0.00 0.01 0.00 0.00 0.01 0.01
Ca 2.50 2.50 2.54 2.39 2.19 2.17 2.11 1.92 1.71 1.43
Na 1.42 1.39 1.38 1.46 1.68 1.65 1.68 1.91 1.64 0.97
K 0.06 0.05 0.06 0.07 0.08 0.09 0.09 0.09 0.14 0.21
Sum IV: 15.95 15.95 15.92 15.90 15.87 15.86 15.91 15.92 16.04 16.28
Sum Alk. 3.99 3.94 3.98 3.93 3.95 3.91 3.89 3.93 3.50 2.62
Mole Percent
Ab 62.82% 63.51% 63.79% 61.00% 55.46% 55.47% 54.36% 48.94% 49.03% 54.79%
An 35.65% 35.17% 34.73% 37.23% 42.58% 42.28% 43.24% 48.71% 47.02% 37.05%
Or 1.54% 1.32% 1.49% 1.77% 1.96% 2.24% 2.40% 2.36% 3.95% 8.15%
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Label LEB-003mp (matrix plag)
Date 12/24/2020
X(mm) 21.7355 21.7368 21.7381 21.7393 21.7407 21.742 21.7432 21.7445 21.7458 21.7471
Y(mm) 43.435 43.435 43.435 43.435 43.435 43.435 43.435 43.435 43.435 43.435
Oxide Weight Percent: LEB-003mp (matrix plag)
Pt# 1 2 3 4 5 6 7 8 9 10
Si02 53.82 52.09 51.21 51.86 51.56 50.82 50.80 51.59 51.74 51.10
Al203 25.19 28.25 28.78 27.89 27.59 28.43 27.70 27.57 27.49 27.74
FeO 1.35 0.89 0.92 1.01 1.07 0.97 0.89 1.01 0.93 0.86
MgO 0.23 0.13 0.07 0.07 0.06 0.05 0.07 0.13 0.22 0.13
MnO 0.00 0.02 0.13 0.08 0.00 0.00 0.03 0.08 0.07 0.00
Ca0 9.37 11.86 12.30 12.27 12.06 12.22 12.07 11.73 11.86 11.71
Na20 5.70 4.42 4.69 4.47 4.22 4.21 4.40 4.58 4.78 4.58
K20 0.43 0.31 0.26 0.29 0.29 0.28 0.31 0.35 0.35 0.34
Total 96.09 97.96 98.36 97.96 96.84 96.98 96.26 97.03 97.44 96.45
Cations in Formula (based on 32 oxygen)
Si 10.16 9.68 9.52 9.66 9.70 9.56 9.63 9.70 9.69 9.65
Al 5.61 6.19 6.30 6.13 6.12 6.30 6.19 6.11 6.07 6.18
Fe 0.21 0.14 0.14 0.16 0.17 0.15 0.14 0.16 0.15 0.14
Mg 0.06 0.04 0.02 0.02 0.02 0.01 0.02 0.04 0.06 0.04
Mn 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.01 0.00
Ca 1.90 2.36 2.45 2.45 2.43 2.46 2.45 2.36 2.38 2.37
Na 2.09 1.59 1.69 1.62 1.54 1.54 1.62 1.67 1.74 1.68
K 0.10 0.07 0.06 0.07 0.07 0.07 0.07 0.08 0.08 0.08
Sum IV: 15.77 15.86 15.82 15.79 15.82 15.86 15.82 15.80 15.76 15.83
Sum Alk. 4.09 4.03 4.20 4.14 4.04 4.06 4.14 4.12 4.20 4.13
Mole Percent
Ab 46.39% 58.64% 58.30% 59.24% 60.17% 60.58% 59.16% 57.39% 56.65% 57.40%
An 51.09% 39.56% 40.24% 39.07% 38.11% 37.78% 39.04% 40.56% 41.33% 40.64%
Or 2.52% 1.80% 1.46% 1.69% 1.72% 1.64% 1.81% 2.04% 2.02% 1.96%
Label LEB-003mp (matrix plag)
Date
X(mm) 21.7484 21.7497 21.751 21.7523 21.7535 21.7548 21.7562 21.7574 21.7587 21.76
Y(mm) 43.435 43.435 43.435 43.435 43.435 43.435 43.435 43.435 43.435 43.435
Oxide Weight Percent: LEB-003mp (matrix plag)
Pt# 11 12 13 14 15 16 17 18 19 20
Si02 50.91 51.84 51.61 51.18 52.57 54.10 55.40 53.54 56.82 64.71
Al203 27.88 27.50 27.78 27.62 27.70 25.64 25.39 26.25 23.81 19.99
FeO 0.89 1.03 0.96 1.01 0.87 1.20 1.37 1.28 1.37 1.12
MgO 0.08 0.12 0.07 0.21 0.10 0.11 0.20 0.08 0.00 0.07
MnO 0.01 0.00 0.15 0.07 0.12 0.00 0.05 0.04 0.04 0.07
Ca0 11.69 11.89 11.72 11.93 11.74 10.17 9.69 10.17 8.41 4.94
Na20 4.70 4.61 4.39 4.16 4.72 5.02 4.97 4.64 5.56 3.66
K20 0.34 0.32 0.28 0.30 0.30 0.47 0.51 0.43 0.74 1.87
Total 96.49 97.30 96.95 96.48 98.11 96.72 97.57 96.43 96.74 96.42
Cations in Formula (based on 32 oxygen)
Si 9.62 9.71 9.69 9.67 9.76 10.14 10.27 10.06 10.58 11.77
Al 6.21 6.07 6.15 6.15 6.06 5.66 5.55 5.81 5.23 4.29
Fe 0.14 0.16 0.15 0.16 0.13 0.19 0.21 0.20 0.21 0.17
Mg 0.02 0.03 0.02 0.06 0.03 0.03 0.05 0.02 0.00 0.02
Mn 0.00 0.00 0.02 0.01 0.02 0.00 0.01 0.01 0.01 0.01
Ca 2.37 2.39 2.36 2.41 2.33 2.04 1.92 2.05 1.68 0.96
Na 1.72 1.68 1.60 1.52 1.70 1.82 1.79 1.69 2.01 1.29
K 0.08 0.08 0.07 0.07 0.07 0.11 0.12 0.10 0.18 0.43
Sum IV: 15.84 15.79 15.84 15.82 15.82 15.80 15.81 15.87 15.81 16.06
Sum Alk. 4.17 4.14 4.03 4.01 4.10 3.98 3.83 3.84 3.86 2.69
Mole Percent
Ab 56.75% 57.66% 58.59% 60.20% 56.87% 51.32% 50.24% 53.31% 43.44% 35.83%
An 41.30% 40.47% 39.73% 38.00% 41.39% 45.86% 46.64% 44.03% 51.99% 48.05%
Or 1.95% 1.87% 1.69% 1.80% 1.74% 2.82% 3.12% 2.66% 4.57% 16.13%
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Label DE16-001mp1 (matrix plag)
Date 12/23/2020
X(mm) 61.6799 61.6792 61.6784 61.6777 61.677 61.6762 61.6755 61.6748 61.674 61.6733
Y(mm) 66.2963 66.2949 66.2935 66.292 66.2906 66.2891 66.2876 66.2862 66.2848 66.2833
Oxide Weight Percent: DE16001mp1 (matrix plag)
Pt# 1 2 3 4 5 6 7 8 9 10
Si02 64.48 62.79 56.99 52.25 51.90 53.15 53.35 52.47 52.04 51.90
Al203 23.28 24.52 26.59 28.85 29.17 27.76 28.04 28.11 28.38 29.91
FeO 1.09 0.85 1.06 0.98 2.24 2.50 1.24 1.12 1.50 1.00
MgOo 0.11 0.12 0.09 0.04 0.17 0.22 0.09 0.04 0.55 0.16
MnO 0.14 0.05 0.14 0.00 0.01 0.04 0.00 0.01 0.11 0.04
Ca0 4.35 6.31 9.52 11.96 12.25 11.08 11.43 11.57 12.40 13.03
Na20 2.35 2.07 4.08 4.45 3.90 4.41 4.20 4.44 3.64 3.55
K20 1.84 0.74 0.42 0.28 0.22 0.32 0.32 0.27 0.32 0.23
Total 97.63 97.45 98.88 98.81 99.88 99.48 98.66 98.05 98.94 99.83
Cations in Formula (based on 32 oxygen)
Si 11.50 11.22 10.33 9.63 9.51 9.76 9.81 9.73 9.60 9.47
Al 4.89 5.16 5.68 6.26 6.30 6.01 6.08 6.15 6.17 6.43
Fe 0.16 0.13 0.16 0.15 0.34 0.38 0.19 0.17 0.23 0.15
Mg 0.03 0.03 0.02 0.01 0.05 0.06 0.02 0.01 0.15 0.04
Mn 0.02 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.02 0.01
Ca 0.83 1.21 1.85 2.36 2.41 2.18 2.25 2.30 2.45 2.55
Na 0.81 0.72 1.43 1.59 1.39 1.57 1.50 1.60 1.30 1.26
K 0.42 0.17 0.10 0.07 0.05 0.07 0.07 0.06 0.07 0.05
Sum IV: 16.39 16.38 16.01 15.89 15.82 15.78 15.89 15.88 15.77 15.91
Sum Alk. 2.06 2.09 3.38 4.02 3.85 3.83 3.83 3.96 3.83 3.86
Mole Percent
Ab 40.33% 57.71% 54.70% 58.78% 62.57% 57.00% 58.88% 58.04% 64.02% 66.04%
An 39.37% 34.23% 42.44% 39.59% 36.06% 41.07% 39.16% 40.32% 34.02% 32.57%
Or 20.30% 8.05% 2.86% 1.64% 1.37% 1.94% 1.96% 1.64% 1.95% 1.39%
Label DE16-001mp 1 {matrix plag)
Date
X¥imm) 61.6726 61.6718 61.6711 61.6704 61.6697 61.6689 61.6682 61.6675 61.6667 61.666
Yimm) 66.2818 66.2804 66.279 66.2775 66.276 66.2746 66.2731 66.2717 66.2703 66.2688
Oxide Weight Percent: DE16001mp1 (matrix plag)
Pt 11 12 13 14 15 16 17 18 19 20
5i02 51.58 51.20 52.82 51.71 51.59 52.99 53.74 56.88 59.38 51.49
Al203 30.65 30.69 2874 29.76 2911 29.19 27.81 26.79 25.28 23.68
FeOQ 0.81 0.90 1.40 1.21 166 1.00 0.93 0.95 0.70 0.67
Meg0 0.07 0.06 0.09 0.15 044 0.19 0.05 0.09 0.02 0.00
MnO 0.02 0.10 0.00 0.00 0.04 0.00 0.00 0.11 0.15 0.00
Cal 13.62 13.47 1172 12.39 12.34 12.15 10.68 8.97 7.19 5.66
Na20 3.41 3.33 416 3.99 3.69 4.07 4.54 573 6.43 7.14
K20 0.21 0.22 0.26 0.25 0238 0.27 0.33 0.53 0.72 0.99
Tota 100.38 99.98 99.19 99.47 99.15 99.85 598.08 100.05 99.88 99.63
Cations in Formula (based on 32 oxygen)
5i 837 9.34 9.69 9.48 9.50 9.64 991 10.25 10.64 10.99
A 6.56 6.60 6.21 6.43 6.32 6.26 6.04 5.69 5.34 4.99
Fe 0.12 0.14 0.21 0.19 0.26 0.15 0.14 0.14 011 0.10
Mg 0.02 0.02 0.03 0.04 012 0.05 0.01 0.02 0.00 0.00
Mn 0.00 0.02 0.00 0.00 001 0.00 0.00 0.02 0.02 0.00
Ca 2.65 2.63 2.30 2.43 2.44 2.37 211 1.73 138 1.08
Na 1.20 1.18 1.48 1.42 132 1.44 162 2.00 2.23 2.48
K 0.05 0.05 0.06 0.06 0.07 0.06 0.08 0.12 0.17 0.23
Sum IV: 15.93 15.94 15.90 15.91 15.83 15.90 15.95 15.93 15.98 15.98
sum Alk. 3.90 3.86 3.84 3.91 3.82 3.87 3.81 3.86 3.78 3.79
Mole Percent
Ab 67.94% 68.15% 59.92% 62.25% 63.76% 61.26% 55.37% 44.90% 36.52% 28.63%
An 30.79% 30.50% 38.50% 36.29% 3451% 37.15% 42 61% 51.92% 59.11% 65.39%
Or 1.26% 1.35% 1.57% 1.47% 1.73% 1.59% 2.03% 3.18% 437% 5.98%
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Label SW19-DD01mp (matrix plag)
Date 12/22/2020
X(mm) 19.4398 19.4398 19.4398 19.4398 19.4398 19.4398 19.4398 19.4398 19.4398 19.4398
Y(mm) 68.7488 68.7474 68.746 68.7446 68.7432 68.7418 68.7404 68.739 68.7376 68.7362
Oxide Weight Percent: SW19-DD01mp(matrix plag
Pt# 1 2 3 4 5 6 7 8 9 10
Si02 60.35 61.58 61.88 60.46 59.7 60.01 57.74 55.13 53.83 52.36
Al203 23.55 23.7 24.93 24.74 24.2 25.08 26.42 29.04 30 30.57
FeO 1.112 1.1229 0.9557 1.0373 0.9147 1.0279 1.067 0.8 0.8448 0.6846
MgO 0.2213 0.2134 0.0799 0 0.0766 0.0184 0.0821 0.1075 0.114 0.1719
MnO 0.1203 0.1018 0.1139 0.1019 0.066 0.0301 0.0121 0.1221 0.0241 0.0483
Ca0 7.19 7.2 6.98 7.05 7.09 7.58 8.79 11.31 12.93 13.01
Na20 6.32 5.01 6.28 6.45 5.95 6.15 5.99 4.61 3.89 3.96
K20 0.7591 0.7401 0.8271 0.8163 0.7662 0.6965 0.5342 0.3301 0.213 0.2033
Total 99.64 99.67 102.04 100.66 98.76 100.6 100.64 101.45 101.85 101.01
Cations in Formula (based on 32 oxygen)
Si 10.85 10.98 10.82 10.75 10.79 10.68 10.33 9.84 9.60 9.44
Al 4.99 4.98 5.14 5.19 5.16 5.26 5.57 6.11 6.31 6.49
Fe 0.17 0.17 0.14 0.15 0.14 0.15 0.16 0.12 0.13 0.10
Mg 0.06 0.06 0.02 0.00 0.02 0.00 0.02 0.03 0.03 0.05
Mn 0.02 0.02 0.02 0.02 0.01 0.00 0.00 0.02 0.00 0.01
Ca 1.38 1.38 1.31 1.34 1.37 1.45 1.69 2.16 2.47 2.51
Na 2.20 1.73 2.13 2.22 2.09 2.12 2.08 1.60 1.35 1.38
K 0.17 0.17 0.18 0.19 0.18 0.16 0.12 0.08 0.05 0.05
Sum IV: 15.84 15.96 15.96 15.94 15.95 15.94 15.91 15.94 15.91 15.93
Sum Alk. 3.76 3.28 3.62 3.75 3.64 3.73 3.89 3.83 3.87 3.94
Mole Percent
Ab 36.81% 41.98% 36.10% 35.79% 37.77% 38.79% 43.37% 56.41% 63.93% 63.71%
An 58.57% 52.88% 58.80% 59.27% 57.37% 56.97% 53.50% 41.62% 34.82% 35.10%
Or 4.63% 5.14% 5.09% 4.94% 4.86% 4.24% 3.14% 1.96% 1.25% 1.19%
Label SW19-DD01mp (matrix plag)
Date
X(mm) 19.4398 19.4398 19.4398 19.4398 19.4398 19.4398 19.4398 19.4398 19.4398 19.4398
Y(mm) 68.7348 68.7334 68.732 68.7306 68.7292 68.7278 68.7264 68.725 68.7236 68.7222
Oxide Weight Percent: SW19-DD01mp(matrix plag)
P# 11 12 13 14 15 16 17 18 19 20
502 53.86 52.81 51.91 53.58 53.84 53.36 53 53.35 52.95 53.78
Al203 30.39 30.46 30.66 30.61 30.41 29.89 29.6 30.34 29.94 29.67
FeO 0.755 0.745 0.7491 0.7346 0.55% 07165 0.7123 0.7998 0.673 11388
Mg0 0.1522 0.1408 0.1377 0.1066 0.1037 0.0365 0.121 0.1364 0.0548 0.08
MnO 0 0.0363 0 0.079 0.0611 0.0061 0 0 0.1093 0.1214
Ca0 13.16 13.23 13.19 13.24 13.26 13.06 133 13.06 13.16 13
Na20 3.75 3.66 3.62 3.95 4.14 371 3.38 3.97 3.63 3.75
K20 0.1827 0.2384 0.2229 0.1862 0.2334 0.2298 0.2176 0.2001 0.2019 0.2533
Total 102.25 101.32 100.49 102.48 102.61 101.01 10033 101.86 100.71 101.8
Cations in Formula (based on 32 oxygen)
Si 9.57 9.48 9.40 9.51 9.55 9.59 9.59 9.53 9.56 9.62
Al 6.36 6.45 6.55 641 6.35 6.33 6.32 6.39 6.37 6.25
Fe 0.11 0.11 0.11 011 0.08 0.11 0.11 0.12 0.10 0.17
Mg 0.04 0.04 0.04 0.03 0.03 0.01 0.03 0.04 0.01 0.02
Mn 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.02 0.02
Ca 2.50 2.55 256 252 2,52 2.52 2.58 2.50 2.54 2,49
Na 1.29 1.7 127 136 1.42 1.29 1.19 138 1.27 1.30
K 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.06
Sum IV: 15.93 15.93 15.95 15.92 15.90 15.93 15.91 15.91 15.92 15.87
Sum Alk. 3.84 3.87 3.88 3.92 4.00 3.86 3.82 3.92 3.86 3.85
Mole Percent
Ab 65.26% 65.69% 65.92% 64.23% 63.05% 65.14% 67.59% 63.75% 65.89% 64.71%
An 33.66% 32.90% 32.75% H.69% 35.63% 33.50% 31.09% 35.08% 32.90% 33.79%
Or 1.08% 1.41% 1.33% 1.08% 132% 1.36% 1.32% 1.16% 1.20% 1.50%
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EMPA Data from Finely Grained Pyroxene Crystals of Matrix

Label LEBOO1pyx1
Date 1/15/2021
X(mm) 70.8885 70.5806 70.616 70.6322 70.5328 70.6817 70.4918 | 69.5975
Y(mm) 40.8301 40.7885 40.8186 40.8422 40.6968 40.5101 40.5143 40.308
Oxide Weight Percent: LEB-001pyx
Pt# 22 24 25 26 27 28 29 30
Si02 49.41 52.7 50.22 52.8 51.15 51.82 52.09 53.58
TiO2 1.15 0.84 1.04 0.88 1.14 1.27 1.02 0.79
Al203 2.81 1.73 3.19 19 2.49 3.06 3.01 1.75
Cr203 0.04 0.03 0 0 0.04 0 0 0.07
FeO 10.63 9.23 9.42 9.19 10.24 9.79 9.65 9.6
MnO 0.33 0.39 0.22 0.26 0.36 0.31 0.2 0.32
MgO 13.39 15.11 14.39 15.07 14.19 14.02 14.79 14.96
Cao 19.43 20.01 20.38 19.52 20.09 19.54 20.03 19.67
Na20 0.49 0.62 0.31 0.37 0.47 1.6 0.58 0.33
K20 0.02 0 0.01 0.06 0 0.01 0.01 0.03
Total 97.7 100.66 99.2 100.05 100.18 101.41 101.38 101.11
Cations in Formula (based on 6 oxygen)
Si 19 1.95 1.89 1.96 191 191 191 1.97
Ti 0.03 0.02 0.03 0.02 0.03 0.04 0.03 0.02
Al 0.13 0.08 0.14 0.08 0.11 0.13 0.13 0.08
Cr 0 0 0 0 0 0 0 0
Fe 0.34 0.29 0.3 0.28 0.32 0.3 0.3 0.29
Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Mg 0.77 0.83 0.81 0.83 0.79 0.77 0.81 0.82
Ca 0.8 0.79 0.82 0.77 0.8 0.77 0.79 0.77
Na 0.04 0.04 0.02 0.03 0.03 0.11 0.04 0.02
K 0 0 0 0 0 0 0 0
Sum IV: 2.03 2.02 2.03 2.04 2.02 2.04 2.04 2.04
Sum 1.91 191 1.93 1.89 1.92 1.84 1.89 1.89
Wo 41.92% 41.48% 42.68% 40.96% 42.01% 41.85% 41.61% 41.00%
En 40.19% 43.58% 41.92% 43.99% 41.28% 41.78% 42.74% 43.38%
Fs 17.90% 14.94% 15.40% 15.05% 16.71% 16.37% 15.65% 15.62%
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Label LEBOO3pyx
Date 1/19/2021
X(mm) 17.3951 17.8176 | 17.8529 | 17.9916 | 18.8261 | 18.9067 | 19.0218 | 19.3153 | 19.2955 19.6559
Y(mm) 39.586 39.8655 | 39.8697 | 39.8455 | 39.8711 | 39.8649 | 39.869 | 35.8527 | 39.8074 39.8046
Oxide Weight Percent: LEB-003pyx
Pt 44 46 47 48 49 50 51 52 53 54
5102 48.76 48.06 50.26 49.34 50.63 50.07 49.78 51.26 52.70 48.14
Ti02 2.98 1.76 1.48 1.87 217 247 2.76 1.96 1.19 3.16
Al203 3.03 3.60 2.61 2.36 2.26 2.77 2.93 2.52 2.04 4.89
Cr203 0.07 0.00 0.00 0.03 0.00 0.00 0.04 0.01 0.03 0.00
FeO 14.06 11.66 16.36 13.04 11.89 14.41 12.38 13.40 10.58 12.75
MnO 0.45 0.41 0.51 0.42 0.32 0.41 0.38 0.45 0.38 0.26
MgO0 11.07 11.35 14.05 12.37 13.27 10.57 11.26 11.61 14.76 11.68
Ca0 19.41 20.82 14.38 19.85 20.23 19.94 20.73 19.57 19.91 18.93
Na20 0.53 0.81 0.35 0.72 0.52 0.66 0.65 0.60 0.56 0.47
K20 0.05 0.17 0.73 0.06 0.02 0.06 0.03 0.03 0.02 0.10
Total 100.42 98.65 100.71 100.06 101.30 101.36 100.94 101.41 102.18 100.38
Cations in Formula (based on 6 oxygen)
Si 1.86 1.86 1.90 1.88 1.89 1.89 1.88 1.92 1.93 1.82
Ti 0.09 0.05 0.04 0.05 0.06 0.07 0.08 0.06 0.03 0.09
Al 0.14 0.16 0.12 0.11 0.10 0.12 0.13 0.11 0.09 0.22
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe 0.45 0.38 0.52 0.42 0.37 0.45 0.39 0.42 0.32 0.40
Mn 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Mg 0.63 0.65 0.79 0.70 0.74 0.59 0.63 0.65 0.81 0.66
Ca 0.79 0.86 0.58 0.81 0.81 0.81 0.84 0.78 0.78 0.77
Na 0.04 0.06 0.03 0.05 0.04 0.05 0.05 0.04 0.04 0.03
K 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sum IV: 1.99 2.02 2.02 1.99 1.99 2.01 2.01 2.03 2.02 2.04
Sum 1.87 1.89 1.89 1.93 1.92 1.86 1.86 1.85 191 1.83
Wo 42.39% 45.55% 30.80% 42.02% | 42.17% | 43.45% | 45.01% | 42.38% | 40.88% 41.94%
En 33.64% 34.54% 41.86% 36.43% | 38.48% | 32.04% | 34.01% | 34.98% | 42.16% 36.01%
Fs 23.97% 19.91% 27.35% 21.55% | 19.35% | 24.51% | 20.98% | 22.65% | 16.96% 22.05%
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Label DE16001pyx
Date 1/19/2021
X{mm) 61.0552 61.6024 61.806 619118 | 62.6089 | 63.2148 | 63.3965 | 63.4865 | 63.1182 | 615659
Y(mm) 64.5205 64.4079 | 644278 | 64.3703 | 64.2682 | 64.1205 | 63.8405 | £3.6952 | 71.3957 71.279
Oxide Weight Percent: DE16001pyx
P 56 57 58 59 60 61 62 63 64 65
502 45.87 48,51 47.50 47.83 48.92 47.94 47.35 47.39 47.20 49.75
Ti02 2.69 1.93 2.82 2.73 2.78 2.87 2.89 2.96 2.56 2.06
Al203 4.46 2.72 3.82 412 4.38 4.02 4.74 5.12 413 3.59
Cr203 0.06 0.00 0.05 0.03 0.00 0.02 0.00 0.01 0.00 0.03
FeO 12.36 12.66 12.46 12.19 12.71 13.05 12.42 12.10 12.76 12.05
MnO 0.26 0.35 0.32 0.29 0.24 032 0.16 0.29 0.25 0.28
MgO 1173 13.09 12.16 12.33 12.07 11.79 11.84 12.02 12.03 12.93
(a0 21.10 20.06 20.76 20.61 20.24 20.25 20.91 20.68 20.72 15.96
Na20 0.48 0.50 0.52 0.57 0.59 041 0.67 0.40 0.48 0.56
K20 0.00 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.00 0.02
Total 99.02 59.82 100.42 100.70 102.02 100.67 100.99 100.96 100.13 101.23
Cations in Formula (based on 6 oxygen)
Si 1.78 1.85 1.81 1.81 1.82 182 179 179 1.80 1.86
Ti 0.08 0.06 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.06
Al 0.20 0.12 0.17 0.18 0.19 0.18 0.21 0.23 0.19 0.16
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
fe 0.40 0.40 0.40 0.39 0.40 041 0.39 0.38 0.41 0.38
Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Mg 0.68 0.75 0.69 0.70 0.67 0.67 0.67 0.68 0.69 0.72
Ca 0.88 0.82 0.85 0.84 0.81 0.82 0.85 0.84 0.85 0.80
Na 0.04 0.04 0.04 0.04 0.04 0.03 0.05 0.03 0.04 0.04
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sum IV: 1.98 1.97 1.98 1.99 2.02 2.00 2.00 2.01 1.99 2.02
Sum 1.95 1.97 1.93 1.92 1.88 190 191 1.89 1.94 1.90
Wo A4 83% 41.66% 43.80% 43.55% 43.06% 43.23% A4 4% 44.14% 43.70% 42.15%
En 34.67% 37.82% 35.69% 36.28% 35.73% 35.02% 34.99% 35.70% 35.30% 37.99%
Fs 20.50% 20.52% 20.52% 20.12% 21.21% 21.75% 20.5%% 20.16% 21.00% 19.86%
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Label SW19DDO01pyx
Date 1/19/2021
X(mm) 20.8782 20.5589 | 205999 | 20.5014 | 18.3017 | 17.8044 | 17.6696 | 20.3883 | 19.6484 | 19.0006 | 17.8929
Y(mm) 65.786 65.3562 | 65.0805 | 63.4802 | 63.4388 | 63.4291 | 63.059 | 62.8011 | 63.994 | 63.5313 | 63.3888
Oxide Weight Percent: SW19DD01pyx
Pt b6 67 68 69 70 71 72 73 74 75 76
Si02 47.40 48.30 48.07 48.01 47.08 46.98 45.88 47.68 47.90 47.68 48.46
Ti02 194 2.15 221 2.17 2.4 2.16 274 2.05 2.27 2.16 2.30
Al203 3.99 3.97 3.33 431 3.2 3.29 3.37 3.39 448 3.55 414
Cr203 0.00 0.02 0.03 0.02 0.01 0.00 0.07 0.00 0.02 0.02 0.02
Fe0 11.22 11.37 12.02 11.23 12.23 12.07 12.95 12.18 11.17 11.53 12.13
MnO 0.21 031 0.24 0.30 0.28 0.38 0.39 0.26 0.19 0.24 0.24
Mg0 13.41 1321 13.29 13.35 13.14 12.97 11.94 12.62 13.27 13.20 12.94
Ca0 20.14 20.28 19.61 20.13 19.82 19.73 19.31 19.77 20.13 20.03 19.72
Na20 0.46 0.33 0.43 0.44 0.57 0.38 0.67 0.45 0.63 0.30 0.62
K20 0.00 0.01 0.00 0.03 0.00 0.02 0.00 0.00 0.02 0.01 0.04
Total 98.77 99.95 99.22 99.99 98.46 98.00 97.32 98.40 100.08 98.72 100.61
Cations in Formula (based on 6 oxygen)
Si 1.82 1.83 184 1.82 1.82 1.83 181 1.84 181 1.83 1.83
Ti 0.06 0.06 0.06 0.06 0.06 0.06 0.08 0.06 0.06 0.06 0.07
Al 0.18 0.18 0.15 0.19 0.15 0.15 0.16 0.15 0.20 0.16 0.18
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe 0.36 0.36 0.38 0.36 0.40 0.39 0.43 0.39 0.35 0.37 0.38
Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Mg 0.77 0.75 0.76 0.75 0.76 0.75 0.70 0.73 0.75 0.76 0.73
Ca 0.83 0.82 0.80 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.80
Na 0.03 0.02 0.03 0.03 0.04 0.03 0.05 0.03 0.05 0.02 0.05
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SumIV: 2.00 2.01 199 2.01 197 1.98 1.96 2.00 2.01 1.99 2.01
Sum 1.96 193 195 193 1.98 197 194 1.94 192 195 191
Wo 42.35% 42.67% | 41.30% | 42.41% | 41.60% | 41.81% | 41.95% | 42.21% | 42.55% | 42.26% | 41.79%
En 39.23% 38.66% | 38.94% | 39.13% | 38.37% | 38.23% | 36.09% | 37.49% | 39.02% | 38.75% | 38.15%
Fs 18.42% 18.67% | 19.76% | 18.47% | 20.03% | 19.96% | 21.96% | 20.30% | 18.43% | 18.99% | 20.06%
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APPENDIX 2

Laboratory Description and Monitors

Irradiation Package: AU-37
Median Date of Irradiation: 7/2/21
Monitors, Ages
(as summarized in Schaen et al., 2021):
GA1550 Biotite Age (Ma): 9.944E+07
FC Sanidine Age (Ma): 2.820E+07
Dates of Analyses: 9/17/2021 through 9/29/2021
Measured 40/36 of Air during analyses: 291.6+1.5
Assumed *°Ar/?°Ar of Air (Nier, 1950): 295.5
Irradiation Production Factors:
(3637)Ca: 0.0003046=0.0000084
(3937)Ca: 0.0007380+0.0000370
(#039)K - 0+0.0044
(839)C1: 0.01+0.01

These analyses were determined in the Auburn Noble Isotope Mass Analysis Lab
(ANIMAL). The GLM-110 mass spectrometer was used for analysis, that is a 10-cm radius 90°
sector instrument with double focusing geometry, a Nier-type source, and a single detector (an
ATP discrete dynode-style electron multiplier, see Hames, 2020 for additional description).
Samples were fused for gas extraction with a COz laser. Operation of the laser, extraction line
and mass spectrometer were fully automated. The time required for one complete analysis cycle
is 20 minutes (4 minutes gettering, followed by generally 10 measurements per peak and
baseline, 30 measurements of m/e=36). Sample inlet and equilibration time is 5 s for a half-split
of a sample and 20 s for an entire sample. Blanks were measured following every 5" analysis.
Blank corrections to **Ar measurements are based on an average or regression of several blanks
measured for a given day of analysis. Air aliquots are typically analyzed 3 times per day
(generally at the beginning of the day). Data were reduced using an Excel spreadsheet and
Isoplot (Ludwig, 2012, Sp. Pub. BGC, 75 p.). Samples were irradiated for 16 hours with Cd
shielding in the US Geological Survey TRIGA research reactor in Denver, CO.

Unless indicated otherwise, the data for individual measurements are in volts and errors
are the standard deviation of measurement and do not include the error in estimating the J-Value
(0.15% at the 95% confidence level). P = Laser Power Level (10 = 100%), t = laser heating time
(s). Data are corrected for blank, mass discrimination, and interfering nuclear reactions. The
rubric for irradiation filenames is: “AU + package” + “layer, radial position” + “phase” +
“planchet hole # and sequence”, saved as a text file. All samples for this study were within layers
2 and 3 of AU37, with positions labeled as in sketch to the right, and the monitor data for these
layers are included in the dataset below.
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J-Values used for layers 2 and 3 on the basis of GA-1550 and FCS analyses

O ~
Layer 2 J-Value:
0.00410 | Mean = 0.0040471+0.0000049 [0.12%]
0.00408 n=6, MSWD = 0.50, probability = 0.78
0.00406 | _ I l
0.00404 || I
0.00402 —
0.00400
(Layer 3 J-Val h
ayer -value:
0.00410 Mean = 0.0040252+0.0000046 [0.11%]
0.00408 n=6, MSWD = 1.04, probability = 0.39
0.00406 |
0.00404 — — I
0.00402 L] I ]
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Analysis of Air During This Project
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