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Abstract 

 
Resting-state functional magnetic resonance imaging (rs-fMRI) data is widely used to 

characterize brain function in health and disease. Specifically, brain networks obtained from rs-

fMRI based functional connectivity (FC) have been used to investigate disconnection syndromes 

in psychiatry. A good example is Autism Spectrum Disorder (ASD), wherein statistical group 

differences between ASD and controls in terms of FC have been widely reported, with FC being 

predominantly weaker in ASD. The aberrant behaviors of ASD patients have been found to be 

associated with abnormal patterns of RSFC, including the reduced correlation between frontal 

and posterior brain networks and local FC strengthening with long-distance FC reduction. 

Statistical group comparison suffers from the disadvantage that it does not possess the ability to 

predict the outcome (such as diagnostic status) in a novel subject. Machine learning models have 

been used for individual subject-level characterization as an alternative.  

Deep learning models outperform traditional machine learning methods in diagnostic 

classification. For ASD, open-source datasets such as ABIDE (Autism Brain Imaging Data 

Exchange) have accelerated the application of deep learning to the diagnostic category. 

However, overfitting is the main issue that constrains the validity and generalizability of deep 

learning and traditional machine learning. Overfitting refers as a well-trained deep neural 

network that can achieve high prediction accuracy in the training dataset but has poor prediction 

accuracy in the unseen test dataset. The primary cause of overfitting is the relatively small 

sample size in training dataset compared to the high dimensionality of the feature space, known 

as the “curse of dimensionality”. In addition, to address the sample size issue, data is being 

increasingly aggregated across sites to form large databases such as ABIDE, given that acquiring 

a large number of subjects from a single site can be costly and time-consuming. However, the 
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problem with such an approach is wide inter-site variability in data characteristics that are non-

neural in origin: differences across MRI vendors, pulse sequences, sequence parameters, 

sampling of patient populations, and data preprocessing pipelines. Consequently, machine 

learning (ML) approaches, including deep learning (DL), tend to produce high accuracy in 

diagnostic classification using single-site data but poor accuracy using multi-sites data. This lack 

of generalizability in the model is the most significant barrier to adopting ML and DL in 

neuroimaging-based diagnostics. We propose two approaches that address this issue. 

We used a VAE-CNN (variational autoencoder convolutional neural network) transfer 

learning model in the first project. Because it is harder to acquire and aggregate patient 

population data than healthy controls, comparatively larger samples are available from healthy 

controls in the public domain, we propose to address overfitting by using larger healthy samples 

to learn the neural signature of healthy controls, with the aim of “transferring” that learning into 

the context of discriminating clinical populations. Here, we investigate the utility of transfer 

learning from HCP (human connectome project) healthy control data for improving the 

classification of individuals with ASD from their healthy peers in ABIDE data. We identify the 

biomarkers contributing to classification using the Layer-Wise Relevance Propagation (LRP) 

algorithm. Results show that the proposed transfer learning method outperforms state-of-the-art 

deep learning methods in ASD classification, especially when training and testing data are drawn 

from different data acquisition sites.  

 In the second project, we propose domain adaptation for improving the generalizability of 

neuroimaging-based diagnostic classification. Domain adaptation aims to improve classification 

performance in a given target domain by utilizing the knowledge learned from a different source 

domain by making data distributions of the two domains as similar as possible. To validate the 
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utility of domain adaptation for classifying multi-site fMRI data, we developed a variational 

autoencoder – maximum mean discrepancy (VAE-MMD) model for three-way diagnostic 

classification of Autism, Asperger’s syndrome, and controls. In domain adaptation, we chose 

ABIDEII (Autism Brain Imaging Data Exchange) as the target domain data and ABIDEI as the 

source domain data. The results show that the domain adaptation approach achieved superior test 

accuracy of ABIDEII compared to baseline methods using just ABIDEII for classification. In 

addition, we augmented the source domain with additional healthy control subjects from Healthy 

Brain Network (HBN) and Amsterdam Open MRI Collection (AOMIC) datasets, enabling 

transfer learning to improve classification performance. Finally, we compared domain adaptation 

and combined statistical ComBat harmonization in this study. The result demonstrated that the 

domain adaptation model could be improved when combined with statistical methods. We 

openly share our data and model so that the neuroimaging community can explore the possibility 

of further improvement of the model by utilizing the ever-increasing amount of healthy control 

fMRI data in the public domain. 
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Chapter 1 

Introduction 

1.1 Functional Magnetic Resonance Imaging (fMRI)  

 Functional magnetic resonance imaging (fMRI) is a technique that relies upon the 

measurement of the magnetic spin-spin relaxation time T2*, which reflects the changes in local 

concentrations of paramagnetic deoxyhemoglobin (HbR) [1]. The blood oxygen level dependent 

(BOLD) signal is sensitive primarily to decreasing HbR, so it can be detected to produce a 

localized map of activity in the human brain [2]. Compared with other noninvasive assessments 

of brain function techniques such as electroencephalography (EEG) and 

magnetoencephalography (MEG), fMRI has advantages of better spatial resolution and 

localization in the millimeter range per voxel. In recent decades, fMRI has become a primary 

technique for studying the human brain in research and clinical applications [3] [4]. However, 

one study compared the BOLD signal to invasive EEG and MEG signals. It showed that the 

BOLD contrast signal mainly reflects the neuron's integrative processes within its body instead 

of the neuron's response by itself [5]. Therefore, a deconvolution method has proven necessary to 

extract a latent neural response from BOLD signals. More details about deconvolution will be 

illustrated in the deconvolution section next. 

 The two major categories of studies on fMRI data are task fMRI and resting-state fMRI.  

Resting-state fMRI(RS-fMRI) is applied to detect the baseline or spontaneously BOLD variance 

in the absence of any task. The basic theory of RS-fMRI is that spontaneous neural fluctuations 

can reveal some fundamental brain characteristics in both structural and functional aspects [6]. 

Thus RS-fMRI study plays a crucial role in neuroimaging research to analyze highly correlated 

subnetwork referred to as the default mode network (DMN) activated at rest. Some studies found 
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that a specific network pattern maintains housekeeping functions such as vascular perfusion, 

heart rate, or breathing [7] [8]. In clinical applications, spontaneous fMRI connectivity patterns 

have been used as a diagnostic and prediction tool in multiple psychiatric disorder areas such as 

autism, schizophrenia, and Alzheimer’s disease (AD) [9] [10] [11], etc.   

1.2 fMRI data preprocessing 

 The original fMRI data contains imperfections from head movement, spontaneous neuron 

activities, and intrinsic electron thermal noises. Proper preprocessing is necessary for further 

statistical analysis [12]. Based on various signal and image processing methods, the 

preprocessing of fMRI forms a pipeline of multiple steps. Many studies found that preprocessing 

poses a significant impact on the BOLD fMRI data [13] [14] [15]. However, among these 

studies, no consensus has been made on choosing steps performed in the preprocessing pipeline. 

Before data analysis in the following projects, this paper discussed several significant 

preprocessing steps, including motion correction, slice timing correction, and spatial 

normalization. Other standard measures include detrending, covariates regression, and bandpass 

filtering. In most studies, preprocessing is implemented by several toolboxes, including CONN, 

SPM for Matlab, and FSL for Mac OS X and Linux. 

1.2.1 Slice-Timing correction 

 Slice-timing correction generally enhances the statistical analysis power in fMRI studies. 

One fMRI 3D image is constructed from a series of 2D slices. All slices from the image are 

acquired by separated times from Time of Repetition (TR). Thus, it makes all slices acquired at 

different times, or say different slices in a 3D image, are observed at varying time points. In 

further statistical analysis, we assume that all slices are obtained simultaneously. To correct the 

acquisition times of each slice, we adjust all voxel time series to a standard slice via sinc-
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interpolation. Each slice has a different acquisition time, so each slice typically receives a 

specific interpolation. 

1.2.2 Motion Correction 

 fMRI data analysis assumes that all time points in a time series represent a value from a 

single location. However, the subject will inevitably keep still in the scanner in a long-term 

experiment session. Instruction and training can reduce the head movement noise, but often not 

enough. In the task-related fMRI, head motion is correlated with task setting. Even in resting-

state fMRI, head movement remains a problem [16] [17]. The shift from head movement can 

cause noise and uncertainty in fMRI analysis, so motion effects have to be removed or reduced 

in the data preprocessing pipeline. 

 Based on the theory assuming that head motion is a 3D rigid body movement, the motion 

can be parameterized by 6 degrees of freedom (DOF). 6 DOF contain three translation 

parameters and three rotation parameters. A reference image is set up first for each session, and 

other images are realigned to it by rigid body transformation parameters. Motion correction 

parameters can also be used in the nuisance regression step. 

1.2.3 Spatial Normalization  

 To reduce the individual differences across subjects, spatial normalization can match the 

geometry of each subject into an “atlas” space. The goal of normalization is to find a nonlinear 

transformation that makes segmentation in an anatomical image, which can enhancing the 

statistical power in fMRI data analysis. There are three steps to normalized fMRI data. First, T1 

(anatomical) and T2* (temporal) images are coregistered into the same space. Second, 

transforming anatomical images from different subjects into a known standard space, such as the 
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MNI152 template. Third, applying volume-based fMRI data transformation by using previously 

obtained parameters. 

1.2.4 Spatial Smoothing 

 Spatial smoothing is a commonly preprocessing method to improve the signal-to-noise 

ratio (SNR) and inter-subject registration and further improve the ability of a statistical method 

to detect actual activations [18]. The opposite consequence of spatial smoothing is it will reduce 

the spatial resolution of the image. A typical way to implement spatial smoothing is weighting 

fMRI images with a width fixed Gaussian kernel. The width of the kernel decides how much the 

images will be smoothed. However, an increasing number of articles found that spatial 

smoothing has complex effects on brain networks [19] [20] [21]. The results include 

overemphasis of short distance path, distortion of network centrality measurement, ROI based 

functional network disconnection, etc. In this paper, no spatial smoothing was applied to avoid 

distortion in the functional network from the fMRI dataset.  

Other than the steps discussed above, the 0.01~0.1 bandpass filtering and WM and CSF 

nuisance regression were also applied in the projects. We used several standard tools in 

preprocessing methods including CONN, SPM for Matlab, and FSL for Mac OS X and Linux. In 

this study, we used CONN and DAPRSF toolboxes on Matlab.   

1.3 Blind Deconvolution  

 As mentioned above, the BOLD contrast signal is not directly measuring the human brain 

activity. Instead, even if the details of the relationship between the BOLD signal and the human 

brain activity are not fully understood, it can be treated as a filter version of brain activity 

combined with the hemodynamic response function (HRF) [22]. Assuming that the BOLD signal 

response to latent neural activity is linear, the BOLD signal can be modeled due to the 
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convolution between neural activity and HRF. This theory raises some issues in brain function 

analysis, especially in Granger causality measures of effective connectivity [23] [24] [25]. A 

deconvolution method is necessary to obtain latent brain function by extracting out the HRF 

from the BOLD signal. In task related fMRI, a neural response can be extracted with explicit task 

inputs [26]. Unlike task related fMRI, resting-state fMRI needs to extract a neural reaction 

without explicit task inputs. We applied the blind-deconvolution method to apply resting-state 

fMRI deconvolution first published at [27].  

 The problem with resting-state fMRI data deconvolution is that both voxel-specific HRF 

and underlying neural responses are unknown. To apply blind deconvolution in resting-state 

fMRI data, we assume that the resting-state signal is related to spontaneous events. The goal is to 

extract the HRF from those pseudo-events. The pseudo-events are detected by passing a given 

threshold on the observed BOLD signal. Then the estimated HRF is constructed by fitting it to a 

double gamma function and two-time derivatives. The final neural response signal is 

reconstructed by Wiener deconvolution with the estimated HRF [27]. 

1.4 RSFC in psychiatric research  

 As mentioned above, resting-state fMRI can reveal some fundamental characteristics of 

brain function. Using the resting-state spontaneous fluctuations measured by fMRI, the 

connectivity analysis aims to model the operational interactions between spatially distinct brain 

regions [28] [29]. There are two common types of connectivity: functional connectivity (FC) and 

effective connectivity (EC). FC studies the bidirectional and simultaneous activity between two 

regions of interest (ROIs) while EC studies one directional causal information from one source 

ROI to a target ROI. One straightforward technique to construct an FC matrix is the seed voxel 

correlation mapping, which can be achieved by calculating the Pearson’s correlation coefficients 



 6 

between each fMRI signal across different ROIs, resulting in a parametric image [30]. In the 

research area, there is a significant correlation between RSFC and functionally integrated neural 

networks in the human brain comprised from posterior cingulate, ventral anterior cingulate, and 

ventromedial prefrontal cortex [31]. Above this finding, studies have also explored many resting-

states functionally connected circuits related to motor, language, and visual networks [31] [32]. 

 The combined technique of rs-fMRI data and functional connectivity mapping in 

psychiatric disorder research provides a series of interesting findings [33]. Autism spectrum 

disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with various behaviors. 

Those behaviors are associated with abnormal patterns of RSFC, including the reduced 

correlation between frontal and posterior brain networks [34], and local FC strengthens with long 

distance FC reduction [35]. A novel study found that incorporating vertices on the cortical 

surface into the DMN and sensorimotor networks are highly related to the severity of ASD 

symptoms [36] [37]. Regarding schizophrenia research, an investigation found that the RSFC in 

the cortical network and cortical-subcortical is changed in schizophrenia [38]. This result shows 

that cortical association networks in patients with schizophrenia have reduced RSFC within the 

fronto-parietal network and lower segregation between the fronto-parietal network and DMN.  

Similarly, compared to healthy control subjects, AD patients reveal reduced RSFC between the 

right posterior insula and left anterior cingulate, and reduced RSFC between the right amygdala 

and right secondary somatosensory cortex [39].  In summary, RSFC becomes an applicable tool 

in classifying and diagnosing various types of psychiatric disorders. The only issue is that the 

statistical results are inconsistency across different studies [33]. Our initial idea is to apply a deep 

learning approach in analyzing RSFC data to reduce the effect of experiment and individual 

differences. 
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1.5 Organization of the Dissertation   

 The first chapter presents a concise introduction to fMRI, preprocessing, and resting-state 

functional connectivity. Chapter 2 reviews some foundational techniques related to machine 

learning and deep learning, including supervised and unsupervised learning. Chapter 3 presents 

the transfer learning approach to classifying autism using the Autism Brain Imaging Data 

Exchange (ABIDE) resting-state fMRI dataset. We used Human Connectome Project (HCP) 

dataset as the source data in the transfer learning project. Chapter 4 presents the semi-supervised 

learning model we applied and the results we achieved so far in domain adaptation and 

psychiatric disorder prediction tasks. Chapter 5 concludes the main findings, discusses some 

limitations and proposes future work.  
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Chapter 2 

General Methods 

2.1 Review of deep learning methods 

2.1.1 Machine learning and Deep learning 

In the previous decade, machine learning, as one of the most important artificial 

intelligence techniques, has been rapidly developed in many neural science studies. Compared to 

the conventional mass-univariate analytical techniques, ML methods are multivariate method. It 

takes the inter-correlation between voxels into analysis, breaking the univariate limitation of the 

traditional method. In addition, ML methods have been proved to achieve single subject brain 

disorders prediction and neural image based biomarkers identification in an extensive range of 

neural science studies [40]. However, some studies review that machine learning also has its 

limitations. Most common ML methods like support vector machines (SVM) and kernel methods 

do not directly perform well on raw data or end-to-end learning procedures. It requires a level of 

subjectivity to manually reduce the redundancy in raw data by objectively extracting crucial 

information as input features to the ML model [41] [42].  

Additionally, the reliable performance of machine learning on neuroscience studies 

applied to a limited number of participants [40]. As the input dataset is collected from different 

source sites, the classification performance of ML methods also decreased significantly [43] 

[44]. Thus, the generalizability and objectivity of ML methods remains challenge in brain 

disorder clinical applications.         

 
Inspired by the human brain neural network, deep learning as a subfield of machine 

learning, has been developed as a less experimental dependent and more data-driven approach. 
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Despite the varying degree of success of deep learning techniques in fields of computer vision, 

speech recognition, and natural language processing [45] [46] [47], several review papers 

reported that various deep learning techniques have been outperformed machine learning 

methods in psychiatric research [48] [49] [50].  The reason includes the data-driven deep multi-

layers architecture in deep neural networks is more suitable for learning order and nonlinear 

relations among input features and high complexity of discriminative patterns in neuroimaging 

data [42] [51] than traditional ML methods. The deep learning technique enables learning more 

generative features than the typical machine learning method because it depends on an extensive 

training sample size. In addition, the complex architecture of deep learning neural networks 

increases the level of invariance to shift. The research of convolutional neural networks (CNN) 

has shown that the deeper convolutional layer in the neural network can extract abstract 

discriminative features of patients with Alzheimer’s disease [52]. Another study found that the 

latent representations are highly task-specific from deeper hidden layers in sensorimotor tasks 

[53]. Thus, in recent years, deep learning methods have become a new frontier in neuroimaging 

research. 

2.1.2 Overfitting  

 Through the development of the deep neural network in early psychiatric diagnosis, 

overfitting has arguably become the first issue that constrains the performance of the deep neural 

network in this field [48]. Overfitting is a well-trained deep neural network that can achieve high 

prediction accuracy in a training dataset but results in poor prediction accuracy in an unseen test 

dataset. One primary intrinsic causation of overfitting is coupling with the small sample size and 

relatively high dimensionality in a neuroimaging training dataset. Increasing the complexity and 

capacity of deep neural networks to increase its power can also result in overfitting. Thus, some 
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commonly used advanced deep neural networks such as VGGNet [54] and Google Inception 

Network [55] were rarely applied on real fMRI data. These very deep convolutional neural 

networks are susceptible to overfitting when the size of the training samples is relatively small. 

In fMRI research, researchers try to aggregate training datasets from multiple different sites [56] 

[57] to increase the sample size (and guard against overfitting), given that scanning is expensive 

and acquiring large amounts of data on a single scanner is prohibitive. Several machine learning 

or deep learning studies can approach high accuracy in single-site data classification, resulting in 

poor accuracy in independent site classification tasks [58] [59]. Different sites of datasets result 

in varying experiment protocols, subject distributions, or even other data processing methods, 

which are crucial in prediction bias causation. Thus, prior researches indicate that the multi-site 

dataset requires a higher generalization of the DL method to extract independent and transferable 

patterns. Different ways have been developed to solve this issue and train deep neural networks 

by public datasets. 

The most typical way to prevent overfitting is to either increase the sample size (or make 

the sample more representative of the general population) or use regularization. In the previous 

research, most of the studies built a sparsity model against the overfitting in high dimensional 

neuroimaging datasets, thereby providing an efficient way to enhance the generalizability in deep 

neural networks. However, the prediction accuracy of classifiers is poor because of the reduction 

in neural networks' power. Thus, there is an intrinsic trade-off between the accuracy and 

generalizability of prediction models. The most commonly applied methods can be used to 

sparse the CNN model are L1-regularization, L2-regularization, and drop-off layers [60]. Many 

studies have applied these methods to analyze fMRI datasets and controlled the sparsity of model 

in various ways [61] [62] [63] [64]. These studies demonstrate that building a sparse model can 
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benefit in relieving overfitting. Another commonly used method of regularization is dropout 

layers. The idea of a dropout layer is relatively straightforward; it gives each neuron in DNN a 

probability of being temporarily deactivated in training. As a result, only a partial and minor 

version of DNN is applied during each training iteration, so the complexity of DNN is 

significantly reduced [65].   

2.1.3 Prediction Interpretation  

Biomarker identification in the deep learning model are another difficult but critical 

challenge in deep learning study. Unlike the statistical group analysis method, in most previous 

deep learning research, how the deep learning model classifies and predicts the results remain 

unknown. In psychiatric disorder diagnosis clinical approaches, the interpretability of the deep 

model is crucial. The mechanism of the deep learning model needs to be further clarified and 

verified. In a transfer learning study [66], researchers applied PCA to analyze the first layer and 

contractive auto encoder (CAE) to analyze the third layer, followed by  PCA for the fourth layer. 

The methods are complex and lack of consistency at this point. Other studies compared the 

weights in a specific layer and end up with a feature variance map such as a brain network figure 

[66] [67] [62]. This method may not be sufficient to validate how a well-trained deep neural 

network predicts unseen data that propagates forward through all layers and further determines 

which biomarker contributes the most in final decision making. In this study, we used a recently 

developed method to either identify discriminative biomarkers in mental disorder classification 

or assess the robustness of RSFC features in different datasets.  
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2.2 Large-scale online datasets 

ABIDE I&II 

 Autism spectrum disorder (ASD) remains a challenge in over 1% of children, but 

diagnosis and prediction are sufficient for earlier ages. The Autism Brain Imaging Data 

Exchange (ABIDE) initiative has large-scale functional and structural brain imaging data to 

analyze various types of ASD and respond to the clinical requests 

(http://fcon_1000.projects.nitrc.org/indi/abide/). There are two substantial collections of datasets, 

namely, ABIDE I [68] and ABIDE II [69]. Specifically, ABIDE I 

(http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html) was released in August 2012, which 

aggregated fMRI data from 18 international sites, including 539 ASD patients and 573 healthy 

controls. ABIDE II (http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html) was initially 

developed to focus on the study connectome of the ASD brain network. Later than ABIDE I, it 

was released by June 2016. ABIDE II involves 19 acquirement sites, including 1114 subjects 

from 521 individuals with ASD and 593 healthy controls, with subjects’ ages ranging from 5 

years to 64 years.  

Human Connectome Project 

 The Human Connectome Project (HCP; http://www.humanconnectomeproject.org/) aims 

to construct an unparalleled compilation of the complete structural and functional neural 

connections within and across subjects. It shares large-scale data, including resting-state fMRI 

data, to address human connectional questions. In practice, we collected the rs-fMRI data from 

the HCP S1200 release [70]. It contains 1206 healthy young subjects aged 22 to 35 years, 

resulting in 1094 anatomical and functional rs-fMRI data. The anatomical and functional data 

were acquired by Siemens 3T scanner at Washington University at St. Louis for each subject. 
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Anatomical MRI data are 0.7mm isotropic, and the functional MRI data are 2mm isotropic. The 

TR is equal to 0.72s. It has one thousand two hundred frames per run (14.4 minutes) and four 

runs in two sessions.   

1000 Functional Connectome Project (1000 FCP) 

 As the essential collection of ABIDE data, the 1000 Functional Connectomes Projects is 

a collection of rs-fMRI datasets from over 1000 subjects acquired in more than 30 independent 

global studies. The large and heterogeneous sample of rs-fMRI data can facilitate the analysis of 

consistencies in the default brain network across different subjects and institutions [71]. Given 

that all the sites and studies are independent, the between-study heterogeneity remains a 

challenge in the homogenous analysis of the 1000 FCP dataset. In 2010, one original study [72] 

developed a method to use heterogeneity data as a whole result in expected homogenous results. 

ADNI  

 The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (www.loni.ucla.edu/ADNI) 

[73] gathers various types of data that aim to improve clinical and research studies to predict and 

treat Alzheimer’s disease (AD). It includes 63 sites from the US and Canada to track the 

progression of AD in neuroimaging and biochemical data. ADNI helps researchers develop a 

standardized protocol to analyze multi-site shared AD data. In the recent decade, ADNI has 

become an entire database in diagnosing AD and predicting future AD. Many studies have 

achieved over 95% accuracy and biomarkers in AD early prediction from both structural MRI 

data or functional MRI by using proposed feature extraction and classification methods [74] [75] 

[76] [77].     
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AOMIC 

The Amsterdam Open MRI Collection (AOMIC) provides multimodal (3T) MRI data, 

including T1-weighted, diffusion-weighted, and functional MRI data [78]. All healthy 

participants have details of demographic information. This study collected two different releases 

named PIOP1 and PIOP2 (Population Imaging of Psychology) from the AOMIC resting-state 

dataset.  

HBN 

The Child Mind Institute launches the Healthy Brain Network (HBN), and its focus on 

sharing a collection of samples from over 10k New York area child participants. The HBN data 

includes diffusion MRI, morphometric MRI, resting state fMRI, etc. We used resting-state fMRI 

and structural MRI data in this study. The demographic information,  protocol and experiment 

design of HBN database can be found in [79] .   

 

 There are many other large public fMRI datasets that are currently available such as the 

UK Biobank [80] (N>40,000) and the adolescent brain cognitive development (ABCD) [81] 

(N=1,1975) etc. Those databases have fMRI data acquired from subjects with varied ages, 

gender, race, and other demographics that can enhance the generalizability of the training model. 
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2.3 Methods 

2.3.1 Supervised learning models  

Multi-layer Perceptron (MLP) 

 Multilayer perceptron (MLP) is a vanilla class of feedforward neural network. It consists 

of three major components: an input layer, a hidden layer, and an output layer. The hidden layer 

in MLP with a learned nonlinear activation function can transform input data into linearly 

separable space, making MLP a logistic classifier. MLP commonly uses a supervised training 

method called backpropagation, which optimizes and updates the parameters from output layer 

to input layer. MLP is also referred to as fully connected layers (FNNs), where each node is 

connected with all other nodes in each layer. Given that excessive hidden neurons are involved, 

overfitting remains a critical issue in FNN like architecture [82]. In RSFC studies, MLP has 

often been applied as a classifier to predict behavior and demographics [80] and used in 

comparison to more advanced neural network architectures. 

Convolutional Neural Network (CNN) 

 Unlike MLP, convolutional neural network (CNN) aims to explore the input of a 2D/3D 

image/volume or matrix instead of a single vector (Fig.1). One property of most images is that 

the adjacent pixels share similar information, making CNN capable of reducing the number of 

parameters compared with FNN architecture. The essential component of CNN is a 

convolutional layer. One convolutional layer consists of a series of learnable filters in in-depth 

dimension. All filters can be seen as a partial kernel to filter raw images simultaneously. In the 

forward learning process, each filter takes a 2D convolution calculation across the width and 

height of the input image and pass the result to an activation function. After nonlinear activation, 
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a weighted stack of weighted activation maps is created. In this way, a specific pattern of 

features can be detected and located by a specific filter. In other words, every entry in the result 

can be interpreted as an output of neurons with one particular image location. They share 

parameters with neurons in the same activation result [83] [84]. This local weight sharing 

significantly reduces the number of learnable parameters and reduces the model's capacity. So, it 

is a suitable property against overfitting. CNN also consists of a pooling layer and fully 

connected layers. All layers are trained by feedforward backpropagation.  

 Early studies exploited the idea of using CNN representations in performing prediction 

and showed good within-subject performance [85]. As a result of the character of a 2D feature 

extractor, many studies applied CNN as a decoder to analyze the fMRI signal from the visual 

cortex [86] [87] [85] [88]. Previous studie validated the reliability of the established mapping 

between fMRI data and convolutional layers to extract robust feature representation of visual 

stimuli. So, it can be used as a generic mapping method in visual signal decoding and encoding 

[86]. CNN is also widely applied in identifying discrimination of schizophrenia and ASD [89] 

[61].  
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2.3.2 Unsupervised learning models  

 Different from supervised learning method, unsupervised learning aims to learn 

undetected patterns in a dataset with no observed labels and minimal human supervision. In 

contrast to learn human labeled data in a supervised learning method, unsupervised learning 

focuses on modeling probability densities over inputs. One of the most typical use of 

unsupervised learning is clustering. 

Autoencoder   

 
 Autoencoder (AE) is one of the typical unsupervised learning methods. It learns efficient 

data coding from unlabeled data in downstream tasks [90]. As illustrated in Fig 2, it consists of 

two main processes, encoding, and decoding. In the encoding process, also named the reduction 

phase, an encoder reduces the dimension of raw data and extracts the efficient feature 

representation. In the decoding process, the reconstruction phase, a decoder reconstructs the 

estimated input from latent features in the encoding process (Fig.2). Both encoder and decoder 

are trained simultaneously to achieve optimal results. By penalizing the network with the 

Figure 1. An architecture overview of CNN.  Left: A regular 3-layer neural 
Network. Right: A ConvNet arranges its neurons in three dimensions (width, 
height, depth), as visualized in one of the layers. Every layer of a ConvNet 
transforms the 3D input volume to a 3D output volume of neuron activations. 
In this example, the red input layer holds the image, so its width and height 
would be the dimensions of the image. 
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reconstruction error, our model can learn the essential attributes of the input data and how to best 

reconstruct the original input from an "encoded" state. Ideally, this encoding will learn and 

describe latent characteristics of the input data.  

 AE  has been widely used in offline pre-training models to extract feature representation 

from high dimensional fMRI datasets because of its dimension reduction ability [91] [92] [93]. 

The basic idea to pre-train a model is to combine an autoencoder (AE) or deep belief network 

(DBN) as an unsupervised learning model to train an unlabeled dataset and an adaptive model 

for specific classification or regression tasks in supervised learning. The result indicated that a 

pre-trained AE could effectively reduce the heterogeneity among the input datasets from 

different sites [94]. In a previous study [95], the author found that the error rate of schizophrenia 

classification significantly decreased from 20.2 (± 1.2) to 14.2 (± 0.4) if the weights of the deep 

neural network (DNN) are initialized by a well pre-trained stacked autoencoder (SAE) than 

without it. The researchers controlled the sparsity of SAE by the L1-norm regularization term. 

One ASD diagnosis paper employed a similar denoising SAE to pre-train their DNN, resulting in 

over 70% accuracy in identifying ASD versus control patients in the dataset [96]. They also 

identified the positive and negative functional connectivity (FC) features in predicting ASD from 

the resting-state fMRI dataset. One study combined DNN with a pre-trained SAE as a feature 

selection model, resulting in a 9.09% improvement in the ASD classification task [97]. Other 

work also proved that prior learning experience from a pre-trained model could increase the 

generalizability in the feature extraction process and complex pattern identification in mental 

disorder studies [59] [91].   

 One advanced type of AE called denoising autoencoders (DAE) was proposed to train the 

predictive model for better generalization. The estimated classification could improve novel test 
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data accuracy and alleviate the overfitting effect. The decoder of DAE reconstructs input data 

based on a corrupted version of input [94] . In RSFC research, some random features of the input 

RSFC data are initially set to zero at first. In this way, the uncertainty and diversity of input data 

have been increased, allowing pre-trained AE to have greater accuracy in predicting novel data 

[98]. Especially in a multi-site dataset, one study tested their DAE model by leave-one-site-out 

classification. They found that 13 out of 18 sites of the ABIDE multi-site RSFC data have higher 

prediction accuracy than global results obtained by combining data from all sites [96].  

 

 

 

 

 

 

 

 

 

 

 

2.3.3 Model Explanation methods 

 Given the complex and non-linear mechanism of the deep learning model, it is often 

treated as a black box to predict the result. However, in the mental disorder classification task, 

interpreting the deep learning model's decision-making becomes an important issue for further 

Figure 2. A simple autoencoder consists of an encoder and decoder.  Encoder 
proposes to extract latent representation z of data x from the input layer to 
hidden layers, and decoder proposes to reconstruct data from latent feature z. 
The reconstruct error is the difference between the original input data x and 
the consequent reconstruction data �̅�𝑥.  
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clinical application. Several methods were proposed in interpreting the classification result 

making process including IntegratedGradients  [99], Layer-wise Relevance Propagation (LRP) 

[100], DeepTaylor [101], and DeepLIFT [102], etc. In theory, there is no conclusion that which 

one interprets model best. Among them, IntegratedGradients computes the partial derivative of 

the output to each input feature. Different from the common gradient-based method, the gradient 

derivative is the mean gradient while the input change from a baseline �̅�𝑥  to 𝑥𝑥. The baseline �̅�𝑥 is 

normally set to zero. As illustrated in Fig.3, LRP constructs quantity of relevance of unit 𝑥𝑥 in 

layer 𝑙𝑙 referred as  𝑟𝑟𝑖𝑖𝑙𝑙 , through a backpropagation from output units to the input features. There 

are multiple propagation rules to calculate 𝑟𝑟𝑖𝑖
(𝑙𝑙) in LRP, such as Basic Rule (LRP-0), Epsilon Rule 

(LRP- 𝜖𝜖) and Gamma Rule (LRP-γ) [103]. Similar to LRP, Deep LIFT also proceeds in back 

pass computation. Different is, the attribution of each unit is assigned as a comparison between 

the relative effect of the original network to the new network with reference baseline input. 

Normally the baseline is set to zero. All methods discussed to construct a result heatmap at the 

end, which has an attribution score of all features relative to a target prediction unit. In 

psychiatric classification tasks, interpretation methods were proposed to construct a relevant map 

of all ROIs in the human brain and further identify the biomarker in the disease group.  
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2.3.4 Domain Adaptation 

 In order to understand domain adaptation, consider a scenario wherein an algorithm needs 

to perform a classification task on the Dutch language. One could improve its performance by first 

training it on a larger database of English and then training on a relatively smaller database of 

Dutch. Even though the two languages are different, at least some of the rules of language are 

similar. Therefore, the lack of availability of a large Dutch database can be alleviated by learning 

some linguistic rules from a larger English database. This improves algorithmic performance when 

Figure 3. Computational flow of LRP. A prediction for the class ASD is 
obtained by forward-propagation of the pixel values {xp}, and is encoded by 
the output neuron xf. The output neuron is assigned a relevance score Rf = xf 
representing the total evidence for the class ASD. Relevance is then back-
propagated from the top layer down to the input, where {Rp} denotes the 
pixel-wise relevance scores, that can be visualized as a heatmap.  
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some linguistic rules learned from English may be equally applicable in Dutch. This is the essence 

of domain adaptation [104]. As illustrated in Figure 4, the data distributions are different in the 

source domain and target domain although the two groups are separable in both the domains taken 

independently. However, the classifier learned from the source domain (the red dotted line in 

Figure 4a) cannot directly be transferred to the target domain (Figure 4b). This affects the 

generalizability of the classifier. Thus, the objective of domain adaptation is to learn the differences 

in data distributions and improve the target domain classifier (black dotted line in Figure 4c) by 

jointly optimizing the classification and domain fusion (illustrated by approaching and splitting 

arrows in Figure 4c) [105]. In neuroimaging research, the transductive scenario assumes that the 

dataset from the source domain has annotated labels from an expert and the dataset from the target 

domain may not have labels. The domain adaptation approach is jointly optimized to minimize the 

domain shift effect across source domain data and target domain data [106]. 

 

 

Figure 4: (a) and (b) are the classifiers before domain adaptation in the source and target domains, 
respectively. The domain adaptation process aims to reduce the domain divergence by maximizing 
the domain confusion as well as minimizing the classification loss in (c). The red line in (a) 
illustrates the decision boundary from training a source domain classifier. When this is transferred 
to the target domain as is, it is sub-optimal. The blue line in (b) illustrates the desired decision 
boundary from training a target domain classifier. The black line in (c) illustrates the decision 
boundary result from training a domain adaptation classifier. 
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Chapter 3 

Transfer learning for improving neuroimaging based diagnostic classification 

Abstract 

Overfitting, the main issue that constrains the validity and generalizability of machine 

learning in neuroimaging based diagnostic classification, is in part due to small sample sizes in 

relation to what is required for generalization. Even with data aggregation (such as in Autism Brain 

Imaging Data Exchange or ABIDE), the relatively smaller sample sizes are a result of the fact that 

it is difficult/expensive to acquire data from clinical populations. With healthy controls, we have 

comparatively larger samples available. Therefore, we propose to address overfitting by using 

larger healthy samples (from Human Connectome Project or HCP) to learn the diversity of neural 

signatures of healthy controls, with the aim of transferring that learning into the context of 

discriminating autism from healthy controls in ABIDE. In order to do so, we developed a complete 

variational autoencoder based transfer learning framework including data oversampling, model 

pre-training, classifier training and testing, and model explanation. Then, the performance of 

transfer learning was estimated and visualized. The transfer learning classification model achieved 

about 7% more accuracy on site-mismatched data than obtained without transfer leaning. Overall, 

we have demonstrated the applicability of transfer learning within a deep learning framework for 

utilizing larger samples of available healthy control data to improve generalizability and accuracy 

of diagnostic classification in ASD, as well as reduce the harmful effects of inter-site variability 

on classification. We believe the proposed framework is potentially applicable to other disorders 

as well. 
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3.1. Introduction 

The use of artificial intelligence in diagnosing psychiatric disorders based on neuroimaging 

data is an attractive proposition since it provides an element of objectivity in an otherwise 

traditionally subjective mode of diagnosis. Despite a strong logical case, its practical 

implementation and utility remains a challenge since the prediction accuracy is limited and 

generalizability is uncertain. Here we focus on one such mental disorder, autism spectrum disorder 

(ASD), which is a complex neurobehavioral disorder that is clinically diagnosed by impairment in 

communications and social skills [107] [108] [109] [40]. In recent years, deep learning (DL) has 

been developed as a data driven approach to build hierarchical multi-layer structures to 

automatically predict outputs of a given system from novel inputs [110] [111]. 

3.1.1. Limitations of existing deep learning approaches 

Despite the varying degrees of success of DL techniques in fields of computer vision, 

speech recognition, and natural language processing [112] [46] [47], its applicability in the context 

of neuroimaging based diagnosis of mental disorders is yet unclear, primarily due to questions 

about overfitting and generalizability. For example, using open-source large data such as Autism 

Brain Imaging Data Exchange (ABIDE) [58], several papers reported that various DL techniques 

outperformed traditional machine learning methods in ASD classification research [113] [49]. 

However, overfitting is arguably the first issue that constraints the performance of deep neural 

networks in this field [114] [115]. Overfitting refers to a well-trained deep neural network that can 

achieve high prediction accuracy in the training dataset but results in a poor prediction accuracy 

in an unseen test dataset [116]. One major cause for overfitting is a combination of the small 
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sample size and relatively high dimensionality in the training dataset, which is also known as 

the curse of dimensionality or small-n-large-p problem [117]. 

Another issue limiting the performance of deep neural networks (DNN) is the 

heterogeneity between training and test dataset, especially when datasets are collected from 

different sites as in large open-source databases. Even though previous studies have used relatively 

large training samples, the prediction accuracy from multisite data was significantly lower than 

that from single site data [118] [59] [115]. For large open-source data such as ABIDE I, the data 

are pooled from 18 acquisition sites with different scanner types, acquisition parameters, 

age/gender distribution of subjects [119]; these lead to different data distributions from different 

sites. However, in real clinical circumstances, test data will probably be acquired from different 

institutions than the ones on which the classifier is trained. A classifier cannot easily predict novel 

data distributions based on different data distributions in the training dataset. A prior study using 

ABIDE data has reported that classification accuracy can be significantly degraded when training 

and testing data are drawn from different sites as compared to them being drawn equally from 

those sites [115]. Thus, prior research indicates that the multi-site data requires DL classifiers to 

be able to generalize better [120] [59]. 

3.1.2. Transfer learning in neuroimaging 

To address the issues of overfitting and ensuing lack of generalizability across sites in 

multi-site data, we propose transfer learning [121]. One major cause of overfitting is the limited 

sample size and heterogeneity in the proposed datasets. A straightforward solution to reduce 

overfitting is combining the knowledge learned from datasets in other source domains and fine-

tuning an adaptive neural network by training fewer examples from the current target domain. This 

principle of “transferring” knowledge learned from one dataset into another is known as transfer 
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learning and is a dominant approach in multiple fields of science and engineering [122] [123], and 

has the potential to be applied in neuroimaging based diagnostics. It may be an effective technique 

to enhance the robustness and generalizability of artificial neural networks with complex 

neuroimaging datasets. The utility of such transfer learning (TL) has been demonstrated in 

unrelated contexts and, to a limited extent in disorder classification from neuroimaging data. In 

TL, the source domain is defined as the space from which initial learning is derived from, and the 

target domain is defined as the space into which this initial learning is transferred to.  

In neuroimaging, TL is especially relevant because we now have relatively large datasets 

with data from healthy controls. For instance, the initial release of UK biobank has 10065 subjects 

with both structural and rs-fMRI data [124]. Human Connectome Project (HCP) comprised 1206 

healthy young adults (age 22–35). There were 1094 subjects with both structural MRI and rs-fMRI. 

[125]. Amsterdam Open MRI Collection (AOMIC) [126] includes three datasets as well as detailed 

demographics and psychometric variables from a relatively large set of healthy participants 

(N=928, N=226, and N=216). Yet, acquiring such large amounts of data from every disease 

population remains difficult and expensive. Therefore, the idea is that if we are able to use the 

large amount of healthy data to learn neural representations of mental health, then such learning 

to can be “transferred” to a context where individuals with a mental disorder are being 

distinguished from controls. In short, when characterizing neural representations of mental health 

disorders, knowing the neural correlates of health precisely, allows us to leverage the large amount 

of data from healthy controls to our benefit. 

Previous neuroimaging studies have used TL in different contexts [127] [128]. One study 

[129] applied a novel two-path 3-D convolutional neural network (CNN) architecture, to train 

structural MRI and functional MRI simultaneously. They achieved an accuracy of 69.15% in an 
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attention deficit hyperactivity disorder (ADHD) classification task using a multi-modality 3-D 

CNN model with TL between modalities. TL has also been applied in the early diagnosis of 

Alzheimer’s disease (AD) [130] [131]. In this case, although TL is not from a different dataset but 

rather from a subset of the same dataset, they obtained better accuracy in multi-site diagnostic 

prediction [132] with TL compared to without. Vakli et al. used resting state functional 

connectivity (rs-FC) to predict age in healthy individuals and found that accuracy and 

generalizability of the model on their in-house dataset improved when they used a model that had 

been pre-trained using larger public databases such as Nathan Kline Institute Rockland Sample 

(NKI-RS) dataset [133]. 

In contrast to these earlier studies, we are proposing to “transfer” the learning from healthy 

control data (obtained from HCP [134]) to situations where one has to predict whether a given 

subject is healthy or has a mental disorder (ASD in our case). The target domain (in our case, 

ABIDE data) is defined as the space to which the classifier pre-trained in the source domain (in 

our case, HCP data) is applied for classification. For the target domain, we utilized data from 

subjects with ASD and healthy controls available in the ABIDE dataset [135], pre-processed with 

a pipeline identical to that used for HCP data. 

3.1.3. Data oversampling using generative models  

Even though TL can address overfitting and enhance the generalizability of model, the 

class imbalance issue caused by TL cannot be ignored. Class imbalance arises when a dataset has 

large samples in one major class, and relatively smaller samples in other classes. Different from 

computer vision, natural language processing or other fields, publicly available large neuroimaging 

databases containing healthy control participants are available as compared to databases containing 

subjects with mental disorders. For example, ABIDE I and II [58] (N ̴ 2000) are available for ASD 
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and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [130] (N ̴ 3000) for Alzheimer’s. In 

contrast, several datasets are available for healthy controls including HCP [134] (N ̴ 1200), Healthy 

Brain Network (HBN) [136](N ̴ 2500) and UK Biobank [124] (N>10000). Pooling these will 

provide us with over 10,000 healthy control subjects, which is an order of magnitude more than 

the number of subjects available for any given mental disorder. Therefore, any transfer learning 

from healthy datasets (as explained in the previous section) would create a scenario of unbalanced 

datasets during classification [137], wherein the DL model is trained by many more healthy control 

class samples as compared to patient class samples. This biases the model towards features from 

the major class, thereby impacting the overall error rate [138] [139] [140]. This situation is 

aggravated in TL and needs to be addressed. 

To balance the dataset, the commonly used resampling techniques include undersampling 

the majority class data [141] or oversampling the minority class data [142]. Generally, the 

undersampling works better than oversampling [143], but the latter does not lead to loss of data 

from the original dataset. The most widely used oversampling approach is synthesizing new 

examples and is called Synthetic Minority Oversampling Technique (SMOTE) developed by 

Chawla et al. [142]. The major steps of SMOTE include selecting samples closed in the latent 

feature space, drawing a separate line between the samples and then synthesizing new samples at 

a point along the line. However, SMOTE is known to be less effective on high dimensional data 

such as gene expression microarray data [144]. Therefore, it is unlikely to work well on high 

dimensional fMRI data. Different from the traditional SMOTE method, with the development of 

generative modeling, Variational Autoencoder (VAE) [145] and Generative Adversarial Networks 

(GAN) [146] for balancing classes have been successfully applied across various fields [147] [148] 

[149] [150]. The details of VAE will be introduced below. In short, a generative model can learn 
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the true underlying distribution of input observations in latent space during training, and can 

subsequently be applied to generate synthetic observations that closely resemble those of the 

training dataset [151]. By comparing different approaches, Fajardo et al. [151] found that a VAE 

based model outperformed GAN on benchmark MNIST (Modified National Institute of Standards 

and Technology database) image dataset. Wang et al. [152] developed a novel generative VAE 

model to generate synthetic data as a data augmentation strategy to achieve state-of-the-art 90.4% 

accuracy on high resolution ImageCLEF-DA images, and also reduce the divergence of input data 

distributions. Therefore, in this study, we utilized a VAE model to generate synthetic FC features 

from minority ASD class, and then use the synthetic data to balance the large-scale heathy control 

samples transferred from the HCP database. 

3.1.4. CNN-based VAE model 

 Unlike conventional autoencoders, VAE is a generative model that can train a generative 

representation from input data and generate new samples such as text, image, or language from the 

latent sample distribution [122] [123] [145]. Learning a generative representation from input data 

could potentially aid in improving generalizability of a CNN, something that we aim to achieve 

using TL. However, applications that use VAE as an unsupervised learning model in TL remains 

limited. One group used VAE as an encoding model to analyze visual cortex fMRI data [153]. 

They found that the VAE model decodes video reconstruction activity in a more convenient way 

by transforming fMRI activity into low dimensional VAE latent space representations. Besides 

that, the application of VAE in neuroimaging is in its infancy, mainly because most fMRI studies 

have focused on learning a compressed representation of input data while VAE learns the 

parameters of a probability distribution representing the data [145] [127]. Since VAE learns to 

model the data, researchers can sample from the distribution and generate new input data samples. 
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This provides distinct advantages compared to the traditional approach generally used in 

neuroimaging based classifiers. Different from abovementioned studies, the goal of pre-training 

the model in the proposed TL approach is not just learning a compressed version of fMRI data, 

but also to learn the probability density across different data distributions because we have fMRI 

data from different domains (or sites). Thus, the application of VAE in TL as applied to fMRI data 

is among our novel contributions. 

For ASD classification, we applied a CNN model driven by FC features as discussed in 

Zou et al. [129]. The data-driven CNN has a lower dimension and less parameters than normal 

CNN, and hence is considered robust against overfitting in FC classification [154] [155]. CNN has 

also been used in Alzheimer’s classification, and has been proven to be an advanced supervised 

learning model useful in classifying Alzheimer’s from controls in the ADNI data [130]. To 

implement a complete TL model, we transferred the encoder from VAE to CNN and replaced the 

decoder with fully connected layers for classification. Similar to prior fMRI research, the FC 

adjacency matrix was treated as a normal square image input to the designed convolutional filters.  

Although previous studies have used TL to develop state-of-the-art learning models in 

different contexts [127] [128], most of these studies have not validated the effect of the TL model 

they applied on classification. To validate the process of how TL can improve the prediction, we 

tested the relationship between the sample size of HCP data in the pre-training model and 

classification accuracy, with the hypothesis that inclusion of increased number of healthy subjects 

from HCP will improve classification accuracy in ABIDE data. 

3.1.5. Stacked Autoencoder (SAE) in model pre-training  

In many previous DL-based studies, various kinds of hierarchical offline pre-training 

models were widely used [156] [92] [157]. Considering the complicated properties of fMRI 
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neuroimaging data, a well-trained unsupervised learning model can extract essential features from 

the higher dimensional structure of neuroimaging data [156]. This is a method of feature selection 

for DL models, similar to feature selection in traditional machine learning models. Selecting only 

essential features improves the performance of the classifier. A typical way to pre-train a model is 

by augmenting the main classifier with an autoencoder (AE) or deep belief network (DBN) [49]. 

An AE consists of two major components, an encoder to construct latent feature representations 

and a decoder to reconstruct original input data. The model is trained by minimizing the 

reconstruction error. Prior research showed that the features extracted by the stacked autoencoder 

(SAE) are robust and efficient [156]. Another research report indicated that a pre-trained denoising 

AE can partially address the heterogeneity among data collected from different sites in the ABIDE 

dataset [94] [96]. 

Among the abovementioned studies, most have built a sparsity model against overfitting 

in high dimensional neuroimaging datasets [156] [95]. The sparsity of AE is critical in enhancing 

the generalizability of the features extracted. However, the drawback of sparsity is that it 

introduces a bias and reduces the power of neural networks. Thus, sparsity is an intrinsic trade-off 

between bias and overfitting of prediction models. The most commonly applied methods to 

increase the sparsity of CNN models are L1-regularization, L2-regularization, and drop-off layers 

[60]. Many studies have applied sparse deep neural networks to analyze fMRI data, thereby 

controlling the sparsity in various ways [61] [155] [158] [159] [95]. For example, measures of 

ANOVA in one schizophrenia study revealed that the effects of sparsity control in pre-trained 

hierarchical layers to the error rates were statistically significant (Bonferroni-corrected p<10-7; 

d.f.=999) (Kim, Calhoun, Shim, & Lee, 2016). Therefore, to enhance the features extraction ability 
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and address overfitting, we trained sparse CNN layers with L1-regularization [160] in a stacked 

AE framework in this study.  

3.1.6.   LRP in feature identification and interpretation 

The interpretation of prediction results obtained from DL is a critical challenge in most 

studies attempting neuroimaging based diagnostics. Unlike statistical and traditional machine 

learning models such as the support vector machine, the mechanism by which the DL model 

classifies and predicts the result remains a black box [161] [162]. To better explain the basis of the 

results, previous studies using rs-FC for ASD classification [163] [164] have used the LRP (Layer-

Wise Relevance Propagation) algorithm to identify the most discriminative FC features in ASD 

classification. The major advantage of the LRP method is that it can generate a pixel-wise scaled 

heat map (in the FC matrix space) to construct the contribution of each FC value towards the final 

classification result. In the end, on the basis of the contribution map of FC features, we can infer 

which neural mechanisms (based on FC) may be most predictive of ASD diagnostic status. 

Various approaches may be used to interpret the results obtained by artificial neural 

networks, i.e., identify features that are discriminable across groups and likely led to the accuracy 

obtained. In some neuroimaging studies, the discriminative features are identified from the weights 

of shallow layers, while more abstract features are in the deeper layers of DNN [165]. Therefore, 

we applied LRP to run through all layers from the deepest output layer to the shallowest one. This 

type of feature interpretation approach is absent in TL neuroimaging studies so far. However, the 

LRP technique has been used in neuroimaging in other contexts. For example, a study used 

bidirectional LSTM to model the spatial dependencies of brain activity within and across brain 

slices [166]. The LRP algorithm was utilized based on the LSTM decoder to decompose the states 

decoding decision, and it accurately identified the physiologically appropriate associations 
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between cognitive states and brain activity. LRP has also been applied to explain the subject-level 

classification outcome in structural MRI based AD classification [165]. Multiple individual heat 

maps are constructed to determine their neurobiological relevance. In this study, based on the well-

developed LRP algorithm in the computer vision area, we designed a compact permutation 

statistical analysis method to identify biomarkers relevant for ASD classification results. 

Overall, we present a TL framework in this paper that addresses unmet needs in the field 

of neuroimaging based diagnostic classification as described above. In the following section, we 

provide a detailed description of the methods employed. 

3.2. Materials and Methods 

3.2.1. Overview 

 We illustrate the proposed VAE-CNN framework in Fig.5. It consists of three major 

components: a pre-trained model to learn the encoder from unlabeled training data, a supervised 

learning model to predict labels from the ASD dataset, and an interpretation method to identify 

features in the data that have high discriminability between ASD and control subjects. As shown 

in Fig.5, during model training in the source domain, we used the VAE on ASD and controls not 

only using ABIDE training data, but also controls from HCP data. We applied a CNN model in 

the target domain (ABIDE) for classification between ASD and controls, with transferred 

parameters initializing the pre-trained VAE model from the source domain. The classification 

performance was evaluated in terms of change in classification accuracy with an increasing 

number of healthy subjects from HCP data used during pre-training. The inputs were FC matrices 

from each subject. LRP was used to provide mechanistic and semantic insights underlying the 

classification decision. 
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3.2.2 Data acquisition and preprocessing 

We used rs-fMRI data from the publicly available ABIDE I dataset [135] (18 sites). We 

employed binary classification between controls and ASD, i.e., we considered Asperger’s subjects 

Figure 5. The architecture of the VAE-CNN transfer learning framework, with 
different types of layers such as dropout layer, 1-D convolutional layer and 
de-convolve layer. There are three major components of this framework. (A) 
An example of a batch of HCP FC matrices input into the VAE model (B refers 
to the batch size of subjects). The offline VAE model consists of two stacked 
convolutional layers as an encoder, and two de-convolve layers as the decoder. 
(B) Then the weights of the pre-trained encoder are transferred into the FC-
adaptive CNN for ASD classification. The deconvolved and reconstructed 
layers in the VAE model are replaced by the fully-connected classifier in the 
CNN model applied to ABIDE for diagnostic prediction. (C) After classifier 
training, we applied LRP analysis backward from identified ASD output to the 
input layer. The FC heat maps of each subject are constructed for FC 
biomarker identification in ASD prediction. 
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in the dataset to belong to ASD although ABIDE has provided a separate diagnosis for Asperger’s. 

We did so because the number of subjects with Asperger’s was quite small (N=93) compared to 

ASD (N=339) and controls (N=556) and we did not want to use a three-way classification problem 

with unbalanced datasets since TL was the focus of the study. The demographic information of 

participants is summarized in Table.1, including the distribution of subjects across individual sites 

and genders. All data were pre-processed using a standard pre-processing pipeline in the DPARSF 

toolbox [167]. This included the removal of the first five volumes, slice timing correction, motion 

correction and co-registration to the standard MNI space. Nuisance signals such as low frequency 

drifts, motion parameters, and white matter and cerebrospinal fluid signals were regressed out. 

Time series were temporally filtered by a 0.01-0.1 Hz band-pass filter. 

ABIDE dataset was our target domain since we were primarily interested in predicting 

whether a given subject has ASD or not. We split the 895 ABIDE subjects (selected after 

discarding a few subjects that did not meet inclusion criteria) into training and testing datasets in 

the following ways: (i) site matched split: subjects were drawn randomly so that training (N=705) 

and testing datasets (N=190) were matched on non-imaging measures, and (ii) site mismatched 

split: training data from 11 sites and testing data from 7 remaining sites. This split was carried out 

to test the robustness of the model to different sources of training and testing datasets, and hence 

potentially different distributions in the training and testing data. Cross-validation tends to 

overestimate the performance of a classifier [168], and hence, we preferred independent test data 

to evaluate the model. 

For the source domain, we utilized the pre-processed HCP rs-fMRI data obtained directly 

from their website (N=1097, includes up to the S1200 release) [134] [169] [170]. Notably, ABIDE 

and HCP datasets are distinct on various aspects, including subject distribution, age difference, 
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gender difference, ASD syndrome, and pre-processing pipeline. This distinction is also a source 

of diversity (at least in the healthy control data) that the classifier would be exposed to via TL, 

potentially improving its ability to generalize to the larger population. 

  Control Autism 

  Age Avg (SD) Gender Count Age Avg (SD) Gender Count 
CALTECH 28.87(11.21) M: 15 F:4 19 23.75(6.36) M:10 F:3 13 

CMU 26.85(5.74) M: 10 F:3 13 26.36(5.84) M:11 F:3 14 
KKI 10.16(1.26) M: 24 F:9 33 9.74(1.18) M:10 F:1 11 

LEUVEN_1 23.27(2.91) M: 15 F:0 15 21.86(4.11) M:14 F:0 14 
LEUVEN_2 14.34(1.51) M: 15 F:5 20 13.92(1.31) M:12 F:3 15 
MAX_MUN 26.21(9.80) M: 29 F:4 33 11(0) M:2 F:0 2 

NYU 15.80(7.39) M: 79 F:26 105 13.90(2.00) M: 46 F:7 53 
OLIN 16.81(3.49) M: 31 F:5 36 0 ~ 0 
PITT 18.88(6.64) M: 23 F:4 27 18.93(7.20) M:26 F:4 30 
SBL 33.73(6.61) M: 15 F:0 15 24.5(3.53) M:2 F:0 2 

SUDU 14.22(1.90) M: 16 F:6 22 13.19(0.87) M:2 F:1 3 
TRINITY 17.08(3,77) M: 25 F:0 25 16.04(2.94) M:10 F:0 10 
UCLA_1 13.25(2.11) M: 28 F:4 32  13.10(2.62) M:35 F:6 41 
UCLA_2 12.25(1.11) M: 11 F:2 13 12.72(1.87) M:13 F:0 13 

UM_1 14.07(3.18) M: 38 F:17 55  12.79(2.46) M:39 F:6 45 
UM_2 16.6(3.92) M: 21 F:1 22 14.92(1.40) M:9 F:1 10 
USM 21.36(7.64) M: 43 F:0 43 21.08(7.78) M:57 F:0 57 
YALE 12.68(2.75) M: 20 F:8 28  15.11(1.96) M:4 F:2 6 

Total 17.53(7.63) M: 458 F: 98 556 16.78(6.91) M: 302 F: 37 339 
 

 

Since the dimensionality of fMRI data is very high, we extracted mean time series from 

200 regions of interest (ROIs) as defined by the popular Craddock-200 atlas [171]. These 200 

functionally homogenous ROIs cover the entire brain. BOLD fMRI is a convolution of latent 

(unmeasured) neural activity and the hemodynamic response function (HRF). The HRF, which 

measures neurovascular coupling, varies between brain regions and individuals [172] [173]. This 

variability confounds FC estimates in healthy individuals [174] [175] as well as in subjects with 

Table 1. Demographic distribution for each site in the ABIDE I dataset 
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trauma [176], schizophrenia/bipolar [177] and importantly ASD [178] [179]. Therefore, we 

performed deconvolution on ROI time series to extract the latent neural signals [27], as in several 

recent studies [174] [175] [176]  [177] [178] [179] [180] [181] [182] [183] [184]. FC between 

pairs of ROIs was then calculated as the Pearson’s correlation coefficient between the 

corresponding latent neural signals. The whole brain 200×200 FC matrix is a weighted adjacency 

matrix (Fig.6), wherein each value indicates the level of co-activation between pairs of ROIs. The 

matrix is diagonally symmetrical because correlations do not have directionality. The diagonal 

values are all equal to 1 (autocorrelation) and are ignored. 

 

 

 

 

3.2.3. VAE-CNN model 

VAE is an unsupervised learning autoencoder model that has recently gained popularity. 

Typically, VAE is applied as a latent variable generative model to learn latent feature 

representation from unlabeled data, and then generate new data from it [145]. Here, we pre-trained 

VAE as a feature extraction model without supervision. Similar to the conventional AE, VAE has 

Figure 6. Illustrative scaled images of the resting-state functional connectivity 
matrixes in ABIDE training dataset and HCP training dataset 

ABIDE training input HCP training input 
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an encoder and a decoder. The input FC data are referred to as x and latent feature representation 

is referred to as z. The probabilistic encoder is 𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥), which is parameterized as 𝜙𝜙. Given a data 

point x, it produces a Gaussian distribution over the possible values of the latent variable z from 

which the data point x could have been generated. In a similar way, we will refer to 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧) as a 

probabilistic decoder; given a latent variable z, it produces a distribution over the possible 

corresponding values of x. The marginal likelihood of a data point and the loss of evidence lower 

bound (ELBO) ℒELBO are constructed as follows: 

 

𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝜃𝜃(𝑥𝑥) = 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥) ∥ 𝑝𝑝𝜃𝜃(𝑧𝑧|𝑥𝑥)� + ℒ𝐸𝐸𝐾𝐾𝐸𝐸𝐸𝐸(𝜙𝜙,𝜃𝜃; 𝑥𝑥) 

 

We need to maximize the ELBO loss, which is similar to minimizing the minus ELBO loss.  

Thus, the loss function of the VAE deep network can be written as  

 

𝐽𝐽(𝑛𝑛) = −𝔼𝔼𝑧𝑧~𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥)[𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧)] + 𝐷𝐷𝐾𝐾𝐾𝐾�𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥) ∥ 𝑝𝑝(𝑧𝑧)� 

 

where the first item is a reconstructed loss. Similar to traditional deterministic AEs, the expectation 

of the log-likelihood is that the input image can be generated based on the sampled values of z 

from the inferred distribution 𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥). When 𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥) is a multivariate normal distribution with 

unknown expectations μ and variances σ2, the objective function is differentiable with respect to 

(θ, φ, μ, σ). The second term refers to the Kullback-Leibler (KL) divergence between the 

approximate posterior distribution qφ(Z|X) that the encoder network maps the original data space 

into, as well as the pre-specified prior. In case of continuous latent variables, the prior is typically 

assumed to be Gaussian N(0, 1). 
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 We propose that a VAE can outperform a normal AE for our context. However, VAE is 

difficult to optimize because the sampling in latent representation is not differentiable. Once we 

have the VAE network architecture defined, we re-parameterize it to make the VAE model 

trainable. Re-parameterization can stretch the encoded standard deviation with additional random 

noise, which propagates the reconstruction error to the encoder. Therefore, the tuning of 

parameters of VAE were optimized by using an Adam optimizer [185].  

We constructed the VAE encoder with two stacked convolutional layers. Each 

convolutional layer is especially designed for FC input data. The details of this design are 

elaborated later. In addition, the decoder is constructed by two stacked deconvolution layers [186] 

[187]. The present work is the first to apply VAE for extracting representative features from HCP 

FC data [188] [189] in the source domain and then use the pre-trained model in the target domain 

classification task using ABIDE.  

3.2.4. VAE pre-training and data generation model 

As mentioned before, we use the VAE for pre-training and data oversampling. The idea is 

to let the VAE model learn latent representations of the data in an unsupervised way. In doing so, 

it is imperative to provide training examples from both classes. We used training data identified 

from ABIDE. As mentioned before, this is a total of 705 subjects, consisting of 277 ASD subjects 

and 428 controls subjects. However, just using the ABIDE training data in pre-training and then 

proceeding to classification by a CNN model will be the traditional approach devoid of any transfer 

learning. In order to bring in the component of transfer learning, we considered additional healthy 

control training examples from HCP database, consisting of 1097 control subjects. Therefore, in 

total, we had 1525 (1097 from HCP plus 428 from ABIDE) control subjects and 277 (from ABIDE) 

ASD subjects in training. This leads to class imbalance of 1248 samples (1525-277). In order to 
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alleviate this class imbalance, we let the VAE learn latent representations of ASD data and generate 

an additional 1248 synthetic ASD FC matrices. The procedure, illustrated in Fig. 7, solves the 

problem of class imbalance while simultaneously enabling transfer learning from the HCP data. 

This approach could in-principle be used to add any number of healthy control samples that are 

more widely available publicly and hence is a key component and innovation in our work. 

 
 

 

 

 

 

 

 

 

 

 

 

 

3.2.5. CNN classification model 

Our FC-adaptive CNN classifier (i.e. a CNN model that has been adapted to suit FC 

features) consists of two 1D convolutional layers with the first layer for row connectivity 

convolution and the second layer for column connectivity convolution [154] [190] [191]. Each 

convolutional layer uses the ReLU activation function [192], and the output layer uses the Softmax 

function to obtain one-hot final result (a vector of each prediction with the predicted class as one 

Figure 7 Architecture of the VAE-CNN data argumentation model is illustrated. This 
approach was adopted to solve the class imbalance between controls and ASD arising from 
transfer learning of control samples from the HCP data. No dropout layer was applied in 
the model  
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and others as zeros). In addition, we applied dropout layers after all convolutional and fully 

connected layers to increase the sparsity of the deep neural network [193] [194].  

The architecture of the FC-adaptive CNN is introduced in Fig.5. To apply regularization, 

it includes multiple well documented layers. Similar to the E2N layer in the BrainNetCNN model 

[154], the kernel size of the first row convolutional layer is 200×1. The kernel size of the second 

column convolutional layer is 1×200. No pooling layer is included in FC adaptive CNN. The first 

one has a weight size of (128,64) and bias size of (64,1). The second layer has a weight size of (64, 

32) and bias size of (32,1). The third layer has a weights size of (32,2) and bias size of (2,1). Drop-

out layers are applied after each convolutional layer. Each layer randomly shut down 0.7 

proportion of neurons in training iterations. The Softmax layer can calculate the probability array 

into a one-hot labels array. The predicted labels were then compared with the ground truth labels 

to measure the classification accuracy. The final cost includes the training loss and L1 

regularization term.  
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Figure 8. Illustration of two strategies for ASD classification: (A) For the 
baseline method, we input ABIDE training and test datasets to the VAE-CNN 
framework. (B) For the transfer learning approach, we input the HCP and 
ABIDE balanced datasets into the VAE pre-train model and tested the classifier 
on the ABIDE test dataset. (C) To investigate the effect of transferred data size, 
we used half of combined balanced dataset of the previous approach and 
repeated the procedure. (D) To investigate the effect of small sample size, we 
used half the original training data in the transfer learning approach and 
repeated the procedure. Color code: light blue for ABIDE healthy subjects, light 
orange for ABIDE ASD subjects, dark blue for HCP healthy subjects and dark 
orange for ABIDE synthetic ASD subjects.  



 43 

 

3.2.6. Transfer Learning performance estimation 

 To measure the performance of our TL framework, we test the ASD classifier under four 

approaches (Fig.8). (1) As a baseline method (Fig.8A), we followed an autoencoder based DL 

approach similar to prior research [195] [196] [197], with only the ABIDE dataset as source 

domain data being used in training the VAE pre-train model. The training dataset included both 

heathy control (light blue, N=478) and ASD subjects (light Orange, N=277) from the ABIDE 

dataset. Then we used the CNN classifier to test the model on ABIDE test dataset (N=190). (2) To 

more specifically investigate the effect of TL (Fig.8B), we used the combined HCP and ABIDE 

dataset in VAE training (N=1525) for each of ASD and control groups, with the ASD group 

augmented by the VAE generative model as explained before). For each batch of HCP and ABIDE, 

we input HCP data first, which includes only heathy controls (dark blue), followed by the ABIDE 

dataset. (3) To measure the effect of the size of the source domain dataset on TL-based prediction 

(Fig.8C), we input only half of the source domain data (N=548 instead of 1097) and corresponding 

synthetic data in the pre-train model. (4) To test the capability of the TL model to potentially 

compensate for smaller sample size of the target domain data (Fig.8D), we input only half of the 

training samples in ABIDE (N=350 instead of 705). The estimation method was applied to both 

site-matched and site-mismatched datasets to measure the robustness of the model to multi-site 

effect.  

Classifier performance was estimated by three diagnostic metrics: classification accuracy, 

balanced accuracy, and area under receiver operating characteristic curve (AUC). Classification 

accuracy is measured as the percentage of labels correctly predicted by the classifier on unseen 

test data. Given that ASD and control classes are unbalanced within both training and testing 
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datasets, we calculated balanced accuracy as well, which is measured by normalizing true positive 

and true negative predictions by the number of positive and negative samples (TPR and TNR, 

respectively) and then calculating the mean of the two values [198]: 

 

Balanced Accuracy = (TPR+TNR)/2 

 

In addition, ROC (receiver operating characteristic) reflects the diagnostic ability of a 

binary classifier system when its cutoff varies. AUC is the area under the ROC curve. This was 

implemented using DL libraries Tensorflow [199] and PyTorch [200]. 

3.2.7. Layer-Wise Relevance Propagation (LRP) algorithm 

After training the deep network, we applied the LRP algorithm to investigate input 

features important for classification [201]. The core idea of LRP is to trace back the contribution 

to the final output neuron layer by layer. The basic principle of LRP is that the total relevance of 

an output node to a class is conserved by each layer. Each of the nodes in the 𝑙𝑙𝑡𝑡ℎ layer that 

contribute to the activation of a node j in the next (𝑙𝑙 + 1)𝑡𝑡ℎ layer a part of the relevance in node 

j: 𝑅𝑅𝑙𝑙+1
𝑗𝑗 . In other words, the relevance of a node in a layer is the sum of all relevance the nodes in 

previous layer contributed to:  

�𝑅𝑅𝑙𝑙,𝑙𝑙+1
𝑖𝑖→𝑗𝑗

𝑖𝑖

=  𝑅𝑅𝑙𝑙+1
𝑗𝑗  

 

There are different ways in which the relevance can be distributed over the input neuron i, 

and different rules for how to distribute the relevance have been proposed [202]. In this paper, for 
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better visualization, we apply the ω2 rule [203] to define the propagation of relevance from the 

(𝑙𝑙 + 1)𝑡𝑡ℎ layer to the 𝑙𝑙𝑡𝑡ℎ layer. The ω2 rule formula is given by [204]: 

 

𝑅𝑅𝑖𝑖 = �
𝜔𝜔𝑖𝑖𝑗𝑗
2

∑ 𝜔𝜔𝑖𝑖𝑗𝑗
2

𝑖𝑖
𝑅𝑅𝑗𝑗

𝑗𝑗

 

 

 Here, ωij  is the vector of weight parameters that connects neuron xi  with xj . Ri  and Rj 

represent the relevance scores of neurons xi and xi. The propagation rule consists of redistributing 

relevance according to the square magnitude of the weights and pooling relevance across all 

neurons j. This rule is also valid for Rj = 0, where the actual point {xi}is already a root, and for 

which no relevance needs to be propagated. For further details, please refer to similar 

implementations in earlier work [205] and [162]. A PyTorch implementation of the LRP algorithm 

was developed for the current work and is available on GitHub 

(https://github.com/moboehle/Pytorch-LRP). 

 

3.2.8. Feature identification 

The input features were a 200×200 FC adjacency matrix, and the output was a one-hot 

prediction array. We calculated the relevance values that propagate backward from the output of 

one label to input features layer by layer. Then, because we are interested in FC features that have 

best predictive ability, the output of ASD prediction was traced back to the input layer by the LRP 

algorithm. 

The procedure to identify FC biomarkers is illustrated in Fig. 9. The final heat map obtained 

from the LRP algorithm consisted of relevance scores of each feature in the input for a given 

https://github.com/moboehle/Pytorch-LRP)
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subject. The mean relevance values of each feature across subjects (within a given group) were 

calculated as a heat map representing the group. Then we used a permutation test to identify the 

statistical significance of the relevance values. We generated 1000 input FC maps from randomly 

selecting FC data and shuffling the subject labels. These surrogate data also went through the exact 

same pipeline as the original data and the LRP algorithm gave surrogate heat maps in each case. 

Thus, for each feature, we obtained a surrogate distribution of relevance values. By comparing the 

true relevance value with this surrogate distribution, we obtained a p-value for each input feature. 

The p-value of feature A is calculated as:  

 

𝑃𝑃𝐴𝐴  =  
𝑁𝑁𝑁𝑁𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑡𝑡𝑔𝑔𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛
 ×  100% 

 

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 refers to the number of permutation values greater than true value, 

𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑡𝑡𝑔𝑔𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛 refers to the permutation number that is equal to 1000. The significant features 

were determined in the heat maps based on an FDR-corrected p-value threshold of 0.05. To further 

check whether the identified features had stronger or weaker connectivity in ASD as compared to 

controls, we used two sample t-tests. These were then visualized using the BrainNet Viewer 

toolbox [206] in MATLAB. 
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3.3. Results and Discussion 

Fig. 10 compares the classification performance between baseline classification and the 

proposed TL framework. To address the multi-site issue, we compared accuracies between site-

matched and site-mismatched test datasets. In the site-matched case, the training and test data had 

subjects drawn proportionately from all sites. In the site-mismatched case, the training data were 

drawn from a few sites and the test data were from entirely different sites. In both cases, we found 

that the TL approach achieved higher accuracy (by about 7%) versus baseline classification. 

Accuracy with the site-mismatched dataset was also lower than with the site-matched dataset. 

Figure 9. Identifying FC features with high predictive ability using the LRP algorithm.(A) 
FC matrices from test subjects were input to the VAE-CNN transfer learning model. (B) 
The FC heat map for each subject was constructed using the LRP algorithm. (C) The true 
relevance score was calculated as the mean relevance across all subjects within a group. 
(D) Using 1000 randomizations, surrogate FC maps were created by random shuffling, and 
their heat maps were created using the same procedure used on the test dataset. (E) The 
final p-value for each FC feature was calculated from the true values and their 
corresponding surrogate distributions. 
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The AUC in Fig.10 shows that transfer learning using the combined VAE-CNN 

classification model can achieve 0.73 AUC on site-mismatched dataset and 0.74 AUC on site-

matched dataset, outperforming those obtained without TL. While classification with site-

mismatched data deteriorated performance in the traditional baseline model in comparison to site-

matched data (as expected [115]), TL helped the site-mismatched data catch up with the site-

matched case by inclusion of more HCP data in the TL model. Thus, even though HCP data are 

from single site, it helps the model learn the variability in the healthy control population from a 

source other than ABIDE. This improves the generalizability (and hence, the performance) of the 

classifier. The performance improvement on unseen test data could in-principle be further boosted 

by exposing the model to more variability in both or either classes.   

While it is encouraging to see the superior performance of the TL model, a critical question 

is whether the performance is dependent on the sample size in the HCP source domain. In order to 

answer this question, we repeated the entire analysis pipeline using only half of the original HCP 

Figure 10. Results obtained from ABIDE test data with and without transfer learning  for both site-
matched and site-mismatched cases (left: classification accuracies and right: total area underneath 
ROC curve (AUC)). Training and testing data were from different sites in the site-mismatched case, 
and drawn proportionally in the site-matched case. We found higher accuracy, balanced accuracy and 
AUC with transfer learning (TL) compared to baseline (BL) for all cases. 
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samples. We found (Fig. 11 and Fig. 12) improved performance with increased sample size of the 

source domain HCP data for both site-matched and site-mismatched cases. This is encouraging 

because it indicates that there is further scope to improve performance in the future by adding more 

healthy control data in the source domain using other public databases that are freely available. 

Figure 11. Results obtained by using only half the samples in the HCP source domain and its 
comparison with those obtained by using the full HCP sample in the source domain (left: 
classification accuracies and right: total area underneath ROC curve (AUC)). The classification 
accuracy is shown in blue, the balanced accuracy as red and AUC as green. 
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Figure 12. ROCs obtained from site-mismatched test data with and without 
transfer learning approaches. In the transfer learning approach, the ROC 
curve achieved better shape when using the full HCP sample as the source 
domain compared to using only half of the HCP samples as the source 
domain 

 

Figure 13. Results obtained by using only half the samples in the ABIDE target domain data and 
its comparison with those obtained by using the full ABIDE sample in the target domain (left: 
classification accuracies and right: total area underneath ROC curve (AUC)). The classification 
accuracy is shown in blue, the balanced accuracy as red and AUC as green. 
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To investigate the effect of the size of the target domain dataset on performance, we used 

only half of the ABIDE samples (N=350) as training data. The bar chart in Fig.13 illustrates that 

AUC from the smaller target domain training sample size is lesser than that from the full training 

sample size (N=705), because small training sample sizes cannot fully represent the overall data 

distribution in the test dataset. However, with TL in the VAE-CNN model, the difference in 

balanced classification accuracy between small and normal datasets was reduced from around 6% 

to 3%. The same result is also reflected in the AUC plot. 

Finally, the LRP algorithm identified FC features that were important for classification in 

our model. Among connections identified as having significant relevance (p<0.05, FDR corrected), 

those with hyper-connectivity in the ASD group as compared to the control group are shown in 

Fig.12 and those with hypo-connectivity are shown in Fig.13. Overall, there were more 

connections with hypo-connectivity in ASD compared to hyper-connectivity. This is not surprising 

given that hypo-connectivity has been an established hallmark of ASD [207] [208] [209] [210]. 

Significant hyper-connectivity was mainly observed in local pathways within the frontal lobe 

(Fig.14), while hypo-connectivity was observed in a larger number of inter-hemisphere and inter-

lobular connections in ASD (Fig.15). This is in agreement with the hypothesis [210] that ASD is 

characterized by local hyper-connectivity and distant hypo-connectivity. In Fig.15, many paths 

connect superior frontal regions as well as temporal gyrus and lingual gyrus. This anterior-

posterior FC disruption is a commonly observed pattern in rs-fMRI studies of ASD [211]. The 

medial temporal lobe network, which incorporates the insula, and shows reduced inter-network 

connectivity, has also been found through ICA analysis of FC data [212]. 
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Fig 15. Connections important for discriminating between controls 
and ASD (hypo-connectivity) obtained from the heat map generated 
by the LRP-based VAE-CNN transfer-learning classifier. The blue 
lines refer to hypo-connectivity in ASD versus controls. 

Fig 14. Connections important for discriminating between controls 
and ASD (hyper-connectivity) obtained from the heat map generated 
by the LRP-based VAE-CNN transfer-learning classifier. Orange lines 
refer to hyper-connectivity in ASD versus controls. 
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Chapter 4 

VAE deep learning model with domain adaptation and harmonization for diagnostic 

classification from multi-site neuroimaging data 

 

Abstract 

In large public multi-site fMRI datasets, the sample characteristics, data acquisition methods and 

MRI scanner models vary across sites and datasets. This non-neural variability obscures neural 

differences between groups, leading to poor machine learning based diagnostic classification of 

mental disorders. This could be potentially addressed by domain adaptation, which aims to 

improve classification performance in a given target domain by utilizing the knowledge learned 

from a different source domain by making data distributions of the two domains as similar as 

possible. In order to demonstrate the utility of domain adaptation for multi-site fMRI data, we 

developed a variational autoencoder – maximum mean discrepancy (VAE-MMD) deep learning 

model for three-way diagnostic classification of Autism, Asperger’s syndrome and typically 

developing controls. We chose ABIDE II (Autism Brain Imaging Data Exchange) dataset as the 

target domain and ABIDE I as the source domain. We show that domain adaptation from ABIDE 

I to ABIDE II provides superior test accuracy of ABIDE II as compared to using just ABIDE II for 

classification. Further, augmenting the source domain with additional healthy control subjects 

from Healthy Brain Network (HBN) and Amsterdam Open MRI Collection (AOMIC) datasets 

enabled transfer learning and further improved performance on ABIDE II classification. Finally, 

comparison with statistical data harmonization techniques such as ComBat revealed that deep 

learning models such as VAE-MMD, when used in combination with statistical methods, can 
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provide incrementally better performance. We openly share our data and model so that the 

possibility of further improvement of the model, by utilizing the ever-increasing amount of healthy 

control fMRI data in the public domain, can be explored by the neuroimaging community. 

Keywords: functional connectivity, autism spectrum disorders, domain adaptation, variational 
autoencoder, machine learning prediction 
 
 
4.1. Introduction 

Deep learning models outperform traditional machine learning methods in identifying 

individuals with psychiatric disorders, including autism [213] [69]. However, they require larger 

sample sizes to avoid overfitting [214]. Large public databases such as ABIDE (Autism Brain 

Imaging Data Exchange) have aided deep learning models in this endeavor.  However, such large 

public databases have been assembled post-hoc, and hence contain different sources of non-neural 

variability such as different sites using different scanners and protocols. Normally, the samples 

from different scanners or acquisition protocols do not follow the same distribution in most cases 

[44]. If the test data and training data are drawn from different independent distributions, the 

performance of deep learning as well as traditional machine learning models will be degraded [213] 

[115]. To address this, we propose domain adaptation, which aims to improve the classification 

performance in a target domain by utilizing the knowledge learned from the source domain by 

making the distributions of data in source and target domains as similar as possible [215] [216] 

[217]. 

Although, multiple previous frameworks have been developed to exploit commonalities 

between different data domains to achieve domain adaptation in various areas [218] [219] [220] 

[221] [105] [222], limited number of end-to-end deep learning models incorporating domain 
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adaptation have been developed for neuroimaging data (wherein the target system is completed by 

one deep learning model instead of a sequence of intermediate steps). For example, Li and 

colleagues [216] proposed a domain adaptation framework on federated datasets across different 

sites of the ABIDE dataset. Similarly, Zhou and colleagues [217] formulated the DawfMRI 

framework, which revealed additional insights into psychological similarity among the OpenfMRI 

project databases. Both of them aligned different domains of data into one common embedding 

space followed by biomarker identification. But it is achieved by training each local model 

individually and then integrating them together by an ensemble strategy. Since this is not 

implemented as a single deep learning model, complexity increases, ease of use decreases and it 

becomes more difficult to train and optimize. Moreover, Wachinger et al. [223] validated that a 

supervised domain adaptation framework yields better results than the simple union of source and 

target training sets in Alzheimer’s disease diagnosis. Nevertheless, their methods were developed 

by an instance weighting strategy optimization combined with a shallow machine learning 

algorithm instead of an end-to-end domain adaptation deep learning model [224]. With deep 

learning models have been validated to learn features from neuroimaging data in multi-site studies 

[225] [226] [227], it is obviously a better choice to use in a domain adaptation framework. 

Therefore, a single and integrated domain adaptation deep learning model has potential and is 

preferable, but has not yet been tested and validated for classifying psychiatric disorders from 

neuroimaging data. 

Existing domain adaptation approaches applied in neuroimaging based diagnostic 

classification primarily employ supervised learning. For example, a previous study [228] proposed 

a robust domain transfer support vector machine (DTSVM) to classify mild cognitive impairment 

(MCI) by using the labeled Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. 
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Another deep domain adaptation method [229] utilized the supervised domain adaptation (SDA) 

method on the pre-trained VGG network, which is a popular deep convolutional network 

developed by Simonyan et al [230], and used labeled MRI data to fine-tune the model for 

Alzheimer’s disease prediction. Nevertheless, as we know, developing prediction models on 

medical data is marred with the complex labeling process that is not always accurate [231]. This 

is because diagnosis of psychiatric disorders is based on behavior and not objective biomarkers. 

This can make the labels less accurate for marginal cases and stratification of individuals in 

spectrum disorders. Since label scarcity is a common challenge across medical imaging studies, 

unsupervised domain adaptation (UDA) has gained importance recently [232]. UDA is also a 

solution to address potential inaccuracies in labels [214] and to also increase the statistical power 

of analysis by adding more unlabeled data [233]. By combining the advantages of supervised and 

unsupervised learning DA methods, semi-supervised approaches for domain adaptation improve 

accuracy of discriminative prediction in the UDA scenario [232]. This class of methods only 

require limited quantity of labeled data or no labeled data from the target domain [234]. However, 

literature on this semi-supervised learning approach in psychiatric disorder classification is scarce. 

To explore and validate this approach in the current study, we used unlabeled data during training 

in the target domain using a semi-supervised approach to achieve domain adaptation.  

 

Some previous studies have developed semi-supervised domain adaptation methods and tested 

them on deep learning benchmark data [235] [236]. Among them, variational autoencoder (VAE) 

[237] has been demonstrated to be robust against high-dimensional input data and is able to 

flexibly learn various distributions. By using this advantage of VAE in learning the features, [238] 

variational fair autoencoder (VFA) was further developed to learn the features that are invariant to 
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noisy nuisance factors, but retained useful information as much as possible. Developed from VFA, 

the domain invariant variation autoencoder (DIVA) [239] generated cell image data that matched 

the ground truth factors of interest but from a previously unseen domain. The VAE-based domain 

adaptation model is capable of extracting class features that are invariant to different domains. One 

semi-supervised learning framework, based on VAE with recurrent inference model, was used to 

construct the domain mixed feature representation from clinical care data [240]. In [238]. In 

addition to VAE, the discrepancy between marginal posterior distributions of the data can be 

minimized by a maximum mean discrepancy (MMD) layer [241]. Specifically, during feature 

extraction and training, MMD regularization term and VAE were jointly optimized by Gretton et 

al. Given these advantages of VAE and MMD in semi-supervised domain adaptation, we set out 

to test the validity of this model on high dimensional functional MRI (fMRI) data [242] in the 

context of domain adaptation for diagnostic classification from multi-site fMRI data. There is no 

other fMRI study that used the same approach before. 

In this study, we propose to use variational and adversarial classification frameworks for 

domain adaptation by training labelled data in the source domain and unlabeled data in the target 

domain. Variational inference model was used to learn the invariant representations across 

information from different sites of the ABIDE dataset, while retaining the discriminative 

information in the classification task. We applied a model based on VAE, which can naturally 

encourage separation between latent feature representations and domain variables. However, some 

dependencies can still remain if the labels of data points are correlated with the domain variable, 

which can ‘leak’ some of the domain information into the latent feature representation, resulting 

in dependency. Thus, our model uses a “maximum mean discrepancy” [241] regularization term, 

which is a measurement of divergence between two distributions, to penalize the distances between 
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the latent probability distribution across source and target domains. During the adversarial training 

procedure, the domain ‘confusion’ is maximized to ensure that the features are domain invariant, 

and the classification of ASD is also optimized.  

To augment domain adaptation and improve the generalizability of the classifier, we include 

more data from Healthy Brain Network (HBN) [243] and the Amsterdam Open MRI Collection 

(AOMIC) [244] datasets in the source domain. More specifically, HBN provides the research 

community with a large-scale dataset of over 10,000 healthy children through an open data sharing 

mode. AOMIC contains large-scale resting-state fMRI data from healthy individuals collected at 

the University of Amsterdam over the past decade. From the demographic information in Table.1, 

the age range of HBN and AOMIC are close to ABIDE I and ABIDE II. One reason we included 

these two databases in the domain adaptation model was to increase the variety of data distribution 

and enhance the generalizability of the model.  

We compare and contrast the proposed method with ComBat harmonization [245], which is a 

statistical technique used to reduce divergence of data distributions from multi-site MRI data. This 

is considered a current gold standard and hence, we compared and combined ComBat 

harmonization method with the proposed deep learning approach in this study [245]. Various 

approaches have been developed to remove the undesirable inter-subject or inter-site factors and 

make the data more easily comparable [246] [247]. Among those methods, ComBat harmonization 

has been applied on neural imaging data across scanners and sites [248]. Specifically, ComBat 

harmonization [249] focuses on dealing with the variability of parameters’ distributions so that 

they can be pooled together. The source of the variation, the so-called “batch effect” [245], is 

eliminated primarily based on an empirical Bayes framework [249] [248]. ComBat was also 

proposed to correct for site effects in functional measurements from multi-site fMRI data [250]. 
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We applied ComBat harmonization to the input data in this study as one of the methods to reduce 

the domain shift.  

Finally, identification of imaging features that are important for diagnostic classification is 

crucial for ASD biomarker discovery and diagnosis [251]. The interpretation of the correlation 

between domain adaptation and selected features is still a challenge in multiple studies [252] [253] 

[254] [255]. Especially in this study, imaging features in the VAE based model are difficult to 

trace back from the output layer to the input layer because of the continuous Gaussian latent 

variables in the latent space [256]. We thus propose a statistical method to identify such imaging 

features.  

Based on the information presented above, we summarize four major aspects of the proposed 

framework:  

1. We use a VAE-MMD model for domain adaptation in multi-site fMRI data for predicting 

the diagnostic labels from fMRI functional connectivity (FC) data. We demonstrate that 

domain adaptation from the first release of the ABIDE dataset (ABIDE I) to the second 

release (ABIDE II) will improve classification performance of ABIDE II as compared to 

performing classification solely on ABIDE II. 

2. We compare and contrast statistical (ComBat) with deep learning (VAE-MMD) approaches 

for domain adaptation. 

3. We test whether additional data in the source domain, specifically healthy control data, will 

augment domain adaptation and improve the generalizability of the classifier in achieving 

better accuracy in the target domain of ABIDE II. Given the large amount of healthy control 

data available in the public domain, this approach could potentially be used to substantially 
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improve diagnostic classification in relatively smaller public datasets obtained from 

individuals with mental disorders (such as ASD) 

4. We extract and identify imaging features diagnostically important for ASD prediction 

across different fMRI data distributions. 

 

4.2. Methods 

4.2.1. The fundamental algorithm of a neural network 

4.2.1.1. Multi-layer perceptron (MLP)  

Deep learning algorithms have complex mathematical structures with several processing layers 

that can extract data features into various abstraction layers.  The building block of DNN, the MLP 

[257], is a typical type of layer in feed-forward networks in which each node is connected to all 

the nodes in the next layer. Within each node in MLP, the input values are combined with weights 

and bias, and then summed up before being passed to an activation function. The most used 

activation functions include sigmoid, tangent hyperbolic (tanh) [258] and rectified linear unit 

(ReLU) [259]. The output z of a node in an MLP layer can be calculated as: 

𝑧𝑧 = 𝜎𝜎(�𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏)
𝑝𝑝

𝑖𝑖=1

 

where m refers to the number of nodes in the current layer, w corresponds to the weights of all 

connections between the current node and nodes in the previous layer, b corresponds to bias and 

𝜎𝜎 corresponds to a non-linear activation function. 
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4.2.1.2. Training an MLP 

The weights of biases of the MLP are trainable parameters, which are optimized during the 

training process. Normally, those parameters are initialized with random variables close to zero. 

After the forward computation of the MLP, the loss function can be defined as the mean squared 

error (MSE) in single class scenarios and cross-entropy in multi-class scenarios. In the training 

procedure, the MLP weights can be learned by training with a basic error back-propagation 

technique for the loss function. Back-propagation is based upon an optimization algorithm using 

stochastic gradient descent (Bottou, 2012) with a pre-defined learning rate. During each round of 

computation, the values of the network parameters can be optimized by computing the gradient of 

the loss function with respect to each of them using the chain rule.  

 

The input data of MLP always separates into groups, and each group of samples is called a 

batch. The number of samples in the input group is referred as batch size. After all the data are 

trained, the procedure repeats a certain number of times called an epoch number.  Different from 

batch, an epoch indicates one iteration of the entire training dataset the ML model has completed. 

The number of entire iterations is named as epoch number. Except the trainable parameters 

optimized during training procedure, pre-defined parameters such as batch size, epoch number or 

learning rate are fixed during training and are referred to as hyper-parameters.  

 

4.2.1.3 Overfitting and regularization 

Overfitting occurs when a well-trained MLP fits accurately to the training data but performs 

poorly with the unseen test data. Especially in neuroimaging, the training sample size is limited 
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[260], which is problematic for generalizing the findings to a clinical setting. Two straightforward 

ways to address overfitting are simplifying the model and increasing the training sample size. In 

addition, overfitting can be addressed by adding regularization to the objective function. Those 

modifications such as the well-known L1/L2 terms (Ridge and Lasso Regression) cause the model 

to be simpler during optimization but enhances the generalizability on unseen data [261]. 

 

4.2.2. Baseline techniques for ASD classification  

Machine learning techniques such as SVM and MLP neural network performed well in 

previous ASD classification studies [262] [263] [264] [265]. To estimate the performance of the 

proposed domain adaptation approach, we designated traditional SVM and MLP as baseline 

approaches in this study. Specifically, SVM used a polynomial kernel, and the hyper-parameter C 

was set to 100. In our implementation, the architecture of the baseline MLP method was the same 

as that of the VAE used in domain adaptation. The architecture has two layers, the first layer 

contains 200 nodes, and the second layer contains 500 nodes.  

 

4.2.3. Participants and Data 

Our aim was to test the utility of our domain adaptation model on fMRI data. We used ABIDE 

resting-state fMRI data for this purpose [266]. We used ABIDE I  [68] (released in August 2012) 

as the labeled supervised dataset and ABIDE II [69] (released in June 2016) as the unlabeled semi-

supervised dataset. To investigate the domain adaptation effect of our VAE-MMD model, we set 

ABIDE I as source domain, and ABIDE II as target domain dataset. There were a total of 998 
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subjects from 15 sites in the ABIDE I dataset and 623 subjects from 11 sites in the ABIDE II 

dataset.  

 
Table 2: ABIDE I data pooled from 15 different sites (and 18 cohorts, since some sites had more 
than one cohort), and ABIDE II from 11 sites. The acquisition sites include California Institute of 
Technology (CALTECH), Carnegie Mellon University (CMU), Kennedy Krieger Institute (KKI), 
University of Leuven (LEUVEN), Ludwig Maximilians University Munich (MAX), NYU Langone 
Medical Center (NYU), Olin Institute of Living at Hartford Hospital (OLIN), University of 
Pittsburgh School of Medicine (PITT), Social Brain Lab BCN NIC UMC Groningen and 
Netherlands Institute for Neurosciences (SBL), San Diego State University (SDSU, Trinity Centre 
for Health Sciences (TRINITY), University of California, Los Angles (UCLA),University of 
Michigan (UM), University of Utah School of Medicine (USM), Yale Child Study Center (YALE), 
Georgetown University (GU), Oregon Health and Science University (OHSU), Olin 
Neuropsychiatry Research Center (ONRC), Trinity Centre for Health Sciences (TCD), University 
of California Davis (UCD), University of Miami (UM). Across different acquired sites, the age 
and gender distributions change considerably. Both AOMIC and HBN data have had multiple 
releases. 
 
 

Database Acquisition site Subjects Age Mean Age Std Male Female 
ABIDE I CALTECH 32 26.79 9.6 25 7 

 CMU 27 26.59 5.58 21 6 
 KKI 55 10.1 1.31 42 13 
 LEUVEN_1 29 22.59 3.49 29 0 
 LEUVEN_2 35 14.16 1.4 27 8 
 Max 57 26.16 11.98 50 7 
 NYU 179 15.39 6.59 142 37 
 OLIN 36 16.81 3.44 31 5 
 PITT 57 18.9 6.82 49 8 
 SBL 24 33 6.7 24 0 
 SDSU 32 14.35 1.85 25 7 
 TRINITY 42 16.84 3.63 42 0 
 UCLA_1 73 13.16 2.38 63 10 
 UCLA_2 26 12.49 1.5 24 2 
 UM_1 107 13.43 2.87 83 24 
 UM_2 35 15.96 3.27 33 2 
 USM 100 22.14 7.67 100 0 
 YALE 42 12.96 2.8 30 12 
  TOTAL 988 18.43 7.82 840 148 

ABIDE II GU 104 10.68 1.62 69 35 
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 KKI 197 10.34 1.27 128 69 

 NYU 27 6.78 1.07 24 3 

 OHSU 91 10.88 1.99 56 35 

 ONRC 43 23.33 3.85 31 12 

 SDSU 23 13.91 3.85 20 3 

 TCD 19 14.45 2.67 19 0 

 UCD 32 14.78 1.83 24 8 

 UCLA 32 10.7 2.36 26 6 

 USM 32 21.37 7.74 27 5 

 UMIA 23 9.8 2.02 17 6 
  TOTAL 623 13.37 2.75 441 182 

AOMIC PIOP1 216 21.96 1.91 29 44 

 PIOP2 226 21.96 1.79 96 129 
  TOTAL 442 21.96 1.85 125 173 

HBN CBIC 287 10.75 3.73 188 99 

 SI 345 11.13 3.82 195 150 

 RU 753 9.92 0.42 501 252 
  TOTAL 1385 10.60 2.66 884 501 

  
ABIDE I fMRI data included 988 subjects from 15 different sites (and 18 cohorts, since some 

sites had more than one cohort). The number distribution of subjects across multiple sites is shown 

in Table 2. FMRI data were pre-processed using DPARSF [167]. This involved the removal of 

the first five volumes, slice timing correction, motion correction, co-registration to the standard 

MNI space, censoring of high motion volumes and regressing out nuisance variables (low 

frequency drifts, mean global signal, motion parameters, and white matter and cerebrospinal fluid 

signals). Voxel time series were temporally filtered with a 0.01–0.1 Hz bandpass filter. ABIDE II 

fMRI data included 623 subjects from 11 different sites. The pre-processing pipeline for this was 

identical to that used for ABIDE I (however, it was performed in CONN software) [267].  

In order to test whether the generalizability of the model can be further improved by 

augmenting the size of the source domain by adding healthy control data, we used two additional 

datasets in this study: the AOMIC [244] and HBN datasets [243]. AOMIC (https://nilab-
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uva.github.io/AOMIC.github.io/) data was organized from large-scale MRI projects at the 

University of Amsterdam to analyze individual differences in fMRI data. They publicly provided 

both raw and well-established preprocessed forms of three datasets: PIOP1 

(Population Imaging of Psychology), PIOP2 and ID1000. Each of them have specific data 

acquisition protocols and participants. In this study, we used the raw PIOP1 (N = 216) and PIOP2 

(N = 226) datasets instead of the preprocessed datasets. HBN 

(http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/) was acquired for detecting 

and characterizing pathologic processes in the developing human brain [243]. They have publicly 

shared a biobank comprised of data from 10,000 New York City area children and adolescents 

(ages 5–21) out of which only a small subset of subjects had an MRI. Here we use good quality 

MRI data from 1385 subjects in HBN. HBN data were collected from three sites: Citigroup 

Biomedical Imaging Center (CBIC), Staten Island (SI) and Rutgers University (RU). The 

demographic information of subjects in these two datasets is included in Table 1. 

The pre-processing pipeline for all the datasets were identical (Figure 16). The use of additional 

source domains comprising of AOMIC and HBN datasets allowed us to test the assumption that 

when the size of the source domain or number of source domain subjects increases, it improves 

domain adaptation. Specifically, the HBN dataset contains data from children and may be relevant 

for domain adaptation when the target domain also contains data from children (such as ABIDE 

or ADHD-200), as in our case.  

4.2.4. Feature extraction 

We used the whole brain cc200 atlas [171] to reduce the dimensionality of the data. This atlas 

was generated spectral clustering of resting state fMRI data of healthy subjects, and hence, the 

ROIs in the atlas are said to be functionally homogeneous. Mean time series were extracted from 
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200 regions of interest (ROIs) of the atlas. We then estimated FC by computing the Pearson’s 

correlation coefficient between each pair of time series. A vector of 19900 individual features per 

subject was constructed by reshaping the upper triangle of the 200×200 connectivity matrix minus 

the diagonal. Only the upper triangle was considered since FC is a non-directional metric. 

 

 

Figure 16. A flowchart representation of the complete processing and analysis of multiple datasets. 
The fMRI data from ABIDE I, ABIDE II, HBN and AOMIC were subjected to identical data 
preprocessing and FC feature extraction. Source domain training and testing uses ABIDE I data 
while data from healthy subjects in AOMIC and HBN are used as additional training samples in 
the source domain to test the effect of source domain training sample size on domain adaptation 
performance. Target domain training and testing uses ABIDE II data. Only training datasets are 
harmonized by the statistical ComBat harmonization method and then input to the DA deep 
learning model, a procedure similar to the non-harmonized data. Note that only the target domain 
ABIDE II data is used for identification of features important for classification. 
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4.2.5. Domain adaptation VAE-MMD model with semi-supervised learning  

In order to realize domain adaptation, we apply the semi-supervised VAE model first proposed 

by Kingma et al. [237] with unsupervised learning. The model consists of a generative model 

𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧,𝑑𝑑) and an inference model 𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥,𝑑𝑑), where z is the latent variable representation, x is 

the input data, and d is the domain variation we desire to remove. 𝜃𝜃  and 𝜙𝜙  are the trainable 

parameters of the generative model and inference model, respectively. For semi-supervised 

classification, our goal is to construct latent variable z, which has maximum information about the 

observed label y, while excluding the information about the nuisance domain variable d. It is 

achieved by adding an additional model in the generative model to correlate latent features to the 

classification task [238] . The schematic of the this model is shown in Figure 17, where the 

invariant feature in the first model M1 is referred to as 𝑧𝑧1. M1 generates x as 𝑥𝑥 ~ 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧1,𝑑𝑑), and 

M2 generates domain invariant variable 𝑧𝑧1 as 𝑧𝑧1~ 𝑝𝑝𝜃𝜃(𝑧𝑧1|𝑧𝑧2,𝑦𝑦). 𝑦𝑦 is a categorical variable that 

denotes the label of the data point x and 𝑧𝑧2 encodes the variation on 𝑧𝑧1 that is independent to 𝑦𝑦. 

Thus, for the N labeled data points and M data points without labels (i.e. unlabeled data), the 

objective function of VAE becomes: 

ℱ𝑉𝑉𝐴𝐴𝐸𝐸(𝜙𝜙, 𝜃𝜃; 𝑥𝑥𝑛𝑛, 𝑥𝑥𝑝𝑝, 𝑑𝑑𝑛𝑛,𝑑𝑑𝑝𝑝,𝑦𝑦𝑛𝑛) = �ℒ𝑠𝑠(𝜙𝜙,𝜃𝜃; 𝑥𝑥𝑛𝑛,𝑑𝑑𝑛𝑛,𝑦𝑦𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

+  � ℒ𝑔𝑔(𝜙𝜙,𝜃𝜃; 𝑥𝑥𝑝𝑝,𝑑𝑑𝑝𝑝)
𝑀𝑀

𝑝𝑝=1

 

+ 𝛼𝛼�𝔼𝔼𝑞𝑞�𝑧𝑧1𝑛𝑛�𝑥𝑥𝑛𝑛,  𝑑𝑑𝑛𝑛�[−𝑙𝑙𝑙𝑙𝑙𝑙𝑞𝑞𝜙𝜙(𝑦𝑦𝑛𝑛|𝑧𝑧1𝑛𝑛)]
𝑁𝑁

𝑛𝑛=1

 

 

where the first and second terms denote the lost functions from the labeled and unlabeled data. 

Because the label predictive distribution 𝑞𝑞𝜙𝜙(𝑦𝑦|𝑧𝑧1𝑛𝑛) only contributes to the unlabeled data in the 

second term, we compensate this by adding a regularization term with weight coefficient 𝛼𝛼 to 
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ensure that 𝑞𝑞𝜙𝜙(𝑦𝑦|𝑧𝑧1𝑛𝑛) is learned from both labeled and unlabeled data. Increasing 𝛼𝛼 results in 

more purely discriminative learning in the generative model. 

 

 
Figure 17: A flowchart representation of the semi-supervised learning model. White variables 
refer to the variables without input information and blue variables refer to those with input 
information. Only some of the labels of y are known, and hence y is half white and half blue. We 
assuming the variables z2 and y are independent to each other, while z1 and d are independent to 
each other. Among them, z2, y, and d are independent variables, and z1 is dependent on z2 and y. 

 

In the VAE inference model, we assume that variables 𝑧𝑧1 and 𝑑𝑑 are statistically independent 

to each other so that the marginal posterior distribution 𝑞𝑞(𝑧𝑧1|𝑑𝑑) is equal to zero. However, the 

independence relationship may fail because of the correlation between 𝑦𝑦 and 𝑑𝑑. As discussed in 

the introduction section, we apply an additional MMD regularization term to penalize this situation. 

In the MMD definition, the divergence between two distributions is calculated as the distances 

between mean embeddings of features [268]. Let k be a continuous, bounded, positive semi-

definite kernel and H be the corresponding reproducing kernel Hilbert space [241], which are 

reduced by the feature mapping from X to H . The MMD of distributions 𝑝𝑝𝑥𝑥(𝑥𝑥) and 𝑝𝑝𝑦𝑦(𝑦𝑦) is 

defined as follows: 

 

𝑀𝑀𝑀𝑀𝐷𝐷�𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦� =  �𝔼𝔼𝑥𝑥~𝑝𝑝𝑥𝑥[φ(x)]−  𝔼𝔼𝑦𝑦~𝑝𝑝𝑦𝑦 �φ(y)��
𝐻𝐻

2
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In the VAE model, an additional MMD regularization term was applied to enforce the model 

to match the source and target domain marginal posterior distributions of latent variables 𝑞𝑞(𝑧𝑧1|𝑑𝑑 =

0) and (𝑧𝑧1|𝑑𝑑 = 1). So, the MMD term is determined as: 

 

ℓ𝑀𝑀𝑀𝑀𝑀𝑀�𝑍𝑍1,𝑑𝑑=0,𝑍𝑍1,𝑑𝑑=1�

=  �𝔼𝔼𝑝𝑝��𝑥𝑥�𝑑𝑑 = 0�[𝔼𝔼𝑞𝑞�𝑧𝑧1�𝑥𝑥,𝑑𝑑 = 0� �φ(𝑧𝑧1)�]

−  𝔼𝔼𝑝𝑝��𝑥𝑥�𝑑𝑑 = 1�[𝔼𝔼𝑞𝑞�𝑧𝑧1�𝑥𝑥,𝑑𝑑 = 1� �φ(𝑧𝑧1)�] �
𝐻𝐻

2
 

 

Where d be the domain nuisance variable. Finally, adding the MMD penalty term into the 

lower bound of the aforementioned VAE, the proposed model becomes: 

 

ℱ𝑀𝑀𝑀𝑀𝑀𝑀−𝑉𝑉𝐴𝐴𝐸𝐸(𝜙𝜙,𝜃𝜃; 𝑥𝑥𝑛𝑛, 𝑥𝑥𝑝𝑝, 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑝𝑝,𝑦𝑦𝑛𝑛) = ℱ𝑉𝑉𝐴𝐴𝐸𝐸(𝜙𝜙,𝜃𝜃; 𝑥𝑥𝑛𝑛, 𝑥𝑥𝑝𝑝, 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑝𝑝,𝑦𝑦𝑛𝑛) − 𝛽𝛽 ℓ𝑀𝑀𝑀𝑀𝑀𝑀�𝑍𝑍1,𝑠𝑠=0,𝑍𝑍1,𝑠𝑠=1� 

 

where 𝛽𝛽 denotes the regularization coefficient in domain adaptation. Increasing 𝛽𝛽 results in more 

domain confusion regularization compared to the classification loss. Both 𝛼𝛼  and 𝛽𝛽  are hyper-

parameters that control the trade-off between classification loss and domain confusion loss, which 

are optimized through training and validation. 

The datasets input to the semi-supervised learning model are illustrated in flowchart in Figure 

16 and the entire framework is illustrated in Figure 18. In the training model (#1 in Figure 18), 

we input both ABIDE I with labels and ABIDE II without labels as training datasets into the VAE-

MMD model. The original t-distributed Stochastic Neighbor Embedding (t-SNE) figure and the 

corresponding t-SNE figures (Figure 19) after domain adaptation were generated in the beginning 
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and last iteration of this process. (t-SNE) [269] is a dimension reduction technique that allows us 

to visualize the group-wise separation of features in latent space and is used to visually assess the 

efficacy of domain adaptation (details described later in section 2.3.4). In the validation model (#2 

in Figure 18), ABIDE I and ABIDE II validation datasets were used in the validation process for 

fine-tuning the hyperparameters 𝛼𝛼 and 𝛽𝛽. At the end, ABIDE I and ABIDE II test datasets were 

used in testing the model to measure the model’s performance (#3 in Figure 18). For better 

understanding of the model performance, we record accuracy from both training, validation and 

testing models. 

 

 
Figure 18: Three major steps in the VAE-MMD model. (1) For training, we input both ABIDE I 
with labels and ABIDE II (without labels) training datasets into the VAE-MMD model. The 
original t-SNE figure and domain adapted t-SNE figure were generated in the beginning and last 
iteration of this process. The total loss was constructed by semi-supervised learning loss, 
reconstruction loss and MMD loss. (2) For validation, ABIDE I and ABIDE II validation datasets 
were used for fine-tuning the hyperparameters α and β. (3) For testing, ABIDE I and ABIDE II 
test datasets were used in testing the model to evaluate the model’s performance. Subjects in 
orange represent healthy controls in ABIDE I and ABIDE II data, subjects in blue represent ASD 
subjects in ABIDE I and subjects in green represent ASD subjects in ABIDE II. 
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4.2.6. Model setup 

In deep neural networks, MLPs [270] work well on vector inputs while CNNs perform better 

on natural images by taking advantage of spatial dependencies. Since functional connectivity 

inputs can be vectors and are not natural images, we felt that the tradeoff tipped slightly in favor 

of MLPs. In the encoder, the first layer is constructed as the latent-feature discriminative model 

(M1) and the second layer is constructed as a generative semi-supervised model (M2) in a stacked 

architecture. M1 refers to the first layer and M2 to the second layer in the encoder of the #1 in 

Fig.18. The dimension of latent features in the first and second encoding layers were equal to 2000 

and 1000, respectively. The learning rate was set to 0.0001. To reduce the likelihood of the 

gradients vanishing, each neural network layer used ReLU as activation function [271]. The epoch 

number was equal to 50 and the number of batches was 20. The code was constructed in Theano 

and Python software platforms. 

We set ABIDE I as the source domain dataset, and ABIDE II as the target domain dataset. One 

of our goals was to reduce the non-neural differences in data characteristics between the two 

domains. The ABIDE I dataset was split into 673/157/158 subjects as training, validation and test 

datasets, respectively. The training and validation sets used labeled data in a cross-validation 

framework for fine-tuning hyperparameters. For the ABIDE II dataset, it was split into 

371/126/126 subjects as training, validation and test datasets, respectively.  

4.2.7. Transfer learning 

Transfer learning (TL) [222] is a technique that applies knowledge learned from one domain 

and one task to another related domain and/or another task [265]. To improve generalizability, 
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address overfitting and increase sample size in the source domain, HBN and AOMIC data were 

included as additional source domain data. The labels of these two datasets are all healthy controls, 

which were used during training. The number of batches of HBN and AOMIC was equal to that 

of ABIDE dataset, so that they can be trained simultaneously. The divergences of these two 

datasets to the target domain data were also optimized during training, same as ABIDE I data in 

the source domain. 

4.2.8. ComBat harmonization 

We used the publicly available MATLAB toolbox [272] to achieve ComBat harmonization. 

We used default options recommended by the creators of the toolbox for its implementation. 

Finally, we separated harmonized data into training and testing datasets and input into the deep 

learning model, followed the same pipeline in training model as without ComBat harmonization 

(Fig.16). 

4.2.9. Model estimation 

Estimation of model performance happened at three levels. First, visualization of the separation 

of features in latent space with/without domain adaptation was realized using t-SNE plots. Next. 

Kullback–Leibler (KL) divergence was used to characterize the same analytically. Finally, model 

performance was characterized in terms of accuracy, etc. Details are described next. 

To visualize the effectiveness of domain adaptation, we used t-SNE [269] as a dimension 

reduction technique in the latent space. t-SNE is particularly useful for the visualization of high 

dimensional datasets. Dimensionality reduction is important because if the latent variables have 

dimensions higher than three, we cannot visualize them. t-SNE is a method developed from the 

stochastic neighbor embedding (SNE) technique, converting the high-dimensional Euclidean 
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distances between data points into conditional probabilities that represent similarities between data 

points. The clustering of data points is based on the similarities across data points. In comparison 

with SNE, the cost function used by t-SNE differs from SNE in using a student t distribution rather 

than a Gaussian to compute the similarity in the low dimensional space, which makes it easier to 

converge during optimization. In order to quantify the difference between the target and source 

domains analytically, we used KL divergence. 

 

We compared the classification accuracy among multiple machine learning models with same 

datasets. The models included SVM, MLP, VAE, VAE and MMD combination (VAE+MMD), 

VAE and ComBat harmonization combination (VAE+ComBat), VAE, ComBat and MMD 

(VAE+ComBat+MMD), and the final two approaches included transfer learning data 

(VAE+ComBat+TL, VAE+ComBat+MMD+TL). Accuracy and F1-score were used to measure 

the performance of the model. Accuracy represents how close the prediction comes to the true 

values. It is determined by the number of correct predictions divided by the total number of 

predictions. To compare the target domain training accuracies between approaches, we saved the 

series of accuracies from all training batches in each VAE model and then applied two sample t-

test on two series.   

Because of the imbalance in the size of the classes in the test dataset, we used F1-score to 

combine both precision and recall of each class into the calculation: 

 

𝐹𝐹1 =  2 ×
𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑙𝑙𝑃𝑃 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑙𝑙𝑙𝑙
𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑙𝑙𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑙𝑙𝑙𝑙
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In the multiple class case, the F1 calculates metrics by counting all true positives, false negatives 

and false positives [273].The range of the F1-score is from 0 to 1, where a value of one indicates 

perfect precision and recall, and the value of zero indicates that either the precision or the recall 

is zero. In the context of multiple classes, we calculated the F1-score globally by counting the 

total true positives, false negatives and false positives.  

 

4.2.10. Feature identification 

The first encoding layer is the most interpretable because the weights between each node of 

the encoding layer to the next hidden layer are considered as learned features [205] [95]. Based on 

the feature interpretation methods from previous DNN approaches [97] [274], we analyzed the 

weights from the encoding layer to the next hidden layer to explain the importance of features in 

the classification. 

 

We applied permutation testing to identify statistically significant features among those 

identified above. Once the model was trained using training data, the weights assumed values 

accordingly during the training process. At the end of training, each weight had a mean value 

calculated over all iterations of training. This mean weight represented the “importance” of the 

corresponding feature in the input weight vector of size 1×19900. During permutation, the order 

of the input vector was randomly shuffled and the training process was repeated after each shuffle. 

The mean weight obtained during each permutation corresponded to the importance of different 

features in different permutations. The distribution of mean weights obtained across permutations 

(1000 of them) represented a null distribution of the hypothesis that all features were significantly 

important. The p-value of node A was calculated by the number of mean weight values greater 



 75 

than the true value, divided by the total number of mean weight values. The p-value was corrected 

for multiple comparisons using the false discovery rate (FDR) method at 5%. The equation for 

calculating the p-value was as follows: 

 

𝑃𝑃𝐴𝐴  =  
𝑁𝑁𝑁𝑁𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑡𝑡𝑔𝑔𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛
 ×  100% 

 

Here, the 𝑁𝑁𝑁𝑁𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 refers to the number of permutations where the mean value of weights 

was greater than the true value and 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑡𝑡𝑔𝑔𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛 refers to the total number of permutation tests 

(=1000). The permutation testing procedure was identical for all of the models reported. 

 

4.3. Results 

4.3.1. Domain adaptation 

Figure 19 shows t-SNE visualizations of the latent feature space in both the source (top panel) 

and target domains (bottom panel), prior to (left panel) and after (right panel) training. Prior to 

training, there is little separation between the diagnostic groups in both the source and target 

domains. However, after training, a clear separation of the diagnostic groups in latent space 

emerges in the source domain. This is transferred to the target domain as well as we see visible 

separation between diagnostic groups (with some exceptions, especially between autism and 

Asperger’s). Even with high dimensional input data, the VAE-MMD model can achieve robustness 

by reducing the distance between the data points from same class but different domains in latent 

space. 
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Figure 19: t-SNE visualization of latent feature spaces for VAE-MMD domain adaptation model. 
High-dimensional data is reduced to two dimensions for visualization through t-SNE. Left panel: 
clustering before training; right panel: clustering after training; top panel: source domain; bottom 
panel: target domain. Red color corresponds to controls whereas blue and green colors 
correspond to Asperger’s and autism patients, respectively. Circle marks correspond to the source 
domain and triangle marks correspond to the target domain. 
 

Healthy control subjects from HBN and AOMIC datasets were input as additional source 

domain data. Since learning about healthy control subjects in one domain (HBN and AOMIC) is 
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“transferred” to another domain (ABIDE), we refer to this specific case of domain adaptation here 

as “transfer learning”. The t-SNE embedding (Figure 20) shows the latent feature distributions for 

VAE-MMD domain adaptation model, with transfer learning from additional healthy control data 

in the source domain drawn from HBN and AOMIC datasets. As with the earlier case, there was 

very little separation between groups prior to training, in part because the non-neural inter-site 

differences drown out the inter-group neural differences. After training, we can observe that 

separation between groups is near perfect in the source domain and visible in the target domain 

(with some missed assignments to the wrong cluster). Comparing Fig 19 and 20, it is noteworthy 

that including additional healthy control data in the source domain from HBN and AOMIC datasets 

expanded the reach of the healthy control cluster in both the source and target domains. This 

implies that the model was able to capture larger variance in the healthy population, and hence 

became more generalizable in the target domain as evidenced by improved target domain 

accuracies presented in the next section. As elaborated in the discussion, it is our hope that with 

more publicly available healthy control data input into our model in the future, generalizability of 

the model can be further improved, leading to more realistic separation boundaries between groups, 

and hence better performance on unseen test data in the target domain. 
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Figure 20: t-SNE visualization of latent feature spaces for VAE-MMD domain adaptation model, 
with transfer learning from additional healthy control data in the source domain drawn from HBN 
and AOMIC datasets. Left panel: clustering before training; right panel: clustering after training; 
top panel: source domain; bottom panel: target domain. Red color corresponds to controls 
whereas blue and green colors correspond to Asperger’s and autism patients, respectively. Circle 
marks corresponding to ABIDE I subjects in the original source domain; cross marks correspond 
to additional HBN and AOMIC healthy control subjects in the source domain and triangle marks 
corresponding to the target domain. 
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4.3.2. Classification accuracy 

Table 2 shows the accuracy and F1-score from VAE-MMD model (i.e., domain adaptation) 

when combined with other strategies such as transfer learning (TL) from HBN and AOMIC 

datasets, as well as statistical harmonization (ComBat). Also, the results from baseline methods 

SVM and MLP are included. The baseline methods did not perform well because of the domain 

shift between source domain data and target domain data. All other methods containing VAE 

overall performed better than baseline methods. All models have almost 100% training accuracy 

in the source domain, which is not surprising given that training accuracy tends to saturate. The 

hypothesis testing results show that VAE+MMD outperformed VAE and VAE+ComBat method 

in target training accuracy (p<10-5). The VAE+MMD+ComBat achieved higher accuracy than 

three individual methods (p<10-6). VAE+MMD+ComBat, VAE+MMD+TL and 

VAE+MMD+ComBat+TL approaches have no significant accuracy difference (p>0.05).  The 

testing accuracy of the source domain is poor given the inability to generalize based just on the 

source data. This agrees with prior results on the application of standard machine learning methods 

to neuroimaging data [115]. MMD-based domain adaptation enhances the accuracy during target 

domain training. For the three classes in the target domain dataset (controls, autism and 

Asperger’s), MMD domain adaptation can increase accuracy by 4% to 10% without using target 

domain labels. Combining MMD domain adaptation with other methods such as transfer learning 

and/or statistical harmonization (ComBat) can further boost training and testing accuracy as well 

as the F1-scores in the target domain (Table 3, Figure 21).  

For three-way classification using test data in the target domain, our model achieved 74.6% 

accuracy with domain adaptation and ComBat. Given the smaller number of samples from 

Asperger’s and its similarities with autism, three-way classification in ABIDE is a hard problem. 
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Although cross-validation accuracies above chance (which is 33%) have been reported before, 

accuracy in independent test datasets rarely exceeded 70% [275] [213] [115]. If we included 

AOMIC and HBN datasets into the source domain, accuracy further increased to 75.4% due to 

transfer learning, demonstrating that there is scope within the domain adaptation framework to 

improve the accuracy further by including more data. Considering differences in data distribution 

between AOMIC and HBN datasets (Table 1), we investigated how much improvement in 

performance were caused by HBN and AOMIC separately. Table 3 shows the accuracy results 

from separately including HBN and AOMIC datasets into the VAE+ComBat+MMD+TL 

framework.  

Table 3: Classification results obtained by combining domain adaptation (VAE-MMD) with other 
strategies such as transfer learning (TL) and statistical harmonization (ComBat). For each of the 
training and testing datasets (test sample size equal to 126), we compared the classification 
accuracies from source and target domains. In addition, we used SVM, MLP and VAE trained on 
source domain data and tested on target domain data. The last column shows the F1-score of each 
approache. Domain adaptation was not applied with SVM and MLP, so there was no source 
training, source test and target training classification accuracies. 

Classification Accuracy Source Training Source Test Target Training Target Test (F1-score) 
SVM ~ ~ ~ 49.32% (0.32) 
MLP ~ ~ ~ 62.66% (0.30) 
VAE 99.97% 64.56% 52.67% 65.08% (0.27) 

VAE+COMBAT 100% 60.76% 51.56% 70.63% (0.29) 
VAE+MMD 99.67% 50.94% 63.29% 69.05% (0.35) 

VAE+MMD+COMBAT 100% 52.53% 83.11% 74.6% (0.47) 
VAE+MMD+TL 100% 60.76% 77.61% 73.81% (0.38) 

VAE+MMD+COMBAT 
+TL 98.79% 52.53% 82.11% 75.4% (0.44) 
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Figure 21: The classification accuracy using different approaches combined with domain 
adaptation and ComBat harmonization. Blue bars refer to the training accuracy in the target 
domain and red bars refer to the testing accuracy in the target domain. The error bars with star 
reveal the significant differnce between the accuracies(p<0.05). Some obvious comparisons are 
not shown in this figure to keep the figure concise.  
 
Table 4. Classification results obtained by including AOMIC and HBN data in the model 
separately. While age and gender composition of HBN were comparable to ABIDE, the AOMIC 
cohort was older with more proportion of females (please refer to Table 1). 

Classification Accuracy Source Training Source Test Target Training Target Test (F1-score) 
VAE+MMD+COMBAT 

＋AOMIC 99.18% 56.96% 80.11% 74.6% (0.47) 

VAE+MMD+COMBAT 
＋HBN 97.30% 59.49% 82.06% 75.4% (0.44) 

 

4.3.3. Feature identification 

Figure 22 shows the features important for classification using the VAE+MMD+TL+ComBat 

model. These paths also happen to be significantly weaker (p<0.05, FDR corrected) [276] in ASD 
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and Asperger’s as compared to healthy controls. Except the local connection of supramarginal 

gyrus to postcentral gyrus in the parietal lobe, most of the paths were cross-network and cross-

lobe connections including middle frontal gyrus to inferior temporal gyrus, and BA6 to middle 

temporal gyrus in the fronto-temporal network, orbito-frontal gyrus to rolandic operculum in the 

fronto-insular network, and right precentral to right temporal pole in the temporo-parietal network. 

Most of the affected regions in the frontal lobe were left lateralized. 
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Figure 22: FC features found to be important for classification using our 
VAE+MMD+TL+ComBat model with highest target testing accuracy. Figure shows coronal, 
sagittal and axial views of connections with colormap. The colors represent different lobes: dark 
blue: frontal lobe; light blue: insular lobe; cyan: occipital lobe; yellow: parietal lobe; orange: 
subcortical; red: temporal lobe. 
 
4.4. Discussion 

Large public neuroimaging databases have kindled the possibility of using deep learning 

models for diagnostic classification with potential applications in AI-assisted clinical decision 

systems. However such large public databases have been assembled post-hoc, and hence contain 

different sources of non-neural variability such as different sites using different scanners and 

protocols, which degrade performance of deep learning as well as traditional machine learning 

models [213] [115]. To address this, we proposed and implemented a domain adaptation 

framework employing a VAE-MMD deep learning model using ABIDE I as the source domain 

and ABIDE II as the target domain. We demonstrated improved classification performance in the 

target domain by utilizing the knowledge learned from the source domain by making the 

distributions of data in source and target domains as similar as possible [216] [217]. The ComBat 

statistical harmonization [248] [249] when used in combination with domain adaptation improved 

the performance of the classifier. We also showed that additional transfer learning from HBN and 

AOMIC datasets further improved the classification accuracy. 

Even with high dimensional input features, the VAE-MMD model was able to project data 

points from different domains from the same class into a closed latent space. Our results 

demonstrate that deep learning based transfer learning and domain adaptation as well as statistical 

ComBat harmonization approaches can improve target domain classification when used 

independently. When used in combination, the accuracy was better than when they were used 

independently, indicating that both statistical and deep learning methods bring something unique 
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to the table. Specifically, Figure 21 and Table 3 showed that learning from labeled training data in 

the source domain improved dramatically with domain adaptation and ComBat harmonization, 

with the same trends seen in the target domain with unlabeled data, but to a lesser extent [277]. 

Compared to these two methods (ComBat harmonization and domain adaptation approach), 

ComBat requires minimal hardware and time to complete the harmonization, while the deep 

learning model has more hyper-parameters for fine-tuning and is harder to train. It remains to be 

seen whether the improvement in performance expected by including larger datasets in the deep 

learning framework will justify the additional computational complexity in comparison with 

statistical ComBat harmonization. 

 

In our study, a three-class classification approach was used (Autism, Asperger’s syndrome 

and Controls). The Asperger’s population is more similar to autism than healthy controls [278], 

but is still distinctly separate from typical autism across behavioral, cognitive and neural 

domains [279]. Although several studies prefer to perform two-way classification between 

controls and ASD, some studies have performed three-way classification as well [280]. While 

three-way classification performance reported in the relatively larger ABIDE dataset has been 

modest, relatively good three-way classification accuracy of deep learning versus traditional 

machine learning models in the case of ASD  (over 70% accuracy) has been reported in smaller 

datasets (N =114) [281]. We found that the VAE+MMD+ComBat+TL approach outperformed 

SVM and MLP methods by enhancing classification of the Asperger’s class from less than 10% 

to about 60%. One of the three-way ASD  classification studies [280] also applied a domain 

adaptation approach and used functional connectivity as input features, but they reported less 

than 60% accuracy in ASD classification. Thus, compared to other three-way ASD classification 
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studies, our approach obtained a high test accuracy of over 75% (Table 3). The Table 5 below 

shows that the domain adaptation approach shows better two-way classification performance 

compared to other machine learning methods. Compared to the three-way results in the main 

paper, we found the accuracy improvement from SVM (+15%) and MLP (+8%) is more than the 

accuracy improvement from the domain adaptation approach (+1%). In a way, this indicates that 

the domain adaptation based deep learning approach is not very sensitive to the number of 

classes. It also shows that the advantages provided by this approach will become more 

substantial in multi-class classificaion problems. 

Table 5.  Two-way classification results obtained by combining domain adaptation (VAE-MMD) 
with other strategies such as transfer learning (TL) and statistical harmonization (ComBat) 
compared to SVM and MLP . We compared the binary training and testing classification 
accuracies from source and target domains. The last column shows the F1-score of each 
approache in target test data. 
 

Classification Accuracy Source 
Training 

Source 
Test 

Target 
Training Target Test (F1-score) 

SVM ~ ~ ~ 64.28% (0.27) 
MLP ~ ~ ~ 70.63% (0.29) 

VAE+MMD+COMBAT 
+TL 98.50% 56.96% 86.33% 76.19% (0.47) 

 

As discussed in the introduction, our semi-supervised domain adaptation approach combined 

the advantages of UDA and SDA. In prior literature, one application of UDA focused on sub-

cortical and lesion segmentation using a CNN model to extract domain-transferable features, 

accounting for differences in MRI scanners and image acquisition parameters [106]. Another UDA 

approach has been used for brain lesion segmentation to achieve high segmentation accuracy 

compared to SDA approaches [282]. In this study, without the annotated labels in the target domain, 

our approach is the first to utilize such a UDA framework in a psychiatric disorder classification 

task [232]. In the absence of such inter-site harmonization efforts, the inter-class differences are 
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drowned in sizeable inter-site variability. During the domain adaptation process, t-SNE helped us 

visualize how domain adaptation improved classification between groups in the latent space [283]. 

Previous neuroimaging studies have used t-SNE as a visualization method to validate the domain 

adaptation result [284] [285] [42], but this study was the first to use it in psychiatric disorder 

prediction. Compared to other SDA studies, our approach provided higher accuracy in ASD 

classification. Specifically, the most comparable study is by Shi et al [286], wherein they trained 

the three-way decision domain adaptation classifier with the MMD model, which was applied to 

FC from the ABIDE dataset, and obtained around 71% accuracy. They used propagated pseudo 

labels to target domain data trained by an SVM classifier, which does not benefit from a deep 

learning classifier to handle high-dimensional data as in our model. Different from Shi et al [286], 

another study [287] treated one individual site as a target domain and all other sites as source 

domains. Then, a common low-rank latent representation was constructed across the source and 

target domains, obtaining 60% to 70% accuracy. Thus, our approach (at 75.4% accuracy) yields 

superior performance over these state-of-the-art domain adaptation methods applied to ASD 

prediction. 

Since domain adaptation improved target domain test accuracy, it raises the possibility that 

additional data in the source domain may further improve classification performance. However, 

we reasoned that large additional data from disorders (in this case ASD) takes relatively more time 

to become available in the public domain. Therefore, it makes sense to explore whether further 

improvement in target test accuracy could be achieved by augmenting the source domain with 

additional healthy control data. There is already considerable amount of healthy control data in the 

public domain. Therefore, if the classifier can better generalize the underlying brain patterns 

corresponding to healthy controls, then it must naturally result in better discrimination of healthy 
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controls from ASD in the target domain [265]. With this logic in mind, we augmented the source 

domain with additional healthy control data from HBN and AOMIC datasets. From Table 2, it is 

clear that AOMIC has a higher proportion of females and is older in mean age compared to the 

other three datasets. Despite this, we chose AOMIC with the intention of improving the 

generalizability of the classifier (by exposing the classifier to different age/gender mixes). The 

results from separate datasets are shown in Table 3; HBN provided slightly better performance 

than AOMIC, likely because it has similar age and gender to ABIDE. Combined both AOMIC and 

HBN datasets, transfer learning from these datasets to discrimination in the target domain did 

predictably improve performance. An outstanding question is whether further improvements in 

performance can be achieved by augmenting the source domain with additional healthy control 

data from open datasets such as the UK biobank [288], brain genomics superstruct project [289], 

Nathan Kline Rockland sample [290], 1000 connectomes [291] and Philadelphia 

Neurodevelopmental Cohort [292], etc. While investigating this question is beyond the scope of 

the current report, it is a tantalizing possibility that needs to be probed. If additional data does 

improve performance further, it opens up the possibility of building classifiers that are truly 

generalizable to the population at large. This is an essential step in making machine learning 

models based on neuroimaging data relevant for AI-based diagnostic support in the clinic, rather 

than being a purely academic tool (which it is currently) for understanding discriminative features 

of brain function in mental disorders.  

The connectivities identified via feature importance analysis displayed hypo-connectivity in 

ASD, and this is highly consistent with previous ASD research. Previous deep learning approaches 

have identified ROIs such as right superior frontal gyrus, right middle temporal gyrus [293], 

rolandic operculum, and insula [251] as being discriminative for ASD. These same regions have 



 88 

also been implicated in our study. Most identified functional connections were associated with 

regions in fronto-insular, fronto-temporal, temporo-parietal and fronto-parietal axes. The marked 

functional hypo-connectivity patterns of the fronto-temporal pathway may underlie language 

impairment in children with ASD [294]. Previous work involving working memory for faces found 

lower activation in a right temporal area in ASD relative to controls, as well as a somewhat 

different location of the activation in the fusiform area [295] [296] [297]. Also, findings from 

previous statistical analysis studies strongly implicate atypical between-network FC of the frontal-

parietal pathway as possible brain markers of ASD [298] [299]. Even three decades ago, 

researchers had demonstrated that individuals with ASD showed reduced connectivity between the 

insula and fronto-parietal regions [300]. Decreased connectivity in ASD subjects in temporo-

parietal networks during object recognition has also been observed [298]. Our result also shows 

several decreased anterior-posterior functional connectivity paths, which validates results reported 

previously [301]. 
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Chapter 5 
 

Conclusion 
 
5.1 Conclusions 

  

The results from the first study show that the TL method outperforms ASD classification in 

test data as compared to other state-of-the-art methods, especially with small training sample 

size. The convolutional VAE model is robust against data divergence across different sites and 

between different data sources. We have demonstrated the applicability of transfer learning 

within a deep learning framework for utilizing larger samples of available healthy control data to 

improve generalizability and accuracy of diagnostic classification in ASD, as well as reduce the 

harmful effects of inter-site variability on classification. In addition, we identified FC patterns in 

the brain network, which corroborated with previously published FC impairments in ASD. In 

summary, for both site matched and mismatched splits, TL using a VAE-CNN classifier 

outperforms a traditional deep learning CNN classifier without TL. Notably, the accuracies we 

have obtained on the independent test data are higher than those obtained from cross-validation 

in ABIDE [132] [163] (even though cross-validation over-estimates performance [115]), as well 

as on independent test data using traditional machine learning [115] and other TL approaches 

[132]. TL seems to alleviate deterioration of performance due to site-mismatched split, which 

may help in multi-site studies. Widespread hypo-connectivity in inter-hemispheric and inter-
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lobar connections with sporadic (local) hyper-connectivity in the right hemisphere (especially 

frontal lobe) in ASD are in line with previous results in the literature [211] [302] [303]. 

In the second study, our results demonstrate that domain adaptation and transfer learning, 

when used individually or in combination with statistical harmonization techniques such as 

ComBat, outperforms ASD classification in test data as compared to baseline methods without 

using any harmonization of multi-site data. The domain adaptation VAE-MMD model is robust 

against sources of data distribution divergence such as inter-site differences in data acquisition 

parameters and scanner models. By demonstrating that augmenting the source domain with 

additional data leads to improved target domain accuracy due to transfer learning, our work 

opens the possibility of further improvement of the model by utilizing the ever-increasing 

amount of healthy control neuroimaging data in the public domain.  

5.2 Limitations and Future Work 

The limitations of the first study including while generating the synthetic data, we applied a 

basic VAE model to generate data using limited training data. Generative Adversarial Network 

(GAN) is a more popular data generation model in computer vision, drug engineering [146], as 

well as in imaging [304]. The applicability of GANs in this context is worth exploring in the future. 

Next, we used over 1000 subjects from the HCP dataset for transfer learning. Some limitations of 

the second study must be kept in mind while interpreting the results. First of all, we have not 

explored the best interpretability algorithms for the type of machine learning model we have used. 

This is a topic for future research. Especially for the transferred features across different data 

distributions, there are several studies using reference models to obtain successful learning 

representations of domain invariant features [240] [216]. Second, we have not investigated when 

the benefit from domain adaptation and transfer learning saturates. This requires additional 
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samples from either/both groups, which is increasingly becoming feasible given the open 

availability of data these days. Third, how dependent is the performance of the framework on the 

inherent heterogeneity of the (i) sample, (ii) disorder, (iii) data acquisition and preprocessing 

strategies needs to be investigated further.  

 
 
In the future work, first of all, there are many other large public fMRI datasets that are 

currently available such as the UK Biobank [80] (N>40,000), the adolescent brain cognitive 

development (ABCD) [81] (N=1,1975), the healthy brain network (HBN) [136](N=2505), etc. 

Those databases have data acquired from subjects with varied ages, gender, race, and other 

demographics that can enhance the generalizability of the training model. It is yet unclear 

whether including these large datasets in the training model will boost performance, or whether 

the performance saturates at some point. This is a topic ripe for future research. Second, how the 

proposed approach interacts with similar approaches is unknown, i.e. when we combine different 

approaches used to counter inter-site variability in the data and enhance generalizability, are the 

performance enhancements additive or do cascading methods provide diminishing returns? For 

example, ComBat harmonization [245] is a statistical technique used to normalize the variability 

of data distributions arising from different sources of data (such as acquisition site) so that they 

can be pooled together to remove the non-neural variability across scanners and sites [248]. 

Third, to enhance the performance of the multi-class approach, the class imbalance issue needs to 

be further addressed. As found in an earlier ASD study [305], Synthetic Minority Over-sampling 

Technique (SMOTE) [306] is a series of effective data argumentation methods for oversampling 

the data in the minority class of imbalanced datasets such as Asperger’s syndrome. As opposed 

to this synthetic data method, reverse domain adaptation is also a promising domain adaptation 
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solution to translate the real data to synthetic data [307]. These sophisticated methods may better 

handle the class imbalance that is often prevalent in three-way classification of Autism, 

Asperger’s and controls. 
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