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Abstract

An increasing interest in the robotic exploration of uncharted space environments is

warranting a spacecraft path-planning approach that is capable of producing not only au-

tonomous, but also generalized solutions. Though current methods allow for some degree of

autonomy in specific phases of the mission timeline, such as proximity operations and “touch-

and-go” maneuvers, they are not currently extended. Traditional spacecraft path-planning

solutions rely on rigorous baseline strategy design, which inherently requires a priori knowl-

edge of the state dynamics, which can be quantified via relevant dynamical parameters. This

assumption may break down in the context of unknown environmental dynamics, as is the

case with the exploration of uncharted environments. Alternative to approaches that require

a baseline, path-planning methods driven by machine learning methods may offer solutions

that are more generalized and autonomous. However, the extent to which the performance

of a machine learning model compares to an optimal solution has not been extensively eval-

uated, and initial implementation provided in this work aims to provide further insight into

this domain. Path-planning methods based on optimal control theory, pure machine learning

methods, as well as the novel field of cooperative human-AI interaction are explored in order

to not only analyze the advantages and inherent drawbacks of each distinct approach, but

also how each method may be leveraged to construct a synergistic framework that is capa-

ble of producing generalized and autonomous solutions. Additionally, extensive exploratory

work regarding the implementation of cooperative human-AI interaction as applicable to

spacecraft path-planning may serve as the first, empirical observations of behavioral cloning

within higher fidelity dynamics, as representative of more realistic scenarios, as well as pro-

vide early identification of challenges in training fully autonomous agents for a multi-body

dynamics path planning problem.
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Chapter 1

Introduction

The study and exploration of space environments has been a scientific endeavour

spanning centuries. Starting with ancient astronomers and philosophers, the constant sci-

entific studies and missions have yielded a fluid evolution in our understanding of not only

the solar system, but also our place in it. By leveraging modern technological capabilities,

and the increasing synergies between the industry and academia, we are now able to more

autonomously explore the solar system with a greater fervor than before.

This rise in exploration interest also brings new technological needs, including the ca-

pability of more autonomous and generalized path planning that the spacecraft itself can

execute in real-time. Current methods for path planning heavily rely on the concept of

designing baseline solutions, which are tailored to adhere to the local environment dynam-

ics [5]. These solutions can be generated via an analytic and/or heuristic multiple-stage

process, which generally may begin with the realization of the relevant environment param-

eters that drive the underlying dynamical motion. These parameters may then be used by

human experts, along with corresponding algorithms, at ground control in order to recon-

struct the dynamical models, which are subsequently utilized to design the baseline path

planning solutions. Though this may seem like a logical path-planning development process,

there are some inherent drawbacks.

These drawbacks may be highlighted by shifting scientific interests; in recent years,

there has been a growing interest by numerous space agencies in regards to exploring small

body environments such as asteroid systems and icy moons [6]. However, in such cases,

the relevant dynamical system parameters may not be fully realized until first rendezvous.

This will additionally impose a requirement of a phase of the mission timeline in which the
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spacecraft takes measurements of the local dynamical environment in order to initiate the

baseline solution design process. Furthermore, additional delays in communication between

spacecraft and the ground stations may reduce the ability of rapid path-planning adjust-

ments in the presence of strong dynamical perturbations, which consequently may result in

the trajectory quickly diverging from the baseline solution in a manner that is unaccounted

for within any included margins of error.

The inherent requirements of baseline driven path-planning solutions may serve as a

major drawback of such approaches, and therefore a more autonomous approach may be

warranted. Baseline driven methods may be characterized by reduced spacecraft reliance

on ground control in order to design path-planning solutions, and provide this capability to

the spacecraft as a continually present, on-board computational process. Though there are

instances of spacecraft being provided full autonomous path-planning ability, such as au-

tonomous landing for asteroid sample collection [7] or short-range proximity operations [8].

This ability of autonomy for long term path-planning, which is also capable of gener-

alizing and adapting to environmental perturbations, may be yielded from the application

of machine learning methods. Though machine learning is traditionally related to the field

of computer science, with applications in image recognition, text prediction, and robotic

manipulations and path planning mobility, their concepts may be applicable within an as-

trodynamical context. Recent research trends have explored the application of machine

learning based methods in the context of spacecraft stationkeeping [9], multibody trans-

fers [10, 11, 12, 13, 14], and real-time guidance schemes [15, 16, 17, 18].

Though these applications yielded promising results, it should be noted that most ap-

plications were for specific scenarios and, rarely, included the modeling of a wide range

of dynamics in order to achieve generalized solutions. Machine learning based models in-

herently require training times that may exponentially increase as the problem complexity

increases; in other words, increasing the dynamical ranges of the path planning problem may

significantly increase the training time required by a machine learning model. Alternatively,
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it may be hypothesized that rather than relying on a machine learning agent independently

attempting to learn a path-planning solution for a large range of dynamical environments,

the training may be reduced by “bootstrapping” the agent’s behavioral policy with already

existing domain knowledge. This modification may stem from leveraging innate human in-

tuition. Due to their ability of building causal models, as well as the capability of rapidly

adapting a general strategy to fit a changing environment, it may be possible to task a human

with generating generalized path-planning demonstrations within a wide range of dynamics.

These solutions can then be used to train machine learning agents in an attempt to achieve

both autonomous and generalized path-planning strategies. However, due to the novelty of

the approach, investigations into not only whether a human would be able to successfully

navigate a spacecraft in varying dynamical environments, as well as being able to leverage

these solutions to train machine learning models, may have only been explored within the

investigations presented in this work. To the best of our knowledge, this exploratory work

resulted in not only the preliminary establishment of human logic driven autonomous path-

planning strategies, but also the advancements in state of art that would be required in order

to achieve a feasible implementation of the approach.

In summary, there are several methods that may be applicable for designing path-

planning solutions, ranging from the traditional baseline driven methods to the more recent

trends of leveraging machine learning models. This work aims to gain a preliminary under-

standing of not only the relative performance of the methods, but to also analyze the extent

to which the performance of a trained machine learning agent compares to an optimal path-

planning solution.

The structure of this manuscript is as follows: Chapter 2 summarizes the existing litera-

ture and state of art for the path-planning methods that are considered within this investiga-

tion (i.e. baseline solution design via optimal control methods, pure machine learning meth-

ods, and human driven machine learning methods), Chapter 3 provides the technical theory

and mathematical fundamentals of all components for each of these path-planning methods,
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Chapter 4 details the benchmarking path-planning problem that all methods were tasked

with solving, Chapter 5 discusses the results of the benchmarking investigation, Chapter 6

details the additional numerical investigations conducted that further explored the human

driven machine learning method, and Chapter 7 summarizes the conclusions of the work, as

well as possible investigations that may be considered for future work.
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Chapter 2

State of the Art

2.1 Baseline Driven Spacecraft Path-Planning

The traditional method at spacecraft path planning in relatively uncharted envi-

ronments is driven by a generalized procedure that is visualized in Figure 2.1. Before the

spacecraft has been launched towards it’s destination, it may be possible that mission de-

signers have, at best, an estimate of the dynamical environment that the spacecraft will

be operating in. Based on these lower fidelity dynamical models, mission analysts design

preliminary approach strategies for the initial rendezvous phase of the mission, wherein the

spacecraft will encounter the destination celestial body for the first time. After first ren-

dezvous, the mission may generally proceed in the sequential manner that is illustrated in

Figure 2.1. First, while on the initially chosen approach trajectory (or baseline orbit in some

cases), the spacecraft will take measurements of the local dynamical environment; this data

will then be downlinked to mission control, where human experts will begin to reconstruct

the dynamical environment at a higher fidelity, and design baseline path planning solutions.

These solutions will then be uplinked to the spacecraft, subsequent to which the mission

timeline will proceed as planned.

It may be inferred that these traditional methods largely rely on human insight and

insight for autonomous space exploration, with the possibility of autonomous execution dur-

ing specific mission phases, such as autonomous landing for asteroid sample collection [7] or

short-range proximity operations [8]. Most of the traditional path planning methods depend

on the ability to recreate the environment dynamics, after which human insight is needed

to design tailored solutions. Furthermore, not only must the guidance law be suited to the

specific dynamics of the orbital environment, it must also take into consideration restrictions
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Figure 2.1: Visualization of the generalized path planning pipeline for the traditional, optimal
control driven methods.

created by the spacecraft design [5]. As a consequence, missions striving to achieve similar

scientific objectives may have vastly differing path planning strategies. For example, JAXA’s

Hayabusa2 and NASA’s OSIRIS-REx are both asteroid sample return missions, but at differ-

ent destinations. Hayabusa2 has an actively controlled proximity operations strategy, with

stationkeeping maneuvers executed daily to maintain spacecraft position about the asteroid

Ryugu within predetermined ranges [19]. Conversely, NASA’s OSIRIS-REx mission has an

initial Sun-Terminator frozen orbit around asteroid Bennu to provide stability against solar

pressure [20]. Furthermore, the dependency on baselined solutions can have drastic influence

on the spacecraft design; having minimal to no prior knowledge of the dynamical environment

could lead to increased design costs of the spacecraft, especially if related to the navigation

and control aspects [5]. If baseline trajectories are more yielding to the system dynamics as a

consequence of higher sensitivity to errors and uncertainties, overcoming undesired dynamics

with adaptive feedback control may become problematic due to spacecraft limitations, such

as ∆V constraints. As a result, the adaptive capabilities of a control schemes may not be
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exploited in practice; the spacecraft may be, instead, confined to dynamically calmer regions

along safe, pre-determined paths, with autonomy only appearing in terminal operations [19].

Baseline driven methods are the de facto standard for space exploration missions within

the solar system. However, environmental dynamics and system parameters for small bodies

cannot be fully reconstructed from ground observations. The lack of accurate information

about the dynamics and system parameters may impose restrictions on both the spacecraft

design and resulting proximity dynamics [5]. Furthermore, environments such as small body

systems may be characterized by chaotic spacecraft dynamics, which may result in a strong

amplification of small perturbations and deviations from a nominal trajectory. When consid-

ering small-body destinations, a general range of the dynamics and system parameters may

be known at the time of launch, but accurate values may only be acquired during initial ren-

dezvous. As a consequence, both the spacecraft bus design and the initial approach trajectory

must be equipped to initially handle a general case scenario [5]. However, despite these chal-

lenges, the derivation and application of baseline driven path planning in unknown dynamics,

such as binary asteroid systems, is an active field of research [21, 22, 23, 24, 25, 26, 27].

Furthermore, the accuracy of current spacecraft path-planning algorithms is largely de-

termined by the ability to estimate a model for the spacecraft dynamics [28]. Spacecraft

path-planning algorithms generally rely on analytical predictors, numerical targeting, and

closed-loop control. Analytical prediction uses approximate solutions of the orbit dynamics

to predict the future evolution of the orbit; it works best when the spacecraft dynamics can

be modeled using averaging techniques [28]. For regimes where analytical approaches no

longer describe the dynamical realities, the numerical targeting approach is utilized. This

method requires defining target locations, events or constraints and subsequently developing

the numerical procedures to satisfy these conditions; common applications of this approach

include B-plane targeting and the computation of periodic orbits [28]. The output of both

analytical prediction and numerical targeting is a deterministic baseline trajectory. During

flight, orbit determination errors and small perturbing forces that are not included in the
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system model may cause small deviations from the baseline. Such deviations can be rea-

sonably rendered as small random perturbations and corrected with existing stationkeeping

and closed-loop control algorithms. With ground station supervision and intervention, the

standard sequence comprised of model identification, baseline design with known model pa-

rameters and baseline tracking under small perturbations enables spacecraft operations at

unexplored destination.

While individual elements of the sequence visualized in Figure 2.1 may be executed

autonomously with current technology, it is challenging to automate such path-planning

processes as a whole. Among these sequence elements, baseline design may be considered

one of the main obstacles to a fully autonomous system. In fact, application of baseline track-

ing schemes, even with robust control properties, may become infeasible or highly inefficient

if the selected baseline is not representative of the natural flow. Conversely, the design of

natural-flow-compliant baselines is challenging if system parameters of the dynamical model

are poorly known, such as during exploration of uncharted destinations. Furthermore, the

probability of occurrence of baseline trajectories that are not fully compliant with real system

dynamics increases within systems that exhibit chaotic behavior. In chaotic systems, small

variations of the system parameters may yield large variations of the dynamical flow struc-

ture. Therefore, baseline trajectories that are valid representations of the natural flow under

a prescribed set of system parameters may become a poor description of the natural flow for

a small variation of the parameters. The existence of chaos and bifurcations within space-

craft dynamics is also an obstacle to mapping point-design solutions to new applications,

ones that are governed by identical equations of motion but different system parameters.

Bringing the variation of system parameters to an extreme, an ideal autonomous spacecraft

guidance algorithm should, instead, be capable of independent path-planning when the sys-

tem parameters are randomly assigned from a large range of possible values. In summary, the

ability to design autonomous path-planning algorithms for space-based assets is intimately

linked to planning the motion of an object within chaotic dynamics.
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2.2 Shift towards machine learning methods

Rather than a continued reliance on baseline trajectories, the implementation of

machine learning based methods may yield both generalized and autonomous path planning

solutions, which consequently results in higher mission adaptability for robotic exploration

of uncharted destinations. The machine learning methods that have been explored for as-

trodynamics and spacecraft path planning applications can generally be divided into two

categories: demonstration based learning and environment based/interactive learning. Each

of these categories is further discussed below.

2.2.1 Demonstration Based Learning

Demonstration based learning is a form of supervised learning within the context of

machine learning. The artificial learning agent, which is represented by a neural network, is

provided a training dataset that contains some tuples of state/observation and action labels.

The agent then uses this pre-labeled data to learn the underlying patterns and train itself

to provide outputs that mimic these inherent trends. Demonstration based learning can be

further divided into two categories: training via database generation, and human inspired;

each of these two approaches is discussed below.

2.2.1.1 Training via database generations

The training via database generation approach is intuitively simple, with the gen-

eralized pipeline visualized in Figure 2.2. First, the training dataset is generated via some

form of stochastic solution generation, such as Monte Carlo trials with perturbations on

initial conditions, randomly selecting dynamical parameters and attempting to re-converge

the solution. Known path planning solutions, such as two-body Hohmann transfers and

interplanetary trajectories [29], as well as optimal control solutions stemming from indirect

methods, may be used to generate these datasets, which can comprise of thousands to mil-

lions of solutions.
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Figure 2.2: Visualization of a path planning pipeline for training an artificial learning agent
from database generations.

This training dataset is then used to train an artificial learning agent, which is repre-

sented by a neural network. The topic of neural networks itself can be vast, and the technical

details are further discussed in later sections of this manuscript; however, they are briefly

introduced here in order to provide the appropriate context of this method. Neural networks

were developed from biological inspiration from observing the human brain [30, 31], and are

comprised of three primary types of layers through which the information flows sequentially.

The goal of neural networks is to learn a mapping from a given input, which may represent a

state observation (such as position and velocity vectors), to an output prediction (such as the

direction of the thrust control vector). The three primary layers are the input, hidden, and

output layers; each of these layers is further comprised of a certain amount of computational

units that are referred to as “neurons” or “nodes”. Between each combinatorial pair of nodes

in adjacent layers are connections that are referred to as “synapses”. The synapses represent

scalar weights, which are used in the decision making process of the neural network output.

As the neural network trains on the information it is provided, the values of these weights

will be updated as function of the error, which in itself is driven by the computation of the
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“loss” value (i.e. the measure of difference between that the network has predicted versus

what the true output should be) and the numerical optimization algorithm that has been

specified. The numerical optimization algorithm determines the extent to which the weights

will be updated. As a common metric to verify the neural network’s learning process, the

temporal history of the loss value is plotted; generally, and for datasets with minimal out-

liers, the loss value smoothly decaying and converging to a minimum value is an indication

of a stable learning process for the neural network.

Within the context of training via database generation methods, as the artificial agent

has access to a labeled dataset, the training process of the neural network can proceed by di-

rect comparison of the predicted output and the true output; standard metrics such as mean

square error, are commonly utilized in these cases. Through enough training iterations, the

artificial neural network may be able to replicate the true optimal solutions, though the ac-

curacy is heavily reliant on the quality and quantity of data that is provided [32]. Eventually,

a relatively accurate trained neural network may be implemented as a surrogate, or proxy,

for an optimal controller as it would be able to take in a state observation as the input, and

predict the optimal control action that should be taken. This may eventually reduce both

the on-board computational footprint of a path planning strategy, as compared to on-board

execution of optimization routines.

Although this method may seem as a promising alternative, there still exist some draw-

backs of this approach. First, and perhaps most imperative, is that this method is based

on the supervised learning branch of machine learning; this means that the trained neural

network will only be as accurate as the quality of the data it is provided. More specifically,

supervised learning methods train a neural network to learn the average pattern (which

may alternatively be referred to as the “behavior” or “policy” within the machine learning

terminology). Therefore, if the training dataset is diverse with varying solution patterns,

then the supervised learning approach will require additional modifications in order to better

replicate the solutions. For example, a training database that is generated from application
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of Hohmann transfers, which have singular arc geometries, may produce a more accurate

agent as compared to one that is trained on a dataset that has been generated from more

rigorous methods and contains multiple types of solution geometries (i.e. both singular arc

and multi-revolution transfers for the same problem). Additionally, the type of action space

that is modeled, such as impulsive maneuvers (which can be modeled as a discrete action

space) in comparison to continuous control (which must be modeled via the generation of

probability density functions) are understood to increase the complexity of the task that the

neural network is required to learn, and may also affect the performance of a trained agent.

Furthermore, if the network receives an input that is vastly different from the range of

those that were included in the additional training dataset, the network may not be able to

predict accurately, hence leading to a compounding of errors, especially within the context

of path-planning. Secondly, the task of path-planning itself can be categorized as a sequen-

tial prediction problem, where previous decisions will affect the current state. Therefore, a

slight mistake in the prediction at a previous decision will also lead to a compounding of

errors as the control decision are implemented via numerical propagation, and in some cases

recovery may not be possible. There exist some machine learning methods that may be able

to counter this phenomenon, such as using recurrent neural networks (which are designed

for sequential prediction tasks) in lieu of the standard feed forward networks, or shifting to

alternative supervised learning algorithms, such as Dataset Aggregation (DAgger) [33], that

are specifically tailored to solve sequence prediction problems.

Lastly, the implementation of any neural network driven machine learning method re-

quires an expertise from the designer. These methods may be perceived as “black box”

approaches [34], and many critical details such as minor algorithm adjustments and unspo-

ken rules and best practices are generally omitted from the standard literature publications.

This leads to a heavy burden on a novice user that may have little to no prior experience

with neural networks, and may inadvertently lead to ill-formulated implementations of a

neural network, which subsequently will result in low accuracy artificial agents.
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In regards to the application of supervised learning methods to spacecraft path planning

and astrodynamics applications, there have been recent investigations focusing on interplan-

etary transfers [29], improving orbit prediction accuracies [35], and real-time control during

landing problems [36], with further advances in the state of art being detailed in [37]. Though

these applications required the generation of large training databases, from which neural net-

works of the appropriate architectures were designed and implemented, the results reflected

an ability to solve the specified path-planning and astrodynamics problem to an acceptable

degree of accuracy.

2.2.1.2 Learning from Demonstrations

As mentioned in Section 2.1.1, the ability to autonomously explore an uncharted

environment, which underlying dynamics may not be fully realized until first rendezvous, will

require that the path-planning logic have a capability to generalize and adapt in response to

changing environments. Achieving generalized solutions may be stem imposing stochasticity

in the dynamics; in other words, by perturbing the relevant dynamical parameters over a

given range and randomly solving each run via independent Monte Carlo trials, a training

database via rigorous methods may be generated. However, this may take a considerable

amount of time to convergence given the right combination of parameters. In such cases,

it may be more intuitive to leverage the innate human ability at finding generalized solu-

tions for a complex task. This hypothesis is the driving factor behind the research field of

learning from demonstrations (or LfD as commonly referred to in machine learning litera-

ture). Though a majority of the LfD experiments have been centered on robotic movement

and multi-link arm control [38], the concepts may be applicable to spacecraft path-planning

as well. To the best of our knowledge, the investigations presented as part of this work

represent the first instance of leveraging human logic to generate a database of generalized

spacecraft path-planning solutions [39, 4], but to also attempt autonomous cloning via su-

pervised learning of this knowledge [40].
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Figure 2.3: A visualization of the generalized path planning pipeline for training an artificial
learning agent from human demonstrations

The general path planning development pipeline based on human driven demonstra-

tions is illustrated in Figure 2.3. For path planning problems in extremely complex and

varying dynamics, the innate human ability to build causal models and quickly adapt strate-

gies may be leveraged to achieve generalized solutions that inherently balance the task ob-

jectives, risk, and dynamical variances. This dataset can then be used to train an artificial

agent, similar to the path planning pipeline for training via database generation that was

previously discussed.

There are considerable challenges that arise with using a human to generate the de-

mosntrations for the training dataset. First, as mentioned in the previous section, when

training an artificial agent with a training dataset that contains labels of the correct out-

puts, there is an assumption that the data represents ground truth. However, humans are

not perfect and can have mistakes as they are generating their demonstration data. This

leads to a severe reduction in quality of data, which will ultimately impact the accuracy of

the trained agent. An additional challenge is combating the difference in perception between

human logic and artificial logic [30, 31, 41]; in other words, even though both the human
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demonstrator and artificial agent were asked to accomplish the same task, they may learn

how to do so in different ways; this may be attributed to varying internal representations of

the task, as well as variance in the perception (i.e. human’s can accomplish the task from

a visual input, whereas artificial agents may only have numeric data) [41]. The challenge

of getting both the human demonstrator and artificial agent to not only think alike, but to

do so while perceiving in the same manner, is currently an open field of academic research,

especially in the context of spacecraft path planning. There exist various methods, such as

domain transfer and data augmentation [42], that may be used to map the information from

the human demonstrator’s knowledge domain to the artificial agent’s knowledge domain, in

order to combat the differences in perception. This step may be implemented prior to the

training of the true neural network.

To summarize, when wanting to shift towards machine learning based methods to achieve

greater path planning autonomy, the implementation of those that rely on the generation

of training datasets may seem the most logical route. However, as this approach may be

classified as supervised, or imitation, machine learning, the achieved accuracy of the artificial

agent is largely dependent on the quantity, quality and diversity of the dataset. Additionally,

during the policy rollout, if the agent encounters an observation that is has never experi-

enced before, as part of the original training dataset, then it may not be able to produce

an accurate prediction, leading to a compounding of errors as the agent will then begin to

experience states it has never encountered before. This phenomenon may be alleviated by

generating a vast dataset that encompasses a large range of possible scenarios, but this may

be further limited by the amount of computational time. To combat this, it may be logical

to leverage the innate human intuition at solving a path planning problem, and ask a human

demonstrator, in an intuitive manner, to generate the training dataset across a wide range

of dynamics. However, using demonstrations provided by a human will require additional

measure to be taken to account for mistakes and uncertainties, as well as successfully being
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able to transfer perception logic between the human demonstrator and the artificial learning

agent.

2.2.2 Environment based and Interactive learning

2.2.2.1 Reinforcement Learning

Reinforcement learning (RL) is one of the major branches of the machine learning

taxonomy, along with supervised and unsupervised learning. However, in comparison to

the latter two, which require the a priori existence of a dataset, RL methods are based on

agent-environment interactions, which are then used to train the learner agent policy [43].

The fundamental framework of reinforcement learning can be visualized in Figure 2.4. An

agent, which may be represented by a neural network(s), interacts with a given environment

by observing the current state, and predicting the most appropriate action given that state.

After the agent’s selected action has been implemented, the agent will receive feedback in the

form of a scalar reward that quantifies how “good” the action was. The cumulative rewards,

after a certain amount of interactions, or steps, will be then used to update the agent’s be-

havior, or policy. The exact method of these updates vary depending on the algorithm that

may be chosen, with the relevant details being included in the corresponding publications of

the algorithm.

As mentioned before, supervised learning based methods require the existence of a

training dataset, whereas RL based methods do not. Rather, RL algorithms build their own

training datasets by continual interactions with the environment, making RL based methods

a subject of increasing research interest. Within the realm of RL, the importance of the

reward function formulation as the driving factor behind the agent’s learning process cannot

be understated. The reward function can be thought of as a quantified representation of the

goal, or task, that the agent is being asked to accomplish. For example, moving towards a

certain target point may result in increasingly positive reward, whereas moving away from

the target point may result in increasingly negative rewards. It is these scalar feedback
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Figure 2.4: A generalized visualization of the reinforcement learning method

signals that guide the agent towards the desired behavior, and ill-defined reward functions

can have disastrous consequences during the learning process; hence, great care must be

placed when designing the reward function for a given task for which the RL agent is being

implemented for. Furthermore, a majority of the RL algorithms that may be applied to more

complex problems are heavily reliant on the learning hyperparameters itself, which change

for each application of the problem. Within the context of machine learning, the term hy-

perparameters refers to the collective set of scalars that control the learning process of the

RL algorithm. Some examples of hyperparameters include the learning rate, the size of the

neural network architecture, and any additional parameters that are used in conjunction

with the cumulative rewards during the policy update process.

Along with selecting the appropriate hyperparameters, the user must also fully under-

stand the “collaborative” nature of the hyperparameters as well. For example, selecting a

large learning rate, which essentially controls the magnitude of the updates to the neural

network, but having a relatively small neural network architecture, are known to lead to

overtrained RL agents. Conversely, defining a small learning rate and having a significantly
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large neural network architecture will result in increasingly long training times, even more

so when the given task for the RL agent to solve is dynamically complex. These underlying

synergies are generally not extensively discussed in machine learning literature, and instead

may rather develop from user experience and intuition. Therefore, RL methods, especially

in the context of dynamically challenging problems, may require the most user expertise and

intuition as compared to supervised learning approaches.

Despite these challenges, numerous researchers have investigated the application of RL

methods to spacecraft path planning in multi-body environments, which are inherently dy-

namically complex problems. Recent investigations have analyzed the application of RL

techniques to spacecraft stationkeeping [9], multibody transfers [10, 11, 12, 13, 14], and real-

time guidance schemes [15, 16, 17, 18]; additional applications are briefly discussed in the

survey paper provided by [44]. Though these applications also provided promising results

in regards to the accuracy of the agents, as well as their feasibility in application, it should

be noted that these results were characterized by long training times. Though they may

offer more robust solutions, RL based methods are known to also generally require extensive

training times, along with strategic modifications to the underlying algorithm chosen, for

the most appropriate application to the problem at hand.

2.2.2.2 Real-Time Human-Agent Interaction

In the previous sections, the distinctions between supervised learning and reinforce-

ment learning were introduced and discussed as separate and independent entities. However,

their fundamental concepts can be merged into a synergistic framework, which may be re-

ferred to as “online human-agent interaction”, or “cooperative human-agent learning”. This

framework has an agent accomplishing a task in real time, under the supervision of a human

expert. If the human deems that the agent is proceeding in a risky, or unsafe manner, then the

human can intervene via a control authority gating switch, and impose a corrective control

maneuver that can guide the agent back towards operating in a safe or desired manner. The
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human expert’s corrections are then stored in the running dataset that the agent is collecting

during rollout (the dataset generally consists of tuples comprising of state/observation and

action pairs). If the human expert intervened, then the corrective action is recorded in the

data tuple, otherwise the agent’s own selected actions are recorded. This dataset is then

used to retrain the agent via supervised learning, as the data tuples are already labeled with

the corrective actions.

This field of research may be regarded as being relatively novel in comparison to

the independent research areas of supervised and reinforcement learning themselves; how-

ever, there have been some applications of the cooperative human-agent learning frame-

work [45, 46, 47, 48, 49, 50, 51, 52]. Some applications have been for low dimensional state

space problems, such as the cart pole problem and simulated car racing [45, 46, 47, 48, 49],

whereas others have been applied to higher dimensional scenarios such as Atari games and

simulated multi-link manipulations [50, 51, 52]. To the best of our knowledge, the applica-

tion of this framework specifically for astrodynamical applications is a novel contribution of

this work.

The utilization of cooperative human-agent learning frameworks requires the under-

standing of the “control authority gating function”. In essence, this gating function de-

termines the instances when the human can override the agent’s actions in real-time, and

execute explicit control. This gating function can be vastly variant for each problem ap-

plication, and can be regarded as an additional heuristic within the learning framework, as

there is seemingly no set approach at designing the gating function. For example, the hu-

man can execute control authority whenever they deem fit, in order to guide the agent back

to a safe behavioral mode [45]; conversely, the human’s control authority can only activate

when the agent’s prediction confidence falls below a certain threshold [52]. Therefore, the

appropriate method at designing the control authority switching function will be dependent

on the nature of the problem, and additional user expertise and intuition will be required

for an appropriate formulation.
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The use of the control authority switching function implies that the human expert can

theoretically intervene during the entire training process. However, if the desired result is

a fully autonomous machine learning based agent that does not require and human feed-

back/corrections during final execution, then an alternative approach may be required. One

possible alternative to the control authority switching function may be the provided via the

“cycle of autonomy” framework [53], in which the authors investigated the utilization of

different forms of real-time human interaction during the learning process in order to safely

train an autonomous agent. The framework consisted of three primary phases: learning

from pure human demonstrations, real-time cooperative learning between agent execution

and corrections from the human, and fully independent execution and re-training of the

agent via reinforcement learning. The transitions between each phase were internally trig-

gered when the agent consistently achieved increasing performance metrics [53].

To summarize, the distinct methods of supervised learning and reinforcement learning

can be merged into a synergistic framework in which a human expert provides real-time

corrections to an autonomous agent, which are then used during the iterative updates to the

underlying neural networks. However, incorporating a human in the learning framework, as

well as providing them with control authority at certain instances, may require additional

considerations as to when human intervention is deemed necessary, along with the appropri-

ate formulation of the control authority switching function. Though there have been some

applications of this framework for autonomous robotics and simulated, low dimensional envi-

ronments, along with the application to spacecraft path-planning are presented in this work,

the method of real-time human-agent interaction remains a considerably novel approach that

is an active research area.

2.3 Investigation of Synergies between Distinct Path-Planning Methods

Both the baseline driven and machine learning based method at achieving path-

planning solutions have generally been regarded and investigated as distinct approaches.
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However, the possibility of leveraging their innate synergies in order to create more robust

frameworks and autonomous solutions may have only been explored to a minimal degree. It

may be possible that one singular approach may not be the most applicable for developing

fully autonomous path-planning strategies, and therefore the utilization of components from

each of these methods may be warranted. Therefore, understanding the inherent advantages

and drawbacks of each method (baseline design via optimal control methods, pure machine

learning methods, and human inspired machine learning) will help determine the most ap-

propriate synergistic path-planning framework that not only yields autonomous, but also

generalized, solutions.

This work aims to assess each of these distinct methods, and their ability at solving

a benchmarking path-planning task. Quantifications of the results, along with the perfor-

mance of the trained machine learning models, can then be utilized to assess the inherent

advantages, drawbacks and possible synergistic frameworks. The following chapter discusses

the technical theory and mathematical formulations for each of the methods implemented.
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Chapter 3

Technical Background

3.1 Primary Components for Developing Spacecraft Path-Planning Solutions

The primary component needed for the development of a spacecraft path-planning

solution is the underlying dynamical model, which quantifies the temporal evolution of the

orbital state. There are numerous models that can be used to represent the environmental

dynamics, each representative of differing fidelities. The simplest model is the two-body

model, which assumes a spacecraft of negligible mass orbiting a central, gravitationally

attracting body. Conversely, higher fidelity dynamical modeling can be provided by the n-

body, or the ephemeris, model, which takes into consideration the gravitational accelerations

imparted on a spacecraft by any number of celestial bodies. Further modifications to account

for non-spherical gravitational fields, solar radiation pressure (SRP), and errors in state

determination can also be included to increase the fidelity. This work primarily utilizes the

Circular Restricted 3-Body Problem (CR3BP), which is further discussed below.

3.1.1 Circular Restricted 3-Body Problem (CR3BP)

The CR3BP dynamical model quantifies the motion of a spacecraft of negligible mass

under the influence of two gravitationally attracting celestial bodies, which are commonly

referred to as the “primary” bodies. The CR3BP model is derived in the rotating frame

(x̂CR3BP, ŷCR3BP, ẑCR3BP), with x̂CR3BP extending from the larger primary P1 through the

smaller/secondary primary P2, ẑCR3BP orthogonal to the mutual orbital plane, and ŷCR3BP

completing the right handed coordinate system [54]. The origin of the rotating frame is

located at the barycenter of the system; this frame is illustrated in Figure 3.1. The dynamics
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Figure 3.1: A visualization of the CR3BP dynamical model

can be determined by a single, nondimensional parameter µ, which denotes the ratio of the

mass of the smaller primary relative to the total mass of the system

µ =
mP2

mP1 +mP2

(3.1)

where mP1 and mP2 are the masses of the larger and smaller primaries, respectively. Given

this quantity, the locations of the primaries can be denoted as

(x, y, z)P1 = (−µ, 0, 0) (3.2)

(x, y, z)P2 = (1− µ, 0, 0) (3.3)
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and the underlying equations of motion can be derived as

ax − 2ẏ =
∂U∗

∂x
(3.4)

ay + 2ẋ =
∂U∗

∂y
(3.5)

az =
∂U∗

∂z
(3.6)

where U∗ is the pseudopotential function

U∗ =
1− µ

d
+

µ

r
+

1

2
(x2 + y2) (3.7)

d =
√
(x+ µ)2 + y2 + z2 (3.8)

r =
√

(x− 1 + µ)2 + y2 + z2 (3.9)

d and r are the distances of the third particle from the larger and smaller primaries, respec-

tively [54].

Within the CR3BP model, there exist five equilibrium points at which the state has

zero relative velocity and acceleration, in the rotating frame, relative to the primaries. These

points are commonly referred to as the Lagrange points, and their locations within the sys-

tem can be computed. Three Lagrange points are located along the x̂CR3BP axis and are

termed as the “collinear Lagrange points”; their locations can be numerically computed by

solving the equation

∂U∗

∂x
=

1− µ

(x+ µ)3
(x+ µ) +

µ

(x+ µ− 1)3
(x+ µ− 1)− x (3.10)

with a root finding iterative scheme, such as Newton-Raphson method [54]. As the collinear

Lagrange points are located along the x̂CR3BP axis, their locations will only have a non-zero

component for the x position. Therefore, Equation (3.10) is solved in terms of x, and the
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locations of these points are provided as

(x, y, z)L1 = (x1, 0, 0) (3.11)

(x, y, z)L2 = (x2, 0, 0) (3.12)

(x, y, z)L3 = (x3, 0, 0) (3.13)

The remaining two Lagrange points are referred to as the triangular equilibrium points, and

are located between the two primaries. Their locations can be analytically computed via

(x, y, z)L4 =

(
0.5− µ,

√
3

2
, 0

)
(3.14)

(x, y, z)L5 =

(
0.5− µ,

−
√
3

2
, 0

)
(3.15)

It can be shown that from Lyapunov stability analysis, the collinear Lagrange points are

unstable, whereas the triangular Lagrange points are stable; these stability characteristics

may be leveraged for path-planning purposes.

3.2 Traditional Methods: Optimal Control Theory

3.2.1 Generalized Overview

Conventional approaches for solving the spacecraft path planning problem stem

optimal control methods, which in turn are analytically derived from concepts found in

Calculus of Variations. More specifically, the common methods of optimal control schemes

are driven by the Euler-Lagrange equation [55], which is of the form

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0 (3.16)

where F is a function with continuous first and second order partial derivatives with respect

to all arguments. The Euler-Lagrange equation can be used to formulate the corresponding
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Euler-Lagrange Theorem, which is formulated as follows. Let J [y] be a functional of the

following form

J [y] =

∫ b

a

F (x, y, y′) dx (3.17)

defined on a set of function y(x) which has continuous first order derivatives in the interval

[a, b] and satisfies the boundary conditions y(x1) = y1 and y(x2) = y2. The necessary condi-

tions for the functional J [y] to have a weak extremum for a given function y(x) is that y(x)

satisfies the Euler-Lagrange Equations. It should be noted that the Euler-Lagrange Equa-

tion is a necessary condition for weak extrema, but as every strong extremum is also a weak

extremum, the Euler-Lagrange equation is also a necessary condition for strong extremum.

Additionally, the Euler-Lagrange Equation is only a necessary condition and not a sufficient

condition.

3.2.2 Indirect Methods

Indirect Methods, also referred to as the variational approach, is formulated as

follows. Consider a functional of the following form

J [x(t)] = ϕ(x(tf )) +

∫ b

a

L(x⃗, ˙⃗x, t) dt (3.18)

where ϕ is the terminal cost at the final epoch tf , the integral term represents the running

cost along the solution trajectory, x⃗ represents the state vector, and ˙⃗x represents the time

derivative of the state vector. The terminal and running costs can alternatively be denoted

as the Mayer and Lagrangian cost, respectively. Furthermore, we also consider that ˙⃗x is not

arbitrary, but constrained by the dynamics of the system; in other words,

˙⃗x = f⃗(x⃗(t), u⃗(t), t) (3.19)
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where u⃗(t) is some control vector and f⃗ is the representation of the state dynamics. The

optimal control formulation will proceed to minimize the cost functional J [x(t)] with respect

to the state dynamics in order to achieve a solution.

The unconstrained indirect method formulation (i.e. one that does not take into consid-

eration state-path constraints, and only considers the cost functional and the boundary con-

straints) can then be formulated in the following manner, via an analytical derivation process

driven by calculus of variations. Given the set of state dynamics (i.e. ˙⃗x = f⃗(x⃗(t), u⃗(t), t)),

we first formulate the Hamiltonian as [55]

H = L+ λ⃗T f⃗ (3.20)

where L is the Lagrangian cost term of the full cost functional J [x(t)]. The terms λ⃗T represent

the co-state variables, mathematically denoted by Lagrange multipliers and represented by

differential equations. The co-state equations can be interpreted as follows: if the set of

differential equations that represent the constraints of the minimization problem are provided

by ⃗̇x = f⃗(x⃗(t), u⃗(t), t), then the co-states represent the marginal cost of violating these

constraints. There is one co-state corresponding to each state variable in the dynamical

model; therefore, if the state vector is represented by three position and three velocity

terms, then there will be six total co-states within the indirect method formulation.

After the Hamiltonian has been derived, the differential equations for the co-states can

be computed via the partial derivative(s) [55]

λ⃗T =
∂H

∂x⃗(t)
(3.21)

and the extremal control u⃗(t) can be shown to have the form

∂H

∂u⃗(t)
= 0 (3.22)
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wherein the above equation is then solved for the control term. It may be observed that

this approach converts the optimization problem into a two point boundary value problem

(TPBVP), as the initial and final boundary conditions are explicitly respected.

Once the unconstrained indirect method formulation has been derived, the implementa-

tion procedure in order to obtain a solution is relatively simple. First, the set of differential

equations that represent the state dynamics (i.e. ˙⃗x) are expanded to include the derived

co-state differential equations (i.e. λ⃗). In other words, along with propagating the set of

differential equations that represent the state dynamics, we also propagate the derived dif-

ferential equations for each of the co-states. This total set of differential equations are then

implemented into an optimization routine, such as fsolve in MATLAB, which iteratively

attempts to solve the minimization problem. Embedded within the optimization routine is

a numerical integration routine, such as 4th order Runge-Kutta, that propagates the aug-

mented state differential equation vector from the initial conditions (i.e. the initial boundary

constraint), with a random initial guess of the costates. This initial augmented state vec-

tor is numerically propagated forward in time, after which the residual relative to the final

boundary constraint is computed. At minimum, this residual is comprised of the error of the

propagated state at the final epoch, relative to the final boundary constraint. There can be

additional components included in the residual that are representative of stationarity and/or

transversality conditions. If the norm of the residual term is less than some pre-defined tol-

erance, then the solution is assumed to have converged to optimality. If the residual does

not fall below the tolerance, then the values of the initial guess of the co-states are updated

such that the threshold criterion is met.

3.2.3 Direct Methods

Though the indirect methods may seem like a logical approach to solving optimal

control problems, they may suffer from drawbacks, some of which can be summarized as

follows:
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1. The initial value of the co-states is determined heuristically, and not via any sufficient

approximations. Therefore, the method can be informally regarded as a “trial and

error” approach in order to achieve a solution, which may take a considerable amount

of iterations should the problem complexity increase

2. If the state dynamics and/or the cost functional is changed, then all co-state equations

must be re-derived before implementation

3. The simplest form of the indirect method, which is the unconstrained indirect method,

does not include and equality/inequality (i.e. state-path) constraints along the trajec-

tory. The solution only considers and satisfies the two boundary constraints.

In comparison to the unconstrained indirect method formulation, the direct method

(which may be represented by the direct collocation formulation) do not require the exten-

sive derivation of co-state differential equations [55].

The direct collocation methods converts the minimization problem into a discretized

formulation, which is then optimized. The goal of the direct method can therefore be sum-

marized as to transcribe the optimal control problem to a parameter optimization problem

so that a non-linear programming (NLP) solver can be used. Though there are various

approaches for the direct method, the commonly implemented formulation discretizes the

continuous control problem such that the states and control variables are only known at

certain times [55].

The direct collocation method is formulated as follows. We first discretize a set of

continuous states x⃗(t) and controls u⃗(t) into N nodes such that

x⃗(t) −→ [x⃗(t0), x⃗(t1), x⃗(t2), ..., x⃗(tN)] (3.23)

u⃗(t) −→ [u⃗(t0), u⃗(t1), u⃗(t2), ..., u⃗(tN)] (3.24)
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The boundary constraints of the problem are applied at the initial and final discretization

nodes, and the state-path constraints (represented by equality/inequality constraints) are

applied at all nodes. The direct method then proceeds to solve the optimization problem by

solving the dynamics and control at each node.

Though we have transcribed the continuous control problem into a discretized formu-

lation that is evaluated at each node, the overall solution must still result in a smooth ap-

proximation; in other words, there cannot be any discontinuities between the state variables

between nodes. This feature of smooth approximation is ensured via the implementation of

the defect equations as follows [56]. First, the solution at each node can be represented as

x⃗k+1 = x⃗k + β for all k ϵ [0, ..., N − 1] (3.25)

where β is a linear/polynomial approximation of the Lagrangian component of the cost func-

tional (this approximation is commonly done via trapezoidal or Hermite-Simpson methods).

Re-arranging the above equation yields

x⃗k+1 = x⃗k + β −→ x⃗k+1 − x⃗k − β = 0 (3.26)

which represent the defect equations as equality constraints. Given this formulation, the

direct method can then utilize an NLP solver and achieve a converged solution.

3.3 Fundamentals of Machine Learning

Recent trends in shifting research focus and published literature are indicative of

increasing interest in the use of machine learning methods in synergy with optimal control

methods. The following sections briefly discuss the generalized taxonomy of neural network

architectures, as well as how they can be designed and trained. Additionally, a section that

provides a high-level, generalized overview of the machine learning taxonomy as a whole is

also included.
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3.3.1 Training a Neural Network

Prior to discussing the general types of neural networks that are used for machine

learning models, it perhaps may make intuitive sense to first understand how neural net-

works in general are trained. The training process is generally common throughout all types

of neural network based machine learning models, but each step in this process may lead

to challenges that must be addressed by neural network architectures, hence leading to the

varying architectures seen throughout modern literature which may be specifically designed

to counter some of these issues.

The standard procedure for training a neural network may best be explained by con-

sidering a simple, fully connected neural network, as illustrated in Figure 3.2. All neural

network architectures comprise of input, hidden/computational, and output layers, with the

flow of information occurring in the stated sequence. Within each layer are individual units

that are referred to as “nodes” or “neurons”. All the nodes in one layer are combinatori-

ally connected to each node in the immediate next layer; this is visualized in Figure 3.2 by

black arrows. These connections are referred to as “synapses” and essentially denote a scalar

weight that is utilized during the computation process. Additional to the weights, there are

also biases between two immediate layers, which are also combinatorially connected to each

node in the next layer. These biases are denoted by green circles in Figure 3.2. Within

each hidden/computational and output layer, each node will perform some algebraic func-

tion computation of the incoming data provided by the synapses. The result of this function

computation(Hi and Oi) is then sent to an activation function, which can be a linear or non-

linear function, to compute the activated function computation (Hi,act and Oi,act). The final

output of the neural network (i.e the Oi,act) is then utilized in some criterion measurement

that represents a minimization problem, which is conversely defined and set by the user.

The objective of the neural network training process is to incrementally update the values

of the weights and biases such that the output prediction minimizes some criteria, such as

the mean square error.
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Figure 3.2: A simple fully connected neural network architecture (referenced from [1])

3.3.1.1 Forward Pass and Gradient Backpropagation

The training process of a neural network proceeds in an iterative manner, with the

procedural loop repeating for a certain amount of epochs mtrain, an additional parameter

that the user defines.

At each epoch of the training process, the inputs from the dataset are passed to the

neural network, which performs the necessary transformations and produces a predicted

output. This process is referred to as a “forward pass” of the neural network. To empiricize

the underlying forward pass computations, consider a small neural network architecture than

the one previously illustrated in Figure 3.2. More specifically, consider a neural network that

comprises of two inputs (x1, x2), one hidden/computational layer with two computational

nodes, and an output layer with two outputs (O1, O2). This is illustrated in Figure 3.3.

Each forward pass through the neural network is computed as follows: given the set

of inputs (x1, x2), their corresponding weights wi, and the bias, each computational node in
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Figure 3.3: A basic fully connected neural network comprising of two inputs, one hidden
layer with two computational nodes, and two outputs (referenced from [1]).

the hidden layer will compute the function approximation as the algebraic summation

H1 = x1w1 + x2w3 + b1w5 (3.27)

H2 = x1w2 + x2w4 + b1w6 (3.28)

These function approximations are then passed through an pre-defined activation function

fact to obtain

H1,act = fact(H1) (3.29)

H2,act = fact(H2) (3.30)

The utilization of activation functions is critical within the neural network architecture, as

they essentially determine which nodes are “activated” (i.e. numerically contribute to the

prediction computational process). Further details and examples of common activation func-

tions are provided in a later section. Subsequently, the activated function approximations
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Hi,act are sent to the output layer, wherein each node computes the algebraic summation

O1 = H1,actw7 +H2,actw9 + b2w11 (3.31)

O2 = H1,actw8 +H2,actw10 + b2w12 (3.32)

after which the output function approximations are also passed through an activation func-

tion to obtain

O1,act = fact(O1) (3.33)

O2,act = fact(O2) (3.34)

The values of Oi,act are considered as the final output of the neural network, and a forward

pass is considered to be completed once these quantities are computed. The final outputs are

then used in the defined criterion, which represents the minimization objective. In the case

of supervised learning (SL), the minimization objective is defined to be the error between

the prediction and true observation (note that this error is also referred to as “loss” in ML

literature). For simplicity, we assume the error e to be denoted as the mean square error

between the final neural network outputs Oi,act and the true observation yi

e =
1

ninputs

2∑
i=1

(yi −Oi,act)
2 (3.35)

where ninputs is the number of inputs in the training dataset. Once the error e has been

computed, the neural network uses this information to update the weights accordingly, via

the process of gradient backpropagation. For simplicity, we assume that the weight update

equation is provided by that of stochastic gradient descent (SGD) numerical optimization;

therefore, at epoch k, the incremental weight update is computed as

wk+1
i = wk

i − η
∂e

∂wk
i

(3.36)
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where η denotes the step size of the numerical optimization algorithm (in ML terminology,

this term is referred to as the learning rate of the neural network). The partial derivative

term in the above equation can be expanded via chain rule to obtain the full equation for

all weight updates in the neural network. For example, consider the weight update for w1;

the expansion of the partial derivative term yields

∂e

∂wk
1

=

[
∂e

∂O1,act

∂O1,act

∂O1

∂O1

∂H1,act

∂H1,act

∂H1

∂H1

∂w1

]
+

[
∂e

∂O2,act

∂O2,act

∂O2

∂O2

∂H2,act

∂H1,act

∂H1

∂H1

∂w1

]
(3.37)

and the update to weight w1 is therefore

wk+1
1 = wk

1 − η
∂e

∂wk
1

(3.38)

This process is repeated for each weight wi in the neural network architecture at each epoch

(i.e. after each forward pass of all inputs within the training dataset). Given this brief

overview, the generalized algorithm for training a neural network is detailed in Algorithm 1,

and each step is briefly discussed.

3.3.1.2 Defining the Neural Network Architecture

First, the user must define the neural network architecture that is to be used for

the machine learning model. As previously mentioned, neural network architectures pass

information through sequential layers that are categorically referred to as the input, compu-

tational/hidden, and output layers. It is well known that the architecture size and shape (i.e.

how many computational/hidden layers, and how many computational units/neurons/nodes

within each of these layers respectively) drives the performance of the machine learning

model. The generally accepted guiding principle is that shallow neural networks train faster,

but may also result in less accurate solutions during training; conversely, larger and deeper

neural networks require significantly more training time but may provide more accurate
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Algorithm 1 Generalized Training Process for a Neural Network

1. Define a neural network architecture that follows the structure of input, computational/hidden, and output layers

2. Define the numerical optimization scheme and learning rate (along with any other hyperparameters for more complex
learning algorithms)

3. Define the loss criterion

4. For each iteration for a maximum number of epochs mtrain

(a) Pass the training dataset as inputs to the neural network

(b) Compute the loss (i.e. a quantification of the error) between the network’s predicted outputs and the true
outputs

(c) Compute the gradients

(d) Perform gradient backpropagation to update the neural network weights

5. Repeat Step 4 until the learning has converged

solutions. Furthermore, the specific design of the size and shape of the neural network archi-

tecture becomes an exercise of user expertise and intuition, as there is currently no general

universally accepted method to designing an architecture that is most applicable to the prob-

lem or task that the user intends to solve.

3.3.1.3 Selecting a Numerical Optimization Scheme, Learning Rate, and Loss

Criterion

After the neural network architecture has been defined, the numerical optimization

scheme must be defined. Mathematically, optimizers function as their name indicates, in

which they solve an optimization problem by minimizing some cost function that is defined

by the user. As mentioned before, neural networks learn by the continual updates of weights,

which are represented as the combinatorial connections between each computational node

in adjacent hidden layers. The changing of these weight values will progress the learning

process of the neural network; how the weight values are updated are heavily driven by the

numerical optimization routine that is chosen.

The numerical optimization routine will minimize the defined loss criterion; the loss
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criterion can be thought of as analogous to the cost functional in the context of optimal

control. The form of these loss functions can vary depending on the type of algorithm that

is implemented. For example, training via supervised learning can occur via use of the sim-

ple mean square error between the predicted and true outputs. Conversely, reinforcement

learning based algorithms must utilize specific formulations of the loss criterion; the full

derivation of these specific loss functions, as well as the significance of each component, are

generally included in the relevant publications that first introduce new RL algorithms.

Consider a neural network with some set of weights Wij,current, which is a matrix rep-

resentation of the current weights of each node j at each layer i. At each iteration during

the training process, the weights are updated from the current set Wij,current to a new set

Wij,new via the mathematical transformation

Wij,new = Wij,current − ηfoptimizer(Q(Wij,current)) (3.39)

where η represents the learning rate, or step size, Q(Wij,current) represents the value of the

objective, or cost function that is to be minimized with respect to the weight values, and

foptimizer represents the numerical optimization routine. As can be seen from this equation,

the size of the learning rate proportionally drives the weight updates; therefore, great care

must be exercised when selecting this parameter value as too large of a learning rate will

result in wildly varying weight updates and an unstable neural network, whereas too small of

a learning rate will result in significantly larger training times. There are various numerical

optimization algorithms that are available, but two of the commonly used algorithms are

Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation (Adam).

1. Stochastic Gradient Descent (SGD): Stochastic Gradient Descent is an extension

of the base Gradient Descent algorithm, and may reduce the memory requirement

that is warranted by the latter. Whereas Gradient Descent computes the first order

derivatives over all points in the dataset, SGD computes the derivatives of the error
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(i.e. loss) at each point. However, though this may reduce the computational memory

required, the SGD optimization routine may also require longer times to convergence,

and may also suffer from being unable to escape from local minima and saddle points.

The SGD numerical algorithm updates the weights within a neural network via

Wij,new = Wij,current − η
∂e

∂Wij,current

(3.40)

where e represents the error/loss, η represents the learning rate, and ∂e
∂Wij,current

repre-

sents foptimizer()

2. Adam: Adam is an algorithm for first-order gradient-based optimization of stochastic

objective functions that is based on adaptive estimates of lower-order moments. The

algorithm updates exponential moving averages of the gradient (m̂t) and the squared

gradient (v̂t), and the algorithm hyper-parameters β1, β2 ∈ [0, 1) control the exponen-

tial decay rates of these moving averages [57]. The moving averages themselves are

estimates of the mean and the uncentered variance of the gradient [57]. These moment

vectors which are then included within the weight update equation via

Wij,new = Wij,current − η
m̂t

v̂t + 10−8
(3.41)

where the term 10−8 is included in the denominator to avoid any zero quantities that

would result in gradient explosions during the backpropagation. Further details and

the full derivation of the algorithm can be found in [57]. Compared to SGD, the Adam

optimization algorithm has been found to accelerate the learning process by decreasing

the number of function evaluations required to reach the minima.
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3.3.2 General Categories of Neural Networks

It is imperative to note that the selection of the appropriate neural network archi-

tecture is critical to the development of a successive machine learning model. Though there

are various architectures of neural networks that can be selected from, they can be broadly

categorized into three distinct categories, though all types are trained in the same method as

summarized in Algorithm 1. The three distinct categories of neural networks are generally

referred to as artificial/feed forward, convolutional and recurrent neural networks; this work

explored architectures belonging to each category. A brief overview of each type is further

discussed below.

3.3.2.1 Artificial/Feed Forward Neural Networks (ANN/FFNN)

As denoted by the name, the feed forward neural network is an architecture that

only moves the information forward. Consider the general form of a feed forward neural net-

work, as illustrated in Figure 3.4; it can be observed that the feed forward neural network has

the same architecture as that of the network in Figure 3.3 that was utilized to demonstrate

the training process. There are three main layers that comprise a standard feedforward net-

work: the input, hidden, and output layers. The input layer represents the initiation of the

workflow of the neural network by accepting the raw input values and passing them to the

internal layers for further processing. The hidden layer performs the appropriate nonlinear

transformations of the inputs; depending on the complexity of the problem, the architecture

may have multiple hidden layers. Lastly, as the name implies, the output layer takes the

transformed information from the subsequent hidden layers and processes it for the desired

output, such as predicting the category that the input data belongs to, or a scalar value for

predictive regression tasks.

Given this general overview of the feed forward network architecture, the mathematical

theory behind neural networks can now be briefly discussed. As illustrated in Figure 3.4, each

layer in the architecture is comprised of nodes/neurons (denoted by circles) and synapses
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Figure 3.4: Conceptual architecture for a feed forward neural network. The three main layers
are the input, hidden, and output layers, with the flow of information proceeding from left
to right as illustrated.

(denoted by straight lines connecting each node in one layer to all the nodes in the next

layer). The relationship between each node and synapse is one of the driving factors behind

how a neural network learns a given task; to further understand this relationship, consider

a single synapse feeding into a single node, as visualized in Figure 3.5. Each synapse n will

bring to the node some output scalar, xn, from a previous node, multiplied by a weight

Wij. In other words, the synapse will take the output from a node in the previous layer and

apply some weight via multiplication before passing the information to the next node. The

recipient node (denoted by blue circle in Figure 3.5) will compute the sum of the weighted

inputs, and apply a bias, which are used to adjust the intermediary output Ynode via

Ynode =
n∑
1

Wijxn + bij (3.42)

This intermediary output Ynode is then passed as the mathematical argument to some user

defined activation function, the output of which is passed to the outgoing synapse, subsequent
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Figure 3.5: A visual representation of the inner-workings of a node in a neural network.

to which the process repeats for each node-synapse relationship in the architecture. The use

of activation functions in any neural network are required as they can help the architecture

recognize complex patterns within the data. There are multiple activation functions that can

be used (such as hyperbolic tangent, sigmoid, etc.), which are further discussed in Section

3.3.2.4.

3.3.2.2 Convolutional Neural Networks (CNN)

Convolutional neural networks are the most prevalent for computer vision based

tasks, with the goal being to enable the machine to both view and perceive the world in a

similar manner to humans. Along with image processing, CNN can be used for classification

and segmentation tasks. A generalized convolutional neural network architecture, with the

primary layers, is illustrated in Figure 3.6. The layers of the typical CNN architecture can

be divided into those that focus on feature extraction, and those that focus on classifying

the input into one of multiple categories.

Following the input to the neural network, which may be in the form of a multi-
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Figure 3.6: A generalized visualization of the convolutional neural network architecture, with
the commonly used layers labeled.

dimensional tensor to represent a greyscale or color image, the CNN architecture then applies

a series of convolutional layers across the data. Each convolutional layer contains a series of

filters that is referred to as convolutional kernels; each filter is a matrix of integers that is used

on a subset of input pixel values. Each pixel is linearly scaled by the corresponding value of

the kernel, with all results being summed up for a single value representing a grid cell in the

output feature map. The amount of convolutional kernels applied within the convolutional

layer represents the amount of feature maps that are being created for learning the input

feature representations.

Following the convolutional layer is the pooling layer, which is utilized to reduce the

spatial size of the convoluted features computed in the previous layers. This decreases the

computational power required to process the data, and may also be useful for extracting

dominant features from the convolutional layer feature maps. There are two general types

of pooling layers that can be utilized: Max Pooling and Average Pooling. Max Pooling

returns the maximum value from the portion of the image covered by the kernel, whereas

the Average Pooling returns the average of all values from the portion of the image covered

by the kernel. This sequential pattern of convolutional and pooling layers is repeated as

many times as necessary, subject to the judgement of the user.

Subsequent to the pooling layer, which is the last of the feature extraction layers of the
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CNN architecture, we must prepare the resultant data for the classification portion. This

requires the use of a flattening layer, in which we transform the multidimensional output

from the pooling layers into a one dimensional column vector representation that can be

easily passed into a standard feed forward architecture.

3.3.2.3 Recurrent Neural Networks

Within the context of machine learning, recurrent neural networks (RNN) have

increasingly gained the reputation of being the most promising and capable type of net-

work that may be implemented for sequential/temporally driven datasets. Compared to the

standard feed forward and convolutional neural networks, recurrent neural networks may be

better equipped to recognize underlying patterns within sequential/temporal data inputs,

and subsequently use them to make accurate forecasting based predictions. This is made

possible by the underlying architecture of the RNN having an internal memory capability,

which allows the network to form an inner representation of given sequential data.

The primary difference between an RNN and a standard feed forward neural network

can be visualized in Figure 3.7. As mentioned before, standard feed forward neural network

simply passes the information forward through each computational layer of nodes. In com-

parison, each of the nodes in the recurrent layer of the RNN not only pass the information

forward to the next layer, but the output of each node is looped back into the node. There-

fore, each of the computational nodes in a RNN have information of both the current and

recent past, allowing it to perform significantly better on sequential prediction tasks. Aside

from this difference in the architecture, the RNN architecture is also trained in the same

manner as the CNN and the feedfoward by updating the weights of each synapse during the

gradient backpropagation.

There are four primary types of RNN that can be implemented, the categorization of

which is driven by the types of inputs provided to the network, and the type of output that

is being requested:
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Figure 3.7: A high level comparison between the general architectures of a recurrent neural
network and a feed forward neural network (referenced from [2])

1. One to One: the most traditional and simple form, the one to one architecture

provides a single output for a single input

2. One to Many: given a single input, the prediction contains multiple outputs, which

may represent multiple categories for a classification task

3. Many to One: given multiple inputs, the network will provide a single output

4. Many to Many: given multiple inputs, the network will provide multiple outputs

The above four labels can be commonly seen throughout the literature on RNN.

Though RNN architectures may seem to offer a promising approach, they also suffer

from a few critical drawbacks. The standard RNN must be equipped to counter two major

problems that may arise during the gradient backpropagation phase of the training process.

As mentioned before, the gradient represents how much the output of a function changes

when the inputs are only slightly changed. Within machine learning context, the gradient
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measure the change of all weights with respect to the change in the prediction error. There-

fore, a higher gradient will result in faster learning, whereas gradient values near zero, or in

some cases exactly zero, result in significantly slow learning or no learning at all. Standard

RNN neural networks suffer from two known gradient based problems in machine learning:

exploding and vanishing gradients [58]. Exploding gradients can be a by-product of the ac-

cumulation of error gradients during an update of the neural network. These accumulations

may result in very large gradients, which in turn results in large updates to the network

weights and ultimately leading to unstable neural networks. Conversely, vanishing gradient

occur when the neural network has a large number of hidden layers, and subsequently leads

to the gradient partial derivative term to be near zero as the backpropagation process contin-

ues (i.e. the weights closer to the input layer of the architecture may only be updated by an

immensely small amount, or not at all). To counter these issues, as well as to better enhance

the ability of the network to recognize long term dependencies within temporal data, the

Long-Short Term Memory (LSTM) network was developed as an extension of the standard

RNN [59]. The general architecture of an LSTM unit, or cell, that is implemented within

each node of the recurrent layer(s) is illustrated in Figure 3.8.

The fundamental components of an LSTM unit are the cell state, denoted as ci in

Figure 3.8, and the hidden state, denoted as hi. Hidden states are analogous to a working

memory, or short term memory, and carry a representation of the immediately previous in-

put state. Cell states are analogous to a long term memory that is capable of remembering

beyond the immediately previous input state, and is updated via an algebraic calculation

that is a function of the network’s weights, biases and the hidden state. The LSTM unit

has the capability of adding or removing information within the cell state via the use of

regulated gates.

The flow of information through an LSTM unit is textually described in the following

paragraphs [3]; subsequently, an example is provided to clarify the dimensions of each com-

putational stem within the LSTM cell [60]. Given an input xt as some epoch t, the first
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Figure 3.8: A generalized visualization of an LSTM unit architecture (referenced from [3])

computation occurs through the “forget gate layer”. This initial step within the LSTM unit

essentially decides the information that will be discarded from exclusion within the cell state.

The forget gate ft directly evaluates

ft = σ(Wf × xt +Uf × ht−1 + bf ) (3.43)

where Wf , Uf and bf are the weights and biases of the forget gate, ht−1 is the previous value

of the hidden state, × indicates the matrix multiplication, and σ is the sigmoid function. If

the forget gate computes a value close to zero, than the information is not passed to the cell

state; conversely, if the value is close to one, then the information is deemed appropriate to

include in the cell state.

The forget gate essentially decides if the information should be included in the cell state;

the next step determines what information should be included. This decision occurs in two

steps: first, the “input gate layer” decides what values in the cell state will be updated via

the computation

it = σ(Wi × xt +Ui × ht−1 + bi) (3.44)
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where Wi and Ui are the weights of the input gate, × indicates the matrix multiplication,

and bi are biases. Then, a hyperbolic tangent operation is utilized to create a vector of

candidate values C̄t that could potentially be added to the cell state

C̃t = tanh(Wc × xt +Uc × ht−1 + bc) (3.45)

Once the vector of candidate values has been computed, the cell state itself is updated via

ct = ftct−1 + itC̄t (3.46)

Finally, the output of the LSTM unit is computed as

ot = σ(Wo × xt +Uo × ht−1 + bo) (3.47)

where Wo and Uo are the weights, and bo are the biases of the output function. Once the

output has been computed, the hidden state is updated via

ht = ottanh(ct) (3.48)

The dimesionality of each computational step within the LSTM cell can seem confusing at

first sight, and therefore an example computation is provided in Table 3.1, with the assumed

dimensions of the input and output vector being explicitly stated.

3.3.2.4 Activation Functions

As alluded to briefly in previous sections, the use of activation functions plays

an important role in the performance of a neural network. Fundamentally, the activation

function defines how the weighted sum of the input is transformed into an output from a node

or nodes in a given layer of the network. The selection of the appropriate activation function

is not only driven by the type of neural network, but also the type of layer (i.e. hidden or
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Table 3.1: Example dimensionality for each computational step within an LSTM cell

Assumed Input: xt 10x1
Assumed Output: ot 2x1
LSTM Cell Layer Dimension LSTM Cell Layer Dimension

Forget Gate: ft 2x1 Output Gate: ot 2x1
Wf 2x10 Wo 2x10
Uf 2x2 Uo 2x2
bf 2x1 bo 2x1

Input Gate: it 2x1
Candidate Cell

State Values: C̃t
2x1

Wi 2x10 Wc 2x10
Ui 2x2 Uc 2x2
bi 2x1 bc 2x1

Cell State Update: ct 2x1
Hidden State Update: ht 2x1

output) that the function is being applied on. There are various activation functions that

can be used, but a few of the commonly used ones, along with the general scenarios in which

they should be used, are discussed below [61]. We begin with introducing the activation

functions that are commonly

1. Rectified Linear Unit (ReLU): The ReLU activation is generally the most utilized

for hidden layers as it is not only easy to understand and implement, but it is also less

susceptible to the problem of vanishing gradients when compared to other activation

functions for hidden layers. The ReLU activation is computed via

fReLU = max(0, Ynode) (3.49)

where Ynode is the value computed by a node in a hidden layer. As can be discerned from

the empirical formulation above, the ReLU activation function truncates all negative

outputs to zero.

2. Logistic: Also referred to as Sigmoid activation, this function maps all inputs to

within the bounded range of [0,1]. The algebraic formulation for the Logistic activation
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function is given by

fLogistic =
1

1 + e−Ynode
(3.50)

From this Equation, it can be seen that a more positive input Ynode will result in the

activation function returning a value closer to one, whereas a more negative input Ynode

will result in the activation function returning a value closer to zero.

3. Hyperbolic Tangent (Tanh): The Hyperbolic Tangent activation function behaves

similarly to the Logistic activation function, however the outputs are bounded between

[-1,1] instead of [0,1]. The Hyperbolic Tangent activation function is formulated as

fTanh =
eYnode − e−Ynode

eYnode + e−Ynode
(3.51)

The above three activation functions are generally utilized after each hidden layer; however,

there also exist certain activation functions that can be used to transform the neural network

output into the desired format. The following are some of the commonly used activation

functions that can be additionally included after the output layer, though the user can choose

to omit the inclusion of these transformations should they deem fit.

1. Linear: This activation function may alternatively be referred to as the ”identity”

activation function in some literature. The linear activation function does not perform

any algebraic transformation on the values resulting from the output layer of the neural

network, and returns the exact values that are predicted.

2. Logistic (Sigmoid): Functioning in the same manner as the Logistic activation func-

tion for the hidden layers, the Logistic activation for the output layer binds the output

within the range [0,1].

3. Softmax: The Softmax activation function binds the values from the output layer to

a vector of values, the summation of which is always one; in other words, the Softmax
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activation function is utilized to represent the probability of classification of the input

to one of multiple, discrete output categorizations.

The selection of the appropriate activation function for the output may generally be

driven by the type of problem that the machine learning model is being asked to solve [61].

3.3.3 Generalized Taxonomy of Machine Learning (ML)

Lastly, each of the three main categories of neural network architectures discussed

above can be applied for various types of machine learning applications. The landscape of

ML algorithms may seem daunting and hard to navigate, especially considering the vast

amount of critical details that are generally not included in common literature, and instead

left as an exercise to the user to realize and understand. Therefore, this section is included

within this work for the purposes of intuitively explaining, at an extremely high level, the

generalized taxonomy of machine learning methods.

Most of the algorithms can be classified as part of a single taxonomy, with the three main

branches/categories being unsupervised learning, supervised/imitation learning, and rein-

forcement learning. A high level, extremely condensed taxonomy is provided in Figure 3.9,

and the following sections briefly discuss each of the methods listed in the visualization.

3.3.3.1 Unsupervised Learning

Unsupervised learning (USL) is where the user provides an unlabeled dataset (i.e.

state/observation inputs do not have corresponding output labels), and asks that the ML

agent itself learn how to classify, label and/or group the data points. In other words, USL

requires the ML agent to independently identify inherent patterns within the dataset.

1. Dimensionality Reduction [62]: Dimensionality reduction refers to the process of

transforming high-dimensional data into a low dimensional representation, where the

latter retains meaningful properties of the original data. Dimensionality reduction is

commonly used to counter the curse of dimensionality, a well known phenomenon that
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Figure 3.9: Generalized Taxonomy of Machine Learning Methods

arises when analyzing and organizing data in high-dimensional spaces. Additionally,

these methods can be used for noise reduction, data visualization, cluster analysis, or

as a data pre-processing step for other ML methods.

• Independent Component Analysis (ICA) [63, 64]: ICA is a linear dimen-

sion reduction method that transforms the dataset into columns of independent

components. The method assumes that each sample of the data is a mixture of

independent components, and aims to determine them.

• Principal Component Analysis (PCA) [65, 66, 67]: PCA is one of the more

popular dimensionality reduction methods utilized in ML, and similar to ICA, is

also a linear dimension reduction. PCA is a projection based method that trans-

forms the data by projecting into a lower dimension via the eigenvalue analysis.

51



Appropriately implemented PCA will result in a high accuracy representation of

high dimensional data via projection into a low dimensional space.

• Singular Value Decomposition (SVD) [68, 69, 70, 71]: SVD is a matrix fac-

torization method that transforms the data linearly into independent, unrelated

properties. SVD will provide all the independent components that can be used to

represent high dimensional data, whereas PCA will select the most representative

features. Therefore, PCA can be interpreted as a specific formulation of SVD.

2. Clustering: As the name implies, clustering is a machine learning technique that

divides the dataset into groups, such that all data points within one group share some

characteristic, and all created groups are characteristically different from each other.

Often times, clustering may be a first step in the machine learning process, as it

allows the user to understand their dataset and assess the need for any consequent

modifications.

• Heirarchical [72]: Also referred to as heirarchical cluster analysis, heirarchical

clustering is an algorithm that groups similar objects into independent groups

called clusters, within which each data sample is broadly similar to the others.

• k-means [73]: These methods aim to partition n observations into k clusters in

which each observation belongs to the cluster with the nearest mean. The value

of k is a user-defined parameter of the algorithm.

• Gaussian Mixture Model [74]: Gaussian Mixture Models are probabilistic

models that assume all the data points are generated from a mixture of a finite

number of Gaussian distributions with unknown parameters. Mixture models

may be thought of as generalizing k -means clustering to incorporate information

about the covariance structure of the data.
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3.3.3.2 Supervised Learning

In contrast to USL methods, supervised learning (SL) methods are provided a

training dataset that already contains the true data labels. The artificial agent is then trained

by computing the error between the predicted and true labels, and using this information as

part of learning updates. Within SL, there are two categories for predicting: classification

and regression. Each of these is further explained below, along with some corresponding

methods that are generally used.

1. Classification: Classification predictive models approximate a mapping function from

input variables to discrete output variables, which can represent labels or categories. A

classification algorithm can have both discrete and real valued variables, but it requires

that the examples be classified into at least two classes.

• Decision Tree [75]: This method builds a decision tree where every node of the

tree is a test case for an attribute and each branch coming from the node is a

possible value for the attribute.

• Support Vector Machine (SVM) [76]: The objective of SVM algorithms is

to find a hyperplane in an c-dimensional space (where c signifies the number of

features) that distinctly classify the data points.

• k-nearest neighbor (k-NN [77]): This algorithm assumes that similar things

exist in close proximity to each other. It uses feature similarity for predicting

values of new data points, and attempts to group similar data points together

according to their proximity. The main goal of k -NN algorithms is to determine

how likely it is for a data point to be part of a specific group.

• Discriminant Analysis: Discriminant analysis is a classification problem, where

two or more groups/clusters are known a priori and one or more new observations

are classified into one of the known categories based on the measured character-

istics.
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• Random Forest [78]: This method builds a set of decision trees that are ran-

domly generated from a subset of the main training set. The algorithm then

aggregates outputs form all the different decision trees to decide on the final out-

put prediction, which is more accurate than any of the individual trees.

• Naive Bayesian [79]: The Naive Bayesian classifier is a probabilistic model that

is derived the the Bayes Theorem

P (A|B) =
P (B|A)P (A)

P (B)
(3.52)

which computes the probability P of event A happening, given that event B

has already occurred. This algorithm assumes that the features that drive the

prediction determination are independent, and that one particular feature does

not affect the other (i.e. there is no causal dependence between the features).

2. Regression: In contrast to classification tasks, where the learning agent is asked to

categorize the input variable(s) into one of multiple, discrete categories, regressive SL

algorithms are tasked with predicting continuous values, that may exist within some

range. The goal of regression algorithms is to determine the best-fit line/curve between

all the data points.

• Decision Tree: Decision trees that are used for regression tasks may also be

referred to as ”regression trees”

• Linear: A linear regression ML model will find the best fit linear line between

the independent and dependent variables (i.e. it will find the linear relationship).

• Logistic: Logistic regression models the probability of a discrete outcome given

an input variable. Whereas linear regression is used for data which may vary

between some range of values, logistic regression may be used for data that rep-

resents one of two values.
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• Multivariate Linear: The multivariate regression technique learns a single re-

gression model that is capable of predicting more than one outcome variable

3.3.3.3 Reinforcement Learning (RL)

Both the unsupervised and supervised learning methods assumed the existence of

a dataset that is used to train a model for a prediction task. In comparison, RL methods are

driven by rewarding desired behaviors and penalizing/punishing undesired ones. The general

framework for RL is onen in which an agent continuously interacts with an environment

via actions, receiving feedback, in the form of a reward, that quantifies how good that

action/behavior was, and subsequently updates its learned policy in the direction of the

desired behavior. Mathematically, the RL framework solves the Markov Decision Process

(MDP), which in turn is based on the Bellman Equation [43]. The Bellman Equation outlines

a framework that determines the optimal expected reward R at a current state s, and can

be fundamentally described as

V (s) = maxa (R(s, a) + γV (s′)) (3.53)

where a is the action, V is the expected return, or value, γ is the discount factor (i.e. a

hyperparameter of the RL algorithm, and varies in the range γ ∈ [0, 1]. Setting γ closer

to zero indicates that the model only considers immediate reward, whereas γ values closer

to one also considers future rewards.), and s′ is the next state. In more simpler terms,

Equation (3.53) can be read as “the expected return at the current state s is the maximum

value of any possible action a for the expected reward for taking action a at state s, plus the

discount factor multiplied by the value of the next state” [43].

There are two general categories of RL methods: model based and model free. Each of

these, along with their further sub-categories, is briefly summarized below.
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1. Model Based: Model based RL methods learn optimal policies indirectly by learning

a representation of the environment [43]. This is done by continually taking actions

and observing the consequent outcomes, along with the value of the feedback signal

quantified by the reward. These representations can be used to predict the outcomes

of certain actions, and may be used as a proxy to the environment interactions in order

to learn optimal policies

2. Model Free: Conversely, model free RL methods do not utilize the transition proba-

bility distribution associated with Markov Decision Processes, and only concern them-

selves with determining the appropriate action/behavior given a specific state that the

agent is currently in [43]. Model free methods can be alternatively viewed as “trial

and error” algorithms, and can be further divided as being either policy-based or value

based.

• Policy-Based: Policy-based methods explicitly learn a mapping π from a state

s to an action a (i.e. the method maps π : s −→ a).

• Value-Based: Conversely, value-based methods do not learn a mapping scheme,

and only store information on the value function.

Furthermore, model-free methods can also be classified as either on-policy (which eval-

uates and/or improves its current learned policy as it continually interacts with the

environment) or off-policy (which evaluates and/or improves a policy that is different

from the one used to interact with the environment and generate the training data) [43].

3. Actor-Critic Architectures: Actor-Critic architectures leverage both policy and

value based RL algorithm approaches, by deploying two agents in parallel; both agents

are modeled via independent neural networks [43]. The actor agent learns to predict

the appropriate action for a given state, whereas the critic agent learns to compute how

“good” the value of the action was for the given state. The value function computed by

the critic agent is then used to update the policy of the actor agent’s neural network.
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Chapter 4

Experimental Formulation and Methodology

This chapter provides the specific details on the investigation that was implemented

to compare path-planning solutions that were generated using various approaches. More

specifically, the full derivations and appropriate machine learning model architectures are

discussed in the sections below.

4.1 Numerical Experiment Framework

We evaluate the implemented approaches via a numerical formulation for a baseline

path-planning problem. This numerical investigation serves two primary purposes: to ex-

plore the inherent advantages and drawbacks of the various methods that may be leveraged to

achieve autonomous spacecraft path planning, as well as to initially establish a comparative

strategy that can be used to further assess the underlying trade offs and possible synergies

of each method.

The utilization of optimal control approaches, such as indirect and direct collocation

methods, are generally regarded as one of the standard procedures for designing spacecraft

path planning solutions. However, with increasing research interest in the application of

machine learning, we aim to understand how data-driven approaches stand in comparison

to the conventional optimal control methods within the context of spacecraft path-planning.

Such an analysis may not only serve as an indication of how to merge these independent

approaches into a synergistic framework, but may also bring to realization the necessary ad-

vances in the state of art required to apply machine learning methods to the scale of complex

astrodynamical applications.
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When designing a baseline trajectory, the solution must satisfy the mission and space-

craft constraints; for example, these constraints may be quantified by flyby velocities, radial

distances from the neighboring primary celestial bodies, fuel consumption, and even the at-

titude pointing direction of the spacecraft. In order to meet these constraints, the optimal

control approaches may require further modifications within the optimization framework.

The same concept applies to machine learning methods; the underlying neural network and

algorithm hyperparameters can be modified and tuned in order to achieve the best perfor-

mance within the defined constraints. Simply put, the best modification of the method will

change depending on the problem that it is being applied to. This subsequently leads to di-

minishing value of attempts at quantified comparison of the performance of the methods.

Therefore, in this work, a choice is made to not implement any additional modifications that

would bias the performance of a given method in relation to the others. Such modifications

include the optimization of neural network architectures and hyperparameters, and addi-

tional inclusions in the optimal control methods that result in the converged solution to fit a

preferred solution range. As a consequence of this choice, the comparison of results provided

in this study are therefore limited.

Figure 4.1 illustrates all the methods of autonomous path planning that are explored

within this work. The methods can be generally grouped into three primary categories:

optimal control (i.e. indirect and direct collocation methods), supervised/imitation learning

(i.e. cloning from a database of optimal solutions, and cloning from human demonstrations),

and reinforcement learning. The synergistic combination of reinforcement and supervised

learning yields the novel field of human-AI cooperative learning, which is further explored in

Chapter 6 as an extended application of autonomous path-planning frameworks in random

space environments. The formulation and implemented methodology of each of these meth-

ods, aside from that of human-AI cooperative learning, are further discussed in the following

subsections.
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Figure 4.1: A visualization of possible methods for autonomous path planning methods for
this investigative work

4.2 Problem Background

This section discusses the path-planning problem that was developed and imple-

mented. The relevant technical details of the applied methods are previously discussed in

Section 3.

4.2.1 Definition of the Problem Statement

We consider a specific path-planning task to test the selected methods via the

implementation of a “sandbox environment” approach. The implemented path planning

problem comprises of a low thrust, minimum time transfer within a binary asteroid system

(these environments may be inherently characterized by chaotic dynamics, hence leading

to an increasing complexity of the path planning problem). More specifically, the trans-

fer is assumed to occur from the L4 Lagrangian point to the L5 Lagrangian point of the

system (these points may also be referred to as the triangular Lagrangian points). These

Lagrangian points were chosen not only because the spacecraft state at these locations is
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explicitly known, but also because the triangular Lagrangian points may be able to serve as

stationing candidates due to their dynamical stability [80].

This work utilizes the CR3BP dynamical model (equations previously provided in Chap-

ter 3), with the additional simplifying assumption of planar dynamics. Therefore, the driving

equations of motion for the planar CR3BP dynamical model are

ẍ = 2ẏ +
∂U∗

∂x
(4.1)

ÿ = −2ẋ+
∂U∗

∂y
(4.2)

where ẍ and ÿ represent the planar accelerations, and U∗ is the pseudopotential function.

However, as we are solving a control problem, the dynamical influence of the control term

must be implemented within the base dynamics. The control term u is defined as

u = [ux, uy]
⊤ = Tmaxδ[cosα, sinα]

⊤, (4.3)

where δ ∈ [0, 1] and α ∈ [0, 2π] denote the magnitude and direction of the control vector,

respectively and Tmax denotes the constant maximum thrust produced by the propulsion

system. Therefore, the inclusion of the acceleration due to the thrust control vector yields

the following equations of motion for the spacecraft

ẍ = 2ẏ +
∂U∗

∂x
+

Tmax

m
ηux (4.4)

ÿ = −2ẋ+
∂U∗

∂y
+

Tmax

m
ηuy (4.5)

where m denotes the spacecraft mass. The modeling of the state estimation is implemented

under deterministic assumptions; in other words, there are no additional perturbations or

uncertainties in the spacecraft state

x⃗ = [x, y, ẋ, ẏ,mspacecraft]
T (4.6)
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which is explicitly computed through the numerical integration of the dynamical equations

of motion via the computation of the time derivative of x⃗ as empiricized by

˙⃗x = [ẋ, ẏ, ẍ, ÿ, ṁ]T (4.7)

The time rate of change of mass (ṁ) is given by

ṁ = −Tmax

c
δ, (4.8)

where c = Ispg0 is the effective exhaust velocity and Isp and g0 denote specific impulse and

sea-level gravitational, respectively. In this work, the specific impulse value remains constant

along the extremal trajectories.

4.2.2 Dynamical Parameters and Simulation Constants

It is possible that the ability to achieve a solution, as well as the subsequent per-

formance, may be inherently driven by the dynamical scenario that is encountered. In other

words, it may become more difficult to achieve a path planning solution within certain dy-

namical environments. Therefore, to analyze the performance as a function of the underlying

dynamics, each method was tested over different combinations of selected dynamical large

range of scenarios that are randomly generated via independent Monte Carlo trials.

In particular, there are four dimensions of perturbations: the µ value, the maximum

thrust value, and perturbations on both the initial position and velocity states. Each of

these parameters were randomly selected from the ranges of these perturbations provided in

Table 4.1; all other relevant dynamical values were fixed to constant scalars, whose values

are given in Table 4.2.
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Table 4.1: The perturbation ranges for the dynamical parameters of the baseline problem

Parameter Perturbation Range
µ (ndim) [0.001, 0.45]

Thrust (Newtons) [1e-3, 50e-3]
Position Initial Condition (ndim) [-0.2, 0.2]
Velocity Initial Condition (ndim) [-0.2, 0.2]

Table 4.2: The fixed valued of dynamical parameters of the baseline problem

Parameter Fixed Value
Characteristic Length (km) 3.75
Characteristic Time (hours) 4.19

P1 Diameter (km) 1.61
P2 Diameter (km) 0.49

Initial Spacecraft Mass (kg) 610
Isp (sec) 2000

4.3 Optimal Control Solution Formulation

The optimal control based analysis is implemented via a two tier controller that

first implements the indirect method formulation, and then assesses the need to implement a

direct collocation scheme on the generated solution in the event that the solution violates an

inherent state path constraint. The derivation of each of these methods is further discussed in

the subsequent sections, along with the implemented state path constraints and an overview

of the hierarchical controller architecture.

4.3.1 Indirect Optimal Control Formulation

The first stage in the two tier controller implements an indirect method formulation,

which requires the definition of a cost functional for the problem that is being implemented.

For minimum-time trajectory optimization problems, the cost functional, J , can be written

in the Lagrangian form as

minimize
x⃗∈X(t) & u⃗(t)∈U

J =

∫ tf

0

1 dt, (4.9)
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where X and U denote the set of admissible states and controls, respectively. Here, the

initial time of maneuver is set to t0 = 0 without loss in generality. This functional J can

be interpreted as the running cost that must be minimized over the entire solution. The

problem comprises of minimum time transfers, and therefore the integrand is unity and

the optimization must occur in the temporal dimension by default. The set of differential

equations f⃗ that propagate the state x⃗ forward in time are denoted by

f⃗ =



ẋ

ẏ

ẍ = 2ẏ + ∂U∗

∂x
+ Tmax

m
δ cos(α)

ÿ = −2ẋ+ ∂U∗

∂y
+ Tmax

m
δ sin(α)

ṁ = −Tmax

c
δ

(4.10)

For simplicity, we assume no throttling capabilities of the propulsion system, which results

in the value of δ = 1.

Let λ⃗ = [λx, λy, λẋ, λẏ, λm]
⊤ denote the costate vector associated with the state vector,

x⃗. We can proceed by forming the variational Hamiltonian as

H = L+ λ⃗⊤f⃗

∴ H = 1 + λxẋ+ λyẏ + λẋ

[
2ẏ +

∂U∗

∂x
+

Tmax

m
δ cos(α)

]
+

λy

[
−2ẋ+

∂U∗

∂y
+

Tmax

m
δ sin(α)

]
− λm

Tmax

c
δ

(4.11)

where L = 1 is the Lagrangian cost function. The costate differential equations can be

obtained using Euler-Lagrange equation as

˙⃗
λ = −

[
∂H

∂x⃗

]⊤
. (4.12)
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The optimal expression for sin(α) and cos(α) can be optimized using Pontryagin’s min-

imum principle (PMP) and Primer Vector Theory of Lawden[81] as

cos(α∗) = − λẋ√
λ2
ẋ + λ2

ẏ

, sin(α∗) = − λẏ√
λ2
ẋ + λ2

ẏ

(4.13)

Upon substitution of relations given in Eq. (4.13) into Eq. (4.11) and simplifying the

Hamiltonian we have

H = H0 −
Tmax

c

c
√
λ2
ẋ + λ2

ẏ

m
+ λm

 δ, (4.14)

where the term in the bracket is the so-called thrust switching function. According to PMP,

the optimal throttle, δ∗, has to minimize the Hamiltonian along an extremal trajectory. In

general, the switching function may have multiple switches in its sign, which gives rise to

bang-bang control profiles. In addition, it is also possible for the switching function to re-

main zero for a finite time interval which characterize singular control arcs (though singular

arc controls rarely occur in space flight). Additionally, for minimum-time maneuvers, it is

shown that the switching function remains positive along an extremal solution [82]. Thus,

the optimal throttle becomes δ∗ = 1, which means that the propulsion system will operate at

its maximum throttle setting. While not considered in this study, in the case of minimum-

fuel trajectory optimization problems, it is possible to alleviate the numerical issue due to

bang-bang control profiles by using a hyperbolic tangent smoothing (HTS) method [83] com-

bined with a numerical continuation method.

The implemented problem consists of generating minimum-time transfers from the sys-

tem’s L4 to L5 Lagrangian points with their position vectors given in Equations (3.14) and

(3.15) and with velocity vectors v⃗L4 = v⃗L5 = 0⃗. Recall that the spacecraft mass is not fixed

for the final time, and is in fact, a function of the time of flight, tf . We are only concerned

with generating transfer solutions between the triangular Lagrange points, and doing so with

the shortest possible time of flight. There are two additional boundary constraints that must
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be satisfied at the final time tf . From stationarity conditions, the value of the Hamiltonian

must satisfy H(tf ) = 0. In addition, the cost functional represents a minimum-time problem

and it does not contain mass state explicitly; thus, the co-state associated with the mass

value must also satisfy λm(tf ) = 0. Thus, the original optimal control problem has been re-

duced to solving a two-point boundary-value problem (TPBVP). In summary, the TPBVP

associated with minimum-time maneuvers can be summarized with state dynamics, costate

dynamics, extremal control expressions, Eq. (4.13), δ∗ = 1, and the boundary conditions

Ψ(ti) defined as

Ψ(t0 = 0) =


r(t0)− rL4

v(t0)− vL4

m(t0)−m0

 = 0, Ψ(tf ) =



r(tf )− rL5

v(tf )− vL5

λm(tf )

H(tf )


= 0. (4.15)

The unknowns for the base minimum-time problem are seven initial values of the costate

vector, λ⃗(t0), and the time of maneuver, tf , which has to be determined. The resulting

TPBVP does not have an analytical solution and has to be solved numerically. However, the

problem is converted to a non-linear root-finding problem. In this paper, a single-shooting

solution scheme based on Quasi-Newton method is used to solve different instances of the

TPBVPs. Each instance corresponds to perturbation ranges per Table 1. MATLAB’s built-

in non-linear solver fsolve is used as the root-solver and its built-in numerical integrators

ode45 and ode15s are used for propagating the differential equations forward in time.

The implementation of this indirect method formulation echoes the standard approach

that may be generally utilized for initial analysis and path planning design. However, it

should be immediately noted that this formulation does not take into consideration any

state path constraints, such as the trajectory remaining within certain bounds that can

be geometrically empiricized by equality and/or inequality constraints. There exist methods

that may allow for the inclusion of state path constraints within the indirect formulation [84],
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but these are not implemented within the problem formulation as they would be considered

additional modifications to the solution methodology, and bias the resulting analysis.

4.3.2 Direct Collocation Method Formulation

Given that the indirect method formulation may produce an infeasible solution, with

feasibility being defined as there being no violations of the state path constraints, the solution

must therefore be rectified via the direct collocation method. There are three state path

constraints that the solution must adhere to, which are provided below, with the bolded

scalars denoting additional safety distances from the primaries to ensure a more realistic

solution.

1. Constraint 1 : at any epoch ti, the trajectory cannot go through the main primary P1,

which has a radius RP1

d(ti)
2 + r(ti)

2 ≥ 1.1R2
P1 (4.16)

2. Constraint 2 : at any epoch ti, the trajectory cannot go through the secondary primary

P2, which has a radius RP2

d(ti)
2 + r(ti)

2 ≥ 1.5R2
P2 (4.17)

3. Constraint 3 : at any epoch ti, the trajectory must remain within the outer bound of

the binary system, which has a radius defined by the characteristic length (L∗), which

is nondimensionalized for unit consistency

d(ti)
2 + r(ti)

2 ≤ 2L∗2 (4.18)

In the above constraint equations, the terms d(ti) and r(ti) represent the distances from

the larger and smaller primaries, respectively. The scalar values of 1.1, 1.5, and 2 were

arbitrarily chosen for this analysis as a representation of safety constraints from a practical
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context. These state path constraints are enforced at mesh points within the direct colloca-

tion method framework, which is based on the Hermite-Simpson transcription method [85]

with the formulation details given in [86].

The full visualization of the two tier optimal controller is provided in Figure 4.2, and the

flow of information proceeds as textually described above. The first stage of the controller

is the indirect method formulation, which implements the derived co-state differential equa-

tions and generates an initial solution that adheres to all boundary constraints. Then, this

solution is evaluated for feasibility, and if no state path violations occur, then the trajectory

data is directly added to the solution database. If a state path violation is found to have

occurred, then this solution is passed to the direct collocation method as the initial guess

that requires corrections for the necessary constraints. Given that the problem scenario is

modeling low thrust transfers, and the fact that the initial boundary conditions, system µ,

and thrust value parameters will be randomly varied for each scenario, there is a possibility of

the solution dataset comprising of a diverse topology. For example, certain combinations of

perturbations may result in transfers that comprise of singular arcs, whereas other scenarios

may result in multiple-revolution solutions. A solution with more revolutions may require

more discretization nodes within the direct collocation scheme, and therefore a rough mesh

refinement strategy is adopted within the two tier controller architecture. All solutions that

are passed to the direct method for corrections are initially discretized with 75 nodes, after

which the solution is re-converged. Subsequently, this solution is evaluated again to ensure

that no arc segments between any nodes violate the state path constraints. If a violation

is found to occur, then the number of discretization nodes is increased by 10, and the solu-

tion is re-converged. This iterative scheme continues until the solution is within the defined

tolerances.
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Figure 4.2: The two tier optimal controller architecture

4.4 Imitation of Optimal Control Solutions via Supervised Learning

4.4.1 Generation of an Optimal Solution Database

Multiple executions of the two tier controller architecture will result in the gen-

eration of optimal control solutions that represent minimum time transfers. As per the

formulation of the two point boundary value problem. For each execution, not only are the

non-dimensional mass parameter (µ) and thrust (Tmax) randomly selected from pre-defined

ranges, and the initial state (both position and velocity) is also perturbed away from the

true L4 state of the generated system. Therefore, the solution database will characterize a

wide range of dynamical scenarios.

It was observed that the use of different numerical integration techniques yielded dif-

ferent solution geometries. More specifically, the use of standard 4th order Runge-Kutta

integration resulted in more diverse trajectory geometries, such as multiple revolutions and

close fly-by maneuvers of the larger primary. Conversely, the use of stiff numerical integra-

tion, such as ode15s in MATLAB, resulted in direct transfers around the smaller primary.
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Taking this observation into account, approximately 10,000 solutions were generated using

stiff numerical integration, and another approximately 1,500 solutions were generated using

standard 4th order Runge-Kutta integration.

4.4.2 Training Clone Agents from Optimal Trajectory Solutions

The generated solution database can be directly utilized to train clone agents. As the

trajectory solutions not only contain the state information, but also the control decisions, the

dataset is fully labeled, therefore allowing us to use standard supervised learning methods

to train clone agents.

We consider two options for the neural network architecture for the clone agents: the

standard feed forward neural network, and the recurrent neural network modeled via the

LSTM formulation. By the conventional formulation of the architectures, the feed forward

network may only be able to consider the current state as the input in order to compute

a control prediction. However, as all recurrent neural networks, and by relation the LSTM

formulation, are capable of considering the temporal sequences as part of the training pro-

cess. Additionally, during rollout of the LSTM based network, the input to the network

can be either the current state only, or a rolling “lookback” window that not only contains

the current state, but the immediately previous states for a certain amount of epochs. This

latter characteristic may be of great benefit during the rollout of the trained agent.

For developing clone agents based on the optimal control solutions, both the feed for-

ward and LSTM neural networks were utilized. However, an important modification must

be made to the LSTM network prior to the training process. As previously discussed in

Chapter 3, the LSTM network learns long term dependencies in temporal data via continual

updates to the innate cell and hidden states. An important assumption that is made for all

recurrent neural network architectures is the fact that the input data is characteristic of a

single, temporally driven data stream. In our case, we have a solution database compris-

ing of thousands of solutions, all of which are independent temporal data. Therefore, the
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Table 4.3: The neural network architectures for the implemented feed forward model

Hyperparameter/Layer
Version 1

(Deterministic Policy)
Version 1

(Stochastic Policy)

State Feature Vector [x, y, ẋ, ẏ] [x, y, ẋ, ẏ]

Learning Rate 7e-4 7e-4

Optimizer Adam Adam

Criterion Mean Square Error Mean Square Error

Hidden Layer 1 Fully Connected, 250 nodes Fully Connected, 250 nodes

Activation Function tanh tanh

Hidden Layer 2 Fully Connected, 125 nodes Fully Connected, 125 nodes

Activation Function tanh tanh

Output Layer 1 node 1 node

Output Format Predict α
Predict mean

Sample α = Normal(mean, σ = 0.1)

Table 4.4: The neural network architecture for the implemented LSTM model

Hyperparameter/Layer
Version 1

(Deterministic Policy)
Version 1

(Stochastic Policy)

State Feature Vector [x, y, ẋ, ẏ] [x, y, ẋ, ẏ]

Learning Rate 7e-4 7e-4

Optimizer Adam Adam

Criterion Mean Square Error Mean Square Error

Hidden Layer 1 1 LSTM layer, 64 units 1 LSTM layer, 64 units

Activation Function ReLU ReLU

Hidden Layer 2 Fully Connected 200 nodes Fully Connected 200 nodes

Activation Function ReLU ReLU

Output Layer 1 node 1 node

Output Format Predict α
Predict mean

Sample α = Normal(mean, σ = 0.1)

assumption behind recurrent neural networks becomes invalid, and modifications must be

made to allow for this scenario. This modification comes in a surprisingly intuitive manner:

after each independent temporal data has been passed through the LSTM network, and the

training loss has converged to the minimal value, the internal memory of the LSTM units

(i.e. cell and hidden states) are reset to zero before the next independent temporal data

stream is passed through as the input. This modification will results in what is termed as

the “stateless LSTM” network.
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The full architectures of the implemented feed forward and LSTM networks are provided

in Tables 4.3 and 4.4. For each of the two architectures, there were two variations: version

1 of each agent was trained to learn how to directly predict the thrust control direction α,

whereas version 2 of each agent was trained to learn the prediction of a mean value, which

is then utilized to sample the thrust control direction α from a Normal distribution with an

assumed standard deviation of σ = 0.1. Additionally, during the training process for each

variation of both networks, an early stopping criteria was implemented to avoid overfitting

the model. All neural networks were coded using the Pytorch package in Python, with

random weight initialization; the early stopping criteria was implemented via a hard-coded

function routine

4.5 Human Driven Imitation Learning

4.5.1 Game Framework and Human Pilot Database Generation

The two tier optimal control architecture can be utilized as an analytical approach

for generating trajectory solutions for a varying range of dynamics. However, posing this

minimum time path planning problem to a human pilot, in the form on real time “gamified

engineering” may also result in a diverse set of solutions. The innate human ability to not

only build causal models of dynamics, along with the capability to immediately adapt a

given behavior to a new scenario, may inspire complementary approached as compared to

optimal control methods.

In order to evaluate the human ability at solving a minimum time transfer problem, a

real time flight simulator was developed in Python that appropriately models the problem.

Each run of this simulator is referred to as an episode; each episode begins with the random

selection of the µ and thrust values, as well as the perturbations to the initial state. In other

words, each episode models a different dynamical scenario and initial boundary conditions

in the same method utilized to generate the solution database from the optimal control

solution. The game interface is visualized in Figure 4.3, and provides the human pilot with
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Figure 4.3: A screenshot of the developed, real-time flight simulator that models the mini-
mum time L4-L5 transfer problem via the perturbations detailed in Table 4.1

relevant details that can be utilized as part of their path-planning decision process. Namely,

the pilot statistics dashboard provides the current score, the time of flight, and the amount

of fuel remaining. The spacecraft state dashboard provided the explicit quantifications of

the current and target states. Lastly, the blue arrow located below the spacecraft icon

denotes the direction of the thrust control vector relative to the positive tangent vector of

the spacecraft.

The human pilot explicitly controls the direction of this thrust control vector via a

joystick input on a PlayStation 4 controller. The angle β defines the orientation of the

thrust control vector, relative to the current tangential velocity vector of the spacecraft.

This angle β is directly implemented within the state dynamics in order to propagate the

motion forward in time. Each control decision by the human pilot is propagated forward for

15 seconds in simulated time (though it may be small, this value was deemed to be the most

appropriate through trial and error, as it was observed that and higher values resulted in

72



the inability of the human to appropriately control the spacecraft for high thrust scenarios).

In order to encourage the development of minimum time transfers, as well as achieving

the final boundary condition as best as possible, the game interface includes an underlying

scoring function that is directly visible to the human pilot. In particular, an inverse scoring

scheme of the form

r(ti) = sbase − s1ti + terminal bonus/penalty (4.19)

where ti is the current epoch, sbase is a fixed scalar value of 10,000, s1 is a scalar weight

of 5, and the terminal bonus/penalty is determined by whether a termination criteria was

detected. If the spacecraft crashed into either primary or left the asteroid system, the

terminal penalty is -2,000; conversely, if the human was able to navigate the spacecraft to

L5, and they deemed that they achieved the final state, then the terminal bonus is defined

by the following scheme:

terminal bonus =


+500 if norm(x⃗final − x⃗L5) ≤ 0.25

+1, 000 if norm(x⃗final − x⃗L5) ≤ 0.1

+1, 500 if norm(x⃗final − x⃗L5) ≤ 0.05

(4.20)

where x⃗final is the state at which the episode was terminated as the human pilot believed

that they met the target state boundary condition.

Approximately 25 hours of training data from a single human pilot were collected; due to

the small integration time step within the simulation dynamical propagate, this only yielded

approximately 100 episodes of trajectory solutions.

4.5.2 Agent Training

In the same method utilized for training the clone agents from the solution database

generated by optimal control methods, a clone agent was also trained from the human pilot
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solutions. However, we only consider the LSTM formulation for the human pilot version,

due to the fact that they may be better equipped to deconstruct the diverse human pilot

path planning logic. Additionally, we only train one version of the clone, that learns to

directly predict the value of the thrust control direction α. The architecture and hyperpa-

rameters utilized is the same as version 1 of the LSTM network utilized for the clone agents

trained from the optimal control solution database (these values were previously provided in

Table 4.4).

4.6 Reinforcement Learning: Proximal Policy Optimization (PPO)

4.6.1 Algorithm Overview and Hyperparameters

As previously discussed in Chapter 3, reinforcement learning (RL) agents have no

direct knowledge of the underlying dynamics, and instead learn a behavior, or policy, by

interacting with a simulated environment through predicted actions, and receiving scalar

feedback signals quantifying “how good” the action was, in regards to either the new state

or the previous state-action tuple. After a certain amount of interactions (also referred to

as “steps” in RL terminology), the encountered states, the chosen action and the reward

feedback signal are utilized to update the agent’s policy through the computation of a loss

function. The definition of the loss function for RL is different than that of supervised learn-

ing (which generally utilizes mean square error), and each RL algorithm has a distinct loss

formulation that is specified in the corresponding literature. This process iteratively repeats

until the policy has converged; this is generally visualized and quantified by plotting the

total reward versus the number of interactions.

There are numerous RL algorithms that may be applicable within the context of space-

craft path planning. For the context of this work, we implement Proximal Policy Opti-

mization (PPO) with clipped objective [87], which has garnered recent interest due to its

robustness for astrodynamical path planning purposes. PPO with clipped objective is a

policy gradient method in which the underlying neural network directly learns the policy
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by updating its parameters appropriately [87]. Policy gradient methods are appropriate for

continuous action space problems, and the minimum time transfer problem can be classified

under this category.

PPO is comprised of an actor-critic architecture, with two different neural networks.

During rollout of the policy, the agent gathers data about the encountered state, the action

it has predicted, and subsequent reward; this information is then stored in a local, running

memory. After a certain amount of steps, the data stored in the running memory is utilized

to update the actor and critic architectures for a certain amount of epochs, subsequent to

which the local memory is erased.

The actor neural network will dictate the action to take given a state, and the critic

observes the actor’s actions and provides feedback as to how good the decision was by cal-

culating a value function. The agent will train by updating the neural network parameters

via gradient descent according to the dictated loss function. To understand the unique loss

function for a PPO with clipped objective agent, let us start with the following base equation:

L = E[logπQ
(at|st)]A

where E is the expectation, logπQ
(at|st) is the log probability of taking a certain action

at given a state st, and A is the advantage function, which simply tells us the advantage

of selecting a certain action in a certain state. Given a policy Q, PPO first defines the

probability ratio between the new and old policy as

r(Q) =
πQ(at|st)
πQold

(at|st)

If r>1, then the action is more probable in the current policy than the old policy.

Now, let’s return to the advantage function, as it will drive the gradient updates in

the neural network parameters. In essence, if the advantage is positive then we want to
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Algorithm 2 Generalized PPO Algorithm Pseudocode with Clipped Objective

1. Define the neural network architectures for the actor and critic, along with all relevant algorithm hyperparamaters

2. Define the numerical optimization scheme

3. For each episode for a maximum number of episodes N

(a) Execute the actor’s learned policy and collect a dataset of trajectories.

(b) Compute the reward received across each trajectory

(c) Update the actor policy by maximizing the loss function defined by LPPO and performing gradient backpropa-
gation with the defined optimization scheme

(d) Compute the mean square error between the critic’s predicted state-action values, and the reward received. Use
this error to update the critic weights via gradient backpropagation with the defined optimization scheme

4. Repeat Step 3 until the learning has converged

increase the probability of taking the action, but we want to contrain the policy shift to

avoid overshooting in the direction of undesired behaviors. This is done by using clipped

objective, which is used to define the clipped surrogate objective function as

LCLIP = E[min(r(Q)A), clip(r(Q), 1− ϵ, 1 + ϵ)A]

where ϵ is a hyperparameter of the PPO algorithm, and min() indicates that LCLIP selects

the minimum of the two argument values. The inclusion of this clipped objective essentially

ensures that the agent policy update is not too greedy and instead opting for smaller, and

hence more stable, updates in the direction of good behaviors. The total loss function for a

PPO agent is comprised of three terms

LPPO = −E[LCLIP − c1L
MSE + c2L

ENTROPY]

where LCLIP is the clipped objective loss function defined above, LMSE is the mean square

error loss between the actor and critic predictions, and LENTROPY is the entropy bonus that

measures the randomness of the agent’s actions (good learning behavior means that the

entropy decreases) [87]. The constants c1 and c2 are PPO hyperparameters and can be

defined as desired. Furthermore, we note the inclusion of the negative sign in total loss
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function. The neural network gradients are updated to minimize the loss, but we want to

drive the learning in the direction dictated by the advantage function in LCLIP (i.e. we wish

to maximize) therefore the use of the negative sign is warranted. The summarized overview

of PPO are given in Algorithm 2, with the explicit details being found in [87].

4.6.2 Environment Formulation and Reward Function Design

Though the terminology may be different, the environment that an RL agent are essen-

tially represented by the underlying state dynamics. Therefore, each interaction, or step, is

defined as follows:

1. At each epoch i, the agent receives an observation vector oi that quantifies the current

state

2. Given oi, which is passed to the actor neural network as an input, the agent predicts

the correct action at

3. The selected action at is then directly implemented in the state dynamical equations

of motion, and the motion is propagated forward in time along the interval [ti, ti+∆t],

with the thrust control vector fixed in the direction predicted by the agent (i.e. we

propagate the motion forward via a zero-order hold scheme). The value of ∆t can

be set as desired by the user, and for this implementation, ∆t = 30 minutes unless

the “endgame activation” phase is activated, which results in ∆t = 5 minutes (further

details on this phase are provided in the following paragraphs).

4. Given the propagated state si+1 at [ti +∆t], the reward ri is computed. Additionally,

the propagated state is used to determine if a pre-defined termination criteria (such as

a crash into a primary) has occurred

5. The reward ri, information on whether a termination criteria was achieved, and the

propagated state si+1 is returned back to the agent, with the latter being used as the

next observation vector.
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For this investigation, there were four pre-defined termination criteria. Three of them are

modeled as the state-path constraints previously given in Equations (4.16) - (4.18). The

fourth termination criteria is derived from the implementation of what is referred to as an

“endgame” zone. This zone is represented by a circle of some defined radial distance, with

the origin centered on the target L5 position. If the agent’s actions result in the trajectory

entering this zone, then the agent enters the “endgame activation” phase, which results in

a small bonus added to the reward function. However, should the agent select an action

that results in the trajectory leaving this zone, then the episode is ended immediately with

a heavy penalty in the reward function. It was observed that the inclusion of the “endgame”

zone concept resulted in a rapid acceleration of the learning process, in comparison to cases

where it was not included.

Given these termination criteria, the reward function for the PPO agent is defined as

ri = −0.5ti + α1norm(er⃗) + α2norm(ev⃗) + α3 (4.21)

where

α1 =


−10 if termination criteria detected

+1 if endgame zone activated

−5 at all other times

(4.22)

α2 =


−5 if termination criteria detected

+1 if endgame zone activated

−2.5 if endgame zone activated and er⃗) ≤ 0.3 ndim− 0.05 at all other times

(4.23)
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α3 =



−10, 000 if termination criteria detected

+100 if endgame zone activated

+150 if endgame zone activated and norm(er⃗) ≤ 0.3 ndim

+200 if endgame zone activated and norm(er⃗) ≤ 0.1 ndim

+1000 if endgame zone activated and norm(er⃗) ≤ 1e-3 ndim0 at all other times

(4.24)

where norm(er⃗) and norm(ev⃗) are the norm of the error between the current position and

velocity vectors, with respect to the target L5 state. It was observed through numerous

implementations that initially emphasizing the position error term, and then increasing

the scalar weight value corresponding to the velocity error term only during the endgame

activation phase resulted in the agent recognizing the desired path planning task at a faster

rate. In other words, indicating to the agent that the first priority should be to get to the L5

state position, and then emphasize the braking maneuvers to achieve near zero velocity that

is characteristic of the Lagrange points, was observed to result in a rapid learning process of

the agent.

A final adjustment to the PPO algorithm was made, namely in the implementation

of the continuous control aspect. As mentioned before, the standard approach to having

any machine learning based model learn a continuous control task is to model the action

space via Gaussian distribution, from which the action is sampled. To model any Gaussian

distribution, the mean and standard deviation values are required, and it is possible to let the

agent predict both of these parameters. However, it is a known observation that allowing the

agent to also predict the standard deviation value may result in unstable learning, especially

for complex dynamics. In such cases, an often preferred alternative strategy is to pre-define

a standard deviation value, which is then linearly decayed to some minimum value as agent

training progresses. Opting to implement this scheme also provides the user the ability to

control the transition of the agent from an “exploration” phase (wherein the agent essentially
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Table 4.5: The defined PPO hyperparameters and neural network architectures

Hyperparameter/Layer Actor Critic
Learning Rate 3e-4 5e-4

Criterion PPO Loss MSE
Optimizer Adam Adam

c1 0.5 -
c2 0.01 -
ϵclip 0.2 -
γ 0.99 -
K 10 10

Policy Update Interval 1,000 steps 1,000 steps
Hidden Layer 1 Fully Connected, 128 nodes Fully Connected, 128 nodes

Activation tanh tanh
Hidden Layer 2 Fully Connected, 64 nodes Fully Connected, 64 nodes

Activation tanh tanh
Output 1 node 1 node

Output Format mean, used to sample α scalar value of state-action pair

explores the environment) to the “exploitation” phase (in which the agent greedily selects the

actions it has deemed to be the best/result in the highest reward). This transition between

“exploration” and “exploitation” phases is a common characteristic of RL based methods.

Given the design of the reward function and the additional modifications given to the

algorithm, the neural network architecture and the hyperparameters for the implemented

PPO are provided in Table 4.5; the observation vector oi, which essentially denotes the

input to the actor neural network, is the same as that of the clone agent, and is defined to

be oi = [xi, yi, ẋ, ẏ].
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Chapter 5

Analysis of Results

Each of the methods explained in the previous chapter were implemented as their

formulations described. Their results are presented in each of the following subsections, with

the results from the two tier controller presented first as they are the reference solutions that

the ML approaches will be compared to.

5.1 Optimal Solution Database Generation

5.1.1 Two Tier Controller Solution Space

As mentioned before, the two tier controller was implemented with a stiff numerical

integration routine to generate approximately 10,000 solutions, as well as with a 4th order

Runge-Kutta routine to generate an additional approximately 1,500 solutions. These results

are presented in Figures 5.1 and 5.2. In both figures, the quantity plotted along the y axis

represents the norm of the perturbation of the initial boundary condition relative to the

true L4 position of the randomly generated system, as quantified by the nondimensional

µ parameters. Additionally, for both figures, the points outlined in white represent the

solutions generated with the 4th order Runge-Kutta integration routine.

Figure 5.1 represents all the valid solutions that were generated by the indirect method

formulation; in other words, no state path constraint violations were detected from the

resulting trajectories. From the left subfigure in Figure 5.1a, it is observed that there is

no discernible pattern regarding the time of flight as a function of the norm of the initial

condition perturbation and the system µ value. Additionally, from the right subfigure in

Figure 5.1a, it is also observed that there is no discernible pattern regarding the convergence
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(a)

(b)

Figure 5.1: The solution space for trajectories that resulted in feasible solutions from the
indirect method formulation. Scatter points outlined in white denote the solutions obtained
from standard ode45 integration, whereas all others denote solutions obtained from ode15s.

time of the solution as a function of the norm of the initial condition perturbation and the

system µ value. However, when looking at both the time of flight and time of convergence

as a function of the norm of the initial condition perturbation and the thrust value, a logical

pattern emerges. Intuitively, low thrust values should result in higher time of flight, as

they contribute to a lower total acceleration imparted by the propulsion system and do not

become a dominating term within the dynamical equations of motion. As visualized in the

left subfigure of Figure 5.1b. this observation is evidenced. Additionally, it is observed that

low thrust scenarios also require higher times of convergence to a solution for the indirect

82



(a)

(b)

Figure 5.2: The solution space for trajectories that required path planning corrections from
the direct collocation method. Scatter points outlined in white denote the solutions obtained
from standard ode45 integration, whereas all others denote solutions obtained from ode15s.

formulation.

In contrast to Figure 5.1, Figure 5.2 represents the invalid solutions that were generated

from the indirect formulation, and required additional corrections via the direct collocation

method and the defined state-path constraints. From Figure 5.2a, it can be observed that

solutions within low µ dynamics required more corrections than those with high µ dynamics;

from the right subfigure in Figure 5.2b it can be seen that solutions with high thrust resulted

in higher times of convergence. Comparing the color gradients between this subfigure and

the right subfigure in Figure 5.2a, it is observed that, overall, not only did scenarios with
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high thrust and low µ values require direct method corrections more frequently than other

cases, but these combinations also required longer times to converge to a solution. This

observation follows dynamical intuition, as increasingly lower µ values result in the orbital

motion resembling Keplerian dynamics rather than three-body dynamics. In such cases,

having high thrust values results in the contributing acceleration of the propulsion system

becoming the dominant component in the underlying equations of motion, allowing for a

higher chance of compounding of errors during the propagation of the control actions. This

consequently warrants a higher amount of corrections in order to achieve a valid solution.

5.1.2 Diverse Geometry of Solutions

In Chapter 4, it was noted that the use of 4th order Ringe-Kutta integration resulted in

more diverse trajectory geometries as compared to the stiff numerical integration routines.

From the approximately 1,500 solutions generated using the former integration scheme, at

least eight different classes of trajectory geometries were visually identified, and are visualized

in Figure 5.3; the Figure also provides the µ and thrust values that the solution corresponds

to, along with the minimum time of flight that was achieved.

Though the diversity of solutions can be easily visualized, another interesting observa-

tion can be made in regards to the µ and thrust values. Consider trajectory classes 3 and 7,

which had extremely similar µ values, but the thrust value for the solution belonging to class

7 was approximately half that of class 3. Given these parameters, the trajectory solution

geometries were starkly different, through the minimum time of flight was only varying by

a few hours. Additionally, it can be observed across all presented trajectory classes that

extremely low thrust values result direct transfers that traverse around the smaller primary,

whereas higher thrust values result in solutions that traverse around the main primary (ei-

ther characterizing a direct transfer, or multi-revolution trajectories), as well as solutions

that are able to navigate in the region between the primaries. Therefore, it may be possible

that the thrust value of the propulsion system is a major contributing factor that determines
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Figure 5.3: A visualization of some of the identified trajectory solution geometries within
the dataset generated by the two tier controller

the trajectory class that is achieved; it is also possible that the converged values for the

initial co-states determines the trajectory class. However, both of these hypotheses would

warrant further investigations in order to achieve a definitive conclusion.

Though the existence of a diverse range of solution geometries within the generated

dataset is an interesting observation, it may inadvertently impact the performance of any

clone agents that use this information to train via supervised learning. More specifically, it

was observed that across the entire dataset generated from the stiff numerical integration as

the 4th order Runge-Kutta scheme, the trajectory geometry belonging to class 2 in Figure 5.3

was the dominant solution type, whereas the others occurred at a fewer number of instances.

By their mathematical formulation, clone agents trained via supervised learning learn the

average “behavior”, or policy, that is present in the dataset; therefore if the trajectory ge-

ometry of class 2 is the dominant solution type, the agent would consider all other trajectory

classes as outliers during the training process, thus leading to either minimal contribution, or

no contribution at all, of these solutions to the agent’s learning process. This subsequently

would result in the agent only being able to provide path-planning strategies that resemble

those of trajectory class 2. It may be possible to develop a training scheme that removes

this bias in the dataset, and weighs all solutions equally in order to train a more generalized
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Table 5.1: The initial state vector, and converged initial costate values for the visu-
alized trajectory classes 1-4 in Figure 5.3. The vector λ⃗i = [λx, λy, λẋ, λẏ, λm]

T , and

x⃗ = [x, y, ẋ, ẏ,minit]
T (all units are nondimensional except minit, which is in kg)

Trajectory Class λ⃗i(t0) x⃗(t0)
Correction Required

by Direct Collocation Method?

1


0.3273
0.4765
0.0221
0.2421

9.0298× 10−4




0.4181
0.7061
−0.1288
−0.0561

610

 Yes

2


−1.8919
−0.8813
−0.8300
−1.3381
0.0229




0.5339
0.7360
−0.1346
0.0664
610

 No

3


1.9637
6.5599
−1.6941
2.5391
0.0060




0.2026
0.7911
−0.1354
−0.1285

610

 No

4


−3.4588
−9.0187
3.5268
−4.1938
0.0037




0.2332
0.8357
−0.9109
−0.1212

610

 No

clone agent. However, this was not implemented within this investigation as this additional

modification may skew the analysis in favor of the machine learning methods. Furthermore,

the appropriate bias normalization method for the dataset may not be straightforward, hence

requiring additional investigation.

5.2 Optimal Control Driven Imitation Learning

As mentioned before, the generated dataset from the two tier optimal controller was

used to train two types of clone agents, which are represented by the standard feed-forward

neural network, and the stateless LSTM neural network. The training of each of these

agents was implemented with the network architectures and the hyperparameters previously

presented in Tables 4.3 and 4.4. Subsequently, the performance of the trained agents was
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Table 5.2: The initial state vector, and converged initial costate values for the visu-
alized trajectory classes 5-8 in Figure 5.3. The vector λ⃗i = [λx, λy, λẋ, λẏ, λm]

T , and

x⃗ = [x, y, ẋ, ẏ,minit]
T (all units are nondimensional except minit, which is in kg)

Trajectory Class λ⃗i(t0) x⃗(t0)
Correction Required

by Direct Collocation Method?

5


1.5393
3.3254
−0.8366
1.4926
0.0050




0.3684
1.0160
−0.0606
−0.1832

610

 Yes

6


−4.2860
−9.4105
3.0786
−3.9749
0.0067




0.1826
0.6816
0.0868
−0.1682

610

 No

7


10.9906
18.8830
−6.9888
14.3663
0.0058



0.3825
1.0153
0.1973
0.1359
610

 No

8


−0.0609
0.5523
−0.1972
0.2090
0.0011




0.1579
0.9239
−0.0067
0.1562
610

 No

analysed by the comparison of the agent’s predicted path planning strategy with respect to a

separate dataset of approximately 1,000 solutions, also generated using the two tier optimal

controller, that were not utilized during the training process. In other words, the agent has

no prior knowledge of the solutions contained within this validation dataset as it has not

encountered the specific sequence of states during the training process.

5.2.1 Quantifying Performance via Target State Insertion Errors

The performance of each trained clone was analyzed as follows. For each of the solutions

within this validation dataset, the total time of flight [t0, tf ] of the optimal solution is dis-

cretized into 5,000 equitemporal time steps of some increment δt. The numerical integration

routine, that propagates the dynamical equations of motion forward in time, is initialized
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with the initial state of the optimal solution. At each time step i, the input feature vector

for the neural network (i.e. x⃗input = [xi, yi, ẋ, ẏ]) is passed to the clone agent to obtain the

control decision, which is then propagated forward on the interval [ti, ti+ δt], using the state

dynamical equations of motion, until the final time tf is achieved. The agent’s path planning

solution is then compared to the optimal solution by comparing the magnitude of the state

error e(tf ) at the final time tf ; in other words, the value

e(tf ) = norm (x⃗(tf )agent − x⃗(tf )optimal) (5.1)

is explicitly computed. This simple metric may provide an insight into the performance and

accuracy of the trained agents as it directly computes the error bound at which the final

boundary constraint of the problem (i.e. the target L5 state) was achieved.

We begin by analyzing the results of the feed forward neural network based clone agents.

Recall that there were two versions of the feed-forward based clone agents: version 1 directly

learned to predict α, the direction of the thrust control vector, whereas version 2 learned to

predict a mean value, that was used to construct the continuous action space modeled by a

Normal distribution of the predicted mean and a fixed standard deviation value of σ = 0.1,

from which the thrust control direction α was sampled from. After the agents were trained,

their performance was evaluated using the validation dataset and the computation of the

performance metric defined in Eq. (5.1)

The performance results of version 1 of the feed-forward based neural network clone are

presented in Figure 5.4, which visualizes the norm of the state error at the final time with

respect to the variation in µ and thrust values. From the left subfigure in Figure 5.4, there

is no discernible trend regarding the performance of the agent as a function of the norm

of the initial condition perturbation and the µ parameter space. However, as evidenced in

the right subfigure in Figure 5.4, a performance trend emerges as a function of the norm

of the initial condition perturbation and the thrust parameter space. It can be observed
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Figure 5.4: The performance results of version 1 of the feed-forward based optimal solution
clone agent, as quantified by Eq. (5.1).

that scenarios comprising of high thrust values result in consistently inaccurate performance

of the clone agents, whereas low thrust values generally result in the agent being able to

navigate to the target L5 state with a higher accuracy. This observation may be driven by

the dynamical contribution of the thrust value itself. More specifically, higher thrust values

result may result in a higher dynamical contribution of the acceleration provided by the

propulsion system; in instances where this dynamical term becomes dominant within the

underlying equations of motion, an inaccurate prediction of the thrust control direction α

by the clone agent would result in a compounding of errors from which recovery may be

impossible. Conversely, low thrust values may result in a non-dominant contribution of the

propulsion system, which may not only reduce the possibility of compounding of errors due

to inaccurate control predictions, but also allow for the clone agent to attempt a recovery of

the path-planning solution.

Along with the overall performance results, the individual path planning strategies

generated by the agent can also be visualized. For example, consider the most accurate

solution generated by version 1 of the feed forward clone agent; this solution is visualized in

Figure 5.5. Within the same time interval of the minimum time of flight as computed by
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Figure 5.5: An example visualization of the clone agent path planning solution in comparison
to the optimal solution

the optimal solution, the clone agent was able to achieve an extremely similar path-planning

strategy with position and velocity insertion errors of 0.23 km and 0.04 m/s. The clone

agent required approximately 6 seconds in order to generate a solution, whereas the optimal

control solution only required 0.29 seconds to achieve a valid solution from indirect method

formulation that respected both the boundary and state-path constraints. This analysis can

be repeated for all the solutions generated by the clone agents.

The results from version 2 of the feed forward clone agent are presented in Figure 5.6;

recall that whereas version 1 of the clone agent learned to directly predict the thrust control

direction α, version 2 learned to predict a mean value that is then used to construct a

Gaussian distribution from which α is sampled from. On direct comparison of Figures 5.4

and 5.6, it may be observed that version 2 of the agent performed at a lower accuracy than

version 1. However, in both versions of the feed forward clone agent, the performance varying

as a function of the norm of the initial condition perturbation and the thrust value remains

similar, with high thrust values resulting in consistently inaccurate agent performance, and
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Figure 5.6: The performance results of version 2 of the feed-forward based optimal solution
clone agent, as quantified by Eq. (5.1).

low thrust values resulting in generally higher accuracy performance.

Version 2 resulting in worse performing agents may be a logical observation from a

machine learning perspective, as it is a commonly recognized feature of the manner that

the action space is inherently modeled with. The implementation of any probability density

function based schemes, from which the action is sampled, have often been observed to require

considerably stronger neural network architectures and additional training modifications

for the clone agents as compared to directly learning the prediction of the desired output;

furthermore, these modifications may vary as a function of the dataset itself. However, as

mentioned in Chapter 4, no additional modifications were imparted on any of the methods

implemented in this investigation, which may inherently affect the performance of this version

of the feed forward clone agent.

In the same manner as the feed-forward network based clone agents, there were also

two versions of the LSTM network clone agents: version 1 directly learned to predict α, the

direction of the thrust control vector, whereas version 2 learned to predict a mean value,

that was used to construct the continuous action space modeled by a Normal distribution

of the predicted mean and a fixed standard deviation value of σ = 0.1, from which the
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Figure 5.7: The performance results of version 1 of the LSTM based optimal solution clone
agent, as quantified by Eq. (5.1).

thrust control direction α was sampled from. Once again, after the agents were trained,

their performance was evaluated using the validation dataset and the computation of the

performance metric defined in Eq. (5.1).

The performance results from version 1 of the LSTM clone agent are visualized in

Figure 5.7. In direct comparison to the performance of version 1 of the feed-forward network

clone agent (Figure 5.4), it can be observed that the utilization of a more rigourous neural

network architecture yields better performance. More specifically, we can note that the

LSTM based clone agent is capable of achieving more accurate results for some high thrust

values, whereas the feed forward based clone was unable to do so for such cases. This

observation may be directly related to the fact that LSTM networks are inherently able to

recognize long-term temporal dependencies, which may prove critical to the path-planning,

as this is essentially a sequence prediction task.

The performance results from version 2 of the LSTM network clone agent are visualized

in Figure 5.8, and it an be observed that this formulation of the agent resulted in significantly

worse performance as compared to version 1. Again, this may be attributed to the fact that

version 2 of the clone agent predicts a mean value, which is then used to construct a Gaussian
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Figure 5.8: The performance results of version 2 of the LSTM based optimal solution clone
agent, as quantified by Eq. (5.1).

distribution from which the action is sampled from. As mentioned before, opting to select

the action in this manner may result in a more inaccurate, or unstable agent performance, as

compared to directly learning to predict the appropriate action without the use of probability

density functions. Though this version of the agent did not achieve as high accuracies as

version 1, it is interestingly observed from initial comparisons between Figures 5.4 and 5.8

that a feed-forward network that learns to directly predict the thrust control direction α,

and an LSTM network that selects α from a predicted Normal distribution may offer similar

performance. However, further investigations are warranted in order to verify this initial

observation.

5.2.2 Quantifying Performance via Optimal Flight Envelope Analysis

The previous section utilized a common performance metric of quantifying the final

state insertion error in order to gain insights into the performance of a machine learning

agent. However, tasking an autonomous agent to solve a sequential path-planning problem

with explicitly defined boundary conditions is subject to the compounding of errors, as there

will be a compounding of errors should the agent select an incorrect action for a given state.
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Figure 5.9: An example visualization of the flight envelope based analysis as a measure of
performance of a clone agent (µ = 0.1158, Tmax = 0.0113 Newtons). The clone solution
demonstrated a flight envelope match of 49.58%.

Therefore, it is possible that an agent initially provided a similar path-planning solution as

that computed by an optimal control approach, but eventually diverged from the latter due

to compounding of errors; this performance characteristic may not be fully captured by the

quantification provided in Eq. (5.1).

Alternatively, insight into the duration at which the autonomous agent’s path-planning

solution resembled the optimal before diverging may be yielded by the implementation of

a “flight envelope”, which is defined as a spatial region with some pre-defined radius that

surrounds the optimal trajectory solution. In this manner, and by overlaying the optimal

solution, corresponding flight envelope, and the agent’s path-planning solution, the total

duration of the latter’s flight time that was spent within the flight envelope can be computed.

This computation is referred to as the “flight envelope match percentage” in the resulting

analyses, and can provide more direct insight into how well the trained autonomous agent is
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able to track an optimal solution. For the purposes of this analysis, the flight envelope was

defined to be a radial distance of 5% of the binary asteroid system characteristic length value,

which is quantified in Table 4.2. An example visualization of the optimal control solution

with the corresponding flight envelope and the agent’s path-planning solution is visualized

in Figure 5.9, which demonstrates the optimal solution for a minimum-time transfer from a

perturbed L4 initial condition to the system L5 state, given the parameters of µ = 0.1158

and T = 0.0113 Newtons. Also visualized is the flight envelope surrounding the optimal

solution, as well as the path-planning solution generated by a trained clone agent. It can

be seen that the clone’s solution is able to track the optimal solution for approximately half

of the flight time, before diverging due to a compounding of errors in the predicted control

profile.

Figure 5.10 visualizes the performance of both optimal solution based clone agents that

were trained using the feed forward NN; recall that version 1 (Figure 5.10a) trains the agent

to learn a deterministic policy, whereas version 2 (Figure 5.10b) trains the agent to learn

a stochastic policy. It can be observed that version 2 of the clone provided more accurate

performance as compared to its deterministic policy counterpart. This result may seem

counter-intuitive, and may be attributed to the fact that the implementation of a stochastic

policy may have allowed the clone to “get lucky” and accidentally achieve a more accurate

solution.

Figure 5.11 visualizes the performance of both optimal solution based clone agents that

were trained using the stateless LSTM NN; again, recall that version 1 (Figure 5.11a) trains

the agent to learn a deterministic policy, whereas version 2 (Figure 5.11b) trains the agent

to learn a stochastic policy. From these figures, it can be observed that version 1 of the

stateless LSTM network based clone provided more accurate performance as compared to

its stochastic policy counterpart. Furthermore, it can be seen that both versions of the LSTM

based clones demonstrate similar or better flight envelope match percentages in comparison
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(a)

(b)

Figure 5.10: The flight envelope match percentages for both feed forward neural network
based clones, trained from the optimal control databse generated by the two tier controller.
Figure 5.10a represents the performance of version 1 of the clone (deterministic policy), and
Figure 5.10b represents the performance of version 2 of the clone (stochastic policy).
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(a)

(b)

Figure 5.11: The flight envelope match percentages for both stateless LSTM neural network
based clones, trained from the optimal control database generated by the two tier controller.
Figure 5.11a represents the performance of version 1 of the clone (deterministic policy), and
Figure 5.11b represents the performance of version 2 of the clone (stochastic policy).
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Figure 5.12: The performance results of the human pilot, as quantified by the definition of
the final state error relative to the target state.

to the feed forward based clones, intuitively indicating that this NN architecture may be

better suited for the sequential path-planning problem.

5.3 Human Driven Path Planning

5.3.1 Quantifying Performance via Target State Insertion Errors

Prior to training a clone agent from human demonstrations, a dataset of such solutions

must first be generated. This was accomplished via the use of the interactive flight simulator.

Recall that approximately 25 hours of data were collected from a single human pilot, which

corresponded to approximately 100 independent demonstrations of path-planning solutions.

Given this initial dataset, the performance of a human pilot can also be quantified by com-

puting the final state error relative to the target state, as empiricized by Eq. (5.1). These

results are plotted in Figure 5.12, and it can be immediately observed that for all generated

solutions, the human pilot provided better performance that was approximately an order of

magnitude more accurate than the clone agents directly trained on optimal solutions; this

may be attributed to the interactive manner through which the human pilot was able to gen-

erate the solutions. By allowing the human to have full control authority in navigating the
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Figure 5.13: The performance results of an LSTM network clone agent that was trained on
a human generated dataset of path planning solutions

spacecraft to accomplish the designated path-planning task, and presenting this information

in a visual and intuitive manner, the human may be able to mitigate the compounding of er-

rors due to an incorrect control action by subsequently implementing a corrective maneuver.

This ability, along with the capability to adapt the path-planning strategy in real-time, as

a response to environment interactions, can greatly influence the accuracy of the generated

path-planning solution. However, it should be noted that the human pilot was unable to

provide perfect demonstrations, as there were errors in the achieved final state relative to

the target final state. Therefore, this dataset may not be representative of perfect demon-

strations, and the quality will directly impact the performance of any clone agent trained

via supervised learning.

Following the data generation process utilizing human logic, as previously explained

in Section 4.5, a clone agent was trained from these path-planning solutions. However, only

the LSTM network driven clone is considered and implemented, with the same architecture

and training parameters as that of version 1 of the LSTM clone agent trained from the op-

timal control solutions (these values were previously provided in Table 4.4. In other words,

only one LSTM network clone agent was trained from the human generated dataset, which
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learned to directly predict the direction of the thrust control vector α, instead of sampling

α from a predicted Gaussian distribution.

The performance results of the human data based clone are visualized in Figure 5.13,

and it can be immediately observed that there is no discernable pattern in regards to the

performance of the clone as a function of any of the dynamical variations. This may be

attributed to multiple factors, two of which are briefly discussed below:

1. Quantity and quality of solutions generated by the human demonstrator:

As mentioned before in Section 4.5, a single human pilot generated approximately 100

path planning solutions within the pre-defined data collection time frame of 25 hours.

However, this amount of time may not be sufficient in order to generate high quality

solutions, as the human pilot may still be learning how to navigate the spacecraft,

within perturbed dynamics, for minimum time path planning task. This consequently

results in a lower quality dataset, which results in a low performing clone agent

2. Domain transfer between human and agent: The utilization of human intuition

for a complex task may warrant the use of domain adaptation techniques, in which we

ensure that the agent takes into consideration the same decision variables as the human

in order to make a path planning prediction. Determining the true causal variables

of the human decision process may be achieved by feature extraction and/or feature

selection techniques, in order to construct the appropriate input vector for the clone

agent neural network.

5.3.1.1 Quantifying Performance via Optimal Flight Envelope Analysis

Similar to before, the flight envelope based analysis can be repeated for both the human

pilot, as well as the corresponding clone agent in order to provide further analysis in how

well these agents are able to relatively adhere to an optimal path-planning solution. The

flight envelope match percentage for both the human pilot, as well as the human clone, is

visualized in Figures 5.14 and 5.15, respectively. In comparison to the clone agents trained
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Figure 5.14: The flight envelope match percentage for all solutions generated by the human
pilot.

Figure 5.15: The flight envelope match percentage for the stateless LSTM NN based clone
agent trained on all solutions generated by the human pilot.

from optimal solutions, which demonstrated a flight envelope match percentage of upwards

of 80% (Figure 5.10 and 5.11), the human pilot was able to demonstrate flight envelope

match percentages upwards of 90%. It should be noted that the optimal clone agents had
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direct knowledge of the optimal solutions via the respective training database, whereas the

human pilot had no knowledge of the optimal behavior and was instead generating path-

planning solutions solely via environment interactions. This may be indicative of human

driven solutions being a reasonable source of domain knowledge, though it should be noted

that the inclusion of humans within any frameworks need to consider the risk of mistakes,

biases, and inaccuracies. As there were no modifications made within the machine learning

framework to address these concerns during training, the performance of the human clone

agent is seemingly the worst of all autonomous agents. This effect can be directly visualized

in Figure 5.15, which demonstrates that this clone provides performance that is well below

60% of the flight envelope match metric.

5.4 Summarized Performance Characteristics of all Path-Planning Agents

The previous sections separately discussed the optimal control clones, human pilot, and

the human based clone path planning solutions. To allow for a more concise comparison

of performance, the standard statistical metrics of the flight envelope match percentages of

all agents are presented in Table 5.3. As previously mentioned, rather than considering the

error of the final state relative to the target state, the flight envelope based analysis may

offer a better insight into the agent performance as it is able to capture the duration to which

the generated path-planning solution remains in the vicinity of the optimal before diverging

due to the compounding of errors.

From the statistics presented in Table 5.3, it can be seen that the human pilot provided

the most accurate path-planning solutions relative to the corresponding optimal strategy.

Though the performance may greatly vary as a function of the dynamics that were encoun-

tered, the human pilot was able to provide, on average, approximately 8.6% more accurate

path-planning solutions in comparison to the most accurate machine learning based agent,

which was the stateless LSTM clone, trained from the optimal solution database, which

learned to predict a deterministic control strategy. This observation may be indicative of
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Table 5.3: Summarized performance statistics of both the human pilot and all trained clone
agents.

Flight Envelope Match Statistics (%)
Agent Type Min Max Average

Human Pilot 7.90 93.55 31.16
Human Pilot Clone 4.96 52.24 12.76
Optimal Control Clones

Feed Forward, Deterministic Policy 5.86 78.5 20.06
Feed Forward, Stochastic Policy 5.72 81.84 17.17

Stateless LSTM, Deterministic Policy 5.76 89.06 22.54
Stateless LSTM, Stochastic Policy 5.7 81.02 16.52

the existence of a less computationally expensive domain source which can be leveraged

to subsequently train autonomous agents. Rather than generating extremely large training

databases of path-planning solutions rigorously computed from optimal control methods, re-

formulating and posing the problem in an intuitive, interactive, and less rigorous manner may

allow for human demonstrators to generate demonstration datasets which can then be used

to train autonomous agents. However, it should also be noted that the use of humans as a

domain source will require the inclusion of appropriate modifications within the correspond-

ing machine learning framework that would be able to account for mistakes and biases. The

extent and nature of these modifications were not addressed within this exploratory work,

and can instead serve as an extension of future works.

5.5 Proximal Policy Optimization (PPO)

The final method that was implemented was the PPO algorithm, which was previ-

ously explained in Section 4.6. Prior to implementing PPO on the full perturbation range

that was considered within this investigation, the algorithm was first tested on a determin-

istic scenario, with no perturbations on the initial L4 state, and the fixed values of µ =

0.022848 and a thrust value of T = 5 mN (the values of µ and T were randomly chosen from

the ranges defined in Table 4.1).

The PPO agent predicts a mean value that is used to construct a Gaussian distribution,
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Figure 5.16: The path-planning solution for a deterministic L4-L5 minimum time transfer
achieved by the PPO agent. The left subfigure shows the predicted transfer from L4-L5 as
predicted by the agent, and the right subfigure shows the moving average of the learning
curve (window size = 50 episodes).

along with a standard deviation value σ; the thrust control direction α is then sampled from

this distribution. The value of σ is initialized to be σ = 0.15, and is linearly decayed by

an increment of 0.01 every 60,000 steps, until the minimum value σmin = 0.1 is achieved

(it should be noted that every 60,000 steps corresponded to approximately 100 independent

episodes). At each step, the motion driven by the predicted direction of the thrust control

vector is propagated forward in time for 30 minutes via a zero-order hold. However, if the

“endgame” phase is determined to be activated, then the time interval for forward motion

propagation is reduced to 5 minutes (recall that the concept of “endgame” was previously

discussed in Section 4.6). For this deterministic scenario, the endgame zone radius is defined

as 2 km. All other learning hyperparameters implemented are the same as those included in

Table 4.5.

Figure 5.16 visualizes the converged path planning solution achieved from training the

PPO algorithm via the neural network architecture and learning hyperparameters previously
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discussed above; the left subfigure shows the transfer from L4-L5 as generated by the PPO

agent, whereas the right subfigure shows the moving average (window size = 50 episodes)

of the learning curve as a function of the total reward achieved in each episode. The latter

is a common metric that is monitored during the training process of any RL based agent,

as it provides direct insight into the learning progression. For reference, the optimal control

solution is also provided in Figure 5.16. It is seen that PPO was able to generate a valid (i.e.

no state-path constraints violated), minimum time transfer solution within approximately

1,250 episodes (the full training time required to achieve this solution was approximately

21 minutes; a single core on a Linux server, with specifications provided in Section 5.6.1,

was utilized to train). Additionally, it is evidenced that the PPO agent solution generally

overlaps with that of the optimal solution, only slightly diverging near the target state; this

results in position and velocity insertion errors at the target L5 state of 0.8 meters and 3.9

cm/s, respectively. As a consequence, the total time of flight of the PPO generated solution

is 19.42 hours, compared to 18.29 hours as achieved by the optimal control solution.

Along with the visualization of the learning curve during the PPO training process,

the evolution of the path planning logic can also be recorded and visualized. For the de-

terministic PPO implemented above, the generalized evolution of the path-planning logic is

illustrated in Figure 5.17.

Though the above specified formulation of PPO was found to quickly converge to a

path planning solution for a deterministic scenario, it was unable to demonstrate any sort

of learning capability for the full perturbation range previously defined in Table 4.1, and

consistently implemented for all previous methods. Minor adjustments to the learning hy-

perparameters and underlying neural network architecture were investigated, though they

yielded no considerable results. Additionally implementations that reduced the full pertur-

bation ranges into smaller increments also yielded no considerable results of PPO in regards

to both the learning capability of the agent as well as the resultant path planning logic. It

was therefore concluded that this formulation of the PPO algorithm may be unsuitable to
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be applied for generating path planning solutions for a wide range of dynamical parameters.

It is possible that considerable modifications to the structure of the reward function, along

with the utilization of an LSTM layer within the neural network architectures may yield

better results; however, these modifications require significant further investigations.
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(a) (b)

(c) (d)

Figure 5.17: Visualization of the evolution of the path-planning policy as during the pro-
gression of the PPO training process. The policy evolution follows the alphabetical order as
indicated in the subcaptions.
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5.6 Discussion of Quantifiable Metrics

Given the above summaries of results for each of the implemented path-planning

methods, a discussion on the inherent advantages, drawbacks and possible synergies can be

analysed. For the purposes of this investigation, five metrics are defined that may allow for a

discussion of the relative performance of the each implemented method. Four of these metrics

(runtime, optimality, convergence, and robustness of solution) are quantifiable, whereas the

fifth one (user expertise required during implementation) is qualitative. Each of the following

subsections independently discusses these defined metrics, for all the methods that were

implemented for this investigation.

5.6.1 Runtime

The quantity of runtime can easily be measured by the duration of time needed to com-

plete the coded simulation. For the generation of the optimal control solution database, via

the two tiered controller, as well as training all clone agents (optimal control and human

demonstration based) and the PPO algorithm, a Linux server with the following specifica-

tions was utilized:

• CPU: 24 cores, AMD Threadripper

• Memory: 64 GB RAM

• GPU: 4 GeForce RTX 2080 Ti

• 2TB storage drive

• 512 GB solid state drive

The training of each clone agent only utilized a single core, whereas the two tier controller

utilized multiple cores via parallel processing in order to generate the large dataset of solu-

tions. A summary of the computational power utilized, along with the approximate runtimes,
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Table 5.4: The computational power utilized for each method, along with the approximate
runtimes.

Method
Computational
Power Utilized

Appx. Runtime

Two-Tier Optimal Controller 16 cores (parallel processing) 3.5 days
Optimal Control Based Clones

Feed Forward Version 1 1 core 5 hours
Feed Forward Version 2 1 core 8 hours

LSTM Version 1 1 core 2 days
LSTM Version 2 1 core 2 days

Human Database Clone
LSTM Network 1 core 2 hours

PPO (deterministic scenario) 1 core 21 minutes

of each method is provided in Table 5.4.

From Table 5.4, it can be seen that the two tiered optimal controller required the

longest runtime of approximately 3.5 days. This can be attributed to the low tolerances

defined within the optimization schemes (which were defined to be less than 10−10), but also

to how the indirect method formulation generates a solution. Recalling from the discussion

of indirect methods in Chapter 3, the solver must first guess the appropriate initial values

of the co-states that result in all initial and final boundary constraints being respected. If

the solver is unable to converge to the appropriate initial values within a certain amount

of iterations, then the solver attempts to re-converge with another initial guess of values.

Therefore, it is possible that the solver requires longer convergence times if the initial guess

of the co-states is not close to any local minima.

Conversely, the feed forward network clones, that were trained using the database gen-

erated by the two tier controller, approximately required a runtime on the order of hours in

order to fully train via the respective training frameworks. From a machine learning per-

spective, these runtimes are logical, as the underlying neural network architectures are not

deep/complex (i.e. they do not have more than 2 hidden layers, each comprising of hundreds

on computational units, such as more than 500). It is a generally known observation that
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deeper neural network architectures significantly require longer training times due the com-

putation of the gradients during the backpropagation and weight update process. However,

as the implemented feed forward networks for this investigation can be classified as being

relatively simpler, the training time required is considerably reduced.

In comparison to the feed forward network clones, the LSTM network clones required

approximately two days to train the agents. Again, from a machine learning perspective, this

is a logical observation as any type of RNN architectures are characterized by long training

times. Additionally, having dense temporal data has also been shown to increase training

times for any RNN based network.

Though the clone agent trained from the human pilot database also utilized an LSTM

network, it only required approximately two hours of training time in comparison to a run-

time on the order of days for the LSTM agents trained from the optimal solution database.

This can not only be attributed to a significantly lower number of trajectories within each

dataset (approximately 100 solutions from the human generated dataset as compared to over

10,000 solutions within the dataset generated by the two tier optimal controller), but also

to the resolution of the solutions. The human pilot based solutions were generated with

a framework that propagated motion forward by a fixed time interval at each step, which

may result in a lower resolution solution as compared to those generated by the two tier

controller.

Finally, the deterministic PPO implementation, as previously discussed in Section 5.4,

only required 21 minutes using a single core in order to achieve a converged path-planning

solution that closely resembled the optimal solution to a high degree. From numerous imple-

mentations of variations on the PPO training framework that was discussed in Section 5.4, it

was observed that this considerably low runtime can be directly attributed to the inclusion

of the “endgame” concept as part of both the reward function as well as the termination

criteria. However, given that the current formulation of the PPO algorithm was unable to

learn path-planning strategies on the full perturbation range implemented, it can be inferred
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that the learning process may need a considerable amount of time that was beyond the de-

fined time frame of this investigation.

Lastly, it should be noted that even though some of the machine learning based meth-

ods may have required long training times, the rollout of the learned policy occurs within

the order of seconds. Therefore, if the metric of runtime considers both the training times

required and the execution of the learned path-planning strategy, then the machine learning

approach that has trained an agent on a wide range of dynamical possibilities may be appro-

priate for rapid solution generation, albeit with a potential loss in accuracy, in comparison

to analytical generation of optimal solutions that account for all possible scenarios.

5.6.2 Convergence

The metric of convergence is defined as whether the method was able to achieve any

sort of path planning solution that adhered to the relevant boundary conditions and the

state-path constraints. Additionally, the time required to achieve the solution can greatly

vary on the order of seconds to tens of minutes as a function of the thrust value, as evidenced

in Figures 5.1 and 5.2.

All clone agents, as well as the deterministic PPO implementation, were also able to

achieve path planning solutions, though the accuracy greatly varied. However, it can be

inferred that the human driven cloning approach may require the longest convergence times,

simply due to the unavoidable fact that the human will exhibit their own learning curve

during the solution generation process. In a manner similar to RL methods, the human will

exhibit instances where they experiment with different actions and observe the consequences

as part of their process of building generalized solutions. This learning time required for a

human demonstrator can also increase significantly if the complexity of the task increases,

and may reach a point of infeasibility. Therefore, modifications to the machine learning

model that can extrapolate from sparse amounts of demonstration data, which may also

contain uncertainties and mistakes, are greatly warranted.
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5.6.3 Optimality

The measure of optimality of each method can be directly compared to that of the solu-

tions generated using the two tier controller. However, recall that this controller architecture

first generates an initial solution via the indirect method formulation that is later evaluated

for validity and corrected if needed. The indirect method formulation results in a locally

optimal solution due to the way that it is derived, and therefore all solutions, both valid

and those that required corrections via direct collocation method, are assumed to be locally

optimal solutions.

Insights on the optimality of the solutions generated from each of the remaining meth-

ods can be obtained via the computation of the relevant performance metrics. Recall that

for each clone agent trained, the magnitude of the state error at the final time was directly

computed via the performance metric given in Eq. (5.1), and utilized as part of the corre-

sponding result visualizations.

From the relevant figures that visualized the performance of each of the clone agents, it

was directly observed that the LSTM network based clone that learned a deterministic policy

resulted in the most accurate, clone based, path-planning solutions; however, there was still

an accumulation of errors that consequently resulted in the clone unable to perfectly achieve

the target state. It was also observed that the feed forward network clone that learned to

directly predict α, and the LSTM network clone that sampled α from a predicted Gaussian

distribution resulted in similar performance during validation. This may be attributed to the

fact that action spaces modeled via continuous distributions are known to be more difficult

for machine learning models to train on. As an unfortunate consequence, the performance

of the trained agent may be decreased and further modifications to the training architecture

are explicitly warranted. Lastly, it was observed that the human demonstration data based

clones had the worst performance, which can not only be attributed to the quality but also

the quantity of the training dataset. An improvement in this formulation may be achieved by

more solution generations, or via the implementation of rigorous domain adaptation methods
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that better represent the human’s complex, and possibly unintuitive, path-planning logic in

a manner that a machine learning agent can both understand and replicate.

Lastly, the deterministic implementation of PPO seemingly offerred the most optimal

path planning solution from the machine learning based methods, with a position and inser-

tion error that was considerably less than those achieved by even the best performing clone

instances. This may be attributed to the known convergence and robustness properties of

the PPO algorithm.

It is possible that the optimality of a machine learning based path-planning solution

can be augmented with an optimal controller in order to generate a more accurate solu-

tion. For example, a tiered architecture where a machine learning model generates an initial

path-planning solution, which is then corrected via direct collocation methods to account for

strict adherence to boundary conditions and state-path constraints, can be synergistically

implemented to achieve more autonomous and generalized strategies.

5.6.4 Robustness

The metric of robustness is defined as whether or not a given method is able to generate

any path planning solution for general applications; in other words, we assess whether the

applicability of the method detiorates in the presence of a large range of perturbations.

Again, by the underlying mathematical formulation that drives the indirect and direct

collocation methods, the two tier controller can be assumed to be robust to all perturbations

at the boundary conditions, as well as the relevant dynamical parameters. However, it should

be noted that any change in the aforementioned variables would warrant the re-generation

of a solution that is tailored to the specific dynamics and boundary conditions.

The clone agents trained from the optimal solution database display characteristics of

robustness, as they achieved path-planning solutions for all the scenarios in the validation

dataset. However, in some cases, the solutions generated may be extremely inaccurate with

respect to achieving the final, target state of L5, and may require some sort of corrections.
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This observation was greatly evident in the clones trained using the simple feed forward net-

work architectures, where the performance accuracy of the agent was only present in cases

of low thrust values. Conversely, the LSTM network based clone that learned to directly

predict the direction of the thrust control vector provided more accurate path planning so-

lutions across a wider range of scenarios. Therefore, it is possible that the utilization of

stronger neural network architectures can increase the robustness of the solution, though the

specific formulation required would depend on the application at hand.

The clone agent trained from the current quantity and quality of the human dataset

may not be as robust as the optimal solution based clones. Again, can be directly attributed

to the low amount of solutions generated by the human pilot, as well as the quality of the

solutions. It is also possible that the human pilot may not be able to achieve path-planning

solutions for the full range of perturbations that were considered for this investigation; how-

ever, considerably more solutions would have to be interactively generated via the real-time

simulator in order to assess this hypothesis.

Lastly, though PPO rapidly converged to a solution within a deterministic scenario, it

was unable to display any learning evolution for any range of perturbations in the initial

boundary conditions, the µ , and thrust values. Therefore, a simple implementation of PPO

may not be robust to the level of perturbations that were considered as part of this investiga-

tion, and considerable modifications to the algorithm may be greatly warranted. These mod-

ifications may stem from using other neural network architectures, such as LSTM networks,

rather than the feed forward networks that were implemented for this work. Additional in-

vestigations into the reward function formulation and the PPO algorithm hyperparameters

may result in better learning ability and convergence to a path planning solution.

It should be noted that this work did not implement any stochastic perturbations along

the trajectory during the propagation of the selected control actions. At most, only the

initial boundary condition (i.e. the true L4 state) was augmented with both position and

velocity perturbations that were randomly selected from the ranges provided in Table 4.1.
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Therefore, an assessment on the robustness of the solution as related to perturbations along

the path-planning trajectory cannot be made with the current set of results.

5.6.5 User Expertise During Implementation

Lastly, the metric of a priori user expertise required for implementing each of these

methods should be briefly considered. Though this may not necessarily be a quantifiable

value, it is a critical point of discussion that should be considered as part of this analysis.

The implementation of the two tier controller, which utilized both the indirect and direct

method formulations, greatly requires that the user understand the underlying mathematical

theory that these methods are derived from. Additionally, the determination of the additional

boundary constraints that may arise due to stationarity and transversality conditions, as well

as the form of the optimization cost functional.

The implementation of any machine learning based methods inherently require that the

user not only understand the underlying mathematical framework, as well as the training

process for neural networks, but also an intuition on whether the model architecture has

been chosen appropriately. Additional intuition, as well as the ability, to tune the model

architectures may also be greatly warranted if the application of machine learning based

methods for path-planning in dynamically complex environments is to be considered.

Lastly, the implementation of human in the loop training frameworks, that leverage

human generated solution datasets, in order to train clone agents, require that the user

understand the quality and quantity of the training data. Additionally, as the state of art

of this method, especially for spacecraft path-planning application, only exists within the

context of this work, the extent of user expertise required cannot be currently assessed.
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5.7 Development of Benchmarking Schemes and Identification of Possible Syn-

ergies

As mentioned at the beginning of Chapter 4, the purpose of the implemented bench-

marking investigation was two-fold: to explore the inherent advantages and drawbacks of

the various methods that may be leveraged to achieve autonomous spacecraft path planning,

as well as to initially establish a comparative strategy that can be used to further assess the

underlying trade offs and possible synergies of each method.

The aspect of the inherent advantages and drawbacks of the various methods can be

characterized by the assessment of the previously discussed quantifiable metrics. This discus-

sion noted that the optimal control based methods are not only robust, but can be applicable

for the generation of path-planning solutions given that the underlying dynamical equations

of motion do not change. In other words, the utilization of the same orbital dynamical

model, but varying the dynamical parameters such as µ, thrust, and including perturbations

at the boundary constraints, may not warrant the re-formulation of the optimal control

based methods. However, if for example, the underlying state dynamical equations of mo-

tion are changed from the currently assumed CR3BP model to a higher fidelity, then the

entire optimal control method will have to be re-formulated, as the differential equations for

the co-state equations are no longer valid. This characteristic of optimal control methods

may be an inherent drawback, as the method is not easily generalizable.

Conversely, the utilization of machine learning methods may be able to produce more

generalized path-planning solutions. However, in order to do so, supervised learning based

approaches would require extensive datasets that encompass all possible types of solutions

that can be realized for a wide range of dynamics. Furthermore, if the solutions geometries

are different (i.e. direct transfers versus multiple-revolution solutions), the machine learning

training process must be modified to consider all geometries equally, instead of only focusing

on the dominant solution type and possibly treating all else as outliers. In contrast, RL based

methods may be able to achieve generalized solutions without requiring extensive training
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datasets, though the training time may exponentially increase.

In order to remove the extensive training times required by an RL agent, the learning

process can be accelerated by using human generated path-planning solutions that already

characterize generalized strategies. However, in this case, not only must the time required to

generate these solutions be considered as a limit, but the quality of the demonstrations is a

vital determinant in the learning augmentation process. As mentioned before, the utilization

of human generated data, especially in the context of complex problems, will require mod-

ifications in the machine learning training model that accounts for mistakes, uncertainties,

and even the sub-optimality of the solutions generated.

Though this investigation only implemented the simple path-planning problem of mini-

mum time L4-L5 transfers, further simplifying the solution search space by only considering

planar dynamics, the notable observations summarized above were yielded. However, though

the benchmarking problem was simple, the consequences of not including additional mod-

ifications to the methods was clearly evident. Recall that at the beginning of Chapter 4,

it was discussed that the best formulation for each of the methods, especially those based

on machine learning, can always be modified in order to be best applicable to the problem.

These modifications are directly driven by the nature of the problem and have to be im-

plemented via a heuristic process in which numerous options are considered. For example,

the underlying neural network architectures can be rigorously optimized via open source

simulation packages such as Optuna, and multiple variations of the training framework that

implement variations of the originally defined hyperparameters can also be evaluated. These

additional modifications were currently omitted from this investigation.

The exact performance and accuracy of these synergistic frameworks is considered the

subject of future work, but an example formulation could be as follows. A machine learning

based method, such as RL can be trained on a wide range of dynamical scenarios such that

it is able to generate initial path-planning solutions. Given the fact that the training time of

the RL agent would increase as a function of the problem complexity, the learning process

117



can be accelerated by tasking a human demonstrator to provide generalized path planning

solutions that are applicable to varying dynamics. Subsequently, a fully trained RL agent

can be implemented on-board the spacecraft computer, and generates initial path-planning

solutions in real-time. These solutions are then corrected for any state-path constraints vi-

olations using an optimal control scheme, before they are executed. This heirarchy can be

seen as similar to the implemented two-tier optimal controller, with the initial solution being

formulated by a machine learning model rather than the indirect method. The corrections

required for the solutions generated by the machine learning model can finally be utilized

to update the neural network policy via supervised learning in order to increase robustness.

Though this is just one possible synergistic framework that could be implemented, further

work is greatly warranted to better determine the applicability of such methods.
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Chapter 6

Extended Application: Asteroid Squadron

This Chapter further discusses the exploratory work conducted in regards to human-

AI cooperative learning, with the particular application of spacecraft path-planning in ran-

dom binary asteroid system environments. To the best of our knowledge, this work provides

the first empirical observations of not only the human ability to navigate a spacecraft in such

environments, but also initial implementations of cloning such behavior in a multi-body space

environment.

6.1 Asteroid Squadron

This exploratory work heavily utilized the Asteroid Squadron framework, which

is a python based interactive flight simulator where a human is tasked with navigating a

spacecraft within a given binary asteroid system. The flight simulator employs a ”gamified

engineering” approach by posing a spacecraft path planning problem in a chaotic and com-

plex dynamical environment.

Along with surviving as long as possible, the human is also asked to complete naviga-

tional and regional exploration goals within the system; these goals are incorporated into

the total score via a multi-objective scoring function that is further described below.

6.1.1 Orbit Model

The propagation of spacecraft motion is implemented via numerical integration of

the chosen dynamical model. The spacecraft state vector at epoch ti is defined as

x⃗(ti) = [r⃗(ti); ˙⃗r(ti)]
T (6.1)
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and quantifies the current position (r⃗(ti)) and velocity ( ˙⃗r(ti)). The dynamical variation of

these two state vectors due to dynamical motion are governed by the numerical propagation

model of the general form

˙⃗x = F⃗ (x⃗, t, p⃗) (6.2)

where F⃗ is a vector function of the current state vector, the current time t, and the system

parameters p⃗. In other words, the vector function F⃗ can be used to mathematically denote

the underlying dynamical model.

To better describe the spacecraft dynamics within binary asteroid systems, there is a

greater emphasis placed on higher fidelity dynamical modeling. In general, a binary asteroid

system can be fundamentally described as two primaries in mutual orbit about the system

barycenter, which consequently influences the motion of the third mass (i.e. the spacecraft).

This regime of dynamics can be described by the Circular Restricted 3-Body (CR3B) model;

however, in order to better characterize the dynamics of binary asteroid, the Elliptical Re-

stricted 3-Body (ER3B) model is implemented.

The ER3B model describes the spacecraft dynamics under the gravitational influence

of two point-mass attractors that are in mutual Keplerian orbit with semi-major axis (also

referred to as the system characteristic length L∗), eccentricity e, orbit period 2πT ∗ (where

T ∗ is the system characteristic time), and initial true anomaly angle ϕe. Unchanged from

conventional notation used in the CR3B formulation, the system mass parameter is denoted

by µ. Additionally, the base ER3B model is modified to include irregular gravity modeling

caused by a rotating homogenous tri-axial ellipsoid with semi-axes R1x−R1y −R1z and spin

rate ω1 (where the spin axis is orthogonal to the asteroid mutual orbit plane). This ellipsoid

models the main primary P1, whereas the secondary primary, P2, is instead modeled as a

non-rotating homogenous sphere with radius R2. Furthermore, the augmented dynamical

model also includes the effect of solar radiation pressure on the spacecraft, which are mod-

eled via the cannon-ball formulation.

The motion of the spacecraft itself is described in the rotating, non-pulsating (RNP)
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and non-dimensional frame given by unit vectors (x̂, ŷ, ẑ) [88] (x̂ is directed along the line

extending from P1 through P2, is orthogonal to the mutual orbit plane, and completes the

right handed coordinate system).

6.1.2 Real Time Propagation

The propagation of the spacecraft motion is based on the concept of frame epochs,

ti, that are defined equitemporally. Therefore, the spacecraft motion is propagated between

successive frame epochs

ti+1 = ti +∆T (6.3)

where ∆T is the real world time interval that has elapsed between two system states.

The flight simulator also renders the effects of random perturbations of the spacecraft

state via the implementation of a time scaled covariance matrix within the propagation of

the spacecraft state. This scaling is controlled by the following equations

Ki(t) = λi(t)K0 (6.4)

where

λi(t) = max (λ(ϕxi
(t, ti)

Tϕxi
(t, ti)) (6.5)

and ϕxi
(t, ti) is the state transition matrix between xi = x(ti) to x(t), and λ is an operator that

extracts the eigenvalues of the argument matrix. The scaling factor λi(t) can be physically

interpreted as the estimate of the maximum growth rate for state variation at the initial

time [89].

For an initial frame at epoch ti, the spacecraft state is quantified by a Normal probability

distribution xi ∼ N(x|x̄i,K0) with expected value x̄i and diagonal covariance matrix K0.

Subsequently, the spacecraft motion is numerically propagated forward in time using the

expected state in accordance with the dynamics described in Equation (6.2). As we are

implementing a temporal driven covariance matrix, the uncertainty in the state will also scale
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proportionally. Therefore, additional measurements are necessary in order to re-establish

an adequate level for the spacecraft state prediction accuracy. These measurements are

introduced everym frames, where the spacecraft state expected value is updated by randomly

drawing a value from the distribution

x̄i+m = x(ti +m∆T ) ∼ N(x|x̄i(ti +m∆T ), Ki(ti +m∆T )) (6.6)

and the state probability distribution is reset to its original form

xi+m ∼ N(x|x̄i+m, K0) (6.7)

Due to these periodic resets, the simulated final trajectory may not appear as a continu-

ous curve during data analysis. Using a smaller number of frames m will provide better

estimations of the spacecraft state, albeit at increased computational costs.

6.1.3 Online Trajectory Steering

When contextualizing the exploration of small body systems, it is imperative to

realize that impulsive maneuvers are considered an appropriate form of control, as small ∆V

actions may yield large trajectory variations due to weak gravity fields [90, 91].

Within the flight simulator, there are six different control actions that can be imple-

mented in real time; there are two control actions per maneuver direction axis. To define

these maneuver directions, we utilize the tangent êt, normal ên and binormal êb unit vectors

relative to the trajectory in the RNP frame. These unit vectors are computed via

êt =
vi

||vi||

êb =
vi × v̇i

||vi × v̇i||

ên = êb × êt

(6.8)
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Figure 6.1: The orientation of the spacecraft fixed tangent-normal-binormal frame, computed
at consecutive epochs during numerical propagation (scaled for visual clarity)

where vi = [ẋ ẏ ż] at given epoch ti. This results in a spacecraft fixed coordinate system

that is visualized in Figure 6.1, in relation to the rotating, tri-axial ellipsoid representing the

main primary P1 and the non-rotating, spherical secondary primary P2 of a given binary

asteroid system. Using Equation (6.8), each of the six impulsive control maneuvers can be
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explicitly written as

+tangent : vi = vi +∆V êt

-tangent : vi = vi −∆V êt

+normal : vi = vi +∆V ên

-normal : vi = vi −∆V ên

+binormal : vi = vi +∆V êb

-binormal : vi = vi −∆V êb

(6.9)

Each episode begins with the same amount of available spacecraft ∆V, and each maneuver

reduces this reserve by a constant amount. Once the propellant budget is depleted, no

further actions are possible.

6.1.4 Range of System Parameters

A summary of the orbit model and the incorporated parameters is given in Table 6.1.

Depending on the value assigned to the system parameters in Table 6.1, a large range of

spacecraft dynamics within binary asteroid systems may be simulated. The upper and lower

bounds for each parameter within the dynamical model are provided in Table 6.2.

6.1.5 Scoring System and Termination Criteria

A realistic space mission will be comprised of multiple science goals or explo-

ration/navigation tasks. Within the context of the flight simulator, there are seven primary

mission goals, each corresponding to a different reward function that contributes to the total

episode score, inherently guiding the human pilot to developing path-planning strategies.

This scalar value may subsequently be used to measure the agent learning progress.

The final score is a weighted summation of intermediate scoring functions, sn, or sub-

scores, where n represents the corresponding mission goal. The first intermediate scoring
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Table 6.1: Asteroid system orbit model components and parameters

Component
Type

Model Component p Description

Point mass ER3BP e mutual orbit eccentricity
3 body L∗ mutual orbit semi-major axis
interaction T ∗ mutual orbit period divided by

2π
µ three-body problem mass ratio
ϕe initial true anomaly for mutual

orbit

SRP Cannon Ball β SRP acceleration
with Sun in apparent ϕβ Sun initial phase in RNP frame
circular, coplanar orbit ωβ Sun angular velocity in RNP

frame

Primary asteroid Spinning homogeneous R1x asteroid semi-major axis
shape model tri-axial ellipsoid R1y asteroid first semi-major axis

R1z asteroid second semi-major axis
ϕ1 initial orientation in the RNP

frame
ω1 spin rate in the RNP frame

Secondary aster-
oid

Homogeneous sphere R2 asteroid radius

shape model

function, s1, rewards the agent for achieving longer time of flight (TOF) within the sys-

tem. The second and third intermediate scoring functions, s2 and s3 reward the agent for

maintaining close proximity orbital motion at the equatorial regions of both asteroids, re-

spectively. The fourth and fifth intermediate scoring functions, s4 and s5 reward the agent for

maintaining orbital motion at high latitudes (i.e. northern and southern polar) observations

of the larger asteroid, respectively. The sixth and seventh intermediate scoring functions

s6 and s7 reward the agent for maintaining close proximity orbital motion at high latitudes

around the larger asteroid. Table 6.3 summarizes the conditions and associated rewards in

points per day (PPD) for each of the seven scoring functions. Rewards are a function of

the current frame epoch, tk, the distances from the larger and smaller asteroids, r1 and r2

respectively, and the radii of the larger and smaller asteroids, R1 and R2 respectively.
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Table 6.2: Ranges for p for the asteroid system, denoted by lower and limits pl and pu. [4]

Parameter pl pu Parameter pl pu

L∗ [km] 0.5 7 µ [ndim] 0.0001 0.1698
R1 [km] L∗

5
L∗

1.5
R1y [ndim] 0.5R1x R1x

R2 [km] R1

10
R1

2
R1z [ndim] 0.5R1x R1x

Pmutual [days] 0.2 2 β [km/s2] 10−12 10−8

T ∗ [days] 0.0318 0.318 Pβ [years] 0.5 4
e [ndim] 0 0.5 ϕ1 [degrees] 0 360

ϕβ [degrees] 0 360 ϕe [degrees] 0 360

Derived R1x [ndim] = 0.5R1[km]
L∗[km]

Quantities ωβ [ndim] = 1 - 2πT ∗[years]
Pβ [years]

ω1 [ndim] = 2πT ∗[hours]
P1[hours]

- 1

Table 6.3: Definition of the scoring metrics and associated conditions

Function Condition Reward

s1 tk > t0 2 PPD
s2 r1(tk) ≤ 4R1 20 PPD
s3 r2(tk) ≤ 4R2 50 PPD

s4 arcsin( z(tk)
r1(tk)

) ≥ π/4 2 PPD

s5 arcsin( z(tk)
r1(tk)

) ≤ −π/4 2 PPD

s6 arcsin( z(tk)
r1(tk)

) ≥ π/4 40 PPD

r1(tk) ≤ 4R1

s7 arcsin( z(tk)
r1(tk)

) ≤ −π/4 40 PPD

r1(tk) ≤ 4R1

It is possible to achieve multiple mission goals during an episode. To reward agents

that do so, a double reward system is also included. Complementary scoring functions are

paired to describe prominent areas of exploration: (s2, s3) for equatorial regions, (s4, s5)

for the distant polar regions, and (s6, s7) for near polar regions around the primary aster-

oid. The distinction between regular and double reward is described by a scalar threshold

corresponding to one of the scoring functions of a complementary pair; when one of the

scoring functions crosses the threshold, the agent receives double reward for pursuing the
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complementary objective. Therefore, the total episode score is described by the weighted

summation

s = α1s
1 + α2s

2 + α3s
3 + α4s

4 + α5s
5 + α6s

6 + α7s
7

where the weights α define the double reward system based on the threshold values

α2 =


1 s2 ≤ 100 points

2 s2 > 100 points

α3 =


1 s3 ≤ 50 points

2 s3 > 50 points

α4 =


1 s4 ≤ 20 points

2 s4 > 20 points

α5 =


1 s5 ≤ 20 points

2 s5 > 20 points

α6 =


1 s6 ≤ 20 points

2 s6 > 20 points

α7 =


1 s7 ≤ 20 points

2 s7 > 20 points

The scalar weight α1, which corresponds to the TOF in the system, is always equal to 1 and

is not included in the double reward system.

In order to better simulate realistic dynamical conditions, the inclusion of catastrophic

events within the flight simulator is required. From an orbital dynamics perspective, there

are three primary events that can immediately terminate the mission: crashing into either

asteroid or escaping the binary asteroid system. We model primary catastrophic events
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Figure 6.2: The interface for the real time flight simulator that visualizes spacecraft motion
(1), primary and secondary asteroids (2), outer ring representing the termination criteria for
escape (3), apparent sun position (4), and the interface dashboard (5).

using conservative termination conditions. Within the flight simulator, a crash into the

larger asteroid occurs when r1(ti) ≤ 2R1, a crash into the smaller asteroid occurs when

r2(ti) ≤ 2R2, and the system escape criterion is rBC ≥ 3L∗, where rBC denotes the spacecraft

distance from the asteroid system center of mass. If any of the termination criteria are met,

the episode is immediately interrupted but without penalty on the accumulated total score.

6.1.6 Flight Simulator Interface

The flight simulator is designed such that real time spacecraft motion and other

relevant information is intuitively presented to the human agent; Figure 6.2 illustrates this

graphical interface. At any given instant, the agent can observe the spacecraft motion as

approximated by the real time propagation routine within the RNP frame. Both asteroids

and their dynamical motion are also displayed, along with an outer ring that marks episode

termination conditions by system escape. The current Sun angular position is also repre-

sented by a rotating star that travels along the outer ring.

The interface dashboard is to the right of the binary system graphical representation,

and presents the agent with mission progress and other relevant criteria. Along with the

remaining fuel reserve level, the episode TOF and latitude measurements are made available
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Table 6.4: Fixed parameters for the simulation framework.

Initial V 30 m/s
Maneuver Size V 0.03 m/s
Position Navigation Error 10 m
Velocity Navigation Error 1 mm/s
Measurement Update Interval 30 minutes
Frame Prop. Interval 2 minutes
Visualization Update Interval 20 fps

to the agent. The spacecraft z coordinate is represented by the yellow sliding bar along

the left side of the dashboard. The agent is presented with warning signals if the current

trajectory will result in a termination criteria; the creation of warning signals is described

in previous work [92]. Lastly, both accumulated and primary mission sub-scores are visible.

Progress on each of the mission sub-scores is also made available.

6.2 Human Pilot Database

6.2.1 Data Collection Experiment

Each episode of human pilot training, which can also simply be referred to as an

episode, represents a single flight simulation. Each episode begins at the L4 Lagrangian

point of the system, with zero relative spacecraft velocity. Due to the inherent stability

properties [80], this equilibrium point may be a good home position candidate for a spacecraft

within binary asteroid systems. Fixed simulation parameters are listed in Table 6.4; these

include spacecraft-related properties (such as navigation errors and maneuvering capabilities)

as well as values for configuring the simulation interface.

6.2.2 Emergent Path Planning Strategies

The following analyses presented are based on data collected from a single human

pilot agent. The collected data corresponds to different, sequential episodes, where each one

comprised of binary asteroid systems generated by the random selection of parameters from
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the ranges presented in Table 6.2. Additionally, during post-processing of the generated

database, a small number of episodes that correspond to outlier scores are removed from the

dataset to avoid statistical biases.

6.2.2.1 Human Agent Learning Curve

Analyzing the human agent learning curve may offer insight into the improvement

of the agent’s performance as more experience is gained. Figure 6.3 illustrates the learning

curve for all episodes in the collected data, as represented by a moving average of the total

episode scores (window size is set to 100 episodes, with end effects removed). The learning

curve visualizes the ability of the human agent to learn generalized path planning strategies

that are applicable to a large range of asteroid system types. The vertical axis represents

the final, or total, score obtained by the end of each episode. The total score can be used as

a measure of mission success as higher values correspond to simulations having longer flight

times and accomplishing greater primary mission goals, as denoted by the definition of the

underlying game scoring function.

From Figure 6.3, we can see that as more experience is gained by the human pilot,

the total score follows a generally increasing trend that may be approximated by a 4th

order polynomial. Deviations from this best fit polynomial can be attributed to an alterna-

tion of the infancy-exploration-exploitation phases that are characteristic of human learning.

The human pilot appears to have followed a sequence of repeated cycled of exploration and

exploitation (which are represented by deviations below and above the approximation poly-

nomial function, respectively). This observation is in stark contrast to previous similar work,

in which the infancy-exploration-exploitation phases were more distinctly observed [92].

The behavior of the learning curve may be linked to the human agent gradually explor-

ing different regions of the generated binary asteroid systems. As the number of training

episodes increases, the human agent begins to face a tradeoff between further exploring the
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Figure 6.3: The moving average of the human agent learning curve (blue) overlayed with a
polynomial fitted curve (orange)

system and exploiting a known strategy that guarantees a certain amount of points. A dis-

tinction between different episode strategies may be based on the ∆V consumed and the

time of flight (TOF). Each episode begins with a fixed amount of fuel, with each maneuver

depleting the reserve by a constant amount. If the agent is exploiting a known strategy, then

the may be able to predict the spacecraft motion and implement a developed path-planning

strategy that yields longer episode duration. On the contrary, an agent that is exploring un-

familiar system dynamics might not be fully aware of the effects of an action. Consequently,

catastrophic events such as crashing into either asteroid or leaving the asteroid system, are

more likely to occur. As the episode ends quickly, a lower amount of fuel is consumed. In this

sense, the ∆V consumed and the TOF become an index, among others, to discern between

exploration and exploitation phases.

Identification of exploration and exploitation phases on the bases of ∆V consumed and

the total TOF is demonstrated in the following analyses of the s2 and s3 subscore trends.

Though only two subscore influences are presented in this analysis, similar studies may be
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Figure 6.4: Sub-score influence on the visible peaks and dips in the human agent learning
curve

performed in consideration of the remaining sub-scoring functions.

Figure 6.4 illustrates the moving average for the P1 and P2 sub-scores (i.e. near orbital

plane motion around each of the primaries), as well as the ∆V consumed and TOF (all

moving average window sizes are set to 100 episodes, and end effects are removed). Episodes

within the first range of interest are designated by green circles in both Figures 6.3 and 6.4,

and occur around the 650 episode mark. In this range, the total score moving average drops

below the approximation, and there is also a correlated decrease in ∆V consumed, TOF

duration, and P1 scores; simultaneously, there is a substantial increase in the P2 scores.

Such trends may be interpreted as the human agent primarily exploring the region around

P2.

Episodes within a second range of interest are designated by red circles in Figures 6.3
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and 6.4, and occur around the 750 episode mark. In this range, the total scores peak above

the approximation, and P1 scores, TOF duration, and ∆V consumed also increase; there is

a correlated decrease in the P2 scores. The trends in this range may indicate that the agent

is human pilot is choosing to exploit a known strategy for orbiting P1 bear the orbital plane

rather than exploring other regions of the asteroid system.

Conversely, another measure of improvement of the human pilot s performance can stem

from analyzing the episode efficiency trends. For a given episode, the episode efficiency can

be quantified by the parameter ηepisode such that

ηepisode =
∆Vconsumed

total score
(6.10)

Therefore, by definition, a lower ηepisode value correlates to a lower fuel cost per unit score

and consequently a higher episode efficiency. Figure 6.5 illustrates the ηepisode value for

the collected data, represented by the moving average (window size of 100 episodes, with

end effects and episodes with zero total score removed). The ηepisode value decreases in a

generally linear fashion as more experience is gained. This is indicative of the human agent

learning more efficient ways to navigate the spacecraft within different asteroid system types.

From both Figures 6.3 and 6.5, it is evident that the human agent is acquiring control of the

spacecraft orbit dynamics within randomly generated binary asteroid systems. As experience

is gained, the total score increases as does the episode efficiency, implying that the human

agent is learning to achieve higher mission return via more efficient control strategies.

6.2.2.2 Maneuver Analysis

Actions that are called upon more frequently can prove vital in understanding the con-

trol of the resulting trajectory. As previously described in Section 6.1, there are six possible

impulsive control maneuvers available within the game framework; each maneuver will de-

plete the available fuel reserve by a fixed amount. From the generated human pilot database,
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Figure 6.5: The moving average of the mission efficiency (blue) overlayed with a liner fitted
curve (orange)

we can extract the percentage decomposition for each control maneuver; this data is pre-

sented in Table 6.5. Additionally, the action frequencies within the x-y and x-z parameter

spaces are presented in Figures 6.6a and 6.6b respectively. These frequency maps are gener-

ated by plotting the spatial distributions of called actions within a given configuration space.

The parameter space distances were normalized by the episode’s characteristic length L∗.

From the frequency maps in Figure 6.6a, it is observed that positive and negative nor-

mal control actions are the most frequently utilized. Given the orientation of the spacecraft

coordinate system as illustrated in Figure 6.1, the normal unit vector is aligned in the di-

rection towards the center of curvature of the trajectory arc. High frequencies of both these

actions occurring near the asteroids indicate that they were employed to maintain orbital

motion about both P1 and P2. There is also a high frequency of positive and negative around

L4 as each new episode begins with the spacecraft located at this equilibrium point. The

negative tangent action is used to decrease the spacecraft mechanical energy relative to the

asteroid, resulting in a lower semi-major axis and consequently allowing for a temporary or-

bital capture . There is a relatively even frequency distribution for this action. The positive
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Table 6.5: The percentage decomposition for all control maneuver actions imparted in the
collected data.

Total Maneuvers: 209,989

+ tangent (a1) 0.18 %
- tangent (a3) 6.19 %
+ normal (a2) 38.58 %
- normal (a4) 47.14 %

+ binormal (a5) 4.05 %
- binormal (a6) 3.86 %

tangent is used least frequently as this would increase the mechanical energy of the space-

craft, which would increase the semi-major axis and decrease chances of temporary orbital

capture. Lastly, control maneuvers along the binormal axis are used to move out of plane;

these actions also have a relatively even distribution but low frequencies when compared to

actions imparted along the normal axis.

Frequency maps given in Figure 6.6b, which represent action spatial distributions in the

x-z parameter space, offer a different perspective. Actions along the normal axis were utilized

for out of plane motion, but there remains a heavy concentration at and near the orbital

plane. The negative tangent action is seen to be utilized primarily near the orbital plane

as a ∆V maneuver in this direction would decrease energy, thereby reducing the semi-major

axis and bringing the spacecraft closer to the asteroid. Finally, actions along the binormal

axis have relatively even distributions but low frequencies.

6.2.2.3 Controlled and Natural Motion

Analyzing the spacecraft’s controlled and natural motion within the asteroid systems

may reveal inherent dynamical pathways. More specifically, analyzing the action spatial

distributions along the resultant trajectory may offer insight into the nature of the space-

craft’s motion. The data presented in this section is from a single episode, which is chosen as

representative case study. Figure 6.7a illustrates a trajectory arc (in pink) that captures the

spacecraft transit from motion near P2 to motion near P1. Figure 6.7b portrays, instead, a
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(a) Action frequencies in the x-y parameter space

(b) Action frequencies in the x-z parameter space

Figure 6.6: Spatial distribution maps for the action frequencies

trajectory near P1 that occurs after the transition illustrated in Figure 6.7a. In both Fig-

ures 6.7a and 6.7b semi-transparent spheres represent P1 and P2 (semi-transparent in order

to observe motion behind each asteroid), and the occurrence of ∆V maneuvers is indicated

by black dots located at the point of execution of the corresponding maneuver.

From observing the frequency of ∆V maneuvers in Figure 6.7a, motion about P2 ap-

pears heavily controlled, as is the transfer from P2 to P1. Furthermore, the motion about
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(a) (b)

Figure 6.7: Emerging differences in the spacecraft path planning, denoting instances of
controlled and natural motion, with imparted actions represented by black circles. Subfigure
(a) represents a selected transfer trajectory (pink) from P2 to P1. Subfigure (b) represents
the selected sequential motions (blue, orange, and green respectively) about P1

both P2 and P1 during this phase appears to be vertical in nature. In Figure 6.7b, a transi-

tion from predominantly controlled to predominantly natural motion may be observed. The

trajectory about P1 may best be described as successive, vertical, eight-shaped arcs, which

are colored in blue, orange, and green respectively in Figure 6.7b. Each vertical, eight-shaped

arc is distinguished by a self-intercepting point in configuration space. After the spacecraft

has completed a vertical, eight-shaped arc, it transfers to a new arc and the self-intercepting

point moves to a new location; the resulting spacecraft motion near P1 may be described

as a combination of vertical, eight-shaped oscillations and precession of the self-intercepting

point. During such motion, the only actions imparted are along the beginning of the blue arc

near the southern hemisphere of P1 (see Figure 6.7b). Motion represented by the orange and

green arcs may be a result of the natural dynamics of the system as there were no actions

employed during these periods.
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6.3 Automating Human Path-Planning Logic: Interactive DAgger

Given the generation of human generated solutions, the resultant dataset can be

utilized to train machine learning methods in an attempt to automate the underlying path-

planning logic. As mentioned previously, and to the best of our knowledge, this is the first

instance in which an automated replication of human demonstration data for spacecraft

path-planning is attempted. Therefore, due to the lack of state of art and an initial lack

of knowledge of the required modifications to the underlying machine learning models, a

relatively intuitive and straightforward approach is implemented. The chosen formulation is

further discussed in the sections below.

6.3.1 Dataset Aggregation (DAgger)

The generation of path-planning strategies is a sequential prediction problem, wherein

future observations are directly dependent on previous actions. The agent’s behavior pre-

diction directly influences future states that are encountered, the critical independent and

identically distributed, or i.i.d., assumption that underlies statistical learning is inherently

violated. Therefore behavioral clones purely based on statistical learning typically experience

a compounding of errors after an incorrect prediction, as the future distribution of states will

be different from those in expert demonstrations. Differences in state distributions between

those in expert demonstrations, and those encountered during training is known as distri-

butional shift [93]. Various solutions have been proposed that allow the agent to overcome

distributional shifts, with the most popular method being DAgger. Dataset Aggregation

(DAgger) reduces the structured prediction problem to that of an online learning setting [33]

and may facilitate the application of statistical learning to sequential prediction problems.

Online learning describes methods in which data becomes available to the agent at each step,

and is used to update the model and predict the future action, without necessarily having

to retain the observation. Conversely, offline learning is when agents train on repositories of

data trajectories in order to build models.
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The DAgger algorithm has a straightforward training architecture based on the concept

of training batches for data collection. We begin by first training a behavioral clone from

numerous expert demonstrations, commonly termed as the expert policy πe [33]. The first

batch consists of multiple episodes in which only πe is used to generate trajectories; the

number of episodes in each batch can be explicitly defined for each application. During the

rollout of each episode, tuples of state-action pairs are recorded. DAgger requires us to query

the expert at each step in order to assign the action labels, making the algorithm one that

has an active setting. At the end of each batch, all tuples are aggregated to the main dataset

used to retrain the policy of the learner agent πl before its next execution. As more batches

i are iteratively used to collect training data, we begin to use to use the learner policy more

frequently by specifying the executed policy π to be a combination of two components

π = βiπe + (1− βi)πl

where βi is a chosen scalar parameter less than 1. The value of βi differs for each problem,

with the only requirement being that βi −→ 0 as i −→ ∞.

6.3.1.1 Active Imitation Learning: Coached IL

Though DAgger is a commonly utilized algorithm for IL, it still suffers from inher-

ent drawbacks that can severely limit the agent’s performance. One of the main features of

DAgger is its use of stochastic policy mixing of the expert and learner policies, implemented

via use of the βi parameter. This shifting of control authority of the executed policy to the

learner agent at certain times is commonly termed as “Robot-Centric (RC)” sampling [52].

As a result, the resultant trajectory of states visited may not only be greatly deviated from

the nominal trajectory of the expert, but it may have also been influenced by a suboptimal

learner policy.

Another potential limitation of passive IL algorithms is the reliance on an expert policy,
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which may not fully capture the intricate logic of the human expert [94]. Differences in per-

ception (what the human expert observed versus what the agent is able to observe) used to

make a decision may further hinder the development of an autonomous policy that is purely

based on cloning behavior. The development of a policy using imitation learning relies on the

use of certain input parameters. However, only some of these parameters directly influence

the action, whereas the rest do not contribute to the decision logic [93]. If the agent learns

a policy that heavily relies on “nuisance” variables, it will lead to poor performance during

testing [93]. There exist methods, such as causal-graph parameterized policy learning [93],

that allow for the differentiation between the true causal and nuisance variables, although

they have only been validated on low dimensional state spaces.

Real time human interaction while training a learner policy, a technique known as inter-

active imitation learning, may mitigate some of the challenges in passive imitation learning.

There exist different levels of control authority that allow for an interactive expert to aid

during training of the learner policy. The first logical option is that the interactive expert

can intervene and impose control authority whenever deemed necessary, and this approach is

utilized in the COrrective Advice Communicated by Humans (COACH) interactive training

framework [45]. Given that the COACH framework allows for the interactive expert to take

control at any time, Pérez-Dattari et al. designate two types of coaching feedback that can

be used: corrective and evaluative [45]. Corrective feedback is preferred when the interactor

wants to teach the agent how to avoid catastrophic events that would terminate the episode

[45]. However, although the agent may learn to avoid terminal events, it may still be unable

to learn the overall desired behavior if the given problem lies in a high dimensional space.

Conversely, evaluative feedback is similar to an RL approach in that the interactor directly

provides feedback on the desired behavior of the agent [45].

Another approach at incorporating an interactive human expert relies on a gating func-

tion within the control logic [94, 52]. If the agent predicts an action that falls below a defined

confidence threshold, then the control authority is switched to the human interactor, who
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proceeds to control and gather data until the next instance the agent can perform confidently.

This confidence threshold can be defined differently for separate problems, from using the

covariance of the predictions given by using parallel neural networks to predict the agent

actions [52], to having the interactive coach slowly build up to executing the full desired

behavior and allowing the learner to incrementally learn good behavior [94]. The choice of

coaching and the control authority of the interactive expert differs for each problem.

6.3.2 Agent Training Architecture

The underlying architecture chosen to train an agent that would play Asteroid

Squadron is based on the original DAgger algorithm; DAgger relies on the use of a behavioral

clone for its stochastic policy mixing during execution of each batch. Therefore, a behavioral

clone was first trained using high scoring episodes from the human expert dataset; during

evaluation the behavioral clone had an action prediction accuracy of 96.1%. It should be

noted that more than 90% of all actions taken by the human expert were null actions,

in which no control maneuvers were actuated. That caused a bias in the data set with

significantly longer periods of spacecraft coasting versus instances of control, but the bias

was not removed for any portion of the training within this experiment. Instances of explicit

control strategy that separate the periods of null actions are representative of the human

pilot’s learned situational decision making logic, and removing this biases may inadvertently

affect the desired performance of the trained agent.

6.3.2.1 Neural Network Architecture

The behavioral clone, as well as all trained agents, used the same underlying neu-

ral network architecture and input parameters; this architecture is visualized in Figure 6.8.

We currently choose to employ a 2D convolutional neural network (CNN) in this investi-

gation, for a few different reasons. First, this neural network architecture is the simplest
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Figure 6.8: 2D convolutional neural network architecture utilized for training all agents.

formulation that may be able to solve a time series dependent, sequence prediction prob-

lem without relying on any characteristics that are typical of a recurrent neural network

(RNN). Though RNN’s may provide more powerful solutions, they can also suffer from the

well-known phenomenon of the exploding and vanishing gradients [95]. Exploding gradients

arise when large error gradients accumulate, resulting in significant updates to the neural

network weights following the gradient backpropagation and resulting in an unstable archi-

tecture. Conversely, vanishing gradients refers to when the the norm of the gradient during

backpropagation begins to converge to zero. This results in the neural network having great

difficulty in learning the correlation between temporally distant events [95].

The use of CNN’s as an alternative to RNN’s has been explored, and these architectures

may possibly serve as an alternative approach at sequence modeling and prediction [96]. Be-

fore the widespread use of RNN’s, CNN architectures were previously applied to sequential

tasks, and recent advancements in the development of temporal CNN architectures have

been shown to avoid the problem of vanishing gradients, as the backpropagation occurs in a

direction that is different from the temporal direction of the sequence [96]. Conversely, the
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use of the Rectified Linear Unit (ReLU) activation function within a CNN may also mitigate

the problem of vanishing gradients, and reduce the need for a complex, temporal CNN [97].

The second reason as to why we implement a CNN is that is allows for the input to

be numeric matrices; this can be interpreted as allowing the input to be a rolling lookback

window of the state history for the chosen state feature vector parameters. Providing this

rolling lookback may aid the CNN in regards to short term memory retention during the

training process.

Leveraging the idea of a rolling lookback window, our input to the implemented CNN

is as follows. For each time step, twelve parameters are used as inputs by the agent: the

spacecraft position, velocity, total score, fuel remaining, the x positions of both asteroids,

and the spacecraft’s distance from each asteroid. Each of these parameters is a designated

column in the input matrix, and each row is the state at a specific time step. The first row

is the current state i that the agent is experiencing, and each row thereafter is the state at

the previous step. Currently, the input matrix is 12x12, meaning that along with the cur-

rent state, the agent is recalling the past eleven states it has visited, in an effort to provide

trajectory history and possible situational awareness.

The 12x12 input matrix passes through two convolutional layers to extract the under-

lying features, with each layer being followed by a ReLU activation function and a MaxPool

layer. The MaxPool layer is included to create a summarized version of the features de-

tected in the input matrix, and may address the issue of variance in the input matrix data

(note that each episode of the simulator is a randomly generated binary asteroid system,

and therefore variances in the input matrix are to be expected, and may be mitigated by

the inclusion of a MaxPool layer). Following the convolutional layers, there are three hidden

layers in the subsequent feed forward, fully connected network. The first two layers have 150

and 75 hidden nodes, respectively, with ReLU activation functions. The final hidden layer is

7 nodes, with each node corresponding to one of the actions in the total action space for this

problem (1 null action, and 6 impulsive maneuvers). This layer has a Softmax activation
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function, which results in the final output of the implemented CNN to be the probabilities of

choosing each action. These probabilities are then used to randomly select an action, from

our discrete action state space, that is then implemented to control the spacecraft.

6.3.2.2 Neural Network Training Parameters

From looking at the state input variables, we note that as the agent interacts with

the environment, no information regarding the asteroid physical properties (e.g., mass and

shape) is given. For this experiment, no additional considerations were taken to identify the

possibility of “nuisance” variables that result in causal confusion, due to the high dimen-

sionality of the problem. Each agent, as well as the behavioral clone, was trained on the

respective datasets twice, using shuffling and batch sizes of 25,000 data points; the neural

network in Figure 6.8 was utilized as the common architecture for both the behavioral clone

and the agents.

The interactive PROPAGATE (exPeRt cOaching for PAth planninG And orbiTal

stationkEeping) training architecture is illustrated in Figure 6.9. As mentioned before, the

DAgger algorithm is used as the primary basis for agent training. Additional modifications

allow for a real time human monitor to observe the agent’s behavior at controlling the space-

craft motion, as well as providing corrections in real time. When aggregating the dataset for

retraining the learner policy, the human monitor’s response is used: if the monitor did not

explicitly specify a control maneuver, and instead agreed with the agent’s chosen behavior,

then the agent’s actions are used for labeling. Otherwise, the control maneuver dictated

by the human monitor is utilized. For this experiment, the human monitor is the same

human pilot that gathered the training data used to train the behavioral clone. Correc-

tions provided to the agents by the human monitor are based on the heuristic path planning

strategies learned during the 60-hours-long piloting experience with the original Asteroid

Squadron simulation interface.
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Figure 6.9: The interactive PROPAGATE training architecture

The application of heuristics by the human monitor may introduce multimodal behav-

ior in the learning process. Multimodal behavior may be mitigated by a careful selection of

the state feature vector that is utilized as neural network input. Expanding the state fea-

ture vector may results in comparatively less frequent multimodal behavior episodes, at the

cost of increasing problem dimensionality and decreasing state-action pairs sampling. The

analysis of multimodal behavior during learning is a subject for future expansions of this

work.. Given that the PROPAGATE architecture allows for direct interaction between the

agent and the human monitor, different types of coaching can be employed during training,

resulting in multiple agents. It should be noted that, while the total score is passed to the

neural network as an input for behavioral cloning, the purpose of the reward function is to
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drive the behavior of the human pilot, whose learned path planning strategies may then be

transferred to the agent during the interactive training.

6.3.3 Agent Versions and Control Authority Switch

Using the PROPAGATE training architecture, three separate agents were trained.

The first is a pure DAgger agent, in which the human monitor has no control authority in the

online trajectory steering for spacecraft control. Any corrections provided by the monitor are

only recorded to be used as part of the learner policy training dataset. The representative

algorithm and control logic for this agent is given in Algorithm 1 and Figure 6.10. The other

two agents represent coached DAgger implementations, one for corrective coaching, and the

other for evaluative coaching. In both scenarios, the human monitor’s corrections were both

recorded and implemented in real time. With the corrective coaching agent, the human

monitor only imposed control authority in order to steer the agent away from a terminal

condition (crash into either asteroid, or escape from the binary asteroid system). Conversely,

with the evaluative coaching agent, the human monitor imposed control authority whenever

they deemed fit in order to prompt desired behavior that is reminiscent of the control strate-

gies in the original human pilot dataset. The representative algorithm and control logic for

both of these agents is given in Algorithm 2 and Figure 6.11.
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Algorithm 3 Pure DAgger Formulation

1. Initialize behavioral clone/expert policy πe, learner pol-

icy πl −→ 0, training dataset D −→ 0, β ∈ (0, 1)

2. For episode i in episode batch n = 1:N

(a) Execute policy π = βn−1πe + (1− βn−1)πl

(b) Record dataset tuples Di = {(s, a∗)} of visited

states s and action labels a∗

(c) Append all generated tuples to existing training

dataset D ←− D ∪Di

3. Retrain πl on expanded D

Figure 6.10: Control logic for the pure DAgger
agent

Algorithm 4 Coached DAgger Formulation

1. Initialize behavioral clone/expert policy πe, learner pol-

icy πl −→ 0, training dataset D −→ 0, β ∈ (0, 1)

2. For episode i in episode batch n = 1:N

(a) Execute policy

π =


if ahuman = aagent

if ahuman ̸= aagent

(b) Record dataset tuples Di = {(s, a∗)} of visited

states s and action labels a∗

(c) Append all generated tuples to existing training

dataset D ←− D ∪Di

3. Retrain πl on expanded D

Figure 6.11: Control logic for both coached
DAgger agents

Though the Asteroid Squadron flight simulator was the environment that each of the

agents were interacting with, the range of the asteroid system parameters was not reduced.

Rather, the same ranges for the parameters, as presented in Table 6.2, were utilized as the

goal of this investigation is to assess the ability of an interactive, human-machine learning
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framework at solving a complex and high dimensional problem. If the ranges of the param-

eters were reduced, then the complexity of the problem would effectively be reduced as well,

resulting in the investigation of a scenario that is fundamentally different to the primary

goal.

6.4 Results and Discussion of Interactive DAgger

6.4.1 Learning Curves

Each of the three DAGGER agents was trained for a benchmark of 20 hours (this

represents the time given for the interactive data collection, and excludes the time needed to

retrain the agents at the end of each batch). This amount was chosen in order to represent

a scenario in which there may only be a short term availability of access to a human expert.

Therefore, as the amount of interactive training hours is fixed, it is logical to expect that

the total number of episodes played may vary for each agent. This observation is noted

for the trained agent results, as further discussed below. A common metric to analyze the

performance of a trained machine learning agent is the learning curve, which in turn can be

defined by a chosen figure of merit. This figure of merit can range from fuel consumption

to time of flight. For this experiment, we are aiming to train a machine learning agent so

that it is able plan and execute path planning strategies via use of impulsive maneuvers. At

the core of the training architecture is the Asteroid Squadron simulator, where each episode

represents a fixed mission scenario with regional exploration goals that contribute to the

total score earned. These regional exploration goals represent subtasks for the agent. The

total score is defined such that higher values indicate that the underlying subtasks are being

better accomplished [39].

The learning curves for each of the trained agents (corrective and evaluative coaching

with DAgger, original DAgger, and pure behavioral clone) are illustrated in Figure 6.12 as

moving averages. For comparison, the learning curve (blue) for the human pilot is also

illustrated in Figure 6.13, along with its polynomial approximation (orange). The human
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Figure 6.12: Learning curves of the agents represented via their moving average (window
size = 50 episodes, for all agents, with end effects removed). The end of each batch, after
which the learner agent was retrained, are visualized by vertical black lines.

Figure 6.13: Learning curve for the human pilot, whose data was used to initialize the agents
(moving average window size = 100 episodes, with end effects removed). The learning curve
denotes the individual total score achieved by the human pilot in a given episode, and is not
an explicit accumulation of the scores achieved in past episodes
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learning curve for the human pilot in Figure 6.13 denotes the moving average of the total

score achieved in each, individual episode the user played. Further analysis on the human’s

results and strategies is provided in [4] (the inclusion of the polynomial approximation is for

visual purposes, to allow for a better relation between the human pilot’s learning ability and

the amount of simulation experience they have gained). It should be noted that within the

designated 20 hours of interactive training time, each of the three DAgger agents completed

a different amount of episodes, hence leading to a difference in the total number of episodes

as a metric to measure the learning curves. Results from a random agent, which chooses

actions with equal probability, are also included for comparison. Within the designated

training time benchmark, the original DAgger agent completed 450 episodes, whereas both

coached agents completed 150. Given the score trends and coaching experience during train-

ing, both coached agents were trained for an additional 20 hours; the corrective coaching

agent completed another 150 episodes, while the evaluative coaching agent completed 100.

The random action agent should demonstrate the lowest learning performance, as it

does not embody any control logic. Furthermore, as this agent’s policy is not being updated

during execution, we should expect that the learning curve remains relatively constant. From

Figure 6.12, we see that this behavior holds; the random action agent generally demonstrated

the lowest performance, as quantified by low total scores and a relatively constant learning

curve.

All of the DAgger agents use this behavioral clone as the expert policy for the training

algorithm. It is known that the use of an expert policy unable to capture the true logic

of the human pilot, or oracle, can lead to unstable learning behaviors using DAgger. This

can be observed in the original DAgger learning curve, which slightly increases during the

initial phases of training before stagnating. As mentioned before, introducing coaching dur-

ing training may improve learning. The corrective coaching learner demonstrates a sharp

increase of the total score during the early learning phase, before the performance drops

to lower total score values. This coached agent only received intervention from the human
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monitor when one of the episode termination criteria was imminent. Conversely, the evalua-

tive coaching learner seemingly provided the best learning trend. The learning curve slightly

increased during the initial training batches, followed by a small decrease and subsequent,

sharp increase. Recall that for this agent, the human monitor may arbitrarily impose control

authority that may improve the learning progress.

6.4.2 Subscore Learning Curves

The learning curves illustrated in Figure 6.12 use the total score as the parameter

to quantify the agent’s learning ability. Recall that the total score is comprised of seven

components, each representative of realistic mission goals during an asteroid exploration

mission, with the scoring metrics previously detailed in Table 6.3. This scoring function

therefore formulates the posed problem as a multi-objective task for the agent, which may

increase the difficulty of achieving a converged machine learning solution. Consequently,

assessing the agent’s learning ability on all the underlying subtasks is critical in evaluating the

total performance. In addition, understanding whether the subtasks are learned sequentially

or in parallel may aid to interpret fluctuations in the total scoring function and inform the

development of better training approaches. For example, during human training with the

flight simulator, gaining experience in new sub-tasks negatively impacted the total score,

displaying classical exploitation-exploration learning mechanics. Figure 6.14 illustrates the

learning curves for each of the subscores for the three DAgger agents. The P1, P2, system

north, system south, P1 north, and P1 south subscore labels respectively correspond to the

s2, s3, s4, s5, s6, and s7 scoring conditions provided in Table 6.3.

Beginning with the original DAgger, we see that most of the subscore learning curves

remain constant at low values. There are slight peaks and dips in the learning curves for the

system north and south scores, indicating that the agent is going out of plane and possibly

escaping the asteroid system, leading to a termination condition that prematurely ends the

episode.
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Figure 6.14: The learning curves for six of the seven component scoring function in Aster-
oid Squadron (moving average window size = 50 episodes, for all agents, with end effects
removed).

The corrective coaching agent initially demonstrates an increase in learning behavior

across all of the subscores, followed by a decrease. Upon further analysis, we observe that

the learning curve for the P1 score most closely resembles the total score learning curve

illustrated in Figure 6.12; this indicates that the learning for the corrective coaching agent is

primarily influenced by an underlying logic aimed at path planning around P1, at altitudes

at or near the mutual orbit plane of the asteroid system.

Analyzing the evaluative coaching agent leads to a slightly different insight into the

learning style of the agent. From episodes 0-50, we see that all the subscore learning curves

slightly increase or remain constant, except for that of the P2 score. This indicates that the

agent’s current path planning strategy is generally focused in regions around P1 rather than

P2. From episodes 50-100, we observe a decrease in the P1, and P1 north and south scores
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while noting an increase in the P2 score. This indicates that the agent’s focus has slightly

shifted to include orbital motion about P2. From episodes 100-150, we see a rise in the scores

for the system north and south, as well as the P1 north and south subscores. Finally, from

episodes 150-200, we see a sharp increase in all of the subscore learning curves, indicating that

the agent is able to accomplish multiple regional exploration goals within an episode instead

of solely focusing on one. This observation may also be an early indication that the current

agent configuration learns the posed subtasks simultaneously, rather than leveraging an

alternation of exploration-exploitation phases as the human pilot. While simultaneous multi-

task learning is an appealing feature when interactive training time with a human expert is

limited, a sequential approach to sub-task learning may yield overall better performance.

6.4.3 Maneuver Frequency Maps

In each episode the asteroid environment is randomly generated by drawing pa-

rameters from uniform probability distributions (ranges are presented in Table 6.2). Large

variations of orbit dynamics parameters result in a wide array of orbital environments that

are dynamically different from each other. Therefore, the agent should not only learn a multi-

objective task, but also develop general behavior (i.e. a path planning strategy learned for

one type of binary asteroid system should transfer to other systems). One element enabling

effective generalized policies is the identification of state features that minimize context

variation across different asteroid environments. Recalling that orbit dynamics are nondi-

mensional, nondimensional position states may offer an initial option to anchor learning to a

context that is shared across different asteroid system. Then, one possible option to identify

the emergence of generalized control heuristics is to visualize spatial distribution of control

maneuvers as training progresses. Such a visualization may supply insight into where con-

trol actions are needed with an average representation that is agnostic relative to the specific

asteroid system.
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We currently choose to focus on the coached and evaluative learners due to their promis-

ing learning curve behaviors, recognizing that this analysis can be extended to all the agents

trained. Figure 6.15 illustrates the spatial distribution of stationkeeping actions for the

corrective coaching agent. Figure 6.15a represents actions taken by the agent itself, and

Figure 6.15b represents actions demonstrated by the oracle during intervention. In the first

100 episodes (i.e. batches 1 and 2), the agent is executing maneuvering actions in the general

vicinity of P1, at altitudes at or near the mutual orbit plane. The corrections provided by

the human monitor are not specific to any region, instead spanning at altitudes both above

and below the orbital plane, indicating that human intervention was required in order to stop

the spacecraft from leaving the asteroid system by going too far out of plane. In the next 100

episodes (batches 3 and 4), we observe that the agent is primarily executing maneuvering

actions around P1, both near the mutual orbital plane as well as out of plane. This orbital

motion corresponds to the peak in subscore learning curves as observed in Figure 6.14 (recall

that the learning curves are moving averages with a window size of 50 episodes). For this

range of episodes, we observe that the majority of human corrections also remain in vicinity

of P1, indicating that human intervention was required in order to avoid crashing into the

asteroid. In the final 100 episodes (batches 5 and 6), the agent is not executing a clear

policy that improves upon its gathered data. We observe that the agent’s control actions

have no primary focus and are instead scattered across the regions of the asteroid system.

Human corrections are mainly centralized around P1, indicating that occasional intervention

is required for crash avoidance. Furthermore, the human corrections are not near the mutual

orbital plane, as observed in batched 3 and 4, and are similarly scattered across various out

of plane altitudes. This observation indicates that the agent is frequenting states that are

out of plane and require intervention in order to keep the spacecraft within the asteroid

system. This is similar to what is observed in batches 1 and 2, and is consistent with the

drop of the corrective coaching learning curve.

In comparison to the corrective coaching frequency maps, those corresponding to the
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(a) Agent

(b) Human Corrections

Figure 6.15: Frequency maps for the corrective coaching agent that represent the agent’s ac-
tions and the human corrections. The general location of each of the asteroids is represented
by the respective white circles, with the radii being that of the average diameter for each
primary based on the asteroid systems that were encountered by the agent.
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(a) Agent

(b) Human Corrections

Figure 6.16: Frequency maps for the evaluative coaching agent that represent the agent’s
actions and the human corrections. The general location of each of the asteroids is repre-
sented by the respective white circles, with the radii being that of the average diameter for
each primary based on the asteroid systems that were encountered by the agent.
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evaluative coaching provide a different insight. Recalling that the human monitor can arbi-

trarily intervene, we can visualize the evolution of the agent’s learned maneuvering strategies

in Figure 6.16, with Figure 6.16a representing the agent’s actions and Figure 6.16b repre-

senting the human corrections. For the first 100 episodes (batches 1 and 2), we see that the

agent is primarily executing maneuvers in the vicinity of P1. From the frequency map at the

bottom left of Figures 6.16a and 6.16b, we observe an almost column like structure being

formed by the spatial distribution of the actions, indicating that the human corrections are

being used in order to get the agent back into a nominal orbital motion about P1. For the

next 100 episodes (batches 3 and 4), we see that the agent is frequenting more states near

P1, and the out of plane motion is more contained when compared to batches 1 and 2. Fur-

thermore, we see that the amount of human corrections also decreased, and the out of plane

corrections are more in the vicinity of the mutual orbital plane. We also begin to observe

orbital motion about P2. For the final 50 episodes (batch 5), the agent is executing impulsive

maneuvers around both asteroids, visiting states at lower altitudes of the mutual orbit plane

when compared to batched 3 and 4. Human corrections rise compared to the previous two

batches, particularly around P1. The rise in human corrections may be attributed to the

fact that the agent is now experiencing unseen trajectories; in Figure 6.14, learning curves

increasing for all subscores towards the end of the training period may point to new path

planning behavior. Furthermore, the agent begins to orbit P2 more frequently. As orbiting

P2 offers a much higher score than orbiting P1 for a given amount of time, the agent’s current

path planning strategy is resulting in novel trajectories, which may lead to incorrect action

predictions and consequently require more corrections from the human monitor.

Comparing maneuvering frequency maps for both the coached agents and tracking the

evolution in the path planning behavior may qualitatively indicate the level at which the

agent is able to contextualize on the base of positional information. For example, from

maneuvering frequency maps in Figure 6.15, we observe that the corrective coaching agent
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initially recognizes the P1 vicinity as a location requiring more active control (i.e., higher ma-

neuvering frequency). Quite interestingly, this learned contextual behavior becomes diluted

as training progresses. In batches 5 and 6, the maneuvers become sporadic across the as-

teroid system, complementing the observed devolution in learning behavior. Conversely, the

evaluative coaching agent display a more stable learning progression of contextual behavior

based on position information. In Figure 6.16, the occurrence of actions across configuration

space indicates that the agent first learn to maintain orbital motion nearby P1, for both out

of plane and near mutual orbital plane trajectories, and then proceeds to learning how to

maintain orbital motion about P2.

In conclusion, this analysis suggests that control policies reliant on contextual positional

information may emerge from the early phases of learning and may be a heuristic acquired

by the agent to operate across different binary asteroid systems. However, the occurrence

of human monitor corrective actions with a spatial distribution similar to the agent actions

may indicate that learned average behavior alone is insufficient to autonomously complete

the task at hand. The investigation of contextual learning in terms of additional state fea-

tures, such as ones that may be representative of the individual binary asteroid dynamics,

is one of the possible next steps to improve agent performance. The development and inclu-

sion of run-time safety assurance controllers based on the spatial distribution and frequency

of human monitor actions is another direction that warrant further research. Furthermore,

it is possible that run-time safety assurance controllers may ultimately replace the human

monitor during training.

6.4.4 Agent Maneuvering Learning

From the previous section, we observed that the evaluative coaching agent may be

more suited for contextualized learning, and from the respective frequency maps, we observed

a decrease in human corrections at certain times. If the agent is truly learning maneuvering

actions and requiring increasingly less intervention from the human, then the learning curves
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of each control action should represent that.

Within the Asteroid Squadron simulator, there exist six control maneuvers that the

agent can select from for stationkeeping. There also exists a seventh action, the null action.

If maneuvering strategies are being learned then the agent should start executing more

control actions autonomously, and executing them between periods of null actions in order

to appropriately respond in a contextual manner. We can analyze the transfer of control

authority from the human monitor to the agent by defining a specified quantity, the control

authority ratio rc.a., as

rc.a. =
amaneuver

aagent + ahuman

where amaneuver is the total number of specific control action we are looking at (either agent or

human, but not both), aagent is the total number of actions taken by the agent (including the

null action), and ahuman is the total number of corrections provided by the human (including

intervals where the human agreed with the agent). Using this ratio, we can calculate the

learning curves for each maneuvering action for a given agent. Again, for this analysis,

we choose to focus on the coached and evaluative agents only, though the analysis can be

extended to the original DAgger agent as well.

Figure 6.17 illustrates the learning curves for impulsive maneuvers for the corrective

coaching agent (in black), as well as the human correction rates (in red). It should be noted

that episodes with total scores less than 2 points were omitted as they represented extremely

short duration episodes where the human corrections dominated the number of actions taken

by the agent in order to avoid premature episode termination.

The first observation is that almost half of the episodes for this agent were omitted,

which is seen by the total number of episodes in Figure 6.17 being significantly less than

the total number of episodes from Figures 6.12 and 6.14. This indicates that the agent

was not gathering good quality data. From Figure 6.17, we note that the control actions

along the normal axis generally increased following a slight decrease. The other four control

actions demonstrated oscillatory learning behavior for the agent. The -normal control action
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Figure 6.17: Learning curves for each of the six impulsive maneuver actions for the corrective
coaching agent, as given by the control authority ratio rc.a. (moving average window size =
50 episodes)

remained constant, and near the same frequency as that for the agent, before showing any

signs of decreasing. Additionally, the human corrections for the -tangent action, which

reduces spacecraft velocity in order to facilitate temporary orbital capture, greatly increased

over time even though the agent did not demonstrate learning behavior for this control

maneuver. Note that the correction frequency of the human pilot for the +tangent action

is flat as they did not designate this action for any of the corrections provided. The human

corrections for +normal is the only one that generally dipped and the agent demonstrated

a learning ability; though this is a promising result, the lack of this observation for the rest

of the control actions further contributes to corrective coaching being a less suited training

approach.
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Figure 6.18: Learning curves for each of the six impulsive maneuver actions for the evaluative
coaching agent, as given by the control authority ratio rsk (moving average window size =
50 episodes)

We can compare these results to those of the evaluative coaching agent, as illustrated in

Figure 6.18; again, episodes with a total score less than 2 were omitted. For this agent, the

normal axis actions, as well as the negative tangent and positive binormal action learning

curves are increasing. The rates of human corrections also initially decreased, before they

begin to rise slightly again towards the end of the data set. This can be attributed to the prior

observations in which the agent was found to be visiting new states, consequently resulting in

unforeseen trajectories that prompt more frequent responses by the human monitor. Given

the fact that the evaluative coaching agent displays increasing learning curves for a majority

of the stationkeeping actions, this may indicate evaluative coaching as an appropriate training

method.
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6.4.5 Action Prediction Statistics

In this section we investigate how the human path planning logic is acquired by the

behavioral clone. This analysis serves to further assess the quality and limitations of the

current training framework. The action probability distribution by the agent at the end

of each training batch, or benchmark, may provide a measure of similarity between the

agent and the original human expert logic. Note that the action probability distribution

is the final output of the neural network architecture in Figure 6.8, and comprises of 7

nodes. To investigate the similarity between the agent and the human expert, we can

select a chosen trajectory and control strategy and provide the scenario as the input to

each benchmark agent, we can observe the action probability distribution predicted by the

agent. The similarity between this distribution and the action probability distribution of the

original human expert may be an early indication of the similarity between the agent and

general human logic.

Figure 6.19 illustrates the chosen control strategy for a trajectory generated by the

human pilot, one that has not been experienced by the agent and was not included in the

behavioral clone training dataset. The scenario details navigating the spacecraft through

the narrow corridor region between both the asteroids. This region may prove difficult

for a machine learning agent to navigate through, given the interacting dynamics of both

asteroids, and human intervention may be needed. The strategy in Figure 6.19 has three

control maneuvers, sequentially labeled in the manner they were executed in. For the agent

benchmark analyses, the state at point 2 was chosen, the previous eleven states were derived

in order to complete the required input matrix for the neural network, and the predicted

actions of the agent were recorded. The probability distributions of each benchmark agent

is given in Table 6.6 (recall that these probability distributions are the result of applying a

Softmax activation function to the final layer in the feed forward neural network layers, as

discussed in Section 5.1). Additionally, we note that the trained agents learns an average

behavior, rather than a distinct strategy; therefore, in order to provide a more reasonable
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Figure 6.19: An example trajectory arc that visualizes a control strategy for navigating the
corridor region between the two asteroids. The given data is from the original human pilot
dataset.

basis for comparison, we examine the average human pilot action statistics in the region

surrounding the chosen state at point 2. More specifically, the average human pilot actions

within a spatial sphere, with origin at point 2, with a radius of 0.25 nondimensional length is

considered. Furthermore, we only consider the human pilot actions in the last 125 episodes

in the generated dataset, as this best represents the learned path planning strategy. These

average action statistics are included in Table 6.6 as well.

The most probable action predicted by all benchmark agents is the null action. In

fact, 90% of the human pilot’s actions in the original dataset consist of the null action,

and this bias was not removed prior to training. Additionally, we note that, on average in

the region surrounding the chosen state, the null action constitutes over 93% of all actions.

When considering the explicit control maneuvers, all benchmark agents correctly predict

the negative normal action as the most probable. The specific probability distributions of

the actions vary during training, and this may be attributed to the influx of new training

163



Table 6.6: The action probability distribution for scenario 2 in the reference trajectory
illustrated in Figure 6.19.

CONTROL MANEUVER PROBABILITY (%)

AGENT Null + Tan -Tan +Norm -Norm +Binorm -Binorm

Human Pilot
(state cell average)

93.46 0.02 0.13 2.66 3.69 0.02 0

Human Pilot
(specified state)

0 0 0 0 100 0 0

Benchmark #1 85.71 0.40 0.55 5.47 6.93 0.53 0.41

Benchmark #2 86.10 0.61 0.92 4.93 6.51 0.65 0.57

Benchmark #3 83.40 0.67 0.83 5.56 7.94 0.74 0.87

Benchmark #4 84.22 0.69 0.98 5.65 6.98 0.76 0.72

Benchmark #5 85.02 0.67 0.79 5.13 7.06 0.69 0.65

data at the end of each batch. Though these results provide an early indication of the

evaluative coaching agent’s ability at predicting the control strategies of the human pilot,

substantially more training time is needed for the agent to achieve performance that is on

par with the human pilot. Furthermore, considering the strong effects of the null action bias

in the original training dataset, a way to normalize these results may prove beneficial in

future training experiments. Results in Table 6.6 may indicate an early ability of the agent

to mimic the underlying logic of the human expert. However, the learned clone logic tends

to average human behavior, introducing biases in the trained action probability distribution

that may become critical when very contextual actions are required. The reduction of action

probability biases that are induced by average behavior is an element that warrant further

investigation to improve agent performance.

6.5 Preliminary Conclusions from this Investigation

The primary objective of this numerical experiment is to assess the feasibility, and

understand the challenges, of implementing an imitation learning framework that leverages

the cooperation of human and artificial intelligence to facilitate training of autonomous

agents for complex and high dimensional path planning problems. The problem posed to the

imitation learning agent incorporated multiple objectives within largely varying dynamical
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environments. In this context, we analyze the performance of the trained autonomous agents

via both quantitative and qualitative metrics, while identifying challenges across the learning

process that derive from considering a complex path-planning task. Our work points to a

few important conclusions and directions for future works that are elaborated in following

subsections.

6.5.1 Bootstrapping autonomy with imitation for spacecraft path-planning

Our preliminary analysis offers promising early evidence that training of autonomous

path-planning agents within chaotic dynamics with highly randomized parameters may be

successfully bootstrapped with imitation learning techniques. While DAgger offers perfor-

mance that is only minimally superior to a random policy, the introduction of a human

monitor significantly aids the learning process, with a tenfold increase of the average total

score as noted from the results in Figure 6.12. While this is not surprising due to the in-

clusion of a human monitor, it is notable that the frequency of intervention of the human

monitor is significantly lower than an equivalent human pilot. That may imply that partial

control authority is successfully transferring from the human to the machine. For the eval-

uative coaching agent, this conclusion may also be supported by observing that the number

of agent actions relative to the number of human actions increased and that the spatial

distribution of action frequency seems to converge toward a meaningful pattern.

Analyzing the explicit level of intervention provided by the human expert offers addi-

tional insight into the true ability of an agent to fly autonomously. In order to verify whether

there is reduction of workload on the pilot, let us consider the highest scoring episode both

of the coaching agents achieved: 1,593.83 for the evaluative coaching agent, and 1,588.03

for the corrective coaching agent. Of all actions taken for the evaluative coaching scenario,

the agent chose the null action 97.7% of the time, and impulsive control maneuvers 2.3%

of the time. In response, the human monitor agreed with 96.6% of the agent’s actions.

Comparatively, for the corrective coaching scenario, the agent chose the null action 99.2% of
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the time, and impulsive control maneuvers for the remaining 0.8%. In response, the human

monitor agreed with 98.86% of the agent’s actions. These parametrics are further quantified

in Table 6.7. In comparison, the action statistics of a sole human pilot, from the original

human pilot dataset, on a similar episode with a total score of 1,585.03 are also provided.

Based on these metrics, the evaluative coaching agent may have learned a policy that has

more frequent stationkeeping maneuvers as compared to the corrective coaching agent. Con-

sequently, some of the control maneuvers chosen by the former may be incorrect, warranting

a more intense corrective response from the human monitor, though the level of intervention

required was just slightly higher as compared to the human pilot alone. Conversely, there

was higher agreement between the agent and the human monitor for the corrective coaching

agent, and there is a considerably lower level of stationkeeping intervention as compared to

the human pilot alone. Although both agents achieved similar high scores, the variance in

the orbital dynamics between these two episodes must be noted. It may be possible that, in

a less chaotic dynamical regime, the corrective coaching agent provide better performance

as less frequent stationkeeping may be required. Nevertheless, for both coached agents, the

still evident performance instability remains an outstanding issue.

6.5.2 Average versus episodic performance: need for contextual learning

In our application, we observe large performance variations as a function of the

underlying orbit dynamics. Moving average trends do not fully capture the complexity of

such variations, such as the alternation of very high and very low scoring episodes, driven

by the binary asteroid system that is encountered. For example, agents episodically achieve

performance on par to the human pilot during coached training (e.g., episode score >1000,

compared to a corresponding moving average of ∼80 for the agent, and ∼400 for the original

human pilot).

These extreme variations were also observed during human pilot training. One key

difference however is that the human pilot appears to better adapt to the more challenging
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NUMBER OF ACTIONS

AGENT TYPE Null Action Control Maneuver
Human - Agent

Agreement
Total

Human Pilot
(episode score: 1,585.03)

46,967
(98.04%)

934
(1.97%)

- 47,901

Evaluative Coaching (episode score: 1,593.83)

Agent
14,781
(97.7%)

345
(2.3%)

- 15,126

Human Expert -
515

(3.4%)
14,611
(96.6%)

Corrective Coaching (episode score: 1,588.03)

Agent
28,141

(99.17%)
235

(0.83%)
- 28,376

Human Expert -
321

(1.14%)
28,055

(98.86%)

Table 6.7: Explicit level of intervention for the highest scoring episode for both coached
agents. The average statistics for the human pilot from a similar episode are also provided
as ”Human Pilot Average”.

dynamical environments. This may be an example of contextual behavior that is not being

acquired by the current agent. For our purposes, we define contextual behavior as the

adaptation of a general, learned policy in appropriate response to the observed spacecraft

motion as a function of the orbital dynamics. Nonetheless the agent may be learning a general

path planning policy, it may still be unable to independently achieve the adaptability and

contextual maneuvering that is characteristic of a human pilot for this problem. This may

further underscores the need for a human interactor during the formal training process, in

order to impart the knowledge of contextual path planning when required. In addition, an

agent architecture that is capable of learning maneuvering policy more contextual to the

underlying orbit dynamics is also warranted.

6.5.3 Training time

From the comparison of the agent’s learning curves and the human pilots learning

curve, illustrated in Figures 6.12 and 6.13 respectively, we immediately note that currently,

the agent is not on par with a human (currently our benchmark for best performance).
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Rather, the performance of the agent is considerably lower. A factor contributing to the

observed low performance may be the low number of updates for the coached learner agents

during training. In particular, taking the evaluative coaching agent as a reference, the learner

policy was only retrained 4 times, as the size of each batch collection was 50 episodes. The

DAgger algorithm generally employs the use of smaller batch sizes to train a given agent.

However, as our problem is composed of varying dynamical parameters for each episode, we

opted for a larger batch size in order to provide the agent enough variance in its interactions

with the game environment. This choice results in slower learning, and consequently warrants

substantially more interactive training time. However, we must also recognize that the level

of interaction required may be impractical for scenarios where the access to a human expert

is limited. The use of smaller batch sizes may mitigate this problem, combined with more

direct methods of domain knowledge transfer between the human expert and the agent.

Transfer learning methods, such as domain adaptation and/or feature augmentation [98] ,

may allow us to map logical patterns from the human expert’s source domain to the agent’s

target domain, and significantly decrease the amount of interactive training time required.

6.5.4 Influence of bias in the human expert’s path planning logic

The original human pilot’s datatset, which was utilized in order to train the behav-

ioral clone, consists of a large bias in the dataset towards the null action. In other words,

the human pilot’s path planning strategy was predominantly coasting, with intermittent

stationkeeping maneuvers when deemed necessary. As this bias was not removed prior to

training the behavioral clone, it is possible that the large preference towards the null action

dominated the learned policy; by extension, due to the stochastic policy mixing that is char-

acteristic of the DAgger algorithm, the learner agent may also learn a policy that echoes this

unmeditated bias. A more robust implementation of the current framework may warrant a

mitigation of this bias in the human pilot’s policy.
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6.6 Initial Implementation of Recurrent Neural Networks (RNN)

Additionally, the underlying neural network architecture may also be a driving

factor behind the agent’s performance. In Section 5.1, we briefly discussed the problem of

exploding and vanishing gradients in RNN’s, and how a CNN with ReLU activation functions

may be able to mitigate this phenomenon in an early agent implementation. However, we

recognize that, regardless of vanishing gradients, RNN are specifically designed to solve

sequence prediction problems, such may be a spacecraft path-planning task. Therefore,

RNN are the next natural network architecture to consider in order of complexity. More

specifically, let us consider how a long short-term memory (LSTM) network would perform

in comparison to the implemented CNN architecture illustrated in Figure 6.8 at solving our

imitation learning problem.

6.6.1 The Stateless LSTM

LSTM networks are specifically designed to provide capability of learning, and re-

membering, long term dependencies in time series data. This is done via use of hidden states

and cell states. Hidden states are analogous to a working memory, or short term memory,

and carry a representation of the immediately previous input state. Cell states are analogous

to a long term memory that is capable of remembering beyond the immediately previous

input state, and is updated via an algebraic calculation that is a function of the network’s

weights, biases and the hidden state.

Consider a single layer LSTM, with 120 features in the hidden state, followed by two

fully connected, feed forward layers that have 100 and 7 nodes, respectively. Additionally,

the ReLU activation function is used after the LSTM layer and the first feed forward hidden

layer, whereas the Softmax activation function is used after the second hidden layer. The

Softmax activation function in the second layer generates the probability distribution of each

of the possible actions in the discrete action space for our problem.

We must now make an important modification to our LSTM. In our scenario, we have

169



multiple, independent time series that the singular LSTM network must learn from. If

we stack independent time series into a single data stream input, then a stateless LSTM

implementation is required. As previously discussed in Chapter 3, the stateless LSTM im-

plementation requires that we re-initialize the hidden and cell states to zero at the end of

each individual time series. That prevents the learned temporal relationships in one dataset

from influencing the learning from the next, individual dataset [99].

6.6.2 Stateless LSTM Implementation and Preliminary Results

Using the LSTM stateless network, two versions of behavioral clone were trained

using the same training episodes that were utilized for the CNN behavioral clone. In the

first version, we only provide the current state as the input to the LSTM network, whereas

in the second version, we implement the same rolling lookback window that was used for

the CNN architecture. Furthermore, the input to the LSTM network is the same 12 states

that were utilized by the CNN architecture (i.e. the spacecraft position, velocity, total score,

fuel remaining, the x positions of both asteroids, and the spacecraft’s distance from each

asteroid). The performance of each of these behavioral clones, in regards to the total score

and the time of flight (TOF), are provided in Figure 6.20 as moving averages. We see that

the performance of the CNN behavioral clone results in slightly higher total scores, but

generally comparable times of flight, to the LSTM where we only provide the current state

as the network input. In comparison, the LSTM with the rolling lookback as the network

input results in the highest total score and time of flight, the latter in most cases exceeding

one day of survival time. These results are indicative of an LSTM where we provide a rolling

lookback window on the state histories as a more appropriate neural network architecture

for this problem.

An initial implementation of the LSTM with rolling window lookback with the

DAgger algorithm was trained for approximately 10 hours. This short investigation resulted

in 104 completed training episodes, with each batch collection comprising of 50 episodes.
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(a)

(b)

Figure 6.20: Performance metrics, provided by the moving average (window size = 50
episodes, end effects removed) for the CNN, and the two LSTM behavioral clones as quan-
tified by (a) the total score and (b) the time of flight (TOF).

Preliminary learning parametrics of the total score, subscores, and time of flight (TOF) are

illustrated in Figures 6.21, 6.22 and 6.23 respectively. We can note that after the first batch

is complete, and the learner agent is trained, the LSTM network resulted in a considerably

higher total score in the next batch. Also evident in the next batch is the corresponding

increase in the subscores, indicating that the agent may be more receptive to the multi-

objective behavior simultaneously, rather than focusing on singular subtasks as was noted

for the evaluative coaching agent. Finally, we also note a rise in the time of flight during

the second batch of episodes. Recalling that each of the episodes represents varying orbital
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Figure 6.21: Learning curve, via total score, for the LSTM with rolling lookback neural
network architecture. The end of each batch is visualized by vertical black lines.

Figure 6.22: Learning curves for each individual subscore for the LSTM with rolling lookback
neural network architecture. The end of each batch is visualized by vertical black lines.

dynamics, the general increase in performance across both scoring metrics and the sustained
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Figure 6.23: Time of flight (TOF) in hours for the LSTM with rolling lookback neural
network architecture. The end of each batch is visualized by vertical black lines.

time of flight, this version of the LSTM network may be more appropriate than the CNN

used in this investigation.

6.7 Identification of further challenges in ML path planning applications

The analyses conducted in this investigation resulted in preliminary identifica-

tion of challenges in implementing an interactive imitation learning framework that combines

human and artificial intelligence for path planning in complex environments. Specifically,

future development directions that may be prioritized include:

1) Integration with transfer learning and interactive reinforcement learning:

The training architecture may become more autonomous by merging the current imitation

learning framework with reinforcement learning (RL) agents. The merging between the im-

itation and reinforcement learning frameworks is an instance of transfer learning. When

transferring knowledge from expert demonstrations to a reinforcement learning agent, there

may exist underlying differences in perception and task representation that inherently influ-

ence the learned path planning logic. Transfer learning methods are an active field of research
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devoted to understanding the method of mapping policy knowledge from a source domain

to the agent’s target domain to more effectively combine different sources of intelligence into

a singular policy. Furthermore, reinforcement learning agents may be trained interactively,

similarly to the behavioral clones, in a technique known as interactive reinforcement learning.

2) Hierarchical learning to enable context-based actions and reduce training

biases: The need for contextual path planning is required when the orbital dynamics are

varying. This need, along with an additional reductions of bias in the source domain, may

be addressed with a hierarchical learning architecture. For example, higher levels controllers

may be responsible for the selection of a lower level path-planning policy based of the per-

ceived orbit dynamics. Similarly, coast/thrust decisions may be delegated to a higher level

controller, whereas the type of maneuver is determined by lower level of control.

3) Replacement of the human monitor with real-time flight assurance mech-

anisms: it may be possible to replace the human monitor in the corrective coaching frame-

work with hard-coded logic triggered by safety thresholds. Furthermore, safety and real

time assurance must be considered from a practical standpoint, especially when attempting

to increase autonomy for a complex task.

4) Better policy approximation architecture and imperfect human demon-

strations: Lastly, better policy approximation may be achieved via the implementation

of a more advanced neural network architecture for sequential prediction problems. This

may include the expansion of the LSTM formulation implemented in Section 7.5, with an

investigation into stacked LSTM and optimized architectures in order to converge on a more

robust training framework. Additionally, an expanded framework should address imperfect

and sub-optimal human demonstrations to account for human errors. Imperfect demonstra-

tions within a reinforcement learning setting may be accounted for via the use of a unified loss

function that combined processes both offline and online demonstrations [100], and/or soft

constraints during policy updates [101]. Together with this feature, future work should de-

liver insights into the minimal level and quality of demonstrations that an agent would need
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before it is able to autonomously execute a policy within predefined safety and assurance

thresholds.
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Chapter 7

Conclusions and Future Work

This analyses presented in this work constituted an exploratory investigation of

spacecraft path-planning methods that may be applicable to realize generalized and au-

tonomous solutions. Though the standard approach at designing spacecraft path-planning

solutions is driven by rigorous optimal control techniques, recent trends in published litera-

ture indicate an increasing interest in machine learning based methods as they may be able to

provide more generalized solutions. However, the performance of these methods in relation

to the standard approach has not been extensively explored, as most machine learning based

applications for astrodynamics and spacecraft path-planning have modified the underlying

algorithms and neural network architectures to be better applicable for specific scenarios.

Removing these modifications, as done for the benchmarking investigation conducted in this

work, allowed for the emergence of limits of applicability. It was observed that certain neural

network architectures may only be applicable for a small range of dynamical scenarios, and

some methods such as a simple PPO algorithm, explicitly fail to learn generalized solutions.

These observations can be then utilized in order to construct a synergistic framework that is

capable of addressing the inherent drawbacks of each distinct method, and is able to better

achieve autonomous path-planning solutions. Furthermore, as discussed in Chapter 6, the

extensive exploration of the novel method of human-AI cooperative learning highlighted the

necessary modifications, and possible advances in state of art, that are required in order

to leverage innate human logic as part of the machine learning training process in order to

generate generalized and autonomous path-planning solutions.
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Given the observations from both the benchmarking investigation as well as the ex-

ploratory work regarding cooperative human-AI learning method, there are multiple re-

maining points of investigation that can be further analysed in future work, some of which

are summarized below

1. Development of a synergistic path-planning framework: as alluded to at the

end of Chapter 5, the appropriate combination of the various path planning meth-

ods explored in this work may not only address the inherent drawbacks of distinctly

utilized methods, but may also result in more autonomous solutions. However, the

best structure of this synergistic framework is currently not known and would require

additional investigations

2. Continued investigation on the best implementation of human-in-the-loop

training schemes: the implementation of interactive DAggger evidenced an early

learning ability of an artificial agent to learn path-planning logic in complex dynamics

via human generated solutions. However, it was concluded that the current formulation

of the learning framework would require a considerable amount of interactive training

in order to achieve a converged solution. In this case, an alternate approach, such as

one based on the cycle of autonomy as presented in [53] and previously discussed in

Chapter 2, may be better suited.

3. Real-time assurance of automated solutions: lastly, as alluded to in the dis-

cussion of results in Chapter 6, the autonomous solutions must provide some level of

real-time flight assurance, that ensures the generated path-planning strategy is within

pre-defined safety thresholds. The exact manner in which this can be achieved is

currently not definitively known, and warrants further investigations.

In conclusion, given the results of the work presented in this manuscript, there are numerous

lines of investigations that can be conducted in order to address not only the noted challenges,

but also the gaps in the existing state of art.
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