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Abstract

This thesis presents a measurement validation method for visual-inertial navigation and an

implementation of a visual-inertial estimator which makes use of it. Many autonomous plat-

forms, especially flying ones, rely on accurate and reliable state estimates from a visual-inertial

estimator to maintain safe and controlled flight towards a goal. The measurement validation

method presented in this thesis makes use of a geometric analysis of the landmark measuremnt

model to enable early and reliable validation, safely integrating high-quality measurements

into the state estimation process. First, the IMU and camera sensors are detailed along with

the sensor processing techniques necessary to make use of them. Next, a detailed description

of two standard visual-inertial estimation approaches is presented to develop necessary back-

ground knowledge. Following these descriptions, an analysis of the relationships between the

geometry of landmark observation and the accuracy and reliability of landmark estimates is per-

formed, concluding with the proposal of a new validation method which delays measurement

processing until the landmark is predicted to be observable. Lastly, a visual-inertial estimator is

developed which makes use of the proposed method and tested on the EUROC dataset, the most

common visual-inertial dataset, against several state-of-the-art estimators. In this comparison,

the proposed estimator demonstrates competitive performace, reliably producing positioning

errors of less than 0.5 meters over flights up to 120 meters long. Overall, the proposed method

is demonstrated to be reliable and accurate in competition with significantly more advanced

and complicated estimators.
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Chapter 1

Introduction

”The best nations are those most widely related; and navigation, as effecting a

world-wide mixture, is the most potent advancer of nations.” - Ralph Waldo Emer-

son

1.1 Background and Motivation

Despite the rapid push for autonomy, reliable autonomous platforms are essentially outliers in

the field of robotics as current products and platforms are constrained to tightly controlled envi-

ronments. The fundamental question of Where am I? is of absolute importance to autonomous

mobile robots, requiring them to process information about their motion and environment from

a collection of sensors to estimate their locations. Systems that perform this task are called

navigation systems and have been an active area of research preceding computers themselves.

The classical navigation system consists of an IMU and a GPS receiver. Systems such as these

provide positioning solutions to everything from commercial airplanes to autonomous lawn

mowers.
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Figure 1.1: An autonomous lawn mower, produced by Husqvarna, utilizing GPS to map out a

lawn

Despite being so widely relied upon, these classical systems struggle in challenging envi-

ronments such as indoors, underground, and inside urban canyons. To address these challenges

GPS-denied navigation methods such as simulatneous localization and mapping (SLAM) have

become highly active areas of research, driven by newer computers’ abilities to process more

and more complex data from sensors such as cameras and LIDARs. Of particular interest is the

visual-inertial navigation system, which fuses data from a camera and an IMU. These systems

can provide highly accurate positioning information as well as detailed contextual information

about their environments, all using a sensor package already built into every smartphone in the

world. Given accurate measurements, visual-inertial estimators regularly produce positioning

errors of less than 1% of distance travelled, however faulty measurements will degrade accu-

racy at best and cause total failure at worst. In this work we propose a method of measurement

validation for visual-inertial navigation to ensure that only valid measurements are included in

the navigation solution to maximize the accuracy and robustness of the estimator.

1.2 Related Work

There have been a wide range of methods proposed for aiding an IMU with a camera. Cameras

have been used to aid terrain-relative navigation systems for missiles, airplanes, and spacecraft

2



since their introduction. The mars rovers Spirit and Opportunity first made popular visual

odometry as a method of navigating on the surface of Mars [48], and now the Mars helicopter

employs a more advanced version of the same system to enable short autonomous flights on

Mars [3]. In more recent civillian news, visual-inertial estimation has made headlines as the

backbone of semi-autonomous consumer drones and have even begun testing for autonomous

drone racing [12].

Figure 1.2: NASA’s Spirit rover, one of the first major systems to employ visual odometry for

navigation
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Figure 1.3: The AlphaPilot autonomous racing drone[15]

Visual-inertial estimation can be said to have arrived with Mourikis et al.’s groundbreak-

ing contribution of an extremely efficient vision-aided Extended Kalman Filter [37]. Improve-

ments to this architecture were then made to include SLAM functionality [38] and to optimize

the operation of the estimator to maintain performance on resource-constrained systems [33].

Following the exponential growth in computing power of the late 2000’s and early 2010’s an

explosion of nonlinear optimization-based methods arrived [31] [32] [10] [39] following an

earlier trend in vision-only navigation. More recent work has expanded visual-inertial fusion

to include direct methods which operate directly on the raw images themselves rather than in-

cluding any preprocessing steps [46]. Visual-inertial estimation has also been a primary testing

ground for the development of invariant Kalman filters [8] [23] [49]. For a considerably more

in-depth summary of the history and developments of visual-inertial navigation, please read the

excellent survey by Chen et al. [11]. A selection of highlights are explained in much greater

detail later in this work, so for now it is enough to say that visual-inertial estimation has a long

history of implementation at the most cutting-edge areas of robotics and only appears to be

solidifying its position as the standard navigation system for small robots.
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1.3 Research Contributions

A list of the contributions of this thesis are shown below.

• A tutorial on filtering and optimization methods for visual-inertial navigation

• An analysis of the effects of observation geometry on feature position estimation

• A new measurement validation method informed by geometric observability constraints

• An implementation of a visual-inertial estimator utilizing the proposed method to achieve

performance competitive with the state-of-the-art on a standard dataset

1.4 Thesis Outline

This thesis has six remaining chapters. Chapter 2 outlines the sensors used in the field of visual-

inertial navigation and presents common sensor models. Chapter 3 develops the methodologies

used in filtering and optimization for estimation. Chapter 4 extends the methodologies pre-

sented in the previous chapter to develop and explain the families of visual-inertial estimation

techniques. Chapter 5 presents an analysis of the effects of observation geometry on landmark

estimation in visual-inertial SLAM and proposes an adaptive measurement validation algo-

rithm. Chapter 6 presents results from applying the proposed method on standard datasets and

compares them to existing state-of-the-art methods. Chapter 7 summarizes the work presented

and outlines future work.

The included appendices build the needed background knowledge to implement the de-

scribed estimators as well as additional results. Appendix A builds the necessary knowledge

of the quaternion representation of attitude. Appendix B demonstrates methods of numerically

integrating dynamic equations. Appendix C includes further results plots.

A side goal of this work is to provide an introduction to visual-inertial estimation to any-

one who, like myself, comes into the field with very little background knowledge. Chapters

2, 3, and 4 form a thorough tutorial on VINS and should provide the necessary background

information a new graduate student, researcher, or engineer needs to pick up a visual-inertial

navigation project.
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1.5 Notation

• Scalars are lower-case italic letters: a

• Vectors are lower-case bold letters: a

• Matrices are upper-case bold letters: A

• Reference frames are upper case italic: G

• Vectors can be expressed in a frame: Ga

• Rotation matrices are denoted to
fromC

– G
LC rotates a vector from frame L to frame G

• Time derivatives have dots: ȧ

• Estimated values have hats: â

• Continuous equations are denoted: f(x)

• Discrete equations are denoted : f(xk)

• Normalized coordinates are denoted: (x, y)T

• Pixel coordinates are denoted (u, v)T

• Distorted pixel coordinates are denoted (u′, v′)T

• ⊞ denotes the generic composition operator:

– Vectors: a⊞ b = a+ b

– Rotation matrices: C1 ⊞C2 = C1C2

– Quaternions: q1 ⊞ q2 = q1 ⊗ q2
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Chapter 2

Sensors

The canonical visual-inertial navigation consists of just that: an inertial measurement unit

(IMU) and a camera. While it is common for navigation platforms to consist of these sen-

sors in conjunction with several others, the minimal VINS sensor suite is considered here.

2.1 Inertial Measurement Units

IMUs consist of a combination of accelerometers, gyroscopes, and occasionally magnetome-

ters or barometers. Modern microelectromechanical system (MEMS) IMUs are ubiquitous in

smaller navigation platforms as they are cheap to produce and have minimal size, weight, and

power requirements. While the magnetic and barometric sensing capabilities have found use

in navigation systems, we will focus on the acceleromter and gyroscope sensors for use in

visual-inertial navigation.
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Figure 2.1: A common MEMS IMU

An accelerometer measures the specific force the sensor is exposed to. This measure-

ment is considered relative to a non-accelerating frame, and thus includes measurements of

the effects of gravity. The accelerometers we consider are actually groups of three single-

axis devices with their measurement axes aligned orthogonally, resulting in measurements

am = [fx, fy, fz]
T . A perfect accelerometer would then have the measurement model shown in

Equation 2.1.

am = Bab − Bg (2.1)

Unfortunately, we operate in a world incoherent to spherical chickens and so must account

for measurement errors. Inertial sensors are subject to two common errors: random noise and

measurement bias. Addressing these errors, we arrive at our canonical accelerometer measure-

ment model as shown in Equation 2.2.

am = B
GC(Gab +

Gg) + ba +wa (2.2)
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where Gab is acceleration of the body expressed in the global frame, Gg is the gravity

vector expressed in the global frame, ba is the accelerometer bias vector, and wa is random

noise.

A gyroscope measures the angular rate of the sensor. Like the accelerometer before, errors

must be accounted for. The canonical gyroscope measurement model is then shown in Equation

2.3.

ωm = Bωb + bg +wg (2.3)

where Bωb is the angular rate of the body expressed in the body frame, bg is the gyroscope

bias vector, and wg is random noise.

For both accelerometers and gyroscopes, the bias vectors can be modeled as slowly-

varying vectors driven by random walk processes wwa ∼ N(0,Qwa) and wwg ∼ N(0,Qwg),

respectively. Additional accelerometer and gyroscope errors result from scale factor error,

cross-coupling effects, and temperature effects. These are considered out of the scope of this

work. For more detail, consider chapter 4 in [19].

Despite being the foundation of most navigation platforms, the IMU is almost unusable for

navigation on its own. Deriving the desired quantities of position, velocity, and attitude from

the measured accleration and angular rate requires integrating the noisy sensor measurments.

As a result, we can expect position, velocity, and attitude errors to grow unbounded with time

[19]. Because of this, it is effectively a requirement that all inertial navigation systems (INS)

have an aiding sensor of some form to correct the drifting state estimate and bound errors.

Classically this sensor is a GPS reciever, although barometers, magnetometers, cameras, lidars,

radars, and wheelspeed sensors are all commonly used. For a more detailed treatment, consider

chapter 5 in [19] and the tutorial on inertial navigation [20] by the same author.

2.2 Cameras

In contrast to the ability of an IMU to measure quantities directly relating to the motion of the

body, cameras measure information about the environment relative to the body. Consisting of
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a lens and a photosensitive array, modern digital cameras are fundamentally directional light

sensors in that they measure the intensity of light arriving across the field of view of the camera.

The lens collects the light from this range of directions and focuses it onto the photosensitive

array to be sampled. Each discrete sampling location on the array is known as a pixel. At

each sample time, every pixel is sampled to form a matrix of intensity values which we call an

image.

Figure 2.2: A small form factor camera

Figure 2.3: An example of an image as a grid of discrete values

2.2.1 Image Formation

The process of forming an image from a view of the world is governed by projective geometry.

As the camera performs a mapping of the three-dimensional world onto a two-dimensional

grid, one degree of freedom is lost. Specifically, depth information is lost, resulting in scale
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ambiguity in images. This is what makes photos of tourists ”leaning against” the Eiffel Tower

possible.

Figure 2.4: An example of scale ambiguity in an image

We use the pinhole camera model to describe image formation. This model describes the

camera as a point in space. Light travels from the environment through this point, called the

focal point, and projects onto the image plane behind it. The distance between the focal point
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and the image plane is the focal length of the camera. This projected image is inverted, so for

simplicity and intuition’s sake we consider the image on the virtual image plane in front of the

focal point. This model is illustrated below in figure 2.5 and the simplified model using only

the virtual image plane in figure 2.6. It is important to note that most camera models, including

our treatment here, use the coordinate frame:

• Positive X: To the right of the camera

• Positive Y: To the bottom of the camera

• Positive Z: To the front of the camera

Figure 2.5: Projection of an object onto the image plane
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Figure 2.6: The considered perspective projection camera model

From this model we can derive the equation that projects a three-dimensional point onto

the image plane at a pixel location.

We begin with the mapping of a point in camera coordinates to an idealized image plane

with unity focal length. We denote this function the normalized projection function, and the

resulting coordinates normalized coordinates. Using the quantities shown in figure 2.6, the

mapping is given in Equation 2.4.

hnorm(
Cpf ) =


x

y

1



=
1

CZf


CXf

CY f

CZf


(2.4)

These normalized coordinates are still in units of meters, and another function is required

to map them to the pixel coordinates of the camera. We begin by noting that the coordinates of
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the point on the camera’s true image plane are given by Equation 2.5.

x = f
CXf

CZf

y = f
CY f

CZf

.

(2.5)

Converting these to pixels requires dividing the focal length f by the width of a pixel in meters,

d. This width commonly varies in the horizontal and vertical directions, denoted as the two

focal lengths fx and fy, given in Equation 2.6.

fx =
f

dx

fy =
f

dy
.

(2.6)

Additionally, we must account for the image coordinate system having (0, 0) at the top left of

the image by adding the location of the optical center (cx, cy) in pixels, resulting in the image

projection function shown in Equation 2.7.

hpix(pnorm) =


u

v

1



=


fx 0 cx

0 fy cy

0 0 1



x

y

1

 .

(2.7)

This matrix is known as the intrinsic parameters matrix, and is referred to by K.

Lastly, we account for any distortion present in the lens of the camera. The distortion

function (Equation 2.8) accounts for this by warping the ’true’ pixel locations according to a
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set of distortion parameters (k1, k2, k3, p1, p2):

hdist(ppix) =

u′

v′


= (1 + k1r

2 + k2r
4 + k3r

6)

u
v

+

2p1uv + p2(r
2 + 2u2)

p1(r
2 + 2v2) + 2p2uv


(2.8)

Having these parameters is extremely important in getting accurate visual measurements.

Even if the manufacturer of a camera provides them, it is generally worth calibrating the camera

yourself using a software like OpenCV [7] or Kalibr https://github.com/ethz-asl/

kalibr. Examples of distortion effects are shown below in figure 2.7.

Figure 2.7: Distortion effects in an image, reproduced from https://docs.opencv.

org/3.4/d9/d0c/group__calib3d.html

The complete measurement model is then given by Equation 2.9.

π(Cpf ) =

u′

v′


= hdist(hpix(hnorm(

Cpf ))

(2.9)

Generally, we work in either undistorted pixel coordinates (u, v)T or normalized coordi-

nates (x, y)T . All measurements from the camera are in distorted pixel coordinates, so pixel

measurements must be undistorted by inverting 2.8 and then optionally normalized by inverting
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2.7. This allows for simplicity and efficiency when comparing measured feature locations y to

predicted feature locations h(Cpf ).

2.2.2 Triangulation

As established earlier, an observation of a point from a camera is a measurement of the relative

bearing between the camera and point. This measurement contains no range data, and thus a

single observation doesn’t define the position of the point in space, only a vector it must lie on.

Multiple observations then provide multiple bearing vectors, one each between the camera and

point at every observation. If the position and attitude of the camera during each observation

is known, the position of the point can be calculated by estimating the point of intersection for

these bearing vectors (shown below in figure 2.8). This process is known as triangulation.

Figure 2.8: A 2D View of Triangulation

The simplest form of triangulation involves two observations from two known cameras.

We assume the following information is known:

• y1: The (x1, y1)
T observation of the point from the first camera pose
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• y2: The (x2, y2)
T observation of the point from the second camera pose

• 2
1C: The rotation from the first camera pose to the second camera pose

• 2t2→1: The vector from the second pose to the first expressed in the frame of the second

Using this information, we can form Equation 2.10.

2Pf = 2
1C

1Pf +
2t2→1 (2.10)

We replace 1Pf and 2Pf with their homogeneous equivalents:

1Pf = λ1z1

2Pf = λ2z2

where

z1 =

y1

1


z2 =

y2

1


resulting in the homogenenous form of Equation 2.10.

λ2z2 =
2
1Cλ1z1 +

2t2→1.

The position of the point in the frame of the first observation is found by arranging this equation

into a linear system and solving for λ1. The linear system is shown in Equation 2.11.

[
− 2

1Cz1 z2

]λ1

λ2

 = 2t2→1

1Pf = λ1z1

(2.11)
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This problem can be extended to situations in which more than two observations by ex-

panding the linear system to include additional terms or by using the methods described in the

appendix of [37].

2.2.3 Feature Detection

Having discussed methods by which an observed landmark can be estimated over sequences of

observations, we now describe how exactly a sequence of observations is obtained. Biological

eyes recognize and follow semantically-informed environmental features such as ”road sign”

or ”building.” Lacking this complex visual processing, visual SLAM system instead detect

and track features within an image. These features are regions of the image determined to be

repeatably detectable such that observations across images can be connected together reliably.

Algorithms which find and extract these features are known as feature detectors.

A representative example of a feature detector is the Harris corner detector[21]. This

algorithm stems from the observation that unique and repeatable features are those which are

noticably different from their surroundings. The Harris detector searches for these features by

finding patches in an image where the difference between the patch and surrounding patches is

very large. Given a window W centered at (u, v), the sum of squared differences between the

it and a patch of size (2x+ 1, 2y + 1) shifted by (δu, δv) is given in Equation 2.12.

E(δu, δv) =
∑

u,v∈W

(I(u+ δu, v + δv)− I(u, v))2 (2.12)

This value E, called the energy of a feature, is large when the feature at the center of

the patch is very different from the rest of the pixels in the patch. Searching for pixel loca-

tions (u, v)T which maximize E will find the locations of good features. This search can be

performed efficiently by the approximation of E(u, v) shown in Equation 2.13.

E(u, v) ≈
[
u v

]∑
x,y∈W

 I2x IxIy

IyIx I2y




u
v

 (2.13)
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The Harris response or Harris score R = det(M) − 0.05 ∗ tr(M)2 is then the measure of

feature strength. The matrix M is known as the structure tensor and is computed as shown in

Equation 2.14.

M =
∑

x,y∈W

 I2x IxIy

IyIx I2y

 (2.14)

Intuitively, this approximation tells us that good features will have large gradients in both

vertical and horizontal directions. This accurately describes the appearance of corners in im-

ages, leading to the name Harris corner detector. Examples of corners detected by this algo-

rithm are shown below in figure 2.9.

Figure 2.9: Corners detected by the Harris detector
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Many feature detectors have been proposed since Harris developed his. Shi-Tomasi [25],

SIFT [34], SURF [2], FAST [41], and ORB [42] are the most commonly seen feature detectors

today.

2.2.4 Feature Matching

Having detected feature points in a sequence of images, the next task is to connect observations

of the same point across this sequence. This task is called the data association problem, and

is common across all perceptive sensors. There are two common ways of doing this: feature

tracking and feature matching.

Feature tracking is the act of taking a keypoint from an image and predicting its location in

the next. The standard method for this task is the Lucas-Kanade method [35] which performs

an iterative optimization process to minimize the difference between the patch surrounding a

feature in the first image and a nearby patch in the next image. This is performed via a course-

to-fine optimiziation scheme [6], where solutions are calculated at progressively finer and finer

scales until convergence. The function to be optimized is given in Equation 2.15

u+x∑
i=u−x

v+y∑
j=v−y

(I(u+i, v + j)− T (u, v))2 (2.15)

where T is the patch surrounding the feature in the previous image and (i, j) is the displace-

ment that locates the feature in the next image. This optimization problem is solved by either

gradient descent or Gauss-Newton. The Lucas-Kanade method is an example of an optical flow

algorithm, a collection of algorithms which estimate pixel motion through video. This is the

method we select for this work. An example of tracking features across images is shown below

in figure 2.10, where Harris corners are detected in the first image and tracked into the second

using the Lucas-Kanade method.
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Figure 2.10: Tracking Shi-Tomasi corners in images from the Kitti dataset [18]

Alternatively, features can be associated by feature matching. Rather than detecting a fea-

ture and then tracking it into a new image, matching seeks to find the most likely pairs between

features detected in two images. This is accomplished through the extraction of descriptors,

mathematical objects that uniquely describe the region of the image surrounding the feature.

Features are then matched by finding the most similar descriptors across images. In the sim-

plest case, a descriptor may be the pixel values in a square around the feature and the matching

process would involve finding the descriptor in the next image with the most similar values.

In other cases, such as contemporary descriptors [34], [2], and [42], these descriptors are care-

fully crafted algorithms which produce a string of numbers. These strings are then matched by

minimizing the L2-norm between their vector forms. A survey of descriptors and descriptor

matching methods is available in [30].

2.2.5 Outlier Rejection

Despite advancements in algorithms for data association in images, outliers and spurious matches

are common. The gold standard method of detecting and rejecting outliers in computer vision

is Random Sample Consensus (RANSAC) . RANSAC is a model-fitting method which fits the

best possible model to a sample of data by repeatedly fitting models to randomly-sampled sub-

sets and saving the model with the most inliers across the entire dataset. An example of using

RANSAC to find a line of best fit is shown below in figure 2.11.
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Figure 2.11: RANSAC line fitting in the presence of outliers

In the case of feature matching, the model we use is the essential matrix, which describes

the mapping of points from one image to another from the camera’s rotation and translation

between taking the images [22]. A full treatment of the essential matrix is outside the scope

of this thesis and interested readers should consider the textbook Multiple View Geometry [22]

for the necessary background and treatment on the geometry of vision. For now it is enough to

state that we use RANSAC to fit an essential matrix to our candidate point pairs, and use this

fit to reject outlier pairings. An example of rejecting outliers by fitting an essential matrix is

shown below in figure 2.12.

Figure 2.12: Rejecting outliers in Lucas-Kanade tracks with RANSAC
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Chapter 3

Parameter Estimation

3.1 Random Variables

A key ability of a navigation system is to not only estimate the states of the system but also

the uncertainty in those states. This falls under the umbrella of probabalistic state estimation,

which requires a basic understanding of probability theory.

A random variable is defined as a variable x whose value falls in a range according to some

likelihood function p(x). This function is known as the probability density function(pdf). The

PDF describes the probability of x taking on certain values. The probability P (x = a) is the

likelihood that x takes on the value a, ranging from 0 (impossible) to 1 (certain). An example

of a PDF is shown below in figure 3.1. The PDF and probability have the following properties:

P (a ≤ x ≤ b) =

∫ b

a

p(x)dx∫ ∞

−∞
p(x)dx = 1

p(x) ≥ 0∀x

P (x) = 0∀x
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Figure 3.1: A probability density function

The weighted average of all values of x is the expected value of x, denoted E(x). The

variance of x is the weighted average of the squared difference between each value of x and

the expected value of x, and intuitively describes how ”spread out” x is. These two properties

are the most common ways of describing PDFs.

E(x) =

∫ ∞

−∞
p(x)dx

V ar(x) =

∫ ∞

−∞
(x− E(x))2p(x)dx

For our purposes, we can interpret E(x) as the most likely value of x and V ar(x) as the

uncertainty in that value.

3.1.1 The Gaussian Distribution

The Gaussian distribution, also known as the normal distribution, is the most common dis-

tribution in robotics as sensor noise commonly follows a Gaussian distribution. A Gaussian
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one-dimensional random variable is written x ∼ N(µ, σ2). The PDF of a one-dimensional

Gaussian distribution is given in Equation 3.1.

f(x) =
1

σ
√
2π

e−
1
2
(x−µ

σ
)2 (3.1)

Examples of Gaussian PDFs are shown below in 3.2.

Figure 3.2: A variety of 1D Gaussian distributions, from https://en.wikipedia.org/

wiki/Normal_distribution

Higher-dimensional Gaussian distributions are a simple extension of the one-dimensional

case. In this case, the random variable takes on a vector value rather than a scalar and is written

x ∼ N(u,Σ) Here x = (a, b, c, ...)T is an n × 1 vector of Gaussian variables where µ is the

n×1 vector of their means and Σ is their associated covariance matrix. The diagonal entries of

this matrix are the variances of each element in x: (σ2
a, σ

2
b , σ

2
c , ...). The off-diagonal elements

are the correlations between elements: (ρ(a,b)σaσb, ρ(a,c)σaσc, ...). The structure of this matrix
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is given in Equation 3.2.

Cov(x) =



σ2
x1

ρ(x1,x2)σx1σx2 . . . ρ(x1,xn)σx1σxn

ρ(x2,x1)σx2σx1 σ2
x2

. . . ρ(x2,x2)σx2σxn

...
... . . . ...

ρ(xn,x1)σxnσx1 ρ(xn,x−2)σxnσx2 . . . σ2
xn


(3.2)

A useful property of Gaussian distributions is that they remain Gaussian under linear trans-

forms. That is,

• Given x ∼ N(µ, σ2), y = ax+ b ∼ N(µ+ b, a2σ2

• Given x ∼ N(µ,Σ), y = Ax+ b ∼ N(µ+ b,AΣAT )

3.2 Kalman Filtering

3.2.1 The Linear Kalman Filter

The Kalman filter (KF) [28] is the standard approach to recursive estimation for linear Gaus-

sian systems. The KF maintains a state estimate in the form of a Gaussian N(x̂,P ) which is

recursively updated in an alternating predict - correct algorithm, where the current x̂ and P are

propagated forward using the state transition equations and then corrected when a measurement

becomes available. These predicted and corrected values, known as a priori and a posteriori

estimates, are denoted (x̂−,P−) for predicted and (x̂+,P+) for corrected. The KF algorithm

is shown in algorithm 1. Linear Gaussian systems are dynamic systems of the form shown in

Equation 3.3

xk = Axk−1 +Buk−1 +wk−1

zk = Hxk + vk

(3.3)
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where x is a vector of state variables, z is a vector of measurements, A, B, and C are matrices

describing the system, and w and v are independent noise processes with Gaussian distributions

w ∼ N(0,Q)

v ∼ N(0,R).

Algorithm 1: The Kalman Filter
while measurements are available do

Time Update (Prediction)
Propagate the state mean and covariance forward

x̂−
k = Ax̂+

k−1 +Buk−1 (3.4)

P−
k = AP+

k−1A
T +Q (3.5)

Measurement Update (Correction)
Calculate the Kalman gain

Kk = P−
k HT (HP−

k HT +R)−1 (3.6)

Update the state mean and covariance

x̂+
k = x̂−

k +Kk(yk −Hx̂−
k ) (3.7)

P+
k = (I −KkH)P−

k (3.8)

It is worth noting that Equation 3.8 is usually replaced with the Joseph form covariance

update shown in Equation 3.9

P+
k = (I −KkH)P−

k (I −KkH)T +KkRKT
k (3.9)

which forces P+ to remain positive-semidefinite in the face of rounding errors.

3.2.2 The Extended Kalman Filter

Linear systems, while simple to work with, are rare in the navigation world. Instead the system

to be estimated will often have nonlinear dynamic and measurement models. The standard
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form of a driven nonlinear system is given in Equation 3.10

xk = f(xk−1,uk−1,wk−1)

zk = h(xk,vk)

(3.10)

where x, z, w, and v are defined as before. The KF can be extended to these nonlinear systems

by taking advantage of the Taylor series function approximation shown in Equation 3.11.

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
f ′′(x0)(x− x0)

2

2!
+ h.o.t., (3.11)

By taking the first two terms a nonlinear function can be approximated as locally linear if the

function is continuously differentiable. The KF can then be extended to nonlinear state tran-

sition and measurement functions by taking the linear Taylor approximation about the current

best state estimate, resulting in the linearized state equations shown in Equation 3.12

xk ≈ f(x̂+
k−1,uk, 0) + Fk(xk−1 − x̂+

k−1) +Gkwk−1

zk ≈ h(x̂−
k , 0) +Hk(xk − x̂−

k ) + Vkvk

(3.12)

where the following matrices are defined:

Fk =
∂f

∂x
|x̂+

k−1,uk−1,0

Gk =
∂f

∂w
|x̂+

k−1,uk−1,0

Hk =
∂h

∂x
|x̂−

k ,0

Vk =
∂h

∂v
|x̂−

k ,0

as the system Jacobians. These Jacobians can either be derived from the discrete difference

equations or from numerically integrating the continuous equations. Of note, Gk and especially

Vk are often identity matrices of the appropriate size. This new estimator, called the Extended

Kalman Filter, results in the algorithm shown in algorithm 2.
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Algorithm 2: The Extended Kalman Filter

while measurements are available do
Time Update (Prediction)

Linearize the dynamic equations about the current state estimate

Fk =
∂f

∂x
|x̂+

k−1,uk−1,0
(3.13)

Gk =
∂f

∂w
|x̂+

k−1,uk−1,0
(3.14)

Propagate the state mean and covariance forward

x̂−
k = f(x̂k−1,uk−1, 0) (3.15)

P−
k = FkP

+
k−1F

T
k +GkQGT

k (3.16)

Measurement Update (Correction)

Linearize the measurement equations about the predicted state estimate

Hk =
∂h

∂x
|x̂−

k ,0 (3.17)

Vk =
∂h

∂v
|x̂−

k ,0 (3.18)

Calculate the Kalman gain

Kk = P−
k HT

k (HkP
−
k HT

k + VkRV T
k )−1 (3.19)

Update the state mean and covariance

∆x = Kk(zk − h(x̂−
k , 0)) (3.20)

x̂+
k = x̂−

k ⊞∆x (3.21)

P+
k = (I −KkHk)P

−
k (3.22)
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The operator ⊞ is used in equation 3.21 to note that, while the KF is meant to operate

within a vector space under standard vector addition, many nonlinear states (such as rotations)

do not generally compose through vector addition and will often require a more involved oper-

ation. Thus ⊞ is used to denote generic composition. It is extremely important that the actual

nonlinear equations are used in 3.15 and 3.20. Again, the Joseph form covariance update is

generally used instead of 3.22.

3.2.3 The Error State Kalman Filter

A common modification of the EKF is to estimate the INS errors rather than the INS states.

This adjustment comes from the idea that the error terms will be smaller in magnitude and

closer to the operating point than the states themselves, resulting in a more accurate lineariza-

tion. A nominal INS state x̂ is maintained by propagating the state transition equations and is

occasionally corrected by injecting the estimated error state δx defined by:

xtrue = x̂+ δx

To this end, it is intuitive to reframe the system equations to include the error state. The new

form of the nonlinear system is given in Equation 3.23.

xk = f(x̂k−1 + δxk−1,uk−1,wk−1)

zk = h(x̂k + δxk,vk)

(3.23)

This formulation then requires that Jacobians are calculated with respect to this error state, and

are given as:

Fk =
∂f

∂δx
|x̂+

k−1,uk−1,0

Gk =
∂f

∂w
|x̂+

k−1,uk−1,0

Hk =
∂h

∂δx
|x̂−

k ,0

Vk =
∂h

∂v
|x̂−

k ,0
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These Jacobians are then used as in the standard EKF. This modification results in the Error

State Extended Kalman Filter, shown in algorithm 3.

An important distinction between the EKF and EsKF is the need to inject the estimated

error-state into the nominal state to get the current best estimate. This injection has two com-

ponents: Correcting the nominal state and resetting the error state. This process is given in

Equation 3.24.

x̂ = x̂⊞ δx

δx = 0

(3.24)

No correction of the covariance is needed as the error state simply represents a shift and rotation

from the nominal state, neither of which transform the covariance. Intuitively, a variance of 1

meter in the estimated error in a state is identical to a variance of 1 meter in the estimate of the

state.

3.3 Nonlinear Optimization

Optimization problems are problems which seek parameters θ to minimize or maximize an

objective function. These problems are posed as argmin
θ

f(θ) or argmax
θ

f(θ), respectively.

Nonlinear optimization problems are the subset of optimization problems for which f(θ) is

nonlinear. Specifically, we address nonlinear least squares (NLS) problems, which are of the

form argmin
θ

||f(θ)||2 and seek to minimize the square of the cost function f . This cost function

is generally an error function such as the measurement residual function e(θ) = y− h(θ), and

can be written as a sum of individual squared errors as shown in Equation 3.38.

argmin
θ

∑
i

(yi − hi(θ))
2

argmin
θ

∑
i

eT
i (θ)ei(θ)

(3.38)

These individual errors can be weighted by their certainty, represented by their covariance Σi,

producing weighted nonlinear least-squares problems. The classic NLS problem is given in
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Algorithm 3: The Error State Extended Kalman Filter
while measurements are available do

Time Update (Prediction)
Linearize the dynamic equations about the current state estimate

Fk =
∂f

∂δx
|x̂+

k−1,uk−1,0
(3.25)

Gk =
∂f

∂w
|x̂+

k−1,uk−1,0
(3.26)

Propagate the nominal state, error state, and error covariance forward

x̂−
k = f(x̂k−1,uk−1, 0) (3.27)

δx̂−
k = Fkδx

+
k−1 (3.28)

P−
k = FkP

+
k−1F

T
k +GkQGT

k (3.29)

Measurement Update (Correction)
Linearize the measurement equations about the predicted state estimate

Hk =
∂h

∂δx
|x̂−

k ,0 (3.30)

Vk =
∂h

∂v
|x̂−

k ,0 (3.31)

Calculate the Kalman gain

Kk = P−
k HT

k (HkP
−
k HT

k + VkRV T
k )−1 (3.32)

Update the error-state mean and covariance

∆δx = Kk(zk − h(x̂−
k , 0)) (3.33)

δx̂+
k = δx̂−

k +∆δx (3.34)
P+

k = (I −KkHk)P
−
k (3.35)

Inject error correction into nominal state and reset error state

x̂+
k = x̂−

k ⊞ δx̂+
k (3.36)

δx̂+
k = 0 (3.37)
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Equation 3.39.

argmin
θ

∑
i

eT
i (θ)Σ

−1ei(θ) (3.39)

These problems are typically solved by iteratively calculating the optimal change δθ to

the current estimate of θ to minimize the cost function until the calculated change is suitably

small. Here we present the Gauss-Newton method, the most common method of solving such

problems.

3.3.1 Gauss-Newton

Gauss-Newton is an efficient iterative nonlinear solver derived from the 2nd-order Taylor series

approximation of the cost function. This approximation is shown in Equation 3.40

f(θ + δθ) ≈ f(θ) + Jδθ +
1

2
δθTHδθ (3.40)

where

J =
∂f(θ)

∂θ
|θ

H =
∂2f(θ)

∂θ∂θT
|θ

are the Jacobian and Hessian of f calculated at θ. Noticing that in the case of a quadratic

objective function (f(θ) ≈ 1
2
e(θ)TΣ−1e(θ) for some vector-valued function e(θ), e.g. a

least-squares formulation), near θ0 the Jacobian can be approximated as J ≈ e(θ0)
TΣ−1Je

where

Je =

(
∂e(θ)
∂θ

|θ0

)

and the Hessian can be approximated as H ≈ JT
e Σ

−1Je. These approximations can then be

substituted into the Taylor approximation. The value of δθ that minimizes f can be found by
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setting the ∂f
∂δθ

= 0 and solving:

∂f

∂δθ
= 0

= J + δθTH

δθTH = −J

HT δθ = −JT

(HT )−1HT δθ = −(HT )−1JT

δθ = −(HT )−1JT

which simplifies1 to the Gauss-Newton correction given in Equation 3.41.

δθ = −H−1JT (3.41)

The new best estimate for θ is updated to be θ + δθ and the process is repeated until conver-

gence. The combination of these steps is shown in Algorithm 4 below.
Algorithm 4: Gauss-Newton Method for Optimization

while not converged do
Calculate Jacobian and Hessian

J ≈ e(θk)
TΣ−1

(
∂e(θ)
∂θ

|θk

)
(3.42)

H ≈
(

∂e(θ)
∂θ

|θk

)T

Σ−1

(
∂e(θ)
∂θ

|θk

)
(3.43)

Solve for Update

δθ = −H−1JT (3.44)

θk+1 = θk + δθ (3.45)

1As the Hessian is symmetric, we can ignore transpositions of it
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Chapter 4

Visual-Inertial Navigation

This chapter develops the dynamic and measurement models used in visual-inertial estimation

and presents two VINS formulations: the MSCKF and a batch NLS VINS. While this is in-

tended to be a reasonably comprehensive introduction to the world of visual-inertial estimation,

there are a number of methods we ignore here (loosely-coupled, deep learning, etc). Readers

interested in these less common methods should look to surveys such as [11].

4.1 Fundamentals

We begin by developing a common treatment of the IMU and camera sensors shared by all

visual-inertial estimators. While their pre- and post-processing of the information received

from these sensors is different, all of them will use the IMU to propagate the system forward

using a dynamic model and the camera to provide measurements of the system’s motion and

environment using a measurement model.

4.1.1 Dynamic Model

The evolving INS state is described by the tuple (GpI ,
GvI ,

G
Iq, ba, bg) where GpI is the position

of the INS in the global frame, GvI is the velocity of the INS in the global frame, G
Iq is the

Hamilton quaternion1 representing the rotation from the INS frame to the global frame, ba is

the accelerometer bias, and bg is the gyroscope bias. The dynamic equations for the system are

1The quaternion attitude representation is explained in more detail in appendix A. It is of utmost importance
that quaternion conventions are kept track of as they can be rather confusing.
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given in Equation 4.1.

GṗI =
GvI

Gv̇I = C(GIq)
Ba+ Gg

G
I q̇ =

1

2
G
Iq ⊗ Bω

=
1

2
Ω(Bω) G

Iq

ḃa = wwa

ḃg = wwg

(4.1)

where

Ω(ω) =

0 −ωT

ω −[ω×]



[ω×] =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 .

Using equations 2.2 and 2.3, we can reformulate 4.1 into a nonlinear system driven by

IMU measurements. This formulation is as follows:

ẋ = fI(x,u,w)

= f(



GpI

GvI

G
Iq

ba

bg


,

am

ωm

 ,



wa

wwa

wg

wwg


)

which, after applying the expectation operator and noticing that the modeled errors in the sys-

tem are zero-mean Gaussians, results in the INS state propagation function shown in Equation
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4.2.

˙̂x = fI(x̂,u, 0)

G ˙̂pI

G ˙̂vI

G

I
˙̂q

˙̂
ba

˙̂
bg


=



Gv̂I

C(GI q̂)(am − b̂a) +
Gg

1
2
Ω(ωm − b̂g)

G
I q̂

03×1

03×1


.

(4.2)

See appendix B for details on numerical integration of dynamic equations. In the future,

we will refer to the discrete-time version of this function as fk(xk,uk, 0).

4.1.2 Measurement Model

The measurement function used is the perspective projection function defined in section 2.2,

which maps a point in the world onto the idealized image plane. Here we extend this function

to a camera-IMU system for the purpose of measuring features relative to the estimated IMU

state.

We begin with the perspective projection function, equation 2.4:

z = h(Cpf ) + n

where

Cpf = C
GC(Gpf − GpC).
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Using this function for a camera attached to an IMU requires the extrinsic calibration

(IpC ,
C
Iq) between the camera and IMU. Using this calibration, the camera position and orien-

tation can be computed as shown in Equation 4.3.

C
GC = C(CIq)C(GIq)

T

GpC = GpI +C(GIq)
IpC .

(4.3)

This now allows the computation of a predicted measurement ẑ from the estimated IMU state

and global feature position as shown in Equation 4.4

z = h(GpI ,
G
Iq,

Gpf ,
C
IC, IpC)

=
1

Czl

Cxl

Cyl

 (4.4)

where C
IC is the rotation matrix which rotates vectors from the IMU frame to the camera frame

and IpC is the position of the camera in the IMU frame. These two elements together are

referred to as the extrinsic calibration of the camera-IMU system and are considered to be

known perfectly in this work. In this case, this function can be referred to as h(xI ,
Gpf ).

4.2 A Filtering Approach to VINS: The Multi-State Constraint Kalman Filter

To demonstrate the filtering approach to VINS we present the most representative filtering

VINS work: the Multi-State Constraint Kalman Filter (MSCKF). Mourikis and Roumeliotis

[37] address the flaws of previous EKF-based VINS by moving away from the standard EKF-

SLAM formulation of VINS to a stochastic-cloning based structureless VIO approach. In con-

trast to the EKF-SLAM VINS formulation, which maintains estimates of the current pose and

any landmarks currently in sight, the MSCKF instead maintains a sliding window of past INS

poses. This estimator structure is shown in4.1, with INS poses at previous time steps shown in

red and observed landmarks shown in blue. Gray ellipses enclose objects which are maintained

in the EKF state vector.
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Figure 4.1: Structure of the MSCKF

The MSCKF then does not maintain estimates of observed landmarks at all. Instead,

the processing of observations is delayed. As features fall out of view or reach a maximum

number of observations, they are triangulated using the window states they are observed from.

This triangulated position is then used to form geometric constraints between the feature and

the window states from which it is observed which are used for EKF updates. By waiting to

process features until the last possible moment, the MSCKF only linearizes the measurement

function once per feature. This results in a more accurate feature position estimate and reduces

the information lost through the continued linearization process of EKF-SLAM.

4.2.1 Filter Definition

The MSCKF nominal state vector is defined as:

x = (xI , ξk−w, ξk−(w−1), ..., ξk−1)

where xI is the INS state defined in 4.1.1 and ξk−n is a copy of the INS pose n time steps ago,

a modification used in [33]. It is extremely important to note that their original implementation

uses JPL quaternions. Here we rederive it with Hamilton quaternions to match the convention

of the rest of this work.
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We define a pose ξ ∈ SO(3) to be the following vector representing the position and

orientation of an INS:

ξ =

GpI

G
Iq


These past poses are then of the form:

ξk−n =

GpIk−n

G
Ik−n

q

 .

We select an error-state Kalman filter implementation with the error state δx = (δxI , δξk−1, δξk−2, ...).

The INS error state δxI is defined as:

δxI =



δp

δv

δθ

δba

δbg


∈ R15

where δx, δv, δba, and δbg are standard additive vector errors and δθ is the local attitude error

defined as:

G
Iqtrue =

G
I q̂ ⊗ δq

where δq is the small-angle quaternion:

δq =

 1

1
2
δθ


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Likewise, the pose error δξk−n is defined as:

δξk−n =

δpk−n

δθk−n

 ∈ R6

For simplicity, we partition the MSCKF state as:

x = (xI ,xW )

δx = (δxI , δxW )

where xW is the list of past INS poses. The state covariance P ∈ R15+6n×15+6n is partitioned

similarly:

P =

 PI PIW

P T
IW PW


where PI is the 15 × 15 matrix corresponding to the INS state, PW is the 6n × 6n matrix

corresponding to the window of poses, and PIW is the 15× 6n matrix of cross terms.

We also define the noise vector w as:

w =



wa

wg

wba

wbg


.
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4.2.2 Dynamic Model

The filter state is propagated according to Equation 4.5.

ẋ = f(x,u, 0) ẋI

ẋW

 =

fI(x,u, 0)
06n×1

 (4.5)

where fI is the INS state propagation function shown in equation4.2. The linearized error state

dynamics are given in Equation 4.6

δẋ = F δx+Gw δẋI

δẋW

 =

 FI 015×6n

06n×15 06n×6n


 δẋI

δẋW

+

 GI

06n×12

w
(4.6)

where the INS error dynamics are derived from equation 4.1 as normal in the EsKF formulation:

FI =
∂fI
∂δxI

(4.7)

GI =
∂fI
∂w

(4.8)

The discrete state transition matrix Φ is computed as:

Φ = exp(FI∆t) (4.9)

and the discrete noise matrix Qd as:

Qd = ΦGIQGT
I Φ

T∆t (4.10)
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where Q is the 12 × 12 covariance matrix associated with w. The state covariance is then

propagated according to Equation 4.11.

Pk+1 =

ΦPI,kΦ
T +Q ΦPIW,k

P T
IW,kΦ

T PW

 (4.11)

When a new image is recorded, the state is propagated forward in time up to the time the

image was received at. At this point, a new IMU pose is inserted into the filter. This new pose

is created as:

ξk =

GpI,k

G
Iqk

 (4.12)

and inserted at the back of the window. Additionally, the covariance is augmented by:

P =

I6n+15

J

P

I6n+15

J


T

(4.13)

where

J =

 I3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3



4.2.3 Measurement Model

The MSCKF uses the measurement function h defined in section 2.2:

h(GpI ,
G
Iq,

Gpf ) = h(ξ, Gpfi) (4.14)

=
1

Czf

Cxf

Cyf

+wc (4.15)
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which describes the projection of a point in the camera frame onto the idealized image plane.

While here we work in normalized coordinates, it is just as valid to work in pixel coordinates.

In pixel coordinates wc would be the image noise in units of pixels with standard deviation

σpix. Working in normalized coordinates requires converting the following conversion:

σc =
σpix

fpix
(4.16)

where fpix is the focal length of the camera in pixels, often taken as the average of fx and fy

from the intrisic parameters matrix defined in section 2.2.

As the MSCKF does not maintain an estimate of Gpf , the position of the point in the

global frame, it is estimated through the triangulation process outlined in section 2.2.2. After

estimation, the following measurement jacobians are computed:

Hξ =
∂h

∂ξ
(4.17)

Hf =
∂h

∂ Gpf

(4.18)

We denote Hξ(ξ,
Gpf ) and Hf (ξ,

Gpf ) to be Hξ and Hf evaluated at the given pose and

feature point and Hξij and Hfij as the Jacobians evaluated for pose ξj and feature Gpfi . To

form the measurement model, we consider the case of a feature Gpfi observed from IMU poses

ξk−1 through ξk−m. First, the residuals are computed for each viewing of the feature from IMU

poses j = k − 1, ..., k −m:

rij = zij − h(ξj,
Gpfi) (4.19)

≈ Hξijξj +Hfij
Gpfi + nij (4.20)

We collect all of the data from observations of Gpfi into the necessary structures following

[33]:

zi ≈ Hξiδx+Hfiδ
Gpfi + ni (4.21)
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where

zi =



zik−1

zik−2

...

zik−m


(4.22)

ni =



nik−1

nik−2

...

nik−m


(4.23)

Hfi =



Hfik−1

Hfik−2

...

Hfik−m


(4.24)

Hξi =



02×15 Hξik−1
02×6 ... 02×6

02×15 02×6 Hξik−2
... 02×6

...
...

... . . . ...

02×15 02×6 02×6 . . . Hξik−m


(4.25)

This model is not usable for the EKF update in its current form as the current state estimate

was used to compute the position of the feature and thus δx and δpfi are correlated. To account

for this, nullspace marginalization[37] is employed to decorrelate the two. By multiplying

through by the matrix spanning the left nullspace of the feature measurement Jacobian Hfi , the

residuals ri are mapped onto its nullspace, making them independent from errors in the feature
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estimate. We term this new residual r0
i and calculate it as follows:

A = null(HT
fi
) (4.26)

r0
i = AT (zi − ẑi) (4.27)

≈ ATHξiδx+ATHfiδ
Gpfi +ATni (4.28)

= ATHξiδx+ 0+ n0
i (4.29)

= ATHξiδx+ n0
i (4.30)

Here the second round of outlier rejection is performed. These residuals r0i are validated

with a Mahalanobis gating test to remove any remaining outliers. We stack the residuals and

matrices from all features which pass the gating test, resulting in the following form:

r0 = H0
ξ δx+ n0 (4.31)

which is valid to use in the EKF update along with their transformed measurement covariance:

R0 = H0
ξRH0,T

ξ (4.32)

The filter correction then proceeds according to the EsKF update process. At this point, all fea-

ture observations used in the update are removed. We then check to see if any pose states have

no more observations associated with them and, if so, delete the corresponding columns/rows

of the state and covariance matrices.

4.3 An Optimization Approach to VINS: Batch Visual-Inertial SLAM

An alternative approach to visual-inertial estimation is to formulate it as a batch NLS problem.

This approach, made popular by OKVIS [31], [32], estimates the IMU poses and landmarks to

minimize a cost function relating them, weighted by sensor noise. This batch optimization can

be performed over either a window of past poses and measurements, called fixed-lag smoothing,

or the full trajectory and all measurements, called full smoothing. While it operates over a
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collection of past poses like the MSCKF, the inclusion of landmarks into the estimation problem

and the application of iterative cost minimization results in a significantly different estimator.

4.3.1 Estimator Structure

We formulate the batch least-squares VINS as maintaining a state vector consisting of N IMU

poses and I landmarks. The state vector is then:

x = (xI ,xL)

where xI = (xI,k,xI,k−1,xI,k−2, ...,xI,k−N−1) is the list of N past IMU poses and xL =

(li, li+1, li+2, ..., lI) is the list of all landmarks visible to the IMU poses. Like before, we define

these IMU poses xI as:

xI,k =



GpI,k

GvI,k

G
Iqk

ba,k

bg,k


.

We define landmark states to be:

li =
GpL,i

A visualization of this state vector is shown below in figure 4.2.
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Figure 4.2: Structure of a batch optimization VINS

4.3.2 Dynamic Model

Like before, we consider a system moving through space ’driven’ by inertial measurements.

The state of this system is thus the same IMU propagation function define in equation 4.2:

˙̂x = fI(x̂,u, 0)

G ˙̂pI

G ˙̂vI

G

I
˙̂q

˙̂
ba

˙̂
bg


=



Gv̂I

C(GI q̂)(am − b̂a) +
Gg

1
2
Ω(ωm − b̂g)

G
I q̂

03×1

03×1


.

This model is used to propagate the state of the system forward in time according to incom-

ing measurements from the IMU. When a new image is received, the IMU state is propagated

up to the time the image was received at and a new IMU pose is created in the estimator 2.

2For efficiency, often we decline to add a new pose until the system has moved significantly from the last one
as closely-spaced poses provided little increase in accuracy. This process is known as keyframing.
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4.3.3 Measurement Model

As before, we use the normalized projection function equation 2.4:

zk,i = hnorm(xI,k, li)

where zk,i is the observation of the ith landmark from the kth IMU pose. When an estimate

of a new landmark becomes available, it is added to the state vector and the IMU poses it is

observed from are recorded.

4.3.4 Cost Function Formulation

The batch least-squares approach seeks to minimize a cost function consisting of IMU odom-

etry terms and landmark measurement terms. To this end, the IMU and measurement error

functions are defined as follows:

eI(xI,k,xI,k−1,uk−1) = xI,k ⊟ fk(xI,k−1,uk−1, 0) (4.33)

eF (xI,k, li) = zk,i − hnorm(xI,k, li) (4.34)

where fk is the IMU dynamic model from equation 4.2 and h is the perspective projection

equation 2.4. The optimization problem is then:

argmin
x

∑
i

eT
i (x)Σ

−1ei(x) (4.35)

= argmin
xI ,xL

∑
k

||xI,k ⊟ f(xI,k−1,uk−1, 0)||2ΣI
+
∑
k

∑
i

||zk,i − h(xI,k, li)||2Σc
(4.36)

where the first term represents the difference between predicted and estimated IMU poses and

the second term represent the difference between measured and estimated camera measure-

ments. We use the notation ||e||2Σ = eTΣ−1e to denote that terms are weighted according to

their uncertainties.

Like other VINS, pixel measurements are undistorted before processing so there is no need

to include distortion in h.
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4.3.5 Optimization

This formulation results in a somewhat obvious Jacobian structure, which we illustrate with an

example. Say we have IMU poses at k = 1, 2, 3 and landmarks l1, l2. Landmark l1 is observed

from xI,1 and xI,2 while landmark l2 is observed from xI,1, xI,2, and xI,3. The estimated

update vector is then:

x =



δxI,1

δxI,2

δxI,3

δl1

δl2


where the δ states represent the updates to the current state estimate. The Jacobian of the error

function with resptect to the state is:

Je =



−I 0 0 0 0

F2 −I 0 0 0

0 F3 −I 0 0

Hx1,1 0 0 Hf1,1 0

0 Hx2,1 0 0 Hf2,1

Hx1,2 0 0 Hf1,2 0

0 Hx2,2 0 0 Hf2,2

0 0 Hx2,3 0 Hf2,3


where

Fj =
∂f

∂xI

|xI=xI,j−1,u=uj−1

Hxi,j
=

∂h

∂xI

|xI=xI,j ,l=li

Hfi,j =
∂h

∂l
|xI=xI,j ,l=li
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The error vector is:

e(x) =



xI,1

xI,2 − f(xI,1,u1, 0)

xI,3 − f(xI,2,u2, 0)

z1,1 − h(xI,1, l1)

z1,2 − h(xI,1, l2)

z2,1 − h(xI,2, l1)

z2,2 − h(xI,2, l2)

z3,2 − h(xI,3, l2)


From these structures we form the Gauss-Newton update equations and solve for δx until

convergence:

J = e(x)TΣ−1Je

H = JT
e Σ

−1Je

δx = −H−1JT

It is generally easiest to construct these equations on a per-errror-term basis. If our system

has m error terms (e.g. e(x) = (e1, e2, ..., em)), then the system can be formed as:

J =
∑
m

eT
mΣ

−1
m Je,m

H =
∑
m

JT
e,mΣ

−1
m Je,m

where Je,m is the mth row of Je and Σm is the covariance associated with em.

Like the MSCKF, batch least-squares VINS operates over a bounded window of past states

and observations. To keep the window bounded it is necessary to marginalize (remove) states

intermitently. This marginalization process is non-trivial and is explained in detail in [31].
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4.3.6 Discussion

Unlike the filtering approach which will have to be almost completely manually implemented,

there exist several frameworks to simplify the implementation of optimization-based estima-

tors. These include Ceres [1], g2o [29], and GTSAM [14].

A difficult choice in the design of an optimization-based VINS is whether to perform

fixed-lag smoothing or full smoothing. Historically, the computational load of full-smoothing

has made it infeasible for real-time systems, resulting in most early optimization-based VINS

performing fixed-lag smoothing over a window of keyframes as in OKVIS [31]. Immediately

these methods demonstrated improved performance over existing filtering approaches and have

come to dominate the VINS landscape [45].

Recent methods have bridged the gap between fixed-lag and full smoothing by augment-

ing a fixed-lag VINS with a loop-closing backend. This backend solves another optimization

problem, one including only the estimated keyframe poses and relative constraints provided by

visual place recognition to detect when the system revisits a location. The optimized poses are

then fed back into the fixed-lag VINS frontend. This approach, taken by VINS-MONO [40],

provides an efficient approximation of a full smoothing approach and is generally considered

the state of the art in VINS.

Even more recently, incremental smoothing methods such as ISAM [26] and ISAM2 [27]

have enabled true full-smoothing visual-inertial estimation [16] by modifying the optimization

problem to marginalize out states unaffected by incoming measurements. These full-smoothing

methods demonstrate superior accuracy at the cost of numerical instability and sensitivity to

outliers [13], and thus require advanced outlier rejection schemes for use in real-world systems.

An active area of work in this project is the development
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Chapter 5

Measurement Validation in Visual-Inertial Navigation

This chapter presents an analysis of the methods used to validate measurements in visual-

inertial estimators. This analysis then informs the development of an observability-aware val-

idation algorithm to delay the validation of measurements corresponding to a landmark until

the landmark becomes observable, but no longer. An experimental VINS is then developed to

compare this measurement validation method against other existing visual-inertial estimators

with the specific goal of improving upon the robustness properties of the system proposed by

Forster et al. in [16].

5.1 Measurement Validation in Visual-Inertial Navigation

Despite increasingly feature detection and data association methods, it is extremely common

for measurements detrimental to the overall navigation solution to pass through outlier rejection

and into the estimator. As a result, it is standard practice to perform a measurement validation

step before including tracked features in any estimation process. In this work we focus on

geometric validation, which validates measurements by determining if they are consistent with

the existing state estimates. This consistency is observed by attempting to estimate the position

of the landmark from the current state estimates and collected measurements. If the estimation

fails for any of a variety of reasons the measurements are treated as invalid and discarded.

The standard approach to this validation is that taken by VINS-MONO [40] and the

MSCKF [37]. These estimators attempt to triangulate the landmark using all measurements

and camera positions currently in their window of estimation. In both cases these are extremely
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robust methods of validation as they perform this estimation with the maximum information

possible, bounded by the maximum length of their windows. These two systems rely on as ac-

curate an initial estimation step as possible as they then directly compute navigation solutions

using these landmark initializations.

We notice two immediate areas for improvement with these estimators. VINS-MONO

performs motion-only optimization for its navigation estimates. That is, it does not optimize

landmarks after they are initialized and must then re-initialize them at every optimization. This

approach, while efficient, prevents measurements corresponding to poses that have passed out

of the window from being considered in newer triangulations, and therefore the accuracy of the

estimated landmark positions is suboptimal. Additionally, this results in a full re-estimation

of the feature position every time after the first initialization, In contrast, the MSCKF must

process all observations at once and only once, and thus must wait until all observations of the

feature have been received to validate it. We refer to this problem as having maximally-delayed

validation, as the MSCKF does not validate features (and thus does not process filter correc-

tions) until the feature is lost. To correct these issues, we propose that an ideal measurement

validation scheme would have the following two properties:

• Maximize the use of prior information used when validating

• Minimize the delay between receiving measurements and including them in the naviga-

tion solution

5.2 Maximizing Prior Information in Measurement Validation

We begin by addressing the need to include prior information in the validation process. In

the case of a newly-seen landmark, there is not much room for improvement as the landmark

must still be initialized. However, we can significantly improve the cost of validating newer

measurements after the feature is initialized. The key problem with the approach taken by

VINS-MONO is that it re-processes measurements already used to estimate the feature position.

Instead, we decide to maintain estimated landmarks in the state of the estimator as in EKF-

SLAM and other full VISLAM systems. By maintaining this estimate, the validation process
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for new measurements of already-initialized landmarks reduces from a full re-initialization to a

residual check, validating that the received measurement falls within an expected range of the

estimated landmark.

This simple change describes moving from visual-inertial odometry to visual-inertial SLAM,

as now a map is being actively maintained rather than as a by-product of pose estimation. This

comes with a significant increase in computational complexity, as the state vector now contains

To accomplish this task, we propose to follow the methodology used in [16], where the incre-

mental smoothing algorithm ISAM2 [27] allows for efficient updating of large state vectors by

temporarily marginalizing out states that are not affected in the current update.

5.3 Minimizing the Delay Caused by Validation

This decision to validate once and update after then motivates the second problem of minimiz-

ing the delay between receiving measurements of a landmark and using it in the estimated state.

This is equivalent to minimizing the number of measurements of a landmark needed before val-

idating those observations. To understand why the delay occurs in the validation process, we

discuss the observability properties of landmarks in visual SLAM systems.

5.3.1 Geometry of Triangulation

The triangulation problem presented in section 2.2.2, like many estimation problems, suffers

from the necessary condition of observability. Observability, the mathematical property of an

estimation problem being uniquely solvable, is of great importance in all navigation systems

but is of particular importance in the case of visual SLAM as projection of landmarks onto

images results in a measurement of lower dimensionality than the quantity to estimate. This

loss of information prevents a single measurement from providing an estimate of the landmark’s

location in space, and thus multiple measurements are required to solve for the landmark’s

position and for its measurements to aid the navigation solution. The observability of the point

location is dependent on the geometric relationships between the measured bearing vectors.

The geometry of an example two-view point estimation problem in two dimensions is shown

in figure 5.1, with the angle θ being known as the parallax between the observation vectors.
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Figure 5.1: Feature observation geometry

Individual bearing vector observations define a vector beginning at the camera and point-

ing out into space on which the landmark must lie, but the location of the landmark along the

vector is unknown. Continued measurements of the landmark from different camera locations

provide additional vectors on which the feature must lie, the intersection of which is then the

location of the landmark in space. The uncertainty in these bearing measurements causes the

measured bearing vectors to define cones reaching out from the camera rather than true vec-

tors. The intersection of these cones then defines a region containing the estimated landmark

location. Figures 5.2 and 5.3 demonstrate regions of intersection for two difference observation

geometries. It is clear that perpendicular bearing vectors produce the most observable landmark

position while nearly-colinear bearing vectors provide very little observability. This is verified

in simulation as shown below.
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Figure 5.2: Good observation geometry

Figure 5.3: Bad observation geometry
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To better understand the relationship between the colinearity of the bearing vectors and the

landmark estimation problem, a Monte-Carlo simulation was performed with a camera fixed

at (0, 0), a landmark fixed five meters in front of the camera, and a second camera moving in

a circular path around the first camera, pointing towards the landmark to simulate a variety of

parallaxes. Each pose was sampled 100 times with measurement error wpix ∼ N(0, 1pix). The

sample poses are shown below in figure 5.4 and the resulting triangulation errors are shown in

figure 5.5.

Figure 5.4: Triangulation results with well-conditioned observation geometry
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Figure 5.5: Triangulation errors resulting from a range of parallaxes

This simulation demonstrates the aforementioned observability effects and provides some

insight into the relationship between observation geometry and the ability to accurately estimate

landmarks: in the presence of noisy camera measurements, there is a threshold below which

reliable landmark estimation is unreliable and above which it is reliable. Additionally, we can

observe that valid measurments can result in large errors if the geometry of observation is ill-

posed. Errors this large in a validation attempt will generally result in a failed valiation despite

the measurements being valid.

5.3.2 Minimally-Delayed Validation

Drawing on the conclusions of the previous section, we can make the following inferences:

1. Geometric validation of poorly-observable measurments is untrustworthy

2. Parallax is a reliable metric for the observability of landmarks

3. Above a minimum parallax, observability is constant
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From these observations we propose that to delay geometric validation until the collected mea-

surements reach a threshold of observability is to maximize the likelihood of accurate mea-

surement validation and minimize the number of observations required to perform a trustwor-

thy validation. To this end we propose an adaptive measurement validation method which

we name Minimally-Delayed Validation in which we delay validation of a new landmark until

the moment it becomes observable, then perform geometric validation. To do so, each time a

measurement of the landmark is recieved we record the measurement z and the camera pose

(WpC ,
W
Cq) it was observed from. For each new measurement zk, we compute the parallax

angle θ between the first and newest measurements using Equation 5.1

θ = arccos(
(Wz1

T · Wzk)

||Wz1|| · ||Wzk||
) (5.1)

where

Wz1 = C(WCq1)

z1

1


Wzk = C(WCqk)

zk

1


If θ is above a threshold ( 0.12 radians in our experiments ), then the landmark is considered ob-

servable and geometric validation is performed. Otherwise, the landmark is saved for attempts

with future measurements. Upon successful geometric validation, the full list of measurements

is added to the optimization problem and a new solution is computed, resulting in updated state

estimates and the adding of the landmark to the SLAM map. From this point on validation

of measurements of this landmark consists of a simple residual check, where if measurement

residuals are too large the measurement is considered invalid. Alternatively, a failed geometric

validation results in the stored measurements of the landmark being eliminated.

To validate this method, we first demonstrate it in simulation. Simple scenarios of cameras

moving relative to landmarks at different locations were run as Monte Carlo trials with noisy

odometry and camera measurements. These landmark locations are a constant distance from the
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camera’s starting point, offset by angles from 0 to 45 degrees. Landmarks are validated in two

ways: with all of the measurements collected (denoted ”First-Last” as the initial triangulation

is performed with the first and last observations) and with the observations collected up to and

including the observability threshold (denoted ”First-Mid”). After this validation, features are

optimized using a Gauss-Newton process using all measurements collected over the trajectory.

A sample of the generated landmark locations and the trajectory taken by the camera is shown

below in figure 5.6.

Figure 5.6: Sample landmark locations used in validation simulation

Figures 5.7 through 5.10 demonstrate two illustrative examples, one with well-posed ge-

ometry and one with ill-posed geometry. The first example, shown in figures 5.7 and 5.8,

shows validation and estimation of a highly-observable feature where the observability con-

dition is reached well before the last measurement is received. These plots show that, given

good observability, estimates of the landmark’s position from the point of observability are ex-

tremely similar to those using all measurements. Additionally, the iterative updates performed

using Gauss-Newton converge to the same values as the First-Last batch solution, validating

that there is no loss of final accuracy from this earlier initialization.
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Figure 5.7: Feature estimation after First-Last initialization with good observation geometry

Figure 5.8: Feature estimation after First-Mid initialization with good observation geometry
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The second example, shown in figures 5.9 and 5.10, demonstrates the same process as

before. This time, as all samples are ill-posed, the observability condition is never met and the

MDV estimator refuses to initialize the landmark. On the other hand, the First-Last estimator

proceeds to initialize the landmark to a wide range of inaccurate locations. These locations all

pass the geometric validation checks but would be detrimental to a navigation solution.

Figure 5.9: Feature estimation after First-Last initialization with poor observation geometry
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Figure 5.10: Feature estimation after First-Mid initialization with poor observation geometry

The mean error for each of these trials is shown below in figure 5.11, where we compare

the RMSE for 100 trials for the landmark positions estimated by First-Last, First-Mid at val-

idation, and First-Mid after all measurements have been processed. This simulation affirms

that there is minimal difference in the estimated landmark position after observability has been

reached. Additionally, it confirms the prior assumption that parallax is a primary factor in land-

mark estimation accuracy as the error at initialization for First-Mid is approximately constant

for a constant initialization parallax.
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Figure 5.11: Error in estimated feature position using First-Mid algorithm

Figure 5.12 below shows the number of observations required before validation is per-

formed for the First-Last and First-Mid estimators. It is clear that only a small displacement

from the camera’s optical axis is required before features become observable after very few

measurments. This effect is clearly visible despite the simulated environments being close to

the worst case for parallax generation, as longitudinal motion generates very small parallax for

a given magnitude of motion for landmarks in front of the camera.
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Figure 5.12: Observations used before initializing feature
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Chapter 6

Results

This chapter presents the results of experiments using the proposed method in a functioning

VINS. Following in the footsteps of [13], a collection of visual-inertial estimators are organized

to compare the proposed system against. This collection is chosen so as to include a range of

strategies from both filtering and optimization categories to provide a accurate representation

of the state of the art in VINS. Summaries of these systems and their key features are presented

below.

6.1 Proposed System

Following the simulated results shown in the previous chapter, we implement the proposed

method in a functional VINS for comparison against the state-of-the-art. The feature detector

and tracker are modelled after that implemented in VINS-MONO [40], and uses the Lucas-

Kanade optical flow tracker [35], [6] to track Shi-Tomasi corners [25] across sequences of

images. The visual-inertial fusion is performed following the method proposed in Forster et al.

[16], where a full smoothing backend using the implementation of ISAM2 found in GTSAM

[14] is leveraged to allow for arbitrarily long tracking of features. This system is implemented

in ROS Noetic [44] using GTSAM [14] and OpenCV [7].
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6.2 Comparison VINS Implementations

6.2.1 MSCKF-MONO

We include the Multi-State Constraint Kalman Filter (MSCKF)[37] in our evaluation as it is the

most commonly used and best known filtering VINS. Developed to address the computational

cost and linearization problems of previous EKF-based visual-inertial estimators, the MSCKF

introduced a novel filter structure where features are not actually maintained and estimated.

By maintaining a sliding window of past poses instead and employing a measurement model

based on the geometric constraints between poses, the MSCKF demonstrates improved accu-

racy and computational efficiency over the classical EKF-SLAM system. MSCKF-MONO[51]

is a public implementation of the MSCKF which includes the observability-constrained modifi-

cations proposed in [24] for improved consistency. This implementation is available at https:

//github.com/daniilidis-group/msckf_mono. The MSCKF is explained in de-

tail in section 4.2. Additionally, the MSCKF technical report by Mourikis and Roumeliotis[36]

is a comprehensive description.

6.2.2 OKVIS

We include OKVIS [31], [32] as the first major optimization-based VINS. Originally developed

for use with stereo cameras, it was later extended to the monocular case and continued to show

strong performance. OKVIS would still be considered the standard batch-optimization visual-

inertial SLAM system as, unlike VINS-MONO, it includes active features in the optimization

problem to both improve estiamtion accuracy and generate an accurate map. A simplified ver-

sion of OKVIS is described in section 4.3. A key contribution of OKVIS that is not addressed

here is its marginalization of past states to maintain their information in the optimization prob-

lem, a feature not addressed in other windowed optimization schemes. OKVIS is publicly

available at https://github.com/ethz-asl/okvis.
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6.2.3 ROVIO

First presented by Bloesch et al. in 2015, Robust Visual Inertial Odometry (ROVIO) [5], [4]

is a VINS using the EKF-SLAM estimator design. ROVIO proposed an augmented measure-

ment scheme which tracks the image patches surrounding tracked features. These patches are

warped based on the predicted feature location and IMU motion and then the photometric error

between the predicted and measured patch is used to form the EKF residual vector. Addition-

ally, ROVIO parameterizes features into a combination of a depth factor and bearing vector,

improving the Gaussian error assumption on feature positions. The public implementation of

ROVIO is available at https://github.com/ethz-asl/rovio.

6.2.4 VINS-MONO

VINS-MONO [40] was a groundbreaking development in the visual-inertial literature. Despite

being conceptually similar to OKVIS, VINS-MONO introduced several new features such as:

• A robust bootstrapping system to initialize the system from arbitrary initial states

• Online calibration of IMU-camera extrinsic parameters (seen before in EKF-based esti-

mators, but not in optimization-based estimators)

• 4 degree-of-freedom pose-graph optimization to account for scale drift

and others. Upon release, VINS-MONO immediately became the gold standard for visual-

inertial estimators and has maintained that status in the years since. VINS-MONO is publicly

available at https://github.com/HKUST-Aerial-Robotics/VINS-Mono.

While VINS-MONO does include loop closure and pose-graph optimization, the other

systems being compared do not and so we present results with those functionalities disabled.

See [13] for a comparison which includes VINS-MONO’s more advanced capabilities.

6.2.5 SVO + GTSAM

SVO [17] is a lightweight visual-odometry system developed for use on MAVs with limited

computational capabilities. It is a semi-direct method like ROVIO, and thus is generally robust
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to lighting changes and low texture. In Forster et al. [16], SVO was paired with a full smoothing

backend implemented using GTSAM’s [14] implementation of ISAM2 [27] This is the first

publicly-proposed VINS to use the ISAM2 algorithm for estimation, While the implementation

itself is not public, SVO is available at https://github.com/uzh-rpg/rpg_svo and

GTSAM is available at https://github.com/borglab/gtsam.

6.3 Experiments

The EUROC MAV datasets [9] are a group of visual-inertial datasets collected from a manually-

flown micro aerial vehicle (MAV). These datasets contain synchronized visual-inertial data

along with ground truth trajectories and have become the standard dataset for visual-inertial es-

timation as they cover a wide range of scenarios. Each flight is approximately 2.5 minutes long

and includes an initialization period, standstill period, and then flight around the environment.

The data available in the datasets consists of synchronized grayscale WVGA stereo images at

20Hz and IMU data at 200Hz, along with ground truth provided by a motion-capture system.

In these experiments we consider only monocular (single-camera) estimators, and as such use

only the images from the left camera. An example image taken from flight MH03 is shown

below in figure 6.1.

Figure 6.1: An example image taken from the EUROC MAV dataset
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The EUROC dataset consists of three sub-datasets, each consisting of several flights per-

formed in a different area of the test facility. These sub-datasets are structured so that each

sub-dataset gets progressively more challenging. For example, the Machine Hall sub-dataset

(MH) is subdivided into five flights: MH01-easy, MH02-easy, MH03-medium, MH04-difficult,

and MH05-difficult. The Vicon 1 (V1) and Vicon 2 (V2) datasets, while consisting of three in-

stead of five flights each, follow the same easy-medium-difficult system. In the Machine Hall

flights, difficulty is increased through a combination of more aggressive flights and through

decreased lighting. The Vicon flights increase difficulty through more aggresive flights, light-

ing changes, and decreased scene texture. Examples of these decreased lighting and texture

scenarios are shown below in figures

Figure 6.2: A challenging area of MH05-difficult with low lighting
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Figure 6.3: A challenging area of V103-difficult with low lighting and low scene texture

6.4 Experimental Setup

Following the methodology of [13], the proposed system is evaluated against the state of the

art to compare the accuracy of their trajectory estimates. Each estimated trajectory is aligned

to the ground truth according to [50] to account for differing initialization results and then the

root mean squared error (RMSE) across the entire trajectory is computed. For each dataset, the

system was initialized at a standstill with all states set to 0.

The configuration of the proposed system was chosen so as to be as fair a comparison

as possible. As the feature-tracking module is designed after the one implemented in VINS-

MONO it was configured as closely as possible to the VINS-MONO EUROC configuration.

The ISAM2 backend was configured with the default parameters.

6.5 Evaluation of Proposed System

The following plots (figures 6.5 - 6.15) display the estimation performance of the proposed

system in terms of position error on the EUROC dataset flights. For plots of the estimated

trajectories and ground truth trajectories, see those in appendix C. An example trajectory is

shown below in figure 6.4. In this plot, gray lines connect estiamted and truth poses at the same
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timestamp. The performance of the proposed system is summarized and compared to other

important visual-inertial estimators in table 6.1 at the end of this section.

Figure 6.4: Estimated Trajectory for EUROC MH01

Figures 6.5 through 6.8 below display the translational error in the estimated INS pose

for the MH01-easy, MH02-easy, V101-easy, and V201-easy datasets. These datasets con-

sist of gentle flights with wide sweeping motions and gentle acceleration and rotation. They

have constant illumination and have little to no motion blur. The proposed system generally
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demonstrates error of under 20cm in each axis on these easier flights as shown and is gener-

ally unchallenged. Importantly, the lack of dramatic changes in error implies few to no invalid

measurements entered the system.

Figure 6.5: Trajectory Error: EUROC MH01

Figure 6.6: Trajectory Error: EUROC MH02

Figure 6.7: Trajectory Error: EUROC V101
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Figure 6.8: Trajectory Error: EUROC V201

Figures 6.9, 6.10, and 6.11 below display the translational error in the INS pose for the

MH03-medium, V102-medium, and V202-medium datasets. These datasets include more ag-

gressive flight than the earlier datasets but do not generally include lighting or texture chal-

lenges. Minor motion blur is visible in all three of these flights, but not enought to disturb

the image processing module. In these flights, especially MH03-medium, we start to see more

dramatic changes in error as the system must deal with less reliable measurements. Still, error

generally remains under 30cm on all axes.

Figure 6.9: Trajectory Error: EUROC MH03

Figure 6.10: Trajectory Error: EUROC V102
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Figure 6.11: Trajectory Error: EUROC V202

Figures 6.12, 6.13, 6.14, and 6.15 below display the translational error in the INS pose

for the MH04-difficult, MH05-difficult, V103-difficult, and V203-difficult datasets. These

datasets are severely challenging as they include aggressive flight and significant challenges

to image processing module in the form of rapid lighting changes, decreased scene texture,

and significant motion blur. The aggressive motion and rapid lighting changes present in these

flights clearly challenges the system, with the more aggressive flights (MH04-difficult, MH05-

difficult) presenting more of a challenge than the flights focused on decreased scene texture

(V103-difficult, V203-difficult). Overall the system maintains stable estimation with errors

generally below 40cm on all axes.

Figure 6.12: Trajectory Error: EUROC MH04
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Figure 6.13: Trajectory Error: EUROC MH05

Figure 6.14: Trajectory Error: EUROC V103

Figure 6.15: Trajectory Error: EUROC V203

6.5.1 Summary and Comparisons to State-of-the-Art

The final RMSE the proposed system achieved on each flight is summarized in table 6.1 below

along with the performances reported in Delmerico et al. [13]. We have highlighted the best and

second best performances on each flight in green and blue, respectively. Flights that were not

able to be completed are marked with a ×. With the exception of SVO+GTSAM, all systems

successfully completed each flight.
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MSCKF OKVIS ROVIO VINS-MONO SVO+GTSAM Proposed

MH01 0.42 0.16 0.21 0.27 0.05 0.16

MH02 0.45 0.22 0.25 0.12 0.03 0.14

MH03 0.23 0.24 0.25 0.13 0.12 0.18

MH04 0.37 0.34 0.49 0.23 0.13 0.33

MH05 0.48 0.47 0.52 0.35 0.16 0.29

V101 0.34 0.09 0.10 0.07 0.07 0.07

V102 0.20 0.20 0.10 0.10 0.11 0.09

V103 0.67 0.24 0.14 0.13 × 0.17

V201 0.10 0.13 0.12 0.08 0.07 0.08

V202 0.16 0.16 0.14 0.08 × 0.10

V203 1.13 0.29 0.14 0.21 × 0.25

Table 6.1: EUROC Performance Results: Total Trajectory RMSE, partially reproduced from

[13]. The best performance on each dataset is marked in green, second place in blue. Failure

to complete the dataset is marked with an ×.

It is clear to see that SVO+GTSAM, when possible, outperforms the field. However, it

is the only VINS to have any failed flights, reinforcing the motivation for the work in this

thesis. The proposed system performs on-par with the current state-of-the-art VINS-MONO

and places in the top three for each flight.

78



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we developed a new method for intelligently validating visual measurements so

as to both maximize the reliability of the validation process while minimizing the delay caused

by the need to validate measurements. The sensor models and requisite sensor processing

techniques were described in 2. Chapter 3 developed the mathematical background necessary

to understand and implement common visual-inertial systems. Two common visual-inertial

systems were then presented in detail in chapter 4 along with the dynamic and measurement

models used. Chapter 5 then provided an in-depth analysis of the relationships between the

geometric properties of landmark observations and their relationships to the resulting quality

of landmark estimation. This chapter then concluded by proposing a measurement validation

strategy informed by these relationships. Chapter 6 then developed a visual-inertial estimator

utilizing the proposed strategy and compared its performance against several benchmark visual-

inertial systems. Based on these results, the proposed strategy was successful in mitigating the

fragility of the selected optimization framework and in achieving competitive results with the

state of the art.

7.2 Future Work

Although this thesis achieved its stated goals, several questions remain. First, the developed

estimator is lacking several funcitonalities that other state-of-the-art systems include, such as

intialization processes, zero-velocity detection, online sensor calibration, and support for loop
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closuers or visual relocalization. Before the system can truly be said to belong in conversations

with these existing systems at least some of these functionalities must be developed. Addition-

ally, these functionalities will allow the system to be tested on more datasets in more difficult

environments where the possibility of tracking loss is to be expected regardless of attempts to

improve robustness.

The expansion of the system to support stereo or RGB-D cameras would be a significant

step towards applying it to areas more relevant to the GAVLab’s research, as monocular visual-

inertial estimation performs poorly in the constant-velocity motion of our beloved autonomous

ground vehicles. Adding functionality tailored towards specific platforms also motivates the

integration of platform-specific constraints into further measurement validation schemes. Sup-

port for other sensors common on these vehicles would also move the system closer to being a

true workhorse estimator.
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Appendix A

Quaternion Details

A quaternion is a mathematical object of the form q = q4 + q1i + q2j + q3k where i, j, k are

imaginary numbers such that i2 = j2 = k2 = ijk = −1. There are a variety of choices in no-

tation and convention [43]. This work selects the Hamilton convention in line with the existing

robotics literature, mostly stemming from [47], [37]. This covention defines the quaternion as

q =

q4
qv

 = [q4, q1, q2, q3]
T

where qv = [q1, q2, q3]
T . A rotation quaternion is a quaternion of unit length, e.g. ||q||2 = 1.

A rotation quaternion can be understood to be an axis-angle rotation parameterization, where a

rotation of angle θ about a unit vector k results in a quaternion

q =



cos(θ/2)

kx sin(θ/2)

ky sin(θ/2)

kz sin(θ/2)


=

 cos(θ/2)

k sin(θ/2)


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The multiplication of quaternions is defined as:

q ⊗ p = L(q)p

=

q4I3×3 − [q×] qv

−qT
v q4

p

= q4I4×4 +

 0 −qT
v

qv [qv×]

p

where

[ω×] =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 .

The inverse of a quaternion is defined as:

q−1 =

 q4

−qv

 .

The integration of a quaternion using a rotation is defined as:

q̇ =
1

2
Ω(ω)q

=

0 −ωT

ω −[ω×]

 q

The zero-th order discrete integration is then:

q(tk+1) = Θ(tk+1, tk)q

= exp

(
1
2
Ω(ω)∆t

)
q

≈
(
I4×4 +

1
2
Ω(ω)∆t

)
q.
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The rotation matrix Cq or C(q) associated with the quaternion q is defined as:

Cq =

(
q24 − qT

v qv

)
I3×3 + 2qvq

T
v + 2q4[qv×]

The small angle approximation can also be applied to quaternions. Given an incremental

rotation δθ, the corresponding quaternion is then:

δq =

δq4
δqv


=

 cos(δθ/2)

k sin(δθ/2)


≈

 1

δθ/2


The details of the JPL quaternion implementation are specified in more detail in [47]. An

overview of quaternions in general is specified in [43].
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Appendix B

Numerical Integration

We consider systems of the form ẋ = f(x). An obvious and often good-enough method of

integrating this function is Euler’s method:

xk+1 ≈ xk + f(x)∆t

which is the easiest to implement but least accurate method of numerical integration. Lineariz-

ing f at xk gives:

xk+1 ≈ xk + F∆txk

≈ (I + F∆t)xk

which is a first-order approximation of the exact solution

xk+1 = exp(F∆t)xk.

This first-order approximation also gives the state transition matrix Φ ≈ I + F∆t.

A more involved but more accurate method is the Fourth-order Runge-Kutta method, also

known as RK4:

xk+1 = xk +
∆t

6
(α1 + 2α2 + 2α3 + α4)
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where

α1 = f(x)

α2 = f(x+
∆t

2
α1)

α3 = f(x+
∆t

2
α2)

α4 = f(x+∆tα3)
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Appendix C

Additional Trajectory Plots

This appendix contains full trajectory plots for all of the flights used in chapter 6.
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C.1 Machine Hall

Figure C.1: Estimated Trajectory for EUROC MH01
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Figure C.2: Estimated Trajectory for EUROC MH02
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Figure C.3: Estimated Trajectory for EUROC MH03

Figure C.4: Estimated Trajectory for EUROC MH04
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Figure C.5: Estimated Trajectory for EUROC MH05
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C.2 Vicon 1

Figure C.6: Estimated Trajectory for EUROC V101
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Figure C.7: Estimated Trajectory for EUROC V102
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Figure C.8: Estimated Trajectory for EUROC V103
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C.3 Vicon 2

Figure C.9: Estimated Trajectory for EUROC V201
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Figure C.10: Estimated Trajectory for EUROC V202
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Figure C.11: Estimated Trajectory for EUROC V203
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