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Abstract

Confined Vortex flows are of a great practical significance in industrial processes and

devices, especially within the fields of rheology and hydrodynamics. These confined swirling

flows are characterized by a progression of instabilities that arise as Reynolds number, or

Taylor number, increases. The growth of these small perturbations eventually result in sec-

ondary and even tertiary steady states with increasing spatio-temporal complexity. Eventu-

ally resulting in a fully turbulent flow field.

Effects of a varying height end-wall on the bifurcation and stability of secondary steady

state flows within the annular gap of a Taylor-Couette cell were investigated. Experiments

were conducted at four different end-wall aspect ratios of Γew = 0, 0.5, 1.0, and 1.5 at Taylor

numbers between Ta = 1,312 - 35,485. Co-rotation, counter-rotation, and stationary end-

wall rotational conditions were investigated for the three larger aspect ratios, at end-wall

Reynolds numbers between Reew = 944 - 2,926. Increases in Γew were found to attenuate

both the structural stability and vorticity of annular Taylor vortices. Co-rotation was found

to dampen the effects of increases in Γew while counter-rotation was found to enhance the

effects of increases in Γew. The changes in vortex stability and vorticity were found to result

primarily from oscillatory axial flow within the annulus. This axial flow was found to be

greatest at Γew = 1.0, and 1.5 where a flow similar to the vortex breakdown bubble found by

Escudier [24] was found to occur in the zone-2 region between the inner cylinder and upper

end-wall. The presence of these zone-2 vortical structures was found to play a pivotal role

in Taylor vortex stability and subsequent distortions at higher Ta numbers.
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Chapter 1

Introduction

1.1 Motivation

Flow contained between two parallel boundaries is encountered in a variate of practical

applications. Such bounded flows are found to occur in the motion of piston engine, the

boundary layer between a wing and calm free-stream air, or the rotating motion of a turbine

drive shaft; just to name a few. These bounded flows are what is known as Couette flow;

defined as a shearing flow between two parallel boundaries where a relative velocity gradient

exists. Classical Couette flow investigations have generally focused on the flow field contained

between two concentric rotating cylinders. Where flow patterns that are produced in the

gap between two concentric cylinders are dominated by the formation of instabilities that

eventually result in the creation of stacked axisymmetric toroidal vortices. These instabilities

are known as Taylor vortices, named after G.I. Taylor who first showed that the formation

of such vortices are characterized by the ratio of centrifugal forces relative to the viscous

forces present.

A Better understanding of the kinematics associated with the formation of Taylor vor-

tices and other resulting steady state flows that exist in a closed rotating system is of partic-

ular interest in the field of rheology. With a special emphasis on the kinematics of entrained

species. Most mixing processes involve some form of rotating impeller to achieve convec-

tion driven mass transport of one or more entrained species. Such processes result in an

extremely chaotic flow field that stretches, folds and disperses the material in unpredictable

ways. These uncertainties can prove to be extremely problematic in situations where the
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mixing efficiency of entrained species are highly sensitive to flow anisotropy. The stretch-

ing of polymer chains in pharmaceutical production and chemical refinement processes are

examples of such flows.

The stacked geometry of the counter rotating axisymmetric vortices present in Taylor-

Couette flow is ideally suited for the extensional stretching of entrained species, such as

polymer chains. However, there are limitations to the mixing potential of Taylor-Couette

flow. This limitation stems from the fact that Taylor vortices are a secondary steady state

that arises from centrifugal instabilities within laminar Couette flow. Which ultimately

bounds their formation to a relatively small range of rotational frequencies. If the rotation

rate of the inner cylinder is below a critical speed vortex formation does not occur. Con-

versely, If rotation is considerably increased beyond the critical rate Taylor vortices give way

to higher order steady states. Eventually resulting in a completely chaotic and turbulent

flow. These transitions between multiple steady states and the transition to turbulence have

prompted numerous studies in an attempt to better understand the inherent physics and

potentially gain control authority over the point at which such transitions occur.

While Taylor-Couette flow is one of the most studied flows in the fluids field it is by

no means the only one. Another highly intriguing flow field of interest within rheology is

that of the vortex breakdown. It is characterized by the formation of a recirculating zone,

also known as a vortex bubble, that forms near the bottom of a vortex core as it begins to

become unstable. While this phenomenon has been very well investigated and documented

on the wings of highly swept delta plan-forms investigations into broader applications have

been less pervasive. However, the formation of a vortex bubble is also found to occur in

many confined cylinder mixing processes, such as bioreactor cell cultivation, and is thus an

increasing topic of interest.

The formation of a recirculating region, and eventual breakdown of the vortex core,

can be observed within a confined cylinder filled with fluid where either one or both of the

cylinders end walls are rotated about the central axis. As with Taylor-Couette flow, the
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point of transition where the vortex core begins to become unstable is of great interest.

Many investigations have been undertaken in attempts to control the formation of vortex

bubbles and delay the eventual breakdown of the central core [24], [9], [31], [7], [41]. Most of

these control attempts have met with limited success, with the current solution for delta wing

aircraft being to divert the vortex in order to mitigate the adverse effects of the breakdown

when it does occur. However for mixing applications the diversion of a vortex core within

a confined cylinder is not a practical solution. Especially when considering that for mixing

to occur in such systems a central vortex is essential. Thus as with Taylor-Couette flow the

possible methods for how to control and more fully understand the kinematics behind these

transitions requires further investigation.

The objective of the present research was to investigate the kinematics of these two flow

fields, first separately and later in a combined setup. The hope being that further insight

can be ascertained that will lead to the development of methods that will give an increased

level of flow control within mixing processes. A more complete model of the physics behind

these steady state and turbulent transitions would not only aid in mixing processes but in

control of vortex dominated flows over wings, bearing design, and weather modeling. Many

different geometries have been tested in the past for both flow fields. However, no research

into the combination of these two flows has been conducted. Thus this research will examine

a very simple and traditional cylindrical geometry for these flows to allow for a more accurate

comparison to preexisting investigations of the individual flows. Analysis of the differences

present in the current research flow field configurations to that of previous investigations of

the individual flow fields was performed in order to establish what effects these two flows

have on steady state transitions when combined into a single domain.

1.2 Background

In order to establish a better understating of the key aspects of Taylor-Couette and

vortex breakdown flows a brief history is presented. Development of the current physical
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and kinematic understating of Taylor-Couette flow will be presented first, followed by the

history and current understanding of the vortex breakdown phenomenon. It should be noted

that the proceeding discussions will be heavily centered on Taylor-Couette flow, as that is

the primary goal. While Vortex Breakdowns will be treated as a supplemental topic.

1.2.1 Taylor-Couette Flow; A Brief History

Interest in the flow between concentric rotating cylinders dates back to 1687 when Sir

Isaac Newton used the geometric concept to describe the kinematics of rotational fluid motion

in his famous work Principia. Newton was able to outline a key fluid dynamics principle with

this example, using it to describe the resistance that arises in a fluid when fluid particles are

separated from one another. Today this resistant force is more commonly known as viscous

stress.

George Stokes was the next to investigate the flow between concentric rotating cylinders.

Stokes’ interest was in the velocity gradient that results from such a flow field, with a

particular focus on the probable boundary conditions at the solid surface of the rotating

wall. In 1848 he conceptually solved for the velocity gradients of three different arrangements,

outer cylinder rotation, inner cylinder rotation, and counter rotation. The conclusions Stokes

surmised were simple yet profound. First was his insight that boundary conditions at the

wall were, in his time, unknowable and that highly accurate experimental measurements

were needed in order to discover conditions that could be mathematically satisfied. Second,

and probably his most brilliant conclusions, was the realization that rotation of the inner

cylinder alone would ultimately result in highly unstable flow and eventually lead to eddy

formations. This second conclusion was certainly ahead of its time, for it took another 75

years before evidence of Taylor vortices were experimentally found.

By the late 1880’s scientific desire for further understanding of fluid viscosity and its

effects was at the forefront of fluid dynamic research. However, there was a formidable barrier

that existed since no accurate means of measuring fluid viscosity existed at the time. In 1888
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two men, Henry Mallock and Maurice Couette, broke through this barrier by creating devices

that used concentric cylinders where either the inner or outer cylinder was suspended from

a torsion fiber. Interestingly, these men created their devices independent of one another

with no knowledge of the other’s work. Couette focused solely on the configuration where

the inner cylinder was suspended while the outer cylinder rotated. Using this configuration

Coutte was able to accurately measure torsion by observing the amount of deflection that

was imposed on the inner cylinder. From these torsion measurements, he was able to show

that the viscosity of water is constant up to Re ≈ 2000. After this discovery devices of

such design became known as Couette viscometers, in recognition of his work. Mallock, on

the other hand, designed his apparatus to function in such a way where either the inner or

outer cylinder could be rotated. By utilizing both configurations He discovered that there

is no linear relation between torque and angular velocity when the inner cylinder is rotated.

This finding lead Mallock to come to the same, albeit incorrect, conclusion that Stokes had

forty years earlier: any flow produced by the rotation of the inner cylinder would always be

inherently unstable.

In 1920, Lord Rayleigh expanded upon Mallock’s work in an attempt to better under-

stand the stability of flow between two concentric cylinders. He did this by calculating the

flow stability in the absence of viscous forces. “He showed that the flow is stable provided

the square of the angular momentum per unit mass of the fluid increases monotonically out-

ward” [22]. This result holds with Mallock’s findings that inner cylinder rotation will cause

the flow to be unstable while outer cylinder rotation will result in stable flow up to a critical

point. While Rayleigh was correct in his calculations the exclusion of viscosity ultimately

led him to an inaccurate generalization.

It was not until 1923 and the groundbreaking work of G.I. Taylor that the effects of

viscosity on flow field stability were finally understood. Using experimental ink flow visual-

ization and photographic recordings of the unstable flows resulting patterns, Taylor was able

to extrapolate a theoretical stability diagram. Making him the first person to successfully
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bridge the gap between stability theory and experimental observations. This success was due

to his works reliance on the assumption of a no-slip boundary condition at a solid surface.

The significance of Taylor’s assumption and resulting observations was profound. His results

were one of the strongest and most convincing pieces of evidence to support the accuracy of

the Navier-Stokes equations and the importance of the no-slip boundary condition.

1.2.2 Instabilities and the Formation of Secondary States

Much of the research that followed Taylor’s seminal work was concerned with the super-

critical point at which Couette flow bifurcates into Taylor Vortex Flow, hereafter referred to

as TVF. Initial research by Donnelly & Schwarz (1965), Chandrasekhar (1961), and Davey et

al. (1968) focused on mathematically describing the eigenvalue problem and how to measure

the transition at which TVF occurs more precisely [21], [11], [19]. Much of this early work

in the 1960s was focused on what the effects of varying η and µΩ were on the critical Taylor

number, where η = Ri

Ro
and µΩ = Ωo

Ωi
.

By the mid 60’s experimental observations by Coles (1965), Schwarz et al. (1964)

as well as mathematical investigations by Coles, suggested that higher-order stable states

beyond that of the initial bifurcation from Couette to TVF existed [15], [46]. Such results

were inconsistent with Taylors original conclusion that “A moderate increase in the speed of

the apparatus merely increased the vigor of the circulation in the vortices without altering

appreciably their spacing or position, but a large increase caused the symmetrical motion to

break down into some kind of turbulent motion” [52]. However, in 1965 Coles solidified these

predictions of higher-order steady states when he experimentally observed the formation of

azimuthal travailing waves within TVF. This additional bifurcation of the Couette flow field

beyond TVF was described as Wavy Vortex Flow (WVF) [15]. Comparison between TVF

and the WVF that Coles discovered can be seen in Fig 1.1. These results were later verified

by Davey et al. (1968) and Krueger et al. (1966) [19], [32].
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By the mid 1980s it was found by Synder that the assumption of a cylinder of infinite

length that had been used since Taylor in the models and analysis of the instability of

Circular Couette Flow, (CCF), was not as accurate as previously assumed. Andereck et

al. (1986) cited Synder on this finding saying, “Synder (1969) also found that the finite

length of the cylinders and the specific boundary conditions at the ends of the fluid column

are important in determining how near a given system is to the ideal infinite-cylinder case”

[2]. Snyder showed that in a finite length system boundary conditions at the stationary end

walls result in the formation of Ekman cells near the top and bottom of the fluid column

and that the effects of these cell formations become non-negligible when L/d < 10 [2], [14].

The formation of these Ekman cells, also known as Ekman vortices, were found to result

from an imbalance between the pressure gradient and centrifugal forces that arises at the

stationary end walls. This imbalance deforms stable CCF, causing a secondary circulation

that forms into a stationary and rotationally symmetric base which differs from that of the

infinite length case [17], [28]. Ironically this discovery partially validated Mallock and Stokes

original assumption that any flow produced by inner cylinder rotation would be unstable.

Later studies found that the formation of these end wall disturbances is not dependent on

cylinder rotation rates but are in fact present at all instances of rotation [5], [17].

The Work done by Andereck et al. in the mid 1980s was fundamental in further ex-

panding the known regimes of secondary steady state formations. Two separate studies were

conducted by Andereck et al. (1983 & 86) that essentially mapped the vast majority of

possible flow states that could be achieved within a Coutte cell. For both of these studies

their system utilized a small gap ratio of η ≥ 0.8 and independently rotating inner and outer

cylinders, which allowed for as large of an experimental range as possible [2], [3]. Between

these two studies, a large number of new secondary steady states were described, such as

Modulated Wavy Vortices (MWV), Wavy Inflow Boundary (WIB), Wavy Outflow Bound-

ary (WOB), Wavelets (WVL), etc. They mapped these different flow regimes as functions

of inner and outer cylinder Reynolds numbers, which can be seen in Fig 1.2.
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(a) Taylor Vortex Flow (b) Wavy Vortex Flow

Figure 1.1: Schematic representation of the counter-rotating toroidal vortices
produced by TVF: (a) and WVF: (b), [37]

1.2.3 Methods of Control

Several investigations over the years have attempted to establish a means of control over

the supercritical points at which Couette flow begins to bifurcate between the various stable

states. These attempts can be separated into one of two categories, passive or active methods

of control. Passive means have traditionally utilized some form of geometric modification

to the system. Whereas active methods have generally used some type of external forcing,

such as an induced magnetic field or through flow within the annulus. These methods are

discussed in detail in the following sections.

Passive Flow Control

Flow stability, and control of the critical point at which flow bifurcation occurs, was

first achieved by altering the geometric parameters of a Couette cell; namely the gap ratio η.

Taylor (1923) performed a limited investigation on the effects of varying gap ratios on the

stability of CCF in his seminal work. Although he did not discuss η specifically, his results
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Figure 1.2: Taylor-Couette Flow Regime Chart; produced by Andereck, Lui and
Swinney (1986) [2]. Here Ri & Ro represent the Reynolds number of the inner
and outer cylinders respectively.

(
−−−

)
indicate expected transition boundaries

that were not firmly established by visual observations.
(
· · ·
)
indicates expected

continuations of unobserved boundaries. Gray area on the Ro = 0 line represents
the approximate test domain of the current work.
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show a general stabilizing effect on CCF as the gap ratio was increased [52]. These results

were later expanded on by Coles (1967), and Sparrow et. al. (1964) to include wide gap

ratios. They were able to analytically verify and show that stability of the flow is indeed

increased as η → 1 [16], [50]. A more recent investigation by Moussa et. al. (2014) further

refined the current understanding of these effects. Their results showed that there is a critical

point that exists at η = 0.5 and that the critical Reynolds number at which instability occurs

had a direct and slightly indirect correlative relationship relative to an increase or decrease

in η beyond 0.5 [38]. The effect of η on the transition between TVF and WVF was not

as easily explained. A result that was altogether not surprising as a previous study by

Jones (1984) showed that the transition between TVF and WVF was dependent on several

variables including gap ratio, flow wavenumber, and the acceleration used to approach a

given Re number [30].

Cole (1976) investigated the effects that annulus length had on flow stability. He utilized

aspect ratios (ΓC) in the range of 1-107 and found that annulus length had little to no effect

on the primary transition from CCF to TVF. The transition between TVF to WVF however,

was significantly affected by the length and resulted in an inverse relation between ΓC and

the point of TV F → WV F bifurcation. Indicating that shorter annuli stabilize TVF. These

effects become most significant for Γ < 40, where the critical Re number for the transition

to WVF increased by orders of magnitude [14].

Geometric changes to the topology of the cylinders have also been investigated. Ikeda

& Maxworthy (1994) used sinusoidal modulations on the inner cylinder in-order to spatially

force the flow [29]. They found that forcing did not effect the conditions at which bifurcation

occurs for either the primary or secondary instability. However, it did artificially alter the

wavelength of the vortices. Where a spatial amplitude of 10% the minimum gap width

resulted in a 25% increase in wavelength compared to natural [29]. More recently Sprague

et. al. (2008) utilized an axial step on the inner cylinder in the form of a spatial discontinuity

located at the center [51]. Such an arrangement allowed for the simultaneous existence of
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sub-critical CCF and supercritical TVF within the annulus. They noted that when one

region was supercritical, while the other was sub-critical, moderately damped Taylor vortices

weakly extended into the neighboring sub-critical region. However, if both regions were

supercritical the resulting Taylor vortices produced in each region were dissimilar and differed

in wavelengths [51].

One of the more interesting geometric alterations that has been studied is that of a

conical Couette cell, investigated by both Wimmer (1995) and Noui-Mehidi et. al. (2001).

In this geometric configuration, the two concentric cones lead to a centrifugal force that was

varied in the axial direction. This variance, like that of the spatial discontinuity, resulted

in sub-critical and supercritical flow regimes existing within the annulus simultaneously.

Initial instability was found to occur in the presence of the cones larger radii, and slowly

filled the annulus as Re increased. This conical system also produced the rather interesting

phenomenon of a periodic cycle of vortex travel whenever both sub and supercritical regions

were present. This travel was characterized by the slow compression of the vortices that had

the same rotational direction as that of the fixed end wall vortex near the cones larger radii.

This compression continued until the upper most compressed vortex disappeared, at which

point another vortex was generated out of the sub-critical region. Thus resulting in what

appeared to be vortex travel from the smaller to lager radial end wall [56], [44].

Active Flow Control

Unlike passive control methods which are subjugated to changes in system geometry,

active flow control incorporates numerous means by which to improve flow stability. Each

of these means utilizes one or more external forces applied to the system. One such method

is the use of through flows within the annulus.

Numerical simulations by Serre et al. (2008) addressed the effects of such a through

flow [47]. Their study utilized both a radial outflow and radial inflow and found that rela-

tively small radial outflows destabilized the system and enhanced the strength of the Taylor
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vortices. A strong radial outflow or any radial inflow however, actually acted to stabilize

the base CCF. They additionally state that the effects on the transition between TVF and

WVF were less clear but did display a basic trend that showed that the transition to WVF

was unaffected by the presence of a weak radial outflow. In the presence of a strong radial

outflow, localized dislocations appeared in the wavy vortex structure but no discernible effect

on the transition was found. However, when a radial inflow was applied a stabilizing effect

that delayed the bifurcation to WVF was found to occur. [47].

More recently, Lalaoua (2015) simulated the effects of radial pulsation of the outer

cylinder [33]. His results show a significant stabilization of the base CCF for ever increasing

oscillating amplitude numbers, ϵosc; where ϵosc = ∆Ro/Ri is radial strain. Lalaoua’s model

also showed a significant topological effect on Taylor vortices. Producing a flow pattern

which tended towards those resembling the recirculating eddies produced behind a circular

disc in a uniform flow, an effect which occurred at ϵosc ≥ 7 [33].

One of the more traditional methods of actively controlling the stability of TCF has

been through the use of external applied magnetic fields. This is done by either entraining

the working fluid contained with in the annular gap of the system with magnetic particles in

such a way that the partials are suspended in the fluid, or by utilizing a liquid metal such as

mercury or liquid sodium as the working fluid. Chandrasekhar (1953) first mathematically

investigated this problem back in 1953 where he considered a TCF system with a weakly

electrically conductive viscous working fluid in the presence of a uniform magnetic field

applied in the axial direction [12]. He demonstrated that for Prm << 1, where Prm = ν
ηmag

, the

presence of the magnetic field will act to stabilize the flow [12]. Donnelly and Ozima (1962)

later verified Chandrasekhar’s results experimentally and demonstrated that as magnetic

field strength increased, torque measurements on the inner cylinder were reduced, and thus

concluded that the flow was stable for some range beyond the critical speed [20].

More recent forays into the effects of an induced magnetic field on TCF stability have

expanded upon the results of previous studies. Willis and Barenghi (2002) found that while
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an axial field did stabilize the base CCF, the overall effect on the supercritical point of

bifurcation to TVF was small when compared to the effects on the transition point to WVF

[54], [55]. They showed that “A small field is capable of pushing the secondary instability

from only a few percent above the first instability to several times the critical Reynolds

number,” [55]. While most of the studies conducted utilized an axially oriented magnetic

field, other studies have additionally shown that both radial and azimuthal fields also have

a stabilizing effect on the base CCF that delays the formation of Taylor vortices as well [43].

1.2.4 Vortex Breakdowns

Unlike Couette flow, investigations into the dynamics of vortex breakdowns are relatively

new. While interest in fluid dynamics as a whole dates back to the ancient Greeks, vortical

flows were historically treated more as a scientific curiosity than an actual topic of focus. That

was until the mid-nineteenth century and the pioneering work of Hermann von Helmholtz

(1867). In his 1867 paper “On Integrals of the Hydrodynamical Equations which Express

Vortex Motion”, Helmholtz established his three laws of vortex motion which ultimately

sparked a new interest in the topic that continues to this day [27]. Since then, the study

of vortical flows has matured into its own subfield of fluid dynamics that is known today

as vortex dynamics. It took almost another 90 years from the time of Helmholtz’s break

through paper before the first vortex breakdown was recognized. In 1957 Peckham and

Atkinson were the first to investigate the breakdown phenomena by qualitatively examining

the leading edge vortices of highly swept delta wings [45]. J.K. Harvey (1962) was the first

to study vortex breakdowns in a controlled laboratory setting [26]. In 1962 he utilized a

setup where the swirl angle of a flow within a tube could be varied. With this setup Harvey

was able to observe a bubble type vortex breakdown and estimated a critical swirl angle,

defined as

Sangle = tan−1 axial velocity

tangential velocity
(1.1)
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to be approximately 50.5◦ [26]. He characterized this bubble type breakdown as an

axisymmetric elongated sphere of stagnant fluid that the flow moves around until conditions

downstream are similarly parallel to those upstream of the bubble. Since the flow down-

stream of the bubble was nearly identical to flow upstream, it lead Harvey to the conclusion

that a vortex breakdown was not the result of flow instability. The early investigations pre-

dominantly utilized these swirling pipe flows to investigate the vortex breakdown phenomena.

Vogel (1968) however, introduced the concept of using a closed geometry to investigate the

breakdown and utilized a rotating end-wall in a closed cylindrical system to drive the flow.

His results were later expanded upon by the seminal work of Escudier in 1984 [58], [24]. It is

this closed geometry used by Vogel and Escudier that is of particular interest in the current

work. While there is a large amount of overlap in the flow field characteristics within open

and closed geometries, only the concepts of the later will be discussed.

1.2.5 Vortex Breakdown and Control

A vortex breakdown is defined by an abrupt change in the structure of a swirling flow.

There are two main types of vortex breakdowns. Type 0, also known as a bubble breakdown

or an axisymmetric breakdown, and type 2, also known as a spiral breakdown [39]. Within

a closed geometry, only the bubble (type 0) breakdown is known to occur. This bubble is

characterized by a limited region of recirculating flow that appears just downstream of an

axial stagnation point. The stability limit at which this axial vortex bubble begins to form

is determined by two parameters, the aspect ratio H/Ro, and the Reynolds number Re [58].

Escudier’s investigation expanded upon Vogel’s work by using a larger variable range for

these parameters. In doing so, he was able to detect up to 3 distinct breakdown bubbles

with recirculating regions and noted that in some cases, when Re > 2, 500 and H/Ro > 1.5,

bubbles were found to oscillate in the axial direction. These results can be seen in Fig

1.3 [24]. Escudier’s conclusions agree with those of Harvey in that the formation of vortex

breakdown bubbles was not the result of flow instability, but was instead a transition from
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one state to another. Any perturbations that existed in the flow would only result in a

divergence from the axisymmetric geometry of the breakdown but would otherwise have no

effect on its genesis. These basic results found by Escudier and Vogel for confined vortex

breakdowns were later numerically verified by Lopez et. al. (1989 & 90) using the unsteady

axisymmetric Navier-Stokes equation in an investigative series on axisymmetric breakdowns

[34], [35], [8].

Increased understanding of the vortex breakdown phenomena has lead to many varied

attempts at controlling its onset. Predominately this has involved the addition of a structural

impedance, typically a rod, on the central axis. Cabeza et al. (2006) studied the effects of

various sized rods placed along the central axis [9]. Utilizing radius ratios ranging from

Rr/Ro = 0.025 → 0.125, they found that as Rr was increased the critical Reynolds number

at which vortex breakdown begins to occur also increased. Their results also show that for

rod radii Rr ≥ 0.0625, a vortex breakdown can occur at an aspect ratio of H/RO = 1. This

result differs from the open cylinder case studied by Escudier and other where no breakdown

of any kind was found to occur at such a small aspect ratio; as noted in Fig 1.3.

Jørgensen, Sørensen and Aubry (2010) conducted a numerical study that also utilized

a small axial rod to try and control vortex bubble formations [31]. However, unlike the

passive stationary rod employed by Cebeza et al. they utilized a dynamic rotational rod in

their model and conducted test for both co-rotation and counter-rotation cases. It should be

noted that in this configuration, Jørgensen, Sørensen and Aubry’s system was very similar in

scope to that of a large gap Taylor-Coutte system, with the exception being that one of their

end-walls was not stationary. Using constants for the end-wall Reynolds number,Reew =

2, 200, aspect ratio, H/R0 = 2.0, and radius ratio, Rr/RO = 0.02, they found that rod

rotation results in the generation of a negative local vortex source near the fixed end-wall

and a positive source near the rotating end-wall. Strength of these local sources was found

to depend on the rotational direction of the rod, such that counter-rotation enhanced the

positive source while co-rotation enhanced the negative source. Jørgensen et al. state that
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Figure 1.3: Stability boundaries for vortex breakdowns; produced by Escudier
[24]. Here R = Ro, Ω = Ωew the arrows represent the limits of Vogel’s investiga-
tions, while the gray area represents the approximate test domain of the current
work.
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“it is the balance between the positive vorticity source near the rotating lid and the negative

vorticity source near the fixed lid that controls the vortex breakdown” [31].

From their simulations, Jørgensen, Sørensen and Aubry (2010) found that when the

positive source near the rotating end-wall was dominant, i.e. counter-rotation of the central

rod relative to the rotating end-wall, vortex breakdowns were enhanced and resulted in

larger and stronger breakdown bubbles. Domination of the negative source near the fixed

wall however, i.e. co-rotation of the central rod relative to the rotating end-wall, was found

to result in smaller weaker breakdown bubbles. In cases where the Reynolds number ratio

was Rerod/Relid ≥ 0.005 vortex breakdown bubbles were seen to disappear completely. With

these results Jørgensen et. al. showed that, even when utilizing a relatively thin axial rod,

“Breakdown bubbles are either prevented by co-rotation or promoted by counter-rotation”

[31].

Another method for actively controlling confined vortex breakdowns, that has been

investigated over the past few decades, is the simultaneous rotation of both end-walls. Brøns,

Voigt, and Sørensen (1999) performed a numerical investigation on the effects of co and

counter-rotation of equally sized end-walls [7]. They conducted tests over a range of Reynolds

numbers, Reew = 800 − 2, 500, aspect ratios, Γew = 1 − 3.5, and end-wall rotation ratios,

Ωbottom

Ωtop
= −0.02− 0.05, where positive and negative values of Ωbottom

Ωtop
correspond to counter-

rotation and co-rotation respectively. Their results showed that a delay in vortex breakdown

bubble formation occurred for the counter-rotational end-wall cases. This, in turn, resulted

in a stability graph ( Re

Γew
) where the bifurcation curves were shifted in the positive direction

along both the vertical and horizontal axes. Counter-rotation was also found to result in a

much narrower ( Re

Γew
) range, in which vortex breakdown bubbles were formed, when compared

to the findings of Escudier and Vogel; displayed in Fig 1.3. For the co-rotational cases Brøns,

Voigt and Sørensen (1999) observed the opposite tendencies, such that the bifurcation curve

was shown to have a negative vertical and horizontal axial shift that was accompanied by

a broader range between the upper and lower limits of the ( Re

Γew
) bifurcation curve. These
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changes ultimately resulted in lower critical Reynolds numbers at which vortex bubbles were

seen for a given Γew; again, when compared to Escudier and Vogel’s findings.

More recently Munumga et al. (2014) performed an experimental investigation similar

to that of the numerical investigation conducted by Brøns, Voigt and Sørensen (1999) to

determine the effectiveness of double end-wall rotation control on vortex breakdowns. How-

ever, unlike the previous numerical study Munumga et al. (2014) did not use equally sized

rotating end-walls in their experimental system. Instead, their setup utilized a primary top

rotating end wall, (of radius Rew), with a partially rotating bottom end-wall where the outer

most radius was stationary while the inner portion was made to rotate using various radial

sized inserts (rd).[41]. Their study employed a control disk to primary end-wall radius ratio

range of approximately rd/Rew = 0.05 to 0.31 for a constant Γew = 2. Experimental results

showed a general agreement to the numerical analysis of Brøns et al. (1999) such that vortex

breakdown was seen to occur at lower Reynolds numbers for co-rotation but was delayed to

higher Reynolds numbers for counter-rotation. Additionally stating that, these higher and

lower critical Reynolds number effects were, “amplified substantially by the use of larger

control disks and higher rotation ratios” [41].

1.3 Fluid Dynamics

In this section a mathematical foundation of the physics within the two flow fields is

presented. A more general formulation will be defined starting with Newton’s second law

and its application to fluids; better known as the Navier-Stokes equations. Followed by more

specific examples and equations that pertain directly to the boundary conditions of the flow

fields being presented here.
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1.3.1 Navier-Stokes Equations

Newtons second law is one of the fundamental laws of physics. Simply stated, the second

law says that the force acting on an object is equal to the object’s time rate of change of

momentum and is defined as [4].

F =
d

dt
(mU) (1.2)

Here the term (mU ) is known as the momentum of a body with mass m. When applying

Eq. 1.2 to a system of fluid particles however, it is more convenient to work with density as

opposed to mass. Thus, by dividing the momentum term by the volume of the system and

reversing the terms for convenience Eq. 1.2 can be rewritten [53].

f = ρ
dU

dt
(1.3)

The term f in the equation above represents the applied force per unit volume on the

fluid particles contained with a system. This term can be divided into two distinct compo-

nents fbody and fsurface [53]. Body forces are the macro scale forces, such as electromagnetic

fields and gravity, which act at a distance on the entire volume of a system [4]. Surface forces

on the other hand are those which act on the control surface of a fluid element. These forces

arise from the stresses that are exerted on the sides of fluid elements and can be defined by

the stress tensor written below; in Cartesian coordinates:

τij =


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 (1.4)

Contained within Eq. 1.4 are two distinct forms of stress: normal-stress and shear-

stress. Normal stresses are the diagonal terms, where i = j. While shear stresses are the off

diagonal terms, where i ̸= j. Thus, since τij is a symmetric tensor, it follows that τij = τji
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. If a fluid system is not at equilibrium the relative motion between fluid particles produces

stress imbalances that result in net forces on the control surfaces of the fluid elements[18].

This net surface force can be written on a unit volume basis as:

fi =

[
∂τii
∂xi

+
∂τij
∂xj

+
∂τik
∂xk

]
=
∂τij
∂xj

= ∇ · τij (1.5)

Where fi is the force in the ith direction and i, j, and k are arbitrary coordinate place

holders. Using this new definition of fsurface from Eq. 1.5 and assuming that no external

forces are applied to the system of interest, save for the ever-present force gravity, Eq. 1.3

can be rewritten.

ρ
DU

Dt
= ρg+∇ · τij (1.6)

In-order to simplify Eq. 1.6 further the relationship between τij and ϵij needs to be

established so that τij can be expressed in terms of fluid velocity U. It is at this point

that further manipulation of Newton’s second law alone is of no use in advancing the math-

ematical description of fluid systems. Thus, additional theorems must be applied to Eq.

1.6. Introducing the fundamental law of conservation of mass and Newton’s law of viscosity,

combined with Stokes three postulates for the deformation of fluids, into Eq. 1.6 will allow

for further discussion of the mathematical model. For conservation of mass the law simply

states, that within any given system mass must be conserved, ie:

m = ρV = ρ
dV

dt
+V

dρ

dt
= constant (1.7)

As previously mentioned, the goal is to express as many terms as possible as functions of

fluid velocity. For the term ∂V
∂t

in Eq. 1.7 this can be accomplished by utilizing the fact that

the volumetric time rate of change of a fluid element is the result of total dilation caused by

extensional forces acting on the element. By implementing this fact ∂V
∂t

can now be rewritten

in terms of normal-strain [53].
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1

V

dV

dt
= ϵii + ϵjj + ϵkk =

∂ui
∂xi

+
∂uj
∂xj

+
∂uk
∂xk

= ∇ ·U (1.8)

Plugging the result of Eq. 1.8 into Eq. 1.7 and assuming fluid incompressibility where

ρ = constant, which is an accurate assumption for the fluid used in the current work, the

equation for the conservation of mass becomes:

∇ ·U = 0 (1.9)

The resulting equation above can now be combined with Stokes’ first and second pos-

tulates of fluid deformation. Respectively, these two postulates state that there must be

a linear relationship between τij and ϵij , and that the fluid must be isotropic. Applying

these criteria allows for the normal-stress term ∂τii
∂xi

contained within Eq. 1.5 to be rewritten

in terms of ϵij. With the relationship between normal-stress and strain established, shear-

stress must now be addressed so that it too can be rewritten in terms of ϵij. This can be

accomplished by using Newtons law of viscosity which states:

τij = ρυ
(
2ϵij
)
= ρυ2

(
1

2

[
∂ui
∂xj

+
∂uj
∂xi

])
(1.10)

Equations 1.9 and 1.10 fulfill the first and second postulate of Stokes deformation law.

The final postulate that needs to be satisfied is Stokes’s third postulate, which states: when

the fluid is at rest where ϵij = 0, the deformation law must reduce to the hydrostatic

equation. This implies that when a fluid is at rest normal-stresses must reduce to the

hydrostatic pressure:

τii = −p when τij = 0 ∴ ∇p = ρg (1.11)

Combining the concepts from Eqs.
(
1.7 - 1.11

)
descried above, stress terms can now be

rewritten in terms of fluid velocity and pressure.
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τij = −pδij + ρυ

[
∂ui
∂xj

+
∂uj
∂xi

]
+ λ
(
∇ ·U

)
δij (1.12)

Where δij is the Kronecker delta and λ is the bulk viscosity coefficient. As previously

stated the fluid of interest can be assumed to be incompressible. Thus, the third term on

the right hand side in Eq. 1.12 goes to zero; leaving just the pressure and viscous terms.

Using these results Eq. 1.6 can be rewritten.

ρ

[
∂U

∂t
+
(
U · ∇

)
U

]
def≡ ρ

DU

Dt
= ρg−∇p+ ρυ∇2U (1.13)

The resulting equation presented in Eq. 1.13 is known as the Navier-Stokes equation

and represents the fundamental foundation from which all viscous fluid systems are modeled.

Navier-Stokes: Cylindrical Coordinates

For the purpose of this work, it becomes convenient to transform Eq: 1.13 into a cylindri-

cal coordinate system since the boundary conditions of the applicable geometry are, in-fact,

a cylinder. Thus the following identities can be established between Cartesian (x, y, z) and

cylindrical (r, θ, z) coordinates:

x = r cos θ y = r sin θ z = z

r =
√
x2 + y2 θ = tan−1 y

x
z = z

(1.14)

Where x = radial direction, θ = azimuthal direction and z = axial direction. The

dell operator must also be expressed in terms of the cylindrical system, taking the form:

∇ = êr
∂

∂r
+ êθ

∂

∂θ
+ êz

∂

∂z
(1.15)

Here êr , êθ and êz are the unit vectors in the radial, azimuthal and axial directions

respectively. Using the identities from Eq. 1.14 and Eq. 1.15, the vector form of the Navier-

Stokes, from Eq. 1.13, can be rewritten in cylindrical coordinates using velocity components
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with a vector field
−→
U = (vr, vθ, vz).

continuity:

1

r

∂

∂r

(
rvr

)
+

1

r

∂vθ
∂θ

+
∂vz
∂z

= 0 (1.16)

r-momentum:

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

− v2θ
r

+ vz
∂vr
∂z

)
=

ρgr −
∂P

∂r
+ µ

(
1

r

∂

∂r

(
r
∂vr
∂r

)
− vr
r2

+
1

r2
∂2vr
∂θ2

− 2

r2
∂vθ
∂θ

+
∂2vr
∂z2

)
(1.17)

θ-momentum:

ρ

(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vrvθ
r

+ vz
∂vθ
∂z

)
=

ρgθ −
∂P

∂θ
+ µ

(
1

r

∂

∂r

(
r
∂vθ
∂r

)
+
vθ
r2

+
1

r2
∂2vθ
∂θ2

− 2

r2
∂vr
∂θ

+
∂2vθ
∂z2

)
(1.18)

z-momentum:

ρ

(
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

)
=

ρgz −
∂P

∂z
+ µ

(
1

r

∂

∂r

(
r
∂vz
∂r

)
+

1

r2
∂2vz
∂θ2

+
∂2vz
∂z2

) (1.19)
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1.3.2 Vortex Dynamics

One of the most fundamental characteristics of any flow is the amount of angular defor-

mation which acts on the fluid elements. Flow fields can be divide into two distinct classifi-

cation, rotational and irrotational, dependent on whether angular deformation is present or

not. Many viscous flows, including those presented in the present work, eventually produce

some form of angular motion somewhere in the velocity field and are thus rotational. The

loci where these rotationalities are present are known as eddies and their distribution within

the flow is defined by the vorticity field ω:

ω = curl U = ∇×U = 2Ω (1.20)

Here Ω denotes the angular velocity of the flow field. Where, given a velocity field

U = (ui, uj, uk), the components of Ω are defined as the rates of rotation about the axes

(i, j, k) and are written in the form:

Ωi =
1

2

(
∂uk
∂xj

− ∂uj
∂xk

)
(1.21)

Eq. 1.21 is of a similar form as that of the shear strain term, ϵij, from Eq. 1.10. This

stems from the fact that ϵij and ω are not mutually independent of one another. Although ϵij

and ω represent very different rates of measure, distortion and rotation respectively, they are

both the result of the velocity gradient on individual fluid particles. Therefore, the velocity

gradient itself can be thought of as a composition of ϵij and ω. This relationship is most

easily seen by comparing how ϵij and ω relate to the Laplacian and the velocity gradient:

∇2ui = 2
∂ϵij
∂xj

= −
[
∇× ω

]
i

(1.22)

∂ui
∂xj

= ϵij + 2Ωk (1.23)
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“Thus, gradients in the strain field are related to gradients in vorticity. Note, however,

that a uniform strain field can exist without vorticity while a uniform distribution of vorticity

can exist without strain” [18]. While the former statement is mathematically true, it is only

applicable for the special case of an inviscid flow. Although there are instances where such

a model would be acceptable, this is not the case in the present work. Thus viscosity and

its effects on the flow field, and more specifically on vorticity, must be addressed. This is

most easily accomplished by first establishing a relationship between vorticity and angular

moment (LΩ). Given a small fluid element which is instantaneously spherical, and can thus

be treated as a pseudo rigid body with a moment of inertia (I), the relationship between ω

and LΩ can be written as:

LΩ =
1

2
Iω = IΩ (1.24)

Since the element being considered is instantaneously spherical, at any one particular

instant in time, pressure would be pointing inward at any given instant and thus have no

significant effect on LΩ. Therefore, any change in LΩ would be a result of tangential surface

stresses alone and the Lagrangian derivative of angular momentum can be written as:

DLΩ

Dt
= Tν =⇒ I

Dω

Dt
= −ωDI

Dt
+ 2Tν (1.25)

Where Tν is the viscous torque produced by the tangential surface stresses acting on

the fluid element. This result leads to a very important implication. That being, to conserve

momentum any change in the elements vorticity must result from either a change in viscous

torque, a change in the elements moment of inertia, or some combination therein. In the

latter case where viscous torque can be considered negligible any increase in ω must result

solely form a decrease in I; thus the fluid element must be elongated about its axis of rotation

for an increase in vorticity to occur. These results are confirmed by comparing Eq. 1.25

with the Navier-Stokes equation (Eq. 1.13) from the previous section, where Eq. 1.13 can

be rewritten in terms of ω using the form:

25



∂U

∂t
= U × ω −∇

(
P

ρ
+
U2

2

)
+ ν∇2U (1.26)

Here
(

P
ρ
+ U2

2

)
is the Bernoulli function where U2

2
is derived from the vector identity(

U · ∇
)
U +U × ω. By taking the curl of Eq. 1.26 the equation can be further simplified:

Dω

Dt
=
(
ω · ∇

)
U + ν∇2ω (1.27)

From this, an analogy can be drawn from the terms on the right-hand side of Eq. 1.26

and 1.27 where:

−ω
DI

Dt
=
(
ω · ∇

)
U ⇒ Change in vorticity due to fluid stretching (1.28)

2Tν = ν∇2ω ⇒ Change in vorticity due to viscous stresses (1.29)

These results reinforce the previously stated conclusions drawn from Eq: 1.25. At this

point, a somewhat laconic mathematical base of vorticity has been established. However, it

becomes more convenient to express the components of ω in terms of cylindrical coordinates

before moving on. As previously done with the Navier-Stokes equations of motion, ω can be

rewritten in terms of the r , θ and z coordinate system utilizing the form:

ωr =

(
1

r

∂uz
∂θ

− ∂uθ
∂z

)
ωθ =

(
∂ur
∂z

− ∂uz
∂r

)
ωz =

(
1

r

∂

∂r

(
ruθ
)
− 1

r

∂ur
∂θ

)
(1.30)

Taylor-Couette Flows

To fully understand the dynamics of Taylor-Couette flow and the formation of secondary

steady states, one must first understand the dynamics of centrifugal instability. The basis for

this concept was first developed by Lord Rayleigh in 1916. Rayleigh established a criterion
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for the instability of a swirling flow where angular velocity Ω(r) has an arbitrary dependence

on the radial distance from the axis of rotation. This criterion states that, for a swirling flow

to be stable the following condition must hold:

ζ(r) > 0 where ζ =
1

r3
d

dr

(
r4Ω2

)
(1.31)

It seems ironic, after such an important emphasis was placed on viscosity in the previous

section, that to establish the basic concepts from which this criterion was derived the focus

must be shifted and an inviscid azimuthal flow must now be considered. Rayleigh used a

simple physical argument by considering two fluid elements of equal volume, (dV ), rotating

about a common axis at two separate radial distances, where:

uθ = rΩ(r) (1.32)

Since the flow is axisymmetric it is dependent only on r and z components. Thus the θ

component of momentum from Eq. 1.18 can be rewritten:

DLΩ

Dt
=

D

Dt

(
ruθ
)
= 0 (1.33)

This is of a similar form as that of Eq. 1.25, with the noted exclusion of the Tν term due

to inviscid conditions of Rayleigh’s argument. Since viscous dissipation can not occur the

angular momentum of each fluid element must remain constant. This angular momentum

can be related to an element’s kinetic energy per unit volume by the following:

Ei =
1

2
ρu2θi =

1

2

ρL2
Ωi

r2i
(1.34)

Here i denotes a specific fluid element. Where ri = r1 and ri = r2 are the radial distances

of the inner and outer elements, receptively, and are related by the identity r2 > r1. The

combined kinetic energy of these two fluid elements can be written as:
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E =
1

2
ρ

(
L2
Ω1

r21
+
L2
Ω2

r22

)
dV (1.35)

If the elements were to switch positions, such that element 1 is now at r = r2 and

element 2 is at r = r1, and by virtue of Eq. 1.33 the angular momentum of each element is

maintained, Eq: 1.35 would yield a different result for their combined energy. This change

in kinetic energy can be expressed as:

∆E ∝
(
L2
Ω2

− L2
Ω1

)( 1

r21
− 1

r22

)
(1.36)

In the event that ∆E < 0 ⇒ L2
Ω1
> L2

Ω2
then such a swap would result in an energy

release and thus cause an initially laminar base flow to become unstable. From this result it

can be deduced that in-order for laminar flow stability to be maintained L2
Ω must decrease

with decreasing r. Recalling that LΩ = ruθ = r2Ω the connection to Rayleigh’s stability

criterion originally stated in Eq. 1.31 can now be seen.

dL2
Ω

dr
=

d

dr

(
r4Ω2

)
> 0 ⇒ for flow stability (1.37)

By applying Rayleigh’s criterion to a flow between concentric cylinders the govern-

ing equations of Taylor-Couette flow can finally be established. For the given boundary

conditions, and assuming cylinders of infinite length, the Navier-Stokes equations for an in-

compressible Newtonian fluid can also be applied. After which, the components of velocity

and the pressure distribution in cylindrical coordinates become:

ur = 0 uθ = Ar +
B

r
uz = 0

∂P

∂r
= ρ

u2θ
r

(1.38)

Where A and B depend on the radius ratio, η = RI

RO
, and the rotational velocity ratio,

µΩ = ΩO

ΩI
, of the cylinders.
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A = −ΩI

(
η2 − µΩ

)
(
1− η2

) B = ΩIR
2
I

(
1− µΩ

)
(
1− η2

) (1.39)

For cases such as those of the present work, where the outer cylinder is stationary, A

and B reduce:

A = −ΩI
η2(

1− η2
) B = ΩI

R2
I(

1− η2
) (1.40)

Applying Rayleigh’s criterion from Eq. 1.37 to the boundary conditions described by

Eq. 1.38 and Eq. 1.40, results in a linear stability limit of Taylor-Couette flow that is defined

by:

ζ = 4A2

(
1− B

Ar2

)
where ζ > 0 for flow stability (1.41)

While Eq. 1.41 describes the underlying physics of Taylor-Couette flow instability it is

an oversimplification in reality. This stems from the fact that Eq. 1.37, from which Eq. 1.41

was derived, uses the assumption of inviscid flow. Thus Eq. 1.41 implies that if the outer

cylinder is stationary Taylor-Coutte flow would always be unstable at any inner cylinder

rotational rate. However, this is not the case in reality. When viscosity is reintroduced into

the problem it acts as a stabilizing force which allows the flow to remain stable up to some

critical point. Taylor was able to prove this in 1923 by using a linear stability analysis based

on small perturbations of the velocity and pressure fields. Expressed as normal modes of the

form:

ur = 0 + u
′

r = u∗r(r) cos(kz)e
qt uθ = ūθ + u

′

θ = ūθ + u∗θ(r) cos(kz)e
qt

uz = 0 + u
′

z = u∗z(r) sin(kz)e
qt P = p̄+ p

′
= p̄+ p∗(r) cos(kz)eqt

(1.42)

Here the superscript (∗) denotes amplitudes of component perturbation, k is the wavenum-

ber, q is the growth rate of the perturbations and ūθ and p̄ are the steady-state solutions of

azimuthal velocity and pressure respectively. By substituting the perturbations of Eq. 1.42
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into the viscous axisymmetric form of the Navier-Stokes equation and then linearizing, a set

of ordinary differential equations results:

Continuity:

1

r

∂

∂r

(
ru

′

r

)
+
∂u

′
z

∂z
=⇒ 1

r

d

dr

(
ru∗r
)
+ ku∗z(r) = 0 (1.43)

r-momentum:

∂u
′
r

∂t
− 2Ωu

′

θ = −1

ρ

∂p
′

∂r
+ ν

[
∂

∂r

(
1

r

∂

∂r

(
ru

′

r

))
+
∂2u

′
z

∂z2

]

=⇒ qu∗r − 2Ωu∗θ = −1

ρ

dp∗

dr
+ ν

[
d

dr

(
1

r

d

dr

(
ru∗r

))
− k2u∗r

] (1.44)

θ-momentum:

∂u
′

θ

∂t
+ u

′

r

d

dr

(
rΩ
)
+ u

′

rΩ = ν

[
∂

∂r

(
1

r

∂

∂r

(
ru

′

θ

))
+
∂2u

′

θ

∂z2

]

=⇒ qu∗θ + u∗r

(
d

dr

(
rΩ
)
+ Ω

)
= ν

[
d

dr

(
1

r

d

dr

(
ru∗θ

))
− k2u∗θ

] (1.45)

z-momentum:

∂u
′
z

∂t
= −1

ρ

∂p
′

∂z
+ ν

[
∂

∂r

(
1

r

∂

∂r

(
ru

′

r

))
+
∂2u

′
z

∂z2

]

=⇒ qu∗z = −kp
∗

ρ
+ ν

[
1

r

d

dr

(
r
du∗z
dr

)
− k2u∗z

] (1.46)

By setting q = 0 a critical wave number which corresponds to the flows marginal stability

limit can be found. Letting r = x̃d̂ + RI , where d̂ = RO − RI and x̃ is a non dimensional

parameter such that 0 < x̃ < 1, the azimuthal momentum, Eq. 1.45, can be written as:

2Au∗r =
ν

d̂
2

(
d2

dx̃2
−
(
kd̂
)2)

u∗θ (1.47)

Noting that
(

d
dr

(
rΩ
)
+Ω

)
= 1

r
d
dr

(
ruθ
)
= 2A. The radial and axial components can also

be reduced by combining Eq. 1.44 and Eq. 1.46, in order to eliminate the pressure terms:
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2
(
kd̂
)2uθ
r
u∗θ =

ν

d̂
2

( d2
dx̃2

−
(
kd̂
)2)2

u∗r (1.48)

Some important relationships between the terms in Eq. 1.47 and Eq. 1.48 should

be noted. Where the terms on the left-hand sides of equations 1.47 and 1.48 represent the

Coriolis acceleration and tangential vorticity production, while the right-hand sides represent

the tangential viscous force and viscous diffusion, respectively [16]. For steady flow to exist

at a point just before instability occurs these forces must balance both locally and globally.

Thus, the ratios of these forces must be of order unity. By setting
(

d2

dx̃2 −
(
kd̄
)2)

= γ and(
kd̄ = κ

)
, and then combining Eq. 1.47 and Eq. 1.48, u∗r and u∗θ terms can be eliminated:

4AΩd̂
4

ν2
κ2

γ3
= 1 (1.49)

Here
(
4AΩd̂

4

ν4

)
relates the flows inertial forces to viscous forces and is defined, by con-

vention, as the Taylor number
(
Ta
)
. Many different forms of Ta have been derived over the

years, where different versions can yield different values of the Ta for the same flow. However,

for every version of Ta there exist a critical limit where centrifugal forces begin to exceed

viscous forces, which results in flow instability and the formation of TVF. For this work a

small gap variation of the Ta, given by White, was used [53]:

Ta =
d̂
3
RIΩ

2
I

ν2
(1.50)

From this form of the Taylor number a relationship to the more general dimensionless

parameter of the Reynolds number can be shown:

Ta = R2
ec

(
1− η

η

)
where Rec =

ΩIRI d̂

ν
(1.51)
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Vortex Breakdowns

The last bit of mathematics that must be discussed are the governing equations of a

confined vortex breakdown. As in section 1.2, the discussion on this subject matter will be

much lighter than that of the previous section’s discussion on Taylor-Couette flow. How-

ever, there are some fundamental mathematics that must be presented. There are 2 main

parameters which characterize the onset of a vortex breakdown bubble at certain critical

combinations:

Reew =
ΩewR

2
O

ν
Γew =

H

RO

(1.52)

Where Reew is the Reynolds number of the rotating end wall and Γew is the aspect ratio

of the confined vortex flow. The kinematics of the flow field can be similarly described as

that of Taylor-Couette flow by using the axisymmetric form of the Navier-Stokes equations.

Using a stream function and noting that the velocity field is depended only on (r, z) the

components of velocity can be defined as such:

ur =
1

r

∂ψ

∂z
uz = −1

r

∂ψ

∂r
(1.53)

Thus the flow can be described by the swirling motion of the fluid (uθ), and the iso-

curves of (ψ), which represent the intersections of the physical stream-surfaces with the

meridional plane. Using Eq. 1.53 the azimuthal component of vorticity (ωθ) can be found

by expressing the Poisson equation in terms of the stream function.

∇2ψ =
∂2ψ

∂z2
+
∂2ψ

∂r2
+

1

r

∂ψ

∂r
= rωθ (1.54)

Incorporating Eq. 1.53 and Eq. 1.54 into the axisymmetric Navier-Stokes equations

leads to the azimuthal velocity and vorticity transport equations given by:
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∂uθ
∂t

+
∂

∂r
(uruθ) +

∂

∂z
(uzuθ) +

2

r
(uruθ) =

1

Reew

[
∂

∂r

(
1

r

∂(ruθ)

∂r

)
+
∂2uθ
∂z2

]
(1.55)

∂ωθ

∂t
+

∂

∂r
(urωθ) +

∂

∂z
(uzωθ)−

1

r

∂

∂z
(u2θ) =

1

Reew

[
∂

∂r

(
1

r

∂(rωθ)

∂r

)
+
∂2ωθ

∂z2

]
(1.56)

While equations 1.53 - 1.56 yield the velocity field and basic flow structure of a confined

vortex breakdown flow they do not fully describe the actual physical means by which a

vortex breakdown bubble forms. The exact physical mechanics which cause the formation

of a breakdown bubble is still widely debated. Several theories have been proposed all of

which can generally be categorized into one of three main ideas.

1. Hydrodynamic instability

2. Axial deceleration and flow stagnation

3. Transitions between critical flow states, generally due to wave phenomena
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Chapter 2

Experimental Setup

Experimental tests were conducted in the Vortex Dynamics Laboratory at Auburn Uni-

versity. A Couette cell with a bottom-mounted inner rotating cylinder was constructed. The

design utilized a gap ratio of η = RI

RO
= 0.815 and an aspect ratio baseline of Γc =

LI

d̂
= 20

at Γew = Hew

RO
= 0 for the inner cylinder. A positionally variable rotating upper end-wall

was used as a means of flow control. The upper end-wall was designed so that an end-wall

aspect ratio range of Γew = 0− 1.5 could be tested. The rotational frequency, direction and

relative axial position of the upper end-wall and inner cylinder were made to vary over a

range of experimental test cases.

2.1 Apparatus

A transparent acrylic tube was used to construct the outer cylinder of the Couette

system. Acrylic sheets were assembled around the cylinder to make a square tank enclosure.

To correct for the refractive index effects of the cylinder’s curved surface, and to aid in

temperature stability, the gap in between was filled with water. This fluid bath around

the cylinder was designed to correct the optical path between the camera and the area of

interest and ensure there were no distortions in the PIV images. A vertical support tower

was constructed to mount the various components of the system. This tower was attached

to the top of a steel table in-order to provide increased system stability. The tank assembly

was attached to the front of the support tower using four bolts which were threaded into

tapped mounting holes positioned at the four corners of the tank’s rear plate. Two DC servo

motors were mounted at the top and bottom rear of the tower in-order to drive the rotational

components of the system.
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2.2 Tank Geometry

The Couette cell/tank assembly, as seen in Fig. 2.1, consisted of a 61 cm (LO) long

acrylic outer cylinder with an inner diameter of 14.2 cm (2xRO) and an outer diameter of

15.48 cm. Square end-plates were milled with a 15.5 cm diameter circular section drilled out

of the center into which the top and bottom of the outer cylinder were placed. Weld-On #4

was utilized to chemically weld these end-plates to the outer cylinder, ensuring a watertight

seal between components. This assembly was then enclosed using four pieces of 64 cm x

22.86 cm x 0.95 cm acrylic, these were attached to the side faces of the end-plates using

a combination of threaded bolts and acrylic cement (Weld-On #4); resulting in a water

tight bath around the outer cylinder. As previously stated this square outer tank aided in

correcting the refractive index caused by the curved geometry of the outer cylinder which

allowed for cleaner visual lines during PIV acquisition. The

The inner cylinder was constructed from a 26.0cm (LI) long, 11.60cm (2xRI) diameter,

machined aluminum tube with two 11.20 cm diameter disks spot welded on to either end.

The disks were machined so that one of the two had an 11.4 cm long rod at its center that

was used to secure the assembly in a ball bearing insert at the center of an acrylic end-cap.

This inner cylinder end-cap assembly was inserted and secured into the bottom of the outer

cylinder using two circumferential O-rings. Variable height supports placed between the

steel support table and the inner cylinder end-cap were additionally used to ensure a tight

seal between the inner and outer cylinders. These supports also helped to support the load

of the cantilevered tank.

The 14.15 cm (2xRUW ) diameter upper rotating end-wall was milled out of a 0.635 cm

thick piece of aluminum stock. It was designed with a diameter slightly smaller than that

of the outer cylinder, which resulted in a clearance of 0.05 cm, to allow for rotation. A

50 cm chrome-moly rod was secured to the top of the upper end-wall using a combination of

tap hole/threading and tap welds and was used in facilitating end-wall adjustments in the

vertical plane.
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Figure 2.1: Details of the Couette Tank
(all dimensions in cm)
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2.3 Rotation Control

Rotation of both the upper end-wall and inner cylinder was driven by a gear and belt

system which utilized two high torque brushless motors, one for each rotational component.

Each motor was connected to a BE15A series brush-less servo amplifier powered by a 50V DC

power supply. Angular velocity of the rotating components was controlled by two separate

10 turn potentiometers connected to the servo amplifiers. Photo reflectors were built into

the gears attached to both the upper end-wall and inner cylinder that allowed rotational

rates to be verified through the use of a photo tachometer.

2.3.1 Working Fluid

The properties of the fluid that is used to fill the annulus of a Couette cell are extremely

important in determining flow behavior and the onset of instabilities. For this investigation,

the working fluid consisted of a 50% water 50% glycerin solution. Laboratory ambient tem-

perature was maintained at 20.5◦C ± 0.5◦ ⇔ 68.9◦F ± 1.8◦. This temperature range

resulted in a kinematic viscosity of ≈ 5.29e−6 m2

s
for the mixture. As previously mentioned

the water bath that enclosed the Couette cell was used to insulate the working fluid from any

changes in ambient temperature. To verify the stability periodic measurements were taken

to ensure temperature consistency between tests. Aluminum microsphere seeding particles

approximately 15µm in diameter were mixed into the working fluid prior to testing. Premix-

ing of the particles was done to ensure that the seeding had a homogeneous distribution and

suspension. These particles were used to seed the flow during testing so that PIV images

could be captured.

2.3.2 Data Acquisition / Particle Imaging Velocimetry

Particle Imaging Velocimetry (PIV) is a very powerful experimental technique, especially

when applied to fluid dynamic investigations. PIV provides instantaneous velocity vector

measurements in a cross-section of a flow field by capturing images of entrained micron-sized
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particles in a non-intrusive manner. For this reason, a 2D-2C PIV measurement technique

was chosen as the data acquisition method for the current works experimentation. The

experimental configuration of a PIV system generally consists of a light source, projected in

the form of a planar sheet, a CCD camera and a dedicated PIV processor. While the exact

setup of any given PIV system may differ, depending on the specific subject matter being

investigated, it is typically configured to be of the form used by Mutabazi et al. as shown

in Figure 2.2 [42]. For the current work, the experimental PIV setup that was used is noted

to be exemplified best by this configuration (Fig. 2.2) as well.

A New Wave Research Solo III ND: YAG 50 mJ dual pulse laser was used in conjunction

with a plano-concave lens attachment to create a 1.5mm thick light sheet. This light sheet

was positioned on the left side of the Couette tank to intersect the systems vertical axis,

resulting in an observable velocity field along the (r, z) plane that measured approximately

14.5cm x 15.5cm. The laser was positioned approximately 85 cm away from the apparatus

resulting in a sheet that illuminated a vertical distance of approximately 34 cm. It should be

noted that, due to the orientation, the sheet only illuminated one side of the annular gap.

This was due to the presence of the opaque inner cylinder which prevented the light from

illuminating the far side of the annulus. A Dantec 80C60 HiSense PIV/PLIF CCD camera,

with a 60mm Nikon lens, was placed 114cm away from the system and oriented perpendicular

to the light sheet plane. Both the laser and camera were connected to a Dantec FlowMap

2100 PIV processor to facilitate the simultaneous triggering. The laser was set to a trigger

rate of 5.5Hz with a variable pulse duration (∆t) to allow for sufficient particle displacement

between image captures. The interrogation window was set to a 32 x 32 pixel area with a 75%

overlap criteria in both the vertical and horizontal directions. Triggering and acquisition were

controlled through the Dantec Dynamics FlowManager software package. Post-processing of

the PIV images was done using the Fluere 1.3 velocimetry analysis software and custom-built

POD MATLAB code, both of which are discussed in the following sections.
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Figure 2.2: PIV System Setup [42]

2.4 Testing and Processing

Baseline tests were independently conducted for both flow fields. Taylor-Couette base-

line tests were conducted over a Rec range of 74−387 with a Rec step size of 15, corresponding

to a Ta number range of 1, 312 − 35, 485 and a Retc−vb
of 314 − 1, 631 (where Retc−vb

=
ΩIR

2
I

ν
).

This range was tested at four values of Γew by moving the stationary upperend-wall in in-

crements of ∆Γew = 0.5 from Γew = 0 − 1.5. For the two largest values of Γew testing

was be repeated, once for the upper flow domain and once for the lower domain, in order

to capture the desired area of interest. Baseline measurements for the Vortex Breakdown

flow field were conducted by modifying the system with a circular acrylic insert with two

circumferential O-ring inlays. This insert was positioned on top of the rotational cylinder

in-order to seal the inner cylinder and act as a non-rotating end-wall. The upper rotating

end-wall was placed at three different values of Γew : 0.5, 1 and 1.5. For each value of Γew

Reynolds numbers from Reew = 755 to Reew = 3, 020 were tested in increments of Reew = 94.
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For the combined flow conditions, tests were conducted at the same Γew values as those

of the vortex breakdown baseline cases. Additionally, as with the Taylor-Couette baselines,

tests were repeated for the Γew = 1 and Γew = 1.5 conditions to capture the upper and

lower portions of the flow field. The range of Reynolds number and step size utilized for

the inner rotating cylinder was the same as that used for the baseline test cases. Re range

for the upper end-wall was slightly modified from that used in VB baseline tests and ranged

from Reew = 944 − 2, 926 with a step size of Reew = 94. This reduced range was used

to facilitate a more timely acquisition process. For all Γew values utilized in the combined

flow field investigations tests for both co-rotational and counter-rotational conditions of the

upper end-wall and inner cylinder were conducted.

Images were processed using Fluere 1.3 velocimetry analysis software which uses an

iterative image deformation algorithm to perform a Fast Fourier Transform (FFT) of image

pairs to provide a cross-correlation of the velocity field. A Gaussian window with a 7 x 7

Sinc interpolation method with a total of four passes was chosen for calculation of image

correlation. Due to the large amount of raw data that needed to be processed, an automated

Matlab script was written utilizing the java.awt.Robot library and nested process loops to

facilitate switching between the directories of the various test conditions. This allowed for

continuous 24-hour processing of the PIV images on multiple computers and expedited the

analysis of the experimental data.

2.5 Proper Orthogonal Decomposition

One of the most powerful techniques available for extracting coherent structures from

a flow field is the Proper Orthogonal Decomposition (POD) method. POD allows for the

acquisition of a low-dimensional approximations of higher-dimensional processes from ex-

perimental data and is often conducted to extract modal shapes, and basis functions [13].

POD is often reported under various names such as Principal Component Analysis (PCA),

Kosambi-Karhunen-Loéve Transformation (KLT), Empirical Orthogonal Functions (EOF),
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and Empirical Modal Analysis (EMA), just to name a few. POD was first introduced as a

method of defining coherent structures within a fluid system by Lumeley (1967). He pro-

posed that fluid structures could be defined in an unbiased manner with functions of the

spatial variables that contain the maximum energy content. This is best described where

given a flow field data matrix D a linear combination of POD basis vector Φ(x) can be found

which maximize the following expression:

max
Φ

⟨|[Φ(x),D(x, t)]2|⟩
[Φ(x),Φ(x)]

(2.1)

Where x is an arbitrary variable representing spatial coordinates, t is an instantaneous

time, or snapshots and ⟨·⟩ is a time-averaging operation. To find the Φ(x)′s which maximize

Eq: 2.1 it can be shown that a necessary condition which must be met is that Φ(x) is a

solution of the Fredholm integral equation of the second type:

∫
Ψ

K(x,x
′
)Φ(x

′
)dx

′
= λΦ(X) (2.2)

Where Ψ is the flow domain, and K is the space-correlation tensor, also known as the

kernel:

K(x,x
′
) = ⟨D(x, t),DT(x

′
, t)⟩ (2.3)

“According to the Hilbert-Schmidt theory, Eq: 2.3 has a denumerable set of orthogonal

solutions Φn(x) with corresponding real and positive eigenvalues λn. The eigenvalue with

the largest magnitude is the maximum which is achieved in the maximization problem Eq:

2.1” [10]. This implies that Eq: 2.1 can be implemented in the space orthogonal to Φn(x)

in-order to find additional POD basis functions Φn+1(x). This procedure can be repeated

such that a whole set of orthogonal functions representing coherent structures, and their

corresponding relative energy levels, can be determined:
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Φ1 ≥ Φ2 ≥ Φ3....... ≥ Φn+1 ≥ 0 λ1 ≥ λ2 ≥ λ3....... ≥ λn+1 ≥ 0 (2.4)

Simply stated, Eq: 2.4 implies that if the flow field is projected along Φn the average

energy content (λn) of the underlying flow structure is greater than that of flow field pro-

jections along Φn+1, i.e. (Φ1.....Φn+1
energy−−−−→
content

λ1.....λn+1). In this way a flow fields coherent

time-averaged structures can be extracted at various energy levels from a continuous data

set of the flows velocity components.

At this point everything that has been outlined on the PODmethod above has dealt with

it application on a continuous, or nearly unbounded temporally, data set for D. However, in

the present work D is discreet, both spatially and temporally, and can be more accurately

defined as D(u, v, n) where n = nth PIV snapshot in the range 1 → N and u and v are

respectively the horizontal and vertical velocity components at a single grid point within the

flow domain. Solving the Fredholm integral equation (Eq. 2.2) for K(x,x
′
) directly would

be very computationally expensive and, especially in the case of PIV data sets, is generally

not a very practical approach. Thus the focus will now be shifted to describe POD methods

which are better suited for discreet data set analysis and that are more applicable to the

work here.

Given a data set (D) is discreet and not continuous a simpler POD analysis method

know as ’Snapshot’ can be applied to solve for K(x,x
′
). Lawrence Sirovich first introduced

this method in 1987 as a way to efficiently determine the POD modes for large problems,

particularly coherent structures in a turbulent flow field as this was the application for which

he first developed it [48]. Sirovich’s method of ’Snapshots’ approach utilizes the ergodicity

hypothesis and the fact that the eigenfunctions of the kernel are simply linear combinations

of instantaneous solutions, or “Snapshot”, such that the POD basis vectors can be written

as:
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K(x,x
′
) = lim

n→∞

N∑
n=1

Dn(x),D
T
n (x

′
) (2.5)

For Eq. 2.5 to be applicable, the time (dt) between snapshots (Dn(x) = D(x, ndt)) must

be large enough such that the snapshots are uncorrelated and that there a finite number (N)

of them large enough for a reasonable approximation of K(x,x
′
). By substituting 2.5 into

2.2 results in a degenerate integral equation where the solutions are linear combinations of

the snapshots, provided that the snapshots are linearly independent, i.e. (M >> N , where

M = the number of data grid cells in a single snapshot). This criterion of M >> N is

typically true for most PIV data sets and was for the present work as well, where N = 1000

images, and M = pixels
window

= (1,224×968)
(32×32)(1−0.75)

≈ 18, 500 grid points. Thus, the above substation

is applicable here and the eigenvectors of K can be found as a linear combination of the

snapshots utilizing the following equation:

Φ(x) =
N∑

n=1

βnDn(x) (2.6)

Were Dn is the flow field vector map at time tn, containing the flows u and v velocity

vectors at each grid point for a given snapshot, and the coefficient βn can be shown to satisfy

the eigenvalue-eigenvector equation:

Cβ = λβ (2.7)

Here C is the correlation matrix (Cij =
1
N
(Di(x),Dj(x))), defined as the inner product

of the velocity perturbations of D, β represents the eigenvectors and λ the corresponding

eigenvalues. Thus the problem is reduced to finding the coefficients βn of this linear combi-

nation, which can be accomplished by recognizing that the eigenfunctions Φ are orthogonal

and can be normalized:

⟨Φi,Φj⟩ = δij (2.8)
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Such that Φi represents the eigenvectors of a symmetric N × N matrix, Φj represents

the eigenvectors of a M ×M matrix and δij is the Kronecker delta. An approximation of

the flow field can then be given as a linear combination of the eigenfunctions.

D(x) ≈
N∑

n=1

αn(t)Φn(x) (2.9)

Here the coefficient αn(t) is a function of time determined by αn(t) = (D(x, t),Φn(x)).

Where αn(t)
2 represents the amount of energy in D(x, t) in the direction of the nth POD

basis vector, Φn, and the total energy is the summation of the αn(t)
2 terms in the various

directions of Φn. The coefficients of αn are additionally noted to be uncorrelated and their

mean values equal to the eigenvalues λ such that:

⟨αi(t), αj(t)⟩ = δijλ (2.10)

By comparison of Eq. 2.7 - 2.10 it can be shown that the eigenfunctions Φi and Φj

satisfy the eigenvalue-eigenvector equation such that:

DΦin = λnΦjn and DTΦjn = λnΦin for n = 1, ....., N (2.11)

From the result above, where T indicates the matrix transpose, it is found that Φi and Φj

are the eigenvectors (β) of DDT and DTD, respectively, with eigenvalues λ2n n = 1, ....., N .

Given that D is an N ×M data matrix, from Eq. 2.11 it can be deduced that:

D = UΣV T (2.12)

Eq. 2.12 is known as the Singular Value Decomposition (SVD) and is an approximation

of Eq. 2.5 commonly used for POD analysis of fluid field data matrices and was the approach

used in the present work. Here V T is anM×M orthogonal matrix, U is an N×N orthogonal

matrix and Σ is an N×M of zeros except along the diagonal, which consist of r = min(N,M)

non-negative numbers σn arranged in decreasing order. These diagonal values in Σ are known
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as the singular values (SV ′s) of D (and DT ), corresponding to real positive eigenvalues in

the form σn =
√
λn. The number of SV ′s present within Σ define the rank of D, i.e (since

r = min(N,M) the number of images within a PIV test case define the rank of D, which in

the present work was N = 1000).

Using Eq. 2.12 a POD analysis of the present works flow field data was conducted.

From this analysis the flows turbulent kinetic energy (eigenvalues) was extracted. Modal

plots of the decreasing energy content contained with the mode were constructed to analyze

energy distribution variations between the test cases. For each test case flow field plots of

the mean flows, (mode-0 σ0), coherent structures were created. Additional field plots of the

higher modal structures were subsequently produced after analysis of the energy distribution

results. The application of POD, more specifically SVD, was a powerful tool that allowed

the time-averaged flow field, and corresponding coherent structures, of the present work to

found. These results and the subsequent comparison of their test case dependent differences

are presented in the ensuing sections below.
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Chapter 3

Results and Discussion

3.1 Independent Flow Fields

PIV measurements of the individual flow domains were taken in order to establish a

baseline from which to compare the combined domain cases. A POD snapshot method was

employed to extract various modes from the fluctuating velocity components, enabling the

identification of smaller scale coherent structures contained within the more complex flow

fields.

The eigenvalues of the first 15 PODmodes were plotted for both Vortex Breakdown (VB)

and Taylor-Couette Flow (TCF) cases and are presented in Figures 3.2, 3.13 and 3.23. These

plots represent the cumulative sum of energy (Figures (a)) and the fraction of modal energy

with respect to total energy (Figures (b)), contained within the flows at various conditions.

In most cases flow energies (≥ 0.5) were typically found to be contained within the mean flow

(mode-0). However, as evidenced by the Γew = 0.5, Reew = 2077 condition, presented in Fig-

ure 3.2 (a), this was not always true. In fact energy levels where found to be highly variable in

each case depending on the specific flow conditions employed during tests. Drastic changes in

modal energy content were typically found to occur between modes 1−4. Mode-3 specifically

was found to be a general point of inflection for the combined test cases (discussed in sec-

tion 3.2). For this reason mode-3, in addition to mode-1, was used to reconstruct the velocity

fields.
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Figure 3.1: Configuration of VB - Zone-2 - rotationally independent upper end-
wall test case
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(a) cumulative distribution

(b) POD spectrum, modes 0-15

Figure 3.2: Vortex breakdown - zone-2 - energy distribution
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3.1.1 Vortex Breakdown - Zone-2 - Rotationally Independent Upper End-Wall

Streamlines and velocity contours for the Vortex Breakdown flow field are presented in

Figures 3.3 - 3.11. Comparison of Figures 3.9, 3.8 and 3.3 reveals the effects of changes in

aspect ratio on the mean flow. From the eight Γew = 1.5 plots constituting Figure 3.3 flow

structures typically indicative of a VBB seems to first appear at Reew = 1, 133. Indications of

an earlier onset of the VBB were noted to occur at Reew = 944, z/d̂ ≈ 6 (Figure 3.3 (c) and

(d)). Here streamlines in the vortex core are seen to exhibit an abrupt change in the radial

direction coupled with reduced velocities in the same region. However, these changes did not

result in the formation of a coherent recirculating VBB indicating that true onset lie some

where between Reew = 944−1, 133. As Reew was increased from 944 to 1, 888 the breakdown

bubble began to progressively migrate towards the lower stationary end-wall, increasing in

width as it did so. Both of these effects were attributed, in part, to the central viscous core

which also increased in diameter as Reew increased and distance from the rotating end-wall

decreased. These results were found to be congruent with those of Escudier, Vogel and

Gelfgat et al. [24] [58] [25].

Beyond Reew = 1, 888, initial results indicated that the VBB continued the aforemen-

tioned trends. This was a contradiction of Escudier’s results, who found that for the case of

Γew = 1.5 a VBB typically begins to weaken and disappear around Reew = 2, 000. However,

analysis of turbulent kinetic energy () and turbulent intensity (IT ) plots, as well as higher

POD modes, revealed that while there were still areas of recirculating flow in the core re-

gion beyond Reew = 2, 000, the energy contained in those regions was far less than that at

944 ≤ Reew ≤ 1, 888.

Notably large reductions in the core flows IT and were found to occur around Reew =

2, 076, as seen in the plots of Figures 3.5. Here it is noted that for Γew = 1.5 the largest

area of IT was generally located in the region of the vortex core. As Reew increased from

944− 1, 888 flow intensity in the region around the VBB was also found to increase, ranging

from approximately 0.15% − 32%. Further increases in Reew beyond 1, 888 resulted in a
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(a) Re = 755 (b) Re = 755

(c) Re = 944 (d) Re = 944

(e) Re = 1, 133 (f) Re = 1, 133

(g) Re = 1, 510 (h) Re = 1, 510

Figure 3.3: Vortex breakdown - zone-2 - mean flow (POD mode-0), velocity
contours (left) and streamlines (right) at Γew = 1.550



(a) Velocity Contour (b) Streamlines

Figure 3.4: Vortex breakdown - zone-2 - (POD mode-0) instantaneous frame for
Γew = 1.5 at Re = 2, 265, (a): velocity contour with streamlines, (b): streamlines

continuous reduction in IT , implying that the VBB began to weaken at Reynolds numbers

Rew > 1, 888.

Weakening of the VBB at higher Reynolds numbers was verified through analysis of the

raw PIV images and streamline plots of the individual frames. From such analysis the last

visible indication of onset of a VBB within the mean flow was noted to occur at Reew = 2, 265,

as seen in Figure 3.4. While this is a slightly higher Reew number than that reported by

Escudier and Vogel, these results confirm their general findings of the flows behavior at

Γew = 1.5 such that a VBB with recirculating regions existed on the vortex core from an

approximate Reew range of 1, 000 to 2, 000.

For the cases of Γew = 1 and Γew = 0.5 results were more congruent with the findings

of other researchers, such that neither the former nor the latter resulted in the onset of a

VBB in the mean flow. However, regions of recirculation within the core were found in a

few of the streamline plots at modes 1 and 3. For the case of Γew = 0.5 these recirculation

zones were few but when present tended to be located very near the rotating end-wall and

slightly off set from the axis of rotation, as seen in Figure 3.10 (b) at z/d̂ ≈ 2.25, r/d̂ ≈ 6.

At Γew = 1 recirculation’s were found to be more indicative of a potential VBB and were
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(a) Re = 1, 510 (b) Re = 1, 510

(c) Re = 1, 888 (d) Re = 1, 888

(e) Re = 2, 076 (f) Re = 2, 076

(g) Re = 2, 643 (h) Re = 2, 643

Figure 3.5: Vortex breakdown - zone-2 - mean flow (POD mode-0), turbulent
intensity (IT ) (left) and turbulent kinetic energy (TKE) (right) at Γew = 1.5
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(a) Re = 755 (b) Re = 755

(c) Re = 1, 510 (d) Re = 1, 510

(e) Re = 2, 076 (f) Re = 2, 076

(g) Re = 2, 454 (h) Re = 2, 454

Figure 3.6: Vortex breakdown - zone-2 - POD mode-1, velocity contour (left)
and streamlines (right) at Γew = 1.5 53



(a) Re = 1, 321 (b) Re = 1, 321

(c) Re = 1, 510 (d) Re = 1, 510

(e) Re = 2, 076 (f) Re = 2, 076

(g) Re = 2, 454 (h) Re = 2, 454

Figure 3.7: Vortex breakdown - zone-2 - POD mode-3, velocity contours (left)
and streamlines (right) at Γew = 1.5 54



seen to occur in the actual core regions of both mode-1 and mode-3 results, (Figures 3.10

(e-h) and 3.11 (e-h)).

From Figures 3.6 - 3.7 and 3.10 - 3.11 two large counter rotating vortices can be seen

flanking either side of the rotational axis for Γew = 1 & 1.5. At Γew = 1.5 these vortices

occurred directly on either side of the VBB, indicated by the area of increased velocity in

the left hand plots of Figure 3.6. Γew = 1 results however showed no significant signs of

increases in the core regions for either mode 1 or 3. Additionally, vortices near the Γew = 1

core were noted to have an axially compressed form, compared to those at Γew = 1.5, with a

large wedge shaped gap seen to occur between them. The formation and generally circular

form of these higher modal vortices seemed to be paramount in the creation of a VBB but

became attenuated by either decreases in Γew or large increases in Reew . Mode-3 streamlines

presented in Figures 3.7 (h) and 3.11 (h) also show small wavy vortex structures along the

side walls, indicating the potential onset of oscillatory fluctuation along the axis of rotation.

These side wall structures were first noted to occur at Reynolds numbers slightly beyond the

point at which the VBB disappeared from the Γew = 1.5 mean flow, at Reew = 2, 265. These

results seem to suggest that the appearance of axial flow oscillations in the higher modes at

Reew numbers beyond 2, 076 acted to destabilize VBB onset.
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(a) Re = 755 (b) Re = 755

(c) Re = 944 (d) Re = 944

(e) Re = 1, 133 (f) Re = 1, 133

(g) Re = 1, 510 (h) Re = 1, 510

Figure 3.8: Vortex breakdown - zone-2 - mean flow (POD mode-0), velocity
contours (left) and streamlines (right) at Γew = 1
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(a) Re = 755 (b) Re = 755

(c) Re = 944 (d) Re = 944

(e) Re = 1, 133 (f) Re = 1, 133

(g) Re = 1, 510 (h) Re = 1, 510

Figure 3.9: Vortex breakdown - zone-2 - baseline mean flow (POD mode-0),
velocity contours (left) and streamlines (right); at Γew = 0.5
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(a) Re = 1, 510 (b) Re = 1, 510

(c) Re = 2, 454 (d) Re = 2, 454

(e) Re = 1, 510 (f) Re = 1, 510

(g) Re = 2, 454 (h) Re = 2, 454

Figure 3.10: Vortex breakdown - zone-2 - POD mode-1, velocity contours (left)
and Streamlines (right); at Γew = 0.5
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(a) Re = 1, 510 (b) Re = 1, 510

(c) Re = 2, 454 (d) Re = 2, 454

(e) Re = 1, 510 (f) Re = 1, 510

(g) Re = 2, 454 (h) Re = 2, 454

Figure 3.11: Vortex breakdown - zone-2 - POD mode-3, velocity contours (left)
and Streamlines (right); at Γew = 0.5
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3.1.2 Non-Annular Taylor-Couette Flow - Zone-2 - Rotationally Independent

Inner Cylinder

Energy plots for zone-2 at TCF conditions are presented in Figure 3.13. Modal energy

levels show a rather high degree of variability as they did for the rotationally independent

upper end-wall (VB) conditions. Similarly, Γew = 0.5 is still shown to have the most con-

sistently elevated levels of modal energy (Figure 3.13 (b)) however, for Γew = 1 it displays

the largest drop in mean-flow energies (Figure 3.13 (a)). Γew = 1 also shows elevated modal

energy levels between modes 1 − 4 relative to those at Γew = 1.5, a result which was found

to be contrary to the VB results previously discussed. Some of these differences between

the varying aspect ratios energy content were accounted for by the varying percentage of

annulus inclusion within zone-2s’ field of view and thus energy content results do not nec-

essarily represent a true 1:1 comparison to VB conditions, most notably at the Γew = 0.5

condition. Some of these changes however were the result of transfers in energy from the

larger to smaller scale structures and was most likely caused by the reduced surface area of

the rotating cylinder end wall and presence of the annular gap.

Plots of the zone-2 Taylor-Couette test cases are presented in Figures 3.14 - 3.20. Com-

parisons between the streamline and vorticity plots at Γ = 0.5, 1, 1.5 with those of the VB

tests, reveals that flow patterns between like aspect ratios were relatively similar, with a

few notable exceptions. In order to facilitate a more complete comparison between the two

baselines a Reynolds number for the TCF cases was calculated using the same form as that

used for the vortex breakdown Reynolds calculations where:

Retcvb =
ΩIR

2
I

ν
(3.1)

Utilizing Eq. 3.1 a comparable Reynolds number range of 314 − 1, 632 was established

for the Taylor-Couette test cases.

As with the vortex breakdown case flow conditions at the Γew = 0.5 aspect ratio dis-

played no pockets of mean flow recirculation within region around the central core. One
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Figure 3.12: Configuration of TCF - rotationally independent inner cylinder test
case

61



(a) cumulative distribution

(b) POD spectrum, modes 0-15

Figure 3.13: TCF zone-2 energy distribution - rotationally independent inner
cylinder
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noticeable difference in the TCF case however was the appearance of a radial cross flow

which was found to originate from the right side of the upper stationary end-wall and ter-

minated at the bottom left corner of zone-2 as flow encountered the rotating cylinder. This

cross flow was caused by a lack of symmetry in zone-2 vorticity. The right side of zone-2s

primary vortex was found to have higher vorticity levels than that of the left and was also

seen to have a vortical loci with a negative axial position relative to the left, as evident from

the velocity and vorticity plots presented in Figure 3.14. The exact cause of this imbalance

was not entirely clear, however the most likely explanation is that it resulted from the inter-

action between zone-2 vortices and the upper most Taylor vortex at the top of the annular

gap. This was found to be the most probable cause due to the fact that this imbalance was

not found to occur until after the point at which Taylor vortices first began to appear within

the annulus around Ta = 3, 360, Retcvb = 502. Additionally this imbalance was also found to

appear at Γew = 1 and Γew = 1.5 and was similarly first observed to occur at Ta = 3, 360,

Retcvb = 502. The exact reason for why this imbalance resulted in a stronger left side vortex

closer to the rotating surface at Γew = 0.5 was unclear and while this relationship between

left and right zone-2 vortices was found to be the dominant result within the whole of TCF

test cases results at, Γew = 1.5 were found to display a slight inversion of this trend where the

zone-2 left side vortex was seen to have greater circulation. However, the relative positions

of the vortical loci at Γew = 1.5 were found to remained unchanged.

Modes 1 and 3 for zone-2 at Γew = 0.5 were found to display relatively few identifiable

structures. Flow patterns presented in Figures 3.15 and 3.16 are found to be less distin-

guishable than those of VB results, most notably at the lower Ta/Retcvb values. The flow

structures that are present in zone-2 show almost no significant difference from that of the

mean flow results, consisting predominantly of the primary side wall vortices, produced by

the flows centerline circulation, and a core region with a significant amount of radial cross

flow. Additionally there were no indications of the centerline vortices which were noted to

occur near the rotating surface in mode-1 results at the VB condition. In fact all vortical loci
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were found to lie slightly further out from the centerline than those seen in the higher modes

of the Γew = 0.5 VB cases, indicating that the likelihood of a recirculating VBB appearing

along the axial centerline at these conditions is even less than that of the VB conditions.

For the Γew = 1.5 test case the velocity contours presented in Figure 3.17, show patterns

similar to those seen in th VB results for the same aspect ratio. Increases in Ta / Retcvb were

similarly found to result in a widening of the central core and a progressive movement of the

stagnation point towards the stationary end-wall. However, as previously stated this core

flow was axially skewed, moving from the upper right to bottom left in a manner that was

not seen to occur in the Γew = 1.5 vortex breakdown cases. At Retcvb = 1, 067 recirculating

flow structures were noted to appear within zone-2 along the rotational axis as shown in

Figure 3.17 (g-i). This appearance of core recirculation at Retcvb = 1, 067 was found to

be comparable with the Reew = 1, 133 condition at which the VBB first appeared in the

mean flow results of the VB tests. This indicated that a VBB like structure dose begin to

form in a Taylor-Couette cell in the presence of and an axial end wall / cylinder gap at

conditions similar to those described by Escudier and Vogel for end wall driven cylindrical

flow. However, the recirculating core formation in the present case cannot necessarily be

described as a true breakdown bubble due to the skewed nature of the core region, which

resulted in a highly asymmetric structure.This skew and the imbalance in vorticity resulted

in what appeared to be a single recirculating region at the center of zone-2, (Figure 3.17

(f)). Further investigation of POD modes 1 - 3 reveled that there were in-fact two counter

rotating regions in the core which formed along the rotational axis.

POD plots for the Γew = 1.5 TCF conditions at modes 1 and 3 are presented in Figures

3.18 and 3.19 respectively. As with the Γew = 0.5 results, streamlines display a relatively

incoherent flow with few distinguishable structures when compared to Γew = 0.5 VB results.

There are also no indications of the large counter rotating vortices that were found in mode-1

results at the VB conditions. However, what looks to be a distorted VBB can be seen in the

streamlines of Figures 3.18 (f) and (i). This recirculating region appears to show the right
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(a) Ta = 3, 360, Retcvb
= 502 (b) Ta = 3, 360, Retcvb

= 502 (c) Ta = 3, 360, Retcvb
= 502

(d) Ta = 6, 352, Retcvb
= 690 (e) Ta = 6, 352, Retcvb

= 690 (f) Ta = 6, 352, Retcvb
= 690

(g) Ta = 15, 170, Retcvb
= 1, 067 (h) Ta = 15, 170, Retcvb

= 1, 067 (i) Ta = 15, 170, Retcvb
= 1, 067

Figure 3.14: Taylor-Couette - zone-2 - mean flow (POD mode-0), velocity con-

tours (left), non-dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right) at
Γew = 0.5
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(a) Ta = 1, 312, Retcvb
= 314 (b) Ta = 1, 312, Retcvb

= 314 (c) Ta = 1, 312, Retcvb
= 314

(d) Ta = 15, 170, Retcvb
= 1, 067 (e) Ta = 15, 170, Retcvb

= 1, 067 (f) Ta = 15, 170, Retcvb
= 1, 067

(g) Ta = 27, 769, Retcvb
= 1, 443 (h) Ta = 27, 769, Retcvb

= 1, 443 (i) Ta = 27, 769, Retcvb
= 1, 443

Figure 3.15: Taylor-Couette - zone-2 - POD mode-1, velocity contours (left),

non-dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right) at Γew = 0.5
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(a) Ta = 1, 312, Retcvb
= 314 (b) Ta = 1, 312, Retcvb

= 314 (c) Ta = 1, 312, Retcvb
= 314

(d) Ta = 15, 170, Retcvb
= 1, 067 (e) Ta = 15, 170, Retcvb

= 1, 067 (f) Ta = 15, 170, Retcvb
= 1, 067

(g) Ta = 27, 769, Retcvb
= 1, 443 (h) Ta = 27, 769, Retcvb

= 1, 443 (i) Ta = 27, 769, Retcvb
= 1, 443

Figure 3.16: Taylor-Couette - zone-2 - POD mode-3, velocity contours (left)

non-dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right) at Γew = 0.5
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side of a VBB like structure that is compressed into a crescent shape by a more dominant

axial vortex on the left side. Distortion of the axial vortex on the right side is likely due

to the radial cross flow and asymmetric vortical nature, which was found to be inherent,

of zone-2 at TCF conditions. Velocity and vorticity contours at mode-1 also support these

findings of a VBB like structure forming in the Couette cells zone-2 at Γew = 1.5 where, from

Figures 3.18 (a), (d), and (g) specifically, a contained region of increased velocity, similar to

that seen in VB mode-1 results, can be seen to occur along the axis. Interestingly, this region

of increased velocity was found to display the greatest magnitudes at lower Ta/Retcvb values

and was noted to first occur at Retcvb = 314 a Reynolds number that is noted to be well

below the critical Reew , which resulted in a similar velocity region, found in the Γew = 1.5

VB tests. The increased velocity and vorticity at Retcvb = 314 is also seen in mode-3 results

presented in Figures 3.19 (a) and (b). However, the aforementioned plots were found to be

the only instance of such a result and in general, unlike that of the VB cases, mode-3 was

found to provide very little insights into zone-2 flow behavior for TCF at Γew = 1.5.

Mean flow results for the TCF test cases at Γew = 1 are presented in the plots of Figure

3.20. From the streamlines of Figure 3.20 (i) a region of recirculating flow similar to that

previously described for the Γew = 1.5 TCF condition, can be seen to exist on the rotational

axis of the zone-2 appearing as a single vortex along the axial centerline. Unlike the results

at Γew = 1.5 the more dominate circulatory region appeared on the right side of the system

as opposed to the left. More importantly appearance of this region at Γew = 1 was found

to be a significant divergence from expectations due to the fact that unlike the VB results

recirculating core structures were not limited to the higher modes. Additionally previous

investigations from the likes of Escudier and Vogel give no indications of either a VBB or

core recirculation’s existing within the mean flow for aspect ratios Γew ≈ 1.25. However,

investigations by Valentine and Jahnke (1994) as well as those conducted by Mullin et al.

(1998) found that the creation of a recirculating zone, different from that of the type-B VBB,

does occur within the vortex core at aspect ratios below Γew = 1.25. Such results were found
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to occur under conditions where either both end walls were made to rotate symmetrically, as

in the case investigated by Valentine and Jahnke, or in the presence of a thin solid cylinder

placed along the rotational axis as was studied by Mullin et al. [57], [40]. Taking such results

into consideration it was inferred that a VBB like structure did in fact begin to form in the

zone-2 at Γew = 1 TCF conditions around a Reynolds numbers of Retcvb ≈ 1, 067. It is also

noted that, similar to the findings of Valentine and Jahnke, the recirculation found to occur

in TCF test at Γew = 1.0, as well as Γew = 1.5, was of a different form than that of the VBB

described to occur in the VB test cases.

While the results of Valentine and Jahnke, and Mullin et al. give confirmation of the

possible existence of core recirculation’s at aspect ratios below Γew ≈ 1.25 its existence in the

present case can not be entirely accounted for by their works. The most likely explanation

for the appearance of a “pseudo-vortex bubble breakdown” at the Γew = 1.0 test condition

is that it stemmed from either the radial slant of the vortex core or that it was the result

of annular gaps presence within the flow field. These two effects either individually or in

combination most likely acted to alter the flows effective aspect ratio within zone-2 thus

allowing for the formation of a pseudo-vortex breakdown bubble in the central core.

Mode-1 results at Γew = 1.0 shows the recirculating region exhibited the same structural

pattern that was observed at Γew = 1.5 with two recirculating regions present in the core and

was fount to be best exemplified by the streamlines of Figure 3.21 (i). This formation was

noted to be much more indicative of a VBB like structure than those found to occur in mode-

1 results of the Γew = 1.0 VB case. Streamline presented in Figures 3.21 (f) and (i) seem to

confirm that annular gap presence did in-fact have an effect on the zone-2s effective aspect

ratio and shows the flow directly above the annular gap to be predominantly in the axial

direction. If this axial flow did in fact act as a kind of stationary side wall within the zone-2

it would have resulted in an effective aspect ratio of Γew ≈ 1.23 and thus helps to explain

why core recirculation was seen to occur in mean flow results. As with Γew = 1.5, mode-3

was found to be relatively insignificant energy for zone-2, displaying very little additional
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formations with the noted exception of Figures 3.22 (a) and (b) which display increased

velocity an vorticity levels, respectively, similar to what was found to occur in the core

region at Γew = 1.5; increased core velocity and vorticity levels were also seen to occur in

Γew = 1.0 mode-1 results.
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(a) Ta = 3, 360, Retcvb
= 502 (b) Ta = 3, 360, Retcvb

= 502 (c) Ta = 3, 360, Retcvb
= 502

(d) Ta = 6, 352, Retcvb
= 690 (e) Ta = 6, 352, Retcvb

= 690 (f) Ta = 6, 352, Retcvb
= 690

(g) Ta = 15, 170, Retcvb
= 1, 067 (h) Ta = 15, 170, Retcvb

= 1, 067 (i) Ta = 15, 170, Retcvb
= 1, 067

Figure 3.17: Taylor-Couette - zone-2 - mean flow (POD mode-0), velocity con-

tours (left), non-dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle) Streamlines (right) at
Γew = 1.5
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(a) Ta = 1, 312, Retcvb
= 314 (b) Ta = 1, 312, Retcvb

= 314 (c) Ta = 1, 312, Retcvb
= 314

(d) Ta = 15, 170, Retcvb
= 1, 067 (e) Ta = 15, 170, Retcvb

= 1, 067 (f) Ta = 15, 170, Retcvb
= 1, 067

(g) Ta = 27, 769, Retcvb
= 1, 443 (h) Ta = 27, 769, Retcvb

= 1, 443 (i) Ta = 27, 769, Retcvb
= 1, 443

Figure 3.18: Taylor-Couette - zone-2 - POD mode-1, velocity contours (left),

non-dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), Streamlines (right) at Γew = 1.5
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(a) Ta = 1, 312, Retcvb
= 314 (b) Ta = 1, 312, Retcvb

= 314 (c) Ta = 1, 312, Retcvb
= 314

(d) Ta = 15, 170, Retcvb
= 1, 067 (e) Ta = 15, 170, Retcvb

= 1, 067 (f) Ta = 15, 170, Retcvb
= 1, 067

(g) Ta = 27, 769, Retcvb
= 1, 443 (h) Ta = 27, 769, Retcvb

= 1, 443 (i) Ta = 27, 769, Retcvb
= 1, 443

Figure 3.19: Taylor-Couette - zone-2 - POD mode-3, velocity contours (left),

non-dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), Streamlines (right) at Γew = 1.5
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(a) Ta = 3, 360, Retcvb
= 502 (b) Ta = 3, 360, Retcvb

= 502 (c) Ta = 3, 360, Retcvb
= 502

(d) Ta = 6, 352, Retcvb
= 690 (e) Ta = 6, 352, Retcvb

= 690 (f) Ta = 6, 352, Retcvb
= 690

(g) Ta = 15, 170, Retcvb
= 1, 067 (h) Ta = 15, 170, Retcvb

= 1, 067 (i) Ta = 15, 170, Retcvb
= 1, 067

Figure 3.20: Taylor-Couette - zone-2 - mean flow (POD mode-0), velocity con-

tours (left), non-dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), Streamlines (right)
at Γew = 1
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(a) Ta = 1, 312, Retcvb
= 314 (b) Ta = 1, 312, Retcvb

= 314 (c) Ta = 1, 312, Retcvb
= 314

(d) Ta = 15, 170, Retcvb
= 1, 067 (e) Ta = 15, 170, Retcvb

= 1, 067 (f) Ta = 15, 170, Retcvb
= 1, 067

(g) Ta = 27, 769, Retcvb
= 1, 443 (h) Ta = 27, 769, Retcvb

= 1, 443 (i) Ta = 27, 769, Retcvb
= 1, 443

Figure 3.21: Taylor-Couette - zone-2 - mean flow (POD mode-0), velocity con-

tours (left), non-dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), Streamlines (right)
at Γew = 1
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(a) Ta = 1, 312, Retcvb
= 314 (b) Ta = 1, 312, Retcvb

= 314 (c) Ta = 1, 312, Retcvb
= 314

(d) Ta = 15, 170, Retcvb
= 1, 067 (e) Ta = 15, 170, Retcvb

= 1, 067 (f) Ta = 15, 170, Retcvb
= 1, 067

(g) Ta = 27, 769, Retcvb
= 1, 443 (h) Ta = 27, 769, Retcvb

= 1, 443 (i) Ta = 27, 769, Retcvb
= 1, 443

Figure 3.22: Taylor-Couette - zone-2 - mean flow (POD mode-0), velocity con-

tours (left), non-dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), Streamlines (right)
at Γew = 1
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3.1.3 Annular Taylor-Couette Flow - Zone-1 - Rotationally Independent Inner

Cylinder

PIV measurements of the flow in the annular gap were for Γew = 0, 0.5, 1 and 1.5. As

previously mentioned, testing at the largest two aspect ratios required the position of the

CCD camera to be vertically adjusted to capture a large enough area of the flow between

the two cylinders. Results of this annular investigation at the TCF condition are presented

in Figures 3.23 - 3.35 and discussed in the proceeding text.

Energy plots for TCF annular flows are presented in Figure 3.23. Cumulative energies,

seen in Figure 3.23 (a), have a far wider ranger than those of the VB and TCF zone-2 results.

This wider range is primarily due to extremely low mean flow energy levels at the Γew = 1.5

aspect ratio. The large drop and the subsequent segregation of Γew = 1.5 modal energies that

can be seen to occur beyond mode-3, (Figure 3.23 (b)), signifies a drastic change in annular

flow conditions caused by an increase in aspect ratio beyond some critical point which lay

between Γew = 1.0 − 1.5 and resulted in a large amount of energy being transferred from

the larger to smaller scales. Γew = 1.5 mean flow energy reductions are also noted to be

greater at larger Ta values and were found to range from ≈ 38% to as low as ≈ 5%. This

indicated that changes in flow energy, caused by increases in end-wall aspect ratio, became

amplified as the Taylor number increased. However, this reduction in energy was not entirely

continuous at ever increasing Taylor numbers as indicated by the comparison of mean flow

energy at Γew = 1.5 Ta = 35, 485 and Γew = 1.5 Ta = 15, 170 in Figure 3.23 (a). Through

detailed examination, utilizing a more inclusive comparison of all rotational test cases at the

Γew = 1.5 aspect ratio, it was found that the two largest reductions in mean flow energy

occurred between Taylor numbers Ta = 3, 360 and Ta = 6, 352, beyond which mean flow

energy levels were found to remain between 5% and 23%.
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(a) cumulative distribution

(b) POD spectrum, modes 0-15

Figure 3.23: TCF annular POD energy distribution
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(a) Ta = 1, 312 (b) Ta = 3, 360 (c) Ta = 6, 352 (d) Ta = 10, 289 (e) Ta = 20, 997 (f) Ta = 35, 485

Figure 3.24: Taylor-Couette annular mean flow (POD mode-0 Zone-1), velocity
contours at Γew = 0

Measurements at Γew = 0 were taken in order to establish a true baseline for the Taylor

vortices which are known to form within the annular gap between two rotating concentric

cylinders. From these measurements the initial onset of Taylor vortices was found to occur

at Ta = 3, 360, however, this was almost certainly not the actual point of bifurcation but was

instead the lowest Taylor number tested which lie above Ta−crit. True onset of TV’s most

likely occurred somewhere between 1, 320 and 3, 360 as the critical Taylor number predicted

by small gap stability theory is Ta−crit ≈ 1, 708 ⇒ Retc−crit ≈ 85 as previously stated. In fact

at Ta = 3, 360 ⇒ Retc = 120 the onset of WVF would typically be expected for the given

gap ratio (η = 0.815) that was used in the present work. From the experimental data of

Cole, Edwards et al. and others, at an aspect ratio of Γc = 20 the onset of WVF is reported

to lie between 1.2 ≤ ϵwv
crit ≤ 1.35, where ϵwv

crit =
Retcvb

Retcvb−crit
. Using this criterion the value of

ϵwv
crit for a Ta of 3, 360 was found to be ≈ 1.4, a value which is just beyond the upper limit

for the expected onset of WVF. It was difficult to discern if the flow was in fact wavy due to
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(a) Ta = 3, 360 (b) Ta = 15, 1700 (c) Ta = 35, 485 (d) Ta = 3, 360 (e) Ta = 15, 170 (f) Ta = 35, 485

Figure 3.25: Taylor-Couette annular flow (Zone-1), velocity contours at Γew = 0,
POD mode-1 (a-c), POD mode-3 (d-f)
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(a) Ta = 3, 360 (b) Ta = 3, 360 (c) Ta = 6, 352 (d) Ta = 6, 352 (e) Ta = 10, 289 (f) Ta = 10, 289

(g) Ta = 15, 170 (h) Ta = 15, 170 (i) Ta = 27, 769) (j) Ta = 27, 769 (k) Ta = 35, 485 (l) Ta = 35, 485

Figure 3.26: Taylor-Couette annular mean flow (POD mode-0 Zone-1), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] & streamlines Γew = 0
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(a) Ta = 3, 360 (b) Ta = 3, 360 (c) Ta = 15, 170 (d) Ta = 15, 170 (e) Ta = 35, 485 (f) Ta = 35, 485

(g) Ta = 3, 360 (h) Ta = 3, 360 (i) Ta = 15, 170) (j) Ta = 15, 170 (k) Ta = 35, 485 (l) Ta = 35, 485

Figure 3.27: Taylor-Couette annular flow for POD mode-1 (top) & mode-3 (bot-

tom), non-dimensionalized vorticity [ ωd̂
2ΩIRI

] & streamlines Γew = 0
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lighting limitations of the laser such that only one side of the annular gap was observable.

However, detailed analysis of the vorticity and velocity plots as well as the streamlines of

Figures 3.24(b) and 3.26 (a-b) reveals Taylor vortices at Ta = 3, 360 to have a slight axial

slant and display patterns indicative of intra-vortex fluid exchange. Flow features such as

those previously describe indicated that the TV’s were of a wavy form when they were first

noted to appear at Ta = 3, 360. This basic flow pattern was maintained even as Ta was

increased to the highest value of Ta = 35, 485 ⇒ Retc = 387. The only significant changes

that were found to occur in the mean flow at Γew = 0 as Taylor number was increased beyond

3, 360 was a small continuous reduction in relative vorticity and a general progression of the

Taylor vortices taking on a more square like form; these results are displayed in Figures 3.24

and 3.26.

For Γew = 0 results of higher POD modes are presented in Figures 3.25 and 3.27, while

these results were not found to display the same level of divergence from mean flow trends

as some of the larger aspect ratio results, they reveal some of the more subtle nuances

contained within the base flow structure. Mode-1 vorticity results, presented in Figures 3.27

(a-f), display an enhanced view of the intra vortex fluid exchange that was noted to occur in

the mean flow results presented in Figure 3.26 were right angle like structures can be seen in

the regions between vortex pairs. A left to right progression of the mode-1 plots shows these

areas of vortical exchange becoming more pronounced as Ta increased. Additionally Taylor

vortex structures are seen to have become increasingly more defined at ever increasing Taylor

numbers similar to what was seen in Γew = 0 mean flow results. Mode-1 results also display

what appear to be small counter rotating vortices positioned between the cylinder walls and

the Taylor vortices. These side wall vortices appear on either side of the TVs in velocity plots

of Figures ?? (b-c) while appearing almost exclusively on the left hand side of the annulus,

between the outer cylinder wall and the TVs, in the vorticity plots of Figures ?? (a, c & e).

Extremely weak indications of these side wall vortices were also noted to appear in mean flow

vorticity plots of Figure 3.26. Mode-1 results however show that these additional formations
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caused the Taylor vortices to be displaced in the positive radial direction, an effect which

became increasingly mitigated at higher Taylor numbers as indicated by the streamlines of

Figures 3.27 (b, d, & f).

Mode-3 results were similarly found to display enhanced views of the minute features

of the flow, specifically the inflow (positive radial flow) and outflow (negative radial flow)

boundaries that occur between the Taylor vortices. Velocity magnitude presented in Figure

3.25 (d) most clearly show these regions where outflows especially, are noted to display

the largest relative velocities. Similarly, Figure 3.27 (h) shows the outflow boundaries at

Ta = 3, 360 mode-3 to be dominant constituting nearly every region of radial flow within the

streamlines. Inflow boundaries at Ta = 3, 360 were found to only be visible in the mode-3

vorticity plot of Figure 3.27 (g) and are seen to be directly below the more dominant outflow

regions taking on what appears to be a weaker form of the right angle flow formations noted

to occur in Γew = 0 mode-1 results. Imbalances between the inflow and outflow regions

of mode-3 were found to become mitigated as Ta was increased such that at Ta = 15, 170

Figures 3.25 (e) and 3.27 (i-j) display almost no noticeable disproportionality. One noted

exception however can be seen at z/d̂ ≈ 5.5 in Figures 3.25 (e) and 3.27 (i) where the

outflow bound is seen to have higher relative vorticity and velocity values and appears to

act as a barrier segregating the flow into an upper and lower region. Further increase in

the Taylor number resulted in mode-3 results taking on a slightly more chaotic appearance,

where from Figure 3.27 (k) inflow and outflow bounds and the individual Taylor vortices

are relatively indistinguishable from one another. This lack of differentiation between flow

features and the tangled appearance of the streamlines in Figure 3.27 (l) indicates increasing

flow perturbations within the annulus and suggests that further increases in Ta would have

lead to an additional flow bifurcation, most likely modulated wave flow (MWF) [2].

Adjustment of the upper end wall to an aspect ratio of Γew = 0.5 was found to result

in Taylor vortex structures that were noticeably altered from those of Γew = 0. While the

initial formation of the TV’s within mean flow results was still seen to occur at Ta = 3, 360,
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(a) Ta = 3, 360 , Retc−vb
= 502 (b) Ta = 3, 360 , Retcvb

= 502

(c) Ta = 6, 352 , Retcvb
= 690.2 (d) Ta = 6, 352 , Retcvb

= 690.2

(e) Ta = 27, 769 , Retcvb
= 1, 443.2 (f) Ta = 27, 769 , Retcvb

= 1, 443.2

Figure 3.28: Taylor-Couette mean flow (POD mode-0), non-dimensionalized vor-

ticity [ ωd̂
2ΩIRI

] (left) and vorticity magnitude (right) at Γew = 0.5
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their form was much less coherent than those observed at Γew = 0. This altered structure

can be seen in Figures 3.14 (b) and 3.28 (a) where vortices take on a roughly triangular

shape in the latter with a significant amount of axial flow at z/d̂ ≈ 11.5− 8 displayed in the

former. Figure 3.28 also displays a large reduction in the Taylor vortices relative vorticity

when compared to the Γew = 0 case of Figure 3.26. This reduction in vortex circulation

was noted to be greatest near the top of the annulus and was caused by a negative axial

encroachment of fluid from zone-2.

Annular encroachment from zone-2 was caused, in part by, the close proximity of the

boundary layer, which formed along the upper surface of the rotating cylinder, to the zone-

1/2 interface. As fluid was ejected radially outward from the upper surface of the inner

cylinder towards the stationary side-wall the boundary layer became larger, causing an ever

increasing radial velocity gradient. As this gradient encountered the stationary side-wall it

was forced to turn in the axial direction. Thus, due to the presence of the annular gap, a

portion of this diverted flow was forced to curl downward into the annulus, where increases

in either radial velocity or boundary layer thickness resulted in increased negative axial mass

flow. This diverted flow caused the upper most TV to become radially strained inward by

≈ 0.35d such that it became pinned near the wall of the inner cylinder. This displacement

in the position of the upper TV coupled with an increase in regional Ta−crit, due to the

presence of negative axial flow, was found to be the primary source of the drastic reduction

in Γew = 0.5 TV vorticity. These effects, as previously mentioned, were strongest near

the domain interface and cascaded down into the annulus resulting in the axial gradient

differences between the Taylor vortices at Γew = 0 and Γew = 0.5.

As the Taylor number was increased beyond Ta = 3, 360 negative axial mass flow from

zone-2 to zone-1 also increased. Surprisingly, this actually resulted in a stabilizing effect on

TVs and resulted in a more uniform annular flow in regards to both Taylor vortex struc-

ture and vorticity values. This increased stability was found to result from a combination

of decreased interactions between the zones and an increase in Taylor vortex circulation,
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specifically in the lower portions of the annulus (zone-1). As the mass of fluid rushing into

the gap increased, it began to encounter an increased resistance acting in the positive axial

direction caused by the increased circulation of the lower TV’s. This resistance to linear

axial motion grew as Ta was increased and began to force the encroaching fluid to turn back

in the positive axial direction resulting in the formation of a barrier which progressively

segmented the annulus (zone-1)from zone-2 influences. Nondimensional vorticity values of

this encroaching flow were found to increase as Ta increased, and eventually resulted in the

formation of an elongated counter rotating vortex pair directly above the upper most Taylor

vortice as seen in Figure 3.28 at z/d̂ ≈ 10.5. This elongated vortex acted as a “pseudo

Ekman cell” which stabilized the Taylor cells in the upper half of the annulus and resulted

in the noted decrease in the Γew = 0.5 mean flow axial vorticity gradient. It was also found

that as Ta increased and more fluid began to flow into the annulus, Taylor vortices were

progressively forced further down into the annulus. This occurred over the entire range for

which TV’s were observed, Ta = 3, 360 − 35, 485, and resulted in an overall displacement

of ≈ 0.3d in the negative axial direction.

Results from modes 1 and 3 at Γew = 0.5 were found to display inappreciable amounts of

additional detail for the flow contained within the annulus (zone-1). Streamlines presented

in Figures 3.15 and 3.16 show a trend that is vaguely similar to that seen in the higher modal

results at Γew = 0 and display either a weaker form of the mean flow Taylor vortices (Figure

3.16 (f)) or no discernible TV pattern at all. However, unlike POD results at Γew = 0 the

vast majority of Γew = 0.5 POD streamlines were found to display no indications of Taylor

vortex circulations but were instead noted to predominantly display the axial motion of fluid

exchange between zone-2 and annulus, at z/d̂ ≈ 8 − 11.5, that was first noted to occur

in Γew = 0.5 mean flow streamline results. Non-dimensional velocity and vorticity plots

were similarly found to contain few instances of discernible detail and were instead seen to

merely highlight the smaller mean flow structures and predominately consisted of the inflow

/ outflow boundaries as was seen to occur in Γew = 0 POD results. Mode-1 and mode-3
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each display one such instance in Figures 3.15 (g-h) and 3.15 (d-e) showing the radial offset

indicative of WVF in the former and pronounced outflow boundaries between vortex pairs

in the latter. As with the streamlines, velocity and vorticity plots at the higher modes were

found to be primarily dominated by patterns indicative of the axial fluid exchange between

the domains rather than TV circulations. Additionally none of the higher modal Γew = 0.5

results investigated were found to give such indications of TV circulation for Taylor numbers

lower than Ta = 15, 170 which is the same point at which the pseudo Ekman cell was first

noted to be fully formed in the mean flow results indicating that the formation of such a cell

at the top of the annular gap is a key factor in Taylor vortex stability.

Mean flow results for the Γew = 1 aspect ratio were found to displayed trends gener-

ally similar to those described for the mean flow at Γew = 0.5 with weaker Taylor vortex

formations at the lower Taylor numbers tested that became progressively more structured

and uniform as Ta was increased. Initial formation of Taylor vortices was again first noted

to appear in the mean flow results at a test condition of Ta = 3, 360, as seen in Figures 3.29

and 3.31. These initial vortices are seen to be slightly less structured and display vorticity

values nearly 1/3 that of the Taylor vortices at similar Γew = 0 conditions. Additionally

vorticity of the cells within the annulus can be seen to form an axial gradient similar to what

was seen at Ta = 3, 360 Γew = 0.5 where circulation of the individual cells was weakest at

the top of the annulus but became progressively stronger as axial distance from the domain

interface increased. As with Γew = 0.5 results this gradient was attributed to a negative

axial encroachment of fluid from the zone-2 which acted to reduce Ta−crit in the upper half

of the annulus. However, this negative axial flow was found to penetrate slightly further

down into the annular domain at this higher aspect ratio. At Γew = 0.5 flow penetration

was found to reach a depth of approximately 3.5d̂, (between z/d̂ ≈ 11.5 − 8), where as the

streamlines of Figure 3.31 (b) show the same conditions resulting in an annulus penetration

depth of ≈ 4.5d̂ at Γew = 1.0. This increased penetration was found to be ≈ 29% greater

than that at Γew = 0.5 and was the most likely cause of the slight reduction in Γew = 1.0
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(a) Ta = 1, 312 (b) Ta = 3, 360 (c) Ta = 6, 352 (d) Ta = 10, 289 (e) Ta = 20, 997 (f) Ta = 35, 485

Figure 3.29: Taylor-Couette mean flow (POD mode-0 Zone-1), velocity contours
at Γew = 1

vorticity from the levels seen to occur in Figure 3.28 (b) at Γew = 0.5 where similar axially

positioned cells in the Γew = 1 results were found to display a ≈ 31% reduction in vortic-

ity. Increases in Taylor number beyond Ta = 3, 360 resulted in a progressive reduction of

the axial TV vorticity gradient as well as the formation of more square like and uniformly

shaped Taylor vortices, which were progressively displaced in the negative axial direction in

a similar manner as that noted to occur for increasing Ta numbers at Γew = 0.5. However,

these annular results for increases in Ta were noted to have a slight discrepancy with the

visible annular (zone-1) results of the Γew = 1.0 zone-2 test.

Initial observations of Figure 3.20, which include the upper flow domain, seemed to

indicate that Taylor vortex formations became increasingly unstructured as Ta increased.

However, investigations into higher POD modes, specifically mode-1 (Figure 3.21), showed

that Taylor cells were actually fairly structured in the zone-2 cases for the vast majority of

the Taylor number range with only a slight destabilization of the upper most pair occurring
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(a) Ta = 3, 360 (b) Ta = 15, 170 (c) Ta = 35, 485 (d) Ta = 3, 360 (e) Ta = 15, 170 (f) Ta = 35, 485

Figure 3.30: Taylor-Couette Zone-1 POD mode-1 (a-c) & mode-3 (d-f), velocity
contours at Γew = 1
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(a) Ta = 3, 360 (b) Ta = 3, 360 (c) Ta = 6, 352 (d) Ta = 6, 352 (e) Ta = 10, 289 (f) Ta = 10, 289

(g) Ta = 15, 170 (h) Ta = 15, 170 (i) Ta = 27, 769 (j) Ta = 27, 769 (k) Ta = 35, 485 (l) Ta = 35, 485

Figure 3.31: Taylor-Couette mean flow (POD mode-0 Zone-1), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] & streamlines at Γew = 1
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(a) Ta = 3, 360 (b) Ta = 3, 360 (c) Ta = 15, 170 (d) Ta = 15, 170 (e) Ta = 35, 485 (f) Ta = 35, 485

(g) Ta = 3, 360 (h) Ta = 3, 360 (i) Ta = 15, 170 (j) Ta = 15, 170 (k) Ta = 35, 485 (l) Ta = 35, 485

Figure 3.32: Taylor-Couette Zone-1 POD mode-1 (a-f) & mode-3 (g-l), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] & streamlines at Γew = 1
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around Ta = 15, 170, which is noted to be the same point at which the weakly recirculating

region in the central core was first seen to appear in the zone-2s mean flow. Results from the

lower portion of the annular flow, Figures 3.29 and 3.31, however do not display this loss of

TV structure at increasing Taylor numbers as previously sated. The most likely reason for

this discrepancy was attribute to the higher momentum of fluid particles within the zone-2,

which was noted to be orders of magnitude greater than that of the particles contained within

the annular gap. This resulted in annular structures, specifically the Taylor vortices, being

averaged out of the mean flow during POD calculations due to their lower energy content

which in turn caused such structures to appear relatively negligible when compared to those

contained within the zone-2.

POD results for the lower portion of the Γew = 1 annulus at modes 1 and 3 are presented

in Figures 3.30 and 3.32 were a general continuation of the mean flow patterns can be

seen at lower Taylor numbers while more unique formations not seen to occur at either

Γew = 0 or Γew = 0.5 are noted to appear at the higher end of the Taylor number test range.

Figures 3.32 (a) and (b) clearly display the radial skew of WVF pairs and the increased

flow encroachment from the zone-2 which caused the reduced vorticity seen in the vortex

pairs between z/d̂ = 11.25 − 7/6. The non-dimensional vorticity at Ta = 3, 360 is also

notably higher in mode-1 than it was in the mean flow results, indicating that the increased

aspect ratio resulted in a significant increase in energy transfer to the higher modes than

that observed to occur at Γew = 0 and 0.5. However, this energy transfer diminished as

Ta increased as indicated by the greatly reduced vorticity values in Figures 3.32 (c) and

(e). These plots also display an increases in both vortex skew and elongation predominantly

between z/d̂ = 0 − 4 which occurred as Ta was increased. Figure 3.32 (e) also displays

what appears to be the formation of additional Taylor cells between the preexisting cell were

positive vortices, specifically in the range between z/d̂ = 10.5−5, are seen to be compressed

with arcs of negatively circulating flow enveloping their left side. Additionally streamlines in

both Figure 3.32 (d) and (f) show an axial flow reversal in the upper half of the annulus were
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fluid appears to be have been drawn out of the annular gap as opposed to purely negative

axial flow seen to occur in all Γew = 1.0 mean flow results.

Results at mode-3 were also found to highlight the effects of the increased flow pene-

tration noted to occur at Γew = 1.0 where an elongation and a slight radial displacement all

vortex pairs, especially in the area between z/d̂ = 10.5 − 7 where negative axial flow was

noted to occur in the mean flow, can been seen in Figures 3.36 (g) and (h). Comparisons

of the vorticity values in Figures 3.36 (g, i and k) show levels at Ta = 3, 360 to be an order

of magnitude greater than those at higher Taylor numbers similar to the trend previously

described to occur in mode-1 results. However, unlike the results at mode-1 mode-3 plots

showed a slight convergence towards Γew = 0 higher modal results as Ta was increased. This

is best exemplified by a comparison of Figures 3.27 (g-h) and 3.36 (i-j) where both aspect

ratios resulted in a relatively uniform TV structure at mode-3 with an enhanced view of the

inflow and outflow boundaries at Ta = 35, 485.

At the largest aspect ratio of Γew = 1.5 mean flow structural patterns began to diverge

from the trends found to occur at Γew = 0.5 & 1.0. Although, initial onset of Taylor vortices

was still observed at Ta = 3, 360 overall structure of the individual Taylor cells was found

to be less coherent than those seen at lower aspect ratios. From Figures 3.35 (a-f) vortices

can be seen to have a pronounced “S” shape and are noted to display a slight increase in

the radial offset between vortex pairs. Interestingly flow interactions and fluid exchange

between zone-2 and the annulus (zone-1) was found to be relatively reduced in the Taylor

range between 1, 312−10, 289 when compared to Γew = 0.5 and 1.0 results. Additionally the

interactions that were present within the mean flow were found to result in an axial reversal

of fluid in the upper half of the annulus between z/d̂ = 11.25− 7.5 where flow from zone-2

was seen to draw fluid out of the annular gap. This positive axial flow was a stark contrast to

the purely negative axial encroachment that was seen to occur in the mean flow at Γew = 1

and Γew = 0.5. Reversal was attributed to the increased axial distance in zone-2s central core

which resulted in reduced fluid momentum of the axially returning flow as it was drawn back
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towards the rotating horizontal surface of the inner cylinder. Concurrently, this decrease

in core momentum caused a reduction in the fluids radial momentum near the horizontal

surface of the cylinder end wall. These reductions in momentum allowed for a smoother and

more continuous circulation of zone-2s fluid mass and resulted in a sharper turning angle as

radial flow encountered the outer cylinder near the zone-1/2 interface. This sharper turning

angle at the interface resulted in less fluid diversion from zone-2 down into the annulus which

caused annular circulations near the zone-1/2 interface to become dominant and ultimately

resulted in the positive axial reversal in the region between z/d̂ = 11.25− 7.5 as previously

described. Additionally this increased linear length of radial flow at the domain interface

acted as a pseudo end wall and allowed the upper most TV to behave in a manner similar

to that of an end wall Ekman cell. From a comparison of Figures 3.28, 3.31 and 3.35 the

smaller aspect ratios can be seen to have mean flow vorticity values approximately 55% less

than those at Γew = 1.5 for Taylor numbers between Ta = 3, 360 − 6, 352 however values

at Γew = 0 for the same Ta range are seen to be quite similar indicating that the sharper

turning angle at the domain interface acted to stabilize the Taylor vortices along the entire

annular length such that initial vortex formations were at Γew = 1.5 were relatively close to

those of the baseline.

Increases in Ta beyond 6, 352 resulted in a destabilization of the mean flow Taylor vortex

structure as vortices began to take on a much more slanted appearance and had increases

in both axial travel and vortical fluid exchange which in turn was found to ultimately result

in a drastic reduction of TV vorticity. Increases beyond Ta = 10, 289 were found to cause

a continuation of this structural breakdown as well as ever increasing axial flow along the

annular length. Unlike results at Γew = 1 where plots showed Taylor vortices begin forced

into the higher POD modes, particularly in Figures 3.20 - 3.21, this destabilization resulted

in structured Taylor vortices disappearing form nearly all investigated modes. From Figure

3.35 (g) TVs are first seen to become chaotic at Ta = 15, 170, and eventually disappear from

the mean flow entirely at Ta = 35, 485 (Figures 3.35 (k) and (l)). In fact at 35, 485 the flow
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with in the annulus vaguely resembles the flow initially seen at Ta = 1, 312, before the onset

of Taylor vortices occurred.

POD results for Γew = 1.5 were found to confirm the breakdown of Taylor vortices seen

to occur in mean flow results. In the plots for both modes-1 and 3 presented in Figures

3.34 and 3.36 Taylor vortices are noted to be almost entirely absent; with one exception at

Ta = 3, 360 (Figures 3.36 (a), (b), (g) and (h)) where extremely weak vortex pairs can be seen.

Figures 3.36 (b) and (g) also show what appear to be extremely small (≈ 0.3d̂ in diameter)

vortical sinks which formed along the wall of the stationary outer cylinder. The exact cause of

these sinks was unclear, but from the rotational direction of their streamlines they were most

likely the positive competent of a Taylor vortex pair which became compressed and displaced

radially outward. At Ta = 15, 170 and 35, 485 mode-1 plots displays a purely negative axial

flow along the inner cylinder boundary between z/d̂ = 0− 5.5 as seen in Figures 3.34 (b-c)

and 3.36 (c-f). Mode-3 similarly shows large amounts of axial flow but was found to be more

localized than the mode-1 results and appeared as elongated horizontally aligned vortex pairs

(Figures 3.36 (i) and (k)). Increase in Ta showed these localized regions moving progressively

in the positive axial direction, indicating that mass flow from the annulus (zone-1) into zone-

2 became increased with increasing Ta and was most likely one of the main causes in the

destabilization of Taylor vortices.
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(a) Ta = 1, 312 (b) Ta = 3, 360 (c) Ta = 6, 352 (d) Ta = 10, 289 (e) Ta = 20, 997 (f) Ta = 35, 485

Figure 3.33: Taylor-Couette mean flow (POD mode-0 Zone-1), velocity contours
at Γew = 1.5
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(a) Ta = 3, 360 (b) Ta = 15, 170 (c) Ta = 35, 485 (d) Ta = 3, 360 (e) Ta = 15, 170 (f) Ta = 35, 485

Figure 3.34: Taylor-Couette Zone-1 POD mode-1 (a-c) & mode-3 (d-f), velocity
contours at Γew = 1.5
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(a) Ta = 3, 360 (b) Ta = 3, 360 (c) Ta = 6, 352 (d) Ta = 6, 352 (e) Ta = 10, 289 (f) Ta = 10, 289

(g) Ta = 15, 170 (h) Ta = 15, 170 (i) Ta = 27, 769 (j) Ta = 27, 769 (k) Ta = 35, 485 (l) Ta = 35, 485

Figure 3.35: Taylor-Couette annular mean flow (POD mode-0 Zone-1), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] & streamlines at Γew = 1.5
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(a) Ta = 3, 360 (b) Ta = 3, 360 (c) Ta = 15, 170 (d) Ta = 15, 170 (e) Ta = 35, 485 (f) Ta = 35, 485

(g) Ta = 3, 360 (h) Ta = 3, 360 (i) Ta = 15, 170 (j) Ta = 15, 170 (k) Ta = 35, 485 (l) Ta = 35, 485

Figure 3.36: Taylor-Couette Zone-1 POD mode-1 (a-c) & mode-3 (d-f), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] & streamlines at Γew = 1.5
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3.2 Combined Flow Field

Investigations into the coupling of the two flow fields were conducted by taking PIV

measurements of co-rotation and counter-rotation of the upper end-wall and inner cylinder.

Aspect ratios of 0.5, 1,&1.5 were tested for both rotational cases. As with the TCF and

VB test cases, a POD snapshot method was applied to the data in order to extract various

modes from the fluctuating velocity components, enabling the identification of coherent

structures contained within the more complex flow fields. Similarly modes-1 and 3 were

reconstructed in order to obtain a more complete picture of the complex flow structures

contained within the system. However due to the large number of additional figures required

for this expand investigation plot for POD modes 1 and 3 are omitted from the body of

the following sections and have instead been placed in appendices A-D to allow for better

visualization and comparison.

3.2.1 Co-Rotation

Co-Rotational modal and cumulative energies are presented in Figures 3.38 - 3.41 Con-

ditions in the zone-2 (Figures 3.38 and 3.39) were found to result in dramatic differences

in modal energy compared to similar TCF and VB conditions; most notably at Γew = 1.5.

Cumulative distribution plots of Figures 3.38 (a) and 3.41 (a) show mean flow energy at

Γew = 1.5 varying from ≈ 0.66 − 0.44 in the former and ≈ 0.77 − 0.24 in the latter. This

was found to result in an energy fluctuations 1.83 to 4.42 times greater than those of the

TCF case and 2.25 to 6.65 times greater than the VB case; indicating a large increase in

the amount of energy transferred to the smaller scales caused by co-rotation. These results

also show that changes in end-wall rotation rate had greater influence on the energy transfer

rate than cylinder changes. Spectral energies in Figures 3.38 (b) and 3.41 (b) also show that

these effect were not confined to a few individual modes, as the entire modal curve is noted

to be at elevated levels compared to TCF and VB conditions. Γew = 1 was also found to

have lower levels of mean flow energy than the TCF and VB cases by ≈ 1
2
and 2

3
respectively.
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Figure 3.37: Configuration of Co-Rotational test case
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However unlike Γew = 1.5, the variability in this energy range was found to be effected more

by changes in cylinder rotation rather than end-wall rotation. Individual modal energies

for Γew display increased levels between modes 2 and 3 especially at lower Ta/Reew values

(Figures 3.38 (b) and 3.41 (b)). Similar increases can be seen for Γew = 0.5 where mode-3

specifically is seen to show a spike in energy. Conversely mean flow energies were found to

be relatively similar to TCF results and like wise had higher values and lower variability

than the VB case.

Energy plots for co-rotational annular flow were found to be more congruent with TCF

results than those of the zone-2. Cumulative energy distributions presented in Figures 3.40

(a) and 3.41 (a) show a similar drop in mean flow energy at Γew = 1.5 that was seen in the

TCF energy results. As with zone-2 results this reduction in mean flow energy was noted

to be greater than the baseline results where for increasing Ta values co-rotation mean flow

energies had reductions of 26% at Ta = 3, 360 and 76% at Ta = 35, 485, while at Ta = 15, 170

mode-0 energy was found to be almost identical to TCF results. Modal spectrum plots

presented in Figures 3.40 (b) and 3.41 (b) also show Γew = 1.5 modes 1-14 with energy levels

significantly elevated relative to Γew = 0.5 and Γew = 1.0 modes. Additional these individual

modal energies for all aspect ratios were found to be slightly elevate when compared to TCF

results in the range between mode-1 and mode-4. Modes beyond mode-4 energy levels for

Γew = 0.5 and Γew = 0.5 were found to have a rapid decay, while Γew = 1.5 modal energies

remained elevated. At TCF conditions beyond mode-9 all modal energies were found to be

less than 1% of the total flow, co-rotational Γew = 1.5 energies however were not found to fall

below 1% until ≈ mode− 11/12; for both changes in Ta and Reew . Comparisons of Figures

3.40 and 3.41 show the expected result of energy fluctuations within the annulus being

driven predominantly y changes in Ta rather than Reew . However Figure 3.41 (a) does show

indications of increases in Reew actually resulting in increased energy transfer from smaller

scales back to larger ones, where for Γew Ta = 15, 170 Reew = 2, 929 mean flow energy is seen

to be higher than Ta = 15, 170 at lower R)eew values. This result indicated that at certain
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(a) cumulative distribution

(b) POD spectrum, modes 0-15

Figure 3.38: Co-rotational zone-2 energy distribution for increasing Ta
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(a) cumulative distribution (b) POD spectrum, modes 0-15

Figure 3.39: Co-rotational zone-2 energy distribution for increasing Reew

Ta / Reew combinations small scale perturbations may have become dampened resulting in

slightly more stable flow at the larger scales.

Mean flow contour plots, and streamlines for the co-rotation case at Γew = 0.5 are

presented in Figures 3.42 - 3.44. These results show quite a significant change in flow

characteristics compared to the TCF results previously discussed. Two of the most significant

differences were the flow reversals which occurred with in the central core of the zone-2 and

the annulus. Near the domain interface at the top of the annulus flow was drawn out of the

annular gap by zone-2 circulation. Unlike the positive axial flow which was only seen to occur

in the upper half of the annulus as an vortical fluid exchange at TCF,Γew = 1.5, the positive

axial flow in the present case was seen to merge into the returning flow of the zone-2s central

core. It was also noted that this effect was only present in the upper most portion of the

annulus, in the area between z/d̂ ≈ 8−11.25. Reversal to a positive axial flow in the zone-2s

central core was not entirely unexpected, due to the initially higher Reynolds number of the

upper end-wall at the lower end of the Ta test range. However unlike the VB case flow in

this region was not seen to be parallel to the axis of rotation as it is in Figure 3.9; but was

in-fact skewed in a similar manner as that seen in the TCF case. As Reew was increased and
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(a) cumulative distribution (b) POD spectrum, modes 0-15

Figure 3.40: Co-rotational annular POD energy distribution for increasing Ta

(a) cumulative distribution (b) POD spectrum, modes 0-15

Figure 3.41: Co-rotational annular POD energy distribution for increasing Reew
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(a) Ta = 6, 352 Reew = 944 (b) Ta = 6, 352 Reew = 2, 076 (c) Ta = 6, 352 Reew = 2, 926

Figure 3.42: Co-rotational mean flow streamlines, for varying Ta at Γew = 0.5

Ta held constant, the severity of this radial asymmetry was reduced. Eventually this resulted

in core flow traveling parallel to the rotational axis, as the positive axial pull of the end-wall

began to dominate. While this effect is seen in the streamline plots of Figure 3.42, it was

not seen to occur at the higher Ta numbers of Figure 3.52. Indicating that above Ta = 6, 352

effect produced by the rotation of the inner cylinder began to dominate, preventing the flow

within the central core from becoming parallel to the Z axis.

Taylor vortex formation was also seen to be effected by the co-rotation of the upper

end-wall. Initial formation occurred around Ta = 3, 360 as it did for the TCF case. However

there was a slight reduction in the number of observable vortex pairs; where ≈ 3.75 are seen

in Figure 3.28(a) while only 3 are visible in Figure 3.43(a). TVs in Figure 3.43 also display a

slightly elongated shape, and are not seen to exhibit the same slanted triangular shape nor

the unbalance size between pairs that occurred at TCF, Γew = 0.5. Vorticity plots also show

that co-rotation resulted in Taylor vortices with slightly reduced vorticity values; differences

between the co-rotation and baseline TV vorticity were seen to increase as axial distance

from the top of the annulus also increased. As Reew was increased and Ta held constant,

the vorticity of the Taylor vortices further decreased. At the two lowest Taylor numbers of

1, 312 and 3, 360 there was a point where flow from the zone-2 was observed flowing down

into the annulus as opposed to flow begin drawn out. This occurred at Reew = 2, 360 and
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Reew = 2, 926 respectively. For Ta = 3, 360 this resulted in a drastic deformation of TVs along

eh entire annular length, such that they were seen to all but disappear from the mean flow

plots of Figures 3.43 and 3.44. As Taylor number was increased beyond 3, 360 this negative

axial reversal of flow from the upper field was not seen to occur due to the increased vorticity

of TVs within the annulus, and the increased strength of the flow produced in the zone-2.

At the lowest Reew number of 944 for the Ta range of 3, 360 − 35, 485, the vortex at

the very top of the annulus was seen to be displaced in the positive axial direction such

that a gap formed between the upper most vortex pair. It was also noted that this upper

TV had a negative slant, and a large amount of fluid exchange with the zone-2s lower

corner vortex; taking on the appearance of an unbalanced vortex pair in some cases. As

Reew was further increased end-wall driven flow began to slowly dominate the circulation

produced by the cylinder in the zone-2. Once end-wall circulation became large enough it

began to compress the lower corner vortices such that they were no longer circular, but were

instead of the radially elongated form seen in Figure 3.44 (f). It was at this point that

Taylor vortex position was found to shift in the positive axial direction, becoming slightly

more elongated and causing a reduction in the number of visible vortex pairs by ≈ 0.5− 1.

Further increases in Reew eventually resulted in the upper end-wall completely dominating

these cylinder driven vortices to such an extent that they no longer presented any kind of

barrier into the annulus. This resulted in an increased amount of fluid being drawn out of

the annulus effectively destroying the upper most TV in the range of z/d̂ ≈ 8.25 − 11.25

and greatly reducing the vorticity of the vortices further down within the annulus. This

occurred at 3, 360 ≤ Ta ≤ 20, 997. For Ta ≥ 27, 769 however flow produced by rotation

of the inner cylinder became strong enough to oppose the forces produced by the rotating

end-wall, resulting in continuously stable Taylor vortices within the entire annular length of

the mean flow.

POD plots for mode-1 and mode-3, presented in Figures A.1 - A.4 of appendix A,

were found to greatly highlight some of the mean flow trends described above. Unlike TCF
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POD modal plots for Γew = 0.5, co-rotational results displayed an overwhelming amount of

structured flow formations; a few of which will be discussed in the flow text. Most notably

the formation of recirculation zones within the core of the zone-2 and the effect of axial

flow reversal in the annulus on TV structure. From Figure A.2 (f) streamlines display a

large pocket of recirculating flow in the zone-2s core. Unlike the higher modal results at VB

conditions this recirculation was not constrained to a small region near the rotating surface

but instead occupied the entire axial distance between cylinder and end-wall surfaces. While

Figure A.1 (f) A is the best example of this co-rotation induced core circulation it was not the

only one, Figures A.2 (e-f) and (h-i) show indications of it as well. Vorticity results at varying

Reew values of the aforementioned plots show that circulation was much higher and of an

opposing direction to that of the varying Ta results, indicating that circulation was influenced

more by changes in end-wall rotation than changes in the cylinder. Mode-1 streamlines also

show complex interactions between end-wall and cylinder driven side wall vortices appearing

to compress and displace one another resulting in similarly rotating vortice appearing side

by side in the zone-2. Mode-3 (Figures A.3 and A.4) displayed similar interactions between

end-wall and cylinder driven corner vortices but was found to lack any overt signs of the core

recirculation seen at mode-1.

Annular results at modes-1 3 clearly show the effects of the positive axial flow seen

in the mean flow plots and unlike the higher modal result of the TCF tests TV formation

was clearly visible for the vast majority of contours and streamlines. In many cases mode-1

displayed annular flow that was nearly identical to mean flow results (Figure A.2), others

such as Figure A.1 (h) however give indications that Taylor vortex formation may have been

less stable than mean flow results suggest. Vorticity and streamline plots at mod-3 can be

seen to confirm this instability, Figures A.3 (h/i) and A.3 (e/f) clearly show that the axial

flow between the annulus and the zone-2 resulted in axial stretching of the Taylor vortices.

Interestingly though this elongation occurred on one vortex in a pair at a time resulting in

dash dot dash like pattern within the annulus. Additional this was found to not only occur
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at higher values of Reew but also at the higher Ta values, even when Reew . This suggest that

axial flow effects were not as end-wall depended as initially believed.

For the Γew = 1 test case, results showed quite a large divergence form those of its

respective baseline, especially in the zone-2. One of the most notable differences was the

increased diameter of the central vortex which was found to be approximately 2d wider at

the cylinder surface for Ta = 1, 312 specifically; a trend that was observed at all Ta and Reew

combinations. Figure 3.45 (c) shows the initial formation of the combined circulation of both

the end-wall and cylinder, where an unbalanced four roll mill like structure with counter

rotating vortices in the four corners of the zone-2 can be seen. This formation was more

prevalent, and more coherent at this larger aspect ratio, than that observed at Γew = 0.5.

As with the lower aspect ratio case, increases in Reew resulted in end-wall driven circulation

progressively dominating and compressing that of the cylinder. In the zone-2 maximum

vorticity was also noted to be larger than either the TCF or VB cases at Γew = 1. Most

likely this was due to the wider central core which acted to radially compress the zone-2s

corner vortices against the outer cylinder; effectively constricting the volume without any

reduction in mass transport. This effect was compounded by the manner in which the two

flows interacted at the stationary wall of the outer cylinder. At this interface the two flows

meet at a glancing angle, resulting in very little momentum loss for either. When combined

Reynolds numbers reached Reew +Retc−vb
≈ 2, 500 cylinder and end-wall driven circulations

began to merge in the area between the central core and side wall. Eventually this resulted

in an extremely unstructured and turbulent flow in the zone-2 that became increasingly more

chaotic as either Ta or Reew increased.

In Figure 3.46(c) a large negative vortex can be seen in the central core near the upper

end-wall. This vortex was observed at all Taylor numbers above 1, 312. Observations also

showed that it had a negative axial movement, accompanied by a positive radial displacement

in many instances, as Reew increased. At higher Ta numbers a companion vortex was seen to

form directly below this large central vortex. Figures 3.46(h) and (i) display the first initial
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(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 6, 352 Reew = 944 (e) Ta = 6, 352 Reew = 944 (f) Ta = 6, 352 Reew = 944

(g) Ta = 10, 289 Reew = 944 (h) Ta = 10, 289 Reew = 944 (i) Ta = 10, 289 Reew = 944

Figure 3.43: Co-rotational mean flow, velocity profile (left), non-dimensionalized

vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Ta at Γew = 0.5
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(a) Ta = 15, 170 Reew = 944 (b) Ta = 15, 170 Reew = 944 (c) Ta = 15, 170 Reew = 944

(d) Ta = 15, 170 Reew = 1, 793 (e) Ta = 15, 170 Reew = 1, 793 (f) Ta = 15, 170 Reew = 1, 793

(g) Ta = 15, 170 Reew = 2, 926 (h) Vorticity Ta = 15170 Reew =
2, 926

(i) Ta = 15, 170 Reew = 2, 926

Figure 3.44: Co-rotational mean flow, velocity profile (left), non-dimensionalized

vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew at Γew = 0.5
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(a) Ta = 1, 312, Reew = 944 (b) Ta = 1, 312, Reew = 944 (c) Ta = 1, 312, Reew = 944

Figure 3.45: Co-rotational mean flow, velocity profile (left), non-dimensionalized

vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (left), at Γew = 1

formation of this lower central vortex at Ta = 10, 289, which is seen to be less structured and

of a much lower vorticity than the one above. As Reew was increased this lower vortex was

quickly over powered disappearing from the mean flow in both streamline and vorticity plots.

There were instances, such as that displayed in Figure 3.47(i), where a positive vortex was

seen to reform in the upper half of the core. In fact through out the test range a multitude of

various recirculating regions were observed in the central core. Generally these regions were

found to be unstable, randomly appearing and disappearing from the mean flow. As with

the Γew = 1 TCF case these recirculating zones seemed to indicate that some form of weak

VBB like structure does forms in the central core. However due to the turbulent interaction

of cylinder and end-wall driven circulation near the stationary side walls and the adversarial

nature of the axial flow it was extremely unstable.

Investigations into the annular flow at Γew = 1 showed that the initial onset of TVs

was significantly affected by the additional co-rotation of the upper end-wall. While counter

rotating vortices did form in the annulus at Ta = 3, 360 their vortical strength was found to

be approximately half of that seen in the Γew = 1 TCF case. Structural formation of the

vortices was also affected, taking on highly elongated shapes that were approximately 30%

larger than those of the baseline. This elongation, as well as a radial offset between positively

and negatively rotating vortices, became more pronounced as axial distance decreased. In
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(a) Ta = 3, 360 Reew = 944 (b) Vorticity Ta = 3, 360 Reew =
944

(c) Ta = 3, 360 Reew = 944

(d) Ta = 6, 352 Reew = 944 (e) Ta = 6, 352 Reew = 944 (f) Ta = 6, 352 Reew = 944

(g) Ta = 10, 289 Reew = 944 (h) Ta = 10, 289 Reew = 944 (i) Ta = 10, 289 Reew = 944

Figure 3.46: Co-rotational mean flow, velocity profile (left), non-dimensionalized

vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Ta at Γew = 1
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(a) Ta = 15, 170 Reew = 944 (b) Ta = 15, 170 Reew = 944 (c) Ta = 15, 170 Reew = 944

(d) Ta = 15, 170 Reew = 1, 793 (e) Ta = 15, 170 Reew = 1, 793 (f) Ta = 15, 170 Reew = 1, 793

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15, 170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure 3.47: Co-rotational mean flow, velocity profile (left), non-dimensionalized

vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew at Γew = 1
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Figures 3.49 (a) & (b), between z/d̂ ≈ 0 − 4, this radial offset is seen to be the most sever;

producing Taylor vortices with a sinusoidal shape. As Reew was increased for Ta = 3, 360 the

radial offset of TVs remained in the lower half of the annulus, while TV from z/d̂ = 6−10.25

were seen to become slightly compressed as they moved in the negative axial direction.

Beyond Ta = 3, 360 Taylor vortex formation took on a more familiar form. Figures 3.49

(c) − (l) show six observable vortex pairs within the annulus. This number was found to

remain constant for all Ta numbers tested between 6, 352− 35, 485, and at all coupled Reew

numbers. These results were congruent with those at TCF Γew = 1. Unlike the baseline

case however the TVs were not only observed moving in the negative axial direction as

cylinder rotation rates were increased, but were also seen to exhibit a slight positive axial

displacement at Reew/Retc−vb
≈ 2. This displacement resulted in a sudden drop in vortex

strength, and seemed to be caused by the decay of cylinder driven vorticity in the zone-2.

Although flow in the upper part of the annulus was drawn out by the circulation of the

zone-2, as it was for the Γew = 1.5 TCF case, mean flow TVs remained stable through out

the entire test range due to the sharp turning angle the flow encountered as it merged with

the zone-2. This turning angle resulted from the opposite rotational direction of the end-wall

and cylinder driven cores, which acted to segregate flow interaction and effectively negated

much of the zone-2s influence on the annulus. This effect can be seen in the streamline plots

of Figure 3.46, where for all rotational rates flow at the intersection of end-wall and cylinder

circulation is seen to remain relatively parallel to the rotational surfaces.

POD modes 1 and 3 for the zone-2 at Γew = 1 were found to display the same basic

flow patterns observed within the mean flow. In particularly mode-1 results presented in

Figures A.5 - A.6 are seen to have nearly identical core flow structures to those seen in the

mean flow. Vorticity plots were found to highlight these recirculating regions, Figures A.5

(h) and A.6 (h) demonstrate this clearly showing vertically stacked counter rotating vortices

in the very center of the zone-2. Mean flow indications of the instability of these vortices was

further enhanced by the results presented in Figures A.5 (e) and A.6 (e) where circulation
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of the central region is noted to be in an opposing direction to that of mean flow results

indicating the potential for circulation breakdowns and reversals caused by the opposing

forces of the end-wall and cylinder driven cores. Mode-3 results for the zone-2 were less

informative and generally found to display the same flow structure found at higher modes.

However the streamlines of Figures A.7 (c) and (i) do show reversals in circulation to that

of mode-1, further indicating circulatory instability in the core of the zone-2 as end-wall

and cylinder driven circulations alternated between dominant / dominated; even when no

changes in rotational were made.

Annular results for modes 1 and 3 were found to display an increased variability from

the mean flow than those of the zone-2. Mode-1 vorticity plots presented in Figures B.5 and

B.3 display increased values at Ta = 3, 360 similar to those seen at TCF conditions and are

noted to be ≈ 2.7 times greater than that of the mean flow with a more TV structure (Figure

B.5 (a) & (b)). Results for increases in Ta displayed increased Taylor vortex elongation to

that seen in mode-1 results at TCF Γew = 1. Figures B.3 (a-f) however shows almost no

discernible change in annular flow formation for increases in Reew . Only Figure B.3 (e) at

Ta = 15, 170, Reew = 2, 926 show any noteworthy variation were vorticity values are seen to

be reversed indicating that zone-2 fluctuations may have had a significant effect on Taylor

vortices. Mode-3 results of Figures B.2 (k-l) and B.3 (i-j) also display the effects caused by

co-rotation induced fluctuations with two different types of TV distortion. Plots (k) and (l)

of the aforementioned Figures show an extremely coherent formation were vortex pairs are

seen to unbalanced with negative vortics elongated and positive vortices compressed, in a

similar dash dot dash like pattern seen in mode-3 results for co-rotation, Γew = 0.5. Figures

B.3 (i) and (j) show what appear to be the formation of small 2 additional vortices on either

side of each Taylor vortex rotating in the opposite direction, the cause of which was not clear

but was generally found to occur a the lower Reew values preceding Ta and Reew combinations

that resulted in the dash dot dash pattern previously described.
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(a) Ta = 1, 312
Reew = 944

(b) Ta = 3, 360
Reew = 944

(c) Ta = 6, 352
Reew = 944

(d) Ta = 10, 289
Reew = 944

(e) Ta = 20, 997
Reew = 944

(f) Ta = 35, 485
Reew = 944

(g) Ta = 15, 170
Reew = 944

(h) Ta = 15, 170
Reew = 1, 227

(i) Ta = 15, 170
Reew = 1, 793

(j) Ta = 15, 170
Reew = 2, 076

(k) Ta = 15, 170
Reew = 2, 360

(l) Ta = 15, 170
Reew = 2, 926

Figure 3.48: Co-rotational annular mean flow, velocity profile (a)− (f): for vary-
ing Ta, (g)− (l): for varying Reew at Γew = 1
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(a) Ta = 3, 360
Reew = 944

(b) Ta = 3, 360
Reew = 944

(c) Ta = 6, 352
Reew = 944

(d) Ta = 6, 352
Reew = 944

(e) Ta = 10, 289
Reew = 944

(f) Ta = 10, 289
Reew = 944

(g) Ta = 15, 170
Reew = 944

(h) Ta = 15, 170
Reew = 944

(i) Ta = 27, 769
Reew = 944

(j) Ta = 27, 769
Reew = 944

(k) Ta = 35, 485
Reew = 944

(l) Ta = 35, 485
Reew = 944

Figure 3.49: Co-rotational annular mean flow, non-dimensionalized vorticity

[ ωd̂
2ΩIRI

] & streamlines, for varying Ta at Γew = 1
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(a) Ta = 15, 170
Reew = 1, 227

(b) Ta = 15, 170
Reew = 1, 227

(c) Ta = 15, 170
Reew = 2, 076

(d) Ta = 15, 170
Reew = 2, 076

(e) Ta = 15, 170
Reew = 2, 926

(f) Ta = 15, 170
Reew = 2, 926

(g) Ta = 35, 485
Reew = 1, 227

(h) Ta = 35, 485
Reew = 1, 227

(i) Ta = 35, 485
Reew = 2, 076

(j) Ta = 35, 485
Reew = 2, 076

(k) Ta = 35, 485
Reew = 2, 926

(l) Ta = 35, 485
Reew = 2, 926

Figure 3.50: Co-rotational annular mean flow, non-dimensionalized vorticity

[ ωd̂
2ΩIRI

] & streamlines, for varying Reew at Γew = 1
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Many of the same flow features observed at Γew = 1 were also seen to form when the

aspect ratio was increased to Γew = 1.5. Central core diameter at the cylinder surface was

approximately 2d wider than that of its respective TCF case. A negatively rotating vortex

was also seen to appear in the mean flow of the central core at Ta = 3, 360, which for

both Γew = 1 and Γew = 1.5 was much sooner than either TCF cases. However, unlike

the formation seen at Γew = 1, this vortex was also accompanied by a positively rotating

vortex directly below it; something that was not seen to form at Γew = 1 until Ta = 10, 289.

Another notable difference was that flow in the zone-2 remained relatively structured as

Reew was increased. This trend was noted to occur at all Taylor numbers tested, and can

be seen in the streamline and velocity plots of Figures 3.51 and 3.52. Since the magnitude

of vorticity for all three aspect ratios was relatively similar, the most likely explanation for

why turbulent, unstructured flow in the zone-2 was only seen to occur at Γew = 1, is that

it was a combination of the two flows in close proximity and the presence of recirculating

regions within the core. Where for Γew = 0.5, although the cylinder and end-wall had a closer

proximity the absence of recirculating zones in the core allowed cylinder driven vortices to

move radially inward as they became increasingly compressed by the end-wall driven vortices

at increased Reew numbers. The opposite was true in the case of Γew = 1.5 where, although

recirculation was seen to be present in the central core, the distance between the two surfaces

was sufficiently large for the two flows to co-exist without overt interference.

As Ta number was increased for Γew = 1.5 the relative strength of the vortices found in

the central core were seen to also increase. In all instances the two stacked counter rotating

vortices, which formed in the central core, had a negative axial movement as end-wall rotation

rate increased for a constant Ta number. In a few instances at the lower Taylor numbers

these vortices where seen to completely disappear from the mean flow. It is likely that these

vortices where predominantly the result of cylinder driven rotation, as seen in the TCF case,

and not the result of a true VBB caused by the upper end-wall. This was also found to be

applicable to the Γew = 1 aspect ratio. These results were found to be in general agreement
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with those of Mununga et. al. who found that co-rotation of the end-walls precipitates the

onset of a VBB and causes the bubble to shift in the upstream direction [41]. This also helps

to explain why core recirculation was seen to occur sooner in the co-rotation case than in

the TCF cases.

Initial onset of Taylor vortices at Γew = 1.5 was found to be the most uniform of the

three co-rotating aspect ratios tested. As with all other previous test, initial formation was

observed at Ta = 3, 360. From both the vorticity and streamline plots of Figure 3.55 these

initial Taylor vortices are seen to be more uniform in terms of shape, size and vorticity than

that of the two lower co-rotational aspect ratios. It is also noted that these TVs take on

the same S like shape that was seen to occur at the TCF case, with a significant amount of

vortical fluid exchange. For the lower portion of the Taylor number range (3, 360− 6, 352),

no significant change in either vortex formation or circulation were noted to occur as Reew

was increased. The only observable changes were a slight negative axial displacement, and

a progressively more pronounce square like shape; resembling the more stable TVs observed

at Γew = 0.

As Taylor number increased to Ta = 10289 radial fluctuations were observed in the

lower half of the annular gap. In Figure 3.53, at z/d̂ ≈ 1 & 3.4 respectively, vortex size

for the two negatively rotating vortices is seen to fluctuate between −25% and +50% for

increasing Reew . These fluctuations in the lower half of the annulus became more pronounced

as Ta increased and eventually resulted in a flow structure very similar to that seen at the

Γew = 1.5 TCF case. However for the case of co-rotation the magnitude of Taylor vortex

deformation was noted to be much less than that of the TCF case. In-fact in the upper half

of the annulus between z/d̂ ≈ 5− 11.25 Taylor vortices remained relatively coherent in the

mean flow up to Ta = 27769; after which flow with in the annulus became highly elongated

and tended towards an increasingly chaotic structure. Comparison of the zone-2s at the

point of TV deformation reveled that in both the TCF and co-rotational cases there is a

large amount fluid encroachment form the zone-2 down into the annulus. From Figures 3.55
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(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 6, 352 Reew = 944 (e) Ta = 6, 352 Reew = 944 (f) Ta = 6, 352 Reew = 944

(g) Ta = 10, 289 Reew = 944 (h) Ta = 10, 289 Reew = 944 (i) Ta = 10, 289 Reew = 944

Figure 3.51: Co-rotational mean flow, velocity profile (left), non-dimensionalized

vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (left), for varying Ta at Γew = 1.5
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(a) Ta = 15, 170 Reew = 944 (b) Ta = 15, 170 Reew = 944 (c) Ta = 15, 170 Reew = 944

(d) Ta = 15, 170 Reew = 1, 793 (e) Ta = 15, 170 Reew = 1, 793 (f) Ta = 15, 170 Reew = 1, 793

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15, 170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure 3.52: Co-rotational mean flow, velocity profile (left), non-dimensionalized

vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew at Γew = 1.5
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(a) Ta = 10, 289
Reew = 1, 227

(b) Ta = 10, 289
Reew = 1, 510

(c) Ta = 10, 289
Reew = 1, 793

(d) Ta = 10, 289
Reew = 2, 076

(e) Ta = 10, 289
Reew = 2, 360

(f) Ta = 10, 289
Reew = 2, 926

Figure 3.53: Co-rotational annular mean flow, non-dimensionalized vorticity

[ ωd̂
2ΩIRI

] for varying Reew at Ta = 10289 at Γew = 1.5
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and 3.35 it was found that this increased fluid exchange between the two domains resulted

from the left side of the cylinder driven central vortex moving in a positive radial and axial

direction. This had the effect of removing any flow barrier into the annular gap, destroying

the pseudo-Ekman cell at the domain interface (z/d̂ ≈ 11.25). While it is not entirely clear

whether the presence of recirculation zones within the central core had any direct influence

in these regards, one interesting observation was that in both the TCF and co-rotational

cases the central point of mean flow recirculation in the zone-2 occurred at z/d̂ ≈ 16.

Higher modal POD results for the co-rotating zone-2 at Γew = 1.5 were found to be

much more chaotic than mean flow results indicated. Mode-1 plots presented in Figures

A.9 and A.10 present a flow more reminiscent of the chaotic structure seen at Γew = 1 with

a multitude of vortical formations appearing throughout the domain at various locations;

exemplified by the streamlines at z/d̂ ≈ 7.5 − 10.5 of Figure A.10 (i). However the large

recirculating core regions observed in mean flow plots were generally found in mode-1 results

at the same location. Figures A.9 (b) & (c) as well as A.10 (h) & (i), (Ta = 3, 360Reew = 944

and Ta = 15, 170Reew = 2, 926), show the same core recirculation seen in the mean flow but as

with the higher modal results at Γew = 1 circulatory direction of these structures is inverted

to that of the mean flow. Mode-3 results (Figures A.11 and A.12) further highlight flow

field complexities not seen at mode-0 (mean flow); specifically in the streamlines of Figure

A.12 (i) were 3 pairs of horizontally aligned counter rotating vortices can be seen vertically

stacked on top of one another in the central core. Additionally velocity and vorticity plots

presented in Figure A.11 more definitively show the positive radial and axial displacement

of vorticity near the top of the annular gap which become more pronounced as Ta increased.

The plots also show how this displacement increased axial flow interactions between the two

domains, resulting in Taylor vortex destabilization.

Annular flow results at POD modes 1 and 3 displayed large axial flow patterns similar to

those seen at the higher modes of the TCF test cases. Figures B.5 (a-f) show mode-1 results

for increasing Ta values, from which vorticity plots can be seen to have the same negative
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axial flow pattern between z/d̂ ≈ 0− 5 that was found in TCF results at mode-1. However

the axial elongations are noted to be somewhat subdued with coherent vortices still seen to

occur (Figures B.5 (c) (d) and (f)). Mode-3 result for increasing Ta values were also found to

resemble a more restrained version of the TCF results displaying horizontally aligned vortex

pairs in Figures B.5 (g-l). Although these vortex pairs were found to display a positive axial

movement as Ta increased the total displacement of the largest horizontal pair was found to

be 1
2
that of the TCF case. Additionally there was a noted lack of the vortical sinks that

were seen to form along the outer cylinder wall at TCF conditions.

Mode-1 results for increasing Reew values at a constant Ta were generally found to

display the same patterns as those seen in Figures B.5 (a-f). However instances of Taylor

vortex reappearance similar to that of Figure B.6 (e) were found to occur. The conditions

at which this reappearance occurred was typically found to be at rotational combinations

were cylinder rate was ≈ 1
2
or equal to that of the end-walls.

127



(a) Ta = 1, 312
Reew = 944

(b) Ta = 3, 360
Reew = 944

(c) Ta = 6, 352
Reew = 944

(d) Ta = 10, 289
Reew = 944

(e) Ta = 20, 997
Reew = 944

(f) Ta = 35, 485
Reew = 944

(g) Ta = 15, 170
Reew = 944

(h) Ta = 15, 170
Reew = 12, 27

(i) Ta = 15, 170
Reew = 1, 793

(j) Ta = 15, 170
Reew = 2, 076

(k) Ta = 15, 170
Reew = 2, 360

(l) Ta = 15, 170
Reew = 2, 926

Figure 3.54: Co-rotational annular mean flow, velocity profile (a)−(f) for varying
Ta, (g)− (l) for varying Reew ; 1

st at Γew = 1.5
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(a) Ta = 3, 360
Reew = 944

(b) Ta = 3, 360
Reew = 944

(c) Ta = 6, 352
Reew = 944

(d) Ta = 6, 352
Reew = 944

(e) Ta = 10, 289
Reew = 944

(f) Ta = 10, 289
Reew = 944

(g) Ta = 15, 170
Reew = 944

(h) Ta = 15, 170
Reew = 944

(i) Ta = 27, 769
Reew = 944

(j) Ta = 27, 769
Reew = 944

(k) Ta = 35, 485
Reew = 944

(l) Ta = 35, 485
Reew = 944

Figure 3.55: Co-rotational annular mean flow, non-dimensionalized vorticity

[ ωd̂
2ΩIRI

] & streamlines for varying Ta at Γew = 1.5

129



(a) Ta = 15, 170
Reew = 1, 227

(b) Ta = 15, 170
Reew = 1, 227

(c) Ta = 15, 170
Reew = 2, 076

(d) Ta = 15, 170
Reew = 2, 076

(e) Ta = 15, 170
Reew = 2, 926

(f) Ta = 15, 170
Reew = 2, 926

(g) Ta = 35, 485
Reew = 1, 227

(h) Ta = 35, 485
Reew = 1, 227

(i) Ta = 35, 485
Reew = 2, 076

(j) Ta = 35, 485
Reew = 2, 076

(k) Ta = 35, 485
Reew = 2, 926

(l) Ta = 35, 485
Reew = 2, 926

Figure 3.56: Co-rotational annular mean flow, non-dimensionalized vorticity

[ ωd̂
2ΩIRI

] & streamlines for varying Reew at Γew = 1.5
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3.2.2 Counter Rotation

Investigations into flow characteristics for counter rotation of the end-wall and cylinder

were conducted. Aspect ratios of Γew = 0.5, 1, & 1.5 were tested in-order to facilitate a

direct comparison between the co-rotation and TCF baseline results previously discussed.

Energy distributions for counter-rotational results are presented in Figures 3.58 - 3.59

for the zone-2 and Figures 3.60 - 3.61 for annular flow. Cumulative distributions for the zone-

2 (Figures 3.58 (a) and 3.59 (a)) display significantly reduced mean flow energies compared

to TCF and VB results similar to what was seen at co-rotational conditions. However the

reduction in mode-0 energies of Γew = 1 and Γew = 1.5 was found to be less severs than co-

rotational mode-0 reductions at the same aspect ratios. This was especially true for variations

in Ta at constant Reew values, were from Figure 3.58 (a) most notably at Γew = 1.5 Ta = 3, 360

Reew = 944 mean flow energy is seen to be 4.6% higher than similar TCF conditions. However

the previous example was found to be an outlier as mean flow energies were typically found

to be in the range of ≈ 3%−17.5% lower than TCF results at varying Ta values. Additionally

individual modal energies were found to show elevated levels relative to TCF and VB energies,

where the bulk of the modal energies at the conditions presented Figure 3.58 (b) are not

seen to drop below 1% until ≈ mode − 5. This decay of energies below 1% was found to

occur at mode-2 for the VB case and approxmode − 4 at TCF conditions. Surprisingly for

Γew and Γew = 1.5 counter-rotational modes 1-10 actually displayed elevated modal energies

compared to co-rotational results even though mean flow energies were typically higher. This

steeper reduction in modal energy contend between progressive modes indicated that any

small scale structures in the zone-2 at counter-rotational conditions were more likely to be

contained in higher modal results.

Energy levels for varying Reew values at constant Ta = 15, 170 were found to result in

further reductions of mean flow energy. From Figures 3.59 (a) mean flow is shown to have and

average reduction of 41%, 29%, and 47% for Γew = 0.5, Γew = 1, and Γew = 1.5 respectively.

From the mean flow energy values of Ta = 15, 170 Reew (Figure 3.58 (a)). Counter-rotational
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Figure 3.57: Configuration of Counter Rotational test case
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(a) cumulative distribution (b) POD spectrum, modes 0-15

Figure 3.58: Counter-rotational zone-2 energy distribution for increasing Ta

(a) cumulative distribution (b) POD spectrum, modes 0-15

Figure 3.59: Counter-rotational zone-2 energy distribution for increasing Reew
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(a) cumulative distribution (b) POD spectrum, modes 0-15

Figure 3.60: Counter-rotational annular POD energy distribution for increasing
Ta

(a) cumulative distribution (b) POD spectrum, modes 0-15

Figure 3.61: Counter-rotational annular POD energy distribution for increasing
Reew
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increases in Reew were found to result in larger changes in modal energy than co-rotational

increases. Comparison of Figures 3.39 (b) and 3.59 (b) show counter-rotational modes 1−14

to be elevated, were for co-rotation all modes are seen to be less than 1% beyond mode-4

while for counter-rotation the vast majority of modal energies are not seen to fall below 1%

until mode-6; Γew = 0.5 is even noted to display energies above 1% up to mode-12. The

largest shift in energy between co and counter rotational cases was seen in the mean flow of

Γew = 0.5 where for co-rotation mean flow energies were never found to fall below 55% at the

varying Ta values and stay above 72% for varying Reew at a constant Ta = 15, 170. Counter-

rotation however resulted in minimum values of 54% and 25% respectively. Comparison of

all test cases showed that counter-rotation was influenced by end-wall rotational changes

more than any other case and that energy transfer from the mean flow was more constrained

within the higher modes between 1− 12 and not as distributed as the co-rotational results.

Annular flow energy was found to display the same reduction in the mean flow at

Γew = 1.5 that was seen to occur in TCF and co-rotational results. However unlike the

aforementioned cases Γew = 1.5 lowest values of mean flow energy were found at Ta values

between 1, 312−10, 289 Reew = 944 opposed to Ta = 15, 170 Reew = 944. From figure 3.60 (a)

mean flow energy at Ta = 3, 360 Reew = 944 is seen to be ≈ 5% while Ta = 15, 170 Reew = 944

and Ta = 35, 485 Reew = 944 mean flow energy is noted to be 9% and 21% respectively; for

the later two conditions this was found to be an increase compared to co-rotational results

and nearly equal to TCF results. This large transfer of energy out of the mean flow at

Γew = 1.5, Ta = 3, 360, Reew = 944 is noted in Figure 3.60 (b) where no modal energy

between 1 − 14 is seen to fall below 1%. However for the two larger Γew = 1.5 Taylor

numbers presented modal spectrum shows slightly lower energy content than either TCF

or co-rotation results, were both Ta = 15, 170 & 35, 485 are seen to have modal energies

below 1% beyond mode-5 something that didn’t occur until mode-9 at TCF conditions and

mode-11 at co-rotational conditions. The revers was found to be true for Γew = 0.5 and

Γew = 1 results were although mean flow energies were found to be relatively similar to
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those found at other rotational conditions, modes 1 − 3 (Figure 3.60 (b)) display slightly

decreased energies while beyond mode-3 levels were noted to be slightly elevated. Reew

variations at a constant Ta = 15, 170 were also found to display significant energy variations

form co-rotational results most interestingly the shift in energy back to the higher modes

that occurred at Γew = 1.5 Ta = 15, 170 Reew = 1, 227 (Figure 3.61 (a) and (b)). In fact

the increased variability of the conditions presented in Figure 3.61 (a) indicate that as with

zone-2 results counter-rotational annular flow was significantly effected by changes in end-

wall rotation; and to a much greater extent than co-rotational changes.

(a) Ta = 1, 312 Reew = 1, 227 (b) Ta = 1, 312 Reew = 1, 793 (c) Ta = 1, 312 Reew = 2, 643

Figure 3.62: Counter-rotational mean flow streamlines for varying Reew at Γew =
0.5

Figures 3.62 , 3.62 and 3.64 contain the mean flow plots for the Γew = 0.5 counter-

rotational test case. From the streamline plots one of the most notable differences that was

found to occur at the counter-rotational condition was the increased amount of negative

axial fluid encroachment into the annulus. At Ta = 1, 312 this initial encroachment was seen

to penetrate to a depth of z/d̂ ≈ 7.5. This was similar to the penetration depth that was

observed at the TCF case; but was noted to be slightly less by a measure of approximately

0.4d. A positive correlation between the depth of flow penetration and Reynolds number of

the end-wall was seen to occur, with a maximum penetration depth of z/d̂ ≈ 5 at Reew =

2, 926 These depths corresponded with an axial encroachment range of 26% − 44%, as a

percentage of total annulus length. Increased flow penetration was due to the complementary
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rotational nature of the zone-2s central core. Unlike flow produced in the co-rotational case

counter rotation resulted in the central cores of both the cylinder and end-wall driven flows

circulating in the same direction. This resulted in a relatively constricted central core when

compared to the other rotational cases. It also resulted in the weaker of the two vortices

being drawn into the central core of the more dominate; at Ta = 1, 312 this was found to

be the vortex produced by the inner cylinder for all Reynolds numbers. Displacement of

the cylinders upper vortices radially inward resulted in an unimpeded path for the end-wall

driven negative axial flow along the stationary side wall. This helps to explain why the

counter-rotation resulted in a deeper maximum annular penetration than the Γew = 0.5

TCF case, where the flow encountered a 90◦ turning angle at the top of the cylinder.

Higher levels of flow encroachment, relative to TCF and co-rotational cases, from the

zone-2 were observed at all Ta number. This had a profound effect on Taylor vortex stability

and formation. While the trend of initial TV formation at Ta = 3, 360 was still seen to

occur, the number of vortices and their relative strength was found to be less than either of

the other two rotational conditions previously discussed. From Figure 3.63 average vorticity

of the TVs can be seen to be approximately 40% lower than that of the other two cases.

While the same number of vortices are seen in the vorticity plots of the co and counter

rotation cases the much lower vorticity of the counter-rotational case resulted in the upper

most vortex pair not being visible in the mean flow of Figure 3.63 (c). Increases in Reew

resulted in a negative axial movement of the TVs and a further reduction of vortex strength

as fluid encroachment from the zone-2 increased; with the greatest of these effects occurring

in the upper half of the annulus between z/d̂ ≈ 7.5 − 11.5.

As Ta increased beyond 3, 360 Taylor vortices began to more closely resemble those see

at the Γew = 0.5 TCF case. This was due to an increased domination of cylinder driven flow

in the zone-2. Comparison of Figures 3.63(f) and 3.14(b) shows that the mean flow in the

upper field more closely resembles that of the TCF case with flow contouring around the

upper edge of the cylinder before entering into the annulus, thus reducing the momentum of
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(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 6, 352 Reew = 944 (e) Ta = 6, 352 Reew = 944 (f) Ta = 6, 352 Reew = 944

(g) Ta = 10, 289 Reew = 944 (h) Ta = 10, 289 Reew = 944 (i) Ta = 10, 289 Reew = 944

Figure 3.63: Counter-rotational mean flow, velocity contours (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), at Γew = 0.5
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(a) Ta = 15, 170 Reew = 944 (b) Ta = 15, 170 Reew = 944 (c) Ta = 15, 170 Reew = 944

(d) Ta = 15, 170 Reew = 1, 793 (e) Ta = 15, 170 Reew = 1, 793 (f) Ta = 15, 170 Reew = 1, 793

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure 3.64: Counter-rotational mean flow, velocity contours (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), at Γew = 0.5
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encroaching fluid. Although TV stability and vorticity increased as Ta increased, the number

of observable vortex pairs was always seen to be less than that of the other two rotational

cases. At Γew = 0.5, Ta ≥ 10, 289 four vortex pairs were seen to form in the annulus at both

TCF and co-rotational conditions. Mean flow plots of the counter-rotational case however

display only three visible vortex pairs. In many instances the vortices that were seen to form

in the counter-rotation case were highly elongated, and found to be ≈ 40% larger than those

of the TCF case.

POD counter-rotational modes 1 and 3 results for Γew = 0.5 are presented in Figures

C.1 - C.4, mode-1 plots show a significant increase in fluid exchange between end-wall and

cylinder driven flows in the zone-2. Comparison of Figures A.1, C.1, and 3.15 show zone-

2 vortices in the counter-rotational case to be greatly elongated in the radial direction.

Elongation is most apparent in Figures C.1 (a-c) and is seen to be accompanied by an

inward radial displacement due to the reduced diameter of the central core; which in turn

allowed for greatly increased axial flow into the annulus seen in the streamline plot. Mode-

1 results were also noted to display relatively few areas of recirculation within the zone-2

core when compared to co-rotational results. In fact results were found to more closely

resemble VB mode-1 results in the zone-2 than any other test case; displaying small regions

of recirculation near the core positions next to one of the rotating surfaces (Figures C.2 (c)

and (i)). However unlike VB results recirculating regions near the core were predominantly

found to be the result of either cylinder or end-wall driven corner vortices being displaced

radially inward as was noted in counter-rotational mean flow results and not necessarily a

VBB like structure. POD mode-3 Figures C.3 and C.4 were found to display additional

areas of core recirculation and in some instances (Figure C.3 (i)) show the same horizontally

aligned core vortices that were found in the higher modal results of Γew = 0.5 co-rotation.

Annular flow at modes 1 and 3 more clearly showed the effects that increased axial flow,

noted to occur in mean flow results, had on Taylor vortex structure. A progression form

Ta = 3, 360 Reew = 944 to Ta = 35, 485 Reew = 944 in the plots of Figure C.1 clearly shows
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increased domain segregation at increasing Ta values, specifically in the streamlines of Figure

C.1 (f) where the presence of increased TV circulation is seen to impede axial flow from the

zone-2 resulting in a nearly straight flow barrier at z/d̂ ≈ 11. These results helped to further

explain the mechanics behind the increased stability of TV structures at increasing Ta values

that was seen in mean flow results, as being a combination of increased TV circulation as

well as a progressive outward radial movement of zone-2 vortices. From Figure C.3 mode-

3 annular results are seen to display a much more complex flow than either modes 0 or

1. Figures C.3 (e), (h), and (i) show indications of potential flow oscillation displaying TV

structures similar to those seen in mode-3 results at Γew = 1 co-rotational conditions (Figure

A.8 (i)) in the former, and elongated negative vortices as well as a positive axial flow reversal

at z/d̂ ≈ 7.5− 11.5 in the later 2 plots respectively. Additionally the streamlines of Figure

C.3 (i) show TVs between z/d̂ ≈ 6.5 − 4.5 to have an alternating ± radial displacement

between vortex pairs, resembling a subdued version of the streamlines seen in mode 1 and 3

results at TCF Γew = 1.5; (Figures 3.36 (b) and (h)). Increases in Reew for both modes 1 and

3 at constant Ta = 15, 170 were found to highlight the destabilizing effects of increased axial

flow encroachment as a result of greater end-wall rotation rates. Comparison of Figures C.1

(d-f) and C.2 show a progressive increase in axial fluid penetration from the zone-2, ranging

form ≈ 0.5d at Reew = 944 to as much as ≈ 6.5d at Reew = 2, 926, as a percentage of annulus

length theses depths correspond to ≈ 4.35% and ≈ 56.52% respectively. While mode-3

showed slightly less penetration, ranging form ≈ 0.5d− 5.3d, as with mean flow results this

increased encroachment was found to reduce TV circulation in both of the higher modes

presented. Additionally mode-1 results were found to display a progressive elongation in

Taylor vortex structure between z/d̂ ≈ 11.5 − 7 eventually resulting in a complete absence

in the streamlines of Figure C.2 (i) at Reew = 2, 92.

Γew = 1 mean flow plots show similar trends as those found at Γew = 0.5. At Ta = 1, 312

a large amount of flow encroachment from the zone-2 into the annulus was observed. From

Figure 3.65 (a) this encroachment is noted to extend down to z/d̂ ≈ 7; which was only
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(a) Ta = 1, 312 Reew = 1, 227 (b) Ta = 1, 312 Reew = 1, 793 (c) Ta = 1, 312 Reew = 2, 643

Figure 3.65: Counter-rotational mean flow, streamlines for varying Reew at Γew = 1

slightly further than that seen at TCF conditions. Similar to Γew = 0.5 counter-rotation

results penetration depth was found to increase as end-wall rotation increased and at Reew

values of 2, 643 & 2, 926 maximum flow penetration was found to occur at z/d̂ = 6, (Figure

3.66(c)). This resulted in a penetration range of 30%−37%, as a percentage of total annulus

length. Comparison of this penetration range with that of Γew = 0.5 showed that the increase

in aspect ratio reduced the momentum of end-wall driven flow as it moved towards the

domain interface, additionally reducing the effects of end-wall rotational changes in regards

to annular encroachment. This was most likely due to the increased distance for which the

flow had to travel resulting in a larger boundary layer on the side walls of the outer cylinder.

There was one notable discrepancy that was observed at higher Reew numbers. In Figure

3.65 (c) streamlines display a positive axial flow moving from the annulus into the zone-2,

a reversal that was first noted to occur at Reew = 2, 077 for Ta = 1, 312. Streamlines from

Figure 3.66 however only show negative axial flow, a result that was found at all Ta Reew

combinations. This discrepancy was most likely a result of the averaging scheme used in

the POD calculations. Further invention at higher modes indicated that there was in fact

a combination of both positive and negative axial flow between the two domains. However

since the positive axial flow was more prevalent in the upper half of the annulus it only

appears in the mean flow of Figure 3.65 (c) while only small positive axial movements of the

Taylor vortices was noted to occur within the annular mean flow.
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(a) Ta = 1, 312
Reew = 1, 227

(b) Ta = 1, 312
Reew = 1, 793

(c) Ta = 1, 312
Reew = 2, 643

Figure 3.66: Counter-rotational mean flow, streamlines for varying Reew at Γew = 1

Circulation within the central core was found to be similar to that seen at Γew = 0.5, with

the more dominate circulation of either end-wall or cylinder driven flow drew the weaker flow

radially inward towards the centerline; resulting in a relatively narrow high velocity central

core when compared to Γew = 1 TCF results. However unlike the flow seen at Γew = 0.5 not

all of the zone-2s cylinder driven flow was drawn into the central core at lower Ta numbers.

Instead it was found to be bisected by end-wall driven circulation such that four vortical loci

were created; two near the centerline and two near the side walls directly above the annulus.

This resulted in two saddle like formations on either side of the central axis, as seen in Figure

3.65 (a). Increasing Ta to 15, 170 caused these saddle formations to begin forming near the

upper end-wall, as Reynolds number ratios became of the form Retcvb/Reew > 1.

One of the more notable differences found between Γew = 1 counter-rotational results

and the other two rotational conditions was the absence of any recirculating regions in the

central core. It was also noted that counter-rotation did not result in any significant level
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of flow destabilization in the upper field. This increased stability in the upper field, when

compared to co-rotation, most likely stemmed form the fact that central core circulation

produced by both the end-wall and cylinder was in a complementary direction.

Taylor vortices were found to more closely resemble the Γew = 1 TCF case, at initial

onset, than that of co-rotation. Onset occurred at Ta = 3, 360 with six visible vortex pairs,

as seen in Figure 3.71 (a) & (b). These initial vortices were found to have the same level

of vorticity and generally slanted shape as those found at TCF conditions. As with all

other test cases increases in Reew resulted in a negative axial travel of the TVs, however at

Reew = 1, 793, (Figure 3.67), a large positive axial shift occurred. This positive shift was

much larger than that of any other rotational conditions previously described and resulted in

a significant structural change to the Taylor vortices. Vortex formation began to resembled

that of the co-rotation case at Γew = 1, Ta = 3, 360 (Figure 3.49(a) & (b)) with a notable

reduction in the number of vortex pairs from 6 to 5. Increases in Reew beyond 1, 793 resulted

in further positive axial movement and reductions in vortex pairs; with only 3.5 pairs visible

in Figure 3.67 (f).

Taylor numbers beyond 3, 360 resulted in more stable Taylor vortices and increased

vorticity. However unlike the co-rotation and TCF cases, as Reew was increased a critical

point was reached where TV stability and vorticity dramatically decreased as it did at the

Ta = 3, 360, Reew = 1, 793 condition. In all instances these decreases in vortex stability and

vorticity were accompanied by a sudden positive axial shift in TV location. After such a

point was reached further increases in Reew resulted in increased positive axial travel and

progressive reductions in vorticity, leading to the eventual destruction of one or more vortex

pairs, predominantly occurring in the range between z/d̂ = 6 − 11. The Reew number at

which these sudden shift occurred was found to increase as Ta increased. The cause of these

axial shifts was likely due to the inward radial shift of cylinder driven flow in the zone-2 as

end-wall driven circulation became more dominant. This lead to an unobstructed flow path

between the zone-2 and the annulus allowing for increased axial flow similar to the results
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(a)
Reew = 1, 227

(b) Reew =
1, 510

(c)
Reew = 1, 793

(d) Reew =
2, 076

(e)
Reew = 2, 360

(f)
Reew = 2, 643

Figure 3.67: Counter-rotational mean flow, non-dimensionalized vorticity [ ωd̂
2ΩIRI

]
for varying Reew at Ta = 3, 360 at Γew = 1

found at Γew = 0.5 for modes 1 and 3. The direction of this axial flow is seen to vary in the

streamline plots of Figures 3.65, 3.66, 3.68 and 3.69; however, as previously stated, actual

flow direction was most likely a combination of both positive and negative axial flow.

For Taylor numbers above 6, 352 the number of visible vortex pairs, and their respective

size, was noted to decrease and increase, respectively. Figures 3.71(e)-(l) displays a progres-

sive reduction in the number of vortex pairs from 5−4 as Ta increased. This occurred even at

the lowest Reew number of 944, and thus was not due to any increase in end-wall driven axial

flow. Analysis of the zone-2 at these conditions showed a decrease in vorticity near the top

of the annulus as cylinder driven circulations began to move in the positive axial direction

towards the upper wall. This most likely resulted in a momentum loss to cylinder driven

circulations as fluid began to be drawn upward towards the rotating end-wall. Ultimately

this transfer of momentum and vorticity resulted in an extremely weak pseudo-Eckman cell

near the top of the annular gap. Eventually this resulted in an imbalance between the top
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(pseudo) and bottom Eckman cells causing vortices further down within the annulus to be-

come dominant; merging with those above until TV vorticity was relatively balanced and

ultimately elongated.

Modes 1 & 3 results for counter-rotation at Γew = 1 showed a significantly more complex

flow structure than mean flow results indicated; most notably in the zone-2. Figures C.5-

C.8 display areas of recirculation in the zone-2 core, while these core structures are not as

consistent in their radial position as those at co-rotational conditions their relative vorticity

is noted to be larger in both modes 1 & 3 results. As with Γew = 0.5 counter-rotation results

radial position of zone-2 vortices was found to be a major factor in the strength and depth of

fluid encroachment into the annulus. Streamline and vorticity plots in Figures C.6 and C.8

at increasing Reew values show a generally progressive increase in flow penetration. However

this penetration in modes 1 & 3 was noted to be significantly less than Γew = 0.5 results,

especially at lower Reew values and increasing Ta values of Figures C.5 and C.7 indicating

that the presence of recirculation within the core of the zone-2 most likely prevented end-wall

and cylinder driven vortices from moving radially inward to the same extend as Γew = 0.5

counter-rotation.

Flow results further down within the annulus for Γew = 1 counter-rotation were found

to closely resemble flow structures found at TCF conditions for modes 1 & 3 and Taylor

numbers between 3, 360 − 15, 170. Comparisons of Figures 3.32, B.2 and D.2 show that

both vorticity and streamlines for counter-rotational conditions more closely resemble the

Γew = 1 baseline than co-rotational results. At Ta = 3, 360 mode-1 streamlines in Figure D.5

(b) show a nearly identical flow penetration depth as TCF streamlines at similar conditions;

reaching z/d̂ ≈ 7 approximately 80% greater than co-rotational results. Additionally mode-

1 vorticity displayed in Figure D.2 (a) is noted to be only 3.3% greater than TCF results

while co-rotation was found to be 13.3% less; however it was noted that in all 3 Γew = 1

rotational cases vorticity at TA = 3, 360 mode-1 was found to be greater than mean flow

values. Similarly mode-3 results presented in Figures D.2 (g-l) show flow structures very
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similar to those seen in TCF results with only a slight increase in TV axial elongation.

Beyond Ta = 15, 170 however TV structure at higher modes become more distorted and in

many instances, such as that presented in Figures D.5 (k-l), vortices began to resemble an

enhanced form of alternating elongated TVs found in co-rotational results (Figure B.2 (k-l)).

Comparison of the aforementioned figures shows counter-rotational TVS to be ≈ 30% larger

in the axial direction, with a notable absence of positive Taylor vortices as well as a vast

amount of vortical fluid exchange; which was not found in co-rotational results.

POD results for increasing Reew values at Ta = 15, 170 for counter-rotation Γew = 1 are

presented in Figure D.3. From mode-1 results in plots (a-e) TVs are seen to be surprisingly

structured relative to Γew = 1 co-rotational mod-1 results, showing minimal axial flow effects

and small radial displacements. Mode-3 results however (Figure D.3 (g-l)) showed a flow

structure relatively similar to Γew = 1 co-rotation mode-3 results. Flow structures seen

in Figure D.3 (i) are of particular interest, displaying a less homogeneous form of the 3

horizontally aligned counter rotating vortices first noted in co-rotation results of Figure

B.3. The presence of this formation in addition to the axial elongations of Figure D.5 (k)

indicated that axial oscillation similar to those postulated to exist at co-rotational conditions

also occurred for counter rotation. However due to the increased axial flow from the zone-2

counter-rotation resulted in much greater distortion of Taylor vortex structures.

Results for the Γew = 1.5 test case are presented in Figures 3.73 - 3.78. At the initial

conditions of Ta = 1, 312, Reew = 944 flow in the zone-2 resembled that of the Γew = 1

test case previously discussed, with a much smaller vortex core in the area directly above

the cylinder compared to the other rotational conditions at Γew = 1.5. Additionally similar

saddle shaped vortex structures for cylinder driven circulation are seen in Figure 3.73 (c).

This flow also resulted in a central core with much higher velocities than the Γew = 1.5 TCF

case (Figure 3.73 (a)).

For Taylor numbers above 1, 312 flow in the zone-2 began to resemble a four rolls mill

with a more typical flow structure than that seen to occur in the co-rotational case due
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(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 6, 352 Reew = 944 (e) Ta = 6, 352 Reew = 944 (f) Ta = 6, 352 Reew = 944

(g) Ta = 10, 289 Reew = 944 (h) Ta = 10, 289 Reew = 944 (i) Ta = 10, 289 Reew = 944

Figure 3.68: Counter-rotational mean flow, velocity contours (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Ta at
Γew = 1
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(a) Ta = 15, 170 Reew = 944 (b) Ta = 15, 170 Reew = 994 (c) Ta = 15, 170 Reew = 994

(d) Ta = 15, 170 Reew = 1, 793 (e) Ta = 15, 170 Reew = 1, 793 (f) Ta = 15, 170 Reew = 1, 793

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15, 170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure 3.69: Counter-rotational mean flow , velocity contours (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew

at Γew = 1
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(a) Ta = 1, 312,
Reew = 944

(b) Ta = 3, 360,
Reew = 944

(c) Ta = 6, 352,
Reew = 944

(d)
Ta = 10, 289,
Reew = 944

(e)
Ta = 2, 0997,
Reew = 944

(f)
Ta = 35, 485,
Reew = 944

(g)
Ta = 15, 170,
Reew = 944

(h)
Ta = 15, 170,
Reew = 1, 227

(i)
Ta = 15, 170,
Reew = 1, 793

(j)
Ta = 15, 170,
Reew = 2, 076

(k)
Ta = 15, 170,
Reew = 2, 360

(l)
Ta = 15, 170,
Reew = 2, 926

Figure 3.70: Counter-rotational mean flow, velocity contours, (a)−(f) for varying
Ta, (g)− (l) for varying Reew at Γew = 1
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(a) Ta = 3, 360
Reew = 944

(b) Ta = 3, 360
Reew = 944

(c) Ta = 6, 352
Reew = 944

(d) Ta = 6, 352
Reew = 944

(e) Ta = 10, 289
Reew = 944

(f) Ta = 10, 289
Reew = 944

(g)
Ta = 15, 170,
Reew = 944

(h)
Ta = 15, 170,
Reew = 944

(i)
Ta = 27, 769,
Reew = 944

(j)
Ta = 27, 769,
Reew = 944

(k)
Ta = 35, 485,
Reew = 944

(l)
Ta = 35, 485,
Reew = 944

Figure 3.71: Counter-rotational annular mean flow, non-dimensionalized vortic-

ity [ ωd̂
2ΩIRI

] & streamlines, for varying Ta at Γew = 1
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(a)
Ta = 15, 170
Reew = 1, 227

(b)
Ta = 15, 170
Reew = 1, 227

(c) Ta = 15, 170
Reew = 2, 076

(d)
Ta = 15, 170
Reew = 2, 076

(e) Ta = 15, 170
Reew = 2, 926

(f) Ta = 15, 170
Reew = 2, 926

(g)
Ta = 15, 170,
Reew = 1, 227

(h)
Ta = 15, 170,
Reew = 1, 227

(i)
Ta = 27, 769,
Reew = 2, 076

(j)
Ta = 27, 769,
Reew = 2, 076

(k)
Ta = 35, 485,
Reew = 2, 926

(l)
Ta = 35, 485,
Reew = 2, 926

Figure 3.72: Counter-rotational annular mean flow, non-dimensionalized vortic-

ity [ ωd̂
2ΩIRI

] & streamlines, for varying Reew at Γew = 1
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(a) Ta = 1, 312, Reew = 944 (b) Ta = 1, 312, Reew = 944 (c) Ta = 1, 312, Reew = 944

Figure 3.73: Counter-rotational mean flow streamlines, at Γew = 1.5

(a) Ta = 6, 352, Reew = 1, 510 (b) Ta = 10, 289, Reew = 1, 510 (c) Ta = 15, 170, Reew = 1, 510

Figure 3.74: Counter-rotational mean flow streamlines, at Γew = 1.5

to the coalescence of end-wall and cylinder driven cores. The most ideal example of this

flow occurred at Ta = 15, 170, Reew = 1, 510, and is presented in Figure 3.74 (c). This

type of structure however, was only seen to occur at certain rotational combinations with

no explicit Reynolds ratio found to cause its onset, but did tend towards conditions where

rotational rates of the end-wall and cylinder were relatively similar. As with the Γew = 1

case the recirculating regions seen in the central core at Γew = 1.5 co-rotational conditions

were not seen to occur in the mean flow of the present case. As such, vorticity in the

zone-2 was found to generally consist of four vortical loci near the corners of the domain.

Two notable exceptions were found to occur at Ta = 6, 352 & 10, 289 for varying Reew

numbers; were addition vortex loci where found to appear on either side of the rotational
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axis, approximately 1.2d radially out. Most interestingly it was also at these Taylor numbers

that Taylor vortices first began to show signs of instability and deformation. Figures 3.74

(a) & (b) display these additional zone-2 loci where the counter rotation of these vortices

and the positive axial direction of flow from the annulus, gives the impression of TVs being

drawn out of the annular gap and into the zone-2. However such flow movement could not

be verified due to the time averaged nature of the data used in the present work. These

fluctuations, as well as those seen in the test cases previously discussed, indicate that the

flow with in the system was not entirely steady, but was instead extremely dynamic and may

have in-fact been oscillatory in nature.

Mean flow within the annulus at Γew = 1.5 for the counter-rotating case was found to be

extremely dynamic and the most chaotic of all the configurations tested. Initial formation

stilled occurred at Ta = 3, 360, however as with counter-rotational conditions at Γew =

0.5 & 1 vortex size was seen to be slightly larger than either the TCF or co-rotation cases.

Number of visible vortex pairs was also found to be less, where form Figures 3.78, 3.47 and

3.35 only 5 pairs are visible in the former, while 6 pairs were seen to form in the latter

two plots at the same conditions. Streamline plots in Figure 3.78 show that Taylor vortices

formed with the same S like structure that was observed for the other two Γew = 1.5 rotational

conditions. Vortex pairs at z/d̂ = 0 − 2 and z/d̂ = 8 − 10 were also notably distorted and

stretched in the axial direction. As Reew was increase the predominately negative axial

movement of TV that was seen to occur for all configurations previously discussed, was

also see to occur for the present configuration. However unlike other rotational conditions

vortex structure did not remain entirely static. Vortices in the lower half of the annulus,

between z/d̂ = 0−5, were seen to both increase and decrease in size and occasionally became

displaced radially outward; doing so in an alternating fashion between pairs. These effect

gave further credence to the assumption of flow osculations produced by conditions in the

zone-2. At Reew = 2, 926 a drastic reduction in vorticity of approximately 70% was noted to

occur. Most likely this was caused by an increased inward radial displacement of cylinder
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(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 6, 352 Reew = 944 (e) Ta = 6, 352 Reew = 944 (f) Ta = 6, 352 Reew = 944

(g) Ta = 10, 289 Reew = 944 (h) Ta = 10, 289 Reew = 944 (i) Ta = 10, 289 Reew = 944

Figure 3.75: Counter-rotational mean flow, velocity contours (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), at Γew = 1.5
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(a) Ta = 15, 170 Reew = 944 (b) Ta = 15, 170 Reew = 944 (c) Ta = 15, 170 Reew = 944

(d) Ta = 15, 170 Reew = 1, 793 (e) Ta = 15, 170 Reew = 1, 793 (f) Ta = 15, 170 Reew = 1, 793

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15, 170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure 3.76: Counter-rotational mean flow, velocity contours (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), at Γew = 1.5
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(a) Ta = 1, 312,
Reew = 944

(b) Ta = 3, 360,
Reew = 944

(c) Ta = 6, 352,
Reew = 944

(d)
Ta = 10, 289,
Reew = 944

(e)
Ta = 20, 997,
Reew = 944

(f)
Ta = 35, 485,
Reew = 944

(g)
Ta = 15, 170,
Reew = 944

(h)
Ta = 15, 170,
Reew = 1, 227

(i)
Ta = 15, 170,
Reew = 1, 793

(j)
Ta = 15, 170,
Reew = 2, 076

(k)
Ta = 15, 170,
Reew = 2, 360

(l)
Ta = 15, 170,
Reew = 2, 926

Figure 3.77: Counter-rotational annular mean flow, velocity contours, (a) − (f)
for varying Ta, (g)− (l) for varying Reew at Γew = 1.5
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(a) Ta = 3, 360,
Reew = 944

(b) Ta = 3, 360,
Reew = 944

(c) Ta = 6, 352,
Reew = 944

(d) Ta = 6, 352,
Reew = 944

(e)
Ta = 10, 289,
Reew = 944

(f)
Ta = 10, 289,
Reew = 944

(g)
Ta = 15, 170,
Reew = 944

(h)
Ta = 15, 170,
Reew = 944

(i)
Ta = 27, 769,
Reew = 944

(j)
Ta = 27, 769,
Reew = 944

(k)
Ta = 35, 485,
Reew = 944

(l)
Ta = 35, 485,
Reew = 944

Figure 3.78: Counter-rotational annular mean flow, non-dimensionalized vortic-

ity [ ωd̂
2ΩIRI

] & streamlines, for varying Ta at Γew = 1.5
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(a)
Ta = 15, 170,
Reew = 1, 227

(b)
Ta = 15, 170,
Reew = 1, 227

(c)
Ta = 15, 1702,
Reew = 2, 076

(d)
Ta = 15, 170,
Reew = 2, 076

(e)
Ta = 15, 170,
Reew = 2, 926

(f)
Ta = 15, 170,
Reew = 2, 926

(g)
Ta = 35, 485,
Reew = 1, 227

(h)
Ta = 35, 485,
Reew = 1, 227

(i)
Ta = 35, 485,
Reew = 2, 076

(j)
Ta = 35, 485,
Reew = 2, 076

(k)
Ta = 35, 485,
Reew = 2, 926

(l)
Ta = 35, 485,
Reew = 2, 926

Figure 3.79: Counter-rotational annular mean flow, non-dimensionalized vortic-

ity [ ωd̂
2ΩIRI

] & streamlines, for varying Reew at Γew = 1.5
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driven circulation in the zone-2, resulting in an increased positive axial force drawing fluid

upward from the annulus.

Increases in Taylor number beyond the initial onset at 3, 360 resulted in similar effects as

described above, increasing in magnitude as Ta was increased. However for all rotational rates

above the initial onset, vortices in the lower half of the annulus were seen to be unstructured

and extremely chaotic. This deformation of Taylor vortices was noted to occur much sooner

than either the co-rotation or TCF cases. Most interestingly though was the stability of TVs

in the upper half of the annulus between z/d̂ ≈ 6− 11.5. While similar conditions were seen

to occur at the co-rotational state, the disparity in vortex structure and vorticity between

the two halves in the current case was of a much greater magnitude. The exact cause of

these differences between the upper and lower annular regions was not entirely clear. One

possibility is that it resulted from some form of limited axial flow penetration occurring in

an oscillatory fashion. The radial shifts in the Taylor vortices eventually resulted in counter

rotating pairs being directly beside one-another in a sawtooth like pattern a seen in Figure

3.78 (e); and increased in length for increases in either Ta of Reew . These extremely elongated

sawtooth vortices were found to be remarkably similar to flow structures described by Lopez,

Marques, and Shen, for the case of Taylor-Couette flow with harmonic axial oscillations of

the inner cylinder [36]. This comparison seemed to indicate that flow with in the system was

in-fact oscillatory in nature, and was to some extend for all other test cases, with the notable

exception of the Γew = 0 TCF case. This gives a semblance of reasoning for the increased

stability and reduced vorticity of TVs in the upper half of the annulus. Vortices in the upper

portion experienced greater axial flow which increased the critical Taylor number and thus

reduced their relative vorticity. Additionally since the upper most vortices for all test cases

had an opposing slope of vortical fluid exchange, (velocity contours), to those formed in the

lower half of the annulus any influences caused by flow conditions in the zone-2 could result

in differing effects in these two regions.
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Higher modal POD results for the Γew = 1.5 counter-rotational case are presented in

Figures C.9 - C.12 (zone-2 plots) and Figures D.4 - D.6 (annular plots). Streamlines displayed

in Figures C.9 - C.12 show an increased number of vortical structures when compared to mean

flow results. As with Γew = 1 counter-rotation results these additional zone-2 vortices were

found to be much more sporadically positioned within the domain relative to co-rotation

results at the same aspect ratio. Additionally these recirculating regions were typically

found to appear on either side of the rational axis opposed to the on axis core recirculation’s

seen at co-rotational conditions. Mode-1 streamlines presented in Figure C.5 show flow

interactions between the zone-2 and annulus to be more dynamic than Γew = 0.5 & 1

results, showing positive axial flow reversals typically found in mode-3 results and higher

at lower aspect ratios. Mode 1 and 3 results in Figures C.9 and A.11 display what appears

to be a progressive movement of Taylor vortices form the annulus into the zone-2, similar

to the pattern noted in mean flow results, showing a chain of small vortical structures

directly above the annuls between z/d̂ ≈ 11.5− 16.5 (vorticity plots C.9 (h) and A.11 (h)).

zone-2 cylinder driven vortices appeared to become increasingly displaced radially inward

at higher Taylor numbers and was noted to begin at the same conditions that positive TV

movement into the zone-2 first began (≈ 15, 170). Unlike the counter-rotational mode-1

results of Γew = 0.5 & 1 increases in Reew were not found to result in increased annular flow

penetration, on the contrary flow was found to generally display some form of positive axial

flow form the the annulus into the zone-2 as seen in the streamlines of Figure C.10 in the

area between z/d̂ ≈ 9− 14 and r/d ≈ 0− 1. Mode-3 results at Ta = 15, 170 for increases in

Reew , Figure C.12, are not as consistent in displaying this positive axial flow instead showing

slight negative axial flows at the top of the annulus for Reew > 2, 076; indicating that as with

other co and counter-rotational results fluid movements within the system were most likely

of an oscillatory nature.

Annular results for Γew = 1.5 counter-rotation at modes 1 & 3 were found to display

chaotic yet slightly more structured flow than that at TCF and co-rotational conditions.
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Figures D.5 (a-f) of mode-1 show a progressive distortion of Taylor vortex structure at

increased Taylor numbers, predominantly in the lower portions of the annulus between z/d̂ ≈

0 − 5; similar to mean flow results. However streamlines are seen to display much more

identifiable Taylor vortices at these higher modes than the other two rotational cases. It

was also noted that vorticity levels at mode-1 were much higher than TCF and co-rotation

Γew = 1.5 mode-1 results, showing levels that are orders of magnitude larger in Figures D.5

(a) and (c). Similarly mode-3 results of Figure D.6 (g) displays elevated vorticity levels to

those of TCF and co-rotational results, beyond Ta = 3, 360 however vorticity was found to

drop and became relatively comparable to the results of the other two rotational conditions.
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Chapter 4

Conclusions

Investigations of the effects of a varying end-wall heights on the bifurcation and stability

of secondary steady state flows within the annular gap of a Taylor-Couette cell were con-

ducted. End-wall aspect ratios of Γew = 0, 0.5, 1, 1.5 were tested. For the latter three ratios,

co-rotation, counter-rotation, and stationary rotational conditions for the upper end-wall

were investigated. At Taylor numbers between 1, 312 − 35, 485 for inner cylinder rotation;

and a Reynolds number range of 944− 2, 926 for co- and counter-rotational end-wall condi-

tions.

Formation of Taylor vortices was found to occur at Ta ≈ 3, 360 for all test cases. From

the TCF baseline case of Γew = 0 these initial vortices were found to have already undergone

a secondary bifurcation and were thus of a wavy form at initial observation. Increases in

Γew were found to attenuate both the structural stability and vorticity of Taylor vortices.

Such effects were found to decrease as distance form the annular gap and zone-2 interface

increased, in the negative axial direction.

Changes in vortex stability and vorticity were found to result primarily from oscillatory

axial flow within the annulus. This flow was produced by circulatory flow conditions that

were found to occur in zone-2, between the cylinder and end-wall. While recirculating flow,

similar to a vortex breakdown bubble, was seen to occur in the central core at Γew = 1 and

Γew = 1.5 these recirculating zones were of a highly distorted form when compared to the

breakdown bubble seen in the Γew = 1.5 Escudier case [24]. Additionally the presence of such

recirculating zones were not found to have any overt influence on Taylor vortex stability;

where core recirculation was seen to occur at conditions for both stable and unstable Taylor

vortices.
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Axial flow within the annulus was found to increase with increasing Γew. At the onset of

Taylor vortex distortion a positive axial displacement was seen to occur, this was typically

accompanied by some axial or radial displacement in the vortical loci at the top of the

annular gap. These shifts were found to increase the amount fluid exchange between the

annulus and zone-2, and appeared to increase axial oscillation magnitude. While the specific

change in oscillatory frequency was beyond the scope of the present work, results indicated

that such effects were enhanced by additional rotation of the upper end-wall and were found

to be greatest for the counter-rotational case. This was due to the adversarial nature of flow

produced by the cylinder and upper end-wall, such that each acted as a pump drawing fluid

towards their rotating surfaces in opposing directions.

In the case of counter-rotation the adversarial nature of flow with in the central core

region was enhanced due to the equivalent rotational direction which allowed for greater

fluid vacillation between the end-wall and cylinder. Such vacillating flow resulted in the

earliest found occurrences of mean flow Taylor vortex deformation, which was initially seen

at Ta = 6, 352 for Γew = 1.5. For co-rotational cases such effects were found to be dampened

by the opposing rotational direction of end-wall and cylinder central cores; resulting in a

larger core region with a semblance of solid body rotation. This larger core region was found

to actually enhance the stability of Taylor vortices within the annulus when compared to

count-rotational or stationary end-wall conditions for Γew > 0 and Ta > 3, 360. Where for

Γew = 1.5 destabilization was delayed all the way out to Ta ≈ 27, 769. It also allowed for

the formation of stacked counter rotating vortices to form within the core. However, at

Γew = 0.5 & 1 for Ta = 3, 360 co-rotation was found to result in Taylor vortices with a less

coherent structure and lower vorticity when compared to the counter-rotation and stationary

cases; effects which were greatest at Γew = 1. And although Taylor vortex destabilization

at Γew = 1.5 was found to be significantly delayed by the co-rotational condition it also

resulted in extremely low vorticity levels, when compared to counter-rotation and stationary
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Γew = 1.5 conditions. Indicating that co-rotation had some effect in delaying the on set of

Taylor vortex formation.

Increases in Reew were found to typically result in increased negative axial compression

of Taylor vortices. This compression was seen to continue until the rotational rate of the

end-wall became large enough to over power the zone-2 circulatory flow produced by the

inner cylinder. At such a point bulk momentum of the fluid was seen to shift in the positive

axial direction, and caused increases in axial flow within the annulus. However Reew was

found to be a secondary cause in Taylor vortex degradation, which primarily resulted form

the combined effects of increases in Γew and Ta. As such the effects of increases in Reew on

Taylor vortex stability were found to decrease with increasing Taylor number.
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Appendix A

Co-rotational supplemental figures (zone-2)
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(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 15, 170 Reew = 944 (e) Ta = 15, 170 Reew = 944 (f) Ta = 15, 170 Reew = 944

(g) Ta = 35, 485 Reew = 944 (h) Ta = 35, 485 Reew = 944 (i) Ta = 35, 485 Reew = 944

Figure A.1: Co-rotation at POD mode-1, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Ta at
Γew = 0.5
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(a) Ta = 15, 170 Reew = 1, 227 (b) Ta = 15, 170 Reew = 1, 227 (c) Ta = 15, 170 Reew = 1, 227

(d) Ta = 15, 170 Reew = 2, 076 (e) Ta = 15, 170 Reew = 2, 076 (f) Ta = 15, 170 Reew = 2, 076

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15, 170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure A.2: Co-rotation at POD mode-1, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew

at Γew = 0.5
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(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 15, 170 Reew = 944 (e) Ta = 15, 170 Reew = 944 (f) Ta = 15, 170 Reew = 944

(g) Ta = 35, 485 Reew = 944 (h) Ta = 35, 485 Reew = 944 (i) Ta = 35, 485 Reew = 944

Figure A.3: Co-rotation at POD mode-3, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Ta at
Γew = 0.5

175



(a) Ta = 15, 170 Reew = 1, 227 (b) Ta = 15, 170 Reew = 1, 227 (c) Ta = 15, 170 Reew = 1, 227

(d) Ta = 15, 170 Reew = 2, 076 (e) Ta = 15, 170 Reew = 2, 076 (f) Ta = 15, 170 Reew = 2, 076

(g) Ta = 15, 170 Reew = 2, 296 (h) Ta = 15, 170 Reew = 2, 296 (i) Ta = 15, 170 Reew = 2, 296

Figure A.4: Co-rotation at POD mode-3, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew

at Γew = 0.5
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(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 15, 170 Reew = 944 (e) Ta = 15, 170 Reew = 944 (f) Ta = 15, 170 Reew = 944

(g) Ta = 35, 485 Reew = 944 (h) Ta = 35, 485 Reew = 944 (i) Ta = 35, 485 Reew = 944

Figure A.5: Co-rotation at POD mode-1, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Ta at
Γew = 1
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(a) Ta = 15, 170 Reew = 1, 227 (b) Ta = 15, 170 Reew = 1, 227 (c) Ta = 15, 170 Reew = 1, 227

(d) Ta = 15, 170 Reew = 2, 076 (e) Ta = 15, 170 Reew = 2, 076 (f) Ta = 15, 170 Reew = 2, 076

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15, 170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure A.6: Co-rotation at POD mode-1, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew

at Γew = 1
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(a) Ta = 3, 360 Reew = 944 (b) Vorticity Ta = 3, 360 Reew =
944

(c) Ta = 3, 360 Reew = 944

(d) Ta = 15, 170 Reew = 944 (e) Ta = 15, 170 Reew = 944 (f) Ta = 15, 170 Reew = 944

(g) Ta = 35, 485 Reew = 944 (h) Ta = 35, 485 Reew = 944 (i) Ta = 35, 485 Reew = 944

Figure A.7: Co-rotation at POD mode-3, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Ta at
Γew = 1
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(a) Ta = 15, 170 Reew = 1, 227 (b) Ta = 15, 170 Reew = 1, 227 (c) Ta = 15, 170 Reew = 1, 227

(d) Ta = 15, 170 Reew = 2, 076 (e) Ta = 15, 170 Reew = 2, 076 (f) Ta = 15, 170 Reew = 2, 076

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15, 170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure A.8: Co-rotation at POD mode-3, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew

at Γew = 1
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(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 15, 170 Reew = 944 (e) Ta = 15, 170 Reew = 944 (f) Ta = 15, 170 Reew = 944

(g) Ta = 35, 485 Reew = 944 (h) Ta = 35, 485 Reew = 944 (i) Ta = 35, 485 Reew = 944

Figure A.9: Co-rotation at POD mode-1, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (left), for varying Ta at
Γew = 1.5
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(a) Ta = 15, 170 Reew = 1, 227 (b) Ta = 15, 170 Reew = 1, 227 (c) Ta = 15, 170 Reew = 1, 227

(d) Ta = 15, 170 Reew = 2, 076 (e) Ta = 15, 170 Reew = 2, 076 (f) Ta = 15, 170 Reew = 2, 076

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15, 170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure A.10: Co-rotation at POD mode-1, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew

at Γew = 1.5
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(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 15, 170 Reew = 944 (e) Ta = 15, 170 Reew = 944 (f) Ta = 15, 170 Reew = 944

(g) Ta = 35, 485 Reew = 944 (h) Ta = 35, 485 Reew = 944 (i) Ta = 35, 485 Reew = 944

Figure A.11: Co-rotation at POD mode-3, velocity profile (left), non-

dimensionalized [ ωd̂
2ΩIRI

] (middle), streamlines (left), for varying Ta at Γew = 1.5
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(a) Ta = 15, 170 Reew = 1, 227 (b) Ta = 15, 170 Reew = 1, 227 (c) Ta = 15, 170 Reew = 1, 227

(d) Ta = 15, 170 Reew = 2, 076 (e) Ta = 15, 170 Reew = 2, 076 (f) Ta = 15, 170 Reew = 2, 076

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15, 170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure A.12: Co-rotation at POD mode-3, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew

at Γew = 1.5
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Appendix B

Co-rotational supplemental figures (annular domain)
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(a) Ta = 3, 360
Reew = 944

(b) Ta = 15, 170
Reew = 944

(c) Ta = 35, 485
Reew = 944

(d) Ta = 15, 170
Reew = 1, 227

(e) Ta = 15, 170
Reew = 2, 076

(f) Ta = 15, 170
Reew = 2, 926

(g) Ta = 3, 360
Reew = 944

(h) Ta = 15, 170
Reew = 944

(i) Ta = 35, 485
Reew = 944

(j) Ta = 15, 170
Reew = 1, 227

(k) Ta = 15, 170
Reew = 2, 076

(l) Ta = 15, 170
Reew = 2, 926

Figure B.1: Co-rotational annular flow at POD mode-1 (top) and mod-3 (bot-
tom), velocity profile for varying Ta (left) & for varying Reew (right) at Γew = 1
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(a) Ta = 3, 360
Reew = 944

(b) Ta = 3, 360
Reew = 944

(c) Ta = 15, 170
Reew = 944

(d) Ta = 15, 170
Reew = 944

(e) Ta = 35, 485
Reew = 944

(f) Ta = 35, 485
Reew = 944

(g) Ta = 3, 360
Reew = 944

(h) Ta = 3, 360
Reew = 944

(i) Ta = 15, 170
Reew = 944

(j) Ta = 15, 170
Reew = 944

(k) Ta = 35, 485
Reew = 944

(l) Ta = 35, 485
Reew = 944

Figure B.2: Co-rotation annular flow at POD mode-1 (top) and mode-3 (bot-

tom), non-dimensionalized vorticity [ ωd̂
2ΩIRI

] & streamlines, for varying Ta at
Γew = 1
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(a) Ta = 15, 170
Reew = 1, 227

(b) Ta = 15, 170
Reew = 1, 227

(c) Ta = 15, 170
Reew = 2, 076

(d) Ta = 15, 170
Reew = 2, 076

(e) Ta = 15, 170
Reew = 2, 926

(f) Ta = 15, 170
Reew = 2, 926

(g) Ta = 15, 170
Reew = 1, 227

(h) Ta = 15, 170
Reew = 1, 227

(i) Ta = 15, 170
Reew = 2, 076

(j) Ta = 15, 170
Reew = 2, 076

(k) Ta = 15, 170
Reew = 2, 926

(l) Ta = 15, 170
Reew = 2, 926

Figure B.3: Co-rotation annular flow at POD mode-1 (top) and mode-3 (bot-

tom), non-dimensionalized vorticity [ ωd̂
2ΩIRI

] & streamlines, for varying Reew at
Γew = 1
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(a) Ta = 3, 360
Reew = 944

(b) Ta = 15, 170
Reew = 944

(c) Ta = 35, 485
Reew = 944

(d) Ta = 15, 170
Reew = 1, 227

(e) Ta = 15, 170
Reew = 2, 076

(f) Ta = 15, 170
Reew = 2, 926

(g) Ta = 3, 360
Reew = 944

(h) Ta = 15, 170
Reew = 944

(i) Ta = 35, 485
Reew = 944

(j) Ta = 15, 170
Reew = 1, 227

(k) Ta = 15, 170
Reew = 2, 076

(l) Ta = 15, 170
Reew = 2, 926

Figure B.4: Co-rotational annular flow at POD mode-1 (top) and mod-3 (bot-
tom), velocity profile for varying Ta (left) and for varying Reew (right), at Γew = 1.5
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(a) Ta = 3, 360
Reew = 944

(b) Ta = 3, 360
Reew = 944

(c) Ta = 15, 170
Reew = 944

(d) Ta = 15, 170
Reew = 944

(e) Ta = 35, 485
Reew = 944

(f) Ta = 35, 485
Reew = 944

(g) Ta = 3, 360
Reew = 944

(h) Ta = 3, 360
Reew = 944

(i) Ta = 15, 170
Reew = 944

(j) Ta = 15, 170
Reew = 944

(k) Ta = 35, 485
Reew = 944

(l) Ta = 35, 485
Reew = 944

Figure B.5: Co-rotation annular flow at POD mode-1 (top) and mode-3 (bot-

tom), non-dimensionalized vorticity [ ωd̂
2ΩIRI

] & streamlines, for varying Ta at
Γew = 1.5
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(a) Ta = 15, 170
Reew = 1, 227

(b) Ta = 15, 170
Reew = 1, 227

(c) Ta = 15, 170
Reew = 2, 076

(d) Ta = 15, 170
Reew = 2, 076

(e) Ta = 15, 170
Reew = 2, 926

(f) Ta = 15, 170
Reew = 2, 926

(g) Ta = 15, 170
Reew = 1, 227

(h) Ta = 15, 170
Reew = 1, 227

(i) Ta = 15, 170
Reew = 2, 076

(j) Ta = 15, 170
Reew = 2, 076

(k) Ta = 15, 170
Reew = 2, 926

(l) Ta = 15, 170
Reew = 2, 926

Figure B.6: Co-rotation annular flow at POD mode-1 (top) and mode-3 (bot-

tom), non-dimensionalized vorticity [ ωd̂
2ΩIRI

] & streamlines, for varying Reew at
Γew = 1.5
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Appendix C

Counter-rotational supplemental figures (zone-2)
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(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 15, 170 Reew = 944 (e) Ta = 15, 170 Reew = 944 (f) Ta = 15, 170 Reew = 944

(g) Ta = 35, 485 Reew = 944 (h) Ta = 35, 485 Reew = 944 (i) Ta = 35, 485 Reew = 944

Figure C.1: Counter-rotation at POD mode-1, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Ta at
Γew = 0.5
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(a) Ta = 15, 170 Reew = 1, 227 (b) Ta = 15, 170 Reew = 1, 227 (c) Ta = 15, 170 Reew = 1, 227

(d) Ta = 15, 170 Reew = 2, 076 (e) Ta = 15, 170 Reew = 2, 076 (f) Ta = 15, 170 Reew = 2, 076

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15, 170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure C.2: Counter-rotation at POD mode-1, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew

at Γew = 0.5
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(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 15, 170 Reew = 944 (e) Ta = 15, 170 Reew = 944 (f) Ta = 15, 170 Reew = 944

(g) Ta = 35, 485 Reew = 944 (h) Ta = 35, 485 Reew = 944 (i) Ta = 35, 485 Reew = 944

Figure C.3: Counter-rotation at POD mode-3, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Ta at
Γew = 0.5
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(a) Ta = 15, 170 Reew = 1, 227 (b) Ta = 15, 170 Reew = 1, 227 (c) Ta = 15, 170 Reew = 1, 227

(d) Ta = 15, 170 Reew = 2, 076 (e) Ta = 15, 170 Reew = 2, 076 (f) Ta = 15, 170 Reew = 2, 076

(g) Ta = 15, 170 Reew = 2, 296 (h) Ta = 15, 170 Reew = 2, 296 (i) Ta = 15, 170 Reew = 2, 296

Figure C.4: Counter-rotation at POD mode-3, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew

at Γew = 0.5
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(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 15, 170 Reew = 944 (e) Ta = 15, 170 Reew = 944 (f) Ta = 15, 170 Reew = 944

(g) Ta = 35, 485 Reew = 944 (h) Ta = 35, 485 Reew = 944 (i) Ta = 35, 485 Reew = 944

Figure C.5: Counter-rotation at POD mode-1, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Ta at
Γew = 1
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(a) Ta = 15, 170 Reew = 1, 227 (b) Ta = 15, 170 Reew = 1, 227 (c) Ta = 15, 170 Reew = 1, 227

(d) Ta = 15, 170 Reew = 2, 076 (e) Ta = 15, 170 Reew = 2, 076 (f) Ta = 15, 170 Reew = 2, 076

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15, 170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure C.6: Counter-rotation at POD mode-1, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew

at Γew = 1
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(a) Ta = 3, 360 Reew = 944 (b) Vorticity Ta = 3, 360 Reew =
944

(c) Ta = 3, 360 Reew = 944

(d) Ta = 15, 170 Reew = 944 (e) Ta = 15, 170 Reew = 944 (f) Ta = 15, 170 Reew = 944

(g) Ta = 35, 485 Reew = 944 (h) Ta = 35, 485 Reew = 944 (i) Ta = 35, 485 Reew = 944

Figure C.7: Counter-rotation at POD mode-3, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Ta at
Γew = 1
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(a) Ta = 15, 170 Reew = 1, 227 (b) Ta = 15, 170 Reew = 1, 227 (c) Ta = 15, 170 Reew = 1, 227

(d) Ta = 15, 170 Reew = 2, 076 (e) Ta = 15, 170 Reew = 2, 076 (f) Ta = 15, 170 Reew = 2, 076

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15, 170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure C.8: Counter-rotation at POD mode-3, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew

at Γew = 1

200



(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 15, 170 Reew = 944 (e) Ta = 15, 170 Reew = 944 (f) Ta = 15, 170 Reew = 944

(g) Ta = 35, 485 Reew = 944 (h) Ta = 35, 485 Reew = 944 (i) Ta = 35, 485 Reew = 944

Figure C.9: Counter-rotation at POD mode-1, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (left), for varying Ta at
Γew = 1.5
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(a) Ta = 15, 170 Reew = 1, 227 (b) Ta = 15, 170 Reew = 1, 227 (c) Ta = 15, 170 Reew = 1, 227

(d) Ta = 15, 170 Reew = 2, 076 (e) Ta = 15, 170 Reew = 2, 076 (f) Ta = 15, 170 Reew = 2, 076

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15, 170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure C.10: Counter-rotation at POD mode-1, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew

at Γew = 1.5
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(a) Ta = 3, 360 Reew = 944 (b) Ta = 3, 360 Reew = 944 (c) Ta = 3, 360 Reew = 944

(d) Ta = 15, 170 Reew = 944 (e) Ta = 15, 170 Reew = 944 (f) Ta = 15, 170 Reew = 944

(g) Ta = 35, 485 Reew = 944 (h) Ta = 35, 485 Reew = 944 (i) Ta = 35, 485 Reew = 944

Figure C.11: Counter-rotation at POD mode-3, velocity profile (left), non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (left), for varying Ta at
Γew = 1.5
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(a) Ta = 15, 170 Reew = 1, 227 (b) Ta = 15, 170 Reew = 1, 227 (c) Ta = 15, 170 Reew = 1, 227

(d) Ta = 15, 170 Reew = 2, 076 (e) Ta = 15, 170 Reew = 2, 076 (f) Ta = 15, 170 Reew = 2, 076

(g) Ta = 15, 170 Reew = 2, 926 (h) Ta = 15, 170 Reew = 2, 926 (i) Ta = 15, 170 Reew = 2, 926

Figure C.12: Counter-rotation at POD mode-3, velocity profile (left),non-

dimensionalized vorticity [ ωd̂
2ΩIRI

] (middle), streamlines (right), for varying Reew

at Γew = 1.5
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Appendix D

Counter-rotational supplemental figures (annular domain)
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(a) Ta = 3, 360
Reew = 944

(b) Ta = 15, 170
Reew = 944

(c) Ta = 35, 485
Reew = 944

(d) Ta = 15, 170
Reew = 1, 227

(e) Ta = 15, 170
Reew = 2, 076

(f) Ta = 15, 170
Reew = 2, 926

(g) Ta = 3, 360
Reew = 944

(h) Ta = 15, 170
Reew = 944

(i) Ta = 35, 485
Reew = 944

(j) Ta = 15, 170
Reew = 1, 227

(k) Ta = 15, 170
Reew = 2, 076

(l) Ta = 15, 170
Reew = 2, 926

Figure D.1: Counter-rotational annular flow at POD mode-1 (top) and mod-3
(bottom), velocity profile for varying Ta (left), & varying Reew (right), at Γew = 1
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(a) Ta = 3, 360
Reew = 944

(b) Ta = 3, 360
Reew = 944

(c) Ta = 15, 170
Reew = 944

(d) Ta = 15, 170
Reew = 944

(e) Ta = 35, 485
Reew = 944

(f) Ta = 35, 485
Reew = 944

(g) Ta = 3, 360
Reew = 944

(h) Ta = 3, 360
Reew = 944

(i) Ta = 15, 170
Reew = 944

(j) Ta = 15, 170
Reew = 944

(k) Ta = 35, 485
Reew = 944

(l) Ta = 35, 485
Reew = 944

Figure D.2: Counter-rotation annular flow at POD mode-1 (top) and mode-3

(bottom), non-dimensionalized vorticity [ ωd̂
2ΩIRI

] & streamlines, for varying Ta at
Γew = 1
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(a) Ta = 15, 170
Reew = 1, 227

(b) Ta = 15, 170
Reew = 1, 227

(c) Ta = 15, 170
Reew = 2, 076

(d) Ta = 15, 170
Reew = 2, 076

(e) Ta = 15, 170
Reew = 2, 926

(f) Ta = 15, 170
Reew = 2, 926

(g) Ta = 15, 170
Reew = 1, 227

(h) Ta = 15, 170
Reew = 1, 227

(i) Ta = 15, 170
Reew = 2, 076

(j) Ta = 15, 170
Reew = 2, 076

(k) Ta = 15, 170
Reew = 2, 926

(l) Ta = 15, 170
Reew = 2, 926

Figure D.3: Counter-rotation annular flow at POD mode-1 (top) and mode-3

(bottom), non-dimensionalized vorticity [ ωd̂
2ΩIRI

] & streamlines, for varying Reew

at Γew = 1
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(a) Ta = 3, 360
Reew = 944

(b) Ta = 15, 170
Reew = 944

(c) Ta = 35, 485
Reew = 944

(d) Ta = 15, 170
Reew = 1, 227

(e) Ta = 15, 170
Reew = 2, 076

(f) Ta = 15, 170
Reew = 2, 926

(g) Ta = 3, 360
Reew = 944

(h) Ta = 15, 170
Reew = 944

(i) Ta = 35, 485
Reew = 944

(j) Ta = 15, 170
Reew = 1, 227

(k) Ta = 15, 170
Reew = 2, 076

(l) Ta = 15, 170
Reew = 2, 926

Figure D.4: Counter-rotational annular flow at POD mode-1 (top) and mod-3
(bottom), velocity profile velocity profile for varying Ta (left), & varying Reew

(right), at Γew = 1.5
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(a) Ta = 3, 360
Reew = 944

(b) Ta = 3, 360
Reew = 944

(c) Ta = 15, 170
Reew = 944

(d) Ta = 15, 170
Reew = 944

(e) Ta = 35, 485
Reew = 944

(f) Ta = 35, 485
Reew = 944

(g) Ta = 3, 360
Reew = 944

(h) Ta = 3, 360
Reew = 944

(i) Ta = 15, 170
Reew = 944

(j) Ta = 15, 170
Reew = 944

(k) Ta = 35, 485
Reew = 944

(l) Ta = 35, 485
Reew = 944

Figure D.5: Counter-rotation annular flow at POD mode-1 (top) and mode-3

(bottom), non-dimensionalized vorticity [ ωd̂
2ΩIRI

] & streamlines, for varying Ta at
Γew = 1.5
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(a) Ta = 15, 170
Reew = 1, 227

(b) Ta = 15, 170
Reew = 1, 227

(c) Ta = 15, 170
Reew = 2, 076

(d) Ta = 15, 170
Reew = 2, 076

(e) Ta = 15, 170
Reew = 2, 926

(f) Ta = 15, 170
Reew = 2, 926

(g) Ta = 15, 170
Reew = 1, 227

(h) Ta = 15, 170
Reew = 1, 227

(i) Ta = 15, 170
Reew = 2, 076

(j) Ta = 15, 170
Reew = 2, 076

(k) Ta = 15, 170
Reew = 2, 926

(l) Ta = 15, 170
Reew = 2, 926

Figure D.6: Counter-rotation annular flow at POD mode-1 (top) and mode-3

(bottom), non-dimensionalized vorticity [ ωd̂
2ΩIRI

] & streamlines, for varying Reew

at Γew = 1.5
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