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Abstract

With the advances in localization techniques and popularity of mobile devices, Spatial

Intelligence penetrated people’s lives. What is Spatial Intelligence? It is 1) able to provide

“smart” and intelligent services to assist people to make decisions, 2) based on efficient

data processing and interactive data analytic, and 3) using big data on Location-based

Social Networks. In this proposal, I focus two problems of Spatial Intelligence about route

prediction and planning.

First, we study the problem of recommending time-sensitive venue sequence for mobile

users using their check-in footprints on LBSNs. Most of the current studies in Point of

Interest (POI) recommendation and prediction fail to address the following key challenges:

(1) how to recommend an optimal time-sensitive visit sequence where each point’s time is

specified by users, (2) how to handle the scenario where the user-location matrix is very

sparse (i.e., each user has a very limited number of check-ins, or to say, cold-start users),

and (3) how to dig deep into the user’s behavior to assist the recommendation system.

Motivated by the challenges above, we propose a predictive framework that enables time-

sensitive location sequence recommendation leveraging both the users’ preference and social

opinions, especially for cold-start users.

Next, we presents an exact solution and a heuristic solution to a UAV-assisted parcel

delivery problem, in which UAVs can only be operated in Visual-Line-Of-Sight (VLOS) areas.

In our proposed problem, we assume that trucks travel on road networks, and UAVs move

in Euclidean spaces and can launch at any locations on roads. We first demonstrate the

overview of our exact solution that iterates all permutations of destinations for an optimal

delivery route. Given a specific delivery order, an intuitive approach needs to check all

possible locations on roads in the VLOS areas and find a globally optimal location for every
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destination if UAVs are used for delivery. To avoid high computational cost of searching

the optimal location at run-time, we propose an advanced index-based alternative, which

computes optimal delivery routes in a pre-processing stage. Due to the nature of NP-

hard problems, we also propose a heuristic approach that utilizes delivery groups for the

proposed problem of practical size. All proposed solutions are evaluated through extensive

experiments.
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Chapter 1

Introduction

Geospatial intelligence is a broad field that encompasses the intersection of geospatial

data with social, political, environmental and numerous other factors. My research focus

two main problems.

1.1 Location Recommendation Problem

With the rapid development of the positioning technology and personal devices such

as smart-phones, a number of Location-based Social Networks (LBSNs) have emerged, e.g.,

Foursquare and GeoLife. With these applications, users are able to share their location

data. For example, a customer may check in and leave a comment on a LBSN site for a

restaurant she just visited. These records imply extensive knowledge about a user’s interests

and behavior, and mining such data has become an interesting research topic. Check-in

records have two very important components, the location and the time. Because of the

particularity of check-in record, it is possible to analyze user’s action according to the user’s

mobility and activities in the physical world.

A location recommendation often simultaneously considers the following factors. (1)

User record: a user is more likely to go to a category of locations she visits frequently. For

example, food lover may be more interested in the restaurants. (2) Behavior of other users:

the choice of other users are of high reference value, especially for the semantic similar users

(i.e., they have similar interests in what types of restaurants to visit) or spatial similar users

(they have similar range of activities). (3) User’s current location: User’s location limits the

searching range, and therefore the places nearby have higher priority. (4) The current time:

a user’s visiting location is impacted greatly by the time of the day. Most of the existing
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location-based recommender systems have the following limitations: (1) providing a list of

separate locations which match a user’s personal interest without the support of continuous

location sequence recommendation[46] , (2) requiring a large number of check-in data from

the target user and other users to make the predictive systems work (i.e., cold-start problem),

(3) inability to consider temporal factors when making venue recommendation because user’s

preference on venues are actually time-dependent or time-sensitive. In this paper, we aim to

develop a novel framework for recommending an optimal time-sensitive visit sequence that

best matches the time slots specified by a target user.

However, developing such a recommendation system faces a few challenges. First, how

can we make personalized location sequence recommendation by taking into account the

impact of time on location sequence? For example, people tend to leave their workplaces

to visit restaurants at lunchtime. Second, how can we make accurate location sequence

recommendation even if the location-user matrix is sparse? Due to the sparsity of check-in

data, it is insufficient to train an accurate predictive model by only using a user’s own check-

in data in order to make prediction or recommendation on various POIs. Furthermore, a

user’s preferences are not generally binary decisions but have a variety of granularity, such

as ”Food - Chinese food - Szechuan food”. So an ideal location sequence recommender

should be able to capture such hierarchy of venue categories. Last but not least, different

people have different movement patterns and such spatial preferences are too complex to be

represented using Euclidean distance only.

To the best of our knowledge, our work is the first attempt to address the time-aware

location sequence recommendation in support of sparse user-location matrix. By taking full

advantages of the similarities between mobile users, our proposed framework does not suffer

from the cold-start problem and works well even if the target user has very few footprints

(check-ins) on a LBSN site. The key contributions of this paper are as follows:

• We propose a new framework, TLSR+, that enables time-sensitive location sequence

recommendation in support of sparse user-location matrix. TLSR+ extends our prior
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work, TLSR [42], and makes location sequence recommendation by considering the

following: individual preference, social opinions, geospatial factors, and users’ temporal

behavior patterns.

• In order to incorporate social options, we local experts (i.e., users with rich local knowl-

edge) based on the HITS algorithm. We further screen out similar users considering

both semantic and spatial factors.

• In semantic similarity modeling, we build a venue categorical semantic tree, i.e.,

Weighed Category Hierarchy (WCH), to capture each user’s venue categorical prefer-

ence based on users’ check-in histories. Given any two users, their semantic similarity

score can be calculated as the weighted sum of the Jensen-Shannon divergence of each

level in their corresponding Normalized Weighed Category Hierarchies (NWCHs).

• In spatial similarity modeling, we employ Gaussian Mixture Model (GMM) to capture

users’ geographical movement patterns. The in-between user spatial similarity scores

can then be estimated by computing the average log-likelihood that a user’s check-in

records fit with the GMMs learned from other users.

• By taking advantage of the check-ins from both semantically and spatially similar

local experts, we train a Hidden Markov Model (HMM) for each user to predict her

likelihood to visit each location category at any given time.

• To improve the accuracy of recommendations, we divide and model the check-in data

depending on different time bucket. For the inquiry from different time bucket, we

select the corresponding model for calculation. We choose weekday and weekend as a

division because of significant differences in user behavior.

• We conduct extensive experiments to evaluate the performance of our approach against

three baseline methods, MPV, LPR [6], and TLSR [42] using four real dataset (NYC

Weekdays, NYC Weekends, Tokyo Weekdays, Tokyo Weekends). Results show that
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TLSR+ significantly outperforms all baseline methods in temms of the hits rate and

MRR.

The Chapter 3 present our time-aware location-based recommendation system. And

experimental evaluation is followed by.

1.2 Ground/Aerial Parcel Delivery Problem

The Travelling Salesman Problem (TSP) finding an optimal route for a salesman, who

plans to travel to each of a list of cities exactly once and return to the home city, has

been extensively studied and applied in the parcel delivery service and other real appli-

cations [27] [20]. On the other hand, Unmanned Aerial Vehicles (UAVs), or drones, are

developed for assisting traditional delivery vehicles (such as trucks) since the delivery could

be completed in a shorter time period with lower maintenance cost by using UAVs in spe-

cific circumstances. Many UAV-assisted delivery projects have been initialized. For example,

Prime Air is designed to deliver packages to customers in 30 minutes or less at Amazon [4].

DHL will start a project for delivering medications and other urgently needed goods to the

North Sea island of Juist by DHL parcelcopters [23]. The project Wing targets delivering

aid to isolated areas for disaster relief [22].

As UAVs are not limited by established infrastructure (e.g., roads), a new delivery

model, a truck and a UAV, was proposed for parcel delivery [37]. In the model, every truck

is equipped with a UAV and all packages can be delivered by either of the two. Fig. 1.1

and Fig. 1.2 display examples of TSP and the UAV-assisted parcel delivery problem. The

delivery route starts at a distribution center h (indicated by a box), and eventually returns

to the distribution center after reaching five destinations ({d1, d2, d3, d4, d5} indicated by

circles). The delivery truck (indicated by the triangle) could stop at any locations on the

road. In the example of the UAV-assisted parcel delivery problem in Fig. 1.2, the truck stops

on road r and the UAV flies to d4 for delivery.
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Figure 1.1: An example of TSP in a Euclidean space. The line segments indicate a delivery route.

The travelling salesman problem is a well-known NP-hard problem in the field of com-

binatorial optimization [38], and the new UAV-assisted parcel delivery problem is more

challenging. First of all, the fastest delivery route among destinations is usually assumed to

be computed in a pre-processing stage in TSP. However, if packages could be delivered by

either the truck or the UAV, the truck can stop at any places on the road and the UAV can

be used for delivery. So, the fastest route among locations where the truck stops cannot be

pre-determined, and may greatly vary case by case. Second, only one search space (either

a Euclidean space or a road network) is usually considered in TSP, but the UAV-assisted

problem assumes that the truck travels on road networks while the UAV moves in Euclidean

spaces. Thus, the fastest delivery route may consist of paths in both search spaces, which

significantly increases the complexity of the problem. Third, many variants of UAV-assisted

problems have been investigated [37] [24] [47]. Nevertheless, none of these studies takes UAV

regulations into account. For example, the Federal Aviation Administration (FAA) does not

allow UAVs to be operated beyond the Visual-Line-Of-Sight (VLOS) of operators in the

United States [1]. Existing solutions are not applicable to any VLOS compliance problems
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Figure 1.2: An example of UAV-assisted parcel delivery problem. The line segments indicate the
road network.

because the optimal delivery route may vary greatly by the VLOS distance and speeds of

the truck and the UAV.

Therefore, we propose a novel Ground/Aerial Parcel Delivery Problem (GAPDP) with

consideration of VLOS compliance. We develop an exact solution and a heuristic solution for

the problem in this paper. In our exact solution, we check all permutations of destinations for

the fastest delivery route. To calculate the fastest delivery route for destinations in a given

order, we present an index-based exact approach that relies on an index over the VLOS areas

for reducing the cost of the route calculation. This approach finds the fastest delivery route

for every destination from all its entrances to its exits at a pre-processing stage. The fastest

routes can be retrieved from the index, and our method can “jump” from one destination

to the other without computing routes in the VLOS areas. Additionally, as the proposed

problem is NP-hard, we also propose a heuristic solution that utilizes delivery groups for the

proposed problem of practical size. All proposed solutions are evaluated through extensive

experiments.

The contributions of this study are summarized below:
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• We propose and formally define a new Ground/Aerial Parcel Delivery Problem (GAPDP),

in which packages could be delivered by either a truck or a UAV.

• We develop an index-based exact solution that pre-computes the fastest delivery routes

in VLOS areas of destinations.

• We propose a heuristic solution that produces an approximation for problems of prac-

tical size.

• We evaluate our solutions through extensive experiments over a real-world road net-

work.

The Chapter 4 shows our solution of the GAPDP problem.
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Chapter 2

Literature Review

In this chapter, we review previous studies related to the recommendation system, trav-

elling salesman problem, and UAV-assisted parcel delivery problems.

2.1 Stand-alone Location Recommendation

Most of the related researches focus on stand-alone location recommendation. Without

taking personal preferences into account, Generic location recommendation systems, such as

[55], encapsulate the public opinions on locations to provide people with the most popular

venues in a city. In this work, they model multiple individuals’ location histories with a tree-

based hierarchical graph. Then a HITS-based inference model, which regards an individual’s

access on a location as a directed link from the user to that location, is proposed to predict

the popularity of a location and the knowledge of a user. However, this kind of method is

not customized for the user. They can’t make an accurate recommendation since everyone’s

interest is varied.

Some location recommendation systems suggest locations by matching user’s profile

data against the location meta data. In [40], Ramaswamy et al. presents a social network-

based recommender system that has been explicitly designed to work with low-end devices.

They analyze information such as customer’s address books to estimate the level of social

affinity and combined them with the spatio-temporal context to identify the recommenda-

tions to be sent to an individual user. The social affinity computation and spatio-temporal

contextual association are continuously tuned through user feedback. In [33], Kodama et al.

select candidates taking into account the user’s current location and preferences and using
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semantic data. Furthermore, Skyline operator is also applied to make the final recommen-

dations. However, the requirement of needing users’ complete profile is a big shortcoming.

Furthermore, this kind of systems may suffer from the recommendation quality issue.

Using users’ location histories for making recommendations avoids the shortcoming of

relying solely on profile data. And capturing the ratings from the other users improves the

quality of recommendation. Motivated by the fact that user will share location preferences

with similar users, [12, 28, 50] use Collaborative Filtering (CF) models to give personalized

location recommendations that take into account other users’ ratings. Ye et al. 2010 [50]

uses the ratings of a user’s friends to select candidate locations. In [16], they further extend

the solution to consider the situation that user is traveling out of town. In [53], Ying et al.

extend the recommendation system by considering the popularity of the candidate venues

by analyzing the large scale user check-in behavior. [51] store users location histories using

a matrix, where each row denotes a user and each column represents a location. [6] handles

the cold-start mobile users by storing a user location history into the category space and

modeling user preferences using WCH. In [52], Yin et al. further extend the problem by

proposing a location-content-aware probabilistic generative model to quantify both the local

preference and the item content information in the recommendation process.

There are also some studies in the literature that employ machine learning-based ap-

proaches in POI prediction or recommendation. [5] presents a system that clusters users’

significant locations from GPS data and predicts location based on the Markov models. [34]

uses a history of a driver’s destinations to predict where a driver is going as a trip progresses.

[3] designs a system based on the generation of a hidden Markov model from the past GPS

log and the current location to predict a user’s destination. [32] combines k-nearest neighbor

and decision tree for predicting user’s destination based on hidden Markov model. Unfortu-

nately, these works neither solve the sequential recommendation problem, nor consider the

temporal effect.
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2.2 Sequential Location Recommendations

Sequential location recommender systems recommend a series of locations to a user (such

as a visiting route in a city), based on their preferences and the time constraints. For example,

[44] provides personalized suggestion of a sequence of following visiting spots leveraging the

geo-tagged photos. The recommendation is based on the data mining techniques to extract

and differentiate the preferences of various users. In [54], Zhao et al. propose a visual feature

enhanced tour recommender system by integrating visual features into the collaborative

filtering model, to learn user interests by leveraging the historical travel records. These

methods heavily rely on the geo-tagged photos and The effect of different times was not

considered. Moreover, the complexity of computing is relatively high.

Other researches make sequential location recommendations by mining GPS trajectory.

[15] present a graph model for socio-spatial networks that store information on frequently

traveled routes and implement a query language that consists of graph traversal operations.

In [9], the authors propose a route recommender system that comprises two components,

familiar road network construction and route planning, which mined from the user’s historical

trajectories. In [21], Ge et al. develop a mobile recommender system which has the ability

in recommending a sequence of pick-up points for taxi drivers or a sequence of potential

parking positions, by learning energy-efficient transportation patterns from trajectories.

To the best of our knowledge, our work is the first attempt to address the time-aware

location sequence recommendation in support of sparse user-location matrix. Taking full

advantages of the similarities between mobile users, our proposed framework does not suffer

from the cold-start problem and works well even if the target user has very few footprints

(check-ins) on a LBSN site.
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2.3 Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is an NP-hard problem [38]. An intuitive

method for an exact solution of the problem is to check all permutations of destinations,

and return the shortest route among those permutations, the computational complexity of

which is O(n · n!), where n denotes the number of destinations. Held and Karp reduced

the computational cost to O(n2 · 2n) by utilizing dynamic programming [25]. Jones and

Adamatzky approximated TSP in a Euclidean space by shrinking “blob” [31]. In their

method, a “blob” of material emerging from low-level interactions of particles is placed

over destinations. The shrinkage process automatically and morphologically adapts to the

configuration of destinations. And finally, a TSP tour is captured by tracing the perimeter

of the blob among the destinations. Moreover, there are many studies that have investigated

heuristic solutions for TSP [20]. A hybrid heuristic approach was developed for the multi-

commodity pickup-and-delivery travelling salesman problem [26]. In the pickup-and-delivery

TSP, each customer could be either a producer or a consumer of a package, or both. In other

words, a package is assumed to be picked up at a customer, and then delivered to another

customer in the delivery process. GELS-GA is a hybrid metaheuristic algorithm for multiple

Travelling Salesman Problem (mTSP) [29]. Rather than the traditional TSP, mTSP has two

or more salesmen, and all of them must return to the places where they start. GELS-GA

combines Gravitational Emulation Local Search (GELS) algorithm and Genetic Algorithm

(GA) for achieving the global optimum in a high possibility. Xu et al. also proposed a

two-phase heuristic algorithm for mTSP [48]. Their method specifically considers workload

balance and minimizes the overall travelling cost. They improved the K-means algorithm by

grouping visited cities based on their locations and capacity constraints, and then designed a

route planning algorithm for a delivery route. However, aforementioned studies are different

from our proposed GAPDP problem; the shortest delivery routes among destinations in

GAPDP depend on speeds of trucks and UAVs, the delivery order, the delivery method for

each destination, UAV regulations, and more.
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2.4 Route Planning Query

The route planning query is a problem that finds an optimal route under a set of

constraints. The Optimal Sequenced Route (OSR) was proposed to search for an optimal

route starting from a given source location and travelling through a set of locations in

different types in a given order. Sharifzadeh et al. developed an additively weighted Voronoi

diagram based method to incrementally build the OSR in both vector and metric spaces [41].

Li et al. proposed a trip planning query without a particular order. Given a set of objects in

different types, the optimal route connects the given starting location and destination, and

passes through exactly one object in each object type on the route [35]. The a-autonomy

shortest path and k-stops shortest path queries were studied in [45]. The a-autonomy shortest

path consists of a sequence of objects from the source to the destination, where the distance

of any two consecutive locations on the path is not greater than a. The k-stops shortest path

query finds a route that consists of k intermediate stops on the path. Chen et al. proposed

a partial sequenced route query, which satisfies a set of partial visiting orders in the travel

plan [10]. However, the major difference from our study is that our route planning query

searches the optimal route in both Euclidean space and road networks by utilizing trucks

and UAVs. All aforementioned queries do not consider the assistance of UAVs in their route

planning search.

2.5 Drone-assisted Parcel Delivery Problem

Agatz et al. studied the Travelling Salesman Problem with Drones (TSP-D), formu-

lated the problem as an Mixed Integer linear Programming (MIP) model, and developed

route first-cluster second heuristic approaches based on local search and dynamic program-

ming [2]. Ha et al. proposed two heuristic methods, either of which utilizes route-first

cluster-second or cluster-first route-second strategies to solve TSP-D [24]. They used a new

mixed integer programming formulation in the cluster step for both heuristics. Wang et al.
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focused primarily on the worst case of a vehicle routing problem with drones [47]. They

assumed that a truck could be equipped with many drones, and their investigation showed

that the results of the worst case depend on the number of drones on the truck and the

relative speed of the drones to the truck. Murray and Chu proposed the flying sidekick TSP

problem, in which customers can be served by either a driver-operated delivery truck or a

UAV [37]. They solved the problem by utilizing an MIP formulation. Moreover, they also

proposed a heuristic approach for parallel drone scheduling TSP problem. Ferrandez et al.

explored the delivery time and energy consumption of a truck-drone delivery network [17].

Their proposed algorithm aims at minimizing the time of delivery by utilizing K-means

clustering methods, and determining the optimal number of launch sites and drones per

truck. Dorling et al. proposed two solutions for multi-trip vehicle routing problems [14].

Specifically, they first demonstrated an energy consumption model of drones, in which the

energy consumption is approximately linear to the payload and battery weight. Then, they

developed a cost function by using the energy consumption model and drone reuse. Finally,

they proposed a method that minimizes costs by considering the limit of delivery time, and a

method that minimizes the delivery time under a budget constraint. A Randomized Variable

Neighborhood Descent (RVND) heuristic method was proposed to TSP-D problem [13]. In

the method, practical restrictions, such as the flying time limit of drones and the limit of

payload, are considered, and the RVND heuristic is used in local searches to find an optimal

delivery route. Their experimental results show that the help of drones can save up to 20%

of time in the last mile delivery.

However, all methods mentioned above are not applicable to our proposed problem due

to the difference in assumptions of the problems. None of these studies considers the VLOS

restriction. The optimal delivery route may vary greatly by setting different VLOS distances

or speeds of the truck and the UAV. Many studies output an approximation [2] [24] [37];

while we propose an exact solution to the VLOS-compliance UAV-assisted parcel delivery

problem. Moreover, Murray and Chu assumed that the truck could move on road networks
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while the UAV is in flight; but the truck and the UAV cannot be operated simultaneously

in our problem because the driver can only either drive the truck or operate the UAV at a

particular time. In addition, in many countries, UAVs are not allowed to land at or takeoff

from a moving vehicle. Agatz et al. assumed that the UAV can only land on and depart

from the truck while it is parked at a customer location, while the truck is allowed to park

at any locations on roads in our problem. More than one UAV can be used with a truck in

the problems proposed by Wang et al. and Ferrandez et al.; while there is only one UAV

available with a truck for delivery in our problem, as each UAV requires a dedicated operator

to handle.
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Chapter 3

Time-aware Location Sequence Recommendation for Cold-start Mobile Users

3.1 Overview

User’s Check‐in 
Sequence

Venues on Map

Category Tree
…...

Figure 3.1: User Check-ins on Social Network.

In this section, we introduce the motivating example and the architecture of our time-

aware location sequence recommender system.

3.1.1 Preliminary

In a location-based social network, users and venues are the basic elements. A user

u maintains her profile information, such as user ID, name, gender and home location. A

venue v holds the information of the venue ID, name, and real-world location. Venues can be
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visited by users, and users save their check-in record in the system. As illustrated in Figure

3.1, the system maintains a sequence of check-in record for each user. Each check-in record

shows the timestamp when the user check in and the venue where the user visit. A venue

is also associated with a set of categories. In Foursquare the categories are represented by

a category tree. For example, category “Food” includes category “Chinese Restaurant” and

“American Restaurant”, and “Chinese Restaurant” includes “Cantonese Restaurant” and

“Szechuan Restaurant”.

10:00 12:00 13:00

10

Restaurant

Re <

Select Category

Restaurant
Asian Restaurant
Mexican Restaurant
. . .

00

12 00

13 00

Time Category

:

:

:

+

Loc Recommendation

Figure 3.2: Example of An Application Scenario.

3.1.2 Application Scenario

As shown in Figure 3.2, our system allows a user to set the time schedule by entering a

sequence of timestamps when she wants to visit multiple venues. The length of the sequence

is decided by the user. For example, a user may set 10:00, 12:00, and 13:00 as the time for

three visit activities. Then the user decides the search range by zoom in/out the map. The
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Figure 3.3: System Architecture.

user can either specify a search range for all the points, or specify a range for each point-in-

time. The user can also choose a category for each point. The system will generate a list

of venues with size N for each time slot that matches her input which give consideration to

her preferences. For example, as shown in Figure 3.2, 3 restaurants are recommended for

the second time slot.

3.1.3 System Architecture

Figure 3.3 shows the system architecture, which consists of offline modeling and online

recommendation.

Offline Modeling.

The offline modeling is comprised of two major components, 1) Personalized Experts

Discovery and 2) Behavior Pattern Mining. In personalized experts discovery, the person-

alized local experts for target users will be discovered. First, we search the users with rich
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knowledge about different location categories. Hyperlink-Induced Topic Search algorithm

is employed to evaluate a user’s level of expertise. Second, we find out the most spatially

similar users to the target user. In order to calculate spatial similarity between any two

users, we create a Gaussian Mixture Model for each user according to her check-in records.

The input for the GMM is a two-dimensional vector with the longitude and latitude of each

check-in point. To calculate user u’s similarity score to user v, we calculate the average

probability of u’s check-in points according to v’s GMM. At last, we calculate similarity

score in terms of their semantic preference and keep the most semantically similar users as

the final experts. Given a predefined category hierarchy, we first model each user’s semantic

preferences using an NWCH. This extracts the features of users’ semantic preferences. To

compute the similarity score between two NWCH, the values at the same level are normal-

ized and Jensen-Shannon divergence is employed. In behavior pattern mining, we adopt the

Hidden Markov Model to mine the target user’s behavior pattern. By treating the categories

of venues as states, and time as observations, an HMM can be learned from a target user’s

check-in history.

Online Recommendation.

The online recommendation part has three components. 1)Individual Preference, 2)

Pattern Prediction and 3) Social Opinion. The first component computes every location’s

individual rating. We extract the venues in range from a user’s check-in history, and compute

a score for each venue by counting the frequency of the visit. The second component predicts

the category that the user will visit. Giving the observation sequence (time slots), a forward

algorithm is employed to decode the category sequence. With the probabilities of each

category we got, a pattern score is calculated for each venue in range. The third component

is the experts score computation, which is based on the personalized local experts we found

in offline approach. Finally, the three score will be summed up, and the top N venues with

highest score will be selected as the locations for recommendation.
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3.2 Personalized Experts Discovery

In this section, we generates a list of experienced “experts” tailored to each user’s

preference. The process is composed of three steps: 1) knowledgeable users discovery, which

selects the candidate local experts base on their experience, 2) geographic similar users filter,

which filter the experts base on the user’s geographic preference, and 3) semantic similar

users filter, which selects more professional experts according to the semantic preference of

the user from the candidates.

3.2.1 Knowledgeable Users Discovery

Some people have rich visiting experience of some specific categories, such as“Asian

Restauran” or “Park”, we call them “Knowledgeable Users”. These users, as local consul-

tants, can find high quality venues which can attract other users. To find out the knowl-

edgeable users, this component computes the users’ expertise of each category base on users’

check-in history.

Iteration

Figure 3.4: HITS Algorithm for Social Knowledge Learning

We divide the users’ check-in history into groups by the categories of venues, then

apply Hyperlink-Induced Topic Search (HITS) algorithm [6] for each group. The algorithm

calculates the hub score for each user, which represents its knowledge, and the authority

score for each venue, which denotes its popularity. As shown in 3.4, a directed link between
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a user and a venue means the user has been to the place. Thus a user-location matrix for

each category can be generated. A user’s hub score can be represented by the sum of the

authority scores of the venues that visited by the user. Likewise, a venue’s authority score

can be represented by the sum of the hub scores of the users who have visited this venue.

The equations are shown below, where v.c denotes the category of venue v, v.U denotes all

the users that visited venue v.

v.authority =
∑
u∈v.U

u.hub(v.c) (3.1)

u.hub(c) =
∑
u.v∈c

v.authority (3.2)

With the initial authority and hub scores to be set as the number of a user’s visits, the

authority and hub scores could be calculated by iterative method using user-category matrix

M.

An = MT ·M · An−1 (3.3)

Hn = M ·MT · Hn−1 (3.4)

We select Knowledgeable Users by algorithm 1. One thing to note is that the size of

the result could be less than Nk, because the users selected for different categories are likely

to overlap. This algorithm could be implemented at any level of the category tree, which

depends on how fine of the categorization of the data set.

3.2.2 Geographic Similar Users Filter

To find out experts that are more relevant, this module identify the experts that have

preferences on similar geographical areas with the user.
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Algorithm 1: Knowledgeable Users Selection

Input: (1) Total number of users selected Nk, (2) A user’s visit records u.V , and
(3) Selected level of category tree l

Output: A set of selected Knowledgeable Users U
1 U ← Ø;
2 k ← Size(u.V );
3 for c in categories of level l do

// Find out records that locations belong to c

4 Vc ← Filter(u.V, c);
// Select top-k users based on hub scores

5 kc ← Size(Vc);
6 n← |Nk ∗ kc/k|;
7 Uc ← Top(n, c);
8 U ← U ∪ Uc;

9 end
10 if u ∈ U then
11 U ← U − u
12 end
13 return U

According to common sense, users have preferences on different geographical areas. It

is because there may be several frequently visited neighborhoods for a particular user (e.g.,

around the user’s home or around the user’s work place). As shown in Figure 3.5, the

distribution of the check-ins from a sample user indicates some geographical clusters where

she frequently checked in. Gaussian Mixture Model (GMM) is appropriate for analysing this

kind of data. Therefore, we use GMM to cluster check-in locations.

A Gaussian mixture model is a probabilistic model that assumes all the data points

are generated from a mixture of a finite number of Gaussian distributions with unknown

parameters[36]. Some prior works [11, 19, 56] utilize the GMM to model individual users’

check-in behaviors in LBSNs. A Gaussian mixture model can be represented by λ =

{φ, µ,Σ}, and the equations to evaluate a vector −→z are shown as follows:

p(−→z ) =
K∑
i=1

φiN (−→z | −→µi ,Σi) (3.5)
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N (−→z | −→µi ,Σi) =
1√

(2π)K |Σi|
exp

(
−1

2
(−→z −−→µi)

TΣi(
−→z −−→µi)

)
(3.6)

K∑
i=1

φi = 1 (3.7)

By training a GMM for each user based on her coordinates of check-ins, we could find

out top geographic similar users for any user. Assume that the GMM for user u is λu, and

Z = {−→z1 , ...,−→zT} are the feature vectors (a vector contains the coordinates of a check-ins,

zt = (latt, lont)) of user u′. We can compute the average log-likelihood using

log p(Z | λu) =
1

T

T∑
t=1

log p(−→zt | λu), (3.8)

which is the spatial similarity score from user u′ to user u. The larger the value is, the more

similar the two users are in terms of their spatial preferences. From the users previously

selected, we choose candidates with top Ng scores. Normally, the scope of people’s activities

on weekdays is different from that on weekends. So by separating the data, we calculate two

list of the candidates – weekday experts and weekend experts.

Expectation maximization (EM) is the most commonly used algorithm to estimate the

GMM’s parameters when we know the component number K. Expectation maximization for

mixture models consists of three steps.

Initialization Step. This step is to assign parameters to model base on the dataset

X = {x1, ..., xn}. To initialize the means µ̂1, ..., µ̂k, we randomly assign samples from the

dataset X. For example, choose x1, x10, and x24 as µ̂1, µ̂2, and µ̂3 when K = 3. All the

component variance will be set to the sample variance with formula σ̂2
1, ...σ̂

2
K = 1

N

∑N
i=1(xi−

x̄)2. At last, all component distribution will prior estimate to the uniform distribution, i.e

φ̂1, ..., φ̂K = 1
K

.

Expectation Step
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This step first calculate the expectation of the component assignments Ck for all the

data sample xi. Then γ̂ik, the probability that xi is generated by component Ck, will be

computed. For ∀i, k:

γ̂ik =
φ̂kN (xi | µ̂k, σ̂k)∑K
j=1N (xi | µ̂j, σ̂j)

(3.9)

Maximization Step

This step updates the parameters φ̂, µ̂, and σ̂ using the expectations calculated in the

expectation step:

φ̂k =
N∑
i=1

γ̂ik
N

(3.10)

µ̂k =

∑N
i=1 γ̂ikxi∑N
i=1 γ̂ik

(3.11)

σ̂k =

∑N
i=1 γ̂ik(xi − µ̂k)2∑N

i=1 γ̂ik
(3.12)

The entire iterative process repeats until the algorithm converges, giving a maximum

likelihood estimate.

3.2.3 Semantic Similar Users Filter

This module filter users who have the same preferences from the candidates. This

is motivated by the fact that the individuals with same interests tend to visit the same

place. However, a person always has multiple interests. Furthermore, each class of interest

could have different granularities. For example, a user may have interest in “Food” and

“Entertainment”, and in the category “Food” she likes “Chinese Restaurant”.

To solve this problem, we extracts a user’s semantic preference based on the categories

of her visited places referring to Jie Bao’s method [6]. Figure 3.6 shows our process of
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Figure 3.5: Venue Check-in Preference on Geographical Areas.

calculating a user’s Normalized Weighted Category Hierarchy (NWCH). First, we generate

a Term Frequency (TF) tree for the user. In a TF tree, each node is associated with the

frequency of a user’s check-ins at the corresponding category, and a deeper level denotes the

categories of a finer granularity. Next, an Inverse Document Frequency (IDF) tree will be

calculated. As shown in the Figure 3.6, the value of each node represents the IDF value

of the category. Third, the two values for the same node will be multiplied to create the

user’s Weighted Category Hierarchy (WCH). The Equation 3.13 shows how to compute the

TF-IDF value of category c in the hierarchy of user u (i.e., u.wc).

u.wc =
|u.V(c)|
|u.V|

× lg
|U|
|U(c)|

(3.13)

u.V(c) := {u.vi ∈ c} (3.14)

U(c) := {uj : ∃uj.vk ∈ c} (3.15)
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The first term of the equation is the TF value, where |u.V(c)| is user u’s number of visits

to venues in category c, and |u.V| is the user u’s total number of visits. The second term of

the equation is IDF value, where |U| is the number of all the users and |U(c)| is the number

of users who have visited category c.

Such WCH is able to capture an individual’s preferences in different categories of dif-

ferent granularity. For the requirement of the following calculation, we convert each WCH

into Normalized WCH (NWCH) by normalizing all the TF-IDF scores for each category at

the same level so that they sum to 1.

To compute the similarity score of any two users based on their NWCHs, we employ

the Jensen-Shannon divergence [18], which is originally defined as follows:

DJS(p ‖ q) =
1

2
DKL(p ‖ m) +

1

2
DKL(q ‖ m) (3.16)

with

m(x) =
1

2
(p(x) + q(x)) (3.17)

DKL = −
∑
x

p(x) log
q(x)

p(x)
(3.18)

where p and q are two probability distributions. The “semantic distance” of two users can

be calculated as the weighed sum of the J-S divergence of each level in the two corresponding

NWCH, shown in Algorithm 2. For each user, we keep a list of the candidates E (which are

selected from the above process) with the top Ns smallest values to her.

Furthermore, dividing a user’s check-in data according to time, we can get multiple

semantic trees, which is called semantic forests. Therefore, different expert lists will be

generated at different time, which can help get more accurate results. In our system, we

keep two group of experts for a user. One is formed by the data through Monday to Friday.

The other one is constructed by the rest of data.
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Figure 3.6: User WCH Construction.

26



Algorithm 2: Divergence of Two WCHs

Input: Two user’s WCH tree (1) u1.wch, (2) u2.wch, and (3) Weights for levels wl

Output: Divergence metric of two users’ WCHs d
1 d← 0;
2 for level l from root to bottom in semantic tree do
3 jsd← 0;
4 foreach c in categories of level l do
5 p← u1.wchc;
6 q ← u2.wchc;
7 if p = 0 and q = 0 then
8 continue;
9 else if p = 0 or q = 0 then

10 jsd← jsd+ 1;
11 else
12 m← 0.5 ∗ (p+ q);
13 jsd← jsd+ 0.5 ∗ (p ∗ log(p/m) + q ∗ log(q/m));

14 end

15 end
16 d← d+ jsd ∗ wl

17 end
18 return d

3.3 Behavior Pattern Mining

Table 3.1: Notations used in Hidden Markov Model.

Elements Meaning

S = {s1, s2, . . . , sK} Hidden State space, which cannot be observed directly
O = {o1, o2, . . . , oN} Observation space, can be observed directly
Π = (π1, π2, . . . , πK) Initial Probabilities, such that πi stores the probability that x1 = si

A = (a11, . . . , aij, . . . , aKK)
Transition Matrix of size K ×K, such that aij stores the transition
probability of transiting from state si to state sj

B = (b11, . . . , bij, . . . , bKN)
Emissions Matrix of size K ×N , such that bij stores the probability
of observing oj from state si.

In this section, we model the user’s action patterns using Hidden Markov Model.

A Hidden Markov Model (HMM) [7, 39] is a state modeling technique that deals with

a situation which you observe a sequence of emissions but do not know the sequence of

states the model went through to generate those emissions. In a hidden Markov model, the

state is not directly visible, but the output is visible, as Figure 3.7 shows. The sequence
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of observations generated by an HMM gives some information about the sequence of states.

Using hidden Markov models can discover the sequence of hidden states from the observed

data. The notations used in HMM is shown on Table 3.1.

x1 x3x2 xT

y1 y3y2 yT

...

...

Figure 3.7: Hidden Markov Model.

The use of HMM to model users’ preference on temporal venue visit sequence is moti-

vated by the observation that an user’s next visit largely depends on her current visit. Here

we treat the categories of venues as states and the check-in timestamp as observations. Be-

cause of continuity of time, we have to do temporal clustering. The easiest way is to divide

a day into a certain number of slots, and treat the check-in timestamp in a slot as the same

observation. Therefore, for every day, we get a category path X = (x1, x2, . . . , xT ), which

is a sequence of states xn ∈ S = {s1, s2, . . . , sK}, and a time slot path Y = (y1, y2, . . . , yT ),

which is a sequence of states yn ∈ O = {o1, o2, . . . , oN}.

Figure 3.8 shows a simple representation in our HMM model. In this example, S =

{Food, Collage,Home, . . . }, and every hour correspond to a time slot. As it shows, a typical

user has higher probability to go home after she leaves her work office, and she has lower

probability to go to food store if she just visited a restaurant. The transition probability

between different categories would form a transition matrix. Furthermore, the visit frequency

for each venue is different. A fast food restaurant would have a higher probability to be

visited at lunch time than during working hours. Therefore, each category has its own

emission matrix. We treat the check-ins in one day as one sequence. We train a personalized
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Figure 3.8: HMM Modeling for Check-in Category Prediction.

Hidden Markov Model (HMM) for time-sensitive location sequence recommendation by using

all the sequences from the target user, shown in Algorithm 3.

3.4 Online Recommendation

In this section, we discuss the online recommendation of our system, which consists of

1) category inference, which calculate the probability of different categories for each time

slot specified by users using Viterbi algorithm, and 2) venue search, which infers a predi-

cation score of the candidate locations the user would visit using category prediction and

personalized experts.

3.4.1 HMM inference on categorical sequence

Reviewing the application scenarios of our system, a user could choose a sequence of

time slots. Therefore we get a sequence of observations Y = (y1, y2, . . . , yT ). While there

is no visiting record before the query at the same day, we can use the precalculated Initial

Probability Distribution Π. Otherwise, suppose the category of site visited last time is si, Π

should be reset as (Ai1, Ai2, . . . , AiK).
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Algorithm 3: HMM training

Input: (1) Category sequences Cseqs, (2) Check-in time slot sequences Tseqs, (3)
Number of sequences n

Output: (1) Transition matrix A, (2) Emissions matrix B, and (3) Initial
Probability Distribution Π

1 create transition matrix A of all 0;
2 create emissions matrix B of all 0;
// iterate check-in sequences of each day

3 for i← 0 to length(Cseqs)− 1 do
4 X ← Cseqsi;
5 Y ← Tseqsi;
6 B[X0][Y0]← B[X0][Y0] + 1;

// iterate check-in records in one day

7 for j ← 1 to length(X)− 1 do
8 B[Xj][Yj]← B[Xj][Yj] + 1;
9 A[Xj−1][Xj]← A[Xj−1][Xj] + 1;

10 end

11 end
// Normalize matrix A and B, let sum of the elements in all the rows

= 1

12 Normalize(A);
13 Normalize(B);
14 return A,B
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Suppose the sequence of state is X = (x1, x2, . . . , xT ), we define the forwards probabili-

ties as

αt(j) := p(y1, y2 . . . yt;xt = j) (3.19)

So

α1(j) := πjbj(y1) (3.20)

Here we replace the notation bjy1 by bj(y1) just to make the equation clearer. Further,

we can compute αt from αt−1 using forward method:

αt(j) =
K∑
i=1

αt−1(i)aijbj(yt) (3.21)

Algorithm 4 shows the full process. With an HMM for each user, applying this algorithm

can find out the probabilities for each state (category) for every time slot specified by the

user.

Algorithm 4: Forward Algorithm

Input: (1) Transition matrix A, (2) Emissions matrix B, (3) Initial probabilities
Π, (4) Observations Y of length T , and (5) size of state space K

Output: Probability matrix forward
1 create a probability matrix forward[K,T ] of all 0;
2 for s← 0 to K − 1 do
3 forward[s, 0]← Π[s] ∗B[s][Y0];
4 end
5 for t← 1 to T − 1 do
6 for s← 0 to K − 1 do
7 for i← 0 to K − 1 do
8 p = forward[i, t− 1] ∗ A[i][s] ∗B[s][Yt];
9 forward[s, t]← forward[s, t] + p;

10 end

11 end

12 end
13 return forward
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3.4.2 Venue search

In this step, we compute the recommendation ratings of the venues for a user at a

specified time slot, by which a list of recommended locations can be generated. Assume at

time slot t, we have calculated the probabilities for different categories using HMM. The

probability for the user of visiting a venue v can be computed by

pp(v) = αt(v.c) (3.22)

where v.c means the category of the venue. We can easily figure out that the same type

of locations would share a same value. Therefore, more criteria are needed to better evaluate

a location’s recommendation level.

An intuitive approach is considering the user’s frequency of visiting to the venue. Be-

cause it’s easier for users to visit places they’ve been to. With the history check-in record of

the user, we can come out with a individual visiting probability which is calculated by

pi(v) =
|{u.vi = v}|
|{u.vi ∈ Rq}|

(3.23)

where {u.vi = v} means all the user’s check-ins to the location v, and {u.vi ∈ Rq}

means all the user’s check-ins in the bounding box of query range. The calculation above is

based on the analysis of user’s own check-in records. However, a user may not have enough

amount of check-in records in local, especially for the cold-start users. Furthermore, a user

not always visit familiar venues, and it is also important to refer to the public’s choices.

Reviewing Section 3.2, we have already get the user’s own local experts. We evaluate a

venue by the experts’ voting, i.e., a place gets one point while an expert has visited. The

equation is shown below, where We is the weight.

pe(v) =
|{uj ∈ E : ∃uj.vk = v}|

|E|
(3.24)
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With the individual weight w, the final predication would be calculated by

p(v) = pp(v) · (pi(v) · w + pe(v) · (1− w)) (3.25)

We don’t need to come out with the scores for every venue in the map. We just need to

retrieve venues in the bounding box determined by the user at time slot t, and the system will

return the top-N venues with the highest scores to the user as the location recommendations.

In the same way, we can make multiple venue recommendations according to each time slot

and range set by the user.

3.5 Experimental Evaluation

In this section, extensive experiments were conducted to evaluate the effectiveness and

efficiency of our proposed recommender system. We first describe the settings of experiments,

including the dataset, baseline approaches, and the method of evaluation. After that, we

report the results followed by some discussions.

3.5.1 Experiment Settings

Datasets. We study Tokyo, the largest city in Japan and New York City, the largest

city in the United States. The dataset of Tokyo includes 573703 check-in records collected

from Foursquare from April 12, 2012 to February 16, 2013[49]. The dataset of New York

City includes 227428 check-in records collected from Foursquare from April 12, 2012 to

February 16, 2013[49]. From the dataset, we collects the following information: 1) user profile

information, consisting of a user’s ID, name, and home city; 2) venue profile information,

including the venue’s ID, name, address, GPS coordinates, and its categories; and 3) user’s

check-in histories, containing the check-in timestamp and the location ID.

Approaches for comparison. We compare our proposed recommender algorithm (TLSR+)

with the following approaches.
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Table 3.2: First-Level Category Distribution in Our Dataset.

Category Frequency Ratio
College & University 5950 0.0262

Food 51933 0.2284
Residence 19817 0.0871

Travel & Transport 32634 0.1435
Outdoors & Recreation 30442 0.1339
Arts & Entertainment 10708 0.0471

Shop & Service 31080 0.1367
Nightlife Spot 16851 0.0741

Professional & Other Places 28012 0.1232

(1) Most-Popular-Venues-based (MPV). This approach employ document frequency for

venue recommendation. In this system, each venue keeps and updates a “popularity degree”,

which is the number of users who have visited the venue. Given a user-specified geospatial

range, the approach chooses the top-N popular venues as the output. As a baseline, the

approach neither considers users’ personal preference, nor utilizes time factor.

(2) Location-based and Preference-aware Recommendation (LPR). This approach is

proposed by Bao et al. [6]. It not only consider user personal preferences, but also take

account of social opinion. The author models each individual’s personal preferences with a

weighted category hierarchy, and selects candidate local experts that match the user’s pref-

erences. The candidate venues will also be picked and rate by the selected local experts. At

last, the top-k ranked locations will be chose for recommendation. This approach originally

focuses on time irrelevant recommendation, therefore a little modification was made to suit

our situation.

(3) Time-aware Location Sequence Recommendation (TLSR). This approach comes

from our past work [42]. It first finds out semantic similar users by comparing users’ hierar-

chical semantic trees. Then selects geospatial similar users using GMM. During online part,

the records from both groups of users are combined with the query user’s check-in records,

and HMM will be applied to search the final recommended locations.

Table 3.4 shows the applied factors of the approaches.
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Table 3.3: Second-Level Category Distribution in Our Dataset.

Category Frequency Ratio
Home (private) 15334 0.0674

Bar 13236 0.0582
Office 12554 0.0552

Athletics & Sports 9874 0.0434
Metro Station 9348 0.0411
Coffee Shop 7510 0.0330

Train Station 6408 0.0282
Food & Drink Shop 6197 0.0272

States & Municipalities 5436 0.0239
Asian Restaurant 5136 0.0226

Park 4689 0.0206
Bus Station 4474 0.0197

Deli / Bodega 4214 0.0185
Residential Building 4185 0.0184
American Restaurant 3701 0.0163

Building 3474 0.0153
Medical Center 3331 0.0146

Road 3207 0.0141
Others 105119 0.4622

Method
User

Preference
Social Opinion
from Experts

Geospatial
Factor

Time-aware
Sequence Pattern

MPV X
LPR X X

TLSR X X X
TLSR+ X X X X

Table 3.4: Comparison Between Other Methods and Ours

Evaluation methods. To evaluate our recommender system, we need to test its ef-

fectiveness and efficiency. However, there are no other work focusing on time-aware location

sequence recommendation in the literature, it is difficult to devise a way to carry out such

experiment. To make the effectiveness evaluation, we divide a user’s check-in history into two

parts. 50% as a training set training set and 50% as a testing set. A check-in sequence can be

generated for each day in the testing set, which we regard as the ground truth. We extract

the check-in times of the sequence as the input of our recommender system. A bounding

box containing the check-in location with size L will be generated for every check-in time.
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Our approach will return a list of locations with size N as the result for each point-in-time

in the range of bounding box. We call the recommendation for a time slot as one prediction.

When the true venue is included in the list, this is a successful recommendation.

We use two criteria to evaluate the result: 1) hit rate and 2) mean reciprocal rank

(MRR). The hit rate used in our experiments is defined as Formula 3.26 .

hit rate =
the number of venues matched

the total number of time slots
(3.26)

One thing to note, this evaluation measurement is extremely strict. This is more like

an evaluation of prediction algorithms other than recommendation algorithms – we should

know that a user may like a location but won’t go right away. Or, some correct prediction

may be ignored – a user could has visited a location but forget to check in on app. In other

words, our approach is actually more effective than our experiment result shows. However,

the tests are still meaningful because it reveal the advantage of our approach beyond the

comparison algorithms.

The hit rate are majorly affected by the following two factors: 1) the number of re-

quested recommendations N , and 2) the size of the bounding box L, and 3) the length of

the recommendation sequence T . Therefore, in the experiment section, we will test the ef-

fectiveness over these three factors using the data of Tokyo and New York City as illustrated

above.

The mean reciprocal rank (MRR) is a statistic measure for evaluating any process

that produces a list of possible responses to a sample of queries, ordered by probability

of correctness. Because our recommendation is focus on sequence, we employ a measure

similar to MRR. The reciprocal rank of a sequential response is the multiplicative inverse of

the position of the sequence for success predictions: 1 for first slot, 1⁄2 for second slot, 1⁄3

for third slot and so on. We normalize the result, and the equation is shown below:
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MRR =

∑|H|
i=1

1
positioni∑L
i=1

1
i

(3.27)

where H is the set of successful hit points, and positioni is the position of the i-th query

point of the sequence.

The efficiency of the online recommendation also depends on these two aspects: rec-

ommendations numbers N and range size L miles. Therefore, we test the efficiency for our

algorithm over these two factors. The will show the benefit of our method for real time

application.

3.5.2 Recommendation Effectiveness

We test the users in the data bases with randomly selected dates and cases. 2293 users

are tested in Tokyo dataset with total 22194 cases, and 1083 users are tested in New York

City with total 9292 cases.

Figures 3.9 and 3.10 show the average hit rates and the MMRs of different methods

varying in the number of recommendation locations (N) in Tokyo data set and New York

City data set. Obviously, our algorithm (TLSR+) is superior to the other three approaches.

As a relatively simple algorithm, MPV drops behind other methods. The result is as expected

because MPV neither consider the user’s own preference, nor utilize extra information from

the input. LPR fully considers the social opinion and the category trees, so it outperforms

MPV. The lack of adequate utilization of the user’s local data makes it unsuitable for our

reference scenario, therefore it keeps at a relatively low hit rate. TLSR exceeds MPV and

LPR due to the advantages of spatial clustering and pattern learning. Finally, TLSR+

performs amazingly. Born out of our old approach TLSR, the new approach makes good

use of the time factor, and deeply mines the social knowledge. The accuracy of our results

proves the practical application value of our algorithm.
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Figure 3.9: Impact on Recommendation Numbers of Hit Rate (L=10, T=5)

As shown in Figure 3.9 and 3.10, the hit rate of our method increases as the num-

ber of recommendation increases. It can be seen that continuing increasing the number of

recommendations does not yield high returns, because the trend of increase is slowing down.

Figures 3.11 and 3.12 present the hit rates and MMRs of different methods changing

over the range of the bounding box. As a result, the larger the search range is, the lower

precision for our predictions. We can see the recommendation range (L) is largely affect the

hit rate. However, Our algorithm remains highly efficient even L increase to 20 miles.

Figures 3.13 and 3.14 presents the hit rates and MRRs of different methods varying

the length of recommendation sequence. There is some decline of our method’s while the

sequence length grows. This is very normal because the longer it is from now, the harder for

us to predict a user. MPV and LPR has nothing to do with the order of users’ visiting, so

their hit rate stay the same.
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Figure 3.10: Impact on Recommendation Numbers of MRR (L=10, T=5)

Except our method, the accuracy of other approach is heavily influenced by the city.

That is because the venue density and the user’s range of activity are different. Consideration

of multiple factors allows our algorithm to avoid these effects.

3.5.3 Recommendation Efficiency

In the efficiency study, the experiments were evaluated on a computer running Win-

dows10 with an I7-7500U CPU 2.90GHz processor and 16 GB RAM.

Figure 3.15 shows the average online efficiency of the 4 methods varying in the number

of recommendations, while the recommendation range L is 10 miles. As it turns out, MPV

is the fastest method, because it only does an online selection. And it is not surprised that

our method is slower than MPV. The HMM calculation and the venue search process are the

parts that take time. However, we are excited to see that our algorithm is still significantly
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Figure 3.11: Impact on Spatial Ranges of Hit Rate (N=10, T=5)

faster than TLSR and LPR. As presented by the figure, the cost time of TLSR grows slowly

as the number of recommendations increases, while the other methods performs the same.

Figure 3.16 shows the average online efficiency of different methods varying in the range

of recommendations. A larger range will incorporate more venues and user candidates,

leading to a heavier computational load. MPV is the most affected algorithm. Conversely,

the range of bounding box have limited impact on our algorithm, which is the advantage of

our approach.
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Figure 3.12: Impact on Spatial Ranges of MRR (N=10, T=5)
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Figure 3.13: Impact on Sequence Length on Hit Rate (N=10, L=10 miles)
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Figure 3.14: Impact on Sequence Length on MRR (N=10, L=10 miles)
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Chapter 4

A VLOS Compliance Solution to Ground/Aerial Parcel Delivery Problem

4.1 Overview

4.1.1 Problem Definition

Given a road network G =(V , E), where V denotes a set of vertices and E is a set of

edges, a spatial object is defined by a tuple <x1, x2>in a Euclidean space R. Every vertex

v=<x1, x2>is also in R. DR(., .) and DG(., .) represent the distance between two spatial

objects in the Euclidean space R and on the road network G, respectively.

Definition Given a set of destinations D = {d1, ..., dn}, there are a truck t and a UAV u

used for parcel delivery. Every destination is served exactly once either by the truck or the

UAV. The Ground/Aerial Parcel Delivery Problem (GAPDP) targets at finding an optimal

route that minimizes the delivery time of serving all destinations once and returning to the

distribution center. The delivery time can be calculated by

A = Ah,d1 + Ad1,d2 + ...+ Adi,di+1
+ ...+ Adn−1,dn + Adn,h (4.1)

where Adi,di+1
represents the time between the completion of delivery to di and to di+1,

and Ah,d1 and Adn,h are the delivery time of d1 from the distribution center, and the time

returning to the distribution center from dn.

To make the proposed problem more realistic, there are assumptions in the problem as

follows.

• The truck travels on road network at a fixed speed tv and the UAV moves in Euclidean

space at a fixed speed uv. The truck can stop at any locations on the road for delivery.
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Table 4.1: Symbolic notations.

Symbol Meaning

D A destination set
R, G A Euclidean space and road network
V , E A set of vertices and edges

DR, DG The distance in R and G
tv, uv The speed of trucks and UAVs

di.V , di.E The set of vertices and edges in the VLOS area of di
V × E The Cartesian product of two sets V and E

• The driver is allowed to operate both truck and UAV for delivery. However, the truck

and UAV cannot move simultaneously.

• UAV carries one package at a time. UAV returns to the truck immediately upon the

completion of delivery.

• There is only one package for a destination. If there are two or more packages to

a destination, it is conceptually equivalent to setting up a destination at the same

location for each package.

• The delivery method can be explicitly selected by customers (because they may prefer

using the truck for delivery, the package may exceed the payload capacity of the UAV,

or a signature may be required), which indicates that a package could be delivered

only by the truck or the UAV. If the delivery method is not explicitly selected, both

the truck and the UAV can be used by default.

• The power of the UAV is sufficient for a round trip of delivery (a round trip from the

truck to a destination); the time of battery replacement is negligible in this research.

• Due to the requirements of the FAA, the distance between the UAV and the driver/operator

cannot be greater than a threshold, which is called “Visual-Line-Of-Sight” (VLOS) dis-

tance.

• All destinations can be at any locations on the road network.

45



4.1.2 preliminary

To achieve an exact solution to the travelling salesman problem, all permutations of

destinations have to be visited, and the route that provides the shortest travelling time is the

optimal route as an exact solution. The computational complexity of this intuitive method

is O(n · n!), where n indicates the number of destinations. An improvement by utilizing

dynamic programming techniques had been proposed, which could reduce the computational

cost to O(n2 · 2n) [25]. Both approaches assume that the shortest distance between any two

destinations can be calculated in constant time (O(1)). However, this assumption is not

applicable to our proposed GAPDP problem because the location where the truck stops for

delivery may greatly vary by the delivery order of destinations, speeds of the truck and the

UAV, the VLOS distance, and more. Additionally, the optimal delivery route may consist of

the fastest paths that connect destinations in Euclidean spaces and on road networks, which

makes the GAPDP problem more challenging than the TSP problem.

Therefore, we propose an exact solution to address the GAPDP problem. Because

GAPDP is NP-hard, shown in Theorem 4.1, our solution follows a fundamental idea that

finds an optimal delivery route by checking all permutations of destinations. The details are

described in Alg. 1, which receives a set of destinations D and a starting distribution center

h, and returns the fastest delivery time for D. For a specific permutation of D in the FOR

loop at lines 2 to 4, the function ShortestTime(D′, h) calculates the shortest delivery time

of destinations D′ in a specific order. The variable shortestDeliveryT ime always maintains

the shortest time of the delivery. To find the fastest route of destinations in a given order, we

propose an index-based approach, which pre-computes the fastest delivery route in VLOS

areas of destinations. Consequently, we could “jump” from an entrance of the VLOS area

of a destination to its exit without route searching at run-time.

Theorem 4.1. GAPDP is NP-hard.
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Algorithm 1 GAPDP(D, h)

1. shortestDeliveryTime = ∞
2. for D′ ∈ {all permutation of D} do
3. shortestDeliveryTime = min(shortestDeliveryTime, ShortestTime(D′, h));
4. end for
5. return shortestDeliveryTime;

Proof. GAPDP is NP-hard, since the Travelling Salesman Problem (TSP) is NP-hard [38],

and TSP is a special case of the GAPDP problem when all packages are restricted to be

delivered by the truck.

4.2 Exact Solution

A major challenging problem in GAPDP is that the fastest delivery route of destinations

in a given order may greatly vary under different settings of speeds of the truck and the UAV,

delivery methods of destinations, and the VLOS distance. In this subsection, we illustrate an

approach that finds the fastest delivery route for destinations in a given order. The fastest

route is represented by a sequence of stop locations, where the truck is stopped and UAV is

launched for delivery.

Before the illustration of the proposed method, we provide a formal definition of the

sub-problem as follows.

Definition Given an ordered set of destinationsD={d1...dn}, these destinations are required

to be served exactly once in the order as they are in the set. Every destination is assigned

with an applicable delivery method (by truck only, by UAV only, or by either of the two). A

truck and a UAV are used to deliver n packages to these n destinations. This sub-problem

is to find the fastest delivery route and time for the truck and the UAV, which initially

start from a distribution center h, and finally return to the center. All assumptions in

Definition 4.1.1 are also applied to this sub-problem.

Since the operating range of UAVs is restricted by the Visual-Line-Of-Sight (VLOS)

distance from operators [1], the truck must stop and the UAV must be launched at a location
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in the VLOS area of a destination for delivery. Thus, an intuitive algorithm visits all roads in

the VLOS areas of destinations, and finds a sub-optimal stop location on each road. Then,

the best route for serving destinations can be easily derived from the best sub-optimal stop

locations. It is worth noting that there is a special case, in which the delivery time of a

destination by truck is equal to the delivery time of stopping at the destination and using

UAV for delivery because the delivery distance for UAV is 0. With this observation, our

algorithm assumes that the UAV is used for all delivery for simplifying the problem. If the

delivery by truck is the optimal method or the truck is a preferred method for a destination,

our algorithm returns an equivalent case of using the UAV (the delivery distance of the UAV

is 0), and the fastest delivery route and the shortest delivery time are the same with the

methods considering delivery by truck.

h

di-1
v1 v2

v3 v4

v5 v6

v7

v8

v9

v10

div3

v4

v2
v1

Figure 4.1: An example of selecting the fastest delivery route for two consecutive destinations.

Figure 4.1 displays an example of serving two consecutive destinations di−1 and di. We

only display one route {h, di−1.v4, di.v3, h} for better illustration. Initially, the truck starts

from h, and we calculate the travelling time from h to all vertices in the VLOS area of di−1,

where di−1.V = {di−1.v1, ..., di−1.v10}. Then, we set those vertices as starting points, and

calculate the delivery route for di. Each of these routes ends at a vertex in the VLOS area of

di. So, the fastest delivery route to a vertex of di can be found by examining all combinations
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of vertex of di−1 and di. Then, in the next iteration, the vertex of di will be a starting point

used for calculating the delivery time of the next destination.

In addition to checking all permutations of destinations, the intuitive approach also

needs to search the network space for calculating the shortest network distance between

two locations, and iterate all roads to find an optimal stop location in VLOS areas, the

computational cost of which would be considerably high due to large number of possible

stop locations and complex road networks. To avoid the computation at run-time, we turn

to an alternative that pre-computes optimal delivery routes in the VLOS areas. We observe

that the truck has to enter a VLOS area before delivery, and leave the area for the next if

the VLOS areas of two destinations do not overlap with each other. If this is the case, the

optimal delivery routes can be calculated at a pre-processing stage, and we can “jump” over

the VLOS areas by retrieving the optimal routes from index.

Therefore, we develop an index-based approach, in which routes from entrances of des-

tinations to their exits are pre-built. We denote di.Exit to be the set of intersections of the

road network and the VLOS circle of destination di. Here di.Exit is also called the entrances

or exits of di in this paper.

The details of the index-base approach are described in Alg. 2. We iterate all destinations

in the given order in the FOR loop from lines 1 to 13. Then, given a specific destination di,

if di is the first destination d1, we calculate the shortest travelling time from the distribution

center h to every exit of d1.e at lines 4 to 6. DR(h, e′)/tv indicates the travelling time from h

to an exit d1.e
′, and d1.map[e

′][e] is the shortest delivery time from the entrance d1.e
′ to the

exit di.e after serving d1. So, the shortest time of serving d1 and stopping at d1.e is kept in

d1.time[e]. Then, we calculate the shortest delivery time of an intermediate destination di

in the FOR loop at lines 7 to 12. For a specific exit di.e, the shortest delivery time after di is

served and the truck stops at di.e is calculated in line 10, where di.map[e
′][e] represents the

shortest delivery time of the route from the entrance di.e
′ to di.e. Here di−1.time[e

′′] denotes

the shortest time when the truck stops at an exit of the last destination di−1, andDR(e′, e′′)/tv
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Algorithm 2 ShortestTime(D, h)

1. for di ∈ D = {d1, ..., dn} do
2. Let di.map be the mapping from entrances to exits;
3. if di = d1 then
4. for e ∈ d1.Exit do
5. d1.time[e] = min(DR(h, e′)/tv + d1.map[e

′][e] — e′ ∈ d1.Exit);
6. end for
7. else
8. Let di−1 be the last visited destination;
9. for e ∈ di.Exit do

10. di.time[e] = min(di.map[e
′][e] + DR(e′, e′′)/tv + di−1.time[e

′′] — e′ ∈ di.Exit, e′′
∈ di−1.Exit);

11. end for
12. end if
13. end for
14. Let dn be the last destination in D;
15. for e ∈ dn.Exit do
16. dn.time[e] += DR(e, h)/tv;
17. end for
18. return min(dn.time[e]);

is the travelling time from an exit di−1.e
′ to an entrance di.e

′′. Finally, the travelling time from

exits of the last destination to the distribution center is added to dn.time[e], and the shortest

delivery time of dn.time[e] is the solution. It is easy to see that we have to check all exits of

every destination. The computational complexity of Algorithm 2 is O(n · |di.Exit|2), where

|di.Exit| denotes the number of exits of a destination di and n is the number of destinations.

The computational complexity of our VLOS-index-based solution is O(n2 · 2n · |di.Exit|2).

Moreover, there is a special case that the Euclidean distance between two continuous

destinations is shorter than the VLOS distance. In this case, the two VLOS areas overlap;

the exit(s) of the VLOS area of a destination may be in the VLOS area of the second

destination. This indicates that the parcel truck may already be in the VLOS area of the

second destination after exiting the VLOS area of the first destination. The VLOS-based

index over single VLOS area cannot be used for route searching in this case. This problem

can be solved by merging the VLOS areas of two or more destinations if they overlap. For

example, given two destinations di−1 and di, a VLOS-based index can be constructed to
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Figure 4.2: An example of selecting delivery routes in Alg.2.

contain all optimal routes from entrances to exits of the union of VLOS areas of di−1 and di.

All these routes start from an entrance of di−1 and stop at an exit of di.

An example of our second approach is displayed in Figure 4.2. The road networks in the

VLOS areas of destinations are not accessed in our approach. Instead, the fastest delivery

route and time have been calculated and are available in VLOS-based index. Accordingly,

take the delivery route in Figure 4.2 for example, we enter the VLOS area of di−1 from

entrance di−1.v6, and jump to the exit di−1.v7 to leave the VLOS area. Similarly, we jump

over from the entrance di.v1 to the exit di.v4 in the VLOS area of di.

Next, we will present our method of finding the optimal route for one destination. This

sub-problem can be formally defined as follows.

Definition Given two destinations di−1 and di, di−1 has been served, and di is the next

destination for delivery. Let di.V be the set of vertices in the VLOS area of di, then this

problem finds an optimal delivery route for di, which could start from any vertex in di−1.V

and end at any vertex in di.V. Here di must be served by the truck or the UAV exactly once

on every route. All assumptions in Definition 4.1.1 are also applied to this sub-problem.

The fundamental idea of our method is to check every road in the VLOS area of di,

and find an optimal stopping location on a road as a sub-optimum. The global optimum to

serve di is the best of these sub-optima. Given a starting location v and a road r where the
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truck stops, there are four possible delivery routes starting from v and ending at either of

the two end points of road r. As listed below, o denotes the optimal stop location on road

r for delivery, and l1 and l2 represent the two end points of road r.

• Route 1: the truck first arrives at o through l1, and then goes back to l1 after delivery.

• Route 2: the truck first arrives at o through l1, and then moves to l2 for the next

delivery.

• Route 3: the truck first arrives at o through l2, and then moves to l1 for the next

delivery.

• Route 4: the truck first arrives at o through l2, and then goes back to l2 after delivery.

The total delivery time of these four candidate routes are



DR(v,l1)+2·DR(l1,o)
tv

+ 2·DG(o,di)
uv

Route1

DR(v,l1)+DR(l1,l2)
tv

+ 2·DG(o,di)
uv

Route2

DR(v,l2)+DR(l1,l2)
tv

+ 2·DG(o,di)
uv

Route3

DR(v,l2)+2·DR(l2,o)
tv

+ 2·DG(o,di)
uv

Route4

(4.2)

where
D
G
(o, di) =

√
DG(l1, di)2 +DR(l1, o)2 − 2 ·DG(l1, di) ·DR(l1, o) · cosα

0 ≤ D(l1, o), D(l2, o) ≤ D(l1, l2)

(4.3)

It is easy to observe from Equ. 4.2 that the delivery times of Routes 2 and 3 only

depend on DG(o, di), which is the distance between o and di in Euclidean space. DR(v, l1),

DR(v, l2) and DR(l1, l2) are the network distance among s, l1, and l2, which are constants

in the equation. Therefore, for the shortest delivery times of Routes 2 and 3, o should be

selected at a location closest to di on the road r. If di is on r, then o should be at the location

of di. If di is not on the road r and the projection of r from di is on r, then the projection

is the optimal stop location for the delivery. If the projection is out of r, the end point of r

closer to the projection is the optimal stop location.
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Figure 4.3: An example of calculating the fastest delivery from from s to di.

For Routes 1 and 4, let x = DR(l1, o), then the delivery times of the two routes can be

represented by 

DR(v, l1)+2·x
tv

+
2·

√
DG(l1,di)

2+x2−2·cosα·x·DG(l1,di)

uv

Route 1

DR(v, l2)+2·(DR(l1, l2)−x)
tv

+
2·

√
DG(l1,di)

2+x2−2·cosα·x·DG(l1,di)

uv

Route 4

(4.4)

where α is the angle of the road r and the line segment from l1 to di, and 0 ≤ x ≤ D(l1, l2).

DR(v, l1), D
G(l1, di), D

R(l1, l2), t
v, and uv are constants. Due to the space limit, the

optimal locations for the two routes can be found at [43].

It is worth noting that if there exist two or more optimal stopping locations on one road,

the total delivery time in Equ. 4.2 includes the time of moving to an end of the road twice.

Theoretically, in this case, we have to partition the road into two or more road segments in

such a manner that there is at most one stopping location on one road segment.

Fig. 4.3 displays an example of six road segments {r1, r2, r3, r4, r5, r6} in the VLOS

area of a destination di and v is a vertex in the VLOS area of di−1. Fig. 4.4 displays the

method of calculating the optimal stop location o on r6. We set x to be the distance between

r6.l1 and o, and other variables are constants in Equ. 4.4.
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Figure 4.4: An example of finding the optimal stop location on a road segment.

The computational complexity of our solution is O(n2 · 2n · |V |2), where |V | denotes

the average number of vertices in the VLOS areas of destinations. If all destinations are

restricted to truck-delivery only, then |V | becomes 1, and the proposed GAPDP becomes

the travelling salesman problem, the computational complexity of which is O(n2 · 2n).

4.3 A Heuristic for GAPDP

From our experimental results (see Section 4.4), the proposed exact solutions require

hundreds of seconds to determine an optimal delivery route of 15 destinations. The execution

time grows exponentially due to the nature of NP-hard problems. In this section, we propose

a heuristic approach for solving the GAPDP problem of practical size.

In general, our approach is derived from heuristic approaches for the travelling salesman

problem (TSP). If all destinations are restricted to truck delivery, a heuristic TSP approach

can be used to address the GAPDP problem. While, if UAV delivery is allowed at one or

more destinations, our heuristic method prefers 1) serving all these destinations by UAV and

2) stopping at a location to serve as many destinations as possible.
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Specifically, our method first generates destination groups, each of which contains desti-

nations that can be served by UAV from one location. The VLOS areas of the destinations in

a destination group must overlap on road networks, so that the truck can stop at a location

in the overlapping area, and each destination can be served by UAV in a round trip between

the stopping location and the destination. If a destination is served by truck only or its

VLOS area does not overlap with the ones of others, the destination forms a destination

group of itself. The details of the first step are described in Alg. 3. DS denotes the set

of delivery group. In the while loop (lines 3-15), delivery groups are produced in iterations

until D is an empty set.

Algorithm 3 GAPDP(D, h)

1. DS = ∅;
2. RoD∗ = ∅;
3. while D 6= ∅ do
4. Let di be an element of D;
5. if di is served by truck only then
6. DS = DS ∪ {{di}}; D = D\{di};
7. else
8. if ∃ dj ∈ D, i 6= j, VLOS(di)∩ VLOS(dj) 6= ∅ then
9. Let G = {dk ∈ D|V LOS(di) ∩ V LOS(dk) 6= ∅};

10. DS=DS ∪ {G}; D = D \G;
11. else
12. DS = DS ∪ {{di}}; D = D\{di};
13. end if
14. end if
15. end while
16. RoDS∗ = TSP(DS, h);
17. for ds ∈ RoDS∗ do
18. if |ds| = 1 then
19. RoD∗ = RoD∗ ∪ ds;
20. else
21. RoD∗ = RoD∗ ∪ DeliveryRouteInGroup(ds);
22. end if
23. end for
24. return RoD∗;

A heuristic TSP approach is applied to search an optimal visiting order for the delivery

groups. If a delivery group has two or more destinations, we use the central location of
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the destinations as the delivery location of the delivery group. At line 16 of Alg 3, RoDS∗

represents the visiting order of delivery groups generated by a heuristic TSP solution. Then,

we iterate every delivery group in RoDS∗ in order, and compute the delivery order of desti-

nations in a specific group by using Alg. 4. Finally, the delivery order of destinations RoD∗

is returned as the result, and the delivery route and cost can be computed by using Alg. 2.

Fig. 4.5 displays an example, in which the VLOS areas of d1 and d2 overlap. The delivery

group of d1 and d2 and its central location d′ is found and used as the delivery location of

the group in Alg. 3. Then, a heuristic TSP approach is applied to a delivery problem of {h,

d′, d3, d4, d5}, and Alg. 4 is used to compute the delivery order of {d1, d2} in the group.

Alg. 4 computes a delivery order in a delivery group. In each iteration, D denotes a

set of destinations, each of which overlap with all others. So, D is equal to or is contained

in ds. The optimal stopping location for serving all destinations in D by UAV can be

computed in O(|D| × |R|), where |R| indicates the number of roads in the overlapping

area ({
⋂

V LOS(di)
|di ∈ D}). At line 4, we iterate all roads in the overlapping area, and

find the best location among sub-optimal stopping location on each road for delivery. The

sub-optimal location on each road can be determined in O(|D|). Take Fig. 4.6 for example,

assume that the truck stops at v = {xv, 0} on road l1l2 for serving {d1, d2, d3, d4}. The

delivery cost is
∑4

i=1

√
(di.x− xv)2 + di.y2 (l1 ≤ x ≤ l2), the minimum value of which can

be easily obtained by using the derivative of the function.

Algorithm 4 DeliveryRouteInGroup(ds)

1. RoD∗ = ∅;
2. while ds 6= ∅ do
3. D = {di ∈ ds |

⋂
V LOS(di)

6= ∅ }
4. Iterate all roads in

⋂
V LOS(di)

, and find an optimal stopping location for delivery to D;

5. RoD∗ = RoD∗ ∪ D; ds = ds\{D};
6. end while
7. return RoD∗;
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4.4 Experimental Validation

In this section, we evaluated the performance of our proposed solutions to the novel

GAPDP problem over the road network of Oldenburg, Germany (containing 7K roads and

6K nodes [8]). The road network was normalized to the space of [0, 104]2. The destinations

were randomly selected on the road network. Our proposed algorithms were implemented

in the C programming language. In our experimental results, “Exact Solution” refers to our

exact algorithm that maintains the fastest route in a VLOS-based index. We also developed

our heuristic method that applies the nearest neighbor travelling salesman solution. All data

were loaded into the main memory during the execution of simulations.

The VLOS-based index was pre-built and the road distance between every pair of nodes

was pre-computed in a pre-processing stage. This computation time is not included in the

response time reported in our experimental results.

All the experiments were conducted on a Ubuntu Linux server equipped with two Intel

Xeon E5-2670 v3 2.30 GHz processors and 256 GB of memory.

4.4.1 Effect of Number of Destinations

We varied the number of destinations from 3 to 15 in the first group of experiments.

We fixed the normalized VLOS distance to 10 and 50 units. All destinations can be served

by either the truck or the UAV. The normalized speeds of the truck and the UAV were fixed

at 40 units per second. The experimental results are displayed in Fig. 4.7 and Table I.

The cost of delivery produced by the heuristic method grows faster than our exact

solution, but the key point is that the heuristic method can complete the computation in

milliseconds in all cases of this group of experiments while the exact solution needs at least

60 seconds or 400 seconds in cases of 15 destinations. This verifies that GAPDP is NP-hard;

the response time of the exact solution increases exponentially.

Moreover, the exact method took longer against queries with larger VLOS areas. For

example, it required 54.7 seconds when the VLOS distance was equal to 10 units; while the
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response time increased to 423 seconds if the VLOS distance was set to 50 units. This is

because the VLOS-based index method needed to visit more entrance-exit pairs of VLOS

areas. In this group of experiments, the VLOS-index can be built, on average, in 9.7 seconds.

Table 4.2 Response Time of our Heuristic Method.

VLOS=10
Number of Destinations 20 50 100

Response Time (s) 0.003 0.007 0.019

VLOS=50
Number of Destinations 20 50 100

Response Time (s) 0.019 0.040 0.099

Table 4.2 displays the response time of our heuristic method in cases of up to 100

destinations (A FedEx driver typically has 75-80 stops per day [30]). The results show that

our heuristic method helps us solve the real delivery problems in 0.1 second, which cannot

be achieved by our exact solutions.
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Figure 4.6: An example of computing the optimal stopping location
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Figure 4.7: Vary the number of destinations.
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Chapter 5

Conclusion

In previous Chapters, we propose a novel approach for the time-aware location sequence

recommendation for cold-start mobile users, and provide either exact solution or heuristic

method for the GAPDP problem. In this chapter, we will summarize our contribution and

demonstrate our future work.

5.1 Main Contributions

we propose a new framework, TLSR+, which enables time-sensitive location sequence

recommendation in support of sparse user-location matrix. TLSR+ makes recommendation

by considering individual preference, social opinions, geospatial factors, and users’ temporal

behavior patterns. In the semantic similarity modeling, TLSR+ identifies the most seman-

tically similar local experts (i.e.,users with rich local knowledge) by constructing a venue

categorical semantic tree while in the spatial similarity modeling, TSLR+ retrieves the most

spatially similar local experts by employing Gaussian Mixture Model (GMM) to capture

users’ geographical movement pattern. A Hidden Markov Model (HMM) is trained to pre-

dict the likelihood for each user to visit each location category by using the check-ins from

both her semantically and spatially similar local experts. Extensive experiments on four real

datasets demonstrate that TLSR+ significantly outperforms the baseline methods in terms

of all effectiveness metrics.

In the GAPDP research, we formulated a novel problem that utilizes both a truck

and a UAV for parcel delivery. We also considered the VLOS regulation that restricts

the UAV operating range. Then, we proposed two exact solutions for the problem. One

approach searches optimal stop locations for delivery by visiting all roads in the VLOS
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areas of destinations. The other approach pre-computes the fastest delivery routes in the

VLOS areas, and maintains them in an index. Due to the high computational cost of exact

solutions, we also develop a heuristic solution for the proposed problem in practical size. We

demonstrated the performance of the proposed solutions through extensive simulations.

5.2 Future Work

Considering deep learning We employ Hidden Markov Model (HMM) to model the

users behavior pattern. Since neural networks are very powerful and they can be used for

almost any statistical learning problem with great results, we may try to replace the existing

model with it.

More efficient heuristic solution for GAPDP Due to the high computational

cost of exact solutions, we develop a heuristic algorithm which can reduce the amount of

calculation. However, it’s still too time consuming for mobile platforms. Our future goal is

to propose a algorithm friendly to mobile phones.

More practical restrictions/assumptions for delivery problem For the future

work, we will apply more practical restrictions/assumptions, such as UAV regulations, in

problems in order to make it closer to real applications.
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