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Abstract

This thesis proposes the coupling of a Global Positioning System (GPS) L1 C/A vec-

tor tracking software-defined receiver with controlled reception pattern array array (CRPA)

satellite constrained beamsteering, i.e. a multi-antenna vector tracking beamsteering re-

ceiver. As technology advances, the number of systems relying on the Global Navigation

Satellite System (GNSS) and precise positioning and timing is increasing. Improvements

in robustness and overall design are necessary for receivers to estimate position, velocity,

and time accurately in all environments. This work is inspired by previous receiver de-

signs by NAVSYS [1] and the German Aerospace Center (DLR) [2]. The proposed receiver

conducts pre-correlator beamsteering. Pre-correlator beamsteering is lower SWaP-C as it

reduces the number of receiver correlator channels compared to DLR’s post-correlator im-

plementation. The vector tracking receiver feeds back attitude corrected satellite geometry

to a beamsteering module that updates the beam constraints as the extended Kalman filter

(EKF) in vector tracking applies corrections. The proposed receiver is compared to a multi-

antenna scalar tracking receiver in all testing scenarios. Comparisons are also made with

a single-antenna vector tracking receiver, a single-antenna scalar tracking receiver, and a

commercial-off-the-shelf (COTS) receiver. In simulation, receiver performance using a range

from one to eight element CRPAs is compared to understand the benefits different arrays

offer to receiver design. The simulations show there is a diminishing return in signal quality

improvements as the number of elements increase. The simulations also show that a seven

and eight element implemented vector tracking receiver can track signals at carrier-to-noise

ratios (C/N0s) as low as 12 dB-Hz, which is much lower than previously documented tracking

thresholds [3]. The proposed receiver outperforms the other receivers when the simulation

scenarios are noisy, improving PVT estimates considerably. Four element configurations of
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the receivers are tested with dynamic live sky collected data. The multi-antenna vector

tracking beamsteering receiver outperforms the other receiver designs, aligning closely with

the COTS receiver. The performance of the multi-antenna vector tracking beamsteering

receiver is followed by that of the single-antenna vector tracking receiver, the multi-antenna

scalar tracking receiver, and the single-antenna scalar tracking receiver, respectively. The

receivers are also tested in a jamming environment. The proposed receiver offers a four dB

improvement in jamming resilience compared to the single-antenna vector tracking receiver.
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Chapter 1

Introduction

1.1 Background and Motivation

When the Global Positioning System (GPS) was declared operational in the late 1990s,

no one expected the system to be as successful and widely used as it is now. GPS and other

Global Navigation Satellite Systems (GNSS) have become integral in everyday civilian life,

and the systems have become necessary for military operations. When GPS was declared

a U.S. critical infrastructure in late 2004, GPS was granted more funding ensuring the

systems would last [4]. Applications such as autonomous vehicles, navigation, banking,

the stock market, aviation, farming, and more all rely on GPS or GNSS. Any system that

requires precise position, velocity, or time (PVT) can use GPS and/or other constellations in

GNSS. With level 3 autonomous vehicles being vigorously researched and readied for mass

production [5], GPS usage is going to continue to rise.

The GPS system works well currently, but it does have weaknesses. The satellite signals

that are received have to pass through the atmosphere of the earth making the signals very

weak when they reach the surface. These signals are susceptible to natural interference

(multipath and atmosphere) and man-made interference (jamming and spoofing). Urban

environments typically have multipath when signals bounce and bend around buildings before

reaching the receiver. Rural environments are more affected by foliage, degrading the signal

quality. Atmospheric affects on the signals may also vary from time to time depending on

atmospheric weather, but multipath normally is of greater concern. Jamming and spoofing

have caused problems in more recent years. As technology advances, jammers and spoofers

are becoming more advanced, and the costs of creating jammers and spoofers are decreasing

[6], [7]. With many vulnerabilities, poor signal quality directly affects the performance of
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GPS receivers. One solution to help receivers adapt to poor signal quality environments is

beamforming.

The motivation of this thesis is to leverage beamforming and receiver design to improve

a GPS receiver PNT solution, especially in challenging environments. Improvements in

navigation robustness help GPS receivers withstand degradation making them more useful

in more applications.

1.2 Prior Art

In the early years of GPS, receivers were mostly implemented in hardware. Most early

hardware receivers implemented scalar tracking algorithms, and the implementations on the

hardware were not very flexible. Now that technology has advanced and faster processing

speeds are attainable, some receivers are programmed in software and uploaded to pro-

grammable hardware, typically field programmable gate arrays (FPGA). Receivers uploaded

to FPGAs are known as software defined receivers (SDR) [8]. Developing software and up-

loading it to hardware makes receiver design adaptable, encouraging developers to test and

optimize different receiver algorithms. SDR performance can be improved by leveraging

signal phase in a process called beamforming.

Beamforming is not a new topic of research, and it has been around for over a century.

The first implementation came in 1909 when Karl Ferdinand Braun and Guglielmo Marconi

used 3 element beamforming to improve the transmit power for a wireless telegraph [9];

they were granted a Nobel Prize in Physics for their contributions. Now, beamforming

algorithms are more advanced with applications in cellular systems, radar, GNSS, Bluetooth,

and other wireless systems. Beamforming algorithms leverage controlled reception pattern

arrays (CRPAs) and use the physics principles of constructive and destructive interference

to change the way signals are received to be beneficial for the receiver. By phase shifting

and scaling signals, beamforming algorithms can change a CRPA antenna perceived gain

pattern, thereby opening the doors for both deterministic and adaptive beam algorithms [10].
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Deterministic beamsteering is the simplest form of beamforming, and it is the beamforming

algorithm that Braun and Marconi used to increase the transmit power of telegraphy. While

other more sophisticated algorithms exist, this thesis explores the effects of implementing

deterministic beamsteering to improve receive power.

1.2.1 Constellation Beamsteering

To improve GPS receive power, receivers must beamsteer to the GPS satellites. For

this to be done, the satellite geometry must be fed back to the beamsteering algorithm, or

the beamsteering algorithm must conduct direction finding (DF) to determine the satellite

geometry. NAVSYS developed a High-gain Advanced GPS Receiver (HAGR) that employed

beamsteering to improve received signal quality in early 2000. They implemented beam-

steering for numerous applications, all of which revolved around the central HAGR idea [1],

[11]–[13]. In 2011, a CRPA SDR implementation was created that invoked more advanced

minimum variance distortionless response (MVDR) beamforming that beamsteered to or-

biting satellites [14]. Both the HAGR and MVDR receivers implemented a scalar tracking

architecture. Improvements in the scalar tracking architecture can yield better tracking

performance and robustness.

1.2.2 Vector Tracking

Scalar tracking involves GNSS signals that are tracked independently. Positions are

then computed by combining all of the separate correlator channel tracking solutions. Vec-

tor tracking improves signal tracking capabilities by coupling all of the tracking channels

together. This allows stronger channels to aid weaker channels to give an overall better po-

sitioning solution. The first vector tracking research and implementation was conducted and

patented by James Spilker at Stanford University in 1995 [15]. The research was expanded

when Matthew Lashley and David Bevly of Auburn University outlined the benefits of vector

tracking in multiple works. They showed that vector tracking survived signal outages and
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low carrier to noise power density ratio (C/N0) tracking better than scalar tracking. Vector

tracking outperformed scalar tracking loops by 2-6 dB [3], [16], [17]. Sihao Zhoa and Dennis

Akos at the University of Colorado Boulder also showed improvements using vector tracking

with tests driving through Colorado canyons with intense multipath [18]. Don Benson at

MITRE listed the benefits of using vector tracking receiver architecture [19].

1.2.3 Vector Tracking and Constellation Beamsteering

In 2012, the German Aerospace Center (DLR) created the first digital beamforming

vector tracking receiver [2], [20], [21]. The DLR receiver implemented post-correlated beam-

forming, which means correlators must be created for each antenna stream. In post corre-

lation, satellite signal geometry can be detected, so DLR did not have to feed back satellite

geometry from the vector tracking loop. DLR’s receiver included algorithms to removed in-

terference and showed a combined vector tracking nulling receiver outperforming a standard

vector tracking receiver in an interference scenario.

1.3 Contributions

Coupling vector tracking with multi-antenna beamforming has been proven to be effec-

tive in research by DLR. Beamsteering to orbiting satellites has also been proven to improve

receiver operation by NAVSYS and Seo et al. While DLR proposed a post-correlation vec-

tor tracking beamforming receiver, there is minimal research pertaining to a pre-correlation

vector tracking beamsteering receiver architecture, or loosely coupled beamsteering architec-

ture. Several contributions to the field of GNSS signal tracking and beamforming are made

in this thesis:

• Implement a multi-antenna vector tracking beamsteering receiver that beamsteers to

GPS L1 C/A satellites
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• Analyse the performance of the multi-antenna vector tracking beamsteering receiver

against single antenna scalar and vector tracking, as well as multi-antenna scalar track-

ing beamsteering

• Compare the performance of the multi-antenna vector tracking beamsteering receiver

and other receivers when the receivers are implemented with different sized COTS

arrays ranging from 2-8 elements in simulation

• Compare the performance of the multi-antenna vector tracking beamsteering receiver

and other receivers in multiple dynamic live sky scenarios

• Compare the performance of the multi-antenna vector tracking beamsteering receiver

and other receivers in an artificially created interference environment created by com-

bining dynamic live sky data and simulated interference

• Introduce low SWaP-C correlator based C/N0 estimation techniques that are used in

all receiver testing

• Show the benefits of the multi-antenna vector tracking beamsteering receiver compared

to other receivers

1.4 Thesis Outline

This chapter introduced the concepts that inspired this work and discussed the multi-

antenna vector tracking beamsteering receiver. The remainder of the thesis is laid out as

follows: Chapter 2 introduces the GPS L1 C/A signal and gives an overview of signal vulner-

abilities due to low signal power levels. The chapter also discusses CRPA antennas, including

implications of poor calibrations when using CRPA antennas. Chapter 3 introduces a stan-

dard GPS L1 C/A software defined receiver. Front-ends, acquisition, tracking, and PVT

estimation are all discussed. Chapter 4 outlines carrier-to-noise ratio estimation from a

front-end approach to multiple correlator based approaches. Performance of the correlator
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based algorithms is shown and compared. Chapter 5 introduces the asynchronous vector

tracking receiver with detailed explanation into the asynchronous timing aspects. The max-

imum range variance is also discussed as a tool to be used in analysis. Chapter 6 introduces

the proposed multi-antenna vector tracking beamsteering receiver. Chapter 6 also includes

all of the analysis and results from testing the receiver. Chapter 7 includes conclusions that

can be drawn and future work.
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Chapter 2

GPS L1 C/A Signal

There are numerous global navigation satellite systems in orbit providing precise PNT

to the user. The U.S. constellation is known as the Global Positioning System (GPS). Other

countries have their own systems (i.e. Galileo (European Union), GLONASS (Russia), QZSS

(Korea), and Beidou (China)). Low earth orbit (LEO) satellite systems are also starting to

be used for positioning [22]. Some techniques used in this thesis are applicable to other

constellations as well as LEO constellations. While many satellite systems are relevant for

navigation, the GPS L1 C/A signal is the primary focus of this work. In this chapter,

Section 2.1 describes the GPS L1 C/A signal including the carrier, code, data message, and

signal modulation. Section 2.2 details the vulnerabilities of the GPS L1 C/A signal, which

include jamming, spoofing, and multipath. Section 2.3 introduces common antennas used in

capturing GPS signal data as well as an introduction to CRPAs.

2.1 Signal Overview

While there are multiple signals associated with GPS, the GPS L1 C/A signal is the

most commonly used civilian signal from the constellation. The L1 C/A signal is comprised

of two components: the carrier and code signal (Section 2.1.1). The code and carrier are

modulated with the data message that holds information necessary for positioning (Section

2.1.2). The signal modulation is described Section 2.1.3.

2.1.1 Carrier and Code

The GPS L1 C/A carrier signal is a sinusoidal signal centered at the frequency 1575.42

MHz. Other GPS signals that occupy the L1 band are L1C, P(Y) code, and M-Code. The
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GPS L1 C/A signal does not use a sub-carrier like L1C and M-Code. There are no plans

currently to remove the L1 C/A signal, and nearly all civilian GPS receivers are configured

for the L1 C/A signal.

The pseudo-random noise code, also known as the PRN code or spreading code, has a

chipping rate of 1.023 Mbps. The signal is a square wave created using a Modulo-2 sum of

two binary sequences, which is defined in [23]. The binary signal repeats every 1023 chips,

transmitting a full PRN code every millisecond. The PRN code is unique for each satellite,

and the signal is known to the receiver, hence, allowing the receiver to correlate the signals

with their satellites, which is code-division multiple access (CDMA). The PRN sequences

are Gold codes [24]. The signals autocorrelate with identical signals only when they are time

aligned, and the cross correlation with the other codes is zero [8]. These characteristics are

the driving factors in the noise variance estimation described in Chapter 4.

The ideal autocorrelation function is shown below in Equation (2.1).

R(ε) =


1− |ε| ε ≤ 1

0 ε > 1
(2.1)

Figure 2.1 shows the actual autocorrelation function plotted as a function of the chip spacing.

When the chip spacing is greater than one, the autocorrelation function is approximately

zero as described earlier.
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Figure 2.1: Autocorrelation and Cross Correlation of PRN 10 and PRN 33

Figure 2.2 shows a zoomed in plot of Figure 2.1. The triangle shape of the autocorrela-

tion is crucial to the principles of signal tracking that will be described later.
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Figure 2.2: GPS Autocorrelation Function

2.1.2 Data Message

The GPS L1 C/A data message transmits important information to the receiver in a

binary format at 50 Hz. The data message is modulated onto the carrier signal through

binary phase shift keying (BPSK). The data message is comprised of the ephemeris and al-

manac. The ephemeris relays satellite parameters that the receiver uses to compute position.

The almanac relays similar parameters for less accurate position results. Most commercial

receivers use the ephemeris as their main source for calculating positions, but they also tend

to use the ephemeris, almanac, etc. for integrity checks. Integrity checks are a necessary

aspect of a commercial receiver, but they are not included in this work. The process of

decoding the ephemeris navigation data message is explained thoroughly in [23] and hence

will not be discussed in this thesis.
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2.1.3 Signal Modulation

The GPS L1 C/A signal combines the carrier, PRN code, and navigation data using

a technique called Binary Phase Shift Keying (BPSK). This technique essentially uses the

square wave combined PRN code and data message to flip the carrier signal 180◦ in phase.

BPSK is shown below in Figure 2.3.

Figure 2.3: BPSK Signal Modulation [25]

The combined broadcast signal is shown at the bottom of Figure 2.3. The receiver is

tasked with removing the modulation. This involves tracking the frequency and phase of the

signal arriving to determine the precise time of signal arrival (TOA). The frequency spectrum

of the GPS L1 C/A signal is shown in Figure 2.4. The GPS L1 C/A signal is typically not

observable in the spectrum because the signal is received at -125 decibel-milliwatts (dBm),

which is below the receiver noise floor. Receivers utilize adaptive gain controllers (AGC)

to ensure the signal is still quantifiable by the receiver. In some cases, when the receivers

have their AGCs tuned aggressively, the central lobe of the GPS signal is observed peaking

through the noise floor.
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Figure 2.4: GPS L1 C/A Spread Spectrum

2.2 Signal Vulnerabilities

As noted earlier, the GPS signal is received at low power, typically -125 dBm or lower.

Signals are transmitted at roughly 50 watts [4]. The drastic loss of power can be simply

modeled using the free-space path loss equation shown in Equation (2.2).

Lpath = (4π)2 (d/λ)2 (2.2)

Lpath is the loss of signal gain caused by a signal of wavelength λ traveling in a straight line

a certain distance d. The gain loss of the signal can in theory be used to estimate the receive

power of the signal, since the receiver knows the satellite locations.
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In reality, the signals can be influenced by numerous disturbances that are, at most

times, unknown to the receiver. The weakness of the signal leaves it vulnerable to interference

such as jamming and spoofing, as well as natural factors such as multipath and blockages.

2.2.1 Jamming

Jamming is the intentional or unintentional blocking of the GPS signal. This occurs

when another signal or noise is introduced to the spectrum that masks the already weak GPS

signal as shown by Figure 2.5. Jamming is commonly linked with electronic warfare, but it

has become more prominent in the civilian sector as infrastructure and daily life becomes

more dependent on GPS and precise timing [26]. A prime example of accidental jamming

occurred in 2011 when an individual jammed the automatic aircraft landing system at the

Newark Airport [27].

Figure 2.5: Jamming Attack
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The simplest form of jamming is with a high power carrier signal or broadband noise

(BBN). The jamming signal swamps the spectrum, rendering a simple receiver useless when

the signal exceeds a 40 dB Jammer-to-Signal Power Ratio (J/S). This effect can be seen

most clearly through signal acquisition, which is explained in detail in Section 3.2. Figure

2.6 shows a successful GPS L1 C/A acquisition on the left and a jammed acquisition search

space on the right. The PRN code phase and signal Doppler shift is indiscernible after the

new signal is introduced.

Figure 2.6: Effects of Jamming on Signal Acquisition

Jamming is usually easy to detect. Most modern receivers use simple methods such as

power or spectral monitoring to determine when there are erroneous signals in the environ-

ment. Jamming effects are shown in Chapter 6. Mitigation methods are also introduced in

Appendix B.

2.2.2 Spoofing

Spoofing is harder to detect than jamming. The U.S. Department of Homeland Secu-

rity (DHS) defines spoofing as "RF waveforms that mimic true signals in some ways, but

deny, degrade, disrupt, or deceive a receiver’s operation when they are processed" [28]. A
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simplified graphic of spoofing is shown in Figure 2.7. Prior to 2008, spoofing was consid-

ered an advanced threat that required expensive equipment to fool a receiver [6]. While

still advanced, Bhatti and Humphreys demonstrated that a large scale spoofing attack is

possible using inexpensive hardware [29]. They were able to gain control of a 65-m yacht

in the Mediterranean Sea by gradually dragging its position from its true GPS position.

This shows the power and deception of spoofing. More recently, a Tesla Model 3 level 2

autonomous driving system was successfully spoofed to take the wrong exits and veer off of

the highway [30]. With autonomous vehicles growing ever more prevalent, engineers will be

forced to develop algorithms to be more resistant to spoofing.

Figure 2.7: Spoofing Attack
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Like jamming, spoofing can be detected in the signal acquisition plane. For a simple

spoofing attack, Figure 2.8 shows a true GPS signal and a fake GPS signal in the same

acquisition plane. The fake signal has a power level that is slightly higher than that of the

true signal, and a simple receiver will lock onto the false signal. Smart spoofers align the

acquisition peaks initially and then slowly drag the signals apart, which in turn captures the

receiver.

Figure 2.8: Effects of Spoofing on Signal Acquisition

Theoretically, the multi-antenna vector tracking coupled beamsteering receiver pre-

sented in this thesis is resilient to spoofing, but it was not tested in this work. The receiver

receives more power in the direction of satellites using the beamsteering algorithm. This

causes the ground-based spoofer signal receive power to decrease relative compared to the

true satellite signal receive power.
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2.2.3 Multipath

The most damaging natural vulnerability is from reflections, scattering, fading, etc.

that can all be categorized as multipath. When signals reflect off objects and combine at the

receiver, destructive interference can occur, decreasing signal power and causing problems

for receivers. This idea is shown in Figure 2.9.

Figure 2.9: Multipath

Multipath occurs to some extent in every environment, but multipath is most prominent

in urban canyon environments. An excellent example of an urban canyon environment with

the effects of multipath included was presented at ION GNSS+ 2020 by Suzuki et al. [31].

Suzuki showed that non-line-of-sight signals (NLOS) can be tracked by a receiver. The urban

canyon from his data collection is shown in Figure 2.10. Suzuki used a neural network to

detect NLOS signals, and the percentages next to the signals represent the confidence that

the signal is NLOS. In the urban canyon environment, only two signals are clean LOS signals.

The rest of the signals will cause adverse effects on the receiver PVT solution.
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Like spoofing, this thesis does not specifically address multipath, but the receiver pre-

sented should reduce the negative effects of multipath since it will always steer local replicas

to align with the GPS L1 C/A signals. All NLOS signals present will be attenuated relative

to the LOS signals.

Figure 2.10: Urban Canyon with NLOS Signals Present [31]

2.3 Antennas

Antennas are used to enhance and amplify the low power GNSS signals when they arrive

at the receiver. For GPS specifically, patch and helix antennas are the most common. Patch

antennas are passive while active helix antennas require voltage to be sent up the line to

power the antenna internal low noise amplifier (LNA). The proposed receiver utilizes four

active antennas configured in a CRPA to manipulate the way the signals are combined to

be beneficial for the receiver.
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2.3.1 Controlled Reception Pattern Array (CRPA) Antennas

CRPAs can be used in numerous applications. CRPAs are used to direct cellular signals

from towers [32], radar [33], and even, in the looser sense, the James Webb Space Telescope

[34]. For radar and cellular applications, the array elements are used to direct antenna

transmit gain or power in certain directions. The James Webb Space Telescope directs light

in a certain direction (i.e. to a specific focus point) for clear pictures using its mirrors. For

this thesis, the beamsteering algorithm aligns all antenna power to specific focal point that

is the satellites locations.

To convey how a CRPA manipulates an antenna gain pattern, an ideal conceptional

isotropic radiation pattern is shown in Figure 2.11. The pattern is uniform with unity gain

in all directions.

Figure 2.11: Single Element Isotropic Radiation Pattern

When more elements are added to form a CRPA, the signals are summed. The radiation

pattern or gain pattern shown in Figure 2.12 is formed with a four element square CRPA of

isotropic antennas spaced a quarter wavelength apart. This assumes there is no phase delay

between incident signals directly overhead at zenith. With tight element spacing, the shape

of the CRPA gain pattern is similar to that of the single element isotropic antenna. Note
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the max magnitude of radiation is four at zenith, where the signals perfectly constructively

combine to give max amplitude. The magnitude decreases at lesser angles when destructive

interference is introduced.

Figure 2.12: 4 Element CRPA Zenith Radiation Pattern (λ4 spacing)

For a half wavelength square CRPA, the signal will have almost complete destructive

interference at the low elevation angles, as shown in Figure 2.13. This is because the signals

are 90 degrees out of phase. The majority of CRPAs leverage this aspect and their spacings

are designed for specific frequencies. The antenna used for this work is a half wavelength

antenna as shown in Figure 2.14.
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Figure 2.13: Four Element CRPA Zenith Radiation Pattern (λ2 spacing)

Figure 2.14: Four Element CRPA Antenna
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If a CRPA has a larger spacing than λ/2, destructive interference is introduced in

undesirable array directions as shown in Figure 2.15 due to the reduction in beam width.

Additional constructive interference is also introduced in directions where satellites could

be present. For this reason, the majority of CRPAs do not increase spacings over a half

wavelength.

Figure 2.15: Four Element CRPA Zenith Radiation Pattern (λ spacing)

Beamforming

The real benefit of a CRPA is beamforming or the users ability to manipulate each

signals phase to get the desired radiation pattern. Various beamforming techniques are

described in [35]. Beamsteering is the process of directing antenna power or the antenna

beam in a desired direction. For example, Figures 2.12, 2.13, and 2.15 show beamsteering

to zenith because the phases enable the signals to constructively add at zenith.

Add general anachoic chamber picture and talk about different was of beamforming.

Beamsteering, Nullsteering, and adaptive methods.
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Ground Plane Effects

The previous sections made working with CRPAs seem simple but complications arise

when applying CRPA algorithms to hardware. Perhaps the most challenging aspect of

arrays is calibrating and understanding the array manifold. Calibration involves over the air

transmission at the desired frequency to obtain array manifold gain and phase data. Once

completed, the calibration process gives the receiver CRPA manifold data that can be used

for corrections.

The CRPA needs to be calibrated with a ground plane similar to where it will be installed

and used. The ground plane shape affects the gain on the antenna due to reflections. These

effects were simulated by Andrew Kintz in his doctoral research at Ohio State University

using ANSYS HFSS [36]. In Figure 2.16, Kintz created four ground planes; he created an

ideal circular ground plane, the top of an airplane, the top of an airplane with wings and a

tail fin, and all of those with angled wings and struts.

Figure 2.16: ANSYS HFSS Simulated Ground Planes [36]
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The antenna element (only one) was simulated as a right hand circular polarized (RHCP)

antenna. In Figure 2.17, the left column represents the gain plots for the RHCP antenna

and each ground plane (ground planes going from left to right | top to bottom). The right

column are the phase plots for the antenna. The RHCP antenna deviates from the ideal

isotropic antenna, especially when the ground plane becomes more complex. When looking

at gain alone, the variations in the pattern of one element will be compounded as the other

CRPA elements are combined in the solution. This is why knowing array manifold data is

important for CRPA related algorithms.

Figure 2.17: ANSYS HFSS RHCP Gain and Phase Effects [36]

24



For this work, the array manifold was unknown. To account for the array manifold,

an acquisition based phase calibration was conducted to determine the combined line-to-line

phase delays and array manifold delays induced on each channel. The calibration process is

described in Section 6.3.1.

2.4 Conclusions

This chapter included a brief description of the GPS L1 C/A signal, including the carrier

and code signal, navigation data message, and signal modulation. Signal vulnerabilities were

discussed in detail, including jamming, spoofing, and multipath. Lastly, antenna arrays were

introduced and beamforming, including the beamsteering used in this work, was presented.

Given a receiver is able to calibrate its array manifold data and phase delays related to the

difference in coaxial line lengths or hardware delays, the receiver should be able to perform

beamsteering and nullsteering accurately and effectively.
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Chapter 3

GPS L1 C/A Scalar Receiver Overview

Software receivers for GNSS were made popular by [8] and [37]. A standard receiver can

be divided into four parts: front-end, acquisition, tracking, and PVT estimation. However,

a software receiver includes everything after the analog-to-digital converter (ADC), which

is acquisition, tracking, and PVT estimation. Section 3.1 describes the baseband front-end.

Section 3.2 explains parallel code search acquisition. Section 3.3 outlines software tracking

methods. Section 3.4 describes the PVT estimation methods used to obtain positions and

velocities.

3.1 RF Front-End

The front-end of the receiver is the first subsystem used after the antenna to interact

with the incoming signal. In this thesis, a baseband front-end model is used because all data

was recorded with Ettus Universal Software Radio Peripherals (USRPs), which are shown

in Figure 3.1.
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Figure 3.1: Ettus Hardware Front-Ends: N210 (left), N310 (middle), E312 (right) [38]

An RF front-end is a combination of filters, amplifiers, and mixers that prepare the RF

signal for digital conversion. The proper combination obtains the cleanest possible signal

for input to the software acquisition algorithm. A block diagram for the front-end is shown

below in Figure 3.2. The signal arrives at the antenna and is immediately bandpass filtered

to remove the out-of-band spectrum. After bandpass filtering, the signal is amplified and

mixed to an intermediate frequency.

Figure 3.2: Baseband RF Front-End

Once at the intermediate frequency, the signal is filtered with a lowpass filter to remove

the duplicate negative signal. Next the signal is amplified and mixed to baseband. At

baseband, the signal is complex with the real portion of the signal being the in-phase and

the complex portion being the quadrature. With the signal at zero frequency, a lowpass
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filter is applied again to remove any remaining out-of-band spectrum. The signals are then

passed to the ADC and converted to digital bits. With USRPs, the complex signal is saved

as an interleaved signal with IQIQIQ... bit arrangement. This bit interleaving process is

not shown in Figure 3.2.

3.2 Parallel Code Search Acquisition

After the GPS signals are converted to a digital sequence, the receiver determines what

signals are present in the sequence along with the corresponding signal Doppler frequencies

and code phases. To determine a rough estimate of the Doppler frequency and code phase,

a replica carrier and code signal are generated and varied in Doppler and code phase until

a correlation peak is present. Figure 3.3 shows a failed acquisition plane, or an acquisition

plane with no correlation over varying Doppler and code phase. Figure 3.4 shows an acquired

satellite signal with a correlation peak at the signal Doppler shift and code phase.

Figure 3.3: Failed Acquisition Plane Figure 3.4: Successful Acquisition Plane

Both of the previous figures were generated from a parallel code search acquisition

algorithm. There are other methods for acquiring that are described in [39]. Figure 3.5

shows the parallel code search architecture. The incident interleaved signal from the front-

end is unwrapped and multiplied by an in-phase and quadrature carrier replica at the desired

Doppler frequency. The in-phase and quadrature signal replicas are then summed and the
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fast Fourier transform (FFT) is computed. The resultant signal is then multiplied by the

complex conjugate of the FFT of the generated PRN code replica. The inverse FFT is then

calculated from the multiplied signal. The absolute value of the signal is computed then the

signal is squared to generate a vector of code phase correlation data at a specific Doppler

frequency. The Doppler frequency is then varied to determine is there is a signal present.

For dynamic signals, the Doppler frequency should be searched from -10000 Hz to 10000 Hz.

In this work, the Doppler frequency is searched in 50 Hz increments.

Figure 3.5: Parallel Code Search Acquisition [39]

For most situations, using a one millisecond integration period to perform signal acquisi-

tion is sufficient. However, a 10 millisecond integration period offers more robust performance

in noisy signal conditions. Note that a navigation data bit flip occurs ever 20 milliseconds,

and 10 millisecond acquisition is the highest integration period that is possible without know-

ing the data bit flip location. Acquisition is performed twice to ensure the data flip does not

affect the acquisition solution. It is performed once on the first 10 milliseconds of data and

29



once on the second 10 milliseconds of data. The acquisition results from each data segment

are then combined to obtain an overall group of acquisition results. An example correlation

plane for a signal acquired with a 10 millisecond integration period is shown below in Figure

3.6.

Figure 3.6: 10 ms Successful Acquisition Plane

There is a noticeable difference in the amplitude of the correlation peak between Figures

3.6 and 3.4. 10 millisecond acquisition gives a higher correlation peak that can be acquired

in noisier conditions.

3.3 Tracking

After the rough estimates for Doppler frequency and code phase are obtained in signal

acquisition, the signal is processed in a tracking control loop that drives signal frequency

and phase errors to zero. Signal tracking obtains an accurate replica of the PRN code and

carrier that can be used to generate pseudorange and pseudorange rate measurements. The

tracking algorithm can be divided into two parts, which are a frequency lock loop (FLL) or

phase lock loop (PLL) and delay lock loop (DLL). Tanner Watts describes each one of these
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loops in detail, so these algorithms will not be explained as much in this work [39]. The

scalar receiver designed for this thesis uses an FLL/DLL tracking loop to drive the carrier

frequency into a usable range, and then a PLL/DLL tracking loop is used to generate the

final precise replica signals. For most situations an FLL is not necessary, but for robustness,

an FLL is implemented to ensure the receiver can obtain lock on dynamic noisy signals.

3.3.1 Carrier and Code Loop Filter Based Tracking

The Costas lock loop is the combination of a FLL/PLL and a DLL. A block diagram

for the Costas lock loop is shown in Figure 3.7.
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Figure 3.7: Costas Lock Loop [39]
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The DLL attempts to obtain an accurate estimate of code frequency and code phase.

The code replica frequency is initialized at the chipping rate of the GPS L1 C/A PRN

code (1.023e6), and the initial code phase is obtained by acquisition. The incoming signal

data is multiplied by the carrier replica. The combined signal and carrier replica are then

multiplied by an early, prompt, and late PRN replica code numerically-controlled oscillator

(NCO). The early code is offset by -0.5 chips, and the late code is offset by 0.5 chips. After

the early, prompt, and late replicas are combined with the signal and carrier replica sequence,

the resultant sequence is integrated to determine an early, prompt, and late set of in-phase

and quadrature correlators. Since the data is discrete, the integration is described as a

summation of all of the data in the sequence. The in-phase early (IE), in-phase late (IL),

quadrature early (QE), and quadrature late (QL) correlators are then used to generate a

code discriminator, which is a representation of the error in code phase. The equation for

generating the code discriminator is shown in Equation (3.1).

φDLL = 1
2

√
IE2 +QE2 −

√
IL2 +QL2

√
IE2 +QE2 +

√
IL2 +QL2 (3.1)

The code discriminator is lowpass filtered and fed back into the code replica in a process

called the NCO update. The second order loop filter DLL code NCO update used in this

work is from [39] and is shown in Equation (3.2).

fcodek+1 = fcodek −K
(
ω2TφDLLk + ωζ(φDLLk − φDLLk−1)

)
(3.2)

The parameters used for the loop filter are K = 1, ζ = 0.707 to 1.414, and BWn = 1 to 5

Hz. Note that the bandwidth BWn is related to the natural frequency ω and the damping

ratio ζ by Equation (3.3) below.

BWn = ω(1 + ζ2)
4ζ (3.3)
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The FLL and PLL attempt to obtain accurate estimates of the carrier frequency and

carrier phase. The carrier replica is initialized at the acquisition carrier frequency, which

is obtained by the Doppler acquisition estimate. The initial carrier phase is assumed to

be zero. The in-phase and quadrature carrier replicas are then multiplied by the incoming

signal. The resultant sequences are then multiplied by the prompt code replica. The in-phase

and quadrature sequences are then summed to obtain in-phase prompt (IP ) and quadrature

prompt (QP ) correlators. The in-phase and quadrature correlators are used to determine

a frequency or phase discriminator representing the total carrier phase error between the

replica signal and the incoming signal. Equation (3.4) shows the FLL discriminator.

φFLL = arctan 2
(
IP1 ·QP2 − IP2 ·QP1

IP1 · IP2 +QP1 ·QP2

)
/πT (3.4)

IP1 and IP2 are the first half and the last half of the in-phase prompt correlator. Likewise,

QP1 and QP2 are the first and last half the quadrature prompt correlator. T is the signal

tracking integration period. arctan2 is the four quadrant arc tangent. The PLL discriminator

is shown in Equation (3.5).

φPLL = arctan
(
QP

IP

)
/2π (3.5)

The FLL and PLL discriminators are filtered, similar to the DLL loop filter. The equation

for the FLL loop filter is shown below in Equation (3.6).

fcarrk+1 = fcarrk + TK
(
ω2TφFLLk + ωζ

(
φFLLk − φFLLk−1

))
(3.6)

The loop filter parameters for the FLL are K = 1 to 4, ζ = 0.707 to 1.414, and BWn =

5 to 18 Hz. After the mean of the frequency discriminator drops below 50 for a period of

time, the tracking loop switches to a PLL. The PLL loop filter is shown in Equation (3.7).

fcarrk+1 = fcarrk +K
(
ω2TφPLLk + ωζ

(
φPLLk − φPLLk−1

))
(3.7)
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The loop filter parameters for the PLL are the same as the FLL with K = 1 to 4, ζ =

0.707 to 1.414, and BWn = 5 to 18 Hz.

The in-phase prompt and quadrature prompt correlators are shown in Figure 3.8. Notice

the in-phase prompt correlator resembles the GPS navigation message, and the quadrature

prompt signal resembles zero mean noise. The navigation message is obtained from the in-

phase prompt correlator using a parity check algorithm and signal time conversion, which is

described in [8].

Figure 3.8: 1ms Scalar Tracking

Once the receiver obtains lock using a 1 millisecond tracking integration, the tracking

integration period can be increased to 20 milliseconds by starting the loop on an in-phase

prompt correlator navigation data flip location. Just like with acquisition, a 20 millisecond

integration period yields higher correlation values allowing the tracking algorithm to track

noisier signals. The difficulty in implementing a 20 millisecond tracking algorithm is in the

handover between 1 millisecond and 20 millisecond tracking. The carrier frequencies, code
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frequencies, carrier phase, and code phase corresponding to the bit flip location must be used

to initialize the 20 millisecond tracking algorithm.

3.3.2 Alternative Kalman Tracking

An alternative form of the Costas lock loop is a Kalman smoother-based tracking loop.

The Kalman filter presented in this section is a steady state Kalman filter, and the theory

behind the filter is described in much detail in [40], [41]. Equations (3.8) and (3.9) show the

stochastic dynamics model where T is the tracking integration period.


xp

xv

xa


k+1

=


1 T T 2

2

0 1 T

0 0 1




xp

xv

xa


k

−


T

0

0

ωrek +


1 0 0 0

0 1 0 0

0 0 1 0

ωk (3.8)

ycarrk+1 =
[
1 T

2
T 2

6

]

xp

xv

xa


k

− T

2 ωrek + ηk+1 (3.9)

xp is the carrier phase difference between the true signal and the receivers reconstructed

signal. xv is the carrier signals Doppler shift. xa is the rate of Doppler shift. ωre is the

reconstruction frequency or the frequency shift in carrier and code due to the Doppler effect,

ωk is the process disturbance vector, and ηk+1 is the measurement error term. The process

noise covariance matrix is shown in Equation (3.10) where qct is the intensity of an equivalent

scalar continuous-time white noise process that models the drift acceleration of the Doppler

shift or signal jerk
...
φ .

Qk = qct



T 5/20 T 4/8 T 3/6 T 5/72

T 4/8 T 3/3 T 2/2 T 4/30

T 3/6 T 2/2 T T 3/24

T 5/72 T 4/30 T 3/24 T 5/252


(3.10)
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For the DLL implementation, qct is set to 2π/10. For the PLL implementation, qct is set

to 1 × 10−4. The values tune the bandwidth of the Kalman filter to be appropriate for

signal tracking. The measurement noise covariance for the DLL and PLL are shown below

in Equations (3.11a) and (3.11b) [41].

RdDLL = d(2− d)
(

1
2 + 1

(C/N0)T (2− d)

)
(3.11a)

RdPLL = 1
2(C/N0)T

(
1 + 1

2(C/N0)T

)
(3.11b)

d is the early-late correlator spacing in units of chips. C/N0 is the carrier to noise power

density ratio and will be defined the same for the rest of this work. In implementation of

static, short-term data where C/N0 can be considered constant, RdDLL was set to 1 and

RdPLL was set to 0.016. The steps of the Kalman filter are the same for the DLL and PLL.

Equations (3.12) show the time update.

x̂− = Ax̂+ +Buωrek (3.12a)

P− = AP+AT +Qk (3.12b)

The a priori or propagated estimates are represented with a superscript −. The a posteriori

or corrected estimates are represented with a superscript +. The measurement update for

the Kalman filter is shown in Equations (3.13).

L = P−CT (CP−CT +Rd)−1 (3.13a)

P+ = (I − LC)P− (3.13b)

Z = y − Cx̂− + (T/2)ωrek (3.13c)

x̂+ = x̂− + L · Z (3.13d)
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y depends on whether the implementation is in a DLL or PLL. For the DLL, y is the code

discriminator φDLL. For the PLL, y is the carrier discriminator φPLL. Equation (3.14) shows

the reconstruction frequency update.

ωrek+1 =
{[

(1− α)2, (1− 2α)T + T, 0.5
(
−2αT 2 + (2T )2

)]
x̂+ − (1− 2α)ωrekT

}
/T

(3.14)

α = 0.7 for the DLL, and α = 0.3 for the PLL. These values yielded desirable performance

for the Kalman filter. For the DLL, ωre represents fcode − fchip. For the PLL, ωre represents

fcarr−fIF or the Doppler frequency. Both carrier and code phase are updated using Equation

(3.15), where the position state x̂+
p is used to aid the carrier and code phase.

φk = φk + x̂+
p (3.15)

For implementation, Table 3.1 shows all of the tuning parameters.

Table 3.1: Kalman Tracking Tuning Parameters

Param
Loop PLL DLL

α 0.3 0.7
qct 1× 10−4 2π/10

Lss

0.018239
0.16903
0.78329


0.0038532

0.0069603
0.0054157



A steady state Kalman filter was used, so the Kalman gain L was set to the values

shown in Table 3.1. Figure 3.9 shows the in-phase and quadrature correlators of the Kalman

tracking loop when the correlators are tracking. There is a longer transient response in this

implementation compared to the scalar implementation in Figure 3.8 due to the filters having

different bandwidths. However, the filter still successfully tracks the signal.
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Figure 3.9: 1 ms Integration Period Kalman Tracking

The estimated Doppler frequency and code frequency for two satellites tracked from a

static live-sky scenario are shown in Figures 3.10, 3.11, 3.12, and 3.13. The carrier frequency

tracking is similar to the scalar tracking loop, as seen in Figures 3.10 and 3.11. The code

frequency tracking obtained by the Kalman filter is a lot smoother than the scalar code

frequency, as seen by Figures 3.12 and 3.13.
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Figure 3.10: SV10 Carrier Tracking Figure 3.11: SV32 Carrier Tracking

Figure 3.12: SV10 Code Tracking Figure 3.13: SV32 Code Tracking

The differences between the Kalman filter implementation and scalar tracking imple-

mentation are minimal. Therefore, when deciding which version to use, either is acceptable.

The benefit of the Kalman filter is smoothing and tuning. The Kalman filter smooths the

code and carrier frequency estimates and can be easily tuned with the process noise and

measurement noise covariances.

When the Kalman tracking loop is configured with a 20 millisecond integration period,

the correlators resemble those shown in Figure 3.14. Notice the amplitude difference on

the in-phase correlator compared to Figure 3.9. With this amplitude difference, the 20

millisecond tracking implementation can handle noisier signals.
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Figure 3.14: 20 ms Integration Period Kalman Tracking

3.4 Estimation of Position, Velocity, and Time (PVT)

After the receiver is locked on the GPS signals, the receiver is prepared to obtain

navigation data. A parity check is necessary to determine the start of the navigation data

message embedded in the in-phase prompt correlator outputs. After the preamble is found

through the cross-correlation parity check, the in-phase prompt is converted from samples

to navigation data bits; this conversion process as well as the parity check algorithm can be

found in [8].

Once the navigation data bits are obtained, the binary data is decoded using the current

format described in the most recent version of the GPS L1 C/A Interface Specification

Document [23]. Decoding the navigation data is simple but very tedious.
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[23] also outlines the equations used for satellite position and satellite velocity calculation

from the decoded navigation data. This calculation is also outlined in [39]. Describing the

calculation is beyond the scope of this work.

3.4.1 Pseudorange and Pseudorange Rate

Generation of pseudoranges and pseudorange rates are critical to the receiver positioning

capabilities. The pseudorange is similar to the actual range r from the satellite to the receiver;

the actual range is unobtainable due to atmospheric effects and clock biases affecting the

satellite signals. The pseudorange is modeled in Equation (3.16).

ρ = r + c (br − bsv) + I + T + ηρ (3.16)

c is the speed of light in a vacuum at 299, 792, 458 [m/s]. br is the receiver clock bias, and

bsv is the satellite clock bias. The clock bias is caused by the receiver oscillator not being

synchronized to the satellite oscillator. Delays caused by the ionosphere and troposphere

are captured by I and T . The ionosphere contains particles that cause delays in GNSS

signals. The troposphere contains moisture that causes delays in GNSS signals. Figure 3.15

shows how the signal can be delayed, and since the pseudorange is calculated using time, the

pseudorange is inherently larger. [42] explains some methods for modeling and correcting

atmospheric delays, but atmospheric errors are beyond the scope of this work.

Equation (3.17) represents the pseudorange rate.

ρ̇ = ṙ + cḃr + ηp (3.17)

ṙ is the range rate and ḃr is the receiver clock drift. The satellite clock drift term is omitted

because satellites have stable rubidium and cesium clocks.
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Figure 3.15: Pseudorange with Atmospheric Delays

In positioning, measurements of pseudoranges and pseudorange rates can be obtained

from signal tracking. Equation (3.18) shows the pseudorange measurement is obtained from

signal tracking.

ρ̃(j) =
(
tr − t(j)t

)
· c (3.18)

tr is the user’s receive time of the signal, and tt is the signal transmit time. The transmit

time is obtained using the satellite signal time of week (TOW) from the navigation data mes-

sage, as well as the difference between each channel transmit time δt(j)t . The transmit time

difference is calculated by logging start buffer sample locations in signal tracking. Equation

(3.19) shows the process of obtaining the transmit time where Tnav is the position calculation
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period.

t
(j)
t = TOW (j) + (k − 1) · Tnav + δt

(j)
t (3.19)

With most applications, assuming a common received time for each channel is acceptable.

This is due to the receiver tracking time differences (i.e. change in time). Equation (3.20) is

used to update the receive time.

trk+1 = trk + (k − 1) · Tnav (3.20)

The measured pseudorange rate is obtained using the Doppler frequency that comes from

signal tracking as shown by Equation (3.21)

˜̇ρ(j) = −
(
f (j)
carr − fIF

)
· λwave (3.21)

where λwave is the carrier wavelength of the signal.

The estimated pseudoranges and estimated pseudorange rates can be obtained from the

satellite and receiver positions and velocities. The model for the estimated pseudorange ρ̂ is

shown below in Equation (3.22).

ρ̂(j) =
√

(x(j) − x̂r)2 + (y(j) − ŷr)2 + (z(j) − ẑr)2 + cb̂r (3.22)

x(j), y(j), and z(j) are the geometric position states of the jth satellite. x̂r, ŷr, and ẑr are

the estimated geometric position states of the receiver. c is the speed of light. b̂r is the

estimated receiver clock bias. The model for the estimated pseudorange rate ˆ̇ρ is shown

below in Equation (3.23).

ˆ̇ρ(j) =
(
ẋ(j) − ˆ̇xr

)
a(j)
x +

(
ẏ(j) − ˆ̇yr

)
a(j)
y +

(
ż(j) − ˆ̇zr

)
a(j)
z + cˆ̇br (3.23)
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ẋ(j), ẏ(j), and ż(j) are the velocity states of the jth satellite. ˆ̇xr, ˆ̇yr, and ˆ̇zr are the estimated

velocity states of the receiver. ˆ̇br is the estimated receiver clock drift. a(j)
x , a(j)

y , and a(j)
z are

the jth satellite line-of-sight (LOS) unit vectors. The unit vectors shown in Equation (3.24)

are estimated using the estimated range between the satellite and receiver r̂, which describes

the square root term in Equation (3.22), as well as the difference in satellite and receiver

position.

a(j)
x = x(j) − x̂r

r̂(j) a(j)
y = y(j) − ŷr

r̂(j) a(j)
z = z(j) − ẑr

r̂(j) (3.24)

The satellite unit vectors described here are the unit vectors that are fed back into the

beamsteering algorithm discussed in Chapter 6.

3.4.2 Weighted Least Squares PVT Estimation

Four satellite signals are required to generate a three-dimensional position in time. The

Newton-Raphson least squares solution calculates the position solutions for a standard GNSS

receiver. Watts describes in detail the least squares estimation process [39]. The weighted

least squares estimation technique is used to determine the scalar position solution in this

work. The geometry matrix G is shown below in Equation (3.25).

G =



−a(1)
x 0 −a(1)

y 0 −a(1)
z 0 1 0

... ... ... ... ... ... ... ...

−a(j)
x 0 −a(j)

y 0 −a(j)
z 0 1 0

0 −a(1)
x 0 −a(1)

y 0 −a(1)
z 0 1

... ... ... ... ... ... ... ...

0 −a(j)
x 0 −a(j)

y 0 −a(j)
z 0 1



(3.25)
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The weight matrix W is shown as a function of each satellite range variance σ2(j)
δρ and range

rate variance σ2(j)
δρ̇ in Equation (3.26).

W =



σ2(1)
δρ 0 0 0 0 0

0 . . . 0 0 0 0

0 0 σ2(j)
δρ 0 0 0

0 0 0 σ2(1)
δρ̇ 0 0

0 0 0 0 . . . 0

0 0 0 0 0 σ2(j)
δρ̇



(3.26)

The range and range rate variances are a function of C/N0 and the signal signal tracking

integration period T as shown by Equations (3.27) and (3.28) from [43].

σ2(j)
δρ = β2

2
(
T · 10(C/N(j)

0 )/10
)2 + β2

4T · 10(C/N(j)
0 )/10

(3.27)

σ2(j)
δρ̇ =

 2(
T · 10(C/N(j)

0 )/10
)2 + 2

T · 10(C/N(j)
0 )/10

( c

πfL1T

)2

(3.28)

β is the chip length of the GPS L1 C/A signal. c is the speed of light in a vacuum. Section

4.2 defined the PRN 33 method of estimating C/N0. Equation (3.29) shows the measurement

vector, with the residuals δρ = ρ̃− ρ̂ and δρ̇ = ˜̇ρ− ˆ̇ρ.

δz =



δρ(1)

...

δρ(j)

δρ̇(1)

...

δρ̇(j)



(3.29)
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The final equation for estimating the weighted least squares PVT solution is shown below

in Equation (3.30). The positions and velocities are represented in the state vector x̂.

x̂ =
(
GTWG

)−1
GTWδz (3.30)

Dilution of precision (DOP) can be estimated along with the state vector to determine the

position errors associated with satellite geometry. Equation (3.31) shows DOP derived from

the range only measurement observation matrix G [4].



EDOP2 • • •

• NDOP2 • •

• • VDOP2 •

• • • TDOP2


= (GTG)−1 (3.31)

East DOP (EDOP), North DOP (NDOP), Vertical DOP (VDOP), and Time DOP (TDOP)

are all DOP parameters in Equation (3.32). Position DOP (PDOP) is defined below as the

norm of EDOP, NDOP, and VDOP.

PDOP =
√
EDOP2 + NDOP2 + VDOP2 (3.32)

PDOP will be the DOP parameter that will measure all of the position error due to scenario

geometry for the rest of this work. Additionally, Horizontal DOP (HDOP) is defined without

VDOP as shown in Equation (3.33).

HDOP =
√
EDOP2 + NDOP2 (3.33)

A static GPS L1 C/A scenario was simulated with a Spirent GSS9000 simulator and

played into an Ettus USRP N210. As explained by this chapter, the data was then processed

using a software defined receiver, and the position results were examined. The satellites
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simulated in the scenario are shown in Figures 3.16 and 3.17. There were eight satellites

overhead, with four satellites at low elevation. PDOP for the scenario was around 1.86

meters. Note that all satellites were used in the position solution, and an elevation mask

threshold was not included.

Figure 3.16: Satellite Vehicles Overhead Figure 3.17: Static Roof Scenario Sky
Plot

Figures 3.18 and 3.19 show the comparison between the true position in red and the

estimated weighted least squares solution in blue.

Figure 3.18: LLA Position Estimate with
Weighted Least Squares

Figure 3.19: ENU Position Estimate with
Weighted Least Squares

There is variance in the position solution. This can be attributed to the low elevation

mask satellites diluting the solution, since we expect errors closer to the PDOP value. How-

ever, even with the variance, the least squares solution is still suitable for initializing vector
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tracking, which is described in Chapter 5. For more precise position results, low elevation

satellites can be removed and/or an EKF, as described in Appendix C, can be used to obtain

a PVT estimate.

3.5 Conclusion

This chapter explains all of the fundamental pieces of a scalar tracking software defined

receiver in detail. Receiver front-ends were explained, and a few example front-ends were

given. Parallel code search acquisition was explained. Though other acquisition methods

can be used, parallel code search acquisition was chosen for this work. A scalar tracking

loop was described, as well as an alternative Kalman tracking loop. Weighted least squares

positioning was also described with positioning results from a static simulated scenario.
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Chapter 4

Carrier-to-Noise Density Ratio (C/N0) Estimation

The C/N0 is a measure of signal quality that is used in GNSS receivers. There are

numerous ways to estimate C/N0 [44]–[47]. RF jamming, spoofing, multipath, and blockages

can all reduce the C/N0, which negatively affects the receiver. The ability to estimate /

measure C/N0 is paramount for receivers to adapt filters so the receivers can maintain signal

lock.

This chapter is laid out as follows. Section 4.1 defines a front end C/N0 estimation

technique that can be utilized to determine C/N0 in an interference environment. Section

4.2 presents a known method for estimating C/N0 in signal tracking, as well as contributes

some alternative low SWaP-C methods for estimating C/N0 in signal tracking. Section 4.3

compares static and dynamic results from the methods outlined in section 4.2. Section 4.4

outlines the conclusions that can be drawn from this analysis.

4.1 Front End Interference Estimation

One technique used to characterize the GPS L1 C/A signals involves determining a

jammed C/N0. This technique was first outline by Phillip Ward in [48] and was extensively

used in [3]. The requirements for this method are knowledge of a signal C/N0 prior to

interference and knowledge of the jammer-to-signal power ratio (J/S). By knowing the two

variables, the jammed carrier-to-noise power density ratio, [C/N0]eq, can be found. This

analytical relationship is shown in Equation (4.1).

[C/N0]eq = −10 log10

10−
(C/N0)

10 + 10
J/S
10

QRc

 (4.1)
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C/N0 is the unjammed carrier-to-noise ratio in dB, Rc is the PRN chipping rate, and Q is

the spread spectrum processing gain adjustment factor. Note that Q is 1 for narrowband

jamming, 1.5 for wideband spread spectrum jamming, and 2 for Gaussian noise jamming

[17]. Figure 4.1 shows the relationship between J/S and [C/N0]eq.

Figure 4.1: J/S Performance for Narrowband and Wideband Jammers [17]

At approximately 25 J/S for all three types of jammers, the [C/N0]eq is tracking at 36

dB-Hz, which is high enough for scalar tracking receivers. Any higher J/S and the [C/N0]eq

drops below 36 dB-Hz degrading the signal quality.

4.2 Signal Tracking Correlator Based Estimation

A more independent method for estimating C/N0 is correlator based C/N0 estimation

in the receiver signal tracking loop. One of the goals of the tracking loop is to minimize error

between early, prompt, and late PRN replicas so that the receiver can accurately demodulate

the signal. When the receiver is tracking, the early, prompt, and late PRN replicas will be

higher than the noise floor with the prompt correlator being the highest. To estimate a signal

noise characteristics, chip offsets are applied to the correlators to minimize signal correlation

resulting in samples on the thermal noise (i.e. noise correlators). By taking the ratio of

the power of the tracking correlators and the noise correlators, the receiver can accurately
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estimate C/N0. There are multiple variants of this methodology, and some of the methods

require more computation.

Section analyzes a proven 36 correlator method [3], as well as alternative low SWaP-

C methods that are a first millisecond of every twenty milliseconds method (FMET), a

reduced correlator method, and a combined reduced correlator FMET method. This section

also compares using each satellite channel chip offset PRN correlators and uncorrelated PRN

33 correlators.

4.2.1 36 Correlator Method

The 36 correlator method has been implemented in numerous receiver designs by Auburn

University and Integrated Solutions for Systems (IS4S) [3], [25], [39], [49]–[51]. The tracking

correlators used are the in-phase early (IE), in-phase late (IL), quadrature early (QE), and

quadrature late (QL). The chip offsets used to generate noise samples in this method are

180, 120, 240, 700, 660, 740, 1730, 1700, and 1760. The variance is then calculated to give

an estimated noise variance v̂2 as shown in Equation (4.2).

v̂2 = var





IE180 IL180 QE180 QL180

IE120 IL120 QE120 QL120

IE240 IL240 QE240 QL240

IE700 IL700 QE700 QL700

IE660 IL660 QE660 QL660

IE740 IL740 QE740 QL740

IE1730 IL1730 QE1730 QL1730

IE1700 IL1700 QE1700 QL1700

IE1760 IL1760 QE1760 QL1760





(4.2)
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The estimated signal power is given as a function of the original signal tracking correlators

as seen by equation (4.3).

Â2 = (IE + IL)2 + (QE + QL)2 (4.3)

Both the estimated noise variance and estimated signal power from equations (4.2) and (4.3)

are filtered using a complementary filter as shown in Equation (4.4).

x̂k = αx̃k−1 + (1− α)x̃k (4.4)

For this implementation, α is set to 0.98. Using the filtered noise variance and filtered signal

power along with the signal tracking integration period T , the receiver C/N0 is estimated in

dB using equation (4.5) below.

C/N0 = 10 log10

(
Â2 − 4v̂2

2v̂2T

)
(4.5)

This method is computationally intensive due to the number of correlators generated for the

noise variance estimation. The next three methods are intended to decrease the computa-

tional power needed to estimate C/N0.

4.2.2 Low SWaP-C C/N0 Estimation Methods

The three low SWaP-C C/N0 estimation methods are a FMET method, a reduced

correlator method, and a combined FMET reduced correlator method. After the methods

are described, another approach is presented by using an uncorrelated PRN 33 to generate

noise correlators. Static and dynamic results are compared in a later section.

FMET Method

Instead of estimating C/N0 every millisecond coherently in signal tracking, the C/N0

can be estimated using the first millisecond of data from every 20 milliseconds of signal data.
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The same 36 correlators are used in this method (i.e. the number of power correlations does

not change). However, 1/20th of the signal data is used in the estimation. When using 1/20th

of the data to calculate noise variance, the noise variance is approximately 1/20th of the 20

millisecond value. The noise variance is thereby scaled by 20 to obtain accurate estimates of

C/N0. Even though this method is less computationally intensive, this method still requires

multiple dedicated receiver channels for computation.

Reduced Correlator Method

The reduced correlator method uses all 20 milliseconds of the signal data to estimate

C/N0. Therefore, no noise variance scaling occurs in this method. The main idea of this

method is to reduce the number of chip offset correlators. By only using one chip offset as

opposed to using nine, the matrix for noise variance estimation is reduced. Equation (4.6)

describes the new noise variance estimation. The only chip offset used is 180.

v̂2 = var
([

IE180 IL180 QE180 QL180
])

(4.6)

The C/N0 estimates become noisier when the number of correlators used in the noise variance

estimation are reduced. To counteract this effect, the filtering parameter α was changed to

0.8. The change in the filter parameter makes the filter remove more noise, but it also makes

the estimates less responsive to dynamics. The reduced correlator method greatly reduces

computation time, but it is inconsistent due to its unresponsive nature to dynamics. This

can be seen in the static and dynamic figures later in this chapter.

FMET Reduced Correlator Method

The last method combines the aspects of the FMET method and the reduced correlator

method. An offset scaling is applied to the noise variance since the noise variance is using

1/20th of the data. The noise variance is also computed using equation (4.6). Both the noise

54



variance and signal power estimates are filtered using α = 0.8. This method is the least

computationally intensive method of all methods.

Uncorrelated PRN 33 Noise Correlators

All of the previous C/N0 estimation methods can be modified to use PRN 33 instead of

using their associated satellite PRN code for noise correlator generation. PRN 33 can be an

alternative tool for guaranteeing the noise variance estimate, because it does not correlate

with any other signals. The signal tracking correlators used for the power estimate still use

their dedicated satellite PRNs to determine the individual channel C/N0. However, only one

set of 4-36 noise correlators needs to be calculated instead ofM sets whereM in the number

of satellites being tracked. This greatly reduces computation for all methods reducing the

burden of C/N0 estimation for the receiver

4.3 Live Sky Correlator C/N0 Estimation Comparison

For a simple experiment, live sky GPS L1 C/A data was collected with a Nordnav Rxx-2

Frontend and a Ublox EVK-M8T. The hardware setup for the data collection is shown in

Figure 4.2.

Figure 4.2: Nordnav Rxx-2 and Ublox EVK-M8T
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Static and dynamic GPS L1 C/A data was processed with scalar tracking and compared

against the Ublox EVK-M8T output C/N0. The static results are shown in Section 4.3.1.

The dynamic results are shown in Section 4.3.2.

4.3.1 Static C/N0 Results

The C/N0 estimation results from static GPS L1 C/A data collected from atop the

Auburn University Woltosz Engineering Research Building are shown in Figures 4.3, 4.4,

and 4.5. The signals with the stronger C/N0 were selected for this analysis. The left plot in

each figure shows the different estimation methods using each channel PRN to create chip

offset noise correlators. The right plot in each figure shows using PRN 33 to create noise

correlators. Figure 4.3 shows the C/N0 estimation results from GPS SV 5.

Figure 4.3: Static PRN 5 C/N0 Results (Left) and Static PRN 33 C/N0 Results (Right)

The 36 correlator method is negatively biased from the Ublox collected data, which is

being used as the truth data. The reduced correlator, FMET, and FMET reduced correlator

methods all closely align with the Ublox collected data. There is not a large difference

between noise generation with PRN 5 versus noise generated with PRN 33.
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Figure 4.4 shows the C/N0 estimation results for GPS SV 13. In these plots, it can

be observed that the reduced correlator method shows a large bias of about 5 dB in both

the PRN 13 and PRN 33 plots. This is a attributed to not having enough noise correlators

to obtain an accurate noise variance. The other methods more closely align the the Ublox

collected data.

Figure 4.4: Static PRN 13 C/N0 Results (Left) and Static PRN 33 C/N0 Results (Right)

The last static data shown is from GPS SV 15 in Figure 4.5. The reduced correlator

method completely fails to estimate C/N0 using PRN 33 to generate noise correlators. How-

ever, the reduced correlator method is able to estimate the C/N0 when the chip offset noise

correlators are used. The other algorithms were comparable in their performance.
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Figure 4.5: Static PRN 15 C/N0 Results (Left) and Static PRN 33 C/N0 Results (Right)

4.3.2 Dynamic C/N0 Results

The C/N0 estimation results from dynamic GPS L1 C/A data collected in downtown

Auburn, Alabama are shown in Figures 4.9, 4.10, and 4.11. The vehicle used to collect the

GPS L1 C/A data, as well as the NovAtel antenna used for the collection, is shown in Figure

4.6. Figure 4.7 show the data collection computers used for the experiment.
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Figure 4.6: Research Vehicle Setup for Dynamic C/N0 Data Collection

Figure 4.7: Dynamic C/N0 Instrument Setup
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The route for the experiment is shown in Figure 4.8. The route can be characterized

as an urban canyon, with foliage, buildings, and other obstructions causing multipath. The

route started behind the previously referenced Woltosz Engineering Research Building and

proceeded on the streets labeled in Figure 4.8.

Figure 4.8: Dynamic Route Recorded by Ublox EVK-M8T

Figure 4.9 shows the dynamic C/N0 estimation results for GPS SV 6. There is a large

amount of multipath at approximately the 10 second mark. There is also another drop in

the C/N0 at the 125 second mark. All methods were able to track these outages effectively,

which proved the filters used to filter noise variance and signal power were appropriately

tuned.
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Figure 4.9: Dynamic PRN 6 C/N0 Results (Left) and Dynamic PRN 33 C/N0 Results (Right)

GPS SV 17 has a lower elevation angle than GPS SV 6, which is evident by the high

number of outages in Figure 4.10. There is a failure to estimate C/N0 in both the 36

correlator method and the reduced correlator method between the 30 and 95 second mark

of the data. Both FMET and FMET reduced method are able to maintain accurate C/N0

estimates during that time period.
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Figure 4.10: Dynamic PRN 17 C/N0 Results (Left) and Dynamic PRN 33 C/N0 Results
(Right)

Figure 4.11 shows the results from GPS SV 19. All methods are able to track the outages

caused by the obstructions and both the FMET and FMET Reduced Method showed small

biases in C/N0.
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Figure 4.11: Dynamic PRN 19 C/N0 Results (Left) and Dynamic PRN 33 C/N0 Results
(Right)

4.4 Conclusions

As seen by this chapter, the low SWaP-C correlator C/N0 methods performed well

compared to the widely used 36 correlator method. There were also instances where the

low SWaP-C methods outperformed the 36 correlator method as seen by Figure 4.10. Also,

there were very few instances where there was a large difference between using PRN 33 and

the dedicated PRNs for noise correlator generation. Based on this and the fact that the low

SWaP-C methods work well, the method used in this thesis is the FMET reduced correlator

method using PRN 33 for C/N0 estimation. The method is responsive to dynamics and

not computationally expensive. Though the method does feature some biases from the true

C/N0 (+/− 2 dB), the method is able to track dynamics and recover from dynamic changes.

For implementation in this thesis, the estimated C/N0 is used to calculate pseudorange

and pseudorange rate variances that are used to update a measurement covariance for an

extended Kalman filter (EKF).
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Chapter 5

GPS L1 C/A Vector Tracking Receiver

Most GNSS receivers use scalar tracking to track code and carrier frequencies, creating

signal replicas that are passed to an external navigation processor. Vector tracking is a more

integrated approach where the navigation processor is embedded in the tracking loop with an

EKF. Numerous software defined receivers have effectively utilized vector tracking in their

receiver design [3], [15], [25], [39], [49]–[52]. Vector tracking has been proven to improve

receiver robustness by using its ability to track through noisy signal conditions [17], [18].

In this work, vector tracking was selected to add additional robustness to the beamforming

receiver.

This chapter is laid out as follows. Section 5.1 defines the vector tracking architecture.

Section 5.2 introduces the EKF used in the vector tracking navigation processor. Section

5.3 shows how to implement an asynchronous vector tracking loop. Section 5.4 introduces a

tool for determining vector lock characteristics, which is used later to analyze the robustness

of the vector tracking receiver.

5.1 Vector Delay/Frequency Lock Loop

The vector delay/frequency lock loop (VDFLL) is a combination of a vector delay lock

loop (VDLL) and vector frequency lock loop (VFLL). The combination of the VDLL and

VFLL were first shown in [16]. For comparison purposes, a block diagram of the architecture

of a scalar tracking receiver, previously derived in Chapter 3, is shown in Figure 5.1. A

vector tracking receiver has similar architecture to a scalar tracking receiver. The vector

tracking receiver still generates discriminators from correlators originating from a code and

carrier replica. However, the vector tracking loop does not include loop filters. Instead,
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Figure 5.1: Scalar Tracking Receiver Architecture [39]

discriminators are used to calculate range and range rate error terms that are inputs to the

extended Kalman filter navigation processor. The EKF then updates the carrier and code

replicas to generate new correlators. Instead of the navigation processor being a separate

entity, the navigation processor is coupled with signal tracking in the VDFLL. The vector

tracking architecture is shown in Figure 5.2. Sections 5.1.1 and 5.1.2 show the how the EKF

connects the discriminators and the NCO updates.

5.1.1 Range and Range Rate Error

As stated before in Section 3.4.1, the estimated pseudorange and estimated pseudorange

rate equations are shown below in Equations (5.1) and (5.2). These equations are used

with the estimated Kalman state vectors to generate estimated pseudorange and estimated
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Figure 5.2: Vector Tracking Receiver Architecture [39]

pseudorange rates at each Kalman propagation step.

ρ̂ =
√

(xsv − x̂r)2 + (ysv − ŷr)2 + (zsv − ẑr)2 + cb̂r (5.1)

ˆ̇ρ = ax(ẋsv − ˆ̇xr) + ay(ẏsv − ˆ̇yr) + az(żsv − ˆ̇zr) + cˆ̇br (5.2)

xsv and ẋsv are the satellite position and velocity in the ECEF x-direction. x̂r and ˆ̇xr are

the estimated receiver position and velocity in the ECEF x-direction. The same principles

hold true for the y and z-directions. b̂r and ˆ̇br are the receiver estimated clock bias and clock

drift. ax, ay, and az are the satellite LOS unit vectors.
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The measured pseudoranges are generated from the arrival times of the signals, which

can be found from the preamble locations in the signal. Equation (5.3) shows how the

measured pseudorange is calculated.

ρ̃ = c(tr − tt) (5.3)

tr is the signal received time, tt is the signal transmit time, and c is the speed of light in a

vacuum. Equation (5.4) shows how the measured pseudorange rate is calculated.

˜̇ρ = −cfD
fL1

(5.4)

fD is the corresponding channel Doppler frequency. Since the signals are mixed to baseband,

fDOP = fcarr. c is again the speed of light in a vacuum. fL1 is the frequency of GPS

L1. As stated before, the discriminators are used to determine pseudorange error, δρ, and

pseudorange rate error, δρ̇, which are the measurements for the EKF. Equation (5.5) shows

the derivation for pseudorange error.

δρ = λchipφDLL + ρ̃− ρ̂ (5.5)

φDLL is the DLL discriminator, and λchip is the PRN chip width. In theory, the discriminator

term should be the only term needed to determine the pseudorange error. However, better

results are obtained by adding a residual correction (ρ̃− ρ̂) [39]. Note that the DLL discrim-

inator comes before the Kalman propagation. The residual term comes from the Kalman

filters prediction (a priori) step, i.e., both the measured and estimated pseudoranges come

from the new Kalman propagated location. The equation for pseudorange rate error is shown

in Equation (5.6).

δρ̇ = −λwaveφFLL + ˜̇ρ− ˆ̇ρ (5.6)
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λwave is the carrier wavelength, φFLL is the FLL discriminator, and (˜̇ρ− ˆ̇ρ) is the pseudorange

rate residual. The same Kalman calculation timing logic that applies to Equation (5.5)

applies to Equation (5.6).

5.1.2 NCO Update

Another non-trivial aspect of asynchronous vector tracking is the NCO update. With

the method used in this thesis, the code frequency is updated using a pseudorange estimate

that is propagated an integration period beyond the propagation length of the Kalman filter,

as shown by Equation (5.7).

fcodek+1 = fchip −
ˆ̃ρk+1 − ρ̃k
λchipT

(5.7)

ρ̃k is the current measurement pseudorange calculated at the end of the Kalman propaga-

tion. ˆ̃ρk+1 is the measurement estimate of the pseudorange propagated forward ahead of the

Kalman filter by one integration period. T is the integration period, fchip is the chipping

rate, and λchip is the chip width.

The carrier frequency NCO update is more direct than the code update. Equation (5.8)

shows the carrier NCO update.

fcarrk+1 = fIF −
ˆ̇̃ρk+1

λwave
(5.8)

ˆ̇̃ρk+1 is the pseudorange rate measurement propagated one integration period ahead of the

Kalman filter, and λwave is the carrier wavelength of GPS L1 C/A.

5.2 VDFLL Extended Kalman Filter

The VDFLL uses an extended Kalman filter (EKF) to update the receiver PVT. For

this work, a position-state VDFLL is used for PVT estimation. Equation (5.9) shows the

68



Kalman state vector.

x̂ =
[
x̂ ˆ̇x ŷ ˆ̇y ẑ ˆ̇z cb̂ cˆ̇b

]T
(5.9)

The first six states are the estimated positions and velocities in the x, y, and z directions in

the earth centered earth fixed (ECEF) reference frame. cb̂ and cˆ̇b are the estimated clock

bias and clock drift terms, with c being the speed of light in a vacuum. Equation (5.10)

shows the discrete state transition matrix A. The state transition matrix changes depending

on the Kalman propagation length δT . This is due to the asynchronous implementation of

the VDFLL, which is explained in Section 5.3.

A =



1 δT 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 δT 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 δT 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 δT

0 0 0 0 0 0 0 1



(5.10)

The measurement observation matrix H is shown in Equation (5.11).

H =

−a(j)
x 0 −a(j)

y 0 −a(j)
z 0 1 0

0 −a(j)
x 0 −a(j)

y 0 −a(j)
z 0 1

 (5.11)

The unit vector corresponding to the channel measurement matching the end of the Kalman

propagation is used to populate (5.11). Similarly, the current pseudorange error δρ(i) and

pseudorange rate error δρ̇(i) are used to populate the measurement vector y.

y =

δρ(j)

δρ̇(j)

 (5.12)
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For tuning, the discrete process noise covariance matrix Q represents uncertainty in the

velocity model, which is represented by the state transition matrix. Q is shown in Equation

(5.13).

Q =



QPV 0 0 0

0 QPV 0 0

0 0 QPV 0

0 0 0 Qc


(5.13a)

QPV =

σ2
PV

δT 3

3 σ2
PV

δT 2

2

σ2
PV

δT 2

2 σ2
PV δT

 (5.13b)

Qc =

σ2
bδT + σ2

d
δT 3

3 σ2
d
δT 2

2

σ2
d
δT 2

2 σ2
dδT

 (5.13c)

σ2
b = c2h0

2 (5.13d)

σ2
d = c22π2h−2 (5.13e)

T is the tracking integration period, σ2
PV is the position variance, and σ2

b and σ2
d are the

clock bias and clock drift variances. h0 and h−2 are the power law coefficients found in [53].

Since the USRP used to record data contains a temperature compensated crystal oscillator

(TCXO), h0 is set to 2× 10−19, and h−2 is set to 2× 10−20. Since GPS accuracy is typically

around five meters and the receiver in this work improves accuracy with multiple antennas,

the position variance σ2
PV is set to 2 meters2. Equation (5.14) shows the measurement
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covariance matrix R, which is a function of range variance σ2
δρ and range rate variance σ2

δρ̇.

R =

σ2
δρ

(j) 0

0 σ2
δρ̇

(j)

 (5.14a)

σ2
δρ =

λ2
chip

2 (δT · 10(C/N0)/10)2 +
λ2
chip

4(δT ) · 10(C/N0)/10 (5.14b)

σ2
δρ̇ =

(
c

πfL1(δT )

)2 ( 2
(δT · 10(C/N0)/10)2 + 2

δT · 10(C/N0)/10

)
(5.14c)

C/N0 in Equations (5.14b) and (5.14c) is the carrier-to-noise ratio in dB-Hz. Like before,

δT is the propagation length of the EKF.

5.3 Asynchronous Timing

Timing synchronization is arguably the most challenging component of implementing

vector tracking. Vector tracking loops can be implemented in a synchronized batch [39] or

the loops can be implemented asynchronously [17]. The asynchronous implementation better

models the time difference of arrival (TDOA) nature of the GPS signals and yields better

performance when appropriately tuned.

As stated earlier, vector tracking must be initialized with scalar tracking PVT. In scalar

tracking, each channel discriminator is calculated at the same time instance, and those

calculations are passed to the navigation processor where pseudoranges are estimated at

the same time instance. Vector tracking improves this process by obtaining more accurate

pseudorange estimates at the actual arrival times of each channel. The common receive time

simplification is not used. This reduces error in the pseudorange estimates and allows for a

more precise position estimates. Figure 5.3 shows how asynchronous timing works. When

the first channel has obtained a position solution, the channel is immediately propagated

a full integration period (20 ms) and a pseudorange estimate is calculated. The extended

Kalman filter then estimates a position at the midpoint of the integration period, as shown

by the black diamonds. Once the next channel is active, the Kalman filter is propagated to
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the end of its integration period. This process continues until all channels are active, and

then the process looks like that shown in Figure 5.3.

Figure 5.3: Vector Asynchronous Timing Update

As noted previously, the black diamonds represent the midpoint of the integration pe-

riod. The measurements from each channel calculated at the end of the integration period

most closely resemble the position state at the midpoint of the integration period [51]. The

blue arrows represent each propagation step. Ensuring the correct propagation lengths is

crucial for operating an asynchronous vector tracking loop. The Kalman propagation lengths

can be determined by each of the channel preamble locations and the number of samples

read into the receiver.

Recall the code frequency NCO update in Equation (5.7). To further explain the NCO

update in an asynchronous implementation, suppose only two channels are vector tracking

while the other channels are still initializing in scalar tracking. Figure 5.4 shows the code

frequency estimation. The key in the upper right explains each step, with the discrete time

steps legend key being in the order the steps are implemented. Building off of Figure 5.3,

the first channel propagates 20 milliseconds at initialization (shown by the red straight line

in Figure 5.4) and a correction is applied, which gives a range measurement ρ̃(1)
k for channel

one. Another propagation is then applied, denoted NCO Update Propagation, that gives

an estimate for the next range measurement ˆ̃ρ(1)
k+1. There is no correction for this estimate

because the estimate is propagated 20 milliseconds ahead of the current measurement. The
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future estimate and the current measurement are then used to update the code frequency,

which is best represented at the midpoint of the Kalman propagation denoted by the black

diamonds. If only two channels are in vector tracking mode, the process looks like Figure

5.4 with the process following the red, pink, blue, orange, etc. steps. However, the more

complicated full process when all channels are activated in vector tracking is not represented

Figure 5.4.

Figure 5.4: Asynchronous Propagation Steps for NCO Update
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With more channels, therein lies the difficulty in vector tracking. Visualization of this

more difficult implementation is left as an exercise for the reader.

The benefits of asynchronous timing are the ability to obtain more precise position

results in certain situations, and, especially for this work, the ability to take full advantage

of the arrival time of the satellite signals.

5.4 Maximum Range Variance

The reason vector tracking is used in this thesis is the fact that vector tracking can

maintain lock through outages in the GPS L1 C/A signal and maintain tracking at lower

C/N0. On the contrary, a scalar tracking receiver will lose lock, and it takes time re-acquire

and track. Vector tracking having higher sustainability through outages than scalar tracking

is well known and researched [3], [18]. The research was expanded with work by Benjamin

Clark from Auburn University on the uncertainty of vector tracking and vector lock [52].

The uncertainty in vector tracking is difficult to define due to the asynchronous coupling of

channels. One channel can fail, but the rest of the channels have the ability to maintain

a non-diverged filter. This section introduces Clark’s analytical maximum range variance.

The analytical maximum range variance will then be used to analyze results from the vector

tracking beamsteering implementation.

5.4.1 Analytical Maximum Range Variance [52]

The state covariance matrix, P, is an estimate of the vector tracking algorithm uncer-

tainty. The pseudorange variance is derived from P, and the derivation is shown in Equations
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(5.15) to (5.19). The states are transformed using the Equation (5.15) for ease of calculation.

S =



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1



(5.15)

Equation (5.16) shows the resulting state vector. Note the states are now sorted with the

position related states and the velocity related states.

Sx =



δx

δy

δz

δcb

δẋ

δẏ

δż

δċb



=

xr

xrr

 (5.16)

The same operation with the transformation matrix can be conducted with the state covari-

ance matrix, P. The operation is shown below in Equation (5.17).

SPST =

 Pr Pr×rr

Pr×rr Prr

 (5.17)
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The sub-matrices are defined as follows: Pr is the pseudorange state covariances, Prr is the

pseudorange rate state covariances, and Pr×rr is the cross-covariances. Pr can be defined by

Equations (5.18).

Pr =

Pp ρc

ρTc σ2
cb

 (5.18a)

Pp =


σ2
x ρxyσxσy ρxzσxσz

ρxyσxσy σ2
y ρyzσyσz

ρxzσxσz ρyzσyσz σ2
z

 (5.18b)

ρc =


ρxcσxσcb

ρycσyσcb

ρzcσzσcb

 , (5.18c)

Pp is the position covariance, ρc is the clock cross-correlations, and σ2
c is the clock variance.

The sub-matrix Pp can be separated into a matrix of its eigenvectors U and a matrix of

its corresponding eigenvalues Λ. The largest eigenvalue, λmax, corresponds to the highest

variance along a single LOS unit vector. umax is the corresponding eigenvector to the largest

eigenvalue λmax. Therefore, [52] shows that the maximum range variance can be calculated

by Equation (5.19) below.

σ2
r =

[
uTmax 1

] Pp ρc

ρTc σ2
cb


umax

1


= uTmaxPpumax + 2ρTc umax + σ2

cb (5.19)

= λmax + 2ρTc umax + σ2
cb

Clark’s findings showed that the filter diverges when the 1σ range uncertainty exceeds 1/6th

of a chip, where the chip width of GPS L1 C/A is approximately 293 meters. This means

the vector tracking loop is considered unrecoverable if the 1σ range uncertainty exceeds
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approximately 50 meters. Note that the vector tracking loop does not diverge if 4 or more

satellites are visible. The loop can propagate other ranges forward in time and is able to

maintain lock.

5.5 Conclusions

In this chapter, the vector tracking receiver was introduced. The combined VDLL

and VFLL or VDFLL was explained in detail. In the VDFLL implementation, carrier

phase is not tracked because there is not a PLL, which makes the VDFLL more robust

to noise. Initial navigation data is obtained from the scalar tracking PLL and is used

during the vector tracking beamsteering process for satellite positions. There are vector

tracking implementations with PLLs, such as a PLL aided vector tracking loop [39] and

a fully integrated VDLL VPLL [50]. The reasons why a user would want carrier phase is

for a GNSS attitude estimate [54], real-time kinematic (RTK) positioning, and navigation

data updates. This work assumes attitude is obtained from an external source and the

scenarios do not need navigation updates. The VDFLL is the appropriate design for this

work due to the assumptions outlined above as well as its robustness to noise. This chapter

also explained asynchronous timing, which is required to overcome assumptions from the

batched implementation. Also, the maximum range variance analysis tool was introduced

to define vector lock.
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Chapter 6

Multi-Antenna Vector Tracking Beamsteering

Vector tracking and beamsteering have individually been shown to improve receiver

performance [1], [18] in the face of multipath, jamming, etc. With the GPS L1 C/A signal

being at such low power, any improvements to C/N0 carry much merit in receiver design. In

2016, the German Aerospace Center (DLR) presented a combined vector tracking beamsteer-

ing receiver architecture [20] that implemented an adaptive eigenspace mitigation method

similar to that of [55] in post-correlation. The advantage of post-correlation beamforming

is the fact that attitude is not needed because satellite positions are detectable. However,

the disadvantages of post-correlation beamforming is a higher computational load on the re-

ceiver and a lack of modularity. This thesis couples vector tracking and beamforming before

tracking correlators are generated for the vector tracking loop. This reduces the number

of correlator channels needed by a factor of the antenna array elements. It also allows for

sensor modularity, i.e. the vector tracking loop can be coupled with a NovAtel GAJT or

alternative beamforming front-end, and the attitude source can be swapped.

The implementation in this thesis feeds back satellite geometry from the vector tracking

navigation processor to create deterministic weights for standard beamsteering. While this

method does not actively attempt to protect the receiver from harmful emitters, as in [20],

the method presents a simplified and effective implementation of directing more power in the

direction of SVs and less power in the direction of the elevation mask, where most undesirable

emitters are present. The benefit behind this implementation is simplicity, giving it an edge

in low SWaP-C design.

This chapter is laid out as follows. Section 6.1 describes in detail the design of the vector

beamsteering receiver. Section 6.2 shows the impact of different array sizes by comparing the
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signal improvements from using different array patterns in simulation. Section 6.3 shows how

the vector tracking coupling performs in an open sky and multipath environment. Section 6.4

includes the results from injecting interference data on a live sky scenario. Finally, Section

6.5 outlines the conclusions that can be drawn from this analysis.

6.1 Algorithm Architecture

The design of the vector tracking coupled beamsteering algorithm can be defined by

three main sections: the vector tracking receiver (Chapter 5), the beamsteering module

(Section 6.1.1), and the attitude update (Section 6.1.2). The vector tracking receiver has

already been described in detail. The beamsteering algorithm and the attitude update are

described in Sections 6.1.1 and 6.1.2.

6.1.1 Deterministic Beamsteering

As described earlier, beamforming is the method of modifying signal phases to obtain

a desired radiation pattern on an antenna array. Beamsteering is a subset of beamforming

where signals phases are modified to align signals from a desired direction. By aligning the

signals in phase, the signals add constructively yielding a higher digital receive power of the

cumulative signal. The deterministic algorithm used in this work is described below.
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Figure 6.1: Incident Signals on Arbitrary CRPA Array

Using Figure 6.1 as a reference, the desired phase delays (or weights Wm) for the mth

element are shown in Equation (6.1).

Wm = e
−j

2πr̂dm
λ (6.1)

dk is the location of each antenna, usually from a selected reference element. λ is the

wavelength of the signal. r̂ is the boresight vector described in Equation (6.2).

r̂ (Az,El) =
[
sinAz cosEl cosAz cosEl sinEl

]
(6.2)

The boresight vector is a unit vector directed in the line of bearing given by azimuth and

elevation. With the boresight vector as an input to the weight equation, weights can be

set to align the antenna beam with a certain azimuth and elevation angle. This simple

deterministic beamsteering approach is tested with both a scalar tracking and vector tracking

loop implementations for comparison purposes. An example of beamsteering to a signal
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at azimuth = 180, elevation = 45 degrees is shown in the top two plots of Figure 6.2.

Beamsteering to a signal at azimuth = 320, elevation = 60 degrees is shown in the bottom

two plots of Figure 6.2.

Figure 6.2: 4 Element CRPA Beamsteering (λ2 spacing)

Since signals are digitized before the vector tracking loop, beamsteering can be con-

ducted on each tracking channel in parallel. In this form, N − 1 limitations do not apply.

Each tracking channel has four input signal streams that are beamsteered to the single

corresponding tracking channel satellite prior to correlator generation.
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6.1.2 Course Update

The attitude update is necessary to ensure that the azimuth and elevation angles are

accurate in the body frame. Ideally, the user would select an alternative sensor, such as an

inertial measurement unit (IMU), to perform the attitude update to improve resilience. How-

ever, for this work, attitude is simplified to be course. Since this research is conducted using

a ground vehicle on relatively flat terrain in an uncontested environment, this assumption is

valid for testing.

The course update was calculated using the velocity output from the navigation proces-

sor. For this work, the course was applied from north using Equation (6.3), where vE is the

east component, and vN is the north component of velocity.

ψcourse = arctan
(
vE
vN

)
(6.3)

Since velocity estimates break down as speed decreases, a course estimate threshold was set

to 2 m/s to mitigate false course measurements. This also was accounted for in the data

recording process by maintaining a constant course at slow speeds (i.e. not turning the

vehicle while driving slow).

6.1.3 Schematic

Figure 6.3 shows an overall block diagram for the multi-antenna vector tracking coupled

beamsteering receiver. The receiver initially runs single antenna scalar tracking from a

reference element to initialize vector tracking and determine initial estimates of satellite

geometry. As soon as the first scalar PVT solution is obtained, the receiver activates single

stream vector tracking, which was shown in Figure 5.2. The receiver is given a few seconds

to maintain vector lock, characterized by the maximum range variance (Section 5.4), and

then the receiver transitions to vector coupled beamsteering.
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In the vector coupled beamsteering configuration, all antenna streams are active, and the

streams are combined before correlators are generated in vector tracking. Satellite azimuth

and elevation angles are estimated in the navigation processor and fed back to update the

weights using the boresight vector Equation (6.2) and then Equation (A.1). The weights are

then used to make the signals add constructively at the line-of-bearing of the desired SV.

Since vector tracking asynchronously processes one SV at a time, the corresponding azimuth

and elevations are fed back in a cyclic fashion, aligning with the VDFLL.

Multiple antenna elements can be added to the algorithm with ease based on this design.

Section 6.2 shows the advantages of adding multiple antenna elements and the effects the

elements have on signal quality.
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6.2 The Impact of Different Array Sizes

To test the versatility of the multi-antenna receiver, a software GPS signal simulator [56]

was used to simulate signal data of different sized arrays. In total, six array geometries were

selected for testing. Figure 6.4 shows five of the six geometries that were simulated. Arrays

were selected from an Antcom catalog, and the phase centers of the arrays were assumed to

be centered on the SMA ports. This thesis does not attempt to make performance claims

about Antcom specific arrays.

Figure 6.4: Antcom Simulated Array Patterns

In addition to the six arrays shown, a linear two element half wavelength array was also

simulated. Section 6.2.1 shows the results from simulating all signals at the same power

level. Section 6.2.2 shows how the receiver reacts to a scenario with variable power. A single
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antenna scalar tracking receiver, a single antenna vector tracking receiver, and a multi-

antenna scalar tracking beamsteering receiver are compared to the proposed multi-antenna

vector tracking beamsteering receiver to analyze performance.

6.2.1 Signals Simulated at Same Power

The signals in this section are simulated at constant matching power level (45 dB-Hz

C/N0). With the signals at the same power, the effects of antenna geometry become evident.

Figure 6.5 shows the sky plot for the simulated scenario.

Figure 6.5: Sky Plot for Simulated Scenario

With a PDOP of approximately 1.54, the scenario provides a good measure of the

performance of the CRPA arrays. The scenario was also simulated with a stationary receiver

to reduce the effects of dynamics on the results. The arrays were oriented north, so the

attitude update was unnecessary during the static simulation.
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C/N0 Improvements

C/N0 is used again as a performance characteristic for the proposed receiver. The

C/N0 is expected to increase once beamsteering is initiated. The signal components add

constructively, but the noise does not add constructively if the noise is uncorrelated. In

general, if two signals of equal magnitude with uncorrelated white Gaussian noise are added

constructively, the signal amplitude doubles while the noise amplitude scales to
√

2. Likewise,

if the signal amplitude triples (i.e. three antennas), the noise amplitude scales to
√

3 and so

on. This introduces a natural diminishing return in C/N0 as the number of antenna elements

increase, which is seen in plots in this section.

The radiation patterns for each array beamsteered to the highest elevation satellite in

the scenario (PRN 29 at el. = 70◦) are shown below in Figure 6.6. The units of the radiation

pattern are in dB relative to an ideal isotropic antenna (dBi). Note the color scale changing

on each plot. As the number of elements increase, the dBi gain value increases. All of the

radiation patterns were able to successfully beamsteer to the PRN 29 satellite.
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Figure 6.6: Magnitude Radiation Patterns for High Elevation PRN 29 [dBi]

Figure 6.7 shows the C/N0 of PRN 29 increase in the simulation when beamsteering

was turned on at approximately 16 seconds. The mean of C/N0 over each second is plotted

as well as the one sigma bounds of the data. The single element scalar and vector tracking

C/N0 values hold constant at the simulated 45 dB-Hz level. When beamsteering is initiated,

the multi-antenna receivers C/N0 immediately jump to a higher value. For this plot and

the proceeding plots in this section, the lightest shaded values correspond to the lowest

number of CRPA elements, two. The shading becomes darker as the number of elements
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increase. Vector tracking excels in aiding satellites when their signal quality degrades. Since

the signal quality is favorable throughout the scenario, vector tracking performs similarly to

scalar tracking as expected.

The data shows that the largest jump occurs when the number of antennas is increased

from one to two elements. However, immediately after, the jump from two to three elements

yields a diminishing return. Surprisingly, the jump from four elements to five elements

is larger than some of the previous jumps. This is attributed to the beneficial geometry

provided by the array. A whole field of study is devoted to array pattern synthesis where array

patterns are geometrically designed to give the optimal results at certain angles. However,

the proceeding geometrical array effects are not studied in this work. The five, seven, and

eight element CRPAs perform nearly the same for high elevations.
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Figure 6.7: Simulated C/N0 Improvements Beamsteering Toward a High Elevation SV

The prospective signal quality in the receiver has improved with a maximum result of

increasing the C/N0 by 8 dB-Hz for the seven and eight element configurations. This is

significant and allows the vector and scalar multi-antenna receivers to push the bounds on

track-able low power signals, hence the appeal of multi-antenna receivers.

Figure 6.8 plots the same data in Figure 6.7 after the beamsteering is initiated. Again,

since the receiver is stationary, the mean and 1σ are calculated over the last 30 seconds of the

data. The overall trend of diminishing return is evident. Also, a general decrease in C/N0

variance is notable as the signal quality increases. Vector tracking has a lower variance on

C/N0 compared to scalar tracking.
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Figure 6.8: C/N0 Improvements after Initiating Beamsteering Toward a High Elevation SV

Figure 6.9 shows the radiation pattern for each array beamsteering to a mid-level satellite

(PRN 15 at el. = 52◦). The five element shows quarter wavelength spacing characteristics

with multiple high power side lobes. However, it still has its highest lobe aligned with PRN

15. All of the arrays continue to steadily improve the dBi gain associated at the front-end

of the receiver, which is expected.
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Figure 6.9: Magnitude Radiation Patterns for Mid Elevation PRN 15 [dBi]

Figure 6.10 shows the signal quality improvements when beamsteering to PRN 15 using

the antennas under testing. The results are similar to the results in Figure 6.7, with exception

to a one dB-Hz decrease in C/N0 for the five and seven element CRPAs and a one dB-Hz

increase in C/N0 for the eight element CRPA. The eight element array increased the signal

quality by eight dB-Hz at the mid elevation level.

92



Figure 6.10: Simulated C/N0 Improvements Beamsteering Toward a Mid Elevation SV

Figure 6.11 shows the mean and 1σ values for the receiver PRN 15 C/N0 values. Similar

to PRN 29 in Figure 6.8, there is a diminishing return in C/N0 as the number of elements

increase. There is a large performance gain by switching from a one to two element array.

However, that return lessens as the number of antennas increases (i.e. element 4 to element

5). The data in Figure 6.8 and Figure 6.11 follow an exponential curve. Since the C/N0

improves by the analytical solution M/sqrt(M) where M is the number of array elements,

the data following an exponential curve is expected.
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Figure 6.11: C/N0 Improvements after Initiating Beamsteering Toward a Mid Elevation SV

At lower elevations (PRN 18 at el. = 17◦), the antenna array radiation pattern still

performs the same as it does at higher elevations. This is a byproduct of simulation and

is not the case in practice. The simulation assumes the array elements are isotropic. In

practice, most antennas do not have a uniform magnitude distribution, and most antennas

have less gain at low elevations.
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Figure 6.12: Magnitude Radiation Patterns for Low Elevation PRN 18 [dBi]

Figure 6.13 shows the different arrays performance beamsteering to low elevation PRN

18. The seven element array outperforms the other antenna arrays in the simulation, offering

almost a 10 dB-Hz increase in C/N0. This is a deviation from the analytical solution that

might be attributed to the geometry of the seven element. The field of selecting the optimal

array geometry to achieve specific performance returns is called array pattern synthesis,

which is not covered in this work.
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Figure 6.13: Simulated C/N0 Improvements Beamsteering Toward a Low Elevation SV

From Figure 6.14 outlines the same values from Figure 6.13. Excluding the seven element

array, the data still follows an exponential curve. Array pattern synthesis might explain the

deviations in the seven element array performance values. It should also be noted that this

data is collected from single runs on static scenarios. In other words, the same 48 second

scenario was generated for each antenna array, and the scenario was processed once. A

monte carlo simulation was considered, but not included in this work due to the significant

computation time associated with the simulation.
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Figure 6.14: C/N0 Improvements after Initiating Beamsteering Toward a Low Elevation SV

From this data and Equations (5.14b) and (5.14c), it is implied that the range and range

rate variances decrease when C/N0 is increased. Appendix D.1 shows the calculated range

and range rate variances for standard vector tracking and multi-antenna vector tracking

beamsteering.

6.2.2 Signals at Variable Power

Since vector tracking specializes in aiding low power satellites, the following simulation

decreased signal power on low elevation satellites to see the benefits of vector tracking. For

this simulation, signals were simulated like in the previous section with all signals having

a C/N0 of 45 dB-Hz. After approximately 50 seconds, signal power on the low elevation

satellites was dropped significantly. High elevation satellites maintained their previous C/N0
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values. C/N0 improvements are shown as well as range and range rate variance calculations

are shown in Appendix D.2.

Tracking Improvements

Figure 6.15 shows the C/N0 dropping to 25 dB-Hz, well below the tracking threshold

for scalar tracking. The C/N0 improvements for PRN 18 are the same over the same power

section of the simulation, as shown in Figure 6.13. Note standard scalar tracking loses lock

at the power drop. For the receivers being tested, an unlocked loop outputs C/N0s at a 28

dB-Hz level. This nuance will be fixed in future testing, but it is present and evident in all

the results in this thesis. Vector out performs scalar tracking at nearly all antenna levels,

showing the benefits of vector tracking. Standard scalar tracking is shaded in gray due to

its loss of lock at low power.
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Figure 6.15: Low Power C/N0 Improvements Beamsteering at 17◦ Elevation

For a better analysis, Figure 6.16 shows the mean and 1σ data after the drop in signal

power. The loss of scalar lock for one antenna is evident as it drifts up to the 28 dB-Hz value.

Vector tracking with one antenna is able to maintain lock. Multi-antenna scalar beamsteering

shows a significant variance in C/N0, but can still maintain tracking capabilities. Multi-

antenna vector tracking beamsteering shows tracks with a manageable variance and accurate

values throughout. As in the previous figure, standard scalar tracking is shaded gray because

it lost lock and deviates from the truth simulated power level to the undesirable 28 dB-Hz

unlocked value.
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Figure 6.16: C/N0 Improvements after Power Decrease at 17◦ Elevation

Extending the comparison to tracking parameters, Figure 6.17 shows the code frequency

tracking estimates. The multi-antenna scalar tracking results are plotted in blue, and the

multi-antenna vector tracking results are plotted in orange. When the C/N0 value is dropped

to 25 dB-Hz, the variance on the multi-antenna scalar code frequency estimate increases but

is able to maintain lock. The variance increase in the code frequency estimate directly

affects the code discriminator, which directly affects the pseudorange estimates. Multi-

antenna vector tracking is able to maintain a less variant lock compared to multi-antenna

scalar tracking.
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Figure 6.17: Antenna Array Code Tracking Comparison for PRN 18

Figure 6.18 shows the carrier tracking results for PRN 18. Similar to Figure 6.17, the

variance increases on the multi-antenna scalar estimates. The multi-antenna vector tracking

loop has less variance in its estimates. The variance in the carrier frequency estimate directly

affects the pseudorange rate estimates in both tracking schemes.
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Figure 6.18: Antenna Array Carrier Tracking Comparison for PRN 18

A satellite at 2 degrees elevation was simulated with a true power level of 20 dB-Hz

to further test the resilliance of the different receivers. At this level, even vector tracking

should struggle. Figure 6.19 shows the resulting signal quality of SV 9. All of the scalar

tracking C/N0s showed loss of lock characteristics with all of them around the same level of

28 dB-Hz. The single antenna vector tracking mean also deviated from the true value of 20

dB-Hz C/N0. Nevertheless, vector tracking maintains lock for every configuration. For the

seven element configuration with a net increase in C/N0 of approximately eight dB-Hz, the
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seven element vector tracking loop can at least handle and track a signal at 12 dB-Hz C/N0.

Figure 6.19: Low Power C/N0 Improvements Beamsteering at 2◦ Elevation

Figure 6.20 shows vector tracking obtaining valid C/N0s after the drop in power. All

scalar configurations output at the same level indicating loss of lock.
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Figure 6.20: C/N0 Improvements after Large Power Decrease at 2◦ Elevation

Figure 6.21 also shows the multi-antenna scalar tracking receivers losing lock when C/N0

was dropped to 20 dB-Hz on PRN 9. The scalar code frequency estimates immediately

increase in variance as soon as the C/N0 was decreased. The five element antenna array

loses lock on the code frequency. Other arrays like the three, four, seven, and eight elements

are able to maintain lock for short periods of time. Eahc array showed divergent responses

at certain instances in the simulation. On the contrary, the multi-antenna vector tracking

receivers were able to successfully track PRN 9 after the C/N0 was dropped. The clean signal

channels in the vector tracking loop were able to successfully aid the PRN 9 noisy channel.
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Figure 6.21: Antenna Array Code Tracking Comparison for PRN 9

Figure 6.22 shows the carrier frequency tracking results for PRN 9. All of the multi-

antenna scalar tracking receivers diverged from the true carrier frequency. The multi-antenna

vector tracking receivers were able to maintain carrier lock during the 20 dB-Hz C/N0 se-

quence.
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Figure 6.22: Antenna Array Carrier Tracking Comparison for PRN 9

With other SVs at low elevations dropping to a low power level as well, position error

from the simulated truth was analyzed to understand the effects on the receiver output.

Position Error Improvements

The position error was analyzed at two locations in the variable power simulation; the

locations were before the drop in power after beamsteering was initiated and after the power

drop. Table 6.1 shows the absolute mean and 1σ scalar tracking position values in the ENU
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frame. The scalar configurations are listed, increasing in the order of antennas. Table 6.2

Table 6.1: Scalar Tracking Position Error from SV Power Simulations

SVs at Same Power Low Power SVs Added
Type (# of e) µE µN µU σE σN σU µE µN µU σE σN σU

Scalar (1) 3.9 6.6 1.0 4.2 6.8 10.0 11.1 10.6 71.2 18.4 16.6 143.0
Scalar (2) 3.7 6.3 1.3 3.9 6.3 9.0 10.0 9.5 63.6 15.3 12.9 111.3
Scalar (3) 3.8 6.4 1.6 3.9 6.2 9.2 10.0 10.2 44.3 13.3 11.0 91.9
Scalar (4) 3.7 6.5 2.4 3.9 6.1 9.0 7.8 9.0 26.0 9.3 9.5 29.0
Scalar (5) 3.7 6.0 0.4 3.0 6.2 8.8 8.5 9.0 27.8 9.9 9.5 32.2
Scalar (7) 3.8 5.9 2.9 3.8 6.2 8.9 7.6 8.9 23.4 9.0 9.5 27.6
Scalar (8) 3.6 6.1 2.9 3.8 6.2 8.9 7.7 8.9 25.8 9.1 9.5 28.6

shows the absolute mean and 1σ results for the scalar tracking position values in the ENU

frame.

Table 6.2: Vector Tracking Position Error from SV Power Simulations

SVs at Same Power Low Power SVs Added
Type (# of e) µE µN µU σE σN σU µE µN µU σE σN σU

Vector (1) 2.4 4.9 1.8 0.5 0.3 2.1 2.1 2.6 11.9 2.4 2.3 9.3
Vector (2) 2.3 4.9 2.3 0.5 0.4 2.7 2.3 2.3 10.6 2.7 2.1 8.7
Vector (3) 2.2 4.8 2.3 0.6 0.4 2.7 4.0 1.2 6.5 2.3 1.5 8.1
Vector (4) 2.2 4.6 2.8 0.6 0.4 3 2.7 3.2 13.8 3.2 2.2 10.5
Vector (5) 2.2 4.4 3.0 0.6 0.6 3.5 4.4 1.5 6.8 2.7 1.8 8.9
Vector (7) 2.5 4.5 3.2 0.7 0.6 3.6 3.3 1.9 7.5 2.5 1.8 8.3
Vector (8) 2.1 3.9 3.1 0.6 0.5 3.3 3.6 2.3 7.2 2.6 1.8 8.5

There is a significant amount of position error from the data when using single element

scalar tracking at the low power level. Most of the position error is in the up direction with

absolute mean of 71.2 meters. The standard deviation in the up direction for single antenna

scalar tracking is also high, with the standard deviation being 143.0 meters. The east and

north directions also showed significant errors in position. When initiating single element

vector tracking, the position error decreases in all ENU. The up direction improved from

71.2 meters to 11.9 meters, along with five times better positions in the East and North

directions. For scalar tracking with multiple antennas, the position errors tend to become

smaller as the number of antennas increases, with a few exceptions in the data. The same
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can be observed by the standard deviation of the error as the variance mostly decreases as

the number of elements increases.

Figure 6.23 shows the SVs before power levels were dropped in the simulation. For

the SVs at 45 dB-Hz C/N0, vector tracking has less absolute error than scalar tracking for

all directions except for the up direction where vector tracking matches scalar tracking in

absolute error. Vector tracking also has a considerably lower standard deviation in position

than scalar tracking.

Figure 6.23: Simulated Position Error Comparison with All SVs Simulated at Same Power

For the scenario simulated with lower power SVs in Figure 6.24, the vector tracking

position error across all CRPAs is lower than scalar tracking across all of the CRPAs. As
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noted in the data in the table, the scalar tracking position variances decrease as the number

of antennas increase. Even though the low elevation channels for the scalar tracking loop

lose lock, the scalar tracking receiver still positions using only higher elevation SVs.

Figure 6.24: Simulated Position Error Comparison with Low Power SVs Ingested

Based on the simulation results, the multi-antenna vector tracking should yield improved

results for live sky data. The following section outlines how live sky was collected and

processed in the software receivers, as well as the comparison results of multi-antenna scalar

and vector tracking receivers.
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6.3 Live Sky Testing

Hardware calibration routines are required for live sky processing in a CRPA receiver.

Additionally, a course or attitude update is required to keep the beamsteering beams pointing

in the desired directions as the receiver changes orientation (Section 6.1.2). Since there are

four front-ends with four signal streams going to the receiver, the phase and magnitude

difference between the hardware lines must be accounted for in calibration (Section 6.1.2).

Typically, array manifold calibrations must be conducted, but an assumption is made in

this thesis that does not require array manifold calibrations. The data collection setup is

outlined in this section as well as the receiver performance after processing the live sky data.

An interference scenario was also created by injecting jamming data on live sky collected

data, which is shown in Section 6.4.

6.3.1 Acquisition Phase Calibration

The acquisition phase calibration was conducted in post-processing to remove the line

to line phase difference induced by the USRP X310, the front-end selected for live sky data

recording, as well as account for delays induced by the array manifold. Since the local

oscillator (LO) in the X310 with Twin Rx daughter boards is the same for all channels, the

phase offset is the only calibration process that was conducted in this work. An antenna

calibration was not necessary in this work since the phase calibration included the antenna.

An overview of the phase calibration process is shown in Figure 6.25.
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Figure 6.25: Line-to-Line and Array Manifold Phase Calibration

Acquisition phase calibration can be described in three parts: signal combination, ac-

quisition, and max peak detection. For signal combination, signals were combined in this

order: signals 1 and 2, signals 1 and 4, and signals 1 and 3. Each combination creates a

miniature 2 element sub-array, and the sub-arrays are beamsteered to the satellite. Line-

to-line phase delays φll were added to the beamsteering phase delays, and the line-to-line

phase delays were cycled from 0 to 360 degrees with 1 degree resolution, giving a total of 360

different combinations per signal combination. For each signal combination, acquisition was

processed, and the acquisition peak magnitude was logged. The same batch of signal data

was used, so Doppler was known during the entire process. This reduced acquisition to be

a code phase search, which significantly reduced computation time since 1080 acquisitions

must be conducted for a four element CRPA. Next, the line-to-line phase delay yielding the

maximum acquisition peak from each signal combination was logged. The line-to-line phase

delays yielding the highest peaks were taken to be the line-to-line phase delays induced by

the hardware.

This process was conducted three times, using the satellites with the three highest

elevations and averaging the line-to-line phase delays computed from each satellite. This
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process worked well and accounted for array manifold perturbations since the antenna was

included in the calibration.

6.3.2 Data Collection Setup

The collection setup for collecting synchronized four channel RF data is described in

this section. Figure 6.26 shows a graphical layout of the data collection setup. The CRPA

antenna used for the collection was the Antcom Active CRPA 4CF-75G121SP-XS-4. The

antenna is shown in Figure 6.26 and referenced in Section 6.2. Even though the antenna is

active, quantization noise was a concern for the USRP X310 since GPS L1 C/A data is at low

power. With that in mind, a custom JFW signal conditioning box was placed inline between

the USRP and the Antcom antenna. The signal conditioning box provided programmable

gain and bias tees that powered the CRPA. All cables used in data collection were of equal

length yielding minimal difference in signal quality from stream to stream. As stated earlier,

an Ettus USRP X310, integrated with a twin Rx daughterboard, was the front-end used for

live sky data collection. It was connected downstream from the JFW signal conditioning

box, and it offers programmable gains similar to that of the signal conditioning box. To

ensure the signal data was not clipped, an AGC was programmed in UHD to continuously

adapt the gains to give the best signal quality possible at the receiver. The JFW gains were

set manually to raise each signal stream to -2.5 dBFS before the USRP AGC could fine-tune

the signal data to better quality. A Twin Rx UHD program recorded 25 MHz sample rate

two byte I two byte Q data.

Along with the USRP collecting four channel IQ data, a Ublox F9 receiver was used to

record reference data for analysis. The Ublox was connected to a Novatel Pinwheel antenna,

identical to the one in Section 4.3.2. A GPS L1 C/A bandpass filter was placed inline to

level the playing field for the Ublox F9 and the other receiver configurations tested.
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Figure 6.26: Data Collection Setup

A linux based recording computer managed both the Ublox and UHD recording software.

The computer logged all of the data to a high-speed Samsung Evo Plus M.2 drive. Dual

SFP ports were configured on the USRP to maximize streaming speeds. Unfortunately, the

data writing to the M.2 drive turned out to be the bottleneck in the recording process. Time

had to be allocated between recording routes to allow the M.2 drive to cool down. Only

approximately 7 minutes of complex IQ data could be logged before the M.2 drive started

underflowing (i.e. data samples) due to the drive overheating. This shortcoming in the data

collection setup is noted as an improvement that should be implemented in future work.

Figure 6.27 shows the data collection vehicle used with the antennas mounted on the

roof. The CRPA antenna is mounted 1 meter behind of the Novatel pinwheel antenna, and

the antenna offset is considered in post-processing.
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Figure 6.27: Data Collection Vehicle

Figure 6.28 shows a top view of the vehicle facing from back to front, with the CRPA

antenna in the back and the pinwheel antenna in the front.

Figure 6.28: Antenna Mounting Configuration
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6.3.3 Open Sky Environment

The first route processed was a relatively open sky route. The open sky route was a

commute from IS4S to Conway Acres in Auburn, AL. The route included open sky data

along the first portion of the route and then mild to medium foliage along the Cox Rd.

portion of the route. A picture of the route is shown in Figure 6.29. The route also features

an interstate section with high acceleration and deceleration sections in an automotive sense.

Figure 6.29: Google Maps Commuter Route [57]

The sky plot for the route is shown in Figure 6.30. With only six satellites present,

outages in any satellite channel could cause positioning consequences. The satellites present

yielded a PDOP value of 3.04 with a HDOP value of 1.52.
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Figure 6.30: Sky Plot Commuter Route

After the route data was processed using a scalar tracking receiver, a scalar tracking

receiver with beamsteering, a vector tracking receiver, and a vector tracking receiver with

beamsteering, C/N0 data was analyzed from a high, mid, and low elevation perspective.

C/N0 Improvements

The SVs chosen for the C/N0 analysis were SV 30, 14, and 19. SV 30 was at a high

elevation of about 75 degrees, SV 14 was at a mid elevation of about 50 degrees, and SV 19

was at a low elevation of about 18 degrees. Figure 6.31 shows the resulting C/N0 data from

the route. For PRN 30, the course was updated correctly as vector and scalar beamsteering

showed a roughly constant improvement in C/N0 across all of the data. The data is also

analogous to the simulated data shown in Section 6.2. There was a course ambiguity for

vector tracking beamsteering at the beginning of the PRN 19 and PRN 14 data. The C/N0

decreased initially and then locked to the correct course at approximately 80 seconds. This

was determined to be a vehicle attitude estimation problem and does not accurately reflect
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the receiver performance using vector tracking with beamsteering. After the initial prob-

lem, vector and scalar beamsteering show the appropriate C/N0 improvements throughout

the run with vector tracking coupled beamsteering out performing scalar tracking coupled

beamsteering at signal power outages. The same can be said about standard vector tracking

compared to standard scalar tracking throughout the run. All C/N0s did not contradict the

Ublox F9 measured C/N0s, showing similar performance to the F9 for the single antenna

algorithms. The drop in C/N0 at the 580 second mark is the direct cause of an underflow

in the IQ recording, where the M.2 drive skipped samples, and all channels on all receivers

lost lock.

Figure 6.31: C/N0s from Commuter Route
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The other SV C/N0 plots yielded similar performance to Figure 6.31, but those plots are

not shown as they do not add anything in terms of performance characteristics. Pseudorange

and pseudorange rate improvements from all routes in this chapter are plotted in Appendix

D. The following section shows the positioning improvements from the route.

Positioning Improvements

For the open sky route, positioning improvements were marginal, but there were still

improvements in the data. Figure 6.32 shows a comprehensive view of the route with the

four different receivers positions being plotted. The Ublox F9 positions are also plotted

as a dashed line for reference. The plot was created using google maps and MATLAB in

post-processing.
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Figure 6.32: Commuter Route Position Results (Wide View) [57]

Figure 6.32 shows that all receiver architectures successfully positioned throughout the

whole run. None of the receivers lost lock until the underflow at the end of the run, and that

data was cropped from this plot to show the actual performance of the receivers. Figure 6.33

shows a zoomed in portion of the route on South College Street. This plot shows that both

scalar tracking and scalar tracking with beamsteering show similar performance in variance

and seem unbiased. It is more difficult to see the scalar receiver performance on the plot, but

the performance will be analyzed statistically later in this section. Standard single antenna

vector tracking shows descent performance but is slightly bias from the Ublox F9, which is

considered "truth" throughout this analysis. Vector tracking with beamsteering is unbiased

during the route segment and aligns with the F9 positions exceptionally.

119



Figure 6.33: South College Positioning Segment [57]

Figure 6.34 shows the same performance crossing the bridge over the interstate as was

shown in Figure 6.33. Unfortunately, the position solution degraded when higher dynamics

were introduced when the vehicle proceeded onto the interstate. A noticeable bias can be

observed by both vector tracking and vector tracking with beamsteering. However, the

vector tracking bias is greater than that of vector tracking with beamsteering. This bias can

be attributed to the tuning of the vector tracking loop. Vector tracking with beamsteering

improves measurement quality. Therefore, since vector tracking with beamsteering has a

smaller bias than standalone vector tracking, the bias is attributed to vector tracking over

weighting poor measurements arriving at the receiver.
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Figure 6.34: Interstate Dynamic Positioning Segment [57]

To analyze the differences, the LLA positions were converted to ENU, and the positions

were differenced with the Ublox reference positions to measure position error relative to a

COTS receiver. Figure 6.35 shows the position error analysis. Standard scalar tracking

and scalar tracking with beamsteering performed relatively similar. The solutions for both

scalar tracking algorithms were initially offset from the "truth" position recorded by the

Ublox F9. After about 20 seconds, both scalar positions aligned with the Ublox F9. Both

vector tracking algorithms suffered due to the scalar algorithm misalignment. Vector tracking

relies on scalar tracking to obtain an initial position solution to initialize the vector tracking

EKF, and the initial position solution was off by 10 meters in the East direction. The

vector beamsteering receiver is still able to perform considerably well until the dynamic

portion where the vehicle drove onto the interstate. Vector beamsteering then created a
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bias and struggled to maintain an aligned solution for the rest of the run. Standard vector

tracking showed similar characteristics to vector beamsteering. However, the errors were

higher because the standard vector tracking algorithm did not have the improved signal

quality that vector beamsteering created. The biases could be reduced by tightening the

process noise filter parameters. Tighter process noise filter parameters (i.e. low Q) provide

less correction with the distorted measurements from low elevation, semi-blocked signals.

Figure 6.35: Position Error (Relative to Ublox F9) from Commuter Route

The statistics from Figure 6.35 are shown in Table 6.3. The left three columns show the

mean error relative to the Ublox F9 in ENU, and the right columns show the 1σ error relative

to the Ublox F9 in ENU. From the data, scalar beamsteering performed slightly better than

scalar tracking, which is expected because the beamsteering aspect creates better signal

quality for the receiver. The mean and standard deviation of the error in the up direction is
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minimal across the receivers. This is due to the relative nature to the Ublox F9. Just because

the difference between the Ublox F9 and the receivers tested is small does not conclude that

the overall position error in the up direction is small. This is merely a comparison to a

reputable COTS receiver.

Vector tracking struggled with the large initial bias as evident by the standard vector

tracking north error being high. As for all other directions, vector tracking performed as

well as scalar beamsteering, if not better. The vector beamsteering receiver performed better

than all of the receivers tested, even after the initial bias and dynamics caused problems with

its position solution.

Table 6.3: Position Error Statistics (Relative to Ublox F9) from Commuter Route

µE µN µU σE σN σU

Scalar 5.991 5.549 0.286 4.727 4.129 0.221
Scalar Beamsteering 4.882 5.275 0.263 3.602 4.212 0.195
Vector 4.367 8.688 0.274 3.235 7.041 0.084
Vector Beamsteering 3.181 3.383 0.245 3.071 3.749 0.089

With the significant biases in vector tracking and scalar tracking performing relatively

well in the open sky environment, the benefits of vector tracking over scalar tracking are not

entirely evident. The next route highlights the benefits of scalar tracking with multipath

present throughout the route.

6.3.4 Multipath Environment

The multipath route was shorter than the commuter route in the previous section. The

route starts static in the Auburn University RV lot, a common tailgating location for football

game days. The route then proceeds North toward Jordan Hare Stadium (hence, the name

Jordan Hare route), passing tall resident hall buildings and a parking deck. The route is

shown in Figure 6.36.
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Figure 6.36: Google Maps Jordan Hare Route [57]

Usually, a few buildings and a parking deck would not cause detrimental effects, and

the receiver would just see a decrease in signal quality while the vehicle passes the buildings.

However, the satellite geometry during the Jordan Hare route was not ideal. Figure 6.37

shows the signals collected by the receiver.

Figure 6.37: Sky Plot Jordan Hare Route
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When all satellites are present, the PDOP for the scenario is low at 2.16. However,

notice the SV elevations during the route. Only three satellites have descent elevations, and

all other signals are at low elevations. With this unfortunate geometry, even small buildings

can cause a simple receiver to struggle. The Ublox F9 acquired and tracked two additional

satellites giving it better dilution of precision. The failure of the software receivers to acquire

the additional signals was not corrected, lending to a comparison of the software receivers

in a less than ideal scenario.

C/N0 Improvements

Four signal channels were evaluated for their C/N0 performance during this route. SV

30 was the highest elevation satellite at 50 degrees. SV 1 was a mid-level satellite in this

scenario at 40 degrees. SVs 13 and 3 were at the lowest elevations, at or below 15 degrees.

Figure 6.38 shows the resulting C/N0s. SV 30 shows clean performance because the line

of sight (LOS) is maintained throughout the route. All other SVs showed blockages in

their LOS, causing the receivers to experience considerable multipath. For the low elevation

satellites, the C/N0 measurements turn to noise after approximately 200 seconds for the

scalar receivers indicating a loss of lock, which will become evident in the position solution

later.
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Figure 6.38: C/N0 from Jordan Hare Route

The performance of the receivers aligned with the Ublox F9 reported C/N0s for the

entire scenario. The Ublox F9 reports a loss of lock on PRN 3 toward the end of the route,

as shown by the discontinuities in the black line.

Positioning Improvements

A wide view of the positioning results for the Jordan Hare route is shown in Figure

6.39. The scalar tracking and scalar beamsteering algorithms struggle throughout the route

and eventually lose lock as the visible satellites drop to three. Note the errors in the scalar

beamsteering solution in the route turns. This is attributed to a course update error in the
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beamsteering algorithm causing the beam to lag when the vehicle turns around a corner. It

was not present on the previous route.

Figure 6.39: Jordan Hare Route Position Results (Wide View)

By zooming in on the position solution where the scalar receivers lose position lock,

it can be observed that the scalar beamsteering receiver was able to maintain lock longer

than the standard scalar tracking receiver, as shown in Figure 6.40. The scalar beamsteering

receiver diverged while passing through the intersection with two buildings and some tree

cover. Vector tracking and vector tracking beamsteering maintained lock but did show some

multipath effects on their position solutions. Vector beamsteering aligned more closely to

the Ublox F9 reported position than standard vector tracking in this view.
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Figure 6.40: Jordan Hare Multipath

The absolute position error relative to the Ublox F9 is shown in Figure 6.41 to see how

closely the receivers align with a COTS receiver. The loss of lock in scalar tracking is shown

with the 15000 meters of error in the north and east directions. By zooming in, it can be

observed that vector tracking with beamsteering receiver outperformed all of the receivers

being tested. Even with the poor course updates in the scalar beamsteering receiver, it also

shows better performance than the single antenna scalar receiver because it maintains lock

for a longer period of time, with quantifiable error in the east and up directions. Vector

tracking and vector beamsteering show clear tracking through the multipath to the end of

the route.
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Figure 6.41: Absolute Position Error (Relative to Ublox F9) from Jordan Hare Route

The absolute position error statistics relative to the COTS receiver are shown below in

Table 6.4. From top to bottom, each preceding receiver outperforms the previous. The scalar

tracking receiver fails catastrophically. The scalar beamsteering receiver fails but performs

better than the standard scalar tracking receiver. The vector tracking receiver showed some

biases from the Ublox F9 solution, but it survived all of the multipath. The vector tracking

beamsteering receiver performed very well considering the signal geometry and the multipath

present in the scenario.

Table 6.4: Position Error Statistics (Relative to Ublox F9) from Jordan Hare Route

µE µN µU σE σN σU

Scalar 367.513 253.490 15.570 1865.476 1315.295 80.561
Scalar Beamsteering 11.400 25.129 0.725 16.410 22.487 0.384
Vector 4.670 5.248 0.204 3.263 5.301 0.095
Vector Beamsteering 3.704 1.632 0.192 1.694 1.587 0.054
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6.4 Interference Injection Testing

With the vector beamsteering receiver outperforming the other receivers being tested,

the last scenario involved overlaying jamming data on the commuter route to test the per-

formance of the receivers in a simulated contested environment. The route with simulated

emitters is shown in Figure 6.42. The emitters were activated when the vehicle exited the

interstate and turned north. Before the emitters were activated, the vehicle drove through

a natural environment, as shown in Section 6.3.3. The emitters consisted of three ground-

based wideband noise jammers equally spaced in line of bearing with one emitter facing

due south. Once activated, the jammers ramped in power, knocking off all receivers as the

C/N0s dropped. The figure shows that the vector tracking receiver and the vector tracking

beamsteering receiver last longer than their scalar counterparts, but eventually, they too fail.
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Figure 6.42: Jamming Injected into Commuter Route

6.4.1 C/N0 Response

When the interference signals ramp in power, the receiver carrier-to-noise ratio is de-

graded. Figure 6.43 shows the ramp jamming effects on the high, mid, and low elevation

satellites. Even though the jamming signals are ground based, all signals are affected at

approximately the same time in nearly the same way. Vector tracking with beamsteering

performs better than all of the other algorithms, but it does not last much longer than

standard vector tracking.

131



Figure 6.43: C/N0 from Jamming Injection

Beamsteering improves signal quality, thereby, improving the receiver resilience to in-

terference. Beamsteering also manipulates the CRPA perceived gain pattern reducing gain

in non-desired directions as the beam is directed to the target. The improvements in Figure

6.43 are better observed when analyzing vector lock, which was outlined in Section 5.4.

6.4.2 Vector Lock Improvements

The maximum range error defines vector lock or vector health. Figure 6.44 shows the

vector lock analysis on the left and the measured signal received power on the right. Vector

lock is assumed to be unstable when the 1σ maximum range error exceeds 1/6th of a chip,
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or approximately 50 meters. The 50 meter mark is not shown with the vector lock plot for

better plot scaling, but both the vector tracking receiver and the vector tracking receiver

with beamsteering exceeded the 50 meter threshold. Since vector beamsteering merely scales

the signal power, improving data at the receiver, it can be determined that the difference

in divergence in the vector tracking and vector beamsteering receiver will be relatively the

same from scenario to scenario.

From the vector lock plot in Figure 6.44, it can be concluded that the vector beamsteer-

ing receiver lasted about five seconds longer than the standard vector tracking receiver in the

jamming scenario. The overall signal receive power incident on the receiver was measured

and shown in the right most figure. From this plot, the ramp in the jamming signals are

evident as the power is increased every second. From the linear portion of signal power

between 370 and 380 seconds, it can be concluded that the vector tracking beamsteering

receiver lasting five more seconds in the scenario implies vector tracking beamsteering can

handle a jamming signal approximately four dBm higher than the standard vector tracking

receiver.

Figure 6.44: Vector Lock with Received Power Comparison
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This is an intuitive result since the beamsteering algorithm increases satellite signal

receive power. The resilience of the receiver is directly related to the signal quality, so

as long as the signal quality is improved, the receiver will perform better with satellite

beamsteering. If the jamming signals are incident at the same AOA as the satellite signals,

the receiver would not see any improvement in resilience. However, the main assumption

is that most interference signals are emitted from the ground making beamsteering yield

favorable results since the interference signals were outside of the formed beam lobe.

A constrained nullsteering algorithm could be implemented for better performance. The

receiver could leverage satellite positions as constraints to maintain power in the SV direc-

tions, and then the algorithm could actively mitigate all signals out of the SV constraints.

A crude implementation of this algorithm was attempted for this work. However, the algo-

rithm was unsuccessful due to shortcomings in the calibration process defined initially at the

beginning of this chapter. Since the beamsteering lobes are wider in beam width and do not

require the calibration accuracy that direction finding algorithms and deterministic nulling

algorithms require, the results in this thesis were minimally affected.

6.5 Conclusions

This chapter deduced from the simulations that increasing the number of antenna ele-

ments increases received signal quality. However, the signal quality scale does not directly

relate to the number of antenna elements, as geometry plays a role. As the number of

elements increase, the signal quality improvement rate tends to decrease, because the wave-

length of the incident signal constrains the antennas and practically, only a certain number

of elements can be placed within that constraint.

The beamsteering algorithm was then ported to live sky data. The live sky analysis

showed the vector tracking beamsteering receiver outperforming the other receiver designs,

aligning somewhat closely to the COTS Ublox F9. The receiver performance gains using

the four element CRPA matched the performance gains deduced from simulation in the
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early section. Overall, position error decreased when using the vector tracking beamsteering

algorithm, which was shown in simulation and live sky analysis.

Since signal quality improves when the receiver beamsteers to satellite signals, the im-

provement directly affects interference performance, which was shown in the last section.

The improvements were related to the SV signal power increase as long as the interference

signals are outside of the beam width. Since most are ground-based, and SV signals are

incident at higher elevations, this assumption can be made to improve receiver performance

in most scenarios.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis analyzed four different receiver configurations including a multi-antenna vec-

tor tracking beamsteering receiver, which was based on a previous high-gain advanced GPS

receiver (HAGR) developed by NAVSYS [1] and a multi-antenna vector tracking receiver

created by the German Aerospace Center (DLR) [20]. A beamsteering receiver was created

applying the HAGR concepts to a vector tracking receiver similar to the DLR receiver, suc-

cessfully coupling CRPA technology with an asynchronous vector tracking receiver. Unlike

the DLR receiver, the multi-antenna vector tracking receiver feeds satellite geometry back

to a weighting module. The weighting module then combines the weighted signals before

correlators are formed, airing more toward a low SWaP-C design with less resources allo-

cated in multiple correlator streams. The receiver also implements and presents some low

SWaP-C correlator based C/N0 estimation techniques, leveraging a PRN 33 FMET reduced

correlator algorithm to reduce computational load on noise characterization.

The multi-antenna vector tracking beamsteering receiver performance was compared to

three other software-defined receivers: a single antenna scalar tracking receiver, a multi-

antenna scalar tracking beamsteering receiver, and a single antenna vector tracking receiver.

From the comparative analysis of all four receivers, the receivers performances ranked as

follows: the single antenna vector tracking receiver performed the worst, followed by the

multi-antenna scalar tracking beamsteering receiver. The single antenna vector tracking

receiver and the multi-antenna vector tracking receiver performed noticeably better than

their scalar counterparts in simulation and in live sky testing, especially when signal quality

was degraded in the multipath and the interference scenarios.
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The simulation section showed how multiple antennas and beamsteering can be com-

bined to create a robust receiver, improving C/N0 signal quality, which improves position

estimates. The simulation section showed how the scalar and vector implementations per-

formed similarly for signals at high power. Once the signals were degraded in simulation,

the vector tracking receivers were able to maintain lock while the scalar tracking receivers

failed. All of the vector tracking receivers were able to successfully track a signal at low

power yielding a C/N0 of 20 dB-Hz. The seven and eight element CRPAs increased the 20

dB-Hz C/N0 by roughly eight dB-Hz, implying that the receiver coupled with the seven and

eight element CRPAs could possibly track signals yielding a 12 dB-Hz C/N0. This is well

below the tracking thresholds previously defined by Matthew Lashley’s groundbreaking work

[3]. The four element simulated Antcom antenna, which was later used to record live sky

signal data, induced a 3-5 dB-Hz C/N0 improvement on signals depending on their angle of

arrival.

The live sky data analysis presented a post processing acquisition phase calibration

to remove line-to-line induced phase delays. The performance of this phase calibration

algorithm was not fully realized since an array manifold calibration was not performed, but

the acquisition phase calibration is a formidable method for line-to-line phase delay removal.

A simple course update was applied instead of using an attitude update. The course update

was derived from the receiver velocity. A CRPA, signal conditioning box, and a USRP X310

front-end were required for recording live sky data. No additional sensors were required, but

an alternative sensor is recommended for the attitude update if the receiver is going to be

subject to contested environments.

Two dynamic live sky data routes were collected, and each receiver processed the data for

analysis. For the open sky route with good satellite geometry, the vector tracking receivers

were initialized with biases greater than 10 meters in position, which caused problems that

the multi-antenna vector tracking receiver was able to overcome. Unfortunately, the single

antenna vector tracking receiver struggled to perform equivalently with the multi-antenna
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scalar tracking receiver. Of the four receivers, the vector beamsteering receiver offered the

best performance with almost a three meter improvement in the east and north direction in

position accuracy relative to a Ublox F9 COTS receiver. For the multipath route with poor

satellite geometry, the multi-antenna vector tracking receiver offered exceptional performance

compared to the three other receiver designs being analyzed. Both of the scalar designed

receivers lost lock and failed in the scenario, with the multi-antenna beamsteering receiver

surviving longer than the single-antenna scalar receiver. The vector tracking receivers were

resilient through the entire scenario, with the multi-antenna vector beamsteering receiver

offering an improvement of one meter in east position and 3.6 meters in north position

compared to the single-antenna vector tracking receiver, relative to the Ublox F9 receiver.

For more analysis, interference was added to the open sky data before the data was

processed by the four receivers. The interference consisted of 3 ramped wideband noise

jammers. The time at which the vector tracking receivers lost lock was logged for analysis.

Using the principles of vector lock defined by Ben Clarke [52], it was determined that the four

antenna vector tracking beamsteering receiver was able to last approximately five seconds

longer than the single-antenna vector tracking receiver. With the jamming power logged,

this time difference was linked to the receiver surviving a four dB increase in jamming power

compared to its single antenna counterpart.

Overall, both hardware and software experiments validated the design of the multi-

antenna vector tracking beamsteering receiver and presented it as a formidable receiver

architecture. If the application is resilient and precise positioning in the presence of multipath

or poor signal quality caused by natural causes then this receiver will work well. However,

better CRPA algorithms exist for interference removal that improve receiver resilience in

jamming environments. Although it was not tested in this work, the receiver should perform

well against low power spoofing attacks. In these attacks, improving GPS signal power could

help a receiver maintain lock on the appropriate signals. If computational management is a

concern, this receiver might be a good choice due to its simplistic implementation (if vector
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tracking can be considered simple) and cutting edge techniques for estimation. From a

positioning standpoint, the multi-antenna vector tracking beamsteering receiver performed

quite well, highlighting the benefits of CRPA coupling with advanced vector tracking receiver

architectures.

7.2 Future Work

The results from the proposed multi-antenna vector tracking receiver analysis showed

several areas for potential research and improvement. First, collecting data from dense urban

environments might further shed light on the performance of the multi-antenna high gain

receiver. Though the poor geometry multipath environment offered problems for the simpler

receivers, a dense city might offer problems for a COTS receiver that the multi-antenna

vector tracking beamsteering receiver may be able to survive. A data collection in urban

Atlanta has already been considered as a plan of action.

The receiver performance in a spoofing environment also needs to be analyzed since

spoofing signals are at nearly the same power as the GPS signals. Adding a bit more power

the GPS satellites might help the receiver achieve formidable AS performance.

Since the beamsteering attachment is modular and adaptable, improvements or modi-

fications in the beamforming algorithm could be adopted depending on the receiver appli-

cations. A constrained nullsteering algorithm could be used to improve the receiver per-

formance in a jamming environment. The feedback of satellite geometry would still be

maintained, but array manifold data would have to be recorded for this implementation.

Array manifold data can be obtained by manufacturers, calibration companies, or in the

do-it-yourself form if access to an anechoic chamber is available. Obtaining array manifold

data would open the doors for many other algorithm adaptations that would be interesting

in research and application.

Implementing this work with a deeply integrated (DI) vector tracking GPS/INS re-

ceiver would yield an incredibly resilient receiver to multipath in urban environments. The
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IMU would offer an attitude update to the beamforming algorithm, and the multi-antenna

beamsteering would offer better signal quality to the already pertinent position solution a

DI receiver offers. Other approaches might be related more to the DLR implementation

where the beamforming is applied at the correlator level. In this implementation, there are

possibilities of other algorithms that might offer better performance in certain situations.
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Appendix A

Deterministic Nullsteering

Nullsteering has the opposite effect of beamsteering. Instead of aligning antenna power

toward a signal, nullsteering attempts to remove all antenna power in a certain direction. By

carefully manipulating the phases of each element, the signal can be attenuated by creating

destructive interference in the boresight direction. For a four element antenna, three of the

signal phases can be shifted by one third wavelength relative to the reference element phase

to achieve nullsteering. This is shown by Equation (A.1).

b =
[
1 −1

M − 1 · · · −1
M − 1

]
(A.1)

M is the number of antenna elements. The phase shift in Equation (A.1) is then multiplied

by the beamsteering weights to form nullsteering weights, Equation (A.2).

Wmnull = Wm · b (A.2)

By modifying the weights with Equation (A.1), the signal is mitigated using destructive

interference in the Wm direction. This allows for deterministic signal removal with a simple

modification to the beamsteering algorithm. A nullsteering example is shown similar to

Figure 6.2, in Figure A.1.
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Figure A.1: 4 Element CRPA Nullsteering (λ2 spacing)

More nulls can be created by adjusting the boresight weight vector to be an M × J

array and calculating the nullspace, where J is the number of signals present.
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Appendix B

Low SWaP-C Front End Jamming Mitigation [58]

GNSS is relied upon heavily in many areas for precise time and location, such as au-

tonomous vehicle control, aircraft landing systems, and the stock market. Maintaining in-

tegrity in critical systems is imperative to preserve individuals’ and organizations’ safety

and well-being. The need for more commercial focused interference mitigation methods

has increased with the arrival of commercial off-the-shelf (COTS) personal privacy devices

(PPDs). COTS PPDs were brought to the forefront of commercial interference research

after the Newark Airport incident where an individual inadvertently jammed the automatic

aircraft landing system at the airport [27]. While large, multi-element controlled reception

pattern array (CRPA) based mitigation algorithms have been proven to be effective and

robust at removing radio frequency interference, most individuals and organizations do not

want to pay for and handle the large CRPA antennas when implementing anti-jamming hard-

ware. Commercial applications benefit from lower SWaP-C mitigation methods to protect

GNSS critical systems.

Though there is a vast amount of research in the area of low SWaP-C interference

mitigation methods, few performance comparisons have been conducted. Although these

algorithms are not capable of obtaining the same level of interference mitigation performance

as the multidimensional array algorithms, they are still valuable for certain applications in

the civilian sector.

The methods introduced are mitigation algorithms that use either fixed reception pat-

tern arrays (FRPAs) or two element CRPAs. The single antenna approaches are a wavelet-

implemented recursive least means squares adaptive notch filter [59], [60] and a finite impulse

response (FIR) power minimization approach [55]. The two element array approaches are a
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two-element space-time adaptive processing approach [61], [62] and a two-element adaptive

noise canceling approach [63], [64]. The performance of the mitigation methods is outlined

in detail in [58].

B.1 Mitigation Methods

The four methods compared in this chapter are a space-time adaptive processing (STAP)

power minimization method, an adaptive noise canceling (ANC) method, a SVD-based FIR

power minimization method, and a wavelet implemented adaptive notch filter (WANF).

These methods are discussed in detail in the following subsections.

B.1.1 2 Element STAP Power Minimization

Spatial methods are widely used for interference mitigation. Beam steering implemented

on CRPAs have been proven to be successful in removing radio frequency interference [10],

[61], [62], [65]–[68]. [67] compares the space-time adaptive processing (STAP) with space-

frequency adaptive processing (SFAP), which was first introduced by Gupta and Moore

in [68]. Both methods are shown to achieve low SWaP-C mitigation with fewer antenna

elements [67]. The spatial method implemented in this paper is a STAP power minimization

algorithm. To ensure low SWaP-C, STAP was implemented with two antenna elements (N)

and three taps (K). An outline of the algorithm is shown in Figure B.1.

The input signal states are shown below in Equation (B.1) with k being the current tap.

xk =



x1,k

x2,k

x1,k−1

x2,k−1

x1,k−2

x2,k−2



(B.1)
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Figure B.1: 2 Element 3 Tap STAP Power Minimization

As with FIR power minimization, the signal state is then used to calculate the autocorrelation

matrix, as shown in Equation (B.2). In this case, M = KN .

Rxx = 1
M

M∑
k=1

xHk xk (B.2)

Once the autocorrelation matrix is estimated, the optimal weights are estimated using Equa-

tion (B.3) below.

wk = R−1
xx δ

δTR−1
xx δ

(B.3)

δ is the constraint vector, given by δ = [1, 0, 0, 0, 0, 0]T for two elements and three taps. Once

the optimal weights are calculated, the weights are applied to the signal state to determine

the output as shown by Equation (B.4).

yk = wT
k xk (B.4)
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B.1.2 2 Element ANC

The theory behind adaptive noise canceling (ANC) can be found in [66]. ANC has

also been shown to successfully mitigate interference signals [63], [64]. However, very few

implementations of ANC have been created for GNSS. ANC relies on a large noise difference

between the interference signal and the carrier signal. At low J/S interference, ANC algo-

rithms tend to become unstable if the algorithm is not adapted correctly. Figure B.2 shows

the two element eight tap ANC architecture.

Figure B.2: 2 Element 8 Tap Adaptive Noise Canceling

ANC uses the error between an estimated output signal from the second antenna and

the input signal from the first antenna to determine the output signal. In this sense, ANC is

unique compared to the other algorithms. ANC uses time delay taps. In this implementation

K = 8 time delay taps were used. With all algorithms, more time delay taps result in

more measurements, which in turn gives better mitigation. However, given the nature of

maintained low SWaP-C, eight taps were found to be an appropriate trade off. For two

antenna elements, the incoming signal state is shown below in Equation (B.5) and in Figure

B.2.

Xk = 0.7 ·
[
xk−K,2 xk−K+1,2 . . . xk,2

]T
(B.5)
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Notice that this signal state does not include the first signal element, and the signal state

is down scaled to ensure the signals are not correlated. The weights are initialized at

w = [1, 0, 0, · · · , 0]T and are recursively calculated in the filter. The 2nd element output

is estimated in Equation (B.6) below.

yk,2 = wH
k Xk (B.6)

Using the estimated output for signal 2 from Equation (B.6), the overall filter output is the

error between the 1st input signal state and the 2nd estimated signal output, as shown by

Equation (B.7). Note that xk,1 is a scalar value, not a vector.

yk = xk,1 − yk,2 (B.7)

The recursive weight update is shown in Equation (B.8).

wk+1 = wk + µXky
∗
k (B.8)

()∗ is the complex conjugate, and µ is the learning coefficient. In order to maintain filter sta-

bility for different interference signals at different power, the learning coefficient is adaptively

updated by using a common power estimation algorithm shown in equation (B.9).

p̂k = ‖xk‖2 (1− β) + βp̂k−1 (B.9)

β is the forgetting factor, and ‖‖ is the norm of the input signal. In this implementation,

β = 0.95. µk is updated by the power estimate in Equation (B.10) below.

µk = δ

p̂k
(B.10)
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δ is a filter tuning variable used to control the convergence speed of the filter. For the cases

of this study, δ was set to be 0.00001 to ensure robust convergence.

B.1.3 1 Element FIR Power Minimization

The first single antenna algorithm tested was a singular value decomposition (SVD)

eigenspace based FIR power minimization filter. In [55], the algorithm uses optimal methods

to determine an autocorrelation matrix. Eigenvalue decomposition is performed on the

autocorrelation matrix to obtain FIR filter weights. The weights are then applied to the

input signal for filtering. At a high level, the FIR power minimization is a mix between a

spatial adaptive processing filter and a standard FIR notch filter in its performance. Like the

wavelet adaptive notch filter, the FIR power minimization filter damages the spectrum, which

can cause degradation to the GPS signal. In this work, the algorithm was implemented with

K = 18 time delay taps. The architecture for the 1 element 18 tap FIR power minimization

filter is shown below in Figure B.3.

Figure B.3: 1 Element 18 Tap FIR Power Minimization
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The incoming signal states are characterized by Equation (B.11), where xk is a vector

of K − 1 tap delayed signal states.

xk =



xk

xk−1

...

xk−K


(B.11)

The signal states are then used to estimate the autocorrelation matrix Rxx, as shown by

Equation (B.12) where M is the number of signal samples used to estimate the autocorrela-

tion.

Rxx = 1
M

M∑
k=1

xHk xk (B.12)

After the autocorrelation matrix is estimated, the eigenvectors are calculated from the au-

tocorrelation matrix and compared to a threshold determined by the eigenvalues, λ. The

threshold is described in Equation (B.13).

λthresh = λmin · 10 (B.13)

The eigenvectors with corresponding eigenvalues above the threshold are used to create the

vector vxn. This vector is then used to determine the projector matrix as shown by Equation

(B.14).

P⊥x = I−
P∑
k=1

vxkvxk
T (B.14)

The projector matrix is used to determine the weights applied to the signal vector xk in

Equation B.15.

wk = ΠTP⊥x (B.15)
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Π is defined by [55] to be the Kx1 "pinning" vector, or the constraint vector, defined by

Π = [1, 0, · · · , 0]T . The output signal is then defined by Equation (B.16).

yk = wT
k xk (B.16)

B.1.4 1 Element WANF

The use of wavelets in interference mitigation is not a new concept. The wavelet imple-

mented adaptive notch filter aided with pulse blanking was tested by [59] to mitigate jam-

ming signals being transmitted by COTS PPDs. The algorithm can be separated into three

phases: wavelet decomposition, mitigation, and wavelet reconstruction, which are shown in

Figure B.4. Wavelet decomposition separates the signal into signal packets to be processed

separately. Mitigation attempts to remove the jammed signal from the decomposed signal

by using adaptive notch filtering. Finally, wavelet reconstruction takes the signal packets

and combines them back into a form of the original signal with jamming removed.

Figure B.4: Level 2 Wavelet Decomposition and Reconstruction Architecture

In the decomposition phase, H(z) is a low-pass filter, and G(z) is the opposite high-

pass filter. After the signal is separated with the filters, the signal is down sampled by a

factor of two. It is then passed to the next level of wavelet decomposition where it can be

separated again. The mitigation phase has independent adaptive notch filters and frequency

pulse blanking algorithms acting on each signal packet. The reconstruction phase includes

up sampling by a factor of two and then applying equivalent synthesizing low-pass and high-

pass filters. Once the signal is filtered, the signals are then combined to move up to the
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next level of reconstruction. A more thorough description of wavelet deconstruction and

reconstruction can be found in [69]. Figure B.4 shows a level 2 packet decomposition and

reconstruction because each wavelet packet is down sampled twice. The algorithm tested

in this paper is a level 3 implementation, which adds an additional stage to the example

shown. A 24th order Daubechies filter was selected for the low-pass and high-pass filters.

More information on Daubechies wavelet filters can be found in [70].

The wavelet filters are used to separate the GPS signal spectrum and are not used

to directly mitigate the signal. The adaptive notch filters remove the jamming signals in

this implementation. The adaptive notch filter used was first introduced by Wendel et al.

in [60]. J. R. van der Merwe et al. improved the adaptive notch filter by adapting the

learning coefficient with an average signal power estimator [59]. This paper uses a wavelet-

implemented adaptive notch filter (WANF) with the adaptive learning coefficient. The filter

itself is a first order IIR filter that estimates the amplitude and frequency of the interference

signal. Equation (B.17) shows the filter’s transfer function [59], [69].

H(z) = 1− z0z
−1

1− kαz0z−1 (B.17)

kα is the pole contraction factor that determines the width of the notch, and z0 is the complex

estimated state. The equation for z0 is shown below in Equation (B.18).

z0 = a·e2πjf0T (B.18)

a is the amplitude of the jammed signal, f0 is the frequency of the jammed signal, and T is

the sample period. Figure B.5 shows the discrete block diagram for the adaptive notch filter.

Given the signal xk, the discrete version of the recursive filter can be expressed as difference

equations with the IIR portion in Equation (B.19) and the FIR portion in Equation (B.20).

rk = xk − kalphaẑ0,k−1rk−1 (B.19)
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Figure B.5: Adaptive Notch Filter Block Diagram

ŷk = rk − ẑ0,k−1rk−1 (B.20)

ŷk is the output of the WANF. ẑ0 is initialized by Equation (B.18) and updated using the

method shown in Equation (B.21).

ẑ0,k+1 = ẑ0,k + µkŷkr
∗
k−1

xHk xk
(B.21)

xHk is the Hermitian transpose of the signal state, rk−1∗ is the complex conjugate of rk−1,

and µk is the learning coefficient. The learning coefficient is adapted with the same power

estimation algorithm used for ANC in Equations (B.9) and (B.10). However, δ = 50 for the

WANF because the filter requires a much larger µ for robust convergence.

From an observation standpoint, by implementing the adaptive notch filter on the

wavelet packets, narrower notches are effectively achieved on the signal spectrum after the

packets are reconstructed into the full bandwidth signal. The computational load with this

algorithm is attributed to the fact that an adaptive notch filter must be implemented on

each wavelet packet. In the simulations, 8 adaptive notch filters were running simultane-

ously over each wavelet packet. For optimal performance, the adaptive notch filters should

be implemented in parallel.
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Appendix C

Extended Kalman Filter (EKF) PVT Estimation

In Chapter 3, the outline for the standard least squares positioning algorithm was pre-

sented. The EKF positioning algorithm, which was shown in Chapter 5 coupled in vector

tracking, is presented in this chapter in a standalone form. When comparing the EKF in

Chapter 5 and the EKF in this chapter, very few difference can be found. The differences

come from the asynchronous implementation of the vector tracking loop and the batch imple-

mentation of the positioning algorithm. The state vector is the same as the vector tracking

loop implementation as shown by Equation (C.1).

x̂ =
[
x̂ ˆ̇x ŷ ˆ̇y ẑ ˆ̇z cb̂ cˆ̇b

]T
(C.1)

The state transition matrix for the standalone EKF is shown below in Equation (C.2).

A =



1 Tnav 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 Tnav 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 Tnav 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 Tnav

0 0 0 0 0 0 0 1



(C.2)
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The measurement matrix H is shown below in Equation (C.3).

H =



−a(1)
x 0 −a(1)

y 0 −a(1)
z 0 1 0

... ... ... ... ... ... ... ...

−a(j)
x 0 −a(j)

y 0 −a(j)
z 0 1 0

0 −a(1)
x 0 −a(1)

y 0 −a(1)
z 0 1

... ... ... ... ... ... ... ...

0 −a(j)
x 0 −a(j)

y 0 −a(j)
z 0 1



(C.3)

Tnav is the navigation integration period. In the vector tracking loop, Tnav was δT , the

step length of the asynchronous loop. The process noise covariance and measurement noise

covariance matrices are shown in Equations (C.4) and (C.5). The process noise covariance

matrix is the same in the positioning algorithm as it is in the vector tracking loop imple-

mentation. The measurement noise covariance matrix updates all of the measurements at

once due to the batch implementation in the positioning algorithm.

Q =



QPV 0 0 0

0 QPV 0 0

0 0 QPV 0

0 0 0 Qc


(C.4a)

QPV =

σ2
PV

T 3
nav

3 σ2
PV

T 2
nav

2

σ2
PV

T 2
nav

2 σ2
PV Tnav

 (C.4b)

Qc =

σ2
bTnav + σ2

d
T 3
nav

3 σ2
d
T 2
nav

2

σ2
d
T 2
nav

2 σ2
dTnav

 (C.4c)

σ2
b = c2h0

2 (C.4d)

σ2
d = c22π2h−2 (C.4e)
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R =



σ2(1)
δρ 0 0 0 0 0

0 . . . 0 0 0 0

0 0 σ2(j)
δρ 0 0 0

0 0 0 σ2(1)
δρ̇ 0 0

0 0 0 0 . . . 0

0 0 0 0 0 σ2(j)
δρ̇



(C.5)

The measurement vector y is shown in Equation (C.6). This implementation is shown for

j total satellites. The batch implementation again means that all of the measurements are

applied at one time.

y =
[
δρ(1) . . . δρ(j) δρ̇(1) . . . δρ̇(j)

]T
(C.6)

For the EKF to converge, just like with vector tracking, the EKF must be initialized from

a least squares position. After the EKF is initialize, the Kalman filter follows the same

format with Equations (C.7) showing the time update and Equations (C.8) showing the

measurement update.

x̂−k = Ax̂+
k−1 (C.7a)

P−k = AP+
k−1A

T +Q (C.7b)

Lk = P−k H
T (HP−k HT +R)−1 (C.8a)

P+
k = (I − LkH)P−k (C.8b)

x̂k
+ = x̂k

− + Lk · y (C.8c)
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A static data set was simulated using a Spirent GSS9000 Signal Generator for compar-

ison between the least squares positioning algorithm and the EKF positioning algorithm.

Figure C.1: Static Simulated Least Squares EKF Comparison
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Appendix D

Range and Range Rate Vector Tracking Improvements

D.1 Signals at Same Power

Figure D.1: Same Power Vector Tracking
Range Variance with EL 70◦

Figure D.2: Same Power Vector Tracking
Range Variance with EL 52◦

Figure D.3: Same Power Vector Tracking
Range Variance with EL 17◦

167



Figure D.4: Same Power Vector Tracking
Range Rate Variance with EL 70◦

Figure D.5: Same Power Vector Tracking
Range Rate Variance with EL 52◦

Figure D.6: Same Power Vector Tracking
Range Rate Variance with EL 17◦

D.2 Signals at Variable Power
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Figure D.7: Variable Power Vector Tracking Range Variance with EL 17◦

Figure D.8: Variable Power Vector Tracking Range Rate Variance with EL 17◦
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Figure D.9: Variable Power Vector Tracking Range Variance with EL 2◦

Figure D.10: Variable Power Vector Tracking Range Rate Variance with EL 2◦

D.3 Live Sky Commuter Route
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Figure D.11: Range Variances from Commuter Route
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Figure D.12: Range Rate Variances from Commuter Route
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D.4 Live Sky Jordan Hare Route

Figure D.13: Range Variances from Jordan Hare Route
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Figure D.14: Range Rate Variances from Jordan Hare Route

D.5 Commuter Route with Injected Interference
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Figure D.15: Range Variances from Jamming Injection
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Figure D.16: Range Rate Variances from Jamming Injection
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