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Abstract 
 
 

This dissertation describes a research program focused on dissecting the contributions of 

motivation and rewards to motor skill acquisition and learning. Two prominent theories served as 

a framework for this work: the OPTIMAL theory of motor learning (Wulf & Lewthwaite, 2016) 

and reinforcement learning (RL) theory (Rescorla & Wagner, 1972). The former claims that 

enhancing learners’ expectancies for future positive outcomes and perception of autonomy leads 

to higher levels of motivation, which strengthens the coupling of goals to actions, culminating in 

better motor performance and learning. It is hypothesized that expectancies reflect reward 

anticipation, which might explain the learning benefits given the association between rewards 

and the release of dopamine, a neurotransmitter that plays a crucial role in movement, reward 

processing, and memory consolidation. Rewards, and more specifically, reward-prediction errors 

(the difference between actual and anticipated reward) are the major driver of RL theory. 

According to this theory, humans adjust their behavior based on reward-prediction errors to 

maximize the likelihood of receiving rewards. In short, behaviors that lead to rewards are more 

likely to re-occur in the future, whereas behaviors that are not rewarded are less likely to re-

occur in the future. Together, OPTIMAL and RL theory make predictions about how motivation 

and rewards affect short- and long-term behavior adaptation. Through a series of studies that 

combine behavioral, psychophysiological, and meta-analytical research, the present research 

program investigated how these predictions apply to motor skill acquisition and retention. 

The first paper (chapter 1), published in the Journal of Motor Learning and Development, 

sought to tease apart the contributions of extrinsic rewards, a common means to enhance 

learners’ expectancies, to promoting learning of two components of a motor skill, namely the 

action selection (i.e., what to do) and action execution component (i.e., how to execute the 
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action). Results showed that giving learners extrinsic rewards during practice did not improve 

their ability to choose the correct action and execute the movement accurately. Interestingly, 

learners’ self-reported motivation, irrespective of whether they could receive extrinsic rewards, 

did predict action selection and action execution performance. The second paper (chapter 2), 

published in the journal International Review of Sport and Exercise Psychology, used a meta-

analytic approach to examine the effect of enhanced expectancies on motor learning and whether 

the effect depended on the type of manipulation adopted. Results revealed a medium-sized, 

positive effect of enhanced expectancies on motor learning, which varied as a function of the 

type of manipulation, and is likely overestimated due to the presence of small-study effects and 

underpowered studies in the sample. The third paper (chapter 3), published in the journal 

Psychology of Sport and Exercise, investigated the mechanisms underlying the self-controlled 

feedback learning benefit. As postulated by OPTIMAL theory, increasing learners’ perception of 

autonomy leads to higher levels of motivation and consequent better performance and learning. 

One common autonomy support manipulation consists of giving learners control over their 

feedback schedule, which has been shown to enhance motor learning, though the underlying 

mechanisms are still unclear. Since motivational and information processing factors have been 

suggested as potential underpinnings, the second paper aimed to dissociate their contribution to 

the self-controlled feedback learning benefit. Results showed no effect of self-controlled 

feedback on learning, although self-reported motivation predicted post-test performance at the 

individual level, irrespective of whether learners controlled their feedback schedule. Finally, the 

fourth paper (chapter 4) investigated RL predictions and their underlying mechanisms in a motor 

learning context. Specifically, mixed-effect regression models were used to analyze the 

relationship between learners’ feedback-evoked electroencephalogram (EEG) activity (i.e., 
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reward positivity; RewP) and their short- and long-term behavior adaptation. Results showed that 

RewP scaled with feedback about learners’ accuracy and explained adjustments in their 

performance, suggesting that it reflects reward-prediction errors. Moreover, although RewP was 

implicated in short-term performance adjustments, it did not predict long-term behavior 

adaptation. 

Taken together, the studies described in this dissertation provide evidence for some 

aspects of OPTIMAL theory, such as the relationship between learners’ motivation and their 

motor learning, but cast doubt on others, such as the benefit of increasing learners’ autonomy 

and their motor learning. Further, the final study provides evidence that the RewP can shed light 

on how RL mechanisms (reward-prediction errors) explain short-term performance adjustments 

when learning a complex motor skill, but indicates that other mechanisms may need to be 

considered to explain long-term behavior adaptation. 
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Chapter 1: The effect of rewards and punishments on learning action selection and 

execution components of a motor skill 

Introduction 

The processes underlying motor skill learning have long been of interest to many 

investigators across different disciplines. For instance, a growing body of evidence posits that 

motor learning may be associated with processing of sensory-prediction errors (Shadmehr et al., 

2010), often referred to as model-based learning (Haith & Krakauer, 2013). According to this 

framework, motor learning results from movement adjustments that are made based on 

comparison between expected and actual sensory feedback (e.g., vision, proprioception), hence 

the name sensory-prediction error. Studies investigating sensory-prediction errors have 

extensively used visuomotor tasks wherein motor adaptation occurs in response to a change in 

the environment (i.e., perturbation) and is measured across training session with rare or no use of 

retention tests (Izawa & Shadmehr, 2011; Shmuelof et al., 2012; Synofzik et al., 2006, 2008). 

Although current and relevant, the discussion around sensory-prediction errors is beyond 

the scope of the present study, which will focus on another mechanism used to explain learning: 

reward-prediction errors. This perspective, frequently coined as model-free learning (Haith & 

Krakauer, 2013), claims that motor learning can also be driven by rewards (Galea et al., 2015; 

Izawa & Shadmehr, 2011; K. Lohse et al., 2019; Nikooyan & Ahmed, 2015). This idea is 

grounded on reinforcement learning (Rescorla & Wagner, 1972;Sutton & Barto, 1998), a theory 

rooted in the seminal work by Skinner (Ferster & Skinner, 1957; Skinner, 1963) and others who 

followed, which posits that behaviors that are rewarded are more likely to reoccur in the future 

compared to behaviors that are punished. In principle, humans engage in a process of comparing 
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expected to actual outcomes and, based on the resulting difference, make behavioral adjustments 

with the main goal of maximizing rewards. The discrepancy between expected and actual 

outcome is referred to as a prediction error, which is one of the most crucial components of 

reinforcement learning theory. When accurate, prediction errors or, more specifically, reward-

prediction errors (difference between expected and actual reward), can indicate that a behavior 

needs to be changed in order to achieve a successful outcome. In theory, receiving rewards after 

a successful, unexpected outcome maximizes reward-prediction errors by making the difference 

between expected and actual reward larger. Since larger reward-prediction errors indicate that 

the outcome is either much worse or much better than predicted, making a successful outcome 

even more rewarding would cause that behavior to be reinforced and, therefore, more likely to 

reoccur in the future. The concept that learning is guided by reward-prediction errors has been 

mainly investigated in psychology (Rescorla & Wagner, 1972) and computer science (Sutton & 

Barto, 1998). However, even though reinforcement learning is also a critical component of motor 

skill acquisition (Lohse et al., 2019), very few studies have investigated the effects of rewards on 

long-term retention of a motor skill.  

 Findings derived from the growing body of studies investigating reinforcement learning 

in the context of motor skill acquisition have shown that rewards may enhance motor skill 

learning as indexed by post-test performance (Abe et al., 2011; Dayan et al., 2014; Hasson et al., 

2015; Steel et al., 2016). For instance, Abe et al. (2011) designed a study to investigate the 

effects of rewards and punishments on learning an isometric pinch-force tracking task. In this 

study, participants were randomly assigned to one of three conditions: rewarded, punished or 

neutral. Participants in the rewarded condition earned money for time spent on target, whereas 

participants in the punished and neutral conditions either lost money for time spent off target or 
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received a flat rate at the end of practice regardless of performance, respectively. Results showed 

that giving participants monetary compensation after a successful trial resulted in better 

performance at 6-hr, 24-hr and 30-day post-test. Moreover, even in the absence of practice, the 

rewarded condition showed performance improvement from immediate to 24-hr and 30-day 

post-test. Conversely, participants in the punished and neutral conditions showed performance 

decrement from immediate to 6-hr and 30-day post-test. These findings suggest that rewarding 

participants after a successful trial might contribute to long-term retention (consolidation) of a 

recently acquired motor skill through performance stabilization and offline gains (Trempe & 

Proteau, 2012).  

From a scientific standpoint, the existing literature favors the use of rewards to enhance 

motor skill learning. However, when translating that scientific knowledge into a more applied 

setting, it is useful to know what component or components of a skill rewards and/or 

punishments may impact. In motor learning, performance improvement can occur through two 

main components: action selection and action execution. We acknowledge that there are different 

ways to delineate the components of a skill, and processes underlying action selection and action 

execution may not be entirely dissociable. However, for the purposes of this study, we will adopt 

action selection and action execution as being two separate processes as this distinction more 

closely aligns with the reality in an applied setting. Thus, consistent with Schmidt (1976), action 

selection refers to choosing the appropriate action based on one’s perception of the environment 

(e.g., a pinch grip versus a power grip), whereas action execution refers to how the motor system 

carries out the chosen action (e.g., for force required lifting different objects with the same grip). 

In the majority of sports, for example, success is largely tied to the athlete’s ability to choose the 

appropriate response and execute the chosen action accordingly. Now, picture yourself as a 
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soccer coach trying to teach a new play to one of your athletes. If your athlete chooses the right 

player to whom to pass the ball but executes the movement poorly, what do you do? Do you 

reward her for making the correct action selection? Do you punish her for executing the 

movement poorly? Do you do both? Or do you do neither? Prominent sport psychology 

textbooks advise against giving rewards too frequently (e.g., 100% of the time; Weinberg & 

Gould, 2019), and reinforcement learning theory supports the advice, since the theory posits that 

frequent rewards become too predictable, lessening their impact on learning (Lohse et al., 2019). 

What little experimental evidence exists also supports this notion (Dayan et al., 2014). Since 

rewards should not be overused, it is useful for coaches to know how to best allocate them during 

practice. In fact, coaches constantly make decisions about what components of the skill to reward 

and/or punish during training sessions. However, these decisions are largely based on coaching 

manuals and lack empirical support (Chen et al., 2018). 

Therefore, in an attempt to address this knowledge gap, the present study investigated 

whether rewards and/or punishments affect action selection and/or action execution components 

of a skill. Thus, we designed an experiment where these two components could be examined 

independently. On a trial by trial basis, participants performed an information-integration 

category-learning task (i.e., action selection; (DeCaro et al., 2011; Waldron & Ashby, 2001) 

followed by a golf putting task (i.e., action execution). For the action selection task, participants 

had to learn the association between eight complex stimuli to decide toward which one of two 

targets to execute an action. On each trial, participants were instructed to select the correct target 

based on a randomly selected stimulus displayed on a TV screen. After selecting the target, 

participants putted as accurately as possible to the chosen target (i.e., action execution task). 

First, we conducted a pilot study to ensure that both tasks would yield learning effects that could 
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be posteriorly moderated by other factors. Next, we proceeded with the main experiment in 

which participants performed the same action selection and action execution tasks after being 

assigned to one of three conditions: neutral, reward and punishment. Participants in the neutral 

condition received a fixed number of raffle tickets while participants in the reward and 

punishment conditions gained or lost raffle tickets based on whether they chose the correct or 

incorrect target, respectively, and based on putting accuracy. Number of correct responses in the 

action selection task was indexed as a measure of action selection accuracy whereas radial error 

and bivariate variable error served as measures of putting accuracy and precision, respectively 

(Hancock et al., 1995). 

Rewards affect motivation by increasing more extrinsic forms of motivation and 

decreasing or increasing intrinsic motivation, depending on various factors (e.g., interest in the 

task, type and timing of reward), (Cameron et al., 2001). Thus, we assessed motivation through 

the intrinsic motivation inventory (IMI; (McAuley et al., 1989), which assesses intrinsic 

motivation as well as other variables linked to motivation (e.g., effort). Specifically, we 

conducted secondary analyses to determine whether any form of motivation differed as a 

function of practice condition. Importantly, motivation, irrespective of its form (extrinsic vs. 

intrinsic), is theorized to explain variance in motor learning (Wulf & Lewthwaite, 2016). Thus, 

we also conducted an exploratory analysis to investigate whether motivation explained 

individual differences in motor learning, irrespective of practice condition. Based on studies 

investigating the effect of rewards on motor skill learning (Abe et al., 2011; Dayan et al., 2014; 

Steel et al., 2016), we predicted that giving participants rewards during practice would result in 

better learning of both action selection and action execution tasks as indexed by performance at 

24 hr and 7-day post-test. 
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Methods 

 All study materials and data are available at the Open Science Framework website 

(https://osf.io/9ufgb/).  

Pilot Study 

 The purpose of this experiment was to ensure that the information-integration category-

learning task and the golf putting task exhibited learning effects, which could posteriorly be 

moderated by other factors. 

Participants  

Seventeen young adults (7 females, Mage = 21.0 years, 95% CI [20.1, 22.0]) without any 

previous experience with either task and who were naïve to the purpose of the study participated 

in this study. Four participants were excluded from the final analysis due to failure to complete 

the second day of data collection (n = 1) and data loss1 (n = 3) resulting in a final N = 13 (5 

females). Recruitment was done through SONA, the College of Education Research Participation 

System at Auburn University, and by word-of-mouth. A total of four course credits was offered 

in exchange for participation when applicable, in addition to 480 raffle tickets2 to be entered into 

a virtual drawing for $200 USD. (A participant was indeed awarded $200 based on the raffle.) 

Participants reported no neuromuscular impairments that would affect the execution of a golf 

putting task or any difficulties in distinguishing between colors, which could affect the 

categorization task. All participants provided written consent to an institution-approved research 

protocol (18-178 EP 1806) in agreement with the 1964 Declaration of Helsinki.   

Procedures 

 
1 iPads were used to record putting accuracy and precision during the motor task. For these participants, the iPads 
stopped working during data collection, which resulted in data loss. 
2 All 17 participants received the same number (i.e., 480) of raffle tickets regardless of their performance during the 
task. 

https://osf.io/9ufgb/
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Tasks. On each trial, participants performed an information-integration category-learning 

task (DeCaro et al., 2011; Waldron & Ashby, 2001) followed by a golf putting task. For the 

former task (i.e., action selection), participants had to learn the association between eight 

different complex stimuli to determine toward which one of two targets to execute an action. 

Each stimulus resembled a horizontally-oriented rectangular playing card presented on a white 

screen. The cards varied according to three binary-valued dimensions: shape of the embedded 

symbol (square or circle), symbol’s color (green or red) and number of symbols (one or two). 

Originally, the card’s background color (i.e., blue or yellow) was included as the fourth 

irrelevant dimension. After a series of pilot studies, we decided to keep the card’s background 

color (i.e., blue) the same across all stimuli, which resulted in eight different stimuli. Each binary 

dimension was assigned the arbitrary value of -1 or 1 (i.e., square = 1 and circle = -1; green = 1 

and red = -1; two symbols = 1 and one symbol = -1). If the sum of all three dimensions was 

greater than zero, participants should choose target A, whereas if the sum of all three dimensions 

was less than zero, participants should choose target B. Participants were not informed about the 

dimension values or formula that mapped the sum of the values to a target until after the study. 

At the beginning of each trial, a randomly selected card was displayed on a 152-cm Samsung® 

HDTV mounted to the wall, 193-cm above the ground and, approximately, 410-cm away from 

where the participant was standing. Participants were allowed to look at the card for as long as 

they wanted. This task was chosen because it is best acquired implicitly (DeCaro et al., 2011), 

which is also the contention for action execution tasks such as golf putting (Masters & Poolton, 

2012). After deciding to which target the card was referring, participants were asked to putt a 

golf ball to the chosen target (i.e., action execution).  



18 
 

For the action execution task, participants used a standard right-handed golf putter to putt 

a standard golf ball on an artificial grass surface to one of two targets located 300-cm away from 

a 5-cm long, red starting line. Both targets, placed 14-cm apart, were comprised of a bull’s eye 

with a radius of 8-cm surrounded by nine concentric circles, which had their radii progressively 

increased by 8-cm. The goal was to putt as accurately as possible by having the ball stop as close 

to the center of the target as possible.  

Day 1 of data collection. The experimental set-up is illustrated in Figure 1. On day 1, 

after signing the consent form, participants filled out a demographic questionnaire. They were 

asked to report age, sex, and putting experience (e.g., miniature golf, golf simulator, and 18 holes 

on a standard gold course) over their lifetime and within the past year. Next, in order to measure 

baseline golf putting skill level, participants completed the pretest phase, which consisted of one 

block of eight trials. Participants were asked to putt four times in a row to one target and four 

times to the other target. Half of the participants putted to target A first and the other half putted 

to target B, in a counterbalanced order. Participants did not perform the action selection task 

during pretest. When ready, participants were instructed to pick up a golf ball from a basket that 

rested on a chair behind the participant, place the golf ball on the starting line for the respective 

target and putt as accurately as possible. After completing the pretest, the following instructions 

were read to the participants:  

“Now, you will perform the whole task. Through practicing the task, you will get the 

standard 480 raffle tickets, like other participants, to be entered into a virtual drawing 

for $200. The number of raffle tickets you get is completely unrelated to your 

performance while practicing the task. Your first goal is to choose the correct target. 

Your second goal is to putt as accurately as possible to the chosen target. The closer the 
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ring relative to the chosen target your putt stops, the more accurate your putt was. Please 

note that putt accuracy is not related to target selection. In other words, you can still 

have an accurate putt, even to the wrong target, and you can still have a correct target 

selection, even if you putt inaccurately. Please prioritize target selection and putt 

execution equally. For the target selection, a card will appear on the screen and you are 

going to have to figure out which target it refers to: Target A or Target B. Once you have 

decided which target the card refers to, pick up a ball from the basket and place it on the 

starting point for the target you chose. Then putt as accurately as possible. After you putt, 

you will receive feedback as to whether you chose the correct target and in which ring 

your putt stopped. After each trial, I will ask you if you are ready to start the next one. 

Please, proceed at your own pace, moving on to the next trial when you are ready. 

During the time after each trial, you should look at the card from the previous trial to 

compare it to the feedback you received about whether you chose the correct target. At 

the end of this practice session, you will get the standard 480 raffle tickets, like other 

participants in the experiment, to be entered into the drawing for $200. To reiterate, the 

number of raffle tickets you get is completely unrelated to your performance during this 

practice session. Please remember to prioritize target selection and putt execution 

equally. You will have to perform six blocks of eight trials. You will have a 1-minute 

break after each block. Do you have any questions?” 

After receiving feedback, participants were asked to report when they were ready to 

begin the next trial. The stimulus remained on the TV screen until the participant was ready to 

move on. The next trial started when the researcher projected the next stimulus onto the TV 

screen. During the 1-min break between each block, participants completed single-item 
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engagement and motivation questionnaires asking on a scale of 0 to 10 how engaging and 

motivating they would rate the action selection and the action execution tasks (Leiker et al., 

2019; Pathania et al., 2019).  

Figure 1 

Experiment Set-up 

 

 

 

 

 

 

 

 

 

 

Note. This figure illustrates the experiment set-up. The upper right rectangle depicts the action 

selection task whereas the targets (Target A and Target B) for the action execution task are 

shown in the lower left part of the figure. 

At the end of the acquisition phase, participants were given a 5-min break before 

completing the first post-test. During this period, participants completed the Intrinsic Motivation 

Questionnaire (IMI; McAuley et al., 1989). The IMI was designed to assess participants’ 

experience with experimental tasks. Specifically, it assesses participants’ interest/enjoyment, 

effort/importance, value/usefulness, pressure/tension, perceived choice, and perceived 
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competence during practice of a given task, resulting in a total of six subscales scores. The IMI 

was comprised of 37 questions answered based on a seven-point Likert scale ranging from “not 

true at all” to “very true”. All six subscales scores were included in the statistical analyses.   

Following the 5-min break, participants performed four warm-up golf putting trials to the 

wall behind them, not to the target. Next, they completed the immediate retention test, which 

consisted of one block of eight trials of both the action selection and execution tasks. Participants 

were told that they would perform the same task they had just practiced but that, this time, 

feedback would not be provided. After completion of the immediate retention test, participants 

were thanked and reminded to return the following day to complete the second post-test. 

Day 2 and 3 of data collection. Participants were required to return 24 hours and 6 days 

after completing day 1 in order to perform the 24 hr and the 7-day post-tests. Both tests were the 

same as the immediate post-test with four warm-up golf putting trials before the beginning of the 

test. After the last day of data collection, participants were debriefed with respect to the purpose 

of the study and thanked for their participation.  

Dependent variables and data processing 

 Since the purpose of this pilot study was to measure performance and learning effects 

associated with the action selection and action execution tasks, the dependent variables of 

interest were action selection accuracy and golf putting accuracy and precision. Radial error (RE) 

and bivariate variable error (BVE) were measured to index putting accuracy and precision, 

respectively, as recommended by Hancock et al. (1995). These two measures were recorded 

using Dartfish Live 9.0® motion analysis software and calculated for the pretest, all blocks in the 

acquisition phase and post-tests (immediate, 24 hr and 7-day). Action selection accuracy was 

indexed by the number of trials in which a correct response was selected (i.e., 4 correct responses 
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within a block of 8 trials represents 0.5 or 50% accuracy). This measure was calculated for all 

blocks in the acquisition phase and post-tests.  

Statistical Analysis 

 For the action selection task, post-test was compared to a test value of 0.5 (chance 

accuracy) in one-sample t-tests. To assess learning for the action execution task, separate 

repeated-measures ANOVAs were conducted for both RE and BVE with test (pretest/immediate 

post-test/24 hr post-test/7-day post-test) serving as the independent variable. Alpha was set to 

.05, and the Greenhouse-Geisser correction was applied when sphericity was violated. 

Results 

Action Selection Accuracy. The one-sample t-tests between the sample mean and the 

test value were significant for the immediate post-test (t(12) = 3.55, p = .004, dz = 0.985) and the 

7-day post-test (t(12) = 2.26, p = .043, dz = 0.627), indicating that participants scored 

significantly above chance for these tests (see Table 1). For the 24 hr post-test, the one-sample t-

test revealed a non-significant difference between the sample mean and the test value (t(12) = 

1.96, p = .073, dz = 0.544), indicating that participants did not score above chance on this post-

test. 

Putting Accuracy and Precision. The repeated-measures ANOVA for RE revealed a 

significant main effect of phase (F(3, 36) = 4.87, p = .006, ηp
2 = .289). Fisher LSD post-hoc 

comparisons revealed a significant difference between pretest and immediate (p = .004, dz = 

0.989) and 7-day post-tests (p = .009, dz = 0.870) indicating that participants were significantly 

more accurate during these post-tests compared to pretest. The comparison between pretest and 

24 hr post-test revealed nonsignificant results (p = .081). The repeated-measures ANOVA for 

BVE revealed a significant main effect of phase (F(3,36) = 4.11, p = .013, ηp
2 = .255). Fisher  
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LSD post-hoc comparisons revealed a significant difference between pretest and both 

immediate (p = .008, dz = 0.887) and 7-day post-tests (p = .018, dz = 0.760) indicating that 

participants were significantly more precise during these post-tests compared to pretest. The 

comparison between pretest and 24 hr post-test revealed nonsignificant results (p = .162). 

Note. Action selection accuracy, radial error and bivariate variable error as a function of test  pre-

test, immediate post-test, 24 hr post-test, 7-day post-test). M = mean, CI = 95% confidence 

interval. 

Discussion 

The goal of the pilot study was to assure that the information-integration category-

learning task and the golf putting task exhibited learning effects. Based on the results, 

participants performed significantly above chance on the immediate and 7-day action selection 

task post-tests and showed superior putting performance on the immediate and 7-day post-tests 

compared to pretest, indicative of learning.  

Main Experiment 

 The data collection and analyses were registered on the website AsPredicted.org 

(https://aspredicted.org/ce4sw.pdf ) before the experiment was initiated. The purpose of this 

experiment was to investigate the effect, if any, of rewards and punishments on the capability to 

Table 1 
 

   

Pilot Study – Action Selection Accuracy, Radial Error and Bivariate Variable Error 
 
 Action Selection Accuracy Radial Error Bivariate Variable Error 
Test M (cm) [CI] M (cm) [CI] M (cm) [CI] 
Pre-test - 68.4 [55.1, 81.8] 74.8 [59.4, 90.2] 
Immediate post-test .692 [.586, .798] 43.6 [36.8, 50.3] 49.6 [41.8, 57.3] 
24 hr post-test .635 [.500, .769] 54.6 [41.9, 67.3] 62.2 [49.6, 74.7] 
7-day post-test .654 [.520, .787] 50.8 [42.5, 59.1] 55.5 [45.5, 65.5] 
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select the appropriate response for one’s movement (action selection) and on the movement itself 

(action execution).   

Participants  

Seventy-seven young adults (55 females, Mage = 20.7 years, 95% CI [20.1, 21.3]) without 

any previous experience with either task and who were naïve to the purpose of the study 

participated in this experiment. Eight participants were excluded from the final analysis due to 

data loss3 resulting in a final N = 69 (51 females), which still met the pre-established sample size 

of 66 participants. Sample size was determined with an a priori power calculation to reach 80% 

power (α ≤ .05) to detect a medium/large-sized interaction (η2
p = .09; Cohen, 1988) between 

experimental group (reward/punishment/neutral) and test (pretest/immediate post-test/24 hr post-

test/7-day post-test). Given the applied nature of our study, we powered it to detect a 

medium/large-sized effect, as we reasoned that the cost to an instructor of rewarding and 

punishing learners in practice should be offset by at least a medium/large-sized benefit. 

Recruitment was done through SONA, the College of Education Research Participation System 

at Auburn University, and by word-of-mouth. A total of four course credits was offered in 

exchange for participation when applicable, in addition to a certain number of raffle tickets4 to 

be entered into a virtual drawing for $200 USD. Participants did not report any neuromuscular 

impairment that would affect the execution of a golf putting task or any difficulties in 

distinguishing between colors, which could affect the categorization task. All participants 

provided written consent to an institution-approved research protocol (18-178 EP 1806) in 

agreement with the 1964 Declaration of Helsinki.    

Procedures 

 
3 The iPads stopped working during data collection, which resulted in data loss. 
4 The number of raffle tickets offered varied according to the participant’s condition. However, on average, all 
participants received approximately the same number of raffle tickets.  
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Tasks. The tasks were the same as in the pilot study (i.e., information-integration 

category-learning task and golf putting task).  

Day 1 of Data Collection. The procedures were the same as in pilot study with one 

exception. Based on pretest golf putting RE, participants were quasi-randomly assigned to one of 

three conditions: reward, punishment, or neutral. Participants in the neutral condition received 

480 raffle tickets regardless of their performance during practice, whereas participants in the 

reward and punishment conditions gained or lost, respectively, raffle tickets on each trial based 

on whether they chose the correct/incorrect target and how accurate their putt was. More 

specifically, participants in the reward condition were given the following instructions:  

“Through practicing the task, you have the opportunity to gain raffle tickets to be entered 

into a virtual drawing for $200. Like other participants, you will start with the standard 

zero raffle tickets. The more raffle tickets you gain, the more likely you are to win the 

$200. Your first goal is to choose the correct target. Every time you choose the correct 

target, you will gain seven raffle tickets. Your second goal is to putt as accurately as 

possible to the chosen target. The closer the ring relative to the chosen target your putt 

stops, the more accurate your putt was and the more raffle tickets you will gain. 

Specifically, you will gain 10 tickets if your putt stops in the innermost ring, 9 tickets if 

your putt stops in the second innermost ring, and so on. If your putt misses the outermost 

ring, then you will gain zero tickets”.   

Participants in the punishment group were told that they were: 

“starting this task with the standard 960 raffle tickets, like other participants, to be 

entered into a virtual drawing for $200. Through practicing this task, you will have the 

opportunity to lose raffle tickets. The fewer raffle tickets you lose, the more likely you are 
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to win the $200. Your first goal is to choose the correct target. Every time you choose the 

incorrect target, you will lose seven raffle tickets. Your second goal is to putt as 

accurately as possible to the chosen target. The closer the ring relative to the chosen 

target your putt stops, the more accurate your putt was and the fewer raffle tickets you 

will lose. Specifically, you will lose zero tickets if your putt stops in the innermost ring, 

one ticket if your putt stops in the second innermost ring, and so on. If your putt misses 

the outermost ring, then you will lose 10 tickets”.  

Prior to the pilot study, we chose to assign seven raffle tickets for choosing the correct 

target in order to approximately equate the number of raffle tickets that would be earned through 

the action selection and action execution tasks. Specifically, we used data from previous golf 

putting experiments in our lab (Daou et al., 2018, 2019) to determine that participants were likely 

to earn an average of five to six raffle tickets per putt, and we assumed that participants would 

get close to 75% of the action selection trials correct, giving them an average of 5 to 6 raffle 

tickets on each trial of the action selection task.5 After being assigned to their respective 

condition, participants followed the same protocol as in the pilot study.  

Day 2 and 3 of Data Collection. Days 2 and 3 of data collection were the same as in the 

pilot study.   

Dependent Variables and Data Processing 

The main dependent variables of interest and data processing were the same as in the 

pilot study (RE, BVE and action selection accuracy). For the IMI, a single score for each 

subscale was created by averaging the items within the subscales, all of which exhibited good 

reliability: interest/enjoyment (α = 0.896); effort/importance (α = 0.813); value/usefulness (α = 

 
5 Supplemental material available at https://osf.io/9ufgb/ contains a spreadsheet with the number of tickets earned by 
each participant during the acquisition phase as well as figures summarizing the number of tickets gained/lost over 
time as a function of group and task. 

https://osf.io/9ufgb/
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0.870); pressure/tension (α = 0.777); perceived choice (α = 0.870); and perceived competence (α 

= 0.908). Consistent with previous studies (Grand et al., 2015, 2017a; Rhoads et al., 2019), we 

also created a composite measure of effort/motivation that could be used for exploratory analyses 

(e.g., investigating whether effort/motivation explains post-test performance). Specifically, we 

averaged across the interest/enjoyment, effort/importance, and value/usefulness subscales, which 

were moderately to strongly correlated (rs: .333 - .690, ps ≤ .005). 

Statistical Analysis 

To assess action selection task accuracy during the acquisition phase, we conducted a 

mixed-factor ANOVA with group (neutral/punishment/reward) serving as the between-subject 

factor and acquisition block (1/2/3/4/5/6) serving as the within-subject factor. To assess action 

execution task accuracy and precision during the acquisition phase, we conducted separate 

mixed-factor ANOVAs for RE and BVE with group serving as the between-subject factor and 

acquisition block (1/2/3/4/5/6) serving as the within-subjects factor6. To assess learning of the 

action selection task, we conducted a mixed-factor ANOVA with group serving as the between-

subject factor and post-test (immediate post-test/24 hr post-test/7-day post-test) serving as the 

within-subject factor, and accuracy serving as the dependent variable. To assess learning of the 

action execution task, separate mixed-factor ANCOVAs were conducted for both RE and BVE 

with group serving as the between-subjects factor, post-test serving as the within-subject factor, 

and pretest serving as the covariate. Alpha was set to .05, and the Greenhouse-Geisser correction 

was applied when sphericity was violated. 

Results 

Pretest and practice performance. 

 
6 We initially included pretest as a level in the within-subjects factor in these ANOVAs, as pre-registered. However, 
an anonymous reviewer suggested removing pretest, and we agreed with this suggestion to create clearer 
correspondence between motor execution and selection analyses. 
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Action selection accuracy. Figure 2 shows action selection accuracy for all three groups 

across acquisition phase and post-tests. The mixed-factor ANOVA revealed a significant effect 

of block (F(5,330) = 8.24, p < .001, ηp
2 = .111, ɛ =.920) best described by a linear function 

(F(1,66) = 30.6, p < .001, ηp
2 =.317; ps for other polynomial contrasts ≥ .105) indicating that 

participants improved from block 1 to block 6. There were nonsignificant effects for group and 

Group x Block interaction during the acquisition phase (Fs ≤ 0.431).  

Action execution accuracy and precision. Figure 3 shows RE and BVE for all three 

groups across all phases of the study. The mixed-factor ANOVA for RE revealed a main effect 

of block (F(5,330) = 4.54, p < .001, ηp
2 =.064, ɛ =.881) best described by a linear function 

(F(1,66) = 22.3, p < .001, ηp
2 =.253; ps for other polynomial contrasts ≥ .075). The mixed-factor 

ANOVA for BVE showed a main effect of block (F(5,330) = 4.91, p < .001, ηp
2 =.069, ɛ =.891) 

best described by a linear function (F(1,66) = 30.1, p < .001, ηp
2 =.313; ps for other polynomial 

contrasts ≥ .257). 

Figure 2 

Action Selection Accuracy 
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Note. Action selection accuracy (higher numbers indicate greater accuracy) as a function of 

phase (acquisition, immediate retention, 24 hr retention and 7-day retention) and group (neutral, 

reward and punishment). Error bars represent 95% CIs. 

Post-test performance. 

Action selection accuracy. The mixed-factor ANOVA for post-test action selection 

accuracy revealed nonsignificant effects for group, post-test and Group x Post-test interaction 

(Fs ≤ 2.57). Next, we compared post-test target selection accuracy at each post-test to a test 

value of 0.5 in one-sample t-tests to determine whether participants performed significantly 

above chance. Results revealed significant effects for each test (immediate: t(68) = 7.69, p < 

.001, M = .685, 95% CI [.638, .732], dz = 0.926; 24 hr: t(68) = 8.67, p < .001, M = .692, 95% CI 

[.649, .735], dz = 1.04; 7-day: t(68) = 5.48, p < .001, M = .643, 95% CI [.592, .694], dz = 0.660), 

indicating that participants performed significantly above chance at each post-test with respect to 

action selection. 

Action execution accuracy and precision. The ANCOVA for post-test action execution 

accuracy revealed nonsignificant effects for group, post-test and Post-test x Group interaction 

(Fs ≤ 1.24) after controlling for pretest. Next, we conducted three separate paired sample t-tests 

between pre-test and all three post-tests (immediate/24 hr/7-day). Results of the paired sample t-

tests revealed a significant difference between pretest and immediate post-test (t(68) = 7.40, p < 

.001, M = 25.3, 95% CI [18.6, 32.0], dz = 0.891), pre-test and 24 hr post-test (t(68) = 6.62, p < 

.001, M = 21.8, 95% CI [15.4, 28.3], dz = 0.797) and pre-test and 7-day post-test (t(68) = 7.63, p 

< .001, M = 23.8, 95% CI [17.7, 29.9], dz = 0.919), indicating that participants improved from 

pretest to all post-tests with respect to action execution accuracy. The ANCOVA for post-test 

action execution precision revealed nonsignificant effects for group, post-test and Post-test x 
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Group interaction (Fs ≤ 1.84) after controlling for pretest. Since there was not a main effect of 

group, we again conducted three separate paired sample t-tests between pre-test and all three 

post-tests (immediate/24 hr/7-day). Results of the paired sample t-tests revealed a significant 

difference between pretest and immediate post-test (t(68) = 7.84, p < .001, M = 27.3, 95% CI 

[20.5, 34.1], dz = 0.944), pre-test and 24 hr post-test (t(68) = 6.14, p < .001, M = 22.2, 95% CI 

[15.1, 29.2], dz = 0.739) and pre-test and 7-day post-test (t(68) = 7.89, p < .001, M = 27.3, 95% 

CI [20.5, 34.1], dz = 0.950), indicating that participants improved from pretest to all post-tests 

with respect to action execution precision. 

Figure 3 

Action Execution Accuracy and Precision 
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Note. A: Action execution accuracy (lower numbers indicate greater accuracy) as a function of 

phase (pre-test, acquisition, immediate retention, 24 hr retention and 7-day retention) and group 

(neutral, reward and punishment). Error bars represent 95% CIs. B: Action execution precision 

(lower numbers indicate greater precision) as a function of phase (pre-test, acquisition, 

immediate retention, 24 hr retention and 7-day retention) and group (neutral, reward and 

punishment). Error bars represent 95% CIs. 

Exploratory analyses. We conducted a MANOVA to assess the effect of group on the 

six subscales of the IMI. The results revealed a nonsignificant effect of group for all subscales 

(interest/enjoyment; effort/importance; value/usefulness; pressure/tension; perceived choice; and 

perceived competence; Wilk’s λ = .778, F = 1.36). Next, we conducted separate regressions to 

assess whether motivation predicted action selection and action execution post-test performance 

(immediate/24 hr/7-day), after controlling for group and pretest and correcting for multiple 

comparisons produced by conducting three separate regressions (significance level: p < .017). 

For the action selection task, we conducted three stepwise hierarchical regressions with contrast 

codes based on group serving as the predictor variables in the first step and the composite 

measure of motivation being added in the second step. The results of the regressions indicated 

that adding motivation in the second step of the regressions explained additional variance in 

immediate post-test action selection accuracy (change in F (1, 65) = 6.74, p = .012, R2change = 

.094). Specifically, motivation explained nearly 10% of variance observed in the immediate post-

test action selection accuracy performance (Figure 4). The unstandardized coefficient for 

motivation was β = 0.072, p = .012. However, motivation did not significantly explain additional 

variance in both 24 hr (change in F = 3.86, p = .054) and 7-day (change in F = 4.28, p = .043) 

post-tests, after correcting for multiple comparisons. For the action execution task, separate 
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stepwise hierarchical regressions were conducted where RE and BVE served as the outcome 

variable with contrast codes (based on group) and pretest serving as the predictor variables in the 

first step and the composite measure of motivation being added in the second step. The results of 

the separate regressions indicated that adding motivation in the second step approached our 

corrected significance criterion in terms of explaining additional variance in immediate post-test 

accuracy (change in F (1, 64) = 5.86, p = .018, R2change = .077) and met our corrected 

significance criterion in terms of explaining additional variance in immediate post-test precision 

(change in F (1, 64) = 7.57, p = .008, R2change = .093) (Figure 5), but not in the two long-term 

post-tests (24 hr and 7-day) for both accuracy and precision (24 hr post-test RE: change in F = 

0.254, p = .616; 7-day post-test RE: change in F = 0.041, p = .839; 24 hr post-test BVE: change 

in F < 0.001, p = .984; 7-day post-test BVE: change in F = 0.082, p = .776). More specifically, 

motivation explained nearly 8% and 10% of the variance observed in immediate action execution 

accuracy and precision performance, respectively, but was not able to explain long-term 

accuracy and precision performance, as indexed by the 24 hr and 7-day post-tests.  

Figure 4 

Immediate Post-Test Action Selection Accuracy as a Function of Motivation 
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Note. This figure shows the relationship between immediate post-test action selection accuracy 

(residuals) and motivation (residuals) after controlling for condition (neutral, reward and 

punishment). 

Participants also completed the single item engagement and motivation questionnaires 

(descriptive data presented in Table 2). However, since these self-reported measures would not 

contribute to elucidate why motivation, as indexed by IMI scores, was able to explain 

performance but not learning in both action selection and action execution tasks, they were not 

included in the exploratory analysis. 

Figure 5 

Immediate Post-Test Action Execution Accuracy and Precision as a Function of Motivation 
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Note. This figure shows the relationship between immediate post-test action execution accuracy 

(panel A) and precision (panel B) (residuals) and motivation (residuals) after controlling for pre-

test and condition (neutral, reward and punishment). 

Table 2 
 
Descriptive Data by Group 
 
 Neutral (n = 22, 7 

males) 
Reward (n = 25, 7 

males) 
Punishment (n = 22, 

4 males) 
 M [CI] M [CI] M [CI] 
Age (years) 21.1 [19.2, 23.1] 20.6 [20.2, 21.1] 20.4 [20.0, 20.7] 

Lifetime Putting 

Experiencea 
1.73 [1.32, 2.14] 1.96 [1.31, 2.61] 1.91 [1.07, 2.75] 

Past-Year Putting 

Experiencea 
0.450 [0.237, 0.663] 0.80 [0.574, 1.03] 0.590 [0.379, 0.800] 

Composite IMI 5.25 [4.90, 5.60] 5.6 [5.29, 5.91] 5.24 [4.84, 5.64] 

Single-item Motivation 

Action Selection 
7.59 [6.95, 8.23] 7.61 [6.76, 8.46] 7.95 [7.14, 8.76] 

Single-item Engagement  

Action Selection 
8.21 [7.69, 8.73] 7.89 [7.06, 8.72] 8.27 [7.60, 8.94] 

Single-item Motivation 

Action Execution 
8.45 [8.01, 8.89] 8.75 [8.34, 9.16] 8.89 [8.40, 9.38] 

Single-item Engagement 

Action Execution 
8.41 [8.02, 8.80] 8.55 [8.04, 9.06] 8.75 [8.23, 9.27] 
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Note. M = Mean, CI = 95% confidence interval. aPutting experience: 0 = Never putted; 1= Putted 

1 – 10 times; 2 = Putted 11 – 20 times; 3 = Putted 21 – 30 times.  

Discussion 

 The current study was designed to investigate whether rewards and/or punishments affect 

action selection and/or action execution components of a skill (Chen et al., 2018). Action 

selection accuracy and golf putting accuracy and precision were measured while 69 participants 

performed an information-integration category-learning task followed by a golf putting task. 

Based on previous studies (Abe et al., 2011; Hasson et al., 2015) we hypothesized that 

participants who received rewards throughout practice would exhibit superior learning when 

tested 24 hours and 7 days after acquisition, compared to participants who were punished 

throughout practice and participants who received neither rewards nor punishments during 

practice. Results revealed that participants showed learning effects for both tasks as indexed by 

post-test performance. However, even though the improvements were linear as opposed to non-

linear with the reward group showing a numeric advantage over the other two groups in the 

action execution task (see Figures 2 and 3), groups did not significantly differ with respect to 

action selection accuracy, nor did they show significant differences in putting accuracy and 

precision. In other words, giving participants rewards during practice did not result in 

significantly better action selection or action execution post-test performance.  

Results are inconsistent with past literature demonstrating that participants who received 

financial rewards showed superior learning and performance improvement in the absence of 

practice (offline gains) compared to participants who were punished or neither rewarded nor 

punished (Abe et al., 2011) as well as studies showing that the type of reinforcement learning 

schedule adopted during practice can enhance acquisition and retention of a motor skill (Dayan 
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et al., 2014). For instance, in the study by Dayan et al. (2014), participants who practiced a 

sequential pinch force task under a higher level of uncertainty as to whether they would be 

financially rewarded after a successful trial showed superior performance during post-tests and 

performance improvement in the absence of practice (offline gains) from immediate to 7-day 

post-test compared to the other two groups in which rewards were either more predictable or 

occurred 100% of the time after a successful trial. In the present study, participants were 

rewarded 100% of the time after a successful trial, resulting in an environment with low levels of 

stochasticity. In other words, our reward system did not maximize reward-prediction errors 

because the rewards were highly predictable. Therefore, it is possible that the predictable nature 

of rewards contributed to the lack of superior performance of the reward group compared to the 

other two groups, although it is unlikely to have done so. This is because in the present study the 

type of reinforcement schedule was not manipulated. Instead, we compared groups in which 

rewards were either granted, punishments were given, or neither. According to the reinforcement 

learning theory, behaviors that are rewarded are more likely to occur in the future as opposed to 

behaviors that are punished. Thus, even though the reward group practiced under a low level of 

stochasticity, each of their successful behaviors was reinforced, which, in theory, should have 

contributed to motor skill learning.  

Our findings are also inconsistent with the recent study by Galea et al. (2015) showing 

that punishments and rewards have dissociable effects on motor learning. Specifically, the 

authors claimed that punishments led to faster motor adaptation during a visuomotor task via 

activation of the sensory-prediction error system, whereas rewards favored skill retention via 

dopamine release and consequent memory trace strengthening. In the present study, neither 

rewards nor punishments affected performance and learning distinctively, which might be 
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somewhat associated with the availability of sensory information. In the study by Galea et al., the 

availability of visual information varied between blocks, whereas in our study visual feedback 

was available throughout practice. Researchers argue that when accurate and reliable sensory 

information is present, reliance on other sources of information such as reward-prediction errors 

becomes less likely (Izawa & Shadmehr, 2011). In principle, since all three groups had access to 

visual feedback, they might have relied on their sensory-prediction error system to make 

movement adjustments, which might help explain the lack of group differences in the action 

execution task. Although interesting, the findings by Galea et al. (2015) need to be interpreted 

with caution. This is because the study did not include long-term retention tests (at least 24 hr), 

making it hard to generalize these results to long-lasting changes in performance.  

   Other possible explanations for the lack of experimental manipulation effect might be 

related to the raffle tickets system and the total number of trials used during acquisition. 

Regarding the former, in the present study, participants in the punishment group started off with 

a total of 960 raffle tickets, and were told that they would lose raffle tickets based on incorrect 

target selection and poor putting execution. Even though these participants could lose up to 17 

raffle tickets (7 raffle tickets for choosing the incorrect target and 10 raffle tickets for a poor 

putt) in a single trial, they started the task with almost 1000 raffle tickets, which might have 

blunted the feeling of being punished after a bad outcome. On the other hand, it is worth 

mentioning that the reward group could also earn up to 17 raffle tickets per trial, in cases where 

they chose the correct target and their putt landed on the innermost circle, which should have 

been a large incentive. Future studies using the same paradigm could vary the magnitude of 

rewards and punishments in order to assess their effects on learning. With respect to total number 

of trials during acquisition, participants only performed 48 trials, which may have limited the 
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amount of learning that could be moderated by practice condition. However, participants did 

exhibit linear improvement in performance throughout acquisition, suggesting that there was 

learning to be moderated. Nonetheless, future studies adopting the same protocol should consider 

a larger “dose” of practice to allow more room for effects of practice condition to occur.  

Since motivation has been shown to play a role in motor skill acquisition (Wulf & 

Lewthwaite, 2016), we also conducted exploratory analyses to test for a main effect of condition 

on motivation. Results indicated that condition did not affect motivation. Following, separate 

regressions were carried out to investigate whether motivation predicted post-test performance 

for both tasks regardless of condition. Results showed that motivation predicted both action 

selection and action execution immediate performance, but not long-term retention, which is in 

line with recent findings (Grand et al., 2017a). Although it is possible that motivation uniquely 

affects performance and not learning, the absence of motivation effects on learning might be 

associated with the nature of the measure itself. Even though widely used in the motor learning 

domain, the IMI is a self-reported and, therefore, explicit measure of motivation. For instance, 

(Brunstein & Schmitt, 2004) showed that different measures of achievement motivation (i.e., 

explicit and implicit) predicted different aspects of a task (i.e., self- reported engagement scores 

and task performance, respectively). Therefore, future studies investigating motivation in the 

context of motor skill learning should consider using different measures of motivation to 

elucidate whether they predict performance and learning to differing extents.  

 To our knowledge, this is the first study to try to tease apart the effect of rewards and 

punishments on action selection and action execution components of a skill (Chen et al., 2018). 

Since complex sports such as soccer, football, baseball, and basketball consist of an interplay 

between action selection and action execution, it is useful to know whether extrinsic incentives 
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affect these two components independently. Even though coaches adopt their own strategy to 

allocate external incentives in training sessions, these strategies lack empirical support. From a 

scientific perspective, there is a growing body of research investigating the use of external 

incentives to improve motor skill acquisition. However, the majority of these studies used 

laboratory-based tasks that do not resemble the reality faced by coaches and athletes. The present 

study attempted to shorten this distance between laboratory-based research and real-world skill 

learning as well as reinforced the need for future investigations on this matter.  

Conclusion 

 In the present study, we designed an experiment to investigate whether rewards and 

punishments affect action selection and/or action execution components of a skill. The results 

showed that giving participants rewards during practice did not result in better action selection or 

action execution post-test performance. Exploratory analyses revealed motivation was able to 

explain changes in action selection and action execution performance, but not learning. These 

findings call into question the effectiveness of motivation in predicting learning and draw 

attention to the possibility of using different measures to assess people’s drive toward a goal. 

More research is needed to further our knowledge on this matter. Despite the lack of significant 

difference between conditions, our paradigm was the first one to tease apart action selection and 

action execution and might be useful, with possible improvements (e.g., increase the “dose” of 

practice), in future studies aiming to investigate how other factors affect these two components 

independently. 

 

 

 



40 
 

Chapter 2: Meta-analyzing enhanced expectancies on motor learning: Positive effects 

but methodological concerns 

Introduction 

Motor skills are a crucial part of everyone’s life. Being able to effectively perform a 

motor action is facilitated by a thorough understanding of how motor skills are acquired and, 

more importantly, retained over time. Past attempts to uncover the bases of motor learning and 

the mechanisms underlying a variety of practice conditions (e.g., random vs. blocked practice; 

infrequent vs. frequent augmented feedback) relied on a cognitive perspective mainly grounded 

on the role played by information processing (Guadagnoli & Lee, 2004; Lee et al., 1994). More 

recently, however, a growing body of studies have shown that attentional and motivational 

factors may also need to be considered when it comes to understanding and promoting motor 

learning (Lewthwaite & Wulf, 2010; Pascua et al., 2015; Sanli et al., 2013), which culminated in 

the proposition of a new theory entitled: ‘Optimizing Performance Through Intrinsic Motivation 

and Attention for Learning (OPTIMAL) theory of motor learning’ (Wulf & Lewthwaite, 2016). 

According to this theory, learning is facilitated by practice conditions promoting 

enhanced expectancies, autonomy, and external focus of attention (i.e., focusing on the effects of 

one’s movement). More specifically, practice conditions wherein one’s expectancies for future 

positive outcomes are enhanced (e.g., Lewthwaite & Wulf, 2010), the feeling of autonomy is 

promoted (e.g., Sanli et al., 2013), and an external focus of attention is encouraged (e.g.,  Lohse 

et al., 2010) lead learners to focus on the task goal, which enhances motor performance and 

learning. Although each motivational and attentional factor outlined in the OPTIMAL theory has 

been shown to benefit performance and learning, here we focus on studies that investigated 

enhanced expectancies in a motor learning context.  
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Different manipulations have been used to enhance learners’ expectancies for future 

success. One of the most studied approaches consists of providing learners with feedback after 

more accurate trials. This approach has been shown to be effective when contrasted with both 

neutral (Chiviacowsky et al., 2019) and negative feedback (Chiviacowsky & Wulf, 2007). In 

another frequently adopted paradigm, which might be considered a manifestation of feedback 

after good trials, learners are led to believe they are performing better than their peers via 

provision of positive (false) social-comparative feedback, typically in addition to veridical 

feedback (Avila et al., 2012). Manipulations of perceived task difficulty have also been used to 

influence learners’ expectations. For instance, studies have reduced perceptions of task difficulty 

(i.e., made the task look easier) by implementing optical illusions (Bahmani et al., 2017) or 

changing task criterion of success (Chiviacowsky et al., 2012a). Other ways to enhance 

expectancies include influencing one’s conceptions of ability (i.e., making one believe successful 

performance is achievable with practice as opposed to being a fixed capacity; e.g., Harter et al., 

2019), the use of self-modeling strategies (i.e., showing edited videos with learners’ best trials, 

e.g. Ste-Marie et al., 2011), and extrinsic rewards (e.g., provision of monetary compensation; 

Abe et al., 2011).  

The goal of the present meta-analysis was to investigate the effect of enhancing learners’ 

expectancies for future successful outcomes on motor learning. As a secondary goal, we aimed to 

estimate the effect of each of the aforementioned manipulations on motor learning. To our 

knowledge, this meta-analysis is the first quantitative synthesis of the growing body of studies 

indicating enhanced expectancies facilitate motor learning. Thus, this analysis should provide the 

best estimate of the effect of enhanced expectancies on motor learning to date. Additionally, we 

use funnel plot analysis to investigate the risk that inflated effects in small studies (small-study 
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effects) are distorting the extant literature. Our results can inform future investigations, for 

example by revealing shortcomings in the present research (e.g., small sample sizes). Our 

findings may also guide motor skill instruction, for example by providing coaches and physical 

therapists with the state of evidence about recommendations that are easy to implement, such as 

reducing perceived task difficulty. Thus, our meta-analysis has implications for researchers and 

practitioners. 

Methods 

Prior to data collection, methods and main analyses were pre-registered and made 

available in the Open Science Framework (OSF) repository (Link). The PICO (Population, 

Intervention, Comparison, Outcome) model was used to define the meta-analysis objectives. The 

population of interest was human subjects of all ages. Studies investigating people with 

disabilities and/or impairments were not excluded from the meta-analysis. Interventions were 

those Wulf and Lewthwaite (2016) indicate have shown enhanced expectancies facilitate motor 

learning: feedback after good trials, comparative feedback, self-modeling, perceived task 

difficulty, extrinsic rewards, and conceptions of ability. The main comparison of interest was 

between enhanced expectancies and control/neutral groups. In the absence of a control/neutral 

group, a comparison between enhanced expectancies and diminished or negative expectancies 

groups (e.g., feedback after good trials vs. feedback after poor trials) was considered. The 

outcome of interest was objective behavioral performance on a delayed (≥ 24-hr) retention test, 

which is a common and recognized learning evaluation (Kantak & Winstein, 2012).  

Study Eligibility Criteria 

https://osf.io/mbux2/
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Studies published in English and Portuguese were considered eligible if they met the 

following inclusion criteria: (1) it had an experimental design; (2) it used a task requiring 

movement to accomplish a goal that is increasingly likely to be achieved with practice (R. A. 

Schmidt & Lee, 2020); (3) it included at least one delayed (≥ 24-hr) retention test; (4) it was 

published in a peer-reviewed journal; (5) it assessed an objective behavioral measure; and (6) it 

included at least a positive enhanced expectancies group and a control group or a diminished 

(negative) expectancies group. Studies were excluded if they failed to meet the inclusion criteria 

and/or had insufficient data (i.e., did not report mean, standard deviation, or number of 

participants per group).  

Literature Search Strategy 

The electronic databases PsycINFO, Web of Science, and PubMed were searched from 

May 30, 2020, until June 19, 2020 (date of last search). Search terms included a combination of 

‘motor learning’ or ‘skill acquisition’ and ‘expectancies’ or ‘positive feedback’ or ‘good trial’ or 

‘successful trial’ or ‘accurate trial’ or ‘normative feedback’ or ‘comparative feedback’ or 

‘comparison feedback’ or ‘self-model’ or ‘self-as-a-model’ or ‘self-video’ or ‘video model’ or 

‘video edit’ or ‘conceptions of ability’ or ‘ability conception’ or ‘inherent ability’ or ‘entity 

theory’ or ‘incremental theory’ or ‘learnable skill’ or ‘natural capacity’ or ‘acquirable skill’ or 

‘task difficulty’ or ‘target size’ or ‘visual illusion’ or ‘hypnosis’ or ‘perceived difficulty’ or 

‘mindset’ or ‘large target’ or ‘easy goal’ or ‘easy objective’ or ‘superstition’ or ‘reward’ or 

‘incentive’ or ‘financial reward’ or ‘money’. String search was adjusted based on electronic 

database and intervention of interest. A detailed description of the search strategy, including 

limits used in each database, can be found in the OSF repository. These terms were chosen based 

on the terms and studies listed in the Enhanced Expectancies section of the OPTIMAL theory 
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paper (Wulf & Lewthwaite, 2016). Further relevant papers were identified by searching through 

reference lists of previously selected papers and consulting personal archives. Publication period 

was unrestricted. 

Study Selection and Data Extraction 

A PRISMA flow chart with a detailed description of the study selection process can be 

found in Figure 1. The authors M.F.B.B and J.O.P. independently searched for studies in the 

databases. After removing duplicates, 821 papers were screened by title and abstract. Next, the 

remaining 125 papers were fully assessed for eligibility according to the inclusion criteria. When 

there was a disagreement regarding study eligibility, the matter was discussed with the fourth 

author (MWM) until agreement was reached. At the end of the study selection process, 48 

studies met the inclusion criteria and were included in the meta-analysis. 

Risk of Bias Assessment 

The revised version of the Cochrane risk-of-bias tool (RoB 2) for randomized trials was 

used to assess the risk of bias in the studies included in the meta-analysis (Sterne et al., 2019). 

The tool is comprised of five bias domains, namely bias arising from the randomization process, 

bias due to deviations from intended interventions, bias due to missing outcome data, bias in 

measurement of the outcome, and bias in selection of the reported result. For the bias due to 

deviations from intended interventions domain, we focused on the effect of assignment to 

interventions (intention-to-treat effect). MFBB and JOP independently assessed the five bias 

domains and classified each one as low risk of bias, some concerns, or high risk of bias for each 

study following the proposed Cochrane algorithm. Next, an overall judgment of risk of bias was 

obtained for each study. Specifically, studies were classified as overall low risk of bias if they 
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were judged to be at low risk across all individual bias domains; as “some concerns” if they 

raised some concerns in at least one domain but were not at high risk in any individual domain; 

and as overall high risk of bias if they raised some concerns in multiple bias domains or were 

judged to be at high risk in at least one domain. The robvis tool (McGuinness & Higgins, 2021) 

was used to plot the risk-of-bias results.  

Figure 1 

PRISMA Flow Diagram 
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Note. Figure depicting the flow of information through the different steps of literature search and 

study selection (Moher et al., 2009). 

Data Extraction, Synthesis, and Analysis 

The main variable of interest was performance on delayed retention test7. Retention test 

is here defined as the test performed at least 24-hr after the end of the acquisition phase, wherein 

all groups are tested under identical conditions and perform a task similar to the one performed 

during the acquisition phase (Schmidt et al., 2018). Only objective measures of performance 

were considered. When studies did not have a 24-hr retention test or contained more than one 

retention test, the retention test closest to 24-hr was chosen to increase homogeneity among 

studies. For studies in which the 24-hr retention test was comprised of more than one block of 

trials, authors were contacted for data so an aggregate measure of retention test performance 

could be computed. In case of no response, we averaged across blocks (i.e., mean and standard 

deviation), which was the case for one study (Abbas & North, 2018). For studies that reported 

more than one behavioral measure, the measure more closely associated with accuracy (e.g., 

radial error as opposed to bivariate variable error; (Hancock et al., 1995) was chosen, since 

accuracy typically reflects the task objective (e.g., hitting a target). For studies in which the 

results of the retention test were presented as a set of individual trials as opposed to a single 

performance score, corresponding authors were contacted for data that would allow us to 

compute an aggregate measure of retention test performance. In cases where no response was 

obtained, we opted for the inclusion of the middle trial among a set of trials (e.g., the fourth of 

seven trials). The rationale behind the inclusion of the middle trial stems from the idea that this 
 

7 Two reasons guided our decision to focus on performance on delayed retention test. First, there is no theoretical 
explanation as to why enhanced expectancies may affect retention and transfer test performance differently. Second, 
given the significant variability in types of transfers tests found in this literature, adding performance on delayed 
transfer test to our meta-analysis would likely introduce unnecessary heterogeneity to our data. 
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trial is less susceptible to warm-up and online learning effects, compared to the first and last trial, 

respectively. (Considering that averaging across trials was also an option, in the supplementary 

material we present the results of a sensitivity analysis using an average of retention trials.) Two 

authors (M.F.B.B. and J.O.P.) were responsible for extracting sample sizes, means, and standard 

deviations from the selected papers and entering the information into an Excel spreadsheet 

(Excel 2016, Microsoft). When sample sizes, means, and standard deviations were unavailable in 

tables or throughout the text, the R package metaDigitise (Pick et al., 2018) was used to extract 

raw data and summary statistics from figures. Corresponding authors were contacted when 

sufficient data and/or relevant information was not provided in the article. Only one effect size 

was extracted per study, except when the study had more than one experimental and control 

group (Ghorbani & Bund, 2020; Pascua et al., 2015; Wulf et al., 2012a), was comprised of more 

than one experiment (Steel et al., 2016; Wulf et al., 2012a), and/or assessed different populations 

(e.g., older vs younger adults; Drews et al., 2013; Grealy et al., 2019). In these cases, the number 

of effect sizes extracted exceeded the ratio one per study, but the assumption of independency 

among effect sizes was still met as the same experimental and/or control group was not used in 

multiple comparisons (Englund et al., 1999). In addition to statistical data, relevant information 

regarding population characteristics, study protocol, and experimental manipulation was also 

extracted. Table S1 provides information about experimental manipulation checks, which were 

conducted for 30 studies and at least somewhat successful in 22. 

Hedges’ g was chosen as the effect size metric since it considers the sample size of each 

study, being therefore considered an unbiased or corrected effect size (Lakens, 2013). Variables 

in which lower scores indicate better outcomes (e.g., radial error) were reversed in sign to ensure 

that effects favoring the experimental manipulation were positive (Harrer et al., 2021.). Data 
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were fitted into a random-effects model estimated using restricted maximum likelihood. Alpha 

level was set at .05 and effect size followed the standard guidelines (small = 0.2, medium = 0.5, 

large = 0.8) suggested by Cohen (1988). Heterogeneity was assessed using the Cochran’s Q test. 

Since this test is influenced by sample size (Higgins et al., 2003), the I2 statistic, quantified as 

the percentage of total heterogeneity over total variability, was also computed. The presence of 

small-study effects was assessed via visual inspection of the funnel plot along with Egger’s 

regression test (Egger et al., 1997), which statistically assesses funnel plot asymmetry by 

predicting effect size from standard error. A trim-and-fill analysis was used to examine the 

sensitivity of the results to reporting bias (Duval & Tweedie, 2000). This technique iteratively 

trims studies from one side of the funnel plot until a criterion for symmetry is met, then fills the 

studies back into the plot while imputing ones that are identical except on the opposite side of the 

mean along the horizontal axis. The trim-and-fill analysis was carried out using the default 

algorithm provided by the metafor package (Viechtbauer, 2010) in R (cran.r-project.org) 

software. Since the trim-and-fill analysis assumes the decision to publish a scientific finding 

depends solely on the size of an effect, but reporting bias is likely more influenced by whether 

the effect is significant (Fanelli, 2012), we planned to p-curve the studies that had significant 

results (Simonsohn et al., 2014). However, we opted not to after determining that only 10 studies 

met the criteria to be included in a p-curve, due to the others not containing specific hypotheses, 

not reporting the types of post-hoc tests performed, reporting significant interactions, etc. Pre-

specified moderator analyses were conducted to investigate how the type of manipulation 

moderated the estimated effect, and to investigate the effect of enhanced expectancies on motor 

learning when contrasted with different types of comparison groups (control or diminished 

expectancies). An exploratory moderator analysis was also conducted to investigate the effect of 
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enhanced expectancies on learning in different populations (young adults, older adults, 

children/adolescents, and special populations). Visual inspection of funnel plots, studentized 

deleted residuals, and hat values were used to identify outliers and/or overly influential points in 

the dataset (Viechtbauer & Cheung, 2010). To ensure the robustness of the results, models were 

run with and without the studies identified as outliers and/or overly influential cases. The present 

meta-analysis was carried out using the metafor package (Viechtbauer, 2010) in R (cran.r-

project.org) software. R code and dataset are available in the OSF repository. 

Results 

Risk of Bias 

Results of the risk of bias assessment are shown in Figure 2. All 48 studies included in 

the qualitative analysis were judged to be at high risk of bias. This was mainly due to some 

concerns being raised across all individual domains except for the bias due to missing outcome 

data domain. Specifically, some concerns were raised in the bias arising from the randomization 

process domain mostly due to studies not providing a detailed description of the randomization 

process; in the bias due to deviations from intended interventions domain due to experimenters 

responsible for delivering the intervention being likely aware of participants’ group assignment; 

in the bias in measurement of the outcome domain due to the lack of information as to whether 

outcome assessors were aware of the intervention received by participants, which resulted in the 

assessment of outcome being possibility influenced by the assessors’ knowledge of group 

assignment; and in bias in selection of the reported result domain due to the absence of pre-

specified analysis plans. Except for one (Barker et al., 2010), studies were classified as being at 
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low risk in the bias due to missing outcome data domain as there was no indication of missing 

data. 

Figure 2 

Risk of Bias Assessment Results 
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Note. Figure depicting all 48 studies included in the qualitative analysis and their respective risk 

of bias for each bias domain as well as overall risk of bias.  

Descriptive Analysis  

A summary of the main characteristics of the studies included in the meta-analysis can be 

found in Table 1. Forty-one studies contributed one data point each to the meta-analysis, whereas 

six contributed two data points each (Ghorbani & Bund, 2020; Grealy et al., 2019; Pascua et al., 

2015; Steel et al., 2016; Wulf et al., 2012b, 2014), and one study contributed three data points 

(Drews et al., 2013), resulting in a total of 56 effect sizes. The oldest studies included in the 

meta-analysis were published in 2007 (Barzouka et al., 2007; Chiviacowsky & Wulf, 2007), 

whereas the most recent ones were published in 2020 (Bacelar et al., 2020; Chung et al., 2020; 

Ghorbani & Bund, 2020), resulting in a publication period range of 14 years. The average study 

sample size was 14.85/group (median = 14/group), ranging from 8 to 28 participants per group.  

Of the 56 effect sizes included in the meta-analysis, 16 represent manipulations of 

feedback after good trials, 13 represent manipulations of perceived task difficulty, 15 represent 

manipulations of comparative feedback, 7 represent manipulations of conceptions of ability, 4 

represent manipulations of extrinsic rewards/punishments, and 2 represent manipulations of self-

modeling8. The effect sizes composing this meta-analysis were extracted from data pertaining to 

young adults (n = 34), older adults (n = 6), children and adolescents (n = 13), and special 

populations (n = 3) consisting of adults with a disability in at least one upper or lower extremity 

(Bahmani et al., 2018), adults with Parkinson’s disease (Chung et al., 2020), and autistic children 

(Navaee et al., 2018). Most of the effect sizes refer to a 24-hr retention test (n = 44), whereas the 
 

8 If summed, the number of manipulations exceeds the total number of effect sizes included in the meta-analysis. 
This is because one effect size reflects two manipulations combined (i.e., feedback after good trials and conceptions 
of ability; Wulf et al., 2013). 
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remaining refer to a retention test carried out between 24-hr and one week after the acquisition 

phase (n = 7), or to a retention test carried out at least one week after the acquisition phase (n = 

5). 

Meta-analysis 

Before running the random-effects model to estimate the effect of enhanced expectancies 

on motor learning, funnel plot visual inspection and influence diagnostics statistics were carried 

out to identify the presence of outliers and/or overly influential cases in the dataset. Figure 3A 

shows a funnel plot depicting all 56 effect sizes as a function of their standard error distribution. 

Visual inspection indicated the presence of two outliers (see bottom right of plot), which was 

confirmed by inspection of studentized deleted residuals and hat values, resulting in the removal 

of the studies by Goudini et al. (2018; rstudent = 4.19, hat = 0.009) and Navaee et al. (2016; 

rstudent = 3.44, hat = 0.005) from the subsequent analyses. (Results of the main meta-analysis 

with all 56 effect sizes can be found in the supplementary material.) Figure 3B shows the funnel 

plot after removal of outliers/influential cases. 

Figure 4 depicts a forest plot with the 54 effect sizes included in the main analyses as 

well as a summary of the estimated effect. Results of the random-effects model revealed an 

overall effect size of medium magnitude (Hedges’ g = 0.54, 95% CI [0.38, 0.69], z = 6.85, p < 

.001), indicating a positive effect of enhanced expectancies on motor skill learning. The 

Cochran’s Q test was also significant (Q(53) = 118.27, p < .001), which suggests heterogeneity 

unlikely due to chance alone in the estimated effects across studies. This finding was 

corroborated by the results of the I2 statistics, which revealed heterogeneity of I2 = 55.27%. 

Funnel plot visual inspection indicated asymmetry even after outlier/overly influential case 

removal, which was confirmed by the results of the Egger’s regression test (z = 3.49, p < .001). 
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Notably, asymmetry does not necessarily reflect small-study effects, but rather can occur by 

chance, sampling variation, and/or heterogeneity (Sterne et al., 2011). Since our funnel plot 

included 54 effect sizes, we reasoned chance and sampling variation were unlikely to have 

caused asymmetry. Thus, we were most concerned with exploring heterogeneity as an alternative 

to small-study effects as a cause of asymmetry, especially given the evidence of heterogeneity, 

possibly stemming from the use of studies implementing six different types of manipulations. If 

the asymmetry was mostly due to different types of manipulations having different effect sizes 

and standard errors, then funnel plots for each type of manipulation should be symmetrical. 

However, this does not seem to be the case, as described in the supplementary material, and 

depicted in Figure S2. Similarly, the asymmetry does not appear due to different populations 

(young adults, older adults, children/adolescents, and special populations) having different effect 

sizes and standard errors, as the funnel plots were not symmetrical for each population (see 

supplementary material and Figure S3). The trim-and-fill analysis failed to add studies to either 

side of the main funnel plot (Figure 3B). 

Figure 3 

Funnel Plot and Funnel Plot with Outliers Removed 
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Note. A: Funnel plot depicting cases as a function of effect size and standard error of all 56 effect 

sizes. B: Funnel plot depicting cases as a function of effect size and standard error after outlier 

removal (n = 54). 

A moderator analysis was carried out to investigate the estimated effect size of enhanced 

expectancies on motor learning as a function of type of manipulation. (The same analysis with 

the 54 effect sizes included in the main analysis plus those considered outliers/overly influential 

can be found in the supplementary material.) Thus, type of manipulation (feedback after good 

trials, comparative feedback, self-modeling, perceived task difficulty, conceptions of ability, and 

extrinsic rewards) was entered into a mixed-effects model as a predictor. The moderator analysis 

revealed that at least one of the types of manipulations significantly differed from zero (QM(6) = 

66.15, p < .001). The estimated effect of feedback after good trials was of large magnitude 

(Hedges’ g = 0.84, 95% CI [0.54, 1.14], z = 5.43, p < .001, n = 13), indicating a beneficial effect 

of feedback after good trials on motor learning. In the same direction, a medium effect of 

comparative feedback (Hedges’ g = 0.61, 95% CI [0.34, 0.88], z = 4.39, p < .001, n = 15) and a 

small effect of perceived task difficulty (Hedges’ g = 0.46, 95% CI [0.18, 0.74], z = 3.17, p = 

.002, n = 13) and conceptions of ability (Hedges’ g = 0.39, 95% CI [0.023, 0.76], z = 2.083, p = 

.037, n = 79) were found. Extrinsic rewards showed a trivial positive effect (Hedges’ g = 0.15, 

95% CI [-0.38, 0.68], z = 0.56, p = .577, n = 4), and self-modeling showed a moderate effect 

 
9 The study by Wulf et al. (2013) manipulated both conceptions of ability and feedback after good trials. Until this 
point, the effect size of this study reflected a combination of these two manipulations (acquirable-better group vs. 
inherent-worse group). However, for the purposes of this moderator analysis, we decided to categorize this study as 
‘conceptions of ability’ by comparing the acquirable-worse group and inherent worse-group given that this 
manipulation had fewer cases (n = 6) than the feedback after good trials one (n = 13). (We chose to compare the 
acquirable- vs. inherent-worse groups because we reasoned the acquirable- and inherent-better groups may both 
have enhanced expectancies, with the latter believing they are naturally good at the task.) In the supplementary 
material, we present the results of a sensitivity analysis in which this study is classified as feedback after good trials 
(effect size reflecting the difference between the inherent-better and inherent-worse group). 
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favoring the comparison group (Hedges’ g = -0.64, 95% CI [-1.40, 0.12], z = -1.64, p = .101, n = 

2), thus failing to provide evidence that these manipulations improve motor learning. 

Figure 4 

Forest Plot 
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Note. Forest plot depicting all 54 effect sizes and their respective 95% confidence interval along 

with the overall Hedge’s g effect size. Model summary is also presented on the bottom left side 

of the figure. Here, effect sizes favoring enhanced expectancies manipulations are presented on 

the right side of the zero Hedges’ g line, whereas effect sizes not in favor of the manipulation in 

question are presented on the left side. 

A second moderator analysis was conducted to identify the effects of enhanced 

expectancies as a function of the different types of comparison groups adopted (i.e., diminished 

expectancies group, n = 25; or control, n = 29). (The same analysis with the 54 effect sizes 

included in the main analysis plus those considered outliers/overly influential can be found in the 

supplementary material.) We did not find evidence that adding type of comparison to the model 

helped explain variability in effect sizes across studies (QM(1) = 1.32, p = .251). Specifically, we 

observed a medium positive effect when comparing enhanced expectancies to diminished 

expectancies (Hedges’ g = 0.63, 95% CI [0.41, 0.86], z = 5.53, p < .001) and a small effect when 

comparing enhanced expectancies to control (Hedges’ g = 0.45, 95% CI [0.24, 0.66], z = 4.23, p 

< .001), but the effect of enhanced expectancies was not significantly influenced by comparison 

group type (β = -0.18, 95% CI [-0.49, 0.13], z = -1.15, p = .251). 

Finally, to explore the effect of enhanced expectancies as a function of different 

populations, type of population (young adults, older adults, children/adolescents, and special 

populations) was entered into a mixed-effect model as the predictor. (The same analysis with the 

54 effect sizes included in the main analysis plus those considered outliers/overly influential can 

be found in the supplementary material.) The exploratory moderator analysis revealed that at 

least one of the populations significantly differed from zero (QM(4) = 45.29, p < .001). 

Specifically, a significant positive effect of medium magnitude was found for young adults 



57 
 

(Hedges’ g = 0.61, 95% CI [0.40, 0.81], z = 5.70, p < .001, n = 32), older adults (Hedges’ g = 

0.48, 95% CI [0.01, 0.96], z = 1.99, p = .046, n = 6), and children/adolescents (Hedges’ g = 0.44, 

95% CI [0.12, 0.75], z = 2.71, p = .007, n = 13), suggesting enhanced expectancies has a 

beneficial effect for these populations. Although a medium positive effect was observed for 

special populations, we did not find sufficient evidence that enhanced expectancies improve 

learning in this population (Hedges’ g = 0.43, 95% CI [-0.27, 1.14], z = 1.20, p = .231, n = 3). 

Discussion 

The present meta-analysis estimated that enhancing learners’ expectancies for future 

successful outcomes has a medium-sized benefit on motor learning (g = 0.54, 95% CI [0.38, 

0.69]). Specifically, when analyzing different methods of enhancing expectancies, we found that 

manipulating feedback after good trials (g = 0.84, 95% CI [0.54, 1.14]) results in large benefits, 

while comparative feedback (g = 0.61, 95% CI [0.34, 0.88]) entails medium-sized benefits, and 

perceived task difficulty (g = 0.46, 95% CI [0.18, 0.74]) as well as conceptions of ability (g = 

0.39, 95% CI [0.023, 0.76]) result in small benefits to learning. We did not find evidence that 

manipulating extrinsic rewards or self-modeling affect motor learning (ps ≥ .101), but few 

studies implemented these manipulations (ns ≤ 4), precluding reliable estimates of their effects. 

Thus, the effects of these manipulations should be estimated again when/if more studies in this 

line of investigation are conducted. (Since only 7 studies manipulated conceptions of ability and 

the effect of this manipulation has a wide CI that includes 0 when estimated among all 56 effect 

sizes (see Table S2), these results should be interpreted with caution.)  Notably, enhanced 

expectancies benefitted motor learning similarly irrespective of whether the comparison group 

had diminished or neutral expectancies. This is consistent with Wulf and Lewthwaite (2016)’s 

suggestion that ‘neutral’ practice conditions are not really neutral, but rather likely elicit negative 
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expectancies due to learners’ concerns about having their performance assessed and compared 

with others’. Finally, we found that manipulating enhanced expectancies has a medium-sized 

positive effect on motor learning for young adults (g = 0.61, 95% CI [0.40, 0.81]), older adults (g 

= 0.48, 95% CI [0.01, 0.96]), and children/adolescents (g = 0.44, 95% CI [0.12, 0.75]). We did 

not find evidence to support the benefits of enhanced expectancies for special populations (p = 

.231), which in the present meta-analysis consist of adults with a disability in at least one upper 

or lower extremity (Bahmani et al., 2018), adults with Parkinson’s disease (Chung et al., 2020), 

and children with autism (Navaee et al., 2018). However, only three studies examined these 

populations, preventing reliable estimates of effects in them. Future research should investigate 

the effect of enhanced expectancies on motor learning in these populations. 

Results emphasize the role of enhanced expectancies in facilitating motor learning, so it 

is worth considering potential underlying mechanisms of this effect. Practice conditions that 

enhance expectations for successful outcomes are motivating, which increases dopamine release 

during motor skill practice, thereby facilitating the consolidation of motor memories (Wise, 

2004). This is because successful outcomes are intrinsically rewarding, activating the 

dopaminergic reward system (Lutz et al., 2012), and humans are motivated to pursue rewards 

during motor skill practice (Moskowitz et al., 2020). Importantly, the mere expectation of 

dopamine release modulates the dopaminergic reward system (Schmidt et al., 2014), which is 

crucial for motivation (Wise, 2004). 

The present meta-analysis also revealed evidence of small-study effects and 

underpowered studies, likely causing the effect of enhancing learners’ expectancies on motor 

learning to be overestimated. Specifically, funnel plot visual inspection revealed asymmetry that 

was confirmed by a significant relationship between study effect size and standard error (Egger’s 
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regression test). We believe the asymmetry is unlikely caused by chance or sampling variation, 

since 54 effect sizes were used in the funnel plot. We explored the probability that asymmetry 

was due to different manipulations (feedback after good trials, comparative feedback, etc...) or 

different populations (young adults, older adults, etc…) having different effect sizes and standard 

errors by constructing funnel plots for each manipulation and population. We did not observe 

symmetry in each manipulation and population’s funnel plot (Figures S2 and S3), making it 

unlikely that heterogeneity between manipulations or populations explains the asymmetry in the 

funnel plot with all manipulations and populations (Sterne et al., 2011). Evidence that small-

study effects contribute to funnel plot asymmetry can be observed in the lack of relatively 

imprecise studies showing negative effects (Figure 3B). In particular, asymmetry may be due to 

inflated effect sizes in small studies, since the median sample size was n = 14/group, and such 

small studies are likely to have exaggerated effect sizes (Sterne et al., 2011). Notably, the 

combination of small samples and small-study effects may cause effect sizes to be severely 

overestimated in the extant literature. This follows because small studies are likely to be 

underpowered such that only those drastically overestimating an effect will be statistically 

significant and, consequently, published (Lohse et al., 2016). However, it is important to note 

that the present meta-analysis did not assess the gray literature, and, therefore, does not present 

direct evidence of reporting bias.  

The risk of bias assessment also raises the possibility that the effect of enhancing 

learners’ expectancies on motor learning could be misrepresented. Some concerns, such as those 

about the randomization process, may be due to authors not reporting procedures rather than not 

undertaking them (The Cochrane Collaboration, 2013), and other concerns are inherent to motor 

learning research, such as participant awareness of group assignment. However, certain concerns 
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can be mitigated, such as those regarding bias in selection of the reported result. Thus, to 

estimate the effect of enhancing learners’ expectancies on motor learning more accurately, we 

recommend researchers conduct pre-registered studies and registered reports with a priori sample 

size calculations (Caldwell et al., 2020; Lohse et al., 2016). Specifically, pre-registered studies 

and registered reports may reduce reporting bias by committing researchers to reporting specific 

analyses and outcomes and journal editors to publishing studies irrespective of their results. 

Researchers conducting a priori sample size calculations should consider this meta-analysis’ 

effect sizes to be overestimated and are encouraged to power their studies to detect effects close 

to the lower bound of the 95% CI. According to G*Power 3.1.9.4 (Faul et al., 2007), a two-tailed 

independent sample t-test with α = .05, β = .20, equal n/group, and a Cohen’s d = 0.38 (lower 

bound of 95% CI) requires n = 110/group. This number is reduced to n = 55/group if a Cohen’s d 

is set to 0.54, consistent with the effect size (likely overestimated) in the present study. Since 

these sample sizes will be large increases for most researchers, they are encouraged to consider 

ways to make their data collections more efficient, for example by using sequential analyses 

(Lakens, 2014). 

The present results suggesting enhanced expectancies may facilitate motor learning, with 

the effect possibly overestimated due to small-study effects and small sample sizes, are 

somewhat like other recent meta-analyses of effects predicted by OPTIMAL theory. Jimenez-

Diaz et al. (2020) investigated the effect of learner control of augmented feedback during 

acquisition, which may promote autonomy, on motor performance and learning. The authors 

reported learner-controlled feedback groups exhibited superior acquisition performance relative 

to experimenter-regulated feedback groups, and learner-controlled feedback groups 

demonstrated performance stability from acquisition to retention, whereas experimenter-
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regulated feedback groups showed performance decrement from acquisition to retention. 

However, learner-controlled feedback groups did not significantly differ in performance or 

learning in comparison to yoked feedback groups, which consisted of participants who received 

augmented feedback schedules matched to a counterpart in a learner-controlled group. Thus, 

results provide little support for the OPTIMAL theory prediction that promoting autonomy, via 

giving learners control of their augmented feedback, enhances motor performance or learning. 

Notably, the authors reported a small median sample size of approximately n = 12/group as well 

as funnel plot asymmetry and significant Egger’s regression tests for both acquisition and 

retention data, indicating the possibility of small-study effects. Kim et al., (2017) examined the 

effect of external focus (on the effects of one’s movement) vs. internal focus (on one’s body 

movements) instructions on balance performance and learning. Consistent with OPTIMAL 

theory (Wulf & Lewthwaite, 2016), the authors reported external focus of attention groups 

exhibited superior balance during acquisition, retention, and transfer relative to internal focus of 

attention groups. The authors reported a small median sample size of approximately n = 

14/group as well as funnel plot asymmetry and a significant Egger’s regression test in the 

acquisition data but not in the retention data, indicating the possibility of bias in the former. 

(Funnel plot asymmetry was not assessed for transfer data.) Makaruk et al. (2020) investigated 

the effect of external vs. internal vs. control (no) attentional focus instructions on jumping 

performance but not learning. Consistent with OPTIMAL theory, the authors reported external 

focus of attention was superior to internal focus of attention and control conditions. The authors 

reported a median sample size of approximately n = 24 (14 of 15 studies were within-subjects), 

which is larger than the other meta-analyses. Unlike the other meta-analyses, the authors did not 

assess bias. Taken together, these meta-analyses and the present one suggest that the many 
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individual studies reporting effects consistent with OPTIMAL theory (Wulf & Lewthwaite, 

2016) exaggerate the supporting evidence, due to small-study effects and underpowered studies, 

which is common in motor learning (Lohse et al., 2016) and other fields (e.g., Button et al., 

2013a). Aggregating individual studies to estimate effects more accurately with meta-analyses is 

an important endeavor, but the presence of bias and an environment conducive to questionable 

research practices (e.g., conducting many statistical tests) in motor learning (Lohse et al., 2016) 

makes it difficult for OPTIMAL theory-based or other motor learning meta-analyses to establish 

whether even medium-sized effects, such as the one observed in the present study, are truly 

different from zero (E. C. Carter et al., 2019).  

An important question for future research is to what degree practitioners typically 

implement strategies that enhance expectancies in comparison to those that are neutral or 

diminish expectancies. If coaches/clinicians rarely create neutral practice conditions or those that 

diminish expectancies, then their adoption of strategies to enhance expectancies will have little 

added value. Notably, researchers have investigated whether coaches use external focus of 

attention instructions, as recommended by OPTIMAL theory, and revealed that they usually do 

not (Diekfuss & Raisbeck, 2016; Porter et al., 2010; Yamada et al., 2020). Thus, it is conceivable 

practitioners also fail to create practice conditions that enhance expectancies. 

The present meta-analysis suggests that enhancing learners’ expectancies for future 

successful outcomes may facilitate motor learning across young adults, older adults, and 

children/adolescents. The meta-analysis lacked studies manipulating extrinsic rewards and self-

modeling (and, to a lesser degree, conceptions of ability), and studies investigating the effect in 

question in special populations, so these effects should be estimated again when/if more studies 

in this line of investigation are conducted. As the meta-analysis indicated small-study effects and 
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small sample sizes, pre-registered analyses and/or registered reports with greater statistical power 

are recommended. This final recommendation is critical to develop a body of studies conducive 

to accurately estimating the effect of enhanced expectancies on motor learning as well as other 

effects predicted by OPTIMAL theory and other motor learning theories. 
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 Table 1 

Summary of the Main Characteristics of the Studies Included in the Meta-Analysis  

Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

Abbas & North 

(2018) 

Feedback after 

good trials 

Adults (Age: M = 

29.67 years, SD = 

9.36; 14 females) 

KR-good: n = 10 

KR-poor: n = 10 

KR-neutral: n = 10 

(Total: N = 30) 

KR-good vs KR-

neutral (Control) 

 

 

Golf-putting 

 

5 blocks of 6 

trials at 2 meters 

5 blocks of 6 

trials at 5 meters 

 

24-hr (1 block 

of 10 trials at 2 

m and 1 block 

of 10 trials at 5 

m) 

1-week (1 block 

of 10 trials at 2 

m and 1 block of 

10 trials at 5 m) 

Radial error 

Abe et al. (2011) Extrinsic rewards Adults (Age: M = 

24.3 years, SD = 

5.2; 18 females) 

Rewarded training: n = 13 

Punished training: n = 12 

Control training: n = 13 

(Total: N = 38) 

Rewarded training 

vs Control training 

(Control) 

Tracking pinch 

force 

 

 

4 blocks of 10 

trials 

 

24h and 30 days 

(1 block 20 

trials) 

 

 

Error (distance) 

Ávila et al. (2012) Comparative 

feedback 

Children (Age: M = 

10.4 years, SD = 

Positive feedback: n = 16 

Control: n = 16 

Positive feedback vs 

Control (Control) 

Non-dominant 

arm beanbag 

6 blocks of 10 

trials 

24-hr (1 block of 

10 trials) 

Accuracy score 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

0.36; 12 females) (Total: N = 32) throwing 

Bacelar et al. 

(2020) - Main exp. 

Extrinsic rewards 

 

Adults (Age: M = 

20.7 years, SD = 

2.63; 55 females) 

Reward: n = 25 

Punishment: n = 22 

Neutral: n = 22 

(Total: N = 69) 

Reward vs Neutral 

(Control) 

Golf-putting 

 

 

6 blocks of 8 

trials 

 

24h and 1 week 

(1 block of 8 

trials) 

Radial error 

Badami et al. 

(2012) 

Feedback after 

good trials 

Adults (Age: M = 

19.5 years, SD = 

1.9; all females) 

More Accurate: n = 20  

Less Accurate: n = 20 

(Total: N = 40) 

More accurate vs 

Less accurate 

(diminished 

expectancies) 

Golf-putting 10 blocks of 6 

trials 

24 h (1 block of 

10 trials) 

Putting accuracy 

scores 

Bahmani et al. 

(2017) 

Perceived task 

difficulty 

Children (Age: M = 

10.66 years, SD = 

0.41; all males) 

Perceived large hole: n = 

15 

Perceived small hole: n = 

15 

(Total: N = 30) 

Perceived large hole 

vs Perceived small 

hole (Diminished 

expectancies) 

Golf-putting 5 blocks of 10 

trials 

48-hr (1 block of 

10 trials) 

Deviation 

Bahmani et al. 

(2018) 

Perceived task 

difficulty 

Adults with 

disability in ≥1 

upper or lower 

extremity (Age: M 

= 37.7 years, SD = 

Large illusion: n = 9  

Small illusion: n = 8 

(Total: N = 17) 

Large illusion vs 

Small illusion 

(Diminished 

expectancies) 

Aiming task 

(shooting - 10-m 

air pistol and air 

rifle) 

5 blocks of 10 

trials 

24-hr (1 block of 

10 trials) 

Shooting accuracy 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

9.8; 11 females) 

Barker et al. (2010) Perceived task 

difficulty  

Adults (Age: M = 

21.50 years, SD = 

3.25; 4 females) 

Hypnosis: n = 14 

Video attention control: n 

= 14 

(Total: N = 28) 

Hypnosis vs Video 

attention control 

(Control) 

Soccer Wall-

Volley 

 

 

3 sessions each 

comprising 

soccer practice (3 

trials), 

manipulation (45 

min), and soccer 

practice (3 trials) 

4 weeks (1 block 

of 3 trials) 

Performance score 

 

 

Barzouka et al. 

(2007) 

Self-modeling  Adolescents (Age: 

M = 13.1 years, SD 

= 0.9; all females) 

Other-modeling: n = 18 

Self-modeling: n = 16 

Control: n = 19 

(Total: N = 53) 

Group 2 vs Group 1 

(Control) 

Volleyball 

reception 

12 practice 

sessions at a 

frequency of 

2x/week; four 

kinds of drills 

with 10 

repetitions each 

1-week (1 block 

of 10 trials) 

Performance 

outcome (score) 

Carter et al. (2016) Feedback after 

good trials 

Adults (Age: M = 

22.72 years, SD = 

1.65; 22 females) 

KR-good-aware: n = 10 

KR-good-unaware: n = 10 

KR-poor-aware: n = 10 

KR-poor-unaware: n = 10 

KR-good-unaware 

vs KR-poor-

unaware 

(Diminished 

Mini Koosh-ball 

tossing 

10 blocks of 6 

trials 

24h (2 blocks of 

6 trials) 

 

Radial error 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

(Total: N = 40) expectancies) 

Chauvel et al. 

(2015) 

Perceived task 

difficulty 

Adults (Age: M = 

21.7 years, SD = 

1.24; 20 females) 

Perceived large hole: n = 

18 

Perceived small hole: n = 

18 

(Total: N = 36) 

Perceived large hole 

vs Perceived small 

hole (Diminished 

expectancies) 

Golf-putting 5 blocks of 10 

trials 

24-hr (1 block of 

10 trials) 

Deviation 

Chiviacowsky & 

Drews (2014) – 

Exp. 2 

Conceptions of 

ability 

Children (Age: M = 

10.5 years, SD = 

0.51; 20 females) 

Generic feedback: n = 20 

Non-generic feedback: n 

= 20 

(Total: N = 40) 

Generic feedback vs 

Non-generic 

feedback 

(Diminished 

expectancies) 

Non-dominant 

arm beanbag 

throwing 

4 blocks of 10 

trials 

Retention 1: 24-

hr (1 block of 10 

trials)10 

Retention 2: 24-

hr (1 block of 10 

trials) 

Accuracy score 

Chiviacowsky & 

Drews (2016) 

Comparative 

feedback 

Adults (Age: M = 

21.6 years, SD = 

1.98; 4 females) 

Positive self-comparison 

feedback: n = 10 

Negative self-comparison 

feedback: n = 10 

(Total: N = 20) 

Positive self-

comparison 

feedback vs 

Negative self-

comparison 

feedback 

Anticipatory 

coincident 

timing 

 

 

 

4 blocks of 10 

trials 

24h (1 block of 

10 trials) 

 

 

Absolute error 

 

 
10 For the purposes of the present meta-analysis only Retention 1 was used. 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

(Diminished 

expectancies) 

 

Chiviacowsky & 

Harter (2015) 

Perceived task 

difficulty 

Adults (Age: M = 

24.4 years, SD = 

6.73; 24 females) 

High experience of 

success: n =18 

Low experience of 

success: n = 18  

Control: n = 18 

(Total: N = 54) 

High experience of 

success vs Control 

(Control) 

Anticipatory 

coincident 

timing 

6 blocks of 5 

trials 

24-hr (1 block of 

10 trials) 

Absolute error 

Chiviacowsky & 

Wulf (2007) 

Feedback after 

good trials 

Adults (Age: M = 

21.1 years, SD = 

NA; 18 females) 

KR good: n = 12 

KR poor: n = 12 

(Total: N = 24) 

 

KR good vs KR 

poor (Diminished 

expectancies) 

 

 

Non-dominant 

arm beanbag 

tossing 

 

 

10 blocks of 6 

trials 

24 h (1 block of 

10 trials) 

Accuracy score 

Chiviacowsky et al. 

(2009) 

Feedback after 

good trials  

Older adults (Age: 

M = 65.9 years, SD 

= NA; all females) 

KR-good: n = 11 

KR-poor: n = 11  

(Total: N = 22) 

KR-good vs KR-

poor (Diminished 

expectancies) 

Non-dominant 

arm beanbag 

tossing 

10 blocks of 6 

trials 

72-hr (1 block of 

10 trials) 

Accuracy score 

Chiviacowsky et al. 

(2010) 

Feedback after 

good trials 

Children (Age: M = 

10 years, SD = NA; 

ratio males/females 

CRB (KR after good 

trials): n = 13 

CRM (KR after poor 

CRB vs CRM 

(Diminished 

expectancies) 

Pedalo 

 

8 blocks of 4 

trials (7 meters) 

24h (1 block of 4 

trials) 

 

Time 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

not reported trials): n = 13 

(Total: N = 26) 

 

Chiviacowsky et al. 

(2012) 

Perceived task 

difficulty 

Adults (Age: M = 

21.8 years, SD = 

3.36; 24 females) 

Self-30: n = 17  

Self-4: n = 17 

Self: n = 17 

(Total: N = 51) 

Self-30 vs Self 

(Control) 

 

Anticipatory 

timing 

 

 

3 blocks of 10 

trials 

24h (1 block of 

10 trials) 

Absolute error 

Chiviacowsky et al. 

(2018) 

Perceived task 

difficulty  

Older adults (Age: 

M = 66.1 years, SD 

= 4.78; all females) 

 

Negative stereotype: n = 

13 

Positive stereotype: n =13 

Control: n = 13 

(Total: N = 39) 

Positive stereotype 

vs Control (Control) 

Stabilometer 

 

1 block of 10 

trials 

24h (1 block of 5 

trials) 

Time in balance 

Chiviacowsky et al. 

(2019) 

Comparative 

feedback 

Adults (Age: M = 

23.2 years, SD = 

6.71; 14 females) 

Positive temporal-

comparative feedback: n 

= 14 

Control: n = 14 

(Total: N = 28) 

Positive temporal-

comparative 

feedback vs Control 

(Control) 

Golf-putting 5 blocks of 10 

trials 

24h (1 block of 

10 trials) 

 

 

Deviation 

 

Chung et al. (2020) Conceptions of 

ability 

Individuals with 

Parkinson's Disease 

(Age: M = 62.36 

Incremental theory: n = 

15 

Incremental theory plus 

Incremental theory 

vs Control (Control) 

Stabilometer 1 block of 14 

trials (30-s trial) 

24-hr (1 block of 

7 30-s trials) 

Time in balance 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

years, SD = 9.80; 

18 females) 

success criteria: n = 15 

Control: n = 14 

(Total: N = 44) 

Drews et al. (2013) Conceptions of 

ability 

Children (Age 6: M 

= 6.2 years, SD = 

0.24; Age 10: M = 

10.1 years, SD = 

0.30; Age 14: M = 

14.4 years, SD = 

0.34; 54 females) 

Acquirable-skill-6: n = 20 

Inherent-ability-6: n = 20 

Acquirable-skill-10: n = 

20 

Inherent-ability-10: n = 

20 

Acquirable-skill-14: n = 

20 

Inherent-ability-14: n = 

20 

(Total: N = 120) 

 

Acquirable-skill-6 

vs Inherent-ability-6 

(Diminished 

expectancies – 

Drew et al. (2013a)) 

Acquirable-skill-10 

vs Inherent-ability-

10 (Diminished 

expectancies – 

Drew et al., 2013b) 

Acquirable-skill-14 

vs Inherent-ability-

14 (Diminished 

expectancies – 

Drew et al., 2013c) 

Overhand non-

dominant arm 

beanbag 

throwing 

4 blocks of 10 

trials 

24-hr (1 block of 

10 trials) 

Accuracy score 

Ghorbani & Bund Feedback after Adults (Age: M = Good KR and High Self- Good KR and High Non-dominant 10 blocks of 6 24h (1 block of Accuracy scores 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

(2020) good trials 21.35 years, SD = 

1.86; all males) 

Efficacy (SE): n = 15 

Poor KR and High SE: n 

= 15 

Good KR and Low SE: n 

= 15 

Poor KR and Low SE: n = 

15 

(Total: N = 60) 

SE vs Poor KR and 

High SE 

(Diminished 

expectancies- 

Ghorbani & Bund., 

2020a) 

Good KR and Low 

SE vs Poor KR and 

Low SE 

(Diminished 

expectancies- 

Ghorbani & Bund., 

2020b) 

 

arm beanbag 

throwing 

trials 

 

 

10 trials)  

Ghorbani (2019) – 

Exp. 1 

Feedback after 

good trials 

Adults (Age range: 

18-24 years; all 

males) 

KR-good: n = 12 

KR-bad: n = 12 

Control: n = 12 

(Total: N = 36) 

KR-good vs KR-bad 

(Diminished 

expectancies) 

Underarm dart-

throwing 

10 blocks of 6 

trials 

24-hr (1 block of 

10 trials) 

Accuracy score 

Goudini et al. Feedback after Adults (Age: M = KR after good trials: n = 9  KR after good trials Line tracking 11 blocks of 6 48h (1 block of Duration of errors 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

(2018) good trials 24.66 years, SD = 

1.35; 4 females) 

KR after poor trials: n = 9 

(Total: N = 18) 

vs KR after poor 

trials (Diminished 

expectancies) 

trials (15-s trial) 

 

 

10 trials) 

 

 

 

Grealy et al. (2019) Comparative 

feedback 

Adults (Age: M = 

22.38 years, SD: 

2.32; 28 females – 

Grealy et al., 

2019a) 

Older adults (Age: 

M = 71.65 years, 

SD: 4.28; 23 

females – Grealy et 

al., 2019b) 

Young false positive: n = 

21 

Young veridical: n = 21 

(Total: N = 42; Grealy et 

al., 2019a) 

Older false positive: n = 

17 

Older veridical: n = 17 

(Total: N = 34; Grealy et 

al., 2019b) 

Young false positive 

vs Young veridical 

(Control – Grealy et 

al., 2019a) 

Older false positive 

vs Older veridical 

(Control – Grealy et 

al., 2019b) 

Inhibitory-action 

task (Simon 

task) 

18 blocks of 50 

trials completed 

over 6 training 

sessions (3 

blocks/session) 

Two-week (3 

blocks of 50 

trials) 

Inhibition time 

Harter et al. (2019) Conceptions of 

ability 

Children (Age: M = 

9.6 years, SD = 

0.11; all females) 

Acquirable-skill: n = 20 

Inherent-ability: n = 20 

(Total: N = 40) 

Acquirable-skill vs 

Inherent-ability 

(Diminished 

expectancies) 

Pirouette en 

dehors 

3 blocks of 5 

trials 

24-hr (1 block of 

5 trials) 

Punctuation scores 

Jennings et al. 

(2013) 

Self-modeling Adolescents (Age: 

M = 13.6 years, SD: 

Traditional approach: n = 

10 

Traditional 

approach vs Self-

Cycling 

standing start 

4 one-hour 

training sessions 

48-hr (1 trial) Standing start time 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

1.6; 7 females) Self-modeling 

intervention: n = 9 

(Total: N = 19) 

modeling 

intervention 

(Control) 

over a 2-week 

period 

Lessa et al. (2018) Comparative 

feedback 

Older adults (Age: 

M = 66.14 years, 

SD = 4.63; 30 

females) 

 

Positive temporal-

comparative feedback: n 

= 17 

Control: n = 17 

(Total: N = 34) 

Positive temporal-

comparative vs 

Control (Control) 

 

4-meter walking 

speed 

4 blocks of 10 

trials 

24 h (1 block of 

10 trials) 

Absolute error 

 

 

Lewthwaite & 

Wulf (2010) 

Comparative 

feedback 

Adults (Age: M = 

23.0 years, SD = 

2.26; 24 females) 

 

Better: n = 12 

Worse: n = 12 

Control: n = 12 

(Total: N = 36) 

 

Better vs Control 

(Control) 

Stabilometer 2 days with 7 

trials (90-s trials) 

24h (1 block of 7 

trials) 

Root Mean Square 

Error 

 

 

Navaee et al. 

(2016) 

Comparative 

feedback 

Adults (Age: M = 

22.60 years, SD = 

1.89; information 

about gender not 

reported) 

Normative positive 

feedback: n = 10  

Normative negative 

feedback: n = 10 

Control: n = 10 

(Total: N = 30) 

Normative positive 

feedback vs Control 

(Control) 

Balance 16 blocks of 10 

trials for 4 

consecutive days 

(40 trials/day) 

24-hr (number of 

trials not 

reported) 

Overall stability 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

Navaee et al. 

(2018) 

Comparative 

feedback 

Autistic children 

(Age11 range: 6-10, 

M = NA, SD: NA; 

information about 

gender not 

reported) 

Normative feedback: n = 

10 

Control: n = 10 

(Total: N = 20) 

Normative feedback 

vs Control (Control) 

Non-dominant 

arm overhead 

beanbag 

throwing 

6 blocks of 10 

trials 

24-hr (1 block of 

10 trials) 

Mean score 

Ong & Hodges 

(2018) - Exp 2a. 

Comparative 

feedback 

Adults (Age: M = 

21.1 years, SD = 

3.4; all females) 

Positive: n = 10 

Positive-control: n = 10 

(Total: N = 20) 

Positive vs Positive-

control (Control) 

 

Stabilometer 1 block of 7 

trials (60-s trial) 

 

 

24 h (1 block of 

7 trials) 

 

Root Mean square 

Error 

 

Ong et al. (2015) Perceived task 

difficulty 

Adults (Age: M = 

NA, SD = NA; all 

females) 

Large target: n = 28 

Small target: n = 27 

(Total: N = 55) 

Large target vs 

Small target 

(Diminished 

expectancies) 

Dart-throwing 10 blocks of 9 

trials 

1-week (block of 

9 trials) 

Radial error 

Ong et al. (2019) Perceived task 

difficulty 

Adults (Age: M = 

21.4 years, Age 

range: 18-31 years; 

Large-target: n = 14  

Small-target: n = 15 

(Total: N = 29) 

Large-target vs 

Small-target 

(diminished 

Dart-throwing 10 blocks of 9 

trials 

24-hr (1 block of 

6 trials – no-

vision retention 

Absolute error 

 
11 This paper reported mean and SD by group as follows: Normative feedback: 8.40±0.96, Control: 8.50±0.84. 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

all females) expectancies) test)12 

24-hr (1 block of 

9 trials – with 

vision) 

Palmer et al. (2016) Perceived task 

difficulty 

Adults (Age: M = 

24.6 years, SD = 

5.20; 22 females) 

Large-target: n = 17 

Small-target: n = 17 

(Total: N = 34) 

Large-target vs 

Small-target 

(Diminished 

expectancies) 

Golf-putting 5 blocks of 10 

trials 

24-hr (1 block of 

12 trials) 

Deviation  

Pascua et al. (2015) Comparative 

feedback 

Adults (Age: M = 

21.5 years, SD = 

1.22; 31 females) 

External focus/enhanced 

expectancy: n = 13 

External focus: n = 13 

Enhanced expectancy: n = 

13 

Control: n = 13 

(Total: N = 52) 

Enhanced 

expectancy vs 

Control (Control – 

Pascua et al. 2015a) 

& 

External 

focus/enhanced 

expectancy vs 

External focus 

(Control - Pascua et 

Non-dominant 

arm overarm 

throwing (tennis 

ball) 

6 blocks of 10 

trials 

24-hr (1 block of 

10 trials) 

Throwing accuracy 

scores 

 
12 For the purposes of the present meta-analysis only the 24-hr retention test with no vision was used. 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

al. 2015b) 

Saemi et al. (2011) Feedback after 

good trials 

Children (Age: M = 

10.61 years, SD: 

0.88; information 

about gender not 

reported) 

KR-good: n = 14 

KR-poor: n = 14 

(Total: N = 28) 

KR-good vs KR-

poor (Diminished 

expectancies) 

Overhand non-

dominant arm 

beanbag 

throwing 

10 blocks of 6 

trials 

24-hr (1 block of 

10 trials) 

Accuracy score 

Saemi et al. (2012) Feedback after 

good trials 

Adults (Age: M = 

19.51 years, SD = 

1.09; all males) 

KR after good trials: n = 

12 

KR after poor trials: n = 

12 

(Total: N = 24) 

KR after good trials 

vs KR after poor 

trials (Diminished 

expectancies) 

Non-dominant 

arm tennis ball 

tossing 

10 blocks of 6 

trials 

24h (1 block of 

10 trials) 

 

Accuracy scores 

 

Steel et al. (2016) Extrinsic rewards Adults (Age: M = 

25 years, SD = 

4.25; 47 females)13 

Serial Reaction Time 

Task (SRTT) (Steel et al., 

2016a): 

Reward: n = 12 

Punishment: n = 12 

Control: n = 12 

Reward vs Control 

(Control) 

SRTT  

FTT   

SRTT (Steel et 

al., 2016a):  

Training: 6 

blocks of 96 trials 

FTT (Steel et al., 

2016b): 

SRTT (Steel et 

al., 2016a):  

24-hr and 30-day 

(3 blocks of 96 

trials; sequence: 

random-fixed-

SRTT (Steel et al., 

2016a): 

Reaction time 

FTT (Steel et al., 

2016b): 

Squared error 

 
13 Authors did not provide information about age (mean and standard deviation) and gender separately for each task. Thus, the information presented is based on 
the total sample size of 72 participants. 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

(Total: N = 36) 

Force-Tracking Task 

(FTT) (Steel et al., 

2016b): 

Reward: n = 9 

Punishment: n = 11 

Control: n = 10 

(Total: N = 30) 

Training: 6 

blocks of 8 trials 

(12-s trial) 

random) 

FTT (Steel et al., 

2016b): 

24-hr and 30-day 

(3 blocks of 8 

trials; sequence: 

random-fixed-

random) 

 

Wulf et al. (2010) Comparative 

feedback 

Adults (Age: M = 

20.8 years, SD = 

3.53; 12 females) 

Better: n = 14 

Worse: n = 14 

(Total: N = 28) 

Better vs Worse 

(Diminished 

expectancies) 

Computerized 

sequential 

timing 

8 blocks of 10 

trials 

24-hr (1 block of 

10 trials) 

Overall timing 

error 

Wulf et al. (2012) – 

Exp 1. 

Comparative 

feedback 

Older adults (Age: 

M = 71.1 years, SD 

= 5.25; all females) 

Normative feedback: n = 

15 

Control: n = 14 

(Total: N = 29) 

Normative feedback 

vs Control (Control 

– Wulf et al., 2012a) 

Stabilometer 1 block of 10 

trials (30-s trial) 

24-hr (1 block of 

5 trials) 

Time in balance 

Wulf et al. (2012) – 

Exp 2.  

Perceived task 

difficulty  

Older adults (Age: 

M = 63.6 years, SD 

= 3.40; all females) 

Enhanced expectancies: n 

= 14 

Control: n = 14 

Enhanced 

expectancies vs 

Control (Control - 

Stabilometer 1 block of 10 

trials (30-s trial) 

24-hr (1 block of 

5 trials) 

Time in balance 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

(Total: N = 28) Wulf et al., 2012b) 

Wulf et al. (2013) Conceptions of 

ability and 

feedback after good 

trials 

Adults (Age: M = 

22.3 years, SD = 

2.25; 36 females) 

Inherent-ability better: n = 

14 

Inherent-ability worse: n 

= 14 

Acquirable-skill better: n 

= 14 

Acquirable-skill worse: n 

= 14 

(Total: N = 56) 

Acquirable-skill 

better vs Inherent-

ability worse 

(Diminished 

expectancies) 

Stabilometer 

 

2 days with 7 

trials (90-s trials) 

 

24h (1 block of 7 

trials) 

 

Root Mean Square 

Error 

 

Wulf et al. (2014) Comparative 

feedback 

Adolescents (Age: 

M = 16.7 years, SD 

= 1.14; 28 females) 

Autonomy 

support/enhanced 

expectancies:  n = 16  

Autonomy support: n = 16 

Enhanced expectancies: n 

= 16  

Control: n = 16 

(Total: N = 64) 

Enhanced 

expectancies vs 

Control 

(Control – Wulf et 

al. 2014a) & 

Autonomy 

support/enhanced 

expectancies vs 

Autonomy support 

Non-dominant 

arm overhand 

throwing (beach 

tennis ball) 

6 blocks of 10 

trials 

24-hr (1 block of 

10 trials) 

Accuracy score 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

(Control - Wulf et 

al. 2014b)  

Wulf et al. (2018) Comparative 

feedback 

Adults (Age: M = 

22.8 years, SD = 

3.87; 20 females) 

Enhanced expectancy and 

autonomy support: n = 15 

Enhanced expectancy and 

external focus: n = 15 

Autonomy support and 

external focus: n = 15 

Enhanced expectancy, 

autonomy support, and 

external focus: n = 15 

(Total: N = 60) 

Enhanced 

expectancy, 

autonomy support, 

and external focus 

vs Autonomy 

support and external 

focus (Control) 

Beach tennis-

ball throwing 

 

 

6 blocks of 10 

trials 

 

 

24h (1 block of 

10 trials) 

Accuracy scores 

 

 

Ziv, Lidor, et al. 

(2019) 

Perceived task 

difficulty 

Adults (Age: M = 

23.90 years, SD = 

2.7; 32 females) 

Large circle: n = 15 

Small-circle: n = 15 

Control: n = 15 

(Total: N = 45) 

Large circle vs 

Control (Control) 

Golf-putting  5 blocks of 10 

trials 

48-hr (1 block of 

12 trials) 

Radial error 

Ziv, Ochayon, et al. 

(2019) 

Perceived task 

difficulty 

Adults (Age: M = 

NA, SD = NA; all 

males) 

Large-circle: n = 15 

Small-circle: n = 15 

Control: n = 15 

Large-circle vs 

Control (Control) 

Golf-putting 5 blocks of 10 

trials 

48-hr (1 block of 

12 trials) 

Absolute error 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 

Chosen 

Performance 

Outcome 

(Total: N = 45) 

Zobe et al. (2019) Comparative 

feedback 

Adults (Age: M = 

22.5 years, SD = 

2.8; 20 females) 

Normative-Positive-

Group: n = 14 

Normative-Negative-

Group: n = 14 

Passive-Control-Group: n 

= 14 

(Total: N = 42) 

Normative-positive-

group vs 

Normative-

negative-group14 

(Diminished 

expectancies) 

Elbow-

extension-

flexion sequence 

with three 

movement 

reversals at 70°, 

20°, and 70° 

5 sessions (15 

blocks total): 

session 1 was 

comprised of 3 

blocks of 38 trials 

and sessions 2-5 

were comprised 

of 3 blocks of 48 

trials per session 

48-72-hr (1 block 

of 6 trials) 

Absolute error 

Note. NA indicates information was not available. KR indicates knowledge of results. The retention test closest to 24-hr was used in the meta-

analysis.  

 

 

 
14 The Passive-Control-Group did not go through the training session, hence our decision to compare the Normative-Positive- Group to the Normative-Negative-
Group. 
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Chapter 3: Dissociating the contributions of motivational and information processing 

factors to the self-controlled feedback learning benefit 

Introduction 

Giving learners control over the delivery of augmented feedback has been shown to 

enhance motor skill learning (Sanli et al., 2013). This self-controlled feedback benefit has been 

found across a variety of tasks such as timed key-pressing (Chiviacowsky & Wulf, 2002), 

walking (Huet et al., 2009), and throwing tasks (Chiviacowsky et al., 2008). Typically, self-

controlled feedback paradigms have at least an experimental group (referred to as self-control) 

that is allowed to choose whether they want to receive feedback after each trial, and a control 

group (referred to as yoked) that receives feedback in a matched schedule to a self-control 

counterpart. That is, learners in the yoked group are paired with learners in the self-control group 

and receive feedback in the same temporal order as requested by their self-control counterpart. 

Thus, any potential differences between groups found in post-test assessments (retention and/or 

transfer tests) can be more reliably attributed to the exertion of choice over feedback delivery 

rather than feedback delivery schedule.  

Although there have been more than 40 self-controlled feedback experiments reported 

since the initial one (Janelle et al., 1995; McKay et al., in press) there is no consensus on the 

mechanisms underlying the self-controlled feedback benefit. Currently, two explanations 

dominate the discussion around what is driving the benefit (Sanli et al., 2013). The motivational 

explanation argues that motor learning is facilitated in self-controlled protocols due to the 

fulfillment of the basic psychological need for autonomy (Ryan & Deci, 2000). As postulated by 

the Optimizing Performance Through Intrinsic Motivation and Attention for Learning 

(OPTIMAL) theory (Wulf & Lewthwaite, 2016), practice conditions that provide learners with 
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an opportunity for choice support their need for autonomy, thereby increasing their intrinsic 

motivation, which ultimately leads to better learning. Furthermore, self-control conditions might 

also increase learners’ perception of competence, another basic psychological need with a direct 

positive impact on intrinsic motivation. This is evidenced in past research showing that self-

control learners typically ask for feedback after perceived good as opposed to bad trials 

(Chiviacowsky & Wulf, 2002), and experience higher levels of perceived competence and self-

efficacy due to receiving feedback about these trials (Chiviacowsky et al., 2012b).  

The information processing explanation, on the other hand, argues that the critical factor 

behind the self-controlled feedback benefit is the learner’s provocation to estimate their error to 

decide the functional value of requesting feedback, for example to confirm they performed the 

trial well. So far, part of the evidence in support of this explanation comes from studies 

investigating the timing associated with the decision to receive feedback. Chiviacowsky & Wulf 

(2005), for instance, found that learners choosing after trial execution whether they wanted to 

receive feedback about that trial performed better in a delayed transfer test compared to learners 

who had to make the choice before the trial was initiated. Since both groups were allowed to 

choose their feedback schedule, the authors concluded that choice per se could not have driven 

the results. Instead, they proposed learners choosing whether to receive feedback after trial 

completion were presumably engaging in error estimation to determine the functional value of 

the feedback and decide whether to request it, which culminated in the observed learning 

advantages. This proposal was consistent with research beyond the self-controlled feedback 

domain showing that performance estimation during acquisition can benefit learning 

(Guadagnoli & Kohl, 2001; Liu & Wrisberg, 1997). 
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These findings were later replicated and expanded upon by Carter et al. (2014) who 

conducted an experiment that included groups allowed to choose whether to receive feedback 

before (self-before) or after (self-after) movement execution, in addition to a group that made the 

decision about the receipt of feedback before the trial was initiated but was allowed to change the 

original decision after movement execution (self-both). The rationale behind including the self-

both group stems from the potential benefit its participants could receive from being motivated to 

perform well on trials for which they pre-selected feedback and from being encouraged to 

engage in error estimation to determine whether they should change their original decision about 

receiving feedback. Noteworthy, this study also included yoked groups to match each self-

control condition to address a major limitation in Chiviacowsky and Wulf (2005)’s study, which 

did not include yoked conditions, thus limiting the conclusions about the self-controlled 

feedback benefit. Results revealed no performance differences between the self-after and self-

both groups during post-tests (retention and transfer), ruling out the potential enhanced benefits 

in the latter group. However, both groups outperformed the self-before, yoked-after, and yoked-

both groups in both post-tests. Moreover, no difference between self-before and yoked-before 

groups for either post-test was found, suggesting that deciding about feedback delivery before 

trial execution had no advantage over the absence of choice. Notably, participants were asked to 

estimate their error after each trial during both retention and transfer test, and the self-after and 

self-both groups showed more accurate estimation than the other groups, indicating they had 

developed superior error detection ability. The authors speculated this was due to these groups 

being stimulated to estimate errors while deciding whether to request feedback during practice, 

and this speculation was taken as evidence for the information processing explanation of the self-

controlled feedback benefit. 
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Recently, after considering the evidence presented by Chiviacowsky and Wulf (2005), 

Carter et al. (2014), and other studies that followed (e.g., Carter & Ste-Marie, 2017a), Barros et 

al. (2019) reported two experiments that examined whether engagement in error estimation 

during practice could counteract the disadvantage associated with a yoked feedback schedule. 

The authors argued that if error estimation is driving the self-controlled feedback benefit, yoked 

learners encouraged to estimate their performance might show learning comparable to self-

control learners. As such, in addition to the traditional self-control and yoked groups, the 

experiments included a second yoked group (yoked error estimation group) in which participants 

received feedback in a matched schedule to a self-control counterpart but were asked to estimate 

their performance, before receiving feedback, after every trial (first experiment) or only after 

trials wherein they received feedback (second experiment). In the first experiment, the authors 

found that the yoked error estimation group outperformed both the self-control traditional and 

yoked traditional groups during post-tests, with the latter groups not significantly differing. 

However, in the second experiment, there were no significant group differences during post-

tests. Notably, in the second experiment, all participants were asked to estimate their errors 

during post-tests, and the yoked error estimation group exhibited more accurate error estimation. 

Further, regardless of training condition, participants who more accurately estimated their errors 

during post-test exhibited more accurate performance during post-test. Conversely, neither 

experiment revealed group differences in self-reported intrinsic motivation, autonomy, or 

perceived competence, and no relationships between these variables and post-test performance 

were observed when they were examined in Experiment 2. Considering results from both 

experiments, Barros and colleagues (2019) concluded that information processing (error 
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estimation) likely contributes to the self-controlled feedback benefit more so than motivational 

factors.  

Although Barros et al. (2019) sheds light on the mechanisms that may explain the self-

controlled feedback benefit, the study’s ability to illuminate the processes is limited by not 

observing the effect and the lack of a fully crossed experimental design. Regarding the first 

limitation, it is possible that the study was underpowered to detect the self-controlled feedback 

benefit, since the sample size was n = 20/group, but a sample size of n ~ 50/group is likely 

required for 80% power to detect a self-controlled practice effect based on a recent meta-analysis 

estimating the effect of self-controlled practice on motor learning to be Hedges’ g = 0.44 (Faul et 

al., 2007; McKay et al., in press).15 To address this shortcoming, we conducted the largest self-

controlled feedback study (N = 200 [4 groups x 50 participants]) to date. Regarding the second 

limitation, the absence of a fully crossed design prevents the dissociation between the 

contributions of motivational and information processing factors to the self-controlled feedback 

benefit. To address this shortcoming, we crossed self-controlled feedback and error estimation in 

the same experimental design by creating four training conditions in which feedback schedule 

was either controlled by the participant (self-control) or matched to a counterpart (yoked) and 

error estimation was either mandatory (error estimation) or not enforced (traditional). We then 

assessed the effect of these manipulations on learning by carrying out a retention and a transfer 

test approximately 24-hr after the acquisition phase. This fully crossed design is key to address 

the motivational and informational accounts of the self-controlled feedback benefit. For instance, 

finding a main effect of self-control on learning (i.e., self-control traditional and self-control 

 
15 The sample size calculation was conducted with G*Power 3.1.9.4’s ANOVA: Repeated measures, between 
factors test (Faul et al., 2007). Effect size was set to f = 0.22, corresponding to g = 0.44, which may be an 
overestimate due to selection bias (McKay et al., in press). Alpha was set to .05, power to .8, number of groups = 3, 
number of measures = 2, and correlation among measures to .5. 
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error estimation groups outperforming the other two groups during post-test) would favor the 

motivational account. This stems from the assumption that, if error estimation is a determining 

factor, the yoked error estimation group would perform similar to the self-control traditional and 

self-control error estimation groups, resulting in an interaction between self-control and error 

estimation, thus offering support to the informational explanation. Alternatively, a scenario 

where the self-control error estimation group exhibits better learning than both self-control 

traditional and yoked error estimation groups, which are similar and show better learning relative 

to the yoked traditional group, would suggest motivational and informational factors have an 

additive effect on motor learning. In addition to the crossed design, the present study included a 

self-reported measure of engagement in spontaneous error estimation given to participants in the 

traditional conditions, which complemented the self-reported measures of motivation given to all 

participants.  

Methods 

 Prior to data collection, data processing and main analyses were pre-registered and made 

available at the Open Science Framework repository (Link). 

Sample Size Calculation 

Sample size was determined with a priori power calculation using G*Power 3.1.9.2 (Faul 

et al., 2007). For the statistical test, we used ANOVA: Fixed effects, special, main effects and 

interactions, and the following input parameters: Number of groups = 4 (self-control error 

estimation, self-control traditional, yoked error estimation, yoked traditional), Numerator df = 1 

(based on a 2 (Self-Control/Yoked) x 2 (Error Estimation/Traditional) ANOVA), Power = .8, α = 

.05, and effect size f = .20. The effect size estimate was based on personal communication with 

Brad McKay who was conducting a meta-analysis on the effect of self-control on motor skill 

https://osf.io/s9kmp/?view_only=9061117f4c7b47a394c5c8c8374aac54
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learning with Zachary D. Yantha, Julia Hussien, Michael J. Carter, and Diane M. Ste-Marie (B. 

McKay, personal communication, August 16, 2019). Subsequently, a preprint describing the 

meta-analysis was uploaded on PsyArXiv (https://psyarxiv.com/8d3nb). In personal 

communication, McKay estimated an effect of Hedges’ g = 0.1 – 0.4, and we used the upper 

limit (g = 0.4  f = .2) because we planned to control for pretest, therefore increasing our power 

by accounting for variance not explained by self-controlled practice, which was not always the 

case in studies identified by McKay et al.’s meta-analysis (in press). The power calculation 

yielded a total sample size of 199, which was rounded up to 200. To improve data collection 

efficiency, we decided to conduct a sequential analysis, a method commonly used in large 

medical trials that allows the use of interim analyses while also controlling for false positive 

(Type 1) error rate (Armitage et al., 1969; Dodge & Romig, 1929; Lakens, 2014). We established 

one interim analysis at 100 participants, when the main analyses would be carried out using the 

Pocock boundary (interim and final α = .0294) and contrasted against our criteria to terminate 

data collection. The interim analysis at 100 participants revealed no statistically significant main 

effects of self-control feedback (p = .228, η2
p = .015, 95% CI[0, 0.092]), or error estimation (p = 

.252, η2
p = .014, 95% CI [0, 0.088]) and no statistically significant interaction (p = .345, η2

p = 

.009, 95% CI [0, 0.078]). Since these results did not meet our pre-established criteria to stop 

collecting data (i.e., the upper bounds of the 95% CI(s) of the effects were not less than η2
p = 

.038), we decided to proceed with data collection up to 200 participants. Details regarding 

stopping rules can be found in the pre-registration form. 

Participants 

The final sample was comprised of 200 participants (females = 148, Mage = 20.64, SD = 

1.60 years). Recruitment was done through Auburn University’s research credit system (College 
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of Education Research Participation System – SONA) and by word-of-mouth. Four course 

credits were offered in exchange for participation when applicable. Participants did not have any 

previous experience with the experimental task nor did they report having any neuromuscular 

impairment that would affect performance of a nondominant arm bean bag tossing task. All 

participants reported using their right hand to throw. The present study was approved by Auburn 

University Institutional Review Board under the research protocol # 19-046 EP 1902 in 

agreement with the 1964 Declaration of Helsinki. All participants provided written consent prior 

to Day 1 of data collection and verbal consent prior to Day 2 of data collection.   

Task 

 Participants practiced a nondominant arm bean bag tossing task similar to the one used 

by Grand et al. (2017). The goal of the task was to make the bean bag land as close to the center 

of the target as possible. Participants sat in a chair positioned in front of a table located 3 m away 

from the center of the target. Chair position was adjusted based on participant’s arm length. 

Specifically, participants were asked to sit back in the chair and stick their arm out in a way that 

their fingers would touch the edge of the table. Next, the chair was moved back 25 cm to give 

participants enough room to perform the movement without hitting the table. The table also 

accommodated a computer monitor (38.5 cm screen size) positioned at eye level along with 10 

bean bags distributed across the table in pairs and served as a support for a pasteboard used to 

occlude participants’ vision of the target. The computer monitor was used to deliver feedback. 

To make the task more challenging and thus avoid a ceiling effect (R. A. Schmidt & Lee, 2020), 

we instructed participants to grasp each bean bag with their left hand pronated and toss it over 

the occlusion board by elevating their arm and flicking their wrist. The movement was first 

demonstrated by the experimenter, who then asked the participant to repeat the motion to ensure 
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proper understanding of the movement. The target, which was taped to the floor, consisted of a 

grid (140cm x 140cm) comprising 49 evenly distributed squares (side length = 20 cm). Each 

square was assigned a letter and a number indicating the square position (e.g., A1 represented the 

first square on the top left of the target and D4 represented the center of the target). Finally, a 

standard computer keyboard was placed on a small table next to the participant’s right arm. This 

keyboard was used for performance estimation and to initiate feedback delivery, as explained 

below.  

Procedures 

Day 1 of data collection 

Experimental set-up is shown in Figure 1. Prior to the beginning of the experiment, 

participants provided written consent and filled out a demographics questionnaire, which asked 

questions about age, sex, and previous experience playing cornhole (i.e., a bean bag game). Next, 

they were directed to the task area, where they had their chair position adjusted and were given 

instructions about the goal of the task and how to execute the movement. To determine baseline 

skill level, participants performed a pretest consisting of one block of ten trials without feedback. 

(Participants were allowed to see the target for 10s before initiating pretest.) After pretest, 

participants were quasi-randomly assigned (based on sex) to one of four groups: self-control 

traditional, yoked traditional, self-control error estimation or yoked error estimation. Participants 

in the self-control condition were allowed to choose whether they wanted to receive feedback 

after a trial, whereas participants in the yoked condition received feedback in a matched schedule 

to a self-control counterpart (e.g., participants in the yoked traditional condition received 

feedback corresponding to the same trials as requested by their self-control traditional 

counterpart). Participants in the error estimation condition were asked to estimate where the bean 
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bag landed after each trial regardless of feedback delivery, whereas participants in the traditional 

condition were not. Detailed instructions given to each group can be found in the OSF 

repository. 

Figure 1 

Representation of Task and Experimental Set-up 

 

 

 

 

 

 

 

 

Note. The left side of the figure shows the participant in a sitting position and a pasteboard 

blocking their vision of the target. The upper-right side of the figure illustrates how feedback was 

delivered throughout the experiment. 

After being assigned to a training condition, participants performed the acquisition phase, 

which consisted of 10 blocks of 10 trials with a 1-min break between blocks. (Participants were 

allowed to see the target for 10s before initiating the acquisition phase.) Feedback was presented 

50% of the time (i.e., participants received feedback in 5 of 10 trials per block) according to 

training condition. Specifically, after each trial, participants in the self-control condition were 

informed of the number of feedback requests remaining in the block and asked whether they 

wanted to receive feedback about that trial. If yes, participants were instructed to press “enter” 
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on the keyboard when the word “ready” appeared on the computer screen in front of them. Next, 

participants saw an image of the target on the screen for 2000 ms, then the square where the bean 

bag landed was highlighted in yellow for 1000 ms, as shown on the upper-right side of Figure 1. 

After feedback delivery, participants moved on to the next trial. Important to mention, 

participants were informed that they would have to request five feedbacks per block. In 

situations wherein the number of trials remaining in the block matched the number of feedback 

requests available, the remaining trials defaulted to feedback trials (e.g., if there were three 

feedback requests available and three trials remaining in the block, participants were prompted to 

ask feedback after each of the three remaining trials). For participants in the yoked condition, 

after each trial they were informed of the number of feedbacks remaining in the block and 

whether it had been determined they would receive feedback about that trial. As mentioned 

previously, participants in the error estimation condition estimated their performance after each 

trial. Specifically, after each throw, participants were instructed to estimate where they thought 

the bean bag landed. To initiate performance estimation, participants pressed “enter” on the 

keyboard when the word “ready” appeared on the computer screen in front of them. Next, 

participants saw an image of the target on the screen and were asked to press on the keyboard the 

letter and the number of the square that matched their prediction. For example, if they thought 

the bean bag landed on D4, they would press the letter “D” followed by the number “4”. For 

trials wherein they predicted the bean bag landed outside the target, participants were instructed 

to enter “XX”. Feedback was presented right after performance estimation according to training 

condition. During the resting period between acquisition blocks, regardless of condition, 

participants filled out a single-item engagement and motivation questionnaire, which asked 

participants to rate on a scale of 0 to 10 how engaged and motivated they were towards the bean 
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bag task (Leiker et al., 2018; Pathania et al., 2019). In addition, participants in the self-control 

error estimation and yoked error estimation groups were asked to report on a scale of 0 to 10 how 

confident they were in their ability to predict the bean bag position.  

After completing the last block of acquisition, all participants were asked to fill out the 

Intrinsic Motivation Inventory (IMI; McAuley, Duncan, and Tammen, 1989) consisting of 35 

questions answered on a 7-point Likert scale ranging from “not true at all” to “very true”. This 

questionnaire is divided into six subscales (i.e., interest/enjoyment; effort/importance; 

value/usefulness; pressure/tension; perceived choice; and perceived competence) intended to 

measure participants’ experience with the experimental task (i.e., bean bag task). For the present 

study, questions corresponding to the perceived choice subscale were replaced with questions 

designed to measure perception of autonomy. This modified version was similar to the one used 

by used by Carter & Ste-Marie (2017b). In addition, participants in the self-control and yoked 

traditional conditions were asked to report on a scale of 0 to 100% what percentage of the time 

they were estimating their performance (e.g., 75% of the time).  

Day 2 of data collection 

Participants returned approximately 24-hr after Day 1 to complete a retention and a 

transfer test. The retention test consisted of the same bean bag tossing task practiced the day 

before, whereas the transfer test consisted of a variation of the original task in which participants 

were moved back one meter from their original position. Therefore, participants had to adjust the 

force parameter to meet the task goal. We decided to include a transfer test since previous studies 

on the same topic have shown the benefits of self-controlled feedback during transfer but not 

retention tests (Fairbrother et al., 2012). Moreover, the ability to generalize a skill can be 

assessed when a variation of the skill is performed (R. A. Schmidt & Lee, 2011). Both post-tests 



93 
 

consisted of 1 block of 10 trials and were carried out in a counterbalanced order. Participants 

were allowed to look at the target for 10s before each post-test, but no feedback was provided 

throughout the post-tests.  

Dependent Variables and Data Processing 

The main dependent variable of interest was radial error (RE), which is a measure of 

accuracy (Hancock et al., 1995), but we also computed bivariate variable error (BVE) as a 

measure of precision. For the first 100 participants, the software Dartfish® was used to record 

the magnitude of the error along the x- and y-axis. More specifically, an iPad mounted to the 

ceiling right above the center of the target recorded where each bean bag landed during the entire 

data collection session (Days 1 and 2). Next, recorded videos were imported into Dartfish where 

x and y measures were obtained. For the remaining participants, the program LabView® 

equipped with the virtual instrument ScorePutting (Neumann & Thomas, 2008) was used to 

compute the magnitude of the error along both x and y dimensions, after confirming the 

correlation between Dartfish® and LabView® in obtaining these measures was high (r ≥ .995) 

among four participants. RE and BVE were calculated for the pretest, all blocks of acquisition 

phase (10 blocks) and post-tests (retention and transfer tests). For the secondary exploratory 

analyses, we computed single scores for the IMI subscales Interest/Enjoyment (Cronbach’s α = 

.93), Perceived Choice (Cronbach’s α = .62), and Perceived Competence (Cronbach’s α = .91) by 

averaging across all seven, five, and six items within the scales, respectively. The 

Interest/Enjoyment subscale was included in the exploratory analyses as it is considered the 

subscale most directly associated with intrinsic motivation (Deci et al., 1994). Perceived choice 

and perceived competence scores were also analyzed as levels of perception of autonomy and 

competence have been shown to be increased in self-control protocols (e.g., Chiviacowsky et al., 



94 
 

2012; McKay & Ste-Marie, 2020b). Finally, we computed the measure error estimation 

percentage by extracting the scores from the questionnaire that asked participants in the self-

control traditional and yoked traditional groups to report the percentage of the time they were 

engaging in performance estimation.  

Statistical Analysis 

For the primary confirmatory analysis of interest, we assessed the effect of training 

condition on learning as indexed by post-test accuracy by conducting a 2 (Self-control) x 2 

(Error Estimation) x 2 (Post-test: retention test/transfer test) mixed-factor ANCOVA with 

repeated-measures on the last factor, post-test RE serving as the dependent variable, and pretest 

RE serving as the covariate. We also conducted non-preregistered analyses on acquisition and 

post-test data. Specifically, to investigate the effect of training condition on tossing accuracy and 

precision during the acquisition phase, RE and BVE served as the dependent variable in two 

separate 2 (Self-control: self-control/yoked) x 2 (Error Estimation: error estimation/traditional) x 

10 (Block: 1:10) mixed-factor ANCOVAs with repeated-measures on the last factor and pretest 

(pretest RE and pretest BVE, respectively) serving as the covariate. To assess the effect of 

training condition on post-test precision, the same ANCOVA was conducted with post-test BVE 

serving as the dependent variable and pretest BVE serving as the covariate. Alpha was set to .05 

and the Greenhouse-Geisser correction was applied when sphericity was violated. Tukey HSD 

was used for post-hoc tests when applicable.  

Results 

Statistical assumptions were met for all analyses and no influential data points (Cook's 

distances greater than or equal to 1.00) were observed for any analysis. 

Preregistered Analyses 
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Retention and Transfer  

Figure 2 shows tossing accuracy (RE) and precision (BVE) as a function of study phase 

(pretest, all 10 blocks of the acquisition phase and post-tests). Before running the mixed-factor 

ANCOVA on the variable post-test RE, we ran a 2-tailed paired samples t-test to assess whether 

there was a difference in performance between pretest RE and retention RE regardless of training 

condition. Results showed that participants performed significantly better during the retention 

test (M = 65.18 cm, SD = 24.39) compared to the pretest (M = 77.71 cm, SD = 25.35) (t(199) = 

6.05, p < .001, Cohen’s d = 0.50, 95% CI [0.36, 0.65]) indicating learning. For the primary 

confirmatory analysis of interest, the mixed-factor ANCOVA assessing the effect of training 

condition on post-test RE revealed a main effect of pretest (F(1, 195) = 17.30, p < .001, η2
p = 

.08), a main effect of post-test (F(1, 195) = 12.25, p = .001, η2
p = .06) indicating participants 

performed worse on the transfer test compared to the retention test, and a main effect of error 

estimation (F(1, 195) = 4.56, p = .034,  η2
p = .02), which was superseded by a Post-test x Error 

Estimation interaction (F(1,195) = 6.66,  p = .011, η2
p = .03). To follow-up this interaction, 

separate one-way (error estimation) ANCOVAs were conducted for the retention and transfer 

tests, with pretest RE serving as the covariate. Results showed no significant effect for retention 

(p = .500), but a significant effect for transfer (F(1, 197) = 7.38, p = .007, η2
p = .04), such that 

participants in the error estimation condition (M  = 94.21 cm, SD = 36.63) performed worse than 

participants in the traditional condition (M  = 81.15 cm, SD = 31.33) on this post-test. There were 

nonsignificant effects for self-control (p = .769), Post-test x Pretest (p = .901), Self-control x 

Error Estimation (p = .255), Self-control x Post-test (p = .750) as well as Self-Control x Error 

Estimation x Post-test (p = .661) interactions. 

Figure 2 
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Tossing Accuracy and Precision 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. A: Tossing accuracy (lower numbers indicate greater accuracy) as a function of study 

phase (pretest, acquisition, 24-hr retention test, and 24-hr transfer test) and group (SC.EE: self-

control error estimation; YD.EE: yoked error estimation; SC.T: self-control traditional; YD.T: 

yoked traditional). Error bars represent 95% CIs. B: Tossing precision (lower numbers indicate 

greater precision) as a function of study phase (pretest, acquisition, 24-hr retention test, and 24-

hr transfer test) and group (SC.EE: self-control error estimation; YD.EE: yoked error estimation; 

SC.T: self-control traditional; YD.T: yoked traditional). Error bars represent 95% CIs. 
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Preregistered Exploratory Analyses 

Acquisition Phase 

Results of the mixed-factor ANCOVA for the variable RE revealed a main effect of 

pretest (F(1, 194) = 53.92, p < .001, η2
p = .22), which was superseded by a Block x Pretest 

interaction (F(6.71, 1300.90 ) = 6.58, p < .001, η2
p = .03). Specifically, the relationship between 

pretest and blocks of acquisition became weaker over time (Table 1). There was no main effect 

of block (p = .062), self-control (p = .935), error estimation (p = .805), and no Block x Self-

control (p = .701), Block x Error Estimation (p = .373), Self-control x Error Estimation (p = 

.454), or Block x Self-control x Error Estimation interaction (p = .954). Similar results were 

found for the variable BVE. There was a main effect of pretest (F(1, 194) = 78.38, p < .001, η2
p = 

.29), but no main effect of block (p = .554), self-control (p = .706), error estimation (p = .870), 

and no Block x Pretest (p = .406), Block x Self-control (p = .789), Block x Error Estimation (p = 

.344), Self-control x Error Estimation (p = .443), or Block x Self-control x Error Estimation 

interaction (p = .789). 

Retention and Transfer 

For the variable post-test BVE, results of the mixed-factor ANCOVA showed a main 

effect of pretest (F(1, 195) = 55.30, p < .001, η2
p = .22), a main effect of post-test (F(1,195) = 

15.64, p < .001, η2
p = .07) indicating participants were less precise during the transfer test, and a 

main effect of error estimation (F(1,195) = 5.18, p = .024, η2
p = .03), which was superseded by a 

Post-test x Error Estimation interaction (F(1,195) = 4.72, p = .031, η2
p = .02). To follow-up this 

interaction, separate one-way (error estimation) ANCOVAs were conducted for the retention and 

transfer tests, with pretest BVE serving as the covariate. Results showed no significant effect for 

retention (p = .399), but a significant effect for transfer (F(1, 197) = 7.25, p = .008, η2
p = .04), 
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such that participants in the error estimation condition (M  = 83.24 cm, SD = 35.00) performed 

worse than participants in the traditional condition (M  = 70.09 cm, SD = 31.20) on this post-test. 

There were nonsignificant effects for self-control (p = .578) and Self-control x Error Estimation 

(p = .532), Post-test x Pretest (p = .107), Self-control x Post-test (p = .913), as well as Self-

control x Error Estimation x Post-test (p = .366) interactions. 

Table 1.  

Correlation Coefficients Between Covariates Used in Models to Test Performance (Acquisition 

Blocks 1 – 10) and Learning (Retention and Transfer Tests) For Radial Error and Bivariate 

Variable Error 

 

 

 

Non-preregistered Exploratory Analyses 

Self-controlled feedback is hypothesized to increase perceptions of autonomy by giving 

learners choice about when to receive feedback and perceived competence by giving learners the 

opportunity to request feedback after their better trials (Chiviacowsky et al., 2012; Sanli et al., 

2013). Increased perceptions of autonomy and competence are associated with intrinsic 

motivation which is predicted to improve motor learning (Wulf & Lewthwaite, 2016). To 

examine these motivational effects of self-controlled feedback, we conducted 2 (Self-control) x 2 

(Error Estimation) ANOVAs for the Perceived Choice (autonomy), Perceived Competence, and 

Interest/Enjoyment (intrinsic motivation) subscales of the IMI. To determine whether self-

control participants requested feedback after their better trials, we conducted a 2 (Self-control) x 

2 (Error Estimation) x 2 (Trial Type: feedback/no-feedback trial) mixed-factor ANOVA with 

Covariate B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 Ret Tran 

Pretest RE .57 .39 .36 .30 .31 .41 .25 .28 .28 .28 .31 .21 

Pretest BVE .49 .36 .41 .33 .39 .43 .38 .34 .37 .35 .53 .31 
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repeated measures on the last factor. Finally, to assess whether intrinsic motivation explained 

learning irrespective of experimental group, we conducted a mixed-effects regression with post-

test RE as the dependent variable and fixed-effects of pretest RE, condition (self-control, error 

estimation and their interaction), post-test type (retention/transfer), the interaction between 

condition and post-test type, intrinsic motivation (IMI Interest/Enjoyment subscale score), and 

the interaction between intrinsic motivation and post-test type as well as a random-effect of 

participant. For the mixed-effects analysis, all continuous variables were mean-centered, and all 

categorical variables were contrast-coded. 

 For perceived autonomy, results showed a main effect of self-control (F(1,196) = 4.27, p 

= .04, η2
p = .02) such that participants in the self-control condition had higher levels of perceived 

choice (M = 5.31, SD = 0.88) compared to participants in the yoked condition (M = 5.01, SD = 

1.12), and no main effect of error estimation (p = .933) or Self-control x Error Estimation 

interaction (p = .780). For perceived competence, results did not demonstrate significant effects 

for self-control (p = .141), error estimation (p = .527), or a Self-control x Error Estimation 

interaction (p = .063). However, RE on feedback vs. no-feedback trials did significantly differ as 

a function of group. Specifically, a main effect of trial type (F(1, 196) = 171. 59, p < .001, η2
p = 

.47) indicated that trials for which participants received feedback had lower RE (M = 54.13 cm, 

SD = 15.18) than trials for which they did not (M = 63.86 cm, SD = 18.27), and this effect was 

superseded by a Self-control x Trial Type interaction (F(1, 196) = 207.47, p < .001, η2
p = .51). 

To follow-up this result, we conducted separate 2-tailed paired-samples t-tests (trial) for self-

control and yoked participants. Results showed a significant effect for self-control participants 

(t(99) = 15.74, p < .001, d = 1.57, 95% CI [1.28, 1.87]) such that their feedback trials had lower 

RE (M = 48.31 cm, SD = 11.73) than their no-feedback trials (M = 68.73 cm, SD = 19.89), 



100 
 

whereas no such effect was observed for yoked participants (p = .195). The initial ANOVA also 

revealed an Error Estimation x Trial Type interaction (F(1, 196) = 3.96, p = .048, η2
p = .02), and 

follow-up 2-tailed paired-samples t-tests showed that both error estimation and traditional 

participants had lower RE on feedback trials than no feedback trials (error estimation: (t(99) = 

5.65, p < .001, d = 0.57, 95% CI [0.35, 0.78], feedback trial RE: M = 54.63 cm, SD = 14.61 vs. 

no-feedback trial RE: M = 62.87 cm, SD = 17.39; traditional: (t(99) = 7.28, p < .001, d = 0.73, 

95% CI [0.51, 0.95], feedback trial RE: M = 53.64 cm, SD = 15.78 vs. no-feedback trial RE: M = 

64.84 cm, SD = 19.14). The initial ANOVA did not reveal a significant Trial Type x Self-control 

x Error Estimation interaction (p = .416). 

 For intrinsic motivation, results demonstrated no effect for self-control (p = .832), error 

estimation (p = .817), or Self-control x Error Estimation (p = .214). However, the mixed-effects 

model (Table 2) revealed that intrinsic motivation predicted post-test performance controlling for 

group such that participants with higher Interest/Enjoyment scores had lower RE during post-

tests (β = -5.50, SE = 1.46, p < .001).  

The information processing explanation for the self-controlled feedback learning effect 

hypothesizes that learners in self-controlled feedback conditions engage in spontaneous error 

estimation more often than participants in yoked conditions. Thus, to assess whether this was the 

case in the present experiment, we carried out a Mann-Whitney U test on the variable Error 

Estimation Percentage. (The nonparametric test choice was due to the non-normal distribution of 

these scores; skewness = -1.30 (SE = 0.24), kurtosis = 1.88 (SE = 0.48)). Results showed that 

participants in the self-control traditional group (Mdn = 90.00% of the time) estimated their 

performance significantly more often than participants in the yoked traditional group (Mdn = 
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80.00% of the time; U(Nself-control traditional = 50, Nyoked traditional = 50) = 926.00, z = -2.26, p = .024), 

as predicted by the information processing explanation.  

Some of the exploratory analyses included in the pre-registration form (e.g., 

electroencephalography, error estimation accuracy, and implicit achievement motivation 

analyses) will be reported in separate publications. 

Table 2 

Fixed and Random Effects for the Analysis of the Effect of Intrinsic Motivation on Post-Test 

Performance 

Note. Self-control was coded as self-control = 0.5; yoked = -0.5. Error estimation was coded as 

error estimation = 0.5; traditional = -0.5. Post-test Type was coded as retention = -0.5; transfer = 

0.5. Random effects: Number of observations: 400; Groups: Participants. 

Random Effects      
Group Effect Variance SD 
Participants Intercept 372.8 19.31 
Residual  372.8 20.45 
 
Fixed Effects           
Effects β SE df t-value p-value 
Intercept <0.001 1.71 194 <0.001 >0.999 

Pretest RE 0.29 0.07 194 4.327 < 0.001*** 

Self-control -0.84 3.42 194 -0.245 0.807 

Error Estimation 7.74 3.41 194 2.268 0.024* 

Post-test Type <0.001 2.04 195 0.00 >0.999 

Intrinsic Motivation -5.50 1.46 194 -3.78 < 0.001*** 

Self-control x Error Estimation 5.76 6.85 194 0.841 0.401 

Self-control x Post-test Type -1.20 4.09 195 -0.293 0.770 

Error Estimation x Post-test Type 10.69 4.09 195 2.613 0.010* 

Post-test Type x Intrinsic Motivation -2.37 1.74 195 -1.356 0.177 
Self-control x Error Estimation x Post-test 
Type -4.58 8.21 195 -0.557 0.578 
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Discussion 

 Motivational and information processing explanations have been proposed as possible 

mechanisms underlying the self-controlled feedback learning benefit. Evidence in support of one 

explanation over the other is still mixed (M. J. Carter et al., 2014; M. J. Carter & Ste-Marie, 

2017a; Chiviacowsky & Wulf, 2005; Wulf & Lewthwaite, 2016) and might be influenced by 

important methodological limitations such as the lack of a fully crossed experimental design 

(Barros et al., 2019), measures of engagement in spontaneous error estimation, and adequate 

statistical power to detect the effect of interest (Lohse et al., 2016; McKay et al., in press). To 

dissociate the contributions of motivation and information processing to the self-control 

feedback learning benefit while addressing the previously identified methodological concerns, 

we sampled 200 participants in a study that crossed self-controlled feedback and error estimation 

in the same experimental design and included self-reported measures of engagement in 

performance estimation, intrinsic motivation, perceived choice, and perceived competence. 

Learning was assessed in a retention and transfer test carried out approximately 24-hr after the 

acquisition phase.  

Overall, participants showed a significant improvement in throwing accuracy from 

pretest to retention test, indicating learning. However, we failed to replicate the self-controlled 

feedback learning benefit as no differences between self-control and yoked conditions were 

found in the post-tests. This is consistent with recent studies investigating the role played by 

autonomy support in motor skill learning (Grand et al., 2017b; McKay & Ste-Marie, 2020a, 

2020b; St. Germain et al., 2021). For instance, Grand et al. (2017) and McKay and Ste-Marie 

(2020a, 2020b) found that control over the color of the object used during the acquisition phase 

(bean bag, golf ball, and darts, respectively) did not result in enhanced learning as indexed by 
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delayed post-test performance. St. Germain and colleagues (2021) also failed to show learning 

differences between self-control participants allowed to choose the frequency and speed of video 

demonstrations and yoked participants. Together, these and the present study’s findings 

contradict the OPTIMAL theory claim that offering learners a chance to make decisions 

enhances learning and join a recent meta-analysis in questioning the effectiveness of self-

controlled practices (McKay et al., in press). Specifically, McKay et al. (in press) estimated the 

effect of self-controlled practice on motor learning to be trivially small, ranging from Hedges’ g 

= 0.04 - 0.11, depending on the selection bias-correction technique employed. Moreover, even 

among published studies showing statistically significant results in favor of the self-control 

learning benefit, no evidential value was found following the results of a p-curve analysis 

(Simonsohn et al., 2014). Assuming the selection-adjusted effect is accurate (Hedges’ g = 0.11), 

extremely large sample sizes (~1300 participants/group16) would be needed to detect an effect of 

self-controlled feedback on learning. Considering the median sample size of the studies included 

in the meta-analysis was 36 participants/group, previous studies showing the self-controlled 

feedback learning benefit might have reported overestimated effects likely resulting from false 

positives (Button et al., 2013b) and prior studies failing to show the self-controlled feedback 

benefit may have gone unreported (i.e., the file drawer problem), which would explain the results 

of the p-curve analysis. Altogether, failure in replicating the self-control practice learning benefit 

by studies with pre-registered statistical plans, a priori power calculations, and large sample sizes 

(e.g., the present study; Grand et al., 2017; McKay & Ste-Marie, 2020a; St. Germain et al., 2021) 

corroborated by the results of the aforementioned meta-analysis challenge the claim that the self-

control practice learning effect is “very robust and generalizable” (Wulf & Lewthwaite, 2016; p. 

 
16 The sample size calculation was conducted with G*Power 3.1.9.4’s t-test – Means: Difference between two 
independent means (Faul et al., 2007). Effect size was set to d = 0.11 (McKay et al., in press). Alpha was set to .05, 
power to .8, and allocation rate N2/N1 to 1. 
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1393). It is worth mentioning that the number of test trials (pretest, retention, and transfer test) 

adopted may have been a limitation of the present study but likely was not. The decision to adopt 

only 10 trials per test was based on previous self-controlled feedback studies that have shown the 

learning advantages associated with this manipulation (e.g., Chiviacowsky et al., 2008). 

Moreover, our results revealed a general learning effect from pretest to retention, suggesting the 

number of test trials adopted was likely sufficient to show any moderation of the learning effect 

by self-control over feedback. Nonetheless, increasing the number of trials per test may increase 

statistical power (Maxwell et al., 1991) and should be considered in future research.  

The motivational explanation of the self-controlled feedback benefit is based on the 

concept that giving learners control over practice fulfills their psychological need for autonomy 

(Ryan & Deci, 2000). Although we did not observe a self-controlled feedback benefit, we found 

that self-control control participants reported higher levels of perceived autonomy compared to 

yoked participants, although this effect was small (η2
p = .02) (J. T. E. Richardson, 2011) and 

should be interpreted with caution given the poor reliability of the measure (Cronbach’s α = .62). 

The motivational explanation of the self-controlled feedback benefit has also been supported by 

research showing that self-control learners typically request feedback after their better trials, 

consequently boosting their perceived competence, which is another psychological need for 

intrinsic motivation (Chiviacowsky et al., 2012b). We observed self-control participants 

requested feedback on substantially more accurate trials than those for which they did not request 

feedback (d = 1.25), whereas the trials on which yoked participants received feedback were 

statistically like those on which they did not, a finding consistent with some past research 

(Chiviacowsky & Wulf, 2002). However, self-control and yoked participants did not 

significantly differ in their perceived competence, which is congruous with some studies (Barros 
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et al., 2019; Leiker et al., 2016; St. Germain et al., 2021) and incongruous with others 

(Chiviacowsky, 2014; Chiviacowsky et al., 2012b; Ste-Marie et al., 2013). The fact that 

participants in the present and past studies (e.g., Chiviacowsky & Wulf, 2002) requested 

feedback mainly after good as opposed to bad trials deserves further attention. Specifically, the 

nature of the self-control paradigm may bring an inherent confounding variable into the 

experiment, namely feedback after good trials (Wulf & Lewthwaite, 2016). This is because 

yoked participants, being deprived of choice, might receive feedback after poor as opposed to 

good trials. Self-control participants, on the other hand, might experience the opposite 

considering they are allowed to choose their feedback schedule, which might lead to a significant 

confounding factor between self-control and yoked groups. Thus, future studies investigating the 

self-controlled learning benefit should consider how feedback after good trials might affect the 

research findings.  

 As self-controlled feedback had only a tenuous effect on perceived autonomy and no 

significant effect on perceived competence, it is unsurprising that it did not significantly affect 

intrinsic motivation. Similar results were observed in past self-control studies in which motor 

learning occurred but intrinsic motivation remained comparable at the group-level (Barros et al., 

2019; Grand et al., 2017b; Post et al., 2016; St. Germain et al., 2021). One may argue that having 

participants fill out the IMI at the end of data collection reduced the sensitivity of the 

questionnaire in capturing participants’ true level of motivation. However, recent studies 

investigating a similar motor learning paradigm and measuring intrinsic motivation using IMI 

subscales at multiple time points throughout the experiment also failed to show differences 

between experimental and control groups (e.g., Barros et al., 2019; St. Germain et al., 2021). 

Notably, in our study, intrinsic motivation predicted learning controlling for pretest accuracy and 
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training condition such that participants exhibiting greater levels of intrinsic motivation also 

showed better post-test performance. Thus, the relationship between intrinsic motivation and 

learning at the individual level supports the perspective that motivation plays an important role in 

motor learning, but, crucially, giving learners control over feedback did not enhance intrinsic 

motivation nor motor learning, which is incompatible with OPTIMAL theory (Wulf & 

Lewthwaite, 2016). Together, these findings have important theoretical and practical 

implications. From a theoretical standpoint, results from the present and past studies (Ste-Marie 

et al., 2016) suggest that psychological variables such as perceived autonomy, perceived 

competence, and intrinsic motivation may not explain the self-controlled learning benefit and 

might need to have their role reconsidered by OPTIMAL theory. From a practical standpoint, 

given the lack of association between the opportunity to exert choice during practice and 

significant changes in psychological variables, practitioners might need to more carefully 

evaluate the implementation of self-control strategies when the goal is to influence levels of 

motivation to promote learning.  

The information processing explanation for the self-controlled feedback benefit posits 

that self-controlled learners spontaneously estimate their errors to decide the functional value of 

requesting feedback. Consistent with this explanation, our results show that self-control 

traditional participants reported estimating their performance more frequently (Mdn = 90.00% of 

the time) than yoked traditional participants (Mdn = 80.00% of the time), but with no benefit to 

learning. Moreover, participants who were asked to explicitly estimate their performance during 

acquisition did not incur a learning benefit, but rather exhibited a small learning disadvantage 

(Richardson, 2011), as revealed by worse accuracy (and precision) in the transfer test (η2
ps = 

.04). This result is inconsistent with past studies demonstrating a learning advantage for 
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participants who explicitly estimated their performance after each trial (Guadagnoli & Kohl, 

2001; Liu & Wrisberg, 1997). There are differences between these past studies and the present 

one, such as the comparison groups. In the past studies, the comparison groups included 

participants who were encouraged to estimate their performance by limiting the frequency or 

delaying the delivery of augmented feedback and participants who were discouraged from 

estimating their performance by giving feedback immediately after each trial. In the present 

study, the comparison groups included participants who were encouraged to estimate their 

performance (self-control) and neither encouraged nor discouraged from estimating their 

performance (yoked), and both groups reported estimating their performance frequently (~85% 

of the time). Future research considering the effect of explicit performance estimation should 

consider and measure the degree to which comparison groups are spontaneously estimating their 

errors. It is also worth considering how participants are estimating their performance. For 

example, the present study’s traditional participants may have been roughly estimating their 

errors (“I missed far and left), thereby encouraging general performance adjustments (“Throw 

shorter and to the right”) that may have promoted the generalizable knowledge assessed by the 

transfer test. Conversely, the error estimation participants were asked to make relatively precise 

estimations (“[The beanbag landed in] B2”), thereby encouraging more specific performance 

adjustments that may have hindered the accrual of the generalizable knowledge assessed by the 

transfer test.  

Conclusion 

The present experiment failed to replicate the self-controlled feedback learning benefit 

and showed little evidence that self-controlled feedback is associated with increases in 

motivational factors. These results challenge OPTIMAL theory’s claim that allowing learners to 
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exercise control results in superior motor learning and meaningful psychological benefits. 

Although the present study suggests intrinsic motivation is linked to motor learning, it joins 

recent research in questioning the robustness and generalizability of the self-control learning 

effect and whether self-control protocols influence motivation. 
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Chapter 4: Reinforcement learning in motor skill acquisition: Using the Reward 

Positivity to understand the mechanisms underlying short- and long-term behavior 

adaptation 

Introduction 

Reinforcement learning is one of the most dominant modes of learning (Rescorla & 

Wagner, 1972; Sutton & Barto, 1998), and an important model to understand skill acquisition 

(Lohse et al., 2019). According to this theory, humans make behavior adaptations based on 

reward-prediction errors, the difference between actual and anticipated rewards (Holroyd & 

Coles, 2002; Schultz, 2017). Behaviors that lead to better- or worse-than-expected outcomes 

result in positive and negative reward-prediction errors, respectively. At the neural level, reward-

prediction errors convey information that is used to guide future adaptations (Seidler et al., 

2013). More specifically, within the brain, positive reward-prediction errors increase the value of 

behaviors that resulted in better-than-expected outcomes, making the re-occurrence of these 

behaviors more likely in the future. Conversely, negative reward-prediction errors decrease the 

value of behaviors that resulted in worse-than-expected outcomes, making the re-occurrence of 

these behaviors less likely in the future.  

In theory, reinforcement learning principles can explain the changes in performance 

observed during the motor skill acquisition process (i.e., power law of practice, Lohse et al., 

2019; Newell & Rosenbloom, 1981). Specifically, the rapid improvements seen early in learning 

can be explained by the large reward-prediction errors that are also common at this stage 

whereas the smaller adjustments typically observed later in learning can be attributed to the 

smaller reward-prediction errors that arise once actual and expected performance are more 

closely aligned. Consider a novice trying to learn how to putt. Early on, her lack of familiarity 

with the task and ability to detect and correct errors may lead to frequent, large negative reward-
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prediction errors due to her badly missed putts. Thus, to find the movement pattern that will get 

her closer to sinking a putt, she needs to explore different movement strategies (i.e., implement 

large performance adjustments). Her lack of practice and experience also make successful 

performance (i.e., sinking the putt) less likely to occur, so her expectations for future rewards are 

low. Thus, when she unexpectedly sinks her first putt, this leads to an outcome that is way better 

than anticipated or a large positive reward-prediction error. As previously mentioned, positive 

reward-prediction errors facilitate movement repetition and, as a consequence, the behavior that 

precipitated success is likely to be repeated, leading to rapid improvements. Toward the later 

stages of learning, she may have already found the movement strategy that more closely aligns 

with the optimal movement pattern. At this point, she begins to exploit that movement strategy to 

find her optimal movement pattern by implementing smaller adjustments. Also, as she becomes 

more skillful and knowledgeable about the task, her actual performance starts to match her 

expected performance, leading to smaller reward-prediction errors, which in turn would explain 

the smaller performance adjustments seen at that stage.  

The consistency between reinforcement learning predictions and motor learning 

phenomena (i.e., power law of practice) serves as a strong theoretical argument in support of the 

use of this theory to explain motor behavior adaptation. However, stronger empirical evidence 

for the role of reinforcement learning in motor skill acquisition would be provided by 

investigating the mechanisms underlying reinforcement learning and its primary driver, reward-

prediction errors. In human research, reward-prediction errors have been studied through the 

measure of the reward positivity (RewP), an event-related potential (ERP) component derived 

from the electroencephalogram (EEG). Methodologically, the RewP is characterized as a 

positive deflection in the ERP waveform that peaks between 230 ms and 350 ms after feedback 
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onset and exhibits a frontal-central scalp topography, typically maximal at electrode FCz 

(Krigolson, 2018). Compelling evidence suggests that the RewP is sensitive to reward magnitude 

(i.e., larger vs smaller rewards) and likelihood (i.e., unexpected vs expected rewards)(Sambrook 

& Goslin, 2015). 

Evidence from past research suggests that RewP amplitude changes as a function of 

practice (Williams et al., 2018) and is correlated with subsequent behavior (Holroyd & 

Krigolson, 2007), although there is also evidence that behavioral changes are not always 

accompanied by changes in RewP amplitude, and that, sometimes, they can occur independently 

(Cockburn & Holroyd, 2018; Walsh & Anderson, 2012). Notably, studies investigating the 

underlying mechanisms of reinforcement learning using the RewP often do not use learnable 

tasks, instead relying on those where performance and feedback are based on chance (e.g., 

reward gambling tasks) to make inferences about reward-prediction errors and behavior 

adaption. In these paradigms, feedback is usually binary (i.e., correct versus incorrect response; 

Meadows et al., 2016) and the frequency and/or probability of receiving correct/incorrect 

feedback is controlled by the experimenter (e.g., probability of making a correct response and 

receiving positive feedback is set at 50%). However, real-world skill acquisition involves 

learnable tasks, and feedback probability varies as a function of performance improvement and is 

usually presented in a more graded manner (e.g., “you overshot the target by 35 cm”). 

Augmented feedback plays a major role in performance improvement (R. A. Schmidt & Lee, 

2020), especially at the earlier stages of learning (Newell, 1976) and, from a motor learning 

perspective, graded feedback is more advantageous as it provides learners with more information 

that can be used to flexibly make performance adjustments.  



112 
 

Very few studies have investigated the relationship between RewP and graded feedback 

processing (e.g., Ulrich & Hewig, 2014) and fewer have done so using a motor learning 

paradigm. One exception is the study by Frömer et al. (2016) in which participants performed a 

virtual throwing task and received visual graded feedback about where each throw landed 

relative to the target’s bullseye. Results showed that, at the trial level, RewP amplitude was 

positively associated with performance accuracy such that more accurate throws resulted in 

larger RewP amplitude, which is in line with the reinforcement learning prediction that larger 

rewards (more accurate performance) lead to larger positive reward-prediction errors. 

Additionally, RewP amplitude was larger following trials where participants missed as opposed 

to hit the target, suggesting that they lowered their expectation for future positive outcomes after 

unsuccessful trials, which in turn led to a larger positive-reward prediction error when the 

outcome was better than anticipated. Results also showed that RewP amplitude decreased as 

participants’ hit frequency increased, which is expected under a reinforcement learning 

framework since participants with higher accuracy expect to receive rewards more frequently, 

lowering their positive reward-prediction error for successful performances. Finally, the effect of 

hit frequency on RewP amplitude was weaker after misses as opposed to hits, likely because 

more accurate participants lower their expectations for success after an unexpected miss.  

The study by Frömer et al. (2016) allowed feedback processing, an important aspect of 

motor skill acquisition, to be investigated in a more realistic setting, wherein feedback was based 

on participants’ performance and provided in a graded manner. Furthermore, the task choice 

allowed reinforcement learning predictions to be applied to a more complex motor skill, 

expanding our understanding of reward processing under different task demands. However, this 

study did not explore the relationship between RewP and delayed post-test. This is one of the 
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gaps in the literature as past research has focused on changes over short timescales (Bellebaum 

& Daum, 2008; Reinhart & Woodman, 2014), making it unclear whether reward-prediction 

errors relate to more long-lasting changes in performance. This is particularly pertinent when it 

comes to applying reinforcement learning principles to comprehend how motor skills are 

acquired and retained over time. From a reinforcement learning perspective, reward-prediction 

errors experienced during a training session drive acute behavior adaptation, leading to better 

practice performance. In theory, better practice performance should positively correlate with 

long-lasting changes in performance. However, motor learning studies have shown that 

performance during a training session does not necessarily correlate and, in some cases, is 

inversely correlated with performance on delayed post-tests (Kantak & Winstein, 2012). 

 Although the relationship between RewP and long-term changes in performance have not 

been examined with respect to a complex motor skill, Lohse et al. (2020) investigated this 

relationship in a perceptual category learning task, and the authors found that the RewP did not 

predict long-term learning as indexed by performance on one-week retention and transfer tests. 

Lohse et al. also examined the relationship between RewP and trial-to-trial behavior adjustments, 

which Frömer et al. (2016) did not do. Lohse et al. found that, during the acquisition phase, 

larger RewP amplitude was associated with a greater probability of changing response the next 

time a stimulus from the same category was presented. This is incompatible with the RewP 

serving as a reward mechanism that reinforces behavior, because this would have been 

manifested as larger RewPs being associated with a smaller probability of changing a response. 

Based on the results from Lohse et al., it is possible that the RewP represents reward-prediction 

errors that reflect a violation of reward expectation (i.e., an epiphenomenal representation of 
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internal model update) instead of reward-prediction errors that drive behavior adaptation (i.e., a 

reward signal that stamps in behavior to maximize the likelihood of receiving a reward). 

Building off past research (Frömer et al., 2016; Lohse et al., 2020), we conducted an 

exploratory study that included a complex motor learning task, graded feedback, and delayed 

post-tests and used mixed-effects regression models to test reinforcement learning predictions 

and their underlying mechanisms in short- and long-term motor behavior adaptation. 

Specifically, we investigated (1) the effect of performance accuracy on the RewP. According to 

reinforcement learning, more accurate performance is associated with more positive reward-

prediction errors (Frömer et al., 2016). Thus, we predicted that, at the within-subject level, RewP 

would be more positive for more accurate compared to less accurate trials. Additionally, we 

examined the effect of participants’ average accuracy (at the between-subject level) on the 

RewP, since Frömer et al. (2016) found that participants’ cumulative accuracy influenced RewP 

amplitude. We also tested (2) whether RewP predicted trial-to-trial performance adjustments 

during acquisition. Following reinforcement learning predictions, larger RewPs should lead to 

smaller adjustments in performance (i.e., repetition of previously rewarded behavior). Thus, we 

predicted that a large RewP on the previous trial would be associated with a small adjustment in 

performance. Finally, we investigated (3) whether aggregate RewP (averaged across practice 

trials) predicted long-term behavior adaptation as indexed by performance on 24-hr post-tests 

(i.e., retention and transfer). One prediction from reinforcement learning is that accrual of larger 

RewPs (more positive reward-prediction errors) during practice should result in a larger 

aggregate RewP and better learning. Thus, controlling for pretest, we predicted a positive 

correlation between aggregate RewP amplitude and post-test performance. 

Methods 
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 Prior to data analysis, research questions and main statistical models were pre-registered 

and made available at the Open Science Framework repository (Link). 

Participants 

Data from 134 participants (females = 100, Mage = 20.72, SD = 1.64 years) were used in 

the present study. All participants were right-handed (Mhandedness score = 77.30, SD = 27.24; 

Oldfield, 1971) or reported having a strong preference for using their right hand to throw and 

reported not having any neuromuscular impairment that would affect performance of the 

experimental task. This dataset was collected during a larger, university-approved (Auburn 

University research protocol # 19-046 EP 1902) motor learning study (Bacelar et al., 2022). All 

participants gave written consent prior to day 1 of data collection and verbal consent prior to day 

2 of data collection. Given the exploratory nature of the present study, no a-priori power 

calculation was carried out.  

Task 

 Participants performed a nondominant arm bean bag tossing task. The goal of the task 

was to make the bean bag land as close to the center of the target as possible (i.e., D4, Figure 1). 

The target consisted of a grid comprising 49 equal-sized squares, each one assigned a letter and a 

number indicating the square position (e.g., D4: square located in the center of the target). 

Participants sat in front of a table located three meters away from the center of the target. The 

table accommodated ten bean bags and a computer monitor used to deliver feedback, and the 

table served as a support for a pasteboard used to occlude participants’ vision of the target 

(Figure 1). Another small table was placed next to participants’ right arm to serve as a support 

for a keyboard used to initiate feedback presentation. From a sitting position, participants were 

instructed to grasp a bean bag with their left hand pronated and toss it over the occlusion board 

https://osf.io/mv9qj/?view_only=faa163baa1354d2daa0b40673a13106d
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by elevating their arm and flicking their wrist. (For more details about the task see Bacelar et al., 

2022.) 

Figure 1 

Experimental Set-up 

 

 

 

 

 

Note. The left side of the figure shows the participant in a sitting position while having their 

brain activity recorded. A pasteboard is blocking their vision of the target. The right side of the 

figure illustrates how feedback was delivered throughout the experiment.  

Procedures 

Acquisition Phase 

 To determine baseline skill level, a 10-trial pretest without feedback was carried out 

before the acquisition phase. (Participants were allowed to see the target for 10s before initiating 

the pretest.) Next, participants were quasi-randomly assigned (based on sex) to one of four 

experimental conditions that varied according to whether feedback schedule was self-selected by 

the participant (self-control) or determined by a counterpart (i.e., another participant; yoked) and 

whether performance estimation (i.e., estimating where the bean bag landed after each trial) was 
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required (error estimation) or not (traditional)17. Participants then underwent the acquisition 

phase, which consisted of 10 blocks of 10 trials with a 1-minute break between blocks. As in the 

pretest, participants were allowed to see the target for 10s before initiating the acquisition phase. 

Feedback was presented in 5 of 10 trials per block (i.e., 50% of the time) for all participants. 

Specifically, for feedback trials, feedback was initiated as soon as the participant pressed the 

“enter” key on the keyboard after being prompted by the word “ready” on the computer screen. 

First, participants saw an image of target on the screen for 2000ms and then the square where the 

bean bag landed changed to being highlighted in yellow, as shown on the upper-right side of 

Figure 1; the latter image remained on the screen for 1000ms. For trials that landed off target, 

participants saw an image of the target on the screen for 2000ms followed by a red X presented 

for 1000ms.  

Post-tests (Retention and Transfer) 

Approximately 24 hours after acquisition phase, participants returned to the laboratory to 

perform a retention and a transfer test. For the retention test, participants performed the same 

bean bag tossing task practiced on Day 1, whereas for the transfer, participants were positioned 

farther away from the target (i.e., four instead of three meters away). Post-tests consisted of one 

block of ten trials each and were carried out in counterbalanced order. Participants were allowed 

to see the target for 10s before initiating each post-test, but no feedback was presented during the 

post-test.  

EEG Recording 

 
17 These experimental conditions were created to test predictions made by a motor learning theory (OPTIMAL 
theory; Wulf & Lewthwaite, 2016) and the results of these manipulations have been presented in another publication 
(Bacelar et al., 2022). We account for these manipulations in our statistical models even though they are not of 
primary interest in the present study.  



118 
 

 EEG was recorded during the acquisition phase. EEG activity was recorded from 14 scalp 

electrodes using a 64-channel BrainVision actiCAP system (Brain Products GmbH, Munich, 

Germany) labeled in accord with an extended 10-20 international system (Oostenveld & 

Praamstra, 2001). The left earlobe served as the online reference and the FPz electrode site 

served as the common ground. Electrode impedances were maintained below 25kΩ throughout 

the experiment. A high-pass filter set at 0.016 Hz was applied and the sampling rate was set at 

250 Hz. A BrainAmp DC amplifier (Brain Products GmbH) linked to BrainVision Recorder 

software (Brain Products GmbH) was used to amplify and digitize the EEG signal. 

EEG Processing  

EEG data processing was conducted with BrainVision Analyzer 2.2 software (Brain 

Products GmhB). First, raw data was visually inspected and malfunctioning electrodes were 

interpolated. Next, data were re-referenced to the average of both left and right ears. A 1 – 40 Hz 

band-pass filter with 4th order roll-offs and a 60 Hz notch filter was applied to the re-referenced 

data in preparation for the independent component analysis (ICA) step. Non-stereotypical 

artifacts were then marked in the interval between the beginning of block 4 and the end of block 

5 of the acquisition phase. This interval was chosen as it minimizes the presence of non-

stereotypical artifacts that are either due to the participant’s adjustment to the task (i.e., earlier 

blocks) or tiredness (i.e., toward the end of practice). After this step, an ICA was conducted to 

identify components representing stereotypical artifacts (e.g., saccades and blinks), which were 

subsequently removed from the unfiltered data. Finally, the cleaned data were filtered using an 

infinite impulse response band-pass filter between 0.1 and 30 Hz with 4th order roll-offs and a 60 

Hz notch filter.  

Measures  
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Psychophysiological Measures 

Single-trial RewP. First, filtered EEG data were segmented into epochs beginning 200 

ms before and ending 800 ms after feedback stimulus onset (square highlighted in yellow or red 

X). During the segmentation step, participants’ 20 best trials were selected (i.e., 20 trials closest 

to the center of the target; Marco-Pallares et al., 2011). Some participants ended up with more 

than 20 trials as trial selection was carried out in a stepwise manner to ensure that all trials 

equidistant to the center of the target were included. For example, trials that landed on the 

innermost square, D4, were included first. If the number of trials included did not add up to a 

minimum of 20, all trials that landed on the second group of squares equidistant to the center of 

the target (i.e., trials landing on C3, C4, C5, D3, D5, E3, E4, and E5) were included. This 

process continued until the minimum number of 20 trials was achieved. After segmentation, 

epochs were baseline corrected from -200 ms to 0 ms. Next, epochs were automatically rejected 

if they contained a change of more than 50 μV from one data point to the next, a change of 100 

μV or greater within a moving 200-ms window, or a change of less than 0.5 μV within a moving 

200-ms window in any of the midline electrodes (Fz, FCz, Cz, and Pz). Then, to determine the 

time window for RewP quantification, epochs were averaged. Considering that RewP peak 

latency may vary across individuals (e.g., Lohse et al., 2020), each participant’s RewP time 

window was adapted based on the participant’s RewP peak latency at the electrode FCz (Clayson 

et al., 2013). The most positive deflection within the 230 – 350 ms time window that exhibited a 

frontocentral scalp distribution was recorded. If no component exhibited a frontocentral scalp 

distribution, the most positive deflection within the 230 - 350 ms time window was recorded. 

After determining the RewP peak for each participant, data were re-segmented to include all 

feedback trials (i.e., 50 feedback trials). The next steps included baseline correction and epoch 
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automatic artifact rejection following the specifications described above. Additionally, the first 

author visually inspected all 50 epochs, and removed the ones that exhibited marked artifact but 

that were not removed in the automatic rejection step. Next, a 40 ms time window was centered 

on each participant’s previously recorded peak amplitude at FCz, Fz, and Cz on each epoch, and 

then mean amplitude in this time window for these electrodes was computed. Finally, we 

averaged across FCz, Fz and Cz to obtain the single-trial RewP for each feedback trial.  

Aggregate RewP. Aggregate RewP was obtained by averaging across all single-trial 

RewP trials for each participant. This method of RewP quantification diverges from the 

difference wave approach (Luck, 2005) mainly due to the task and experimental design adopted. 

Specifically, for the difference wave approach, we would need at least 20 good trials and 20 bad 

trials to reliably compute aggregate RewP (Marco-Pallares et al., 2011). However, many 

participants do not have 20 trials that are closer to the center of the target than the remaining 

trials, because of the number of trials that are equidistant from the target (see above). 

Behavioral Measures 

Absolute Change in Constant Error (CE). Absolute change in CE was obtained by 

computing the difference between CE on the current trial and on the previous trial and then 

taking the absolute value of that difference as follows: Absolute Change in CE = |CE.c – CE.p|, 

where CE.c represents CE on the current trial and CE.p represents CE on the previous trial (see 

Lee & Carnahan (1990) for a similar use of this measure). CE is a measure of accuracy that 

indexes the magnitude of the error along one axis (R. A. Schmidt & Lee, 2020). The formula to 

calculate constant error is simply the difference between the magnitude of the error in one axis 

(e.g., x-axis) and the goal, as follows: CE = X – T, where x is the magnitude of the error along 

the axis of interest minus the goal (e.g., bullseye = 0). In the present study, absolute change in 
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CE was computed separately for x- and y-axis and for the second through 100th trial of the 

acquisition phase.  

Single-trial and Average Radial Error. Radial error (RE) is a measure of accuracy for 

two-dimensional performance tasks (Hancock et al., 1995). The formula to obtain RE is as 

follows: (x2 + y2)1/2, where X and Y correspond to the magnitude of the error along the x- and y-

axis, respectively. In the present study, we computed RE on a trial-by-trial basis for the 

acquisition phase (here referred to as single-trial RE) and as an aggregate measure for pretest, 

acquisition phase, retention test and transfer test (here referred to as average RE). The software 

Dartfish® was used to record the magnitude of the error along the x- and y-axis for the first 100 

participants. More specifically, an iPad mounted to the celling right above the center of the target 

recorded the entire data collection session (i.e., pretest, acquisition, and post-tests). The video 

captured exactly where each bean bag landed during task performance. Next, recorded videos 

were imported onto Dartfish where x and y measures were obtained. For the remaining 

participants, the program LabView® equipped with the virtual instrument ScorePutting 

(Neumann & Thomas, 2008) was used to compute the magnitude of the error along the x- and y-

axis. We used data from three participants to confirm the consistency between Dartfish® and 

LabView® in obtaining these measures (r ≥ .995).  

Data Analysis 

In the pre-registration form, we stated that only usable feedback trials as defined by trials 

that were not marked with an artifact (i.e., EEG processing stage) and trials that landed on target 

and, therefore, received meaningful feedback18 would be included in the statistical models. 

 
18 The rationale behind considering trials that landed off target as non-usable stems from the idea that for off-target 
trials, participants only received a red X as feedback, with no additional information that would allow them to 
distinguish between a near miss or a throw that missed the target by a considerable amount. Since graded feedback 
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However, due to the experimental design, participants received feedback in only 50% of the total 

number of trials, and excluding trials that landed off target would result in a considerable amount 

of data loss (1478 trials landed off target). Thus, supplemental analyses using a subset of the data 

(n = 64) were conducted to gather evidence that could justify the inclusion of off-target trials in 

the statistical analyses. First, we computed a new measure of accuracy based on feedback 

delivery (i.e., feedback bands). Specifically, trials that landed on D4 comprised feedback band 1, 

trials that landed on C3, C4, C5, D3, D5, E3, E4, and E5 comprised feedback band 2, and so on. 

Next, we assessed the relationship between single-trial RewP amplitude (centered around each 

participant’s mean) and accuracy as indexed by feedback band. Results showed that RewP 

amplitude decreased as a function of accuracy (i.e., lower RewP amplitude for trials farther away 

from the center of the target). For trials that landed off target (band 5), specifically, RewP 

amplitude was negative (M = -0.80μV), suggesting that these trials were processed as an error 

(see the Appendix 1 for more details). Based on these assessments, we decided to include all 

feedback trials in the statistical analyses.   

 During the single-trial RewP extraction process, 2.37% (n = 159) of the total number of 

RewP trials (N = 6700) were lost due to data artifacts. Moreover, prior to statistical analyses, we 

visually inspected the distribution of errors (i.e., CE) along the x- and y-axis, which led to the 

identification of extreme values in the y-axis. To mitigate the influence of these extreme cases on 

other subsequent variables (e.g., RE is computed from CE) and the models, we decided to 

exclude errors equal or greater than 140cm in both directions since errors of that magnitude 

imply that the participant missed the center of the target by more than the length/width of the 

 
was the main focus of the experiment, keeping trials that landed off target in the analyses could result in more noise 
being added to the models as opposed to information, hence the initial decision to exclude these trials.  
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target (140cm x 140cm). Exclusion of extreme values in both x- and y-axis led to the loss of 577 

data points (4.31% of the data; 577 of 13400 data points).   

 All analyses were conducted in R (cran.r-project.org) using the following packages: 

tidyverse (Wickham et al., 2019), lme4 (Bates et al., 2015), and lmerTest (Kuznetsova et al., 

2017). All figures were created with ggplot2 (Wickham, 2016). Alpha level was set at .05. For 

each model, residual plots were visually inspected to check assumptions of normality and 

homogeneity of variance. To account for non-normal residual distributions, we ran a non-

parametric bootstrapping procedure to ensure we had robust confidence intervals. All processed 

data and code to run the analyses are available online at OSF repository (Link). Discrepancies 

between the information presented here and in the pre-registration form are explained in detail in 

Appendix 2.  

Performance Accuracy and its Effect on the RewP  

 To investigate the effect of performance accuracy on the RewP, we ran a linear mixed-

effects regression model with fixed effects of training condition (self-control, error estimation 

and their interaction), trial, current single-trial RE (accuracy on the current trial), average RE, 

and their interactions. The model included random effects of participant and Participant x Single-

trial RE19. The dependent variable was single-trial RewP on the current trial. Single-trial RE was 

centered around each participant’s mean, representing a measure of within-subject variability, 

whereas average RE was centered around the sample mean, representing a measure of between-

subject variability. All continuous variables were z-transformed and the categorical variable 

training condition was contrast-coded. 

RewP and Performance Adjustments During Acquisition 

 
19 In the pre-registration form, this model only included the random effect of participant. However, we decided to 
adopt a more conservative approach and add the random slopes of single-trial RE.  

https://osf.io/mv9qj/?view_only=faa163baa1354d2daa0b40673a13106d
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 To investigate whether RewP predicted performance adjustments during the acquisition 

phase, we ran a linear mixed-effects model with fixed effects of training condition (self-control, 

error estimation and their interaction), trial, previous absolute error (accuracy on the previous 

trial), dimension (whether the error was along the x- or y-axis), previous single-trial RewP 

(RewP on the previous trial) and their interactions. The model included random effects of 

participant and Participant x Trial20. The dependent variable was absolute change in CE. The 

variable trial was z-transformed and all categorical variables (training condition and dimension) 

were contrast-coded. Absolute change in CE and previous absolute error were used in their raw 

units to facilitate result interpretation.  

RewP and Long-term Behavior Adaptation 

To assess whether RewP predicted long-term behavior adaptation, we ran a linear mixed-

effects model with fixed effects of pretest RE, post-test type, and their interaction, training 

condition (self-control, error estimation and their interaction), the interaction between training 

condition and post-test type, aggregate RewP, and the interaction between aggregate RewP and 

post-test type. The model included random effects of participant. The dependent variable was 

average post-test RE. All continuous variables were z-transformed and the categorical variables 

(training condition and post-test type) were contrast-coded.  

Results 

 Figure 2A depicts the grand average ERP at electrode FCz, Figure 2B depicts RewP 

topography, and Figure 2C depicts performance accuracy as indexed by radial error across study 

phases.  

 
20 Initially, we used a conservative approach and included random effects of participant and random slopes of trial, 
previous absolute error, and previous single-trial RewP since previous absolute error and previous single-trial RewP 
vary within subjects. However, the model did not converge. Thus, after inspecting the correlation and the variance 
accounted for by each random effect, we decided to drop the random slopes of absolute error and previous single-
trial RewP. 
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Figure 2 

Psychophysiological and Behavior Data 

 

 

 

 

 

 

 

 

 

 

Note. A: Grand average waveform for the RewP time-locked to the onset of augmented feedback 

(time 0) at electrode FCz. Shaded area represents the RewP time window (230ms-350ms). B: 

Topography of the RewP averaged across trials and training conditions. C: Radial error in cm 

(lower numbers indicate better performance) averaged across training conditions and as a 

function of study phase (pretest, acquisition, retention, and transfer). Error bars represent 95% 

CIs.  

Performance Accuracy and its Effect on the RewP 

 Results of the analysis of the effect of performance accuracy on the RewP are presented 

in Table 1. The analysis revealed a significant positive main effect of trial (p = .005), indicating 

that RewP amplitude increased throughout the acquisition phase (on average), and a significant 

negative main effect of current single-trial RE (p = .001), indicating that more accurate throws 
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were associated with more positive RewPs (Figure 3). No main effect of average RE was found 

(p = .479). There were no other main effects or interactions (ps ≥ .105). 

Table 1 

Random and Fixed Effects for the Analysis of the Effect of Performance on the RewP 

Random Effects 
Group Effect Variance SD Corr 
Participant  Intercept 0.31 0.56  
  Single-trial RE 0.01 0.12 0.08 
Residual   0.68 0.82  
Fixed Effects     
Effects β 95% CI t-value p-value 
Intercept -0.01 [-0.10; 0.01] -0.11 .912 
Self-control -0.13 [-0.33; 0.05] -1.32 .188 
Error Estimation -0.12 [-0.32; 0.06] -1.27 .207 
Trial 0.03 [0.01; 0.05] 2.82 .005** 
Single-trial RE -0.05 [-0.08; -0.02] -3.34 .001** 
Average RE -0.03 [-0.14; 0.06] -0.71 .479 
Self-control x Error Estimation 0.08 [-0.31; 0.48] 0.41 .683 
Trial x Single-trial RE 0.02 [-0.00; 0.04] 1.62 .105 
Trial x Average RE 0.00 [-0.02; 0.02] -0.41 .684 
Single-trial RE x Average RE -0.02 [-0.05; 0.01] -1.17 .245 
Trial x Single-trial RE x Average RE 0.00 [-0.02; 0.02] 0.33 .744 
Note. Number of observations: 6327, groups:  Participant, 134. All variables were z-transformed 

prior to analysis. Single-trial RE was mean-centered around each participant’s mean; average RE 

was mean-centered around the sample’s mean. Self-control was coded as self-control = -0.5; 

yoked = 0.5. Error estimation was coded as error estimation = -0.5; traditional = 0.5. 

Figure 3 

Single-trial RewP as a Function of Single-trial Radial Error 
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Note. A: Figure shows the relationship between single-trial RewP and single-trial RE. The black 

line represents the negative relationship between single-trial RewP and single-trial RE for the 

sample, whereas the gray lines represent the slope for each participant. B and C: Figures show 

the relationship between single-trial RewP and single-trial RE at the within-subject level for two 

random participants. 

RewP and Performance Adjustments During Acquisition 

 To analyze whether RewP predicted performance adjustments during the acquisition 

phase, we modeled absolute change in CE as a function of trial, previous absolute error, 

dimension (x-axis, y-axis), previous single-trial RewP, and their interactions, controlling for 

training condition (self-control, error estimation and their interaction). Results revealed two 

three-way interactions of Trial x Previous Absolute Error x Dimension (p = .002) and Trial x 

Dimension x Previous Single-trial RewP (p = .028) (see Appendix 3 for details). Since both 
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three-way interactions included dimension, we analyzed the relationship between RewP and 

performance adjustments separately for each axis.  

For performance adjustments over the x-axis, we ran a linear mixed-effects regression 

model with absolute change in CE serving as the dependent variable and fixed effects of training 

condition (self-control, error estimation and their interaction), trial, previous absolute error, 

previous single-trial RewP and their interactions. The model included random effects of 

participant and Participant x Trial. This analysis, summarized in Table 2, revealed a significant 

positive main effect of previous absolute error (p < .001), indicating that larger errors on the 

previous trial led to larger performance adjustments, and a significant Trial x Previous Single-

trial RewP interaction (p = .029), suggesting that later in practice larger RewPs (following a 

successful throw) were associated with smaller adjustments in performance (Figure 4). No other 

main effects or interactions were found (ps ≥ .235). 

Table 2 

Random and Fixed Effects for the Analysis of the Effect of RewP on Performance Adjustments 

(x-axis) 

Random Effects         
Group Effect Variance SD Corr 
Participant Intercept 14.44 3.80  
  Trial  5.18 2.28 -0.08 
Residual   492.54 22.19  
Fixed effects:         
Effects  β 95% CI t-value p-value 
Intercept 18.56 [17.43; 19.62] 32.81 <.001*** 
Self-control 0.77 [-1.00; 2.50] 0.89 .373 
Error Estimation 0.78 [-1.01; 2.41] 0.90 .368 
Trial 0.09 [-0.91; 1.09] 0.17 .866 
Previous Absolute Error 0.50 [0.46; 0.53] 30.93 <.001*** 
Previous Single-trial RewP -0.09 [-0.98; 0.80] -0.21 .837 
Self-control x Error Estimation -0.25 [-3.95; 3.36] -0.14 .887 
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Trial x Previous Absolute Error 0.01 [-0.03; 0.04] 0.31 .754 
Trial x Previous Single-trial RewP -1.01 [-1.88; -0.12] -2.18 .029* 
Previous Absolute Error x Previous Single-trial 
RewP 0.00 [-0.03; 0.03] -0.13 .897 
Trial x Previous Absolute Error x Previous 
Single-trial RewP 0.02 [-0.01; 0.05] 1.19 .235 
Note. Number of observations: 6244, groups: Participant, 134. All variables were z-transformed 

prior to the analysis except for absolute change in CE and previous absolute error. Self-control 

was coded as self-control = -0.5; yoked = 0.5. Error estimation was coded as error estimation = -

0.5; traditional = 0.5. 

For performance adjustments over the y-axis, we ran a linear mixed-effects regression 

model with the same fixed and random effects as specified in the previous model (x-axis). 

Results (Table 3) showed significant main effects of trial (p = .033) and previous absolute error 

(p < .001), which were superseded by a significant Trial x Previous Absolute Error interaction (p 

< .001), indicating that larger errors on the previous trial led to larger performance adjustments, 

and this relationship was stronger later in practice (Figure 5). There was no main effect of 

previous single-trial RewP (p = .143). No other main effects or interactions were found (ps ≥ 

.106).  

Figure 4 

Absolute Change in CE as a Function of Single-trial RewP and Trial 
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Note.  Figure represents the interaction between single-trial RewP and trial for the x-axis. Lines 

represent the experiment phase. Specifically, the solid line (cherry) represents early in the 

experiment, the dotted line (green) represents half-way through the experiment, and the dashed 

line (blue) represents later in the experiment.   

Table 3 

Random and Fixed Effects for the Analysis of the Effect of RewP on Performance Adjustments 

(y-axis) 

Random Effects         
Group Effect Variance SD Corr 
Participant Intercept 82.40 9.08  
  Trial  19.86 4.46 -0.10 
Residual   1252.60 35.39  
Fixed Effects         
Effects  β 95% CI t-value p-value 
Intercept 33.87 [31.71; 36.12] 30.30 <.001*** 
Self-control -0.40 [-4.07; 2.94] -0.22 .824 
Error Estimation 1.39 [-2.07; 4.86] 0.77 .443 
Trial -1.90 [-3.53; -0.30] -2.14 .033* 
Previous Absolute Error 0.36 [0.33; 0.39] 22.13 <.001*** 
Previous Single-trial RewP 1.16 [-0.27; 2.74] 1.46 .143 
Self-control x Error Estimation -2.66 [-10.18; 4.39] -0.74 .462 
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Trial x Previous Absolute Error 0.08 [0.05; 0.11] 5.30 <.001*** 
Trial x Previous Single-trial RewP 1.09 [-0.57; 2.69] 1.35 .179 
Previous Absolute Error x Previous Single-trial 
RewP -0.02 [-0.05; 0.01] -1.62 .106 
Trial x Previous Absolute Error x Previous 
Single-trial RewP -0.02 [-0.05; 0.01] -1.33 .183 
Note. Number of observations: 6244, groups: Participant, 134. All variables were z-transformed 

prior to the analysis except for absolute change in CE and previous absolute error. Self-control 

was coded as self-control = -0.5; yoked = 0.5. Error estimation was coded as error estimation = -

0.5; traditional = 0.5. 

RewP and Long-term Behavior Adaptation 

 Results of the analysis of the relationship between aggregate RewP and long-term 

behavior adaptation revealed a main effect of pretest (p = .003) such that participants with better 

baseline skill level performed better during the post-tests (Table 4). There was no main effect of 

aggregate RewP (p = .166) and no Aggregate RewP x Post-test Type interaction (p = .857), 

indicating that aggregate RewP did not predict post-test performance. No other main effects or 

interactions were found (ps ≥ .152).  

Table 4 

Random and Fixed Effects for the Analysis of the Effect of RewP on Long-term Behavior 

Adaptation 

Random Effects  
Group Effect Variance SD 
Participant Intercept 0.42 0.65 
Residual   0.54 0.73 
Fixed Effects           
Effects  β 95% CI t-value p-value 
Intercept 0.00 [-0.14; 0.14] 0.00 1.000 
Pretest 0.22 [0.08; 0.37] 3.00 .003** 
Post-test Type 0.00 [-0.20; 0.16] 0.00 1.000 
Self-control 0.18 [-0.12; 0.45] 1.22 .226 
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Error Estimation -0.18 [-0.45; 0.11] -1.22 .226 
Aggregate RewP 0.10 [-0.03; 0.25] 1.39 .166 
Pretest x Post-test Type -0.13 [-0.31; 0.04] -1.44 .152 
Self-control x Error Estimation 0.26 [-0.30; 0.86] 0.88 .381 
Self-control x Post-test Type  -0.01 [-0.36; 0.34] -0.08 .939 
Error Estimation x Post-test Type -0.23 [-0.59; 0.17] -1.26 .210 
Post-test Type x Aggregate RewP -0.02 [-0.19; 0.16] -0.18 .857 
Self-control x Error Estimation x Post-test Type 0.21 [-0.47; 0.94] 0.58 .562 
Note. Number of observations: 268, groups: Participant, 134. All variables were z-transformed 

prior to the analysis. Self-control was coded as self-control = -0.5; yoked = 0.5. Error estimation 

was coded as error estimation = -0.5; traditional = 0.5. Post-test type was coded as retention = -

0.5; transfer = 0.5. 

Figure 5 

Relationship Between Absolute Change in CE, Previous Absolute Error, and Trial 

 

 

 

 

 

 

 

 

 

Note. A: Figure represents the relationship between previous absolute error (averaged across 

participants) as a function of trial for a random participant. B: Figure represents the relationship 

between absolute change in CE (averaged across participants) as a function of trial for the same 

participant. C: Figure represents the interaction between Trial and Previous Absolute Error for 
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the y-axis. Lines represent the experiment phase. Specifically, the solid line (cherry) represents 

early in the experiment, the dotted line (green) represents half-way through the experiment, and 

the dashed line (blue) represents later in the experiment.   

Discussion 

 Reinforcement learning offers a strong theoretical framework to understand how we 

adapt our behavior based on the consequences of our actions. Despite the theory’s prominence, 

few studies have tested its predictions in a motor learning context and fewer have investigated 

the mechanisms underlying the predictions. In the present study, we aimed to provide empirical 

evidence of how reinforcement learning predictions apply to motor skill acquisition and their 

underlying mechanisms in short- and long-term behavior adaptation. Specifically, we 

implemented mixed-effects regression models to explore a 134-participant dataset consisting of 

learners’ feedback-evoked EEG activity (i.e., RewP) as well as their short- and long-term 

performance. Our goal was to investigate the (1) the effect of performance accuracy on the 

RewP, (2) whether RewP predicted trial-to-trial performance adjustments during acquisition, and 

(3) whether aggregate RewP predicted long-term behavior adaptation. Based on reinforcement 

learning theory, we predicted that, at the within-subject level, more accurate performances would 

be associated with more positive RewPs. We also predicted that a large RewP on the previous 

trial would result in a smaller adjustment in performance. Finally, we predicted a positive 

relationship between aggregate RewP and post-test performance. 

 Results from the first model (Table 1) support our prediction that better outcomes lead to 

more positive reward-prediction errors, as evidenced by RewP amplitude being more positive for 

more accurate trials compared to less accurate trials. This finding also supports the claim that 

RewP reflects reward-prediction errors and is sensitive to reward magnitude (Sambrook & 
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Goslin, 2015), and is in line with previous research investigating the psychophysiological 

correlates of graded feedback (Frömer et al., 2016; Luft et al., 2014; Ulrich & Hewig, 2014). For 

instance, Frömer et al., (2016) found a positive relationship between RewP amplitude and 

performance accuracy in a virtual throwing task where participants received graded feedback 

about performance. Interestingly, this gradual increase in RewP amplitude as a function of 

accuracy was found among on-target trials since only these were analyzed. The present study 

expands upon these results by showing the effect across successful and unsuccessful trials (i.e., 

trials that landed on and off board), which suggests that processing of correct and incorrect 

performance feedback in a motor learning context is similar to processing of correct graded 

feedback (Frömer et al., 2016) and categorical feedback (Hajcak et al., 2006). We also found 

that, controlling for accuracy on the current trial, RewP amplitude was larger later in practice for 

a given level of error, probably because toward the end of the acquisition phase predictions about 

performance started to stabilize. Specifically, early in practice, the lack of familiarity with the 

task and weak internal model render predictions less stable (i.e., there is more variance in the 

predictions since the learner may not have a sense of what their performance was). Later in 

practice, the predictions start to stabilize as the learner becomes more knowledgeable about the 

task and develops a stronger internal model. Thus, a prediction violation (better-than-expected 

outcome) at this stage should lead to a larger RewP for a given level of error. 

Even though we did not make any directional prediction, we included average radial error 

in the first model to investigate the effect of participants’ average performance on the RewP. 

From a reinforcement learning perspective, there could be an interaction between current and 

average accuracy. This is because participants who are more accurate (i.e., showing smaller 

average RE) might show smaller RewPs at the trial level as they expect rewards more frequently, 
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lowering their reward-prediction error. Moreover, Frömer et al., (2016) found that RewP 

amplitude was inversely correlated with participants’ cumulative accuracy. Thus, adding 

measures of within- and between-subject performance to our model allowed us to test for the 

main effect of average RE and the interaction between single-trial RE and average RE. Contrary 

to Frömer et al. (2016)’s findings, we found no evidence of the effect of participants’ average 

performance on the RewP. This inconsistency might be due to the fact that Frömer et al. only 

analyzed trials that landed on target, which might have driven the main effect of average 

accuracy. This is because participants with low hit rates received feedback about outcomes that 

were unexpectedly good, resulting in larger RewPs. On the other hand, participants with high hit 

rates received feedback about outcomes that were relatively expected, resulting in smaller 

RewPs. 

Regarding the relationship between RewP and performance adjustments during 

acquisition we found that, for errors along the x-axis, the effect of previous single-trial RewP on 

absolute change in CE varied as a function of trial. Specifically, early in practice, after a 

successful trial, a larger RewP was associated with a larger adjustment in performance. This is 

inconsistent with the reinforcement learning prediction that large positive reward-prediction 

errors lead to behavior repetition but is in line with recent research findings (Lohse et al., 2020). 

For instance, Lohse et al. (2020) found that larger current single-trial RewP amplitude was 

associated with a greater probability of changing response in a perceptual category learning task 

the next time a stimulus from the same category was presented, which is consistent with the 

notion that the RewP reflected an unexpected reward, likely because the correct association 

between stimulus and response had not been learned yet. Along the same lines, the positive 

relationship between RewP and performance adjustments we observed early in practice may be 
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due to larger RewPs reflecting surprisingly good outcomes but a lack of knowledge about how to 

repeat the precipitating action due to a weak internal model. Interestingly, toward the end of 

practice, a larger RewP after a successful trial was associated with a smaller adjustment in 

performance, as predicted by reinforcement learning theory. This finding might be explained by 

a stabilization in performance predictions (see previous paragraph) and/or an improvement in 

participants’ capability to reproduce the previously rewarded behavior due to a strong internal 

model. 

For errors along the x- and y-axis, we found that larger errors on the previous trial were 

associated with larger adjustments in performance, and this relationship became stronger later in 

practice exclusively for the y-axis. This suggests that toward the end of practice, for a given level 

of error, participants made larger performance adjustments, likely because they became better at 

calibrating their own movement, which is expected with skill acquisition and the strengthening 

of an internal model (Schmidt & Lee, 2020). Notably, the task constraints in our experiment 

afforded more opportunity to adjust performance along the y-axis than the x-axis, specifically by 

increasing arm movement amplitude or velocity. Even though participants improved their 

movement calibration, performance adjustments were not predicted by the RewP. We 

acknowledge that these results are difficult to reconcile with the results from the x-axis, but as 

described in Luft (2014)’s review, future behavior correction is not always predicted by the 

RewP. In fact, evidence in favor of the RewP as a predictive signal of behavior adjustment on the 

next trial is highly mixed. 

Finally, counter to our prediction, the analysis of the relationship between aggregate 

RewP and long-term behavior adaptation showed that aggregate RewP did not predict post-test 

performance. Similar results were found in the study by Lohse et al. (2020) where aggregate 
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RewP amplitude did not predict performance on one-week retention and transfer tests. In another 

study in the motor learning domain, RewP was associated with practice performance but not 

learning (Grand et al., 2017b). Together, the present and past studies call attention to the 

importance of examining the RewP-behavior relationship over different timescales, especially in 

psychophysiological studies focused on uncovering the basis of the learning process, as there 

may not be a direct correspondence between RewP and behavior adaptation over short-term and 

long-term scales. Our findings in particular also strengthen the notion that the motor skill 

acquisition process is complex and multifaceted, and that a more complete explanation of how 

this process occurs might come from an approach that combines more than one mechanism (e.g., 

reinforcement learning, model-based learning, use-dependent plasticity; Kantak & Winstein, 

2012).  

Conclusion 

The present study investigated reinforcement learning predictions and their underlying 

mechanisms in short- and long-term motor behavior adaptation. Our results showed that the 

RewP behaved as a measure of reward-prediction errors, being more positive for more accurate 

compared to less accurate trials. Importantly, the effect of graded feedback on the RewP was 

shown across successful (on-target) and unsuccessful (off-target) feedback. Moreover, we found 

that single-trial RewP was implicated in performance adjustments along the x-axis but not the y-

axis. To our knowledge, this is the first study to investigate how a psychophysiological measure 

of reward-prediction error, a major driver of reinforcement learning, is associated with 

performance adjustments in a motor skill learning context. Even though our results suggest that 

RewP is involved in short-term behavior adjustments that occur over the course of acquisition, 

we found no evidence of the relationship between aggregate RewP and post-test performance. 
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More studies are needed to elucidate how reinforcement learning theory and its neural 

mechanisms can explain motor skill learning.   
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Note. A: Feedback bands as a function of where the bean bag landed on the target . B: 

Graphical representation of the relationship between single-trial RewP and feedback 

band. MBand 1 = 2.27, MBand 2 = 1.10, MBand 3 = 0.16, MBand 4 = -1.46, MBand 5 = -0.80.  

Figure A1 

Relationship Between Single-trial RewP and Performance Accuracy  

Appendix 1 

Relationship Between Single-trial RewP and Feedback Band 
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Appendix 2 

Discrepancies Between the Pre-Registration Form and What Was Presented in Chapter 4 

 The original version of the pre-registration form is presented below along with any 

changes that have been made to the document, which are presented after each question.  

1) What's the main question being asked or hypothesis being tested in this study? 

This study focuses on the neurophysiological mechanisms of reinforcement learning in a motor 

learning context. Specifically, using EEG data from a study that investigates explanations for the 

learning benefit of practicing a motor skill with self-control of augmented feedback, our goal is 

to use mixed-effects models to answer the following questions.  

• Question 1: Does the reward positivity (RewP) predict performance during acquisition 

across participants? 

• Question 2: What is the effect of single-trial RewP on performance adjustments during 

acquisition? 

• Question 3: What is the effect of performance on the RewP? 

• Question 4: How does the RewP affect long-term learning? 

Details of how we will test each of these questions statistically are presented below. 

Divergencies 

 Chapter 4 was focused on questions 2, 3, and 4 as they reflect the novelty of the study. In 

recognition of its relevance, the analysis of the whether the RewP predicts performance during 

acquisition across participants (Question 1) is presented below. 

Table A2 

Fixed Effects for the Analysis of the Effect of Aggregate RewP on Performance During 

Acquisition 
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Fixed Effects  β 95% CI t-value p-value 
Intercept 0.00 [-0.16; 0.16] 0.00 1 
Pretest 0.45 [0.29; 0.61] 5.57 <.001*** 
Self-control 0.04 [-0.28; 0.35] 0.25 .806 
Error Estimation -0.09 [-0.41; 0.22] -0.59 .556 
Aggregate RewP 0.01 [-0.15; 0.17] 0.14 .891 
Self-control x Error Estimation 0.52 [-0.11; 1.15] 1.63 .105 
Note. Self-control was coded as self-control = -0.5; yoked = 0.5. Error estimation was coded as 

error estimation = -0.5; traditional = 0.5. 

2) Describe the key dependent variable(s) specifying how they will be measured. 

Performance and learning will be measured by assessing skill accuracy (radial error; Hancock, 

Butler, & Fischman, 1995) on a non-dominant arm beanbag throwing task. Performance will also 

be indexed as constant error and will be calculated separately for x- and y-axis for all trials of the 

acquisition phase.  

EEG time-locked to augmented feedback during acquisition will be assessed. Specifically, we 

will examine the RewP component of the event-related potential (ERP) waveform. The RewP 

will serve as the dependent variable and predictor variable in statistical models informed by 

reinforcement learning (RL) theory.  

Key dependent variable for each research question: 

• Question 1: average radial error (acquisition) 

• Question 2: constant error on the current trial 

• Question 3: single-trial RewP on the current trial 

• Question 4: average radial error (post-test) 

Divergencies 

 For question 2, we used absolute change in CE as the dependent variable as this measure 

has been used in the past to quantify changes in performance (Lee & Carnahan, 1990) and it 

facilitates result interpretation.  
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3) How many and which conditions will participants be assigned to? 

Participants will be assigned to one of four conditions: (1) self-control/error estimation; (2) self-

control/traditional; (3) yoked/error estimation; or (4) yoked/traditional. Participants will perform 

the motor skill in a pretest, acquisition phase, and a post-test (retention and transfer test), which 

occurs 24 h after an acquisition phase. Participants will perform the skill from the same distance 

in the pretest, acquisition phase, and retention test, and they will perform the skill from 1 m 

farther in the transfer test. 

Divergencies 

None.  

4) Specify exactly which analyses you will conduct to examine the main 

question/hypothesis. 

Question 1: Does the RewP predict performance during acquisition across participants? 

• Model: Linear regression 

• Dependent variable: average radial error (acquisition) 

• Fixed effects: pretest, condition (self-control, error estimation and their interaction), and 

aggregate RewP 

In R: 

mod1 <- lm(avg.re ~ pretest + SC.cond*EE.cond + aggregate.rewp, DATA) 

 

Question 2: What is the effect of single-trial RewP on performance adjustments during 

acquisition? 

• Model: Mixed-effects model 

• Dependent variable: constant error (current trial) 
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• Fixed effects: condition (self-control, error estimation and their interaction) and trial 

number, constant error (previous trial), dimension (x/y), single-trial RewP (previous 

trial), and their interactions 

• Random effects: Participant, Participant x Trial 

In R: 

mod2 <- lmer(ce.c ~  

# fixed-effects 

SC.cond*EE.cond + trial*ce.p*dimension*single.trial.rewp.p +  

  # random-effects 

  (1 + trial | subID), DATA, REML = TRUE) 

Divergencies 

 For mod2, absolute change in CE was used as the dependent variable. Also, instead of CE 

on the previous trial, we used absolute error on the previous trial as one of the fixed effects. 

During the analysis process, we adopted a more conservative approach and included random 

slopes of previous absolute error and previous single-trial RewP. However, the model did not 

converge. Thus, after inspecting the correlation and the variance accounted for by each random 

effect, we decided to drop the random slopes of absolute error and previous single-trial RewP.  

Question 3: What is the effect of performance on the RewP? 

• Model: Mixed-effects model 

• Dependent variable: single-trial RewP (current trial) 

• Fixed effects: condition (self-control, error estimation and their interaction) and trial, 

single-trial radial error (current trial), average radial error (acquisition), and their 

interactions 
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• Random effects: Participant, Participant X Trial 

In R: 

mod3 <- lmer(single.trial.rewp ~  

  # fixed-effects 

  SC.cond*EE.cond + trial*single.trial.re.c*avg.re +  

  # random-effects 

  (1 + trial | subID), DATA, REML = TRUE) 

Divergencies 

 For mod3, which in chapter 4 is referred to as model 1 (question 1), we decided to adopt 

a more conservative and include random slopes of single-trial RewP.  

Question 4: How does the RewP affect long-term learning? 

• Model: Mixed-effects model 

• Dependent variable: average radial error (post-test) 

• Fixed effects: pretest, condition (self-control, error estimation and their interaction), type 

of post-test (retention/transfer), condition x type of post-test interaction, aggregate RewP 

and aggregate RewP x type of post-test interaction 

• Random effects: Participant 

In R: 

mod4 <- lmer(posttest ~  

  # fixed-effects 

  pretest + SC.cond*EE.cond*posttest.type + aggregate.rewp*posttest.type 

+  

  # random-effects 
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  (1 | subID), DATA, REML = TRUE) 

Divergencies 

 For mod4, which in chapter 4 is referred to as model 3 (question 3), we added the 

interaction between pretest and post-test type to the model.  

5) Outliers and Exclusions? 

Participants who have <20 usable feedback trials will be excluded. Feedback trials are defined by 

not being marked as having an artifact (EEG processing stage) and trials that landed on the 

target. If influential points are identified (e.g., by Cook’s Distance >1.0), sensitivity analyses will 

be carried out to determine the level of influence on the models and ensure the robustness of the 

results. 

Divergencies 

As explained in the text, trials that landed off board were included in the analyses. 

6) How many observations will be collected or what will determine sample size? 

No need to justify decision, but be precise about exactly how the number will be 

determined. 

The sample size was determined based on the behavioral hypotheses. Specifically, we powered 

the study for the upper-end of the effect size estimate for the benefit of self-controlled practice 

compared to a yoked control group (Cohen’s f = .20 [η2
p ~ .038]); personal communication from 

Brad McKay). We chose the upper limit because we are controlling for pretest (thus accounting 

for variance not explained by self-controlled practice), which is not always the case in self-

control over practice condition studies. Using G*Power 3.1.9.2, we entered this effect size along 

with the other following input parameters for an ANOVA (fixed effects, special, main effects 

and interactions): α = .05, β = .20, numerator df = 1, groups = 4. This yielded a sample size = 
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199, which we rounded up to 200. We decided to conduct a sequential analysis with an interim 

analysis (N = 100) using the Pocock boundary (interim and final α = .0294). Data collection will 

terminate at the interim analysis under the following conditions: (1) the interaction (Self-Control 

x Error Estimation) is significant; (2) either/both main effect(s) is/are significant and the upper 

bound(s) of the CI(s)95% of the non-significant effect(s) (main effect and/or interaction) is/are less 

than η2
p = .038, since power to detect a smaller effect size would require N > 200, which is a 

greater N than we are willing to collect; or (3) both main effects and the interaction are non-

significant and the upper bounds of the CIs95% of the effects are less than η2
p = .038. 

Divergencies 

 None. 

7) Anything else you would like to pre-register? (e.g., data exclusions, variables collected 

for exploratory purposes, any unusual analyses planned?) 

Bivariate variable error (precision) will be assessed during pretest, acquisition, and post-test and 

may be used for exploratory purposes. 

In an exploratory fashion, we may also test whether training condition moderates the 

reinforcement leaning-predicted relationships. 

Divergencies 

 None. 

8) Have any data been collected for this study already? 

Yes. We have collected EEG and performance/learning accuracy data from approximately 110 

participants. Behavior data (i.e., performance and learning accuracy) from 100 participants were 

used in the interim analysis, as described above. Since the pre-determined conditions to 

terminate data collection were not met, we decided to proceed with data collection.   
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Divergencies 

 None. 
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Appendix 3 

Analysis of the Relationship Between Single-trial RewP and Performance Adjustments 

During Acquisition 

Table A3 

Random and Fixed Effects for the Analysis of the Effect of RewP on Performance Adjustments 

 Random Effects       
Effect Variance SD Corr 
Intercept 36.44 6.04   
Trial 8.59 2.93 -0.13 
  888.07 29.80   
Fixed Effects      
Effects β 95% CI t-value p-value 
Intercept 26.56 [25.20; 27.91] 38.47 <.001*** 
Self-control 0.26 [-1.82; 2.54] 0.22 .825 
Error Estimation 1.07 [-1.08; 3.46] 0.92 .362 
Trial -1.03 [-2.06; 0.04] -1.97 .050* 
Previous Absolute Error 0.42 [0.39; 0.44] 32.81 <.001*** 
Dimension 14.73 [13.13; 16.37] 16.54 <.001*** 
Previous Single-trial RewP 0.40 [-0.48; 1.26] 0.90 .370 
Self-control x Error Estimation -1.27 [-6.00; 3.32] -0.54 .589 
Trial x Previous Absolute Error 0.05 [0.02; 0.07] 3.76 <.001*** 
Trial x Dimension -2.00 [-3.74; -0.21] -2.20 .028* 
Previous Absolute Error x Dimension -0.11 [-0.16; -0.07] -4.54 <.001*** 
Trial x Previous Single-trial RewP 0.01 [-0.94; 0.86] 0.01 .990 
Previous Absolute Error x Previous Single-
trial RewP -0.01 [-0.03; 0.02] -0.67 .502 
Dimension x Previous Single-trial RewP 1.44 [-0.30; 3.28] 1.60 .109 
Trial x Previous Absolute Error x Dimension 0.08 [0.03; 0.13] 3.14 .002** 
Trial x Previous Absolute Error x Previous 
Single-trial RewP 0.00 [-0.02; 0.02] 0.01 .992 
Trial x Dimension x Previous Single-trial 
RewP 2.02 [0.18; 3.79] 2.20 .028* 
Previous Absolute Error x Dimension x 
Previous Single-trial RewP -0.03 [-0.08; 0.02] -1.20 .230 
Trial x Previous Absolute Error x Dimension 
x Previous Single-trial RewP -0.04 [-0.08; 0.01] -1.47 .141 
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Note. Number of observations: 12488, groups:  Participant, 134. All variables were z-

transformed prior to the analysis except for absolute change in CE and previous absolute error. 

Self-control was coded as self-control = -0.5; yoked = 0.5. Error estimation was coded as error 

estimation = -0.5; traditional = 0.5. Dimension was coded as x-axis = -0.5; y-axis = 0.5. 
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