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Abstract 

 

Perioperative hypothermia is a common complication in anesthetized cats. Nutrient 

induced thermogenesis (NIT) with intravenous administration of amino acids (AAs) is a 

technique used to increase endogenous heat production, which attenuates heat loss during 

general anesthesia. Branched chain amino acids (BCAAs) may be more effective than 

other AAs for NIT. The hypothesis tested was that cats receiving a single intravenous 

injection of BCAAs at 100 or 200 mg/kg prior to general anesthesia will have a body 

temperature at least 0.5℃ higher than cats receiving an injection of lactated ringer’s 

solution (LRS). Ten research cats underwent general anesthesia three times with three 

different treatments; 3 ml/kg LRS, 100mg/kg BCAA (B100), or 200mg/kg BCAA (B200) 

solution immediately prior to induction of anesthesia. After induction, rectal and thoracic 

skin temperature were measured every 5 and 15 minutes with a temperature probe and 

thermograms, respectively. Blood samples were collected for the measurement of blood 

urea nitrogen (BUN), creatinine (Cre), glucose (BG) and plasma insulin (insulin) 

concentrations just prior to induction, at the end of the 90 minute period of anesthesia, 

and 24 hours after anesthesia induction. The differences between baseline and each time 

point on rectal (ΔTr) and thoracic skin (ΔTt) temperature during anesthesia were 

calculated. The trapezoid method was used for the calculation of AUC for ΔTr and ΔTt. 

The differences between baseline and each sampling point for BUN (ΔBUN), Cre (ΔCre), 

BG (ΔBG) and insulin (Δinsulin) were calculated. The normality of data was tested by 

D’Agositno-Pearson test. Parametric or non-parametric data were analyzed by one-way 
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repeated measures ANOVA with Tukey post-hoc test or Friedman test and Dunn’s post 

hoc test. A value of p < 0.05 was set for significance.  

There was no significant difference in AUC of ΔTr and ΔTt during anesthesia (p = 

0.3675 and 0.9737, respectively).  ΔBUN, ΔCre, ΔBG and Δinsulin did not differ 

between groups for any time points. However, the incidence of hypoglycemia after 

anesthesia tended to be higher in both B100 and B200 groups than those of LRS group.   

BCAAs-NIT did not reduce heat loss during anesthesia while likely to increase the risk of 

perioperative hypoglycemia in cats.  
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1. Introduction 

 

Inadvertent perioperative hypothermia (IPH) is a common anesthetic complication in 

cats. More than 95% of cats become hypothermic during general anesthesia, when 

hypothermia is defined as body temperature < 37℃ (Redondo et al. 2012a).  Several 

adverse events that may affect patient outcome are associated with hypothermia, 

including an increase in surgical wound infection rate, delayed wound healing, 

arrhythmia, coagulopathy, increased recovery time from anesthesia, and longer hospital 

stays (Flores-Maldonado et al. 2001; Pietsch et al. 2007; Rajagopalan et al. 2008; Poucke 

et al. 2014; Yi et al. 2017; Sakata et al. 2020). In fact, minimizing loss of body heat by as 

little of 0.5 °C has demonstrated considerable benefits such as a decrease in 

intraoperative bleeding, lower infection rates and decreased shivering (Widman et al. 

2002; Wu et al. 2015; Fujita et al. 2016) in people. Similarly, an improvement in body 

temperature of only 0.63℃ results in a decrease in shivering and shortened recovery time 

from general anesthesia in dogs (Clark-Price et al. 2018). Thus, minimization of IPH will 

likely improve the perioperative care and outcome of cats undergoing anesthesia and 

surgery.  

To date, several body heat loss reduction methods and systems have been investigated 

and used in clinical settings (Hale and Anthony 1997; Rigotti et al. 2015; Aarnes et al. 

2017; Jourdan et al. 2017; Khenissi et al. 2017; Sakata et al. 2020). Only combination of 

a forced air blanket or electric warm pad and insulation layers decreased heat loss in cats 
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during general anesthesia (Hale and Anthony 1997; Sakata et al. 2020). Despite the 

effectiveness of these techniques, there are several limitations for use in routine clinical 

settings. Body contact area with heating devices is usually limited due to potential 

conflict with the surgical site and likely decreases the contribution of these devices to 

heat loss reduction (e.g. thoracic or abdominal surgery). The potential for surgical site 

contamination might be increased by the use of forced warm air blanket due to blowing 

contaminants from the floor onto the surgical field (Ackermann et al. 2018). For patients 

undergoing MRI or CT image acquisition, devices with ferrous metals will interact with 

magnetic fields, and blankets or materials that cover the patients may cause artifacts on 

the images and reduce diagnostic quality. Therefore, alternative methods that minimize 

IPH that can be used in any environment and do not interfere with surgical site are greatly 

needed.  

Nutrient-induced thermogenesis (NIT) has been studied as a method to attenuate heat loss 

during anesthesia as an alternative warming method (Clark-Price et al. 2015, 2018; Wu et 

al. 2015; Takashima et al. 2016). The administration of amino acids (AAs) accelerated 

heat production in several species during general anesthesia. The mechanism of heat 

production is thought to occur through the stimulation of skeletal muscle protein 

synthesis via phosphorylation of insulin mTOR dependent translation factors 4EBP-1 and 

S6K1 (Yamaoka et al. 2006; Yamaoka 2008). AAs-NIT confers beneficial effects on 

anesthetized humans and animals, including shortening the recovery time from general 

anesthesia and decreasing the incidence of shivering. Of the different amino acids, the 

branched chain amino acids (BCAAs) leucine, isoleucine and valine likely play a 

dominant role in AAs-NIT. BCAAs appear to have a stronger anabolic effect on protein 
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synthesis compared to other amino acids thorough the activation of mTOR (Columbus et 

al. 2014). In a previous study in rats investigating heat production, an AAs solution 

without BCAAs had a significantly lower ability to increase body temperature than an 

AAs solution with BCAAs (Yamaoka et al. 2006). Thus, administration of a solution of 

BCAAs may be of greater benefit for minimization of hypothermia than other AAs 

solutions.  

In previous studies using AAs-NIT, anesthetized dogs were delivered AA via a precision 

syringe pump by constant rate infusion (Takashima et al. 2016; Clark-Price et al. 2018). 

However, this technique requires an electronic precision syringe pump and monitoring of 

the infusion. Syringe pumps can be costly to purchase and may not be practical in some 

practice situations or environments (e.g. MRI). A method that delivers AAs as a single 

injection would greatly reduce the cost and simplify use. The objective of this study was 

to evaluate the effect of a single intravenous injection of BCAAs on heat loss during 

general anesthesia in healthy cats.  
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2. Literature Review 

 

2.1. Basis of Thermoregulation  

In homeotherms, body temperature is regulated within a narrow range for the 

optimization of metabolic activities by the hypothalamus (Kurz 2008). The anterior 

hypothalamic-preoptic area receives the afferent signals from peripheral thermoreceptors, 

and the signal is transferred to the posterior hypothalamic area (Boulant 2000). The 

signals are integrated in the posterior hypothalamus which maintains body temperature 

within a narrow ranges by mediating changes in vascular tone and metabolism (Kurz 

2008; Díaz and Becker 2010). Afferent signals from peripheral receptors responding to a 

cold environment or decrease in body temperature are transmitted via A-delta nerve 

fibers to the hypothalamus (Bindu et al. 2017). The input is compared with the intrinsic 

threshold of the temperature settings at the thermoregulatory center in the hypothalamus 

(Bindu et al. 2017). The body will increase heat production and heat conservation 

activities when the input temperature is below the set threshold temperature.    

The body temperature is divided into core and peripheral compartments by vascular tone 

(Grimm 2018). The blood flow in the peripheral compartment is exposed to the external 

environment and exchanges its heat by the existence of the temperature gradient between 

the peripheral tissue and externals (Díaz and Becker 2010). Core blood flow does not 
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communicate with the external environment (Díaz and Becker 2010). In a cold 

environment, peripheral vessels are constricted to minimize heat loss (Kurz 2008). 

Metabolically, the major part of thermogenesis depends on shivering and metabolism by 

muscle and the liver. Those metabolic responses are also activated by the efferent output 

from hypothalamus. However, general anesthesia depresses hypothalamus activities, 

leading to an increase in the threshold for hypothermia and obtunded reactions such as 

vasoconstriction and shivering (Díaz and Becker 2010).  

 

2.2. Pathophysiology of IPH  

IPH is a common anesthesia-related complication in small animals. The incidence of IPH, 

when defined as < 37℃, has been reported to be 85.6% and 96% in dogs and cats 

respectively (Redondo et al. 2012a, 2012b). In a recent study, 89% of dogs undergoing 

general anesthesia had a decrease in their perioperative body temperature as compared 

with their temperature immediately before or after anesthesia (Clark-Price et al. 2021).  

There are four major mechanisms through which body heat energy is transferred from the 

animal to the environment: radiation, conduction, convection, and evaporation (Grimm 

2018). Heat loss through radiation is emission of heat in the form of infrared rays 

between surfaces.  The magnitude of heat loss by radiation does not depend on the 

difference of heat between the surfaces of ambient temperature and patients, but depends 

on the emissivity of skin (Sessler and Todd 2000). In people, radiation has been 

considered as the major factor of heat loss during surgery (Sessler and Todd 2000). Heat 

loss via conduction and convection share a similar mechanism that heat energy is 

transferred from warmer to cooler sites. Conduction is heat transferred to the surrounding 
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environment via direct contact of the body with objects such as a surgical table.  The 

difference of temperature between two adjacent surfaces proportionally changes the rate 

of heat transfer via conduction (Grimm 2018). Air flow surrounding patients entrains 

body heat from the body through convection, and the main determinant of heat loss is 

velocity of the air flow (Grimm 2018). Evaporation is heat loss thorough changing the 

form of body water to vapor or gas and releasing it into air. When vapor or gas leave the 

body, it accompanies heat energy to the external environment from the body as 

evaporation.  Interaction of those four primary mechanisms combine to cause 

hypothermia during anesthesia.  

In humans, body heat decreases during general anesthesia in 3 predictable phases. In the 

first phase (first 30 minutes), general anesthesia causes a rapid redistribution of body heat 

from a central compartment to peripheral tissues (Sessler and Todd 2000). Core body 

temperature is normally 2-4 ℃ higher than peripheral tissue temperature. The autonomic 

nerve systems regulate this temperature gradient. Anesthetic agents change the balance of 

the autonomic nervous systems resulting in peripheral vasodilation. This, in turn, causes a 

dramatic redistribution of body heat from the core to the periphery. The rate of 

temperature decline decreases in the second phase. This is because the major cause of 

heat loss converts from core to skin blood redistribution to environmental heat loss. Heat 

loss continues to exceed heat production during the second phase because heat generating 

mechanisms (increased metabolism and shivering) are suppressed by anesthesia. The 

second phase lasts up to 75 minutes after induction of general anesthesia. In the third 

phase, temperature decrease reaches a pseudo-equilibrium where heat production matches 

heat loss. However, the patient remains hypothermic overall.     
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Small animals such as cats have a relatively high body surface area to mass ratio (Hill 

and Scott 2004). As the size of the patients become smaller, the increase in the body 

surface area to mass ratio accelerates heat loss through conduction, convection, radiation 

(Koop and Tadi 2021). This characteristic possibly makes cats more prone to 

hypothermia during anesthesia compared to larger animals.   

 

2.3. Clinical Importance for the Prevention of IPH 

Several adverse events associated with IPH have been reported. Hypothermia is 

considered a risk factor of surgical site infection (SSI) and delayed wound healing 

(Flores-Maldonado et al. 2001; Sessler 2001; Pietsch et al. 2007). The postoperative SSI 

rate increases threefold as preanesthetic temperature difference reaches 1.9℃ between 

normothermic and hypothermic groups (Kurz et al. 1996). It is postulated that 

hypothermia induces multiple dysfunctions in immune function and in the coagulation 

cascade. Hypothermia may impair several functions of neutrophils, including migration 

to an infection site, phagocytosis, and oxidative killing of microbes. In an in-vitro study, 

those activities of neutrophils were decreased as body temperature dropped to 29℃ 

(Akriotis and Biggar 1985). Furthermore, a disturbance of platelet function and activity 

of coagulation factors were demonstrated during hypothermia, which can also increase 

the risk of wound dehiscence and infection after surgery (Pietsch et al. 2007). More 

specifically, the inhibition of release of thromboxane A2 from activated platelets and 

down-regulation of glycoprotein Ib-IX complexes occurs in the hypothermic state 

(Michelson et al. 1994). Thromboxane A2 activates other platelets and promotes 

aggregation and glycoprotein Ib-IX complexes form a crosslink between vWF and 
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platelets. Disruption of coagulation cascade also increases the incidence of perioperative 

transfusion and coagulopathy (Widman et al. 2002; Rajagopalan et al. 2008).  

Other complications associated with hypothermia include increased risk of perioperative 

arrythmia, especially atrial fibrillation, atrioventricular block, and ventricular fibrillation 

(Somerville 1960; Gurabi et al. 2018; Dietrichs et al. 2020). The etiology of 

hypothermia-induced arrhythmia has been speculated to be due to prolongation of 

conductance velocity, blocking of electrical pathways or re-entry in ventricular muscle 

(Dietrichs et al. 2020). Finally, postanesthetic shivering by hypothermia increases 

intracranial and intraocular pressures and oxygen consumption rate by 100 – 200% 

during anesthetic recovery (Ralley et al. 1988).  

Minimizing the loss of body temperature by as little of 0.5 °C has considerable benefits 

to anesthetized humans (Widman et al. 2002; Wu et al. 2015; Fujita et al. 2016).  A 

decrease of body temperature of 0.5℃ during surgery increases surgical site infection 

rate from 14.2% to 30.0% in patients undergoing esophagostomy (Fujita et al. 2016). 

Marianne et al. showed that a small difference in temperature, less than 0.5℃ between 

aggressive warming and normal warming groups, reduces surgical blood loss by 200 ml 

(Winkler et al. 2000). Also, hospitalization time is shortened significantly with small 

improvements in body temperature during anesthesia (Aoki et al. 2017). In a study in 

dogs, a difference of only 0.63 °C between treatment and control groups resulted in 

shortened recovery time from anesthesia and decreased shivering (Clark-Price et al. 

2018). Thus, the reduction in the degree of IPH in cats would likely be of great benefit to 

feline medical care. 
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2.4. Conventional Patients Warming Methods and Devices 

Several warming methods and systems have been investigated to prevent perioperative 

hypothermia in various species (Hale and Anthony 1997; Rigotti et al. 2015; Takashima 

et al. 2016; Aarnes et al. 2017; Khenissi et al. 2017; Clark-Price et al. 2018; Sakata et al. 

2020). Pre-warming methods, administration of intravenous heated fluids, and the use of 

heat and moisture exchangers do not attenuate perioperative hypothermia in dogs and cats 

(Aarnes et al. 2017; Jourdan et al. 2017; Khenissi et al. 2017). The use of warm pads 

(heated water pad and an electric warm pad) and forced air blanket improved 

perioperative hypothermia in dogs (Clark-Price et al. 2016). Those devices attenuate heat 

loss through reduction of conduction and convection by the supplementation of external 

heat to patients reducing the temperature gradients. A combination of an electric warm 

pad and insulation layers has a minimal effect on the prevention of hypothermia in 

anesthetized cats undergoing oral hygiene procedure (Hale and Anthony 1997). Although 

effective in some cases, these warming devices have several limitations for use in routine 

clinical settings. Body contact area with heating devices may be limited by surgical site, 

especially in thoracic or abdominal surgery. Forced warm air blanket may increase 

surgical site infection by blowing contaminants onto the surgical site (Ackermann et al. 

2018). Equipment with ferrous metal components cannot be used in an MRI suite due to 

the potential for interaction with the magnetic field. During other imaging studies such as 

computerized tomography (CT), blankets or materials that cover the patients may 

produce an image artifact and interfere with image acquisition and quality of the 

diagnostic modality. Other limitations include need for special devices, costs, 

maintenance and replacement blankets and water pads. Thus, alternative methods that can 
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be used in any environment, do not interfere with the surgical site, and are cost effective 

are greatly needed.      

 

2.5. Nutrient-Induced Thermogenesis (NIT) 

 

2.5.1 The mechanisms and clinical effectiveness of Amino acids (AAs)-NIT  

Nutrient-induced thermogenesis (NIT), a metabolic technique that increases resting 

energy expenditure and produces additional body heat, has been more recently described 

(Carlson 1997). The magnitude of heat production varies according to the composition of 

the diet, administration route and rate of nutrients. Previous studies have confirmed that 

proteins and amino acids (AAs) have a higher thermic effect than carbohydrates and fats. 

The energy expenditure to energy contents ratio for proteins and AAs (30-40%) is greater 

than those for carbohydrate and glucose (5-10%), and fat (0-3%) (Carlson 1997). The 

mechanism of heat production associated with AAs is through two different pathways in 

skeletal muscle (Fujita et al. 2006; Yamaoka et al. 2006; Suryawan and Davis 2018). In 

one pathway, AAs are transported into skeletal muscle cells through amino acid 

transporters, which activate amino acid sensing components [e.g. Ras homolog enriched 

brain (RHEB)] in lysosomes (Suryawan and Davis 2018). The activated sensing 

components mobilize mammalian target of rapamycin (mTOR) complex1 (mTOR1) to 

the lysosome, thereby binding RHEB to mTOR and resulting in activation of mTOR1. 

Activated mTOR1 leads to enhance phosphorylation of insulin-mTOR-dependent 

translation factors 4E-BP1 and S6K1. This increases transcription of skeletal muscle 

protein synthesis, and heat is generated as a byproduct of the protein synthesis (Yamaoka 
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et al. 2006). In the second pathway, AAs stimulate insulin secretion from pancreatic islets 

(Fujita et al. 2006; Suryawan and Davis 2018). Released insulin binds to the insulin 

receptor on the surface of skeletal muscle cells and stimulates tyrosine phosphorylation of 

insulin receptor substrate-1 (IRS-1). Tyrosine phosphorylate IRS-1 activates protein 

kinase B (PKB) and mTOR1, increasing the uptake of AAs and muscle synthesis in the 

skeletal muscle. The insulin release induced by AAs has a synergetic effect for heat 

production for AAs-NIT. In awake animals, thermosensors in the brain manage increases 

in body temperature by oxidative metabolism and heat production through NIT, in order 

to prevent hyperthermia (Selldén et al. 1994). General anesthesia obtunds these sensors in 

the brain and abolishes the efferent signals for the control of body temperature (Sessler 

2008). In awake people with cervical spinal injury, intravenous administration of AAs 

increases body temperature more than in a control group (Aksnes et al. 1995). Central 

temperature regulation was uncoordinated in the spinal injury group due to interruption of 

the conduction pathway in the neck region, resulting in higher heat production than 

healthy people. This temperature regulation system can be eliminated to some extent in 

the anesthetized animals. Thus, thermic effects of NIT can occur unabated and attenuate 

heat loss during anesthesia, resulting in a better balance in heat loss to heat production.  

Administration of AAs has been shown to minimize heat loss in various species during 

general anesthesia and confers beneficial effects in anesthetized humans and animals 

(Selldén et al. 1994; Widman et al. 2002; Takashima et al. 2016; Aoki et al. 2017; Clark-

Price et al. 2018). In fact, minimizing loss of temperature by as little of 0.5 °C has 

demonstrated considerable benefits to anesthetized humans with AAs-NIT (Aoki et al. 

2017). These benefits include a decrease in intraoperative bleeding, infection rates and 
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shivering. In a study in dogs, a difference of only 0.63 °C between treatment of AAs-NIT 

and control groups resulted in a shortened recovery time from anesthesia and decreased 

shivering (Clark-Price et al. 2018). In terms of hemodynamic advantages, dogs receiving 

AAs-NIT treatment, regardless of the infusion rate of AAs-NIT, showed improvement of 

heart rate and mean arterial blood pressure compared with control dogs during isoflurane 

anesthesia (Takashima et al. 2016).   

Potential disadvantageous effects of AAs-NIT should be considered for their utilization. 

The administration of AAs increases insulin secretion and reduces serum glucose 

concentration (Kuhara et al. 1991). Additionally, serum BUN may become elevated via 

more substrate entering the normal degradable pathway (ureagenesis) (Sellden and 

Lindahl 1998). In dogs, these effects are mild and temporal, and return to baseline 

concentrations within 24 hours (Clark-Price et al. 2018). However, evaluation of these 

effects have not been studied in cats. 

 

2.5.2 Branched chain amino acids (BCAAs) 

Branched chain amino acids (BCAAs), leucine, isoleucine, and valine, likely play a 

primary role in AAs-NIT (Yamaoka 2008). BCAAs appear to have a stronger anabolic 

effect on protein synthesis compared to other amino acids thorough the previously 

mentioned activation of mTOR (Blomstrand et al. 2006; Columbus et al. 2014). In 

support, the administration of BCAAs has been utilized in people to attenuate heat loss 

during anesthesia (Wu et al. 2015). The studies reported that BCAAs had the equivalent 

or slightly higher magnitude of thermogenesis and energy expenditure than those of other 

AAs. Furthermore, a previous study demonstrated that temperature in rats given an AAs 
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solution without BCAAs was significantly lower than rats receiving an AAs solution with 

BCAAs (Yamaoka 2008). Thus, BCAAs-NIT may be of greater benefit for minimization 

of hypothermia than other AAs-NIT. 

 

2.5.3 The route and dose of BCAAs NIT   

In previous studies evaluating AAs for perianesthetic hypothermia, anesthetized dogs 

were delivered AAs via a precision syringe pump by constant rate infusion (Clark-Price 

et al. 2015, 2018; Takashima et al. 2016). However, this technique requires an electronic, 

precision syringe pump and monitoring of the infusion. Syringe pumps can be costly to 

purchase and may not be practical in some practice situations or environments (e.g. 

MRI). A method that delivers AAs as a single injection would greatly reduce the cost and 

simplify use. This study will evaluate such a method.   

A 10% AAs solution was administered to dogs at a rate of 8 mL/kg/hr and attenuated heat 

loss (Clark-Price et al. 2018). This infusion rate corresponded to a dosage of BCAAs of 

196.8 mg/kg delivered over an hour. An effective dose as an infusion or as a single bolus 

dose in cats has not been determined. However, dietary protein requirements in cats are 

approximately twice that of dogs and thus cats may require a higher dosage of BCAAs to 

achieve a similar thermic effect (Legrand-Defretin 1994). Thus, in this study, we will 

evaluate two dosages of a single BCAAs injection (100 and 200 mg/kg) in cats for 

evaluation of effects on body temperature during anesthesia. This dosage will be 

administered as a single bolus over a period of 10 seconds instead of infused over an hour 

resulting in a higher plasma level of BCAAs and a greater delivery of BCAAs to the 

proposed site of action (skeletal muscle).   
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2.6. The Evaluation of Body Temperature 

The distribution of body heat is not uniform throughout the body. Body temperature is 

roughly divided into peripheral and core temperature. Peripheral temperature is normally 

lower than core temperature by 2 – 4℃ and greatly influenced by ambient temperature 

and autonomic nerve tone while core temperature is consistently maintained (Sessler 

2008). Therefore, core temperature measurement is usually recommended as an 

anesthetic monitoring tool for body temperature. The gold standard site to measure core 

body temperature is the pulmonary artery (Hayes et al. 1996). However, this requires 

invasive catheter placement within the pulmonary artery, which carries the risk of 

infection, arrythmia and cardiac irritation by the direct contact of the catheter with heart 

muscle. Instead, rectal temperature (RT) is utilized as the alternative method in clinical 

settings.  RT has been validated with high agreement as a surrogate of core temperature 

even though there is a small temperature difference between them due to the influence of 

feces and air in the rectum (Southward et al. 2006). However, this difference can be 

minimized when the temperature probe is placed in the descending colon.       

Thermography is the use of thermograms to study heat distribution in structures or 

regions and has been used as a research and diagnostic tool to measures body surface 

temperature in the field of anesthesiology in both human and veterinary medicine (Bruins 

2018; Repac et al. 2020).  It is a non-invasive method to visualize changes of skin 

temperature that correlates with heat production by increased metabolism of muscles 

(Adamson et al. 2008).  For example, the skin temperature over the biceps femoris and 

gracilis muscles in dogs after 6 minutes of walking was significantly increased compared 
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with those of baseline skin temperature (Repac et al. 2020). BCAAs is thought to be 

predominantly metabolized in skeletal muscle, and thermography may be useful for 

detection of increased heat production by skeletal muscle after administration of BCAAs.  
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3. Objectives 

 

1- Evaluate if an intravenous injection of BCAAs decreases heat loss during 

anesthesia without any adverse effects in healthy cats. 

2- Determine if an intravenous injection of BCAAs improve hemodynamic 

parameters during anesthesia and recovery time from anesthesia in healthy cats.  
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4. Hypothesis 

 

1. Healthy, anesthetized cats receiving a single intravenous injection of BCAAs will 

maintain a higher body temperature during anesthesia than control group cats. 

2. Healthy, anesthetized cats receiving a single intravenous injection of BCAAs will 

have better hemodynamic parameter during general anesthesia and a shorter 

recovery time compared with control group cats. 
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5. Materials and Methods 

 

5.1. Animals 

Animals 

This study was approved by the Auburn University Institutional Animal Care and Use 

Committee (Protocol # 2020-3718). A sample size of 10 cats per group was determined 

to be necessary to detect a difference between groups of 0.5 C with a sigma of 0.37 

(Clark-Price et al. 2015), an alpha of 0.05, and power set to 0.80. Ten, university-owned, 

healthy, intact adult cats (5 female and 5 males), aged 3.3 ± 2.0 [mean ± SD] years of 

age, and weighing 3.5 ± 0.7 kg were enrolled in a triple cross over study. Each cat 

received each of three treatments, 3.0 ml/kg lactated ringer’s solution (LRS), 100 mg/kg 

BCAA (B100), or 200 mg/kg BCAA (B200) in random order in a modified Latin-square 

design. Cats were considered health via no abnormalities on physical examination, 

complete blood count and serum chemistry at least 1 day prior to initiation of the study. 

Feed was withheld from the cats for 12 hours prior to the experiment, but access to water 

was ad libitum. 

 

5.2. BCAAs solution 

The BCAA solution was compounded no more than two weeks prior to use in the Auburn 

University College of Veterinary Medicine licensed institutional pharmacy following 

USP 797 guidelines for sterile compounding. Multiple attempts were made to create as 

concentrated a solution as possible. Through trial and error, a final solution that contained 
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65 mg/ml of BCAA was produced. The BCAA solution consisted of isoleucine 15 

mg/ml, leucine 10 mg/ml, and valine 40 mg/ml.  

 

5.3. Instrumentation 

Cats were administered alfaxalone (4 mg/kg: Alfaxan® Multidose, Jurox inc, KS, USA) 

intramuscularly in the right femoral musculature and allowed to become sedated in a 

dedicated premedication/recovery cage. Once sedation was apparent (approximately 10 

mintues), cats were carried into a dedicated, climate controlled study room and placed on 

a stainless steel table covered with a cotton bath towel. A 22-gage intravenous catheter 

(Terumo Surflo 22G × 1, Terumo, NJ, USA) was placed into the right or left cephalic 

vein after aseptic preparation. A calibrated, digital, scientific thermometer (Fischer 

ScientificTM Traceable Digital Thermometer, Fisher Scientific, NH, USA) was placed per 

rectum to a standardized distance of half the length from the base of the tail to the last rib 

of the individual cat. After the completion of the instrumentation, the assigned 

treatments, LRS, B100, or B200 was injected into the cat intravenously (IV) via the 

cephalic vein catheter over 10 seconds by the manual injection immediately before 

anesthesia induction. The investigator (HS) who recorded all variables and evaluated 

anesthetic depth and recovery time from general anesthesia was blinded to the treatment 

administered throughout the study.   

 

5.4 General anesthesia induction and recovery 

Immediately after BCAA injection, cats were induced with alfaxalone (2 mg/kg: 

Alfaxan® Multidose, Jurox Inc) IV, orotracheally intubated, and positioned in sternal 
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recumbency (Fig 1). General anesthesia was maintained with isoflurane (Isoflurane, 

Akorn, IL, USA) delivered in 100% oxygen with a rebreathing circuit for the use of 

pediatric patients (Pneupac® babyPAC, Smiths Medical Inc, MN, USA) for 90 minutes. 

The oxygen flow rate was fixed at 200 ml/kg/min throughout anesthesia for all cats. Cats 

were infused LRS (VetiVex, Dechra Pharmaceuticals, KS, USA) at 2 ml/kg/hr with a 

precision syringe pump (Medfusion® 3500, Smiths Medical Inc) that was confirmed for 

accuracy prior to beginning of the study. The rectal temperature recording was initiated 

immediately after anesthesia induction and then at 5 minutes interval during anesthesia 

and throughout the recovery period. The following physiological parameters were 

recorded at 5 minute intervals utilizing a multi-parameter monitor (Waveline Pro, Avante 

Animal Health, NC, USA) starting immediately after induction: heart rate (HR), 

respiratory rate (RR), hemoglobin oxygen saturation, indirect blood pressure, end-tidal 

partial pressure of carbon dioxide (ETCO2) and end-tidal partial pressure of isoflurane 

(ETISO). Prior to the beginning of the study, accuracy of the gas analyzer was assessed 

with a standard calibration gas (Calibration Gas, Scott Medical Products, PA, USA). 

Isoflurane was adjusted to maintain adequate anesthetic depth and cardiovascular 

variables. Specifically, if either systolic or mean blood pressure was less than 90 or 60 

mmHg, isoflurane concentration was decreased at approximately 0.2% increments 

ranging from the initial ETISO around 1.3% to 0.7% as the low-end to maintain 

normotension and prevent signs of inadequate anesthetic depth (blinking or strong 

palpebral reflex). Isoflurane administration was discontinued 90 minutes after anesthetic 

induction and cats were allowed to breathe room air during recovery.  
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Fig 1. The positioning of the 

cat during general anesthesia. 

 

 

 

 

 

 

For recovery, cats were moved from sternal recumbency to right lateral recumbency and 

were extubated after the appearance of spontaneous swallowing or coughing motions 

without any external stimulation. Cats were then transferred to the 

premedication/recovery cage in the same recumbency on the bath towel and rectal 

temperature was recorded at 5 minute intervals for an additional 60 minutes. Recovery 

times, defined as the time from the end of isoflurane administration to extubation 

(Extubation), when the cats spontaneously moved to a sternal position and held their head 

up (Sternal), and when cats stood up or maintained sitting position (Standing) were also 

recorded. 

 

5.5 Analysis for Images of Infrared Camera 

The trunk of the cat was pictured using an infrared thermal imaging camera (Fluke TIX 

580 Infrared Camera, Fluke Corporation, WA, USA) from a distance of approximately 60 

cm above the cat to include the entire thoracic muscle in a thermographic image (Fig 2). 
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The images were taken every 15 minutes from immediately after anesthesia induction 

(base line: T0). The image was analyzed by camera specific software (SmartView, Fluke 

Corporation) to visualize skin temperature as color gradients. A region of interest was 

manually drawn and minimum, average, and maximum temperature were calculated (Fig 

3).  

Fig 2. Taking an image with the infrared 

camera for the assessment of skin 

temperature in the cat.   

 

 

 

 

 

 

 

 

Fig 3. The thermal image of the trunk and 

maximum, minimum, and average body 

surface temperature (top on the left). 
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5.6 Measurement of Serum Insulin, Glucose, Urea Nitrogen, and Creatinine 

During the study period, venous blood samples (3.5 ml) were collected from a jugular, 

cephalic or medial vein just prior to induction, at the end of the 90 minutes period of 

anesthesia, and 24 hours after anesthesia induction. Blood samples were centrifuged at 

3000g for 10 minutes and serum was collected and analyzed for glucose, urea nitrogen, 

and creatinine immediately. Additional serum was stored at -80℃ until the conclusion of 

the study, and then submitted to the Michigan State University Veterinary Endocrine 

Diagnostic Laboratory for insulin concentration analysis.  

 

5.7 Statistical Analysis 

Commercially available software (GraphPad Prism 9, GraphPad Software, CA, USA) 

was used for statistical analysis. The rectal temperature difference (∆Tr) and thoracic skin 

temperature difference (ΔTt) between the induction of anesthesia (T0) and each time 

point throughout the anesthesia and recovery periods (T5 – T150) were calculated (e.g. 

ΔTr T150 – T0). Similarly, the thoracic temperature difference (∆Tt) between the 

induction of anesthesia (T0) and each time point (T15, 30, 45, 60, 75, 90) was calculated 

(e.g. ΔTt T90 – T0). Area under the curve (AUC) for ΔTr and ΔTt between T0 and each 

time point, and cardiorespiratory valuables (heat rate, blood pressure, respiratory rate, 

and end-tidal CO2) over time were calculated using the trapezoid method (Purves 1992) 

for comparison between groups. The data of ΔTr was separated into the anesthesia and 

recovery periods and analyzed individually. Cumulative MAC hours were calculated as 

recorded ETISO at 5 minute intervals divided by the MAC of isoflurane for cats (1.59%) 

(Barletta et al. 2016), and then that value was divided by 18 for each 5 minutes period 
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(1/18th of 90 minutes). These values were summed to give the cumulative MAC hours 

value for each cat. The differences between the baseline and each blood sampling point 

(post anesthesia and 24 hours after anesthesia) for BG (ΔBG), BUN (ΔBUN), creatinine 

(ΔCre) and insulin (Δinsulin) levels were calculated and analyzed. Normality of data was 

assessed with the D’Agositno-Pearson test. Parametric data were analyzed by one-way 

repeated measure ANOVA with a post-hoc Tukey test and non-parametric data were 

analyzed with a Friedman test and a post-hoc Dunn’s test. A value of p < 0.05 was used 

for significance. Parametric data are presented as mean ± SD and non-parametric data are 

presented as median (range).  

 

6. Results 

 

Data for premedication/recovery and surgery room temperature, time from premedication 

to induction of anesthesia, duration of anesthesia, baseline rectal temperature, ΔTr (T0 to 

T90), ΔTr (T0 to T150), and recovery times are summarized in Table. 1. There were no 

statistically significant differences for any of those parameters among groups. Changes in 

ΔTr over time are displayed in Figure 3. There were no significant differences for AUC 

of ΔTr during anesthesia (p = 0.3675) or recovery (p = 0.9689) among groups. Changes 

in ΔTt over time was showed in Figure 4. ΔTt did not differ among groups. Data for heart 

rate, mean and systolic blood pressure, respiratory rate, and ETCO2 are represented in 

Figure 5. There was no difference in AUC for heart rate (p = 0.2344), mean (p = 0.5220) 

or systolic (p = 0.6470) blood pressure, respiratory rate (p = 0.2831), or ETCO2 (p = 
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0.8302) among groups.  Cumulative MAC hours was 0.61 ± 0.03 for LRS, 0.6 ± 0.03 for 

A100 and 0.59 ± 0.04 for A200 and was not different among groups (p = 0.5879). 

 Data for BG, BUN, Cre, and insulin are summarized in Table 3. ΔBG, ΔBUN, ΔCre and 

Δinsulin did not differ among groups at any time points (Fig 6). All variables, except BG 

at 90 minutes after anesthesia induction, were within reference range for all sampling 

points. Eight cats were determined to be hypoglycemia (serum glucose ≦ 57 mg/dl) after 

anesthesia; 1 out of 10 cats for LRS (BG: 55 mg dl-1), 4 out of 10 cats for B100 (BG 

range: 29 – 57 mg dl-1), and 3 out of 10 for B200 (BG range: 37 – 55 mg dl-1).  BG for all 

hypoglycemic cats at post anesthesia returned to the reference rage without any 

interventions at 24 hours after anesthesia.  

One cat in LRS group required additional alfaxalone 1 mg/kg IV for anesthesia induction 

since endotracheal intubation was not possible due to the inadequate anesthetic depth. 

None of cats showed any evidence of phlebitis or pain on the cephalic catheter site after 

anesthesia. 

 
Table 1. Mean ± standard deviation (SD) for premedication/recovery and surgery room 
temperature, baseline rectal temperature, rectal temperature difference between baseline 
and 60 minutes post extubation, time from premedication to anesthesia induction, duration 
of anesthesia, and recovery time from end of anesthesia to be sternal position and to 
standing. Median (min, max) for rectal temperature difference baseline and end of 
anesthesia, and recovery time from end of anesthesia to extubation.  p < 0.05 was set 
significant.  

 
LRS B100 B200 p value 

Variables         

Premedication/recovery room 
temperature (℃) 20.9 ± 1.2 21.4 ± 1.3 21.0 ± 1.3 0.7268 

Surgery room temperature (℃) 22.7 ± 0.8 22.7 ± 0.9 22.5 ± 0.9 0.8631 

Baseline rectal temperature (℃) 38.2 ± 0.3 38.0 ± 0.4 38.1 ± 0.5 0.0677 
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Rectal temperature difference between 
baseline and end of anesthesia (℃) -4.3 (-5.3 - -3.2) -4.2 (-6 - -3.8) -4.5 (-5.6 - -3.2) 0.7103 

Rectal temperature difference between 
baseline and 60 minutes post extubation 
(℃) 

-0.9 ± 0.8 -0.9 ± 0.8 -0.9 ± 0.6 0.8762 

Time from premedication to anesthesia 
induction (minutes) 25.1 ± 4.3 23.9 ± 2.0 26.6 ± 6.5 0.4361 

Duration of anesthesia (minutes) 92.9 ± 1.5 92.4 ± 1.2 92.5 ± 1.4 0.6406 

Time to extubation (minutes) 1 (0.5 -15) 1 (0.4 - 6) 1 (0.6 - 8) 0.1448 

Time to sternal (minutes) 27.1 ± 13.4 22.5 ± 8.9 24.9 ± 10.0 0.6033 

Time to standing (minutes) 34.8 ± 12.4 30.2 ± 10.8 33.3 ± 10.7 0.5562 

 
 
 
 
 
 
Table 2. Mean ± SD or Median (min, max) for blood glucose (BG), plasma insulin 
(insulin), blood urea nitrogen (BUN), and creatinine (Cre) for LRS, B100, and B200 in 
baseline, 90 minutes and 24 hours after anesthesia induction.     
  Time point   

Variables Baseline 
90 minutes after  

anesthesia induction  
24 hours after  

anesthesia induction 
Reference 

range 
LRS BG (mg/dl) 93.3 ± 8.4 80.2 ± 18.0 87.3 ± 9.1 

58 - 116 B100 BG (mg/dl) 91.3 ± 13.6 66.9 ± 27.1 100.9 ± 26.7 
B200 BG (mg/dl) 94.6 ± 13.8 69.3 ± 26.1 88.1 ± 10.5 
LRS Insulin (μIU/ml) 4.39 ± 2.18 1.49 ± 0.63 4.60 ± 1.14 

0.1 - 8.0 B100 Insulin (μIU/ml) 2.84 ± 1.26 1.58 ± 0.59 5.47 ± 2.09 
B200 Insulin (μIU/ml) 3.83 ± 2.13 1.40 (0.90 - 3.40) 4.85 (1.50 - 14.80) 
LRS BUN (mg/dl) 23.1 ± 3.1 22.4 ± 2.5 22.1 ± 3.3 

5.0 - 30.0  B100 BUN (mg/dl) 24.0 ± 4.3  25.0 ± 3.5 21.9 ± 2.5 
B200 BUN (mg/dl) 25.2 ± 3.3 24.0 ± 3.5 22.4 ± 4.3 
LRS Cre (mg/dl) 0.97 ± 0.17 0.85 ± 0.13 0.93 ± 0.17  

0.0 - 2.0 B100 Cre (mg/dl) 0.92 ± 0.12 0.90 (0.60 - 0.90) 0.90 ± 0.1 
B200 Cre (mg/dl) 0.92 ± 0.11 0.78 ± 0.1 0.85 ± 0.13 
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Fig 3. Changes in mean ± SD of rectal temperature difference between each time point 
and baseline temperature for LRS (n = 10, black circles), B100 (n = 10, black triangles), 
and B200 (n = 10, black squares) minutes during general anesthesia (a) and recovery 
from general anesthesia (b).   
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Fig 4. Changes in mean ± SD of thoracic skin temperature difference between each time 
point – baseline temperature for LRS (n = 10, black circles), B100 (n = 10, black 
triangles), and B200 (n = 10, black squares) during general anesthesia. 

 

 

Fig 5. Changes in mean ± SD of heart rate (HR) (a), mean arterial blood pressure (MAP) 
(b), systolic arterial blood pressure (SYS) (c), respiratory rate (RR) (d), and end tidal CO2 
(ETCO2) (e) over time for LRS (n = 10, black circles), B100 (n = 10, black triangles), and 
B200 (n = 10, black squares) during general anesthesia. 
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Fig 6. Changes in mean ± SD of differences between each time point – baseline for blood 
glucose (ΔBG) (a), plasma insulin (Δinsulin) (b), blood urea nitrogen (ΔBUN)(c), and 
creatinine (ΔCre) (d) for LRS (n = 10, black circles), B100 (n = 10, black triangles), and 
B200 (n = 10, black squares) during general anesthesia. 
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7. Discussion 

 

In this study, the administration of neither low dose nor high dose of BCAAs attenuate 

heat loss in cats during general anesthesia. Additionally, there was no difference in 

hemodynamic variables and recovery time in the cats administered BCAAs compared 

with the control cats. However, the administration of BCAAs appeared to induce 

hyperinsulinemia, resulting in mild to severe hypoglycemia in cats receiving BCAAs.  

Any effectiveness of single intravenous BCAAs injection on body temperature in 

anesthetized cats was absent in this study. The rectal and skin thoracic temperature during 

the anesthetic period were not significantly different between groups. AAs-NIT has been 

demonstrated its beneficial effects on heat loss and the recovery quality from general 

anesthesia in humans and animals (Takashima et al. 2016; Aoki et al. 2017; Clark-Price 

et al. 2018). In people, a meta-analysis of AAs NIT showed the use of perioperative AAs 

infusion led to a 0.46℃ increase in body temperature and decrease in the incidence of 

shivering during recovery (Aoki et al. 2017). Furthermore, Clark-Price et al. reported 

that dogs receiving intraoperative AAs infusion had higher temperature by 0.63℃ than 

control dogs, and this temperature difference led to shorten recovery time and decrease 

shivering rate (Clark-Price et al. 2018). In the thermographic thoracic images, up until 15 

minutes after anesthesia induction, cats receiving 200 mg/kg BCAAs had a temporal 

increase in skin temperature compared to baseline, but the other groups did not. 

Furthermore, both treatment groups had higher skin temperatures than the control group 

at 15 minutes after anesthesia induction. Eventually, the level of heat loss from the skin 
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was equivalent between groups at the end of anesthesia. This might indicated that there 

was a transient increase in heat production by the single BCAAs administration, but that 

there was not enough substrate (BCAA) to maintain heat production for the entire 

anesthetic period in the cats.               

There are several postulated causes that contributed to the lack of difference in body 

temperature between groups that should be considered. First is the constituents of the 

BCAAs solution as this study used a non-commercially available BCAAs solution. This 

BCAAs solution was compounded with a BCAAs powder for medical use by licensed 

pharmacists in our animal hospital. The BCAAs powder was dissolved into sterilized 

water the day of the experiment. Valine was the highest concentration components, 60% 

of total BCAAs in our BCAAs solution, however valine may not have strong effects on 

skeletal muscle anabolism. In fact, leucin is thought to have the strongest anabolic effect 

on the muscle synthesis of all three BCAAs (Escobar et al. 2005; Columbus et al. 2014). 

Escobar et al. showed the magnitude of protein synthesis on skeletal muscle was elevated 

with leucin dose-dependently rather than valine in pigs (Escobar et al. 2005). However, a 

solution with a higher leucine concentration was not available due to the limitation of the 

solubility of each BCAA in water. Each BCAA concentration that was compounded was 

at the highest concentration that would go into solution. A BCAA solution with a higher 

leucine concentration might induce higher heat production in skeletal muscle and lead to 

better attenuation of anesthesia related heat loss.    

The current study tested 100 and 200 mg/kg BCAA dosages as BCAAs-NIT in cats 

undergoing general anesthesia. These dosages were based upon the previous dog study as 

suggested it was likely to be effective (Clark-Price et al. 2018). A 10% AA solution was 
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administered to the dogs at a rate of 8 mL/kg/hr and attenuated heat loss. This infusion 

rate corresponded to a dosage of BCAA of 196.8 mg/kg delivered over an hour. For this 

study, we selected two dosages of a single BCAA injection (100 and 200 mg/kg) in cats 

for evaluation of effects on body temperature during anesthesia. However, dietary protein 

requirements in cats are approximately twice as those of dogs (Legrand-Defretin 1994). It 

is unclear if that difference in protein requirement between species directly relate to the 

magnitude of thermogenesis by BCAAs. Cats may require a higher dosage of BCAAs, 

more than 200 mg/kg, to achieve an equivalent thermic effect with dogs.            

The body surface area to mass ratio is one of the determinants for the intraoperative heat 

loss (Koop and Tadi 2021). Small animals, such as cats, are more likely to be 

hypothermic than medium to large size animals during anesthesia. All type of heat loss, 

radiation evaporation, convection, and conduction, could be enhanced due to the high 

body surface area to mass ratio. Previous studies in dogs demonstrated the benefit of AA-

NIT on temperature enrolled medium to large breed dogs whose median body weight was 

19.2 kg and ranged 8.9 – 52.1 kg, while mean body weight of the cats was 3.5 ± 0.7 kg in 

this study (Clark-Price et al. 2018). Thus, in this study, heat loss might have exceeded 

heat production by BCAAs due to their large body surface area to body mass ration.  

Hypoglycemia is recognized as an adverse event for AA-NITs. Indeed, cats receiving 

BCAA-NITs had a higher incidence of hypoglycemia and more severe decline in BG 

than control cats at the end of anesthesia. AAs, especially leucin, directly stimulate 

insulin release from β cell of the islet of Langerhans and increase uptake of glucose into 

adipose tissue and skeletal muscle from blood, resulting in a decline in BG (Kuhara et al. 

1991).  However, blood insulin concentration at the end of anesthesia was lower than 
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baseline in all groups. The causes of this discrepancy between BG and insulin 

concentrations are postulated the interaction of the prolongation of the recovery of BG 

and dilution of blood. Kuhara et al. studied the changes in blood insulin and BG 

concentrations for 90 minutes with intravenous leucin administration in awake sheep 

(Kuhara et al. 1991). Blood insulin concentrations peaked 30 minutes after starting the 

leucine CRI and returned close to baseline values 60 minutes after discontinuation of the 

leucine CRI while BG reached its lowest value at 30 minutes after the end of leucine CRI 

and persisted within the timeframe. The cats with BCAAs might have had a similar trend, 

temporal spiking insulin immediately after the administration of BCAAs and returned it 

to baseline values at 90 minutes while a persistent low BG continued to 90 minutes. As a 

result, BG at the end of anesthesia was likely to be lower than baseline in treatment 

groups. Furthermore, all cats were administered 1.5 – 3.0 ml/kg of treatment solutions 

(BCAAs or saline) before induction and received 2 ml/kg/hr of an LRS infusion during 

anesthesia. The increase in blood volume by the fluid administration could cause a 

dilution of blood and a decrease in measured blood variables. In support, blood creatinine 

is a common parameter used to assess the hydration of animals in a clinical settings 

(Smith and Greer 2016). Blood creatinine was lower at the end of anesthesia than 

baseline in all groups. This suggests that cats were overhydrated after anesthesia. We 

speculated that the blood volume of the cats increased by fluid administration, resulting 

in increased dilution of the blood insulin and BG, even in the control group at the end of 

anesthesia.  Thus, the prolonged BG recovery and blood dilution might have caused 

inconsistency of blood insulin and BG values in all groups.  
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The BUN value at 90 minutes after anesthesia induction in 100 mg/kg BCAAs group was 

elevated compared with that of baseline. Similarly, previous studies in dogs and humans 

demonstrated elevated serum BUN after administration of AAs (Sellden and Lindahl 

1998; Takashima et al. 2016; Clark-Price et al. 2018). AAs are metabolized in the liver 

through oxidation, and urea is produced as byproduct of the oxidation of AAs (Sellden 

and Lindahl 1998). We could not clearly explain the reason that serum BUN was not 

elevated in the 200 mg/kg BCAAs group at the end of anesthesia. However, the elevated 

BUN values were within clinical reference limits and returned to baseline by 24 hours 

after induction of anesthesia. Thus, this finding may not be clinically meaningful in 

healthy animals. Also, creatinine is generated as byproduct of AAs breakdown in liver. A 

transient decrease of serum creatinine has been reported in dogs after AAs administration 

(Clark-Price et al. 2015, 2018). It was thought that crystalloid fluid administration during 

anesthesia increased renal excretion of creatinine during the perianethetic period. 

The attenuation of perioperative hypothermia shortens recovery time from anesthesia in 

cats (Redondo et al. 2012a; Sakata et al. 2020). Hypothermia slows down the anesthetic 

drug metabolism in the liver due to the reduction of metabolic enzyme activity and 

hepatic blood flow, which may contribute to a prolonged anesthetic recovery time 

(Brodeur et al. 2017). According to this study, a single injection of BCAAs may not 

assure an effective serum BCAAs concentration for effective heat production. Changes in 

rectal temperature were similar between groups after anesthesia and there were no 

differences in recovery times.  

One cat in the LRS (control) group required an additional dose of alfaxalone at 1 mg/kg 

IV for anesthesia induction because of an inadequate anesthetic depth for endotracheal 
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intubation. The administration of IV alfaxalone is rapidly metabolized by the liver and 

eliminated through urine and bile. The elimination half-life of alfaxalone is 45.2 minutes 

after 5 mg/kg IV, and the recovery time from sedation is 69 minutes in cats (Whittem et 

al. 2008). Moreover, all three recovery times for that cat were similar to the other cats 

within the group. Thus, the influence of the extra dose of alfaxalone did not appear to 

affect recovery time.    

No hemodynamic improvements were observed with BCAAs-NIT. Elevated insulin 

concentration, such as those induced by AAs injection, can induce nitric oxide (NO) 

release from vascular endothelial cells (Muntzel et al. 2001). The interaction between 

insulin and NO causes sympathomimetic responses, resulting in the increase in heart rate 

and blood pressure (Muntzel et al. 2001). However, this positive hemodynamic effect of 

AAs-NIT was demonstrated by only one study with dogs (Takashima et al. 2016). 

Additional studies are necessary to need to confirm the hemodynamic effect on AAs and 

BCAAs-NIT.   

Finally, another factor as to why there was not a significant amount of heat attenuation 

may have been due to the difference in the administration method of BCAAs with 

comparted to previous studies using AAs-NIT. A single injection (our method) could be 

easily used by any veterinary hospital with minimal effort and no requirement for an 

electronic pump. However, previous studies in dogs showed the benefits of AAs-NIT 

using constant rate infusion (CRI) of AAs with a precise syringe pump (Takashima et al. 

2016; Clark-Price et al. 2018). Unlike single injection, CRI can maintain a consistent 

blood concentration of AAs. A stable serum AA concentration might increase uptake of 

AAs by skeletal muscle and secretion of insulin, which helps to increase heat production. 
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While the dosages of BCAAs used was likely not high enough to produce heat for the 

prevention of heat loss during anesthesia, some cats showed moderate to severe 

hypoglycemia at the end of anesthesia. The co-administration of dextrose may be needed 

to prevent perianesthetic hypoglycemia if a higher dosage of BCAAs, over 200 mg/kg, is 

tested for future studies. 
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8. Conclusion 

 

In conclusion, a single intravenous injection of BCAAs prior to anesthesia did not 

attenuate heat loss in healthy cats, whereas some cats receiving BCAAs showed transient 

mild to moderate hypoglycemia. Further studies are required to evaluate different dosages 

of BCAAs or methods (e.g. CRI or intermittent injection). However, a simultaneous 

administration of dextrose may be necessary to prevent hypoglycemia induced by 

BCAAs-NIT.         
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