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Abstract 
 

There is increasing evidence that onsite wastewater treatment systems (OWTSs) can be a 

significant, and possibly underestimated, source of water contamination. OWTSs effectively 

treat wastewater when located in suitable environmental conditions and regularly maintained. 

However, these criteria are not always met, and the system can become susceptible to failure 

resulting in excess nutrients and harmful pathogens entering the surrounding environment. More 

information is needed to understand if and how OWTSs are correlated to surface water 

contamination and how the correlation changes with watershed scale. Thus, the objectives of this 

study are to 1) model the susceptibility of OWTS failure throughout the Choccolocco Creek 

watershed, and 2) determine if there is a relationship between E. coli concentrations in surface 

water with both modeled OWTS failure and land cover type and determine if watershed scale 

affects results in the Choccolocco Creek watershed. The Choccolocco Creek, a tributary to the 

Coosa River, is on the Alabama 303(d) List of Impaired Waterbodies for elevated concentrations 

of E. coli, a fecal indicator bacterium. The source(s) and relative contributions of E. coli are 

unclear, and typical of mixed-use watersheds, it is difficult to identify E. coli source(s) without 

advanced chemical analyses. However, geospatial methods can assist in identifying potential 

sources by exploring the geographic relationships between source areas and E. coli 

concentrations. 

To address the first objective, GIS-based multi-criteria decision analyses (MCDA) were used 

to determine locations that have increased susceptibility to OWTS failure based on 

environmental variables (soil characteristics, proximity to surface water, and slope) and OWTS 

variables (age and density). With the model that included environmental and OWTS variables, 
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an area of 44.3 km2 was identified as having high susceptibility to OWTS failure. Results 

indicate that OWTS age could be a driving factor of OWTS failure in the watershed.  

For the second objective, results from OWTS failure models and distribution of land cover 

type were correlated to E. coli concentrations measured monthly from April to September 2021 

at nine water sampling locations along the Choccolocco Creek. The water sampling locations 

were used to delineate nine sample point watersheds (SPWs) and 63 distance derived watersheds 

(DDWs) to summarize land cover distribution and OWTS failure models and assess how results 

vary with watershed scale. The analysis yielded several key results: 1) significant, positive 

correlations were found between E. coli concentrations and OWTS failure models for both SPWs 

and DDWs; 2) a significant, positive correlation between E. coli and OWTS count was found. 

Additionally, variation in the significance of correlations differed with watershed scale, 

demonstrating the importance of selecting an appropriate unit of analysis. 

Our results suggest a relationship between OWTSs and elevated E. coli concentrations 

observed in Choccolocco Creek. Nonpoint source attribution challenges are not unique to the 

Choccolocco Creek watershed and methods outlined here could be applied to other watersheds to 

elucidate if OWTSs contribute to E. coli contamination of surface waters. 
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1. Introduction 

1.1. Onsite Wastewater Treatment System (OWTS) Overview 

Onsite wastewater treatment systems (OWTSs) are an integral component of wastewater 

treatment infrastructure. There are two common ways to handle household wastewater in the 

United States (U.S.): connect to a municipal sewer system and send wastewater to a wastewater 

treatment plant or use an OWTS. An OWTS collects, transports, treats, and provides subsurface 

dispersal of sewage from establishments or dwellings (U.S. EPA 2002). In small-town, rural, and 

suburban areas, OWTSs provide an affordable means to treat wastewater (Lusk et al. 2017). As of 

2019, approximately 23 percent of single-family and mobile homes use OWTSs (U.S. Census 

Bureau, American Housing Survey 2019), although prevalence varies by location. For example, 

OWTSs are utilized by only 10 percent of homes in California, 55 percent homes in Vermont, and 

more than 40 percent of homes in Alabama (U.S. Census Bureau 1990). 

There are several types of OWTSs, but septic tank systems are the most conventional. Septic 

tank systems have two main components: the septic tank and a soil treatment unit or drain field. 

Figure 1 shows how wastewater is treated in a septic tank system. The wastewater first enters the 

septic tank by a pipe connected to the dwelling on site. Then, the wastewater is treated in the two 

components: (1) in the septic tank the primary treatment of solids occurs by anaerobic digestion 

and the wastewater leaves the septic tank as a septic tank effluent, and (2) in the drain field septic 

tank effluent percolates through the natural soils, contaminant concentrations are reduced, and the 

septic tank effluent moves to the groundwater (Lusk et al. 2017).  
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State public health departments are responsible for developing and enforcing OWTS codes. 

Historically, performance-based monitoring of OWTSs has not been required by regulatory 

agencies (U.S. EPA 2002). Regulatory agencies oversee the system siting, design, and construction 

for compliance with administrative codes and certification of site evaluators, designers, and other 

service providers. If all components meet the code requirements a system construction permit will 

be administered. At this point, the regulatory agency often relinquishes any further system 

oversight, and the owner becomes responsible for the OWTS. Regulatory agencies usually do not 

mandate or track maintenance and repairs but may become involved if a system failure is reported. 

As a result, there is minimal regulated performance oversight of the systems, potentially 

exacerbating the consequences of failed systems.  

When OWTSs are planned, designed, installed, used, and maintained properly, pollutant 

attenuation rates are generally high, ranging from 70 percent to greater than 90 percent (Withers 

et al. 2013). OWTSs efficacy depends on multiple criteria, including soil type (Carroll et al. 2006), 

underlying lithology (Katz et al. 2010), septic tank and drain field design (Cooper et al. 2015; 

Cogger and Carlile 1984), and slope of the terrain (U.S. EPA 2002), among other factors. If these 

Figure 1. A diagram outlining the path and processes of wastewater 
remediation in a septic tank system. Figure from U.S. EPA (2002). 
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criteria are not suitable, OWTSs are susceptible to failure. OWTS failure is common across the 

U.S. with communities reporting failure rates between 10 and 70 percent, but the true extent is not 

known as no state has directly measured its failure rate (U.S. EPA 2000). Additionally, it is 

estimated that more than half of OWTSs are more than 30 years old and many outdated systems 

have known performance problems (U.S. EPA 2002). Although, OWTS failure is a pervasive 

problem, a comprehensive dataset of OWTS failure is not maintained by a single organization 

(U.S. EPA 2002).  

Definitions of OWTS failure vary by regulatory agency with some defining failure as 

noncompliance with local regulations and others defining failure by inadequate system 

performance, with acceptable performance thresholds also varying by regulatory agency (U.S. 

EPA 2002). Examples of performance failure include hydraulic overloading of the system 

(wastewater pools on the ground surface or the system backs-up in the plumbing of the building) 

or pollutants, such as microbes (bacteria, viruses, or protozoa), nutrients (nitrogen and 

phosphorous), or trace organic compounds, entering the ground or surface waters (U.S. EPA 2002; 

Lusk et al. 2017). Therefore, failed OWTSs can serve as a pathway for pollutants, pathogens, and 

excess nutrients to enter the environment and adversely impact human and ecosystem health. 

Specifically, this leads to human exposure via well water, direct consumption, recreational contact 

with contaminated surface waters, sewage backups into homes, and pooling of septage on the 

ground. However, their overall contribution to water contamination is unknown (Withers et al. 

2013), stemming largely from the difficulties associated with monitoring and modeling nonpoint 

source pollution (Patterson, Smith, and Bellamy 2013; Yuan, Sinshaw, and Forshay 2020). 

Without targeted data collection and monitoring of failure rates and effects, it is challenging to 

understand the extent and ramifications of OWTS failure.  
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1.2. Causes of OWTS Failure 

There are multiple criteria that affect OWTS efficacy and susceptibility to failure. These 

criteria can be aggregated in two broad categories: system variables (e.g., system age) and 

environmental variables (e.g., soil characteristics). Criteria that affect OWTS failure cannot be 

considered independently; the system should be evaluated as a whole and relationships between 

criteria should be considered. The follow section provides a review of criteria that impact OWTS 

propensity of failure and description of how they impact systems. 

1.2.1. System Variables 

Age: There is a clear correlation between the age of an OWTS and the risk of failure. In general, 

the older an OWTS, the higher risk of failure. The average lifespan of an OWTS is 20 to 30 years;  

after 20 or more years of use, septic tanks and pipes can deteriorate and require repairs or 

replacement, and the soil surrounding drain fields may become inadequate for optimal system 

performance (U.S. EPA 2002). For example, spaces between soil particles can become filled with 

contaminants or the soil structure may change with time (U.S. EPA 2002). The useful lifespan on 

an OWTS will vary with system type, how well the system was maintained, and if it was used 

according to the intended usage. 

Density: Water quality degradation attributed to high OWTS density was initially documented 

in an EPA report to congress, which detailed wastewater disposal practices and their effects on 

groundwater (U.S. EPA 1977). Yates (1985) connected groundwater contamination to high septic 

tank system density areas through an investigation of case studies and made three conclusions: 

septic tank systems are major contributors of wastewater to the subsurface; septic tank systems are 

the most frequently reported cause of groundwater contamination; and the most crucial factor 

influencing groundwater contamination by septic tank systems is the density. Updated guidelines 
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for OWTS performance continue to cite high OWTS density as a contributing factor to ground or 

surface water contamination, but the threshold for “high density” is not well defined and is 

dependent on environmental factors, such as soil suitability (U.S. EPA 2002).  

1.2.2. Environmental Variables 

Soil characteristics: It is well understood that suitable soil characteristics are important for 

proper OWTS function, with soil properties that characterize water movement of utmost 

importance (U.S. EPA 2002). Soil variables of interest include the soil hydrologic group, which is 

an estimate of runoff potential, and soil drainage class, which describes the rate water is removed 

from the soil and is related to soil hydraulic conductivity. Soil hydraulic conductivity is a 

measurement of the ability of a soil to transmit water when subjected to a hydraulic gradient 

(NRCS 2004) and has consistently been cited as a critical factor of OWTS efficacy as it indicates 

the ‘speed’ at which septic tank system effluent moves through the soil (Collick et al. 2006; Beal 

et al. 2006; U.S. EPA 2002). Septic effluent should not move too quickly through the soil, which 

could lead to contaminants not being removed, or too slowly, where ponding may occur (U.S. EPA 

2002).  

Proximity to surface waters: The proximity of an OWTS to surface water can also contribute 

to performance failure (U.S. EPA 2002); if an OWTS is too close to a waterbody, there may not 

be enough travel distance for attenuation of pollutants from the septic system effluent. Setback 

distances are often established in OWTS regulations, however, they can be arbitrary and vary by 

regulatory agency (U.S. EPA 2002). The necessary setback distance for optimal system 

performance can differ based on other characteristics (e.g., soil characteristics).  

Depth to groundwater: Similar to the proximity to surface water, the depth to the water table 

can contribute to OWTS failure if there is not enough travel distance to remove pollutants from 
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the septic tank effluent; a minimum separation distance of 18 inches from the water table (U.S. 

EPA 2002). However, the effluent quality, hydraulic loading rate, soil characteristics, and 

wastewater effluent distribution methods can affect the soil depth necessary for to remove an 

acceptable concentration of pollutants (U.S. EPA 2002). Generally, 2-to-4-foot separation 

distances have allowed for adequate removal of fecal coliforms in septic tank effluent (Ayres 

Associates 1993).   

Slope of terrain: The slope of terrain proximal to an OWTS should be relatively flat to allow 

for adequate effluent dispersion through the soil. The maximum slope of the terrain should be no 

greater than 10 to 20 percent (U.S. EPA 2002). However, the local topography should also be 

examined, as depressions, where ponding of water can occur, are not optimal of OWTSs.  

1.3. GIS-Based Methods to Assess OWTS Susceptibility to Failure 

Multiple, spatially dependent factors contribute to the efficacy of an OWTS, and a geographic 

information system (GIS) is a unique platform to study how these criteria interact spatially. In fact, 

several studies have already shown how a GIS-based, multi-criteria decision analysis (MCDA) 

approach, enable the creation of OWTS susceptibility to failure maps (Carroll et al. 2006; Oosting 

and Joy 2011; Capps et al. 2020). A MCDA is defined as a collection of techniques to analyze 

geographic phenomena where the analysis results are dependent upon the spatial relationships of 

the phenomena (Malczewski 1999). To conduct an MCDA, the user should: identify the problem 

or goal, determine input criteria, rank input criteria based on a standardized scale, weigh input 

criteria, aggregate input criteria, and validate the output (Eastman et al. 1995). Previous work in 

the field has shown that GIS-based MCDA have been useful in locating areas at risk of OWTS 

failure, helping to guide targeted management and oversight. 
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For example, Carroll et al. (2006) were one of the first to provide a novel framework to assess 

OWTS failure in a spatial context. They used three assessment categories: environmental, public 

health, and OWTS siting and design. Their model integrated phosphorus and nitrogen 

concentrations of surface and groundwaters, fecal bacteria and bacteria source tracking data, soil 

properties, lot size, setback distances, slope of the terrain, and floodplain boundaries. The risk 

classification and weighting schemes for each parameter were based on local OWTS regulations 

in Australia. Each criterion was represented by a geographic raster data layer and aggregated in a 

GIS. The resulting output identified areas ‘at risk’ and ‘low risk’ from OWTSs. This research has 

provided a conceptual framework detailing how to integrate environmental condition, OWTS data, 

and stakeholder knowledge to assess the risk of OWTS failure which has served as the foundation 

for subsequent studies.  

Similarly, Oosting and Joy (2011) developed a GIS model to provide a risk rating of ground 

and surface water contamination from OWTSs in Ontario, Canada. The model calculated the 

cumulative risk of water pollution from OWTSs using nine risk parameters: soil type, slope, lot 

size, surface water proximity, floodplain, groundwater intrinsic susceptibility, recharge areas, and 

water supply proximity. The parameter weights in the risk model were determined through a 

survey of experts that included chief building officials, registered code agencies, public health 

inspectors, and researchers active in OWTS studies. The greatest contributors to the overall risk 

for the model were soil type, groundwater intrinsic susceptibility, and system age. This study also 

discussed the relationship between OWTS density and water quality but did not include it as a risk 

parameter like other studies (Carroll et al. 2006; Welhan and Moore 2012; Whittier and El-Kadi 

2009). The model developed by Oosting and Joy (2011) successfully identified at-risk areas for 
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OWTS pollution and was useful in developing targeted management strategies for reinspection 

programs.  

In addition to MCDAs, GIS-based statistical analyses have been used to investigate the 

relationship between OWTS failure and surface water quality. Flanagan et al. (2019) aimed to 

understand if and how OWTSs prevalence is spatially correlated to various environmental and 

surface water quality parameters. Flanagan et al. (2019) examined the spatial distribution of septic 

tank systems, coastal surface water contamination, and relevant environmental factors of coastal 

Florida watersheds. Spatially explicit explanatory data (e.g., land cover, population density, 

OWTS density, and soil drainage) were correlated to in situ nitrogen concentrations, Enterococci 

counts, and beach closures. Significant positive correlations (α = 0.05) to Enterococci counts were 

found with percent agricultural cover, percent combined urban and agricultural cover, septic tank 

density, population density, and septic tank density in poorly drained soils. The authors also 

hypothesized that the combination of septic tanks in urban regions with high impervious cover, 

where there is elevated runoff, could also be a factor in surface water contamination leading to 

beach closures. This research provided a statistics-based framework to identify areas where septic 

systems may be causing environmental and human health issues.  

1.4. Study Area: Choccolocco Creek Watershed 

The study area for this research is the Choccolocco Creek watershed located in northeast 

Alabama (Figure 2A). This creek is on the Alabama 303(d) List of Impaired Waters, meaning the 

creek does not meet water quality standards set by the Alabama Department of Environmental 

Management (ADEM). Section 303(d) of the Clean Water Act requires that each state identify 

surface waters that do not currently support their designated use; Choccolocco Creek serves as a 

local recreational area and is designated as a fish and wildlife and public water use (ADEM 2022). 
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The Choccolocco Creek has been 303(d) listed due to high concentrations of polychlorinated 

biphenyls and mercury, since 1996 and 2010, respectively (ADEM 2020a). More recently, sections 

of the Choccolocco Creek have been added to the 303(d) list due to Escherichia coli (E. coli) 

contamination. E. coli is a fecal indicator bacterium and originates from wastewater collection 

system failure, OWTSs, agricultural runoff, urban runoff, and storm sewers. The average E. coli 

concentration in Choccolocco Creek during the summer of 2021 was 224 cfu per 100 mL; the EPA 

threshold for fresh, recreational water is 126 cfu per 100 mL (U.S. EPA 2012; Larson 2022). 

Sections of the Choccolocco Creek have continuously been 303(d) listed for E. coli contamination, 

with 33 miles listed in 2018, 44 miles listed in 2020, and two miles listed in 2022 (ADEM 2020b; 

2022). The listed sources of E. coli are animal feeding operations, pasture grazing, collection 

system failure, and urban runoff and storm sewers (ADEM 2022). However, the relative 

contaminate loading from nonpoint sources, such as failed OWTSs and agriculture runoff, is 

unclear.  

Figure 2. The area of study, the Choccolocco Creek HUC-10 watershed boundary (A) and land cover (USGS 2019) 
within the Choccolocco Creek watershed (B).  

A B 
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The study area is defined at the 10-digit hydrologic unit code (HUC) watershed and spans 

Calhoun, Clay, Cleburne, and Talladega counties. The Choccolocco Creek watershed is 1,323 km2 

(511 mi2) in area and includes a mix of land cover types, making it difficult to identify E. coli 

source(s) in Choccolocco Creek watershed (Figure 2B). The central portion of the watershed is 

primarily urban and the location of the two prominent cities in the watershed: Oxford and 

Anniston. The north portion of the watershed is part of the Talladega National Forest and largely 

undeveloped. Additionally, there is crop and pasture agricultural land use throughout the 

watershed, accounting for approximately 14 percent of the watershed area. Choccolocco Creek, 

approximately 126.5 km in length (USGS 2021), is a major tributary to the Coosa River, which 

flows through Georgia and Alabama. The Choccolocco Creek flows southwest from headwaters 

in the Talladega National Forest to the confluence with Lake Logan Martin. 

1.5. Objectives 

There are multiple potential sources of E. coli in the Choccolocco Creek watershed that could 

contribute to water contamination. The varied land use and poor understanding of loading from 

nonpoint sources makes it unclear which source(s) are leading to the elevated levels of E. coli. 

Additionally, within the Choccolocco Creek watershed the propensity and spatial variability of 

OWTS failure and the relationship to water contamination in Choccolocco Creek are unknown. 

Furthermore, limited availability to OWTS data and a poor understanding of their spatial 

distribution makes it difficult to characterize the impact of failed OWTSs. Thus, the objective of 

this thesis is to improve our understanding of the contribution of OWTSs to E. coli contamination 

of surface waters by modeling OWTS susceptibility to failure in the Choccolocco Creek 

watershed. Based on the assumption that there are failed OWTSs within the Choccolocco Creek 
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watershed, it was hypothesized that OWTSs are contributing to the high E. coli concentrations 

observed. The following research questions (RQs) will assess the hypothesis:  

RQ 1. What is the spatial distribution of the susceptibility to OWTS failure in the Choccolocco 

Creek watershed? 

RQ 2. What is the spatial correlation between OWTS variables, modeled susceptibility to 

OWTS failure, and land cover distribution with E. coli concentrations across the Choccolocco 

Creek watershed? 

2. Methodology 

2.1. Summary of Methods 

First, the OWTSs were located within the Choccolocco Creek watershed using permit data 

from the Alabama Department of Public Health (ADPH). OWTSs were geocoded from table-based 

permits to geographic coordinates, represented as a point shapefile, for the watershed. Then, 

susceptibility of OWTSs failure, where failure is defined as the contamination of surface waters, 

was modeled using a MCDA (Figure 3); detailed methods on model development are provided in 

Section 2.2. The MCDA was completed in ArcGIS Pro 2.9. Two models were created to compare 

how environmental and OWTSs conditions affect model results: one model included only 

environmental variables (EV), and the second included the system and environmental variables 

(ESV). Next, MCDA results (that describe the susceptibility to OWTS failure), OWTS variables, 

and land cover percentages were correlated with E. coli concentrations in Choccolocco Creek, with 

specific methodology provided in Section 2.3. The steps taken for this analysis can be summarized 

in three general steps: delineation of sample point watersheds (SPWs), creation of distance derived 

watersheds (DDWs) based on surface water flow distance, and correlation of modeled OWTS 

failure, OWTS variables, and distribution of land cover types to E. coli concentrations.  
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2.2. MCDA: Susceptibility to OWTS Failure (RQ 1)  

2.2.1. Data Preparation 

Input criteria for the MCDA include OWTS age, OWTS density, slope of the terrain, proximity 

to surface water, soil drainage class, and soil hydrologic group. These criteria were chosen because 

they are shown to have an effect on OWTS efficacy and have been included in similar studies 

(Carroll et al. 2006; Oosting and Joy 2011; Capps et al. 2020). Data sources are listed in Table 1. 

All datasets were transformed to raster format with a cell size of 1/3 arc-second (approximately 10 

m), as this was the coarsest resolution of all input data. Any location that did not have data for all 

criteria was excluded from the model results. A description of how all data were transformed to 

raster format is given in this section. 

 

 

 

Figure 3. The framework for the GIS-based multi-criteria decision analysis (MCDA) to assess the susceptibility of 
OWTS pollution. Steps include selection of input criteria, data preparation, classification of data on common scale, 
development of a weighting scheme, and aggregation of data. Figure concept from Oosting and Joy (2011). 
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OWTS age and density: OWTS permit data were provided by the ADPH, in a table-based 

format. Permit data were provided for the four counties that intersect the Choccolocco Creek 

watershed: Calhoun, Clay, Cleburne, and Talladega. Permits were categorized into two types: new 

approvals and repair and included all systems permitted from January 1, 2000, to August 11, 2020. 

OWTSs were geocoded using the ArcGIS World Geocoder, a locator developed by Esri that 

converts a text address into the representative geographic coordinates (Esri 2022a). For quality 

control purposes, all geocoded addresses were required to have a minimum match score of 80. 

Geocoded addresses with lower scores were rematched, meaning the geocoded point was matched 

to a different address to improve the location accuracy. Rematched addresses were manually 

reviewed to check for incomplete or misspelled addresses, and the address was either manually 

corrected or a different address candidate was selected. Additionally, there were some addresses 

that contained multiple permits and in this case it was assumed that an address has only one 

permitted OWTS. If there was a new approval and repair permit(s) for the same address, the repair 

permit data was appended to the new approval point, so there was one point representing the 

system. Then, the OWTS age was calculated by the difference in the permit issuance date and the 

date of permit data collection (August 11, 2020). If there were multiple new approval permits for 

the same address, the most recent approval date was used to calculate the system age. If there was 

Table 1. Input data sources to assess onsite wastewater treatment system (OWTS) failure. 

Data Source Derived Input Criteria Original Format Resolution 
National Hydrography Dataset 
(NHD) 

Proximity to surface water Vector 1:24,000*  

U.S. Geological Survey Digital 
Elevation Model (USGS DEM) 

Slope of terrain Raster 1/3 arc-second 
(approximately 10 m) 

Soil Survey Geographic database 
(SSURGO) 

Drainage class and hydrologic 
group 

Vector 1:12,000 to 1:63,360* 
 

Alabama Department of Public 
Health (ADPH) 

Septic system age and density Tabular  

*The scale from which the data were digitized.  
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a repair permit for an address but no new approval permit, it was assumed the system was permitted 

prior to the start of recorded permit data, and the system age was calculated from January 1, 2000. 

OWTS age point data were transformed to a raster format using the Inverse Distance Weighted 

(IDW) tool. The IDW tool calculates cell values using a linearly weighted combination of sample 

points (i.e., OWTSs), and the weight is a function of inverse distance (Esri 2022b). Thus, this tool 

calculates an interpolated surface of a dependent variables (i.e., system age); this method assumes 

that the influence of the variable mapped decreases with distance. A search radius distance of 152.4 

m was used, based on the largest required setback distance for septage set by the ADPH (ADPH 

2017). The OWTS density was calculated with the Point Density tool. This calculates the density 

of a point feature within a specified neighborhood around each output raster cell; the output raster 

cells represent a point count per unit area (Esri 2022c). A neighborhood radius of 564.19 m was 

used to calculate the number of OWTSs per one km2.  

Slope of terrain: The slope of the terrain, in percent, was calculated using the Slope tool (Esri 

2022d) with Digital Elevation Models (DEMs) as the input (Carroll et al. 2006; Oosting and Joy 

2011). DEMs were sourced from the USGS (USGS 2020a; 2020b).  

Proximity to surface waters: The proximity to surface waters was calculated using the distance 

from National Hydrography Dataset (NHD) Flowline and Waterbody layers (USGS 2021). The 

distance was calculated using the Euclidean Distance tool, and the two layers were combined with 

Mosaic to New Raster tool with the mosaic operator as minimum. 

Soil characteristics: The soil characteristics were accounted for using the drainage class and 

hydrologic group from the Soil Survey Geographic Database (SSURGO), a description of the soil 

attributes are given by Soil Survey Staff (1993) and Soil Survey Staff (2006), respectively. These 

two variables were selected as data were available across the entire watershed and they have been 
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used in similar analysis (Oosting and Joy 2011). SSURGO is in vector format; therefore, the fields 

Hydrologic Group Dominant Condition (hydgrpdcd) and Drainage Class Dominant Condition 

(drdclassdcdm) were transformed from categorical data to unique values with the Reclassify Field 

tool and then, converted to a raster format with the Feature to Raster tool.  

2.2.2. Data Classification and Weighting 

The criteria presented above (Section 2.2.1) were then classified and weighted according to the 

schemes provided in Table 2. Data were classified with the Reclassification tool on a standardized 

scale of one to five, where one represents a low contribution to system failure and five represents 

a high contribution to system failure. Data were classified so each input criteria was represented 

by a common scale. Classification schemes (Table 2) were based on previous studies, EPA 

guidelines, and Alabama OWTS codes. Older OWTSs were given higher values, as there is an 

increased risk of failure (Oosting and Joy 2011). Higher densities of OWTSs were given higher 

values (Yates 1985). Higher slopes in the terrain were assigned higher values (Oosting and Joy 

2011). The proximity to surface water classification breaks were based on Alabama OWTS 

regulations; systems within the required setback distance were classified as a high risk of failure 

and systems more than two times the required setback distance classified as low risk, similar to 

Oosting and Joy (2011). Soil characteristics (i.e., drainage class and hydrologic group) were 

classified based on Oosting and Joy (2011) and EPA guidelines (U.S. EPA 2002). Criteria weights 

were then assigned using the rank sum procedure and where higher weights were assigned to 

criteria that were more important to the susceptibility of system failure, using the following 

formula from Nyerges and Jankowski (2009):  

 

𝑤! =
𝑛 − 𝑟! + 1

∑ (𝑛 − 𝑟" + 1)#
"$%

	 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1 
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where wj is the normalized weight (ranking in value from 0 to 1) for the criterion j, n is the number 

of criteria under consideration, and rj is the rank position of the criterion. Ordinal ranks for all 

criteria were based on Oosting and Joy (2011). Classified data were then aggregated using the 

Weighted Sum tool, and the calculated criteria weights using the following formula:  

 

𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 	;(𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦	𝑟𝑎𝑡𝑖𝑛𝑔) ×	(𝑤𝑒𝑖𝑔ℎ𝑡) 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2 

 
where susceptibility is the susceptibility to OWTS failure, susceptibility rating is the classified 

value (from 1 to 5), and the weight calculated by Equation 1. High values in the model output 

represent higher susceptibility to system failure. The model outputs were classified into four 

classes based on the susceptibility to OWTS failure: minimal, low, moderate, and high. Category 

breaks were based on those developed by Oosting and Joy (2011).  

 

Table 2. Input criteria, classification scheme, and weight for multi-criteria decision analyses to model onsite 
wastewater treatment system (OWTS) failure. 

Criteria 

Classification Value Weight (%) 

Low  Moderate  High 

EV ESV 1 2 3 4 5 

Sy
ste

m
 

V
ar

ia
bl

es
 OWTS Age (years) < 5 5 – 10 10 – 15 15 – 20 > 20 - 28 

OWTS Density 
(OWTSs/km2) 

< 1 1 – 3.8 3.8 – 15.4 15.4 – 38.6 > 38.6 
- 

14 

En
vi

ro
nm

en
ta

l V
ar

ia
bl

es
 Slope of Terrain 

(%) 
< 6 6 – 12 12 – 20 20 – 25 > 25 10 5 

Proximity to 
Surface Water (m) 

> 30.48   15.24 – 
30.48 

< 15.24 20 10 

Drainage Class Well 
drained 

Moderately 
well drained 

Somewhat 
poorly, 

somewhat 
excessively 

drained 

Poorly 
drained 

Very poorly 
drained, 

excessively 
drained 

40 24 

Hydrologic Group B and B/D  C and C/D  A and D 30 19 
EV = Environmental variables 
ESV = Environmental and system variables 
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2.3. Statistical Analysis: Correlations to E. coli Concentration (RQ 2) 

2.3.1. E. coli Characteristics of the Choccolocco Creek 

Water quality samples of Choccolocco Creek, which included E. coli concentration 

measurements, were taken monthly at nine locations over a six-month period, from April 2021 to 

September 2021, in the Choccolocco Creek watershed by Larson (2022) (Figure 4A). A total of 

sixteen E. coli samples were taken, as samples were taken in triplicate for all months except August 

where only one sample was taken (Table A.1). E. coli concentrations were averaged for each site 

for correlations. The average E. coli concentration for all sample sites was 224 cfu per 100 mL; 

site five had the highest concentration of 378 cfu per 100 mL and the lowest concentration at site 

two of 92 cfu per 100 mL (Figure 4B) (Table A.1). E. coli concentrations increased downstream 

from site nine to sites eight and seven. Then there was a decrease in concentration at site six. There 

was another increase in E. coli concentration at site five, downstream of Oxford and Anniston, 

with a general decrease in the average concentration to site one.  
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2.3.2. Delineation of Sample Point Watersheds (SPWs) 

Watersheds were delineated using the water sampling locations (Figure 4A) and USGS DEMs 

(USGS 2020a; 2020b). For this study, it was important to understand which parts of the landscape 

were affecting potential E. coli concentrations at the sample points, thus, watersheds were created 

to obtain a representative SPW. The ArcGIS Pro Hydrology toolset was used to delineate 

watersheds. The imperfections from the DEM were removed, the flow direction was calculated, 

and flow accumulation was calculated, and watersheds were delineated from the nearest pour point 

within 30 m of the sample location (Esri 2016). A 30 m search distance was used because it was 

the smallest distance that produced watersheds that were large enough for analysis (Lindsay, 

Rothwell, and Davies 2008). Nine SPWs were delineated, one for each sample location.  

Figure 4. Water sampling locations of the Choccolocco Creek, numbered 1, downstream, through 9, upstream (A). The 
average E. coli concentration (cfu/100 mL) for all sampling events is provided in the box plot (B). The lower and upper 
bounds of the boxes represent the values at the first and third quartiles, respectively. The line through the middle of the box 
denotes the median value and the ‘x’ denotes the mean. Outliers are represented as points.  

A B 
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2.3.3. Delineation of Distance Derived Watersheds (DDWs) 

Using the sample point watersheds, DDWs were created to represent the upstream area that is 

within a given surface water flow distance of the pour point; distance intervals of 250 m, 500 m, 

750 m, 1,000 m, 5,000 m, and 10,000 m were calculated with Flow Length tool and used to 

determine the effect of using watersheds of different scales as a unit of analysis. This was 

completed using ModelBuilder in ArcGIS Pro. First, the flow direction raster was clipped to each 

SPW. Then, the model iterated through each flow direction raster to calculate the surface water 

flow length from each sample location. Next, all flow length rasters were reclassified, using the 

Reclassify tool, based on the target flow length buffer distance; raster values within the desired 

distance were reclassified as 1, and all flow lengths greater than the desired distance were 

reclassified as 0. This was an iterative process for all flow distances. Then, all reclassified rasters 

were converted to polygons with the Raster to Polygon tool. Thus, the final model outputs were 

polygon DDWs delineating the upstream catchment area for all desired flow distances (250 m, 500 

m, 750 m, 1,000 m, 5,000 m, and 10,000 m) (Figure 5).  
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2.3.4. Zonal Statistics 

Zonal statistics, a raster-based calculation that provides statistics for a value raster within 

certain zones, were calculated using the Zonal Statistics as Table tool. In this case, zones were 

defined by the SPWs and DDWs and the pixel values summarized were the EV-MCDA and ESV-

MCDA statistics (min, max, range, mean, standard deviation, median, and 90th percentile). 

Additionally, the count and density of OWTSs and land cover percentages were summarized for 

SPWs and DDWs. Land cover data were sourced from the 2019 national land cover dataset 

(NLCD) (USGS 2019). OWTSs and land cover data were summarized for all SPWs and DDWs 

as they represent possible E. coli sources.  

Figure 5. The sample point watersheds (SPWs), denoted by the black line, 
and distance derived watersheds (DDWs), shaded in blue, for each sample 
point delineated from water-sampling locations along the Choccolocco 
Creek.  
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2.3.5. Correlations 

Correlation statistics were used to evaluate the relationship between the ES- and ESV-MCDA 

statistics (i.e., min, max, range, mean, standard deviation, median, and 90th percentile), OWTS 

variables, distribution of land cover types with E. coli concentrations for all SPWs and DDWs. 

First all variables were checked for normality, using the Shapiro-Wilk test (Ghasemi and Zahediasl 

2012). A Pearson correlation was used if data were normally distributed, and a Spearman 

correlation was used if data were not normally distributed (Schober, Boer, and Schwarte 2018). 

Analysis was completed using Prism (ver. 9.3.1). 

3. Results 

3.1. Susceptibility to OWTS Failure (RQ 1) 

3.1.1. OWTSs 

There were 3,844 OWTSs permits issued by the ADPH from January 1, 2000, to August 11, 

2020, in the Choccolocco Creek watershed (Table 3). Of the permits issued, 2,530 were new 

approvals and 1,314 were for repairs. There were 3,717 OWTSs identified, and the average system 

age was 16.8 ± 3.7 years, where OWTS age was calculated from the date of permit data collection 

(August 11, 2020). The OWTS density for the watershed was 2.81 OWTSs per km2 with class 

breaks based on categories established by Yates (1985) (Figure 6). OWTSs are prevalent 

throughout the developed portion of the Choccolocco Creek watershed, which encompasses the 

northwestern portion of the watershed; are sparsely located in the Talladega National Forest, which 

spans across the eastern boundary; and are not present in the Anniston Army Depot, located in the 

northwest portion (Figure 6). 
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3.1.2. MCDA: Susceptibility to OWTS Failure 

All criteria were classified on a common scale, so that each criterion layer described the 

susceptibility to OWTS failure. Criteria were classified on a scale of 1 (beige) to 5 (dark red), with 

greater values denoting higher susceptibility to OWTS failure (Figure 7). Table 4 provides the 

minimum, maximum, mean, and standard deviation of classified criteria data. Classified values 

ranged from 1 to 5 for all criteria except soil drainage class that ranged from 1 to 4, as there were 

Table 3. Onsite wastewater treatment system (OWTS) permit data summary for the Choccolocco Creek watershed. 
Permit Type Permit Count Number of OWTSs Located  

New Approval 2,530 2,499 
Repair 1,314 1,218 

Total 3,844 3,717 

Figure 6. Density of onsite wastewater treatment systems (OWTSs) in the 
Choccolocco Creek watershed.  
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not very poorly drained or excessively drained soils. Slope of the terrain had the highest average 

classification value and OWTS age had the lowest average classification value for the watershed.  

Then, aggregated data in the model outputs were classified into four classes based on the 

susceptibility to OWTS failure: minimal, low, moderate, and high. Minimal risk to susceptibility 

includes all cell values less than or equal to the mean raster value. Low, moderate, and high 

susceptibility to OWTS failure is defined by subsequent standard deviations above the mean. 

Therefore, low susceptibility to OWTS failure represents all cells between the mean and the first 

standard deviation above the mean, moderate susceptibility to OWTS failure represents all cells 

between the first standard deviation and second standard deviation above the mean, and high 

susceptibility to OWTS failure represents all cells between greater than the second deviation above 

the mean.  

 
 

 

Figure 7. Classified susceptibility to OWTS failure for all input criteria and are classified on a scale of 1 to 5, with 
greater values denoting greater susceptibility to failure.  
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The result of the susceptibility to OWTS failure EV-MCDA (slope of the terrain, proximity to 

surface water, soil drainage class, and soil hydrologic group) is provided in Figure 8. Darker, 

purple areas represent areas of higher susceptibility to OWTS failure. The model output ranged 

from 1 to 4.60 with an average value of 1.85 ± 0.71 (Table 5). Within the watershed, 29.8 km2 

were classified as high risk (> 3.27) to OWTS failure, 2.3% of the model area, and 669.7 km2 were 

classified as minimal risk (Table 5). Areas of increased susceptibility to OWTS failure were 

observed in the western and southern sections of the watershed, and areas proximal to Choccolocco 

creek in the northern area of the watershed. The susceptibility to failure is low in the Talladega 

National Forest.  

The result of the susceptibility to OWTS failure ESV-MCDA (slope of the terrain, proximity 

to surface water, soil drainage class, soil hydrologic group, OWTS age, and density) is provided 

in Figure 9. Darker, blue areas represent areas of higher susceptibility to OWTS failure. The model 

output ranged from 1 to 4.42 with an average value of 1.65 ± 0.51 (Table 5). There were 44.3 km2 

were classified as high risk (> 3.27) to OWTS failure, 3.4% of the model area, and 716.6 km2 were 

classified as minimal risk (Table 5). The susceptibility to failure is lowest throughout the Talladega 

National Forest, located along the eastern boundary of the watershed, where there is a low density 

Table 4. Summary statistics for classified input criteria.  
Criterion Min. Max. Mean Standard Deviation 

OWTS Age 1 5 1.26 0.87 
OWTS Density 1 5 1.54 0.94 
Slope of the Terrain 1 5 2.76 1.59 
Proximity to Surface Water 1 5 1.41 1.14 

Soil Drainage Class 1 4 1.33 0.74 
Soil Hydrologic Group 1 5 2.54 1.80 
OWTS = Onsite wastewater treatment system 
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of OWTSs. The susceptibility to failure is highest outside of Oxford and Anniston where there is 

a high density of OWTSs. 

 

 

 

 
 
 
 
 
 

Table 5. Summary statistics for susceptibility to onsite wastewater treatment system (OWTS) models.  
Model Min. Max. Mean Standard 

Deviation 
Susceptibility to OWTS Failure Area (km2) 

Minimal Low Moderate High 
Environmental 1 4.60 1.85 0.71 669.7 (51.7%) 322.3 (24.9%) 273.8 (21.1%) 29.8 (2.3%) 
Environmental 
+ System 

1 4.42 1.65 0.51 716.6 (55.3%) 385.8 (29.8%) 148.9 (11.5%) 44.3 (3.4%) 

Figure 8. The susceptibility to OWTS failure in the Choccolocco Creek 
watershed based on environmental OWTS variables. The Choccolocco 
creek is shown by the black line. Darker, purple areas represent areas of 
higher susceptibility to OWTS failure. 
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3.2. Statistical Analysis: Correlations to E. coli Concentrations (RQ 2) 

The correlations of E. coli concentrations to MCDA values, OWTS variables, and land cover 

percentages for SPWs and DDWs are provided in Table A.2. The correlation coefficient (R) and 

R-squared values for significant relationships (p < 0.05) are provided in Table 6. There were 12 

significant relationships between E. coli concentrations and OWTSs, MCDA summary statistics 

at various buffer intervals, and land cover percentages in the watershed. There were five significant 

correlations found using SPWs and seven significant correlations using DDWs, with significant 

correlations found at the 500 m, 750 m, and 1,000 m DDWs. There were significant positive 

correlations between the EV-MCDA mean, median, and 90th percentile and ESV-MCDA mean 

Figure 9. The susceptibility to OWTS failure in the Choccolocco Creek 
watershed based on environmental and OWTS variables. The Choccolocco 
creek is shown by the black line. Darker, blue areas represent areas of 
higher susceptibility to OWTS failure. 
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and median. There was a significant positive correlation between OWTS count and E. coli 

concentration, and between wetland land cover and E. coli concentration.  

 
4. Discussion 

4.1. MCDA: Susceptibility to OWTS Failure (RQ 1) 

4.1.1. Model Outputs 

The first objective of this thesis was to model the susceptibility to OWTS failure in the 

Choccolocco Creek watershed using MCDA. The EV-MCDA could provide guidance on areas 

that may not be suitable for OWTSs or require advanced treatment systems. Additionally, OWTS 

data are difficult to obtain, and the EV-MCDA model provides a basis for locating areas where 

system failure is more probable without OWTS data. The ESV-MCDA could provide insight as to 

Table 6. Correlation coefficients (R), R-squared, and p-values for significant correlations (p < 0.05) to average E. 
coli concentrations (n = 9) in the Choccolocco Creek. 

Variable  
Shapiro-Wilks Test Correlations 

p-value 
Normal? 
(⍺ < 0.05) Type R R-squared P-value 

SPW ESV-MCDA mean 0.3603 Yes Pearson 0.6732 0.4532 0.0469 
SPW ESV-MCDA median 0.2800 Yes Pearson 0.8729 0.7620 0.0021 
SPW EV-MCDA mean 0.0880 Yes Pearson 0.7109 0.5054 0.0318 
SPW EV-MCDA median 0.4372 Yes Pearson 0.8444 0.7131 0.0042 
500 m DDW EV-MCDA 90th percentile 0.0547 Yes Pearson 0.8064 0.6503 0.0086 
750 m DDW EV-MCDA 90th percentile 0.1597 Yes Pearson 0.8241 0.6792 0.0063 
1000 m DDW EV-MCDA mean 0.6033 Yes Pearson 0.7221 0.5214 0.0280 
1000 m DDW EV-MCDA 90th 
percentile 0.1915 Yes Pearson 0.8214 0.6748 0.0066 
SPW OWTS count 0.0859 Yes Pearson 0.7630 0.5821 0.0168 
500 m DDW open water 0.0266 No Spearman -0.7120 0.5069 0.0402 
500 m DDW woody wetlands 0.0541 Yes Pearson 0.7076 0.5007 0.0330 
1000 m DDW emergent herbaceous 
wetlands <0.0001 No Spearman 0.7303 0.5333 0.0278 
SPW = Sample point watershed 
DDW = Distance derived watershed 
ESV = Environmental and system variables 
EV = Environmental variables 
MCDA = multi-criteria decision analysis  
OWTS = Onsite wastewater treatments systems 
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where OWTS may fail or have failed, leading to contamination of surface waters. Besides model 

outputs, which provide generalized information on areas susceptible to OWTS failure, the 

classified input criteria (Figure 7) render how individual criteria are suited for OWTSs across the 

watershed. These data provide more explicit information as to why a given location may be more 

susceptible to OWTS failure. For example, locations with poorly suited soil characteristics may 

require an advanced treatment system.  

Comparison of model outputs provides information on how the inclusion of different variables 

affect the model results and allows for discerning driving criteria for OWTS failure. As expected, 

there is a shift in areas of high susceptibility to OWTS failure between the models. In the EV-

MCDA, the areas of high susceptibility to OWTS failure were scattered in the eastern portion of 

the watershed, generally proximal to Choccolocco Creek. However, for the ESV-MCDA areas of 

high susceptibility to OWTS failure are mostly located in the central portion of the watershed and 

coincide with areas of higher OWTS density. The ESV-MCDA also has more area in the high 

susceptibility category (29.8 km2 for the EV vs 44.3 km2 for ESV) (Table 5). The shift in high 

susceptibility locations and increase in area with the inclusion of system variables suggests that 

system variables may be the greatest contributors to system failure in the watershed. Moreover, 

system variables account for 42 percent of the ESV-MCDA, meaning system variables have less 

weight than environmental variables. Furthermore, the majority of OWTSs had a classified 

susceptibility rating of 4 or 5 for system age (Figure 7), and the average age was 16.7 years old. 

An OWTS lifespan is between 20 and 30 years, so many of the OWTSs in watershed may be 

nearing the end of their intended lifespan (U.S. EPA 2002). This suggests that outdated OWTS 

could be a driving force of OWTS failure in the watershed. Similarly, Capps et al. (2020) found 

that only 8 percent of the registered OWTS presented potential environmental risk due to stream 
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proximity, soil type, and slope; however, almost 70 percent of the OWTS presented potential 

environmental risk due to their age. This further highlights the importance of system variables – 

particularly age – on potential OWTS failure, and thus the importance of having access to robust 

OWTS data.   

4.1.2. Model Limitations 

The input criteria data preparation methods, classification schemes, and criteria weights vary 

in similar OWTS risk analyses, but in all analyses, it is apparent that a holistic view is needed. A 

discussion of uncertainties and limitations of the models and comparison to previous analyses is 

provided in this section.  

OWTS age and density: OWTS permit data used to calculate system age and density 

introduced uncertainty and limitations to the model. First, the 3,717 OWTS located from the permit 

data do not represent all OWTSs in the Choccolocco Creek watershed. There are likely systems in 

use prior to start of the permit data collection (January 1, 2000), and systems that are no longer in 

use, where a homeowner connected to the sewer system. It is hypothesized that this study has 

underestimated the number of OWTSs in the watershed, considering it is estimated that more than 

half of OWTSs are more than 30 years old (U.S. EPA 2002). Second, the location of OWTSs 

within the parcel is not known, and the OWTS points were geocoded to the routing location, 

meaning the location next to the street segment associated with the address. Recently the parcel 

centroid has been used to estimate OWTS location (Capps et al. 2020) and the address location, 

represented by the rooftop centroid for the parcel, could be a more accurate approximation of the 

OWTS location. Third, the date of permit issuance was used to calculate the age of the system, but 

OWTS permits are valid for five years in Alabama, meaning an OWTS could be installed up to 

five years after a permit is issued (ADPH 2017). A lack of OWTS data or quality control methods, 
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such as those previously mentioned, are often cited as a major limitation in similar analyses (Capps 

et al. 2020). This highlights the need for publicly available OWTS permit databases, possibly 

georeferenced to parcels to eliminate the uncertainty introduced in geocoding.  

Additionally, this model does not take into account unpermitted or straight pipe systems, where 

untreated sewage is discharged through pipes that run from the residence to a surface trench or 

wooded area (Maxcy-Brown et al. 2021). The use of straight pipe systems is documented across 

the U.S., including rural, central Alabama (Maxcy-Brown et al. 2021). These systems are most 

common in poor, rural areas with unfavorable geologic settings for OWTSs where a more 

expensive advanced engineered system would be necessary (Maxcy-Brown et al. 2021). However, 

the prevalence and location are not known, and they could not be accounted for in this study. With 

available OWTS, sewer system, and building data a ‘process of elimination’ could be used to locate 

parcels potentially containing an unpermitted wastewater treatment system (i.e., straight pipe); 

similar to methods used by Capps et al. (2020) to locate potential septic tank systems. Untreated 

sewage from straight pipe systems is another source of onsite wastewater contamination, so their 

estimated locations could be incorporated into an ESV-MCDA or used to create a straight pipe 

system specific MCDA to better characterize sources of contaminants.    

Beyond uncertainties inherent in the raw OWTS permit data, the methods used to rasterize and 

classify OWTS age and density impact model results. When OWTS age was incorporated in 

similar models it was linked to parcel polygons (Oosting and Joy 2011; Capps et al. 2020), but 

without available parcel boundaries an IDW surface was created to incorporate the system age in 

the model. This tool requires a search distance, which was based on Alabama septage regulations, 

but the boundary imposed is somewhat arbitrary in defining the spatial extent of OWTS age. A 

similar issue arises when selecting a search distance for calculating the OWTS density. The search 
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distance used for this analysis was selected so that the number of OWTSs were calculated per 1 

km2 to better facilitate classification breaks based on previously established categories. 

Additionally, OWTS density classifications are generalized, and specific areas may be able to 

accommodate a high or lower of OWTS, based on environmental variables. For example, areas 

with more suitable soil conditions for OWTSs may be better equipped to handle more OWTSs 

than areas with less suitable soil conditions. Thus, generalized restrictions on OWTSs based on 

density may be inappropriate for planning purposes, as a holistic view of all criteria is required to 

understand the susceptibility to OWTS failure (U.S. EPA 2002). Furthermore, there are not OWTS 

density restrictions in the Alabama OWTS regulations.  

Slope of the terrain: The topography of the land is important in designing an OWTS as flatter 

terrain does not strictly correlate to better performance. Collick et al. (2006) assessed OWTS 

performance with changing slope of the terrain in the Catskills, NY and found that flatter terrains 

correlated to an increased risk of OWTS failure. These findings were attributed to the undulating 

landscape of the region where topographic lows with a high water table and low hydraulic 

conductivity accumulate water and potential contaminants. However, OWTSs on steeper slopes 

required greater setback distances from waters. Collick et al. (2006) recommended that a 

prescriptive upper slope boundary may not appropriately describe the risk of failure associated 

with slope and all landscape factors should be considered for the region. The findings highlight 

that the most suitable slopes for system performance may not follow general guidelines and a 

comprehensive analysis of landscape patterns should be considered.  

Proximity to surface water: The minimum setback distance to surface waters varies by 

regulatory agency. For example, Alabama requires a minimum setback distance of 50 ft (15.24 m) 

from surface waters to the drainfield, and the minimum distance can be reduced with proper 
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documentations from an engineer or geologist (ADPH 2017). However, in Georgia the minimum 

setback is 25 ft (7.62 m) to surface waters (GDPH 2019). Thus, the minimum setback distance to 

surface waters is dependent upon the regulatory codes for the OWTS location. The use of 

prescribed setback distances can be arbitrary and are often based on standards used by others and 

not scientific evaluations of the site (U.S. EPA 2002).  

Soil characteristics: The optimal soil characteristics are important for proper function of 

OWTS drainfield. Soil characteristics (drainage class and hydrologic group) were sourced from 

SSURGO, and these data are collected by county, leading to possible discrepancies in the soil 

characterization based on the county. As a result, the county boundaries may propagate through 

the dataset, and this is evident in the soil hydrologic group data, where there are abrupt changes in 

the hydrologic group are seen at the county boundaries (Figure 10). For example, the county 

boundary is apparent between Talladega and Clay counties; the soil hydrologic group is classified 

as moderate in Clay county while it is classified as high in Talladega county even though there is 

no geologic underpinning for this discrepancy. This is an artefact of the data aggregation methods. 

Higher-resolution soil data could provide more accurate model results.  
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Confounding criteria: There are additional variables that affect OWTS performance not 

included in this analysis, primarily due to a lack of available data, including OWTS design and 

system maintenance history. OWTSs vary in size and design depending upon the estimated 

wastewater flow, normally estimated on a per person or per bedroom basis (U.S. EPA 2002). The 

volume of wastewater entering the system may change over time as the number of residents in the 

building changes or plumbing is added, potentially leading to hydraulic failure from overloading 

the system. Additionally, OWTSs require routine maintenance after installation. Septic tanks 

should be pumped when the sludge accumulation exceeds 30 percent of the tank volume or when 

it is encroaching on the inlet and outlet entrances, with pumping normally needed every 3 to 5 

years (U.S. EPA 2002). Unpumped septic tanks can result in clogged adsorption fields and 

hydraulic failure from overloading the system. Despite the importance of these criteria in system 

performance, there are minimal data on system design and maintenance history available in the 

Figure 10. The classified soil hydrologic groups overlaid with the county 
boundaries for the Choccolocco Creek watershed.  



 34 

state of Alabama, stemming from the fact that individual homeowners are responsible for the 

maintenance of their system, and regulatory agencies do not oversee system repairs.  

4.1.3. Future Work 

There are several ways the models developed in this study could be improved. First, more 

robust data, particularly OWTS data, would improve the model accuracy. Incorporating all known 

OWTSs in the watershed would improve OWTS density and age accuracy. Additionally, 

incorporating parcel boundaries in the analysis could provide a better unit of analysis for OWTS 

age. The model could be further improved by completing a sensitivity analysis, where the 

classification schemes and weights are altered to assess how the model changes. Similarly, the 

thresholds used to define minimal, low, moderate, and high susceptibility to OWTS failure could 

be altered to assess how the model results change. Review and input by local experts could also 

guide further improvements. For example, Oosting and Joy (2011) collected input from local 

experts (e.g., chief building officials, registered code agencies, public health inspectors and 

researchers actively studying OWTSs) on their weighting scheme, and after review experts 

suggested OWTS age receive a higher weight due to the overall importance of the age in assessing 

system failure and a high degree of confidence in the OWTS age data for the area of study. 

Moreover, the model could be validated by comparing the location of known failed systems and 

areas of high susceptibility to OWTS failure. We would hypothesize that there is a higher 

propensity of OWTS failure in areas of higher susceptibility; if that was not validated by field data 

an inverse approach could be applied, where explanatory variables are classified and weighted 

based on the attributes at known failed OWTSs.  

There are several potential uses for this model beyond locating areas that may have surface 

water contamination from failed OWTSs. For example, results could be used to characterize 
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OWTS failure for E. coli loading estimations (e.g., Sowah et al. 2020) and source identification 

(e.g., Teaugue et al. 2012) research. The models could also support total maximum daily loads 

(TMDLs) development, which are used to establish allowable loads of pollutants for waterbodies 

based on the relationship between pollutant sources and in-stream concentrations for 303(d) listed 

waters. Thus, integration into TMDL protocol could better characterize the relationship between 

failed OWTSs and water contaminants, which is not explicitly accounted for as failed OWTSs are 

a nonpoint source of pollution. Additionally, model results could guide targeted local education or 

regulations for maintaining OWTSs. Furthermore, model results could aid in determining areas to 

expand sewer services; this could be particularly useful for areas that have a high susceptibility to 

OWTS failure due to environmental criteria, as these areas may require expensive, advanced 

OWTSs.  

The model and results leave several outstanding questions: (1) Criteria were classified and 

weighted largely based on Alabama OWTS codes, how would the model change if codes from 

different states were used to classify criteria? (2) Are there variables not included in the model that 

better explain areas of potential OWTS failure? (3) If and how are the models related to failed 

OWTS in the Choccolocco Creek watershed? 

4.2. Statistical Analysis (RQ 2) 

4.2.1. Correlations 

The second objective of this thesis was to determine if and how E. coli concentrations along 

the Choccolocco Creek were correlated to modelled susceptibility to OWTS failure, OWTS 

variables, and the distribution of land cover categories. At the SPW scale, E. coli was positively 

correlated to both the EV- and ESV-MCDA median and mean values (Table 6). Thus, as E. coli 

concentration increased, the mean and median model values OWTS failure models increased. At 
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the 500 m, 750 m, and 1,000 m DDWs there was a positive correlation between E. coli and the 

90th percentile EV-MCDA values (Table 6). A positive correlation was also observed between E. 

coli and the mean EV-MCDA values at the 1,000 m DDW (Table 6). The positive correlations 

observed with EV-MCDA may be reflective of poorly suited conditions for natural attenuation of 

contaminants. There was also a positive correlation between E. coli and OWTS count (Table 6); 

although, there was not a significant correlation to OWTS density (Table A.2). These results may 

suggest a relationship between OWTSs and elevated E. coli concentrations observed in 

Choccolocco Creek.  

Several significant correlations were found between E. coli and land cover distribution. At the 

500 m DDWs woody wetlands had a positive correlation to E. coli; emergent herbaceous wetlands 

also had a positive correlation with E. coli at the 1,000 m DDW (Table 6). However, wetland areas 

have been found to reduce coliform (Ibekwe, Grieve, and Lyon 2003), acting as a natural buffer 

of surface waters. At the same time, these natural wetland areas could attract wildlife and wildlife 

present in riparian zones could increase E. coli in proximal surface waters (Cox et al. 2005; Pandey 

et al. 2012). There was also a significant negative correlation between E. coli and open water at 

the 500 m DDW (Table 6), and this correlation is likely a result of an increased catchment area 

withing the watershed boundary. Considering the land cover distribution differs with SPWs 

(Figure 11), it is also important to note that no significant relationships were observed to between 

agricultural or urban land cover types that both serve as potential sources of E. coli (Table A.2). 

This is not to say these potential sources are not contributing to E. coli loading, but perhaps other 

sources – i.e., OWTSs – are driving elevated E. coli in the Choccolocco Creek. Based on the land 

cover distribution we expect the highest E. coli concentrations at sites one and five, since they 

have the highest proportion of agricultural and developed land cover, respectively. However, site 
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one has a relatively low E. coli concentration even though most of the land cover in the SPW is 

either hay/pasture or developed. This may be a result of the site one SPW being relatively small 

and not fully capturing the land cover types in the catchment area. Site five has the highest average 

E. coli concentration and the highest proportion of developed land cover types for all SPWs, 

possibly driving the increase spike in E. coli observed at the site. These trends suggest that a 

combination of sources with variable relative contribution across the watershed are driving 

elevated E. coli concentrations in the Choccolocco Creek.   

 

Another objective was to elucidate how altering the unit of analysis, (i.e., watershed 

boundaries) affects the existence and significance of relationships. Thus, the SPWs and DDWs 

were delineated. As expected, presence and type of correlation (i.e., positive or negative) varied 

with watershed definition. Out of SPWs and all DDWs watersheds, most correlations were found 

with the SPWs (five out of 12). This may be because SPWs encapsulate the entire catchment area 

flowing into the pour point. For the DDWs, significant correlations were observed at the smaller 

watershed scales – 500 m, 750 m, and 1,000 m. No significant correlations were observed at the 

Figure 11. The distribution of land cover types within the sample point watersheds delineated from 
water sampling locations along the Choccolocco Creek.  
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250 m scale (Table A.2), but this could be a result of the 250 m watershed mostly encompassing 

water, where the MCDAs did not output a result. Furthermore, the variance in significant 

correlations with watershed boundaries is not unexpected, especially when viewed from a 

geospatial perspective; this is an example of the modifiable areal unit problem (MAUP). The 

MAUP is a statistical bias that can occur when aggregating data into a unit of analysis (Openshaw 

and Taylor 1979), and has been found in previous studies that examined water-quality indicators 

and watershed characteristics at various hydrologic units of analysis (Sun et al. 2014; Xiao et al. 

2016; Zhang, Liu, and Zhou 2018; Sliva and Dudley Williams 2001). Moreover, studies that 

assessed the relationship between land cover with surface water quality indicators at multiple 

scales generally found correlations at smaller watershed scales, often between 100 m and 500 m 

(Xiao et al. 2016; Sun et al. 2014; Peng and Li 2021). Although, fecal coliforms were not used as 

a water quality indicator in these studies, possibly attributed to the variable lifespan of E. coli 

(Field and Samadpour 2007). In this analysis the DDWs did not provide significant supporting 

evidence to identify E. coli sources. However, the methods developed to delineate DDWs provide 

a more hydrologically correct catchment area compared to Euclidean distance buffers, which do 

not take into account surface water flow patterns, used in previous analyses (Sun et al. 2014; Xiao 

et al. 2016; Zhang, Liu, and Zhou 2018). Furthermore, the DDWs facilitate a more localized unit 

of analysis that could capture contaminant sources proximal to the sample location that may be 

muted in SPW-level analysis. Results from this analysis are not intended to prescribe a unit of 

analysis for future research, but to highlight the importance of selecting an appropriate unit of 

analysis, as there was variance in the presence and type of correlation (positive or negative) with 

watershed scales. 
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4.2.2. Limitations and Future Work 

There are confounding environmental variables that can control in-stream E. coli 

concentrations. Environmental parameters such as water temperature (Blaustein et al. 2013), pH 

(Blackburn et al. 1997), solar insolation (Whitman et al. 2004; 2008), suspended and settled solids 

concentrations (Petersen and Hubbart 2020a; 2020b), and hydrologic conditions (Whitman et al. 

2008; Wu et al. 2016) impact the survival of E. coli. For example, a positive correlation between 

solar insolation and E. coli inactivation rates have been observed, meaning there was a decrease in 

E. coli concentration with increased solar insolation (Whitman et al. 2004; 2008). As a result, the 

weather on sampling days (e.g., cloudy or sunny conditions), water clarity, and stream geometry 

(e.g., depth and width) could affect the amount of solar insolation and, thus, E. coli concentrations 

(Whitman et al. 2004). In the Choccolocco Creek watershed, significant correlations were found 

between precipitation (mm/day), pH, and water temperature with E. coli concentration (Larson 

2022). Consequently, these environmental parameters could also drive spatial and temporal 

variance in the E. coli concentrations observed in the Choccolocco Creek.  

There are several limitations to these methods of analysis. First, the water quality samples were 

only taken at nine sample locations and averaged over a six-month period. As a result, the 

correlations were calculated using nine data points. The small size could contribute to an increased 

Type I error rate, meaning a ‘false positive’ significant correlation (Bishara and Hittner 2012). 

Higher spatial and temporal resolution may yield different results because limited data points for 

in situ water quality parameters may introduce data bias, as noted in similar studies (Flanagan et 

al. 2019). Specifically, it would be useful to have water quality data from Choccolocco Creek 

tributaries, as this could provide insight to E. coli transport through the watershed and further 

narrow down specific sources. Greater temporal resolution could decrease the variability in E. coli 
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concentrations and allow for consideration of seasonal changes in E. coli concentrations. Second, 

aggregating explanatory data in the SPWs and DDWs does not account for a potential downstream 

additive effect of variables on E. coli; each watershed was treated as an isolated unit. This is a 

simplistic view of the watershed dynamics used for analysis. Third, there is possible error in 

delineating watersheds using the snap pour point methodology (Lindsay, Rothwell, and Davies 

2008). The Snap to Pour Point tool in ArcGIS Pro moves the outlet location to the cell with the 

highest accumulation flow within a given search distance. Watersheds delineated from these pour 

points can be highly sensitive to the search distance, and common errors that can occur are shown 

in Figure 12 (Lindsay, Rothwell, and Davies 2008). The SPW for sample one (Figure 5) may be 

smaller than the other watersheds due to an off-stream error, where the repositioned outlet point is 

not in the stream cells, as it was located near the river confluence (Figure 12A). A search distance 

up 90 m was tested with no major changes to the watershed delineated at sample site one. 

Therefore, a 30 m search radius was used as it was the lowest search distance that did not produce 

conspicuously small watersheds for all other sample locations. Thus, future research could explore 

different watershed delineation methods to 

assess accuracy. These methods of analysis are 

also largely dependent on the quality and 

resolution of input data and does not take into 

consider the influence of point sources (i.e., 

wastewater treatment plants). Additional 

improvements could include incorporating a 

more accurate estimation of possible E. coli 

sources, such as wildlife densities and 
Figure 12. Common errors that occur when repositioning 
an outlet point (Lindsay, Rothwell, and Davies 2008).  
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agricultural (e.g., cows and chickens) densities, similar to methods used by Teague et al. (2012) 

and Thilakarathne, Sridhar, and Karthikeyan (2018).  

5. Conclusions 

The central objective of this thesis was to improve the understanding of how OWTSs 

potentially contribute to water contamination in the Choccolocco Creek using a GIS-based 

approach to (1) model the susceptibility to OWTS failure and (2) evaluate the relationship between 

the modeled OWTS failure, OWTS variables, and distribution of land cover types to in-stream E. 

coli concentrations. The first objective was addressed by developing EV- and ESV- MCDAs to 

model the susceptibility to OWTS failure. The results of the models changed with the inclusion of 

different input criteria and investigation of input criteria suggested that high OWTS age could 

drive OWTS failure in the Choccolocco Creek watershed. The second objective was met by 

correlating between E. coli concentration along the Choccolocco Creek to modeled OWTS failure, 

OWTS variables, and distribution of land cover types. SPWs and DDWs were delineated from 

water sampling locations and used to aggregate data, and significant correlations differed with the 

unit of analysis. Most notably, a positive correlation was found between both the EV- and ESV- 

MCDAs with E. coli. Results suggest a relationship between OWTSs and elevated E. coli 

concentrations in Choccolocco Creek. Through these analyses and previous studies, it is apparent 

that modeling OWTS failure and their relationship to water contamination requires a holistic 

approach in both analyzing the criteria that impact system efficacy and watershed variables that 

impact E. coli concentrations. Nonpoint source identification challenges are not unique to the 

Choccolocco Creek watershed and methods outlined here could be applied to other watersheds to 

assist in understanding how OWTSs may contribute to surface water E. coli contamination.  
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Table A.2. Correlation coefficients (R), R-squared, and p-values to average E. coli concentrations in the Choccolocco 
Creek. 

Variable  

Shapiro-Wilks Test Correlations 

p-value 
Normal? 
(⍺ < 0.05) Type R R-squared P-value 

SPW ESV-MCDA min <0.0001 No Spearman -0.4108 0.1688 0.4444 
SPW ESV-MCDA max 0.001 No Spearman 0.4118 0.1696 0.2707 
SPW ESV-MCDA range 0.0013 No Spearman 0.4118 0.1696 0.2707 
SPW ESV-MCDA mean 0.3603 Yes Pearson 0.6732 0.4532 0.0469* 
SPW ESV-MCDA standard deviation 0.0202 No Spearman 0.2594 0.0673 0.4980 
SPW ESV-MCDA median 0.2800 Yes Pearson 0.8729 0.7620 0.0021* 
SPW ESV-MCDA 90th percentile 0.2312 Yes Pearson 0.4067 0.1654 0.2774 
250 m DDW ESV-MCDA min 0.0289 No Spearman 0.2623 0.0688 0.4926 
250 m DDW ESV-MCDA max 0.9196 Yes Pearson 0.2013 0.0405 0.6036 
250 m DDW ESV-MCDA range 0.8783 Yes Pearson 0.0832 0.0069 0.8315 
250 m DDW ESV-MCDA mean 0.6289 Yes Pearson -0.0057 0.0000 0.9884 
250 m DDW ESV-MCDA standard deviation 0.7579 Yes Pearson -0.0881 0.0078 0.8216 
250 m DDW ESV-MCDA median 0.5515 Yes Pearson -0.0951 0.0090 0.8077 
250 m DDW ESV-MCDA 90th percentile 0.7528 Yes Pearson -0.0217 0.0005 0.9558 
500 m DDW ESV-MCDA min 0.0005 No Spearman -0.0996 0.0099 0.8016 
500 m DDW ESV-MCDA max 0.3263 Yes Pearson 0.2165 0.0469 0.5757 
500 m DDW ESV-MCDA range 0.4821 Yes Pearson 0.2423 0.0587 0.5299 
500 m DDW ESV-MCDA mean 0.6894 Yes Pearson -0.0457 0.0021 0.9070 

Table A.1. Descriptive statistics for E. coli concentrations measured along the Choccolocco Creek by 
Larson (2022).  
Site 
Number 

Site Name Sample 
Count 

Minimum 
(cfu/100 mL) 

Maximum 
(cfu/100mL) 

Mean 
(cfu/100mL) 

Standard 
Deviation 

(cfu/100 mL) 
1 Stemley Rd 16* 0 579.4 141.0 227.4 
2 Hwy 77 16 0 316.7 91.7 126.8 
3 Jackson Trace  16 0 316.7 188.9 116.7 
4 Phillip Watts Property 16* 116.7 500 293.6 153.3 

5 Silver Run 16 50 833.3 377.8 302.5 
6 Boiling springs 16* 0 450 152.8 162.1 
7 Hwy 78 16 50 633.3 300.0 215.5 
8 Chosea Springs 16 50 666.7 313.9 229.4 
9 Talladega 540 16 0 350 158.3 125.9 

* Sample on August 26, 2021, provided by Coosa Riverkeepers 
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500 m DDW ESV-MCDA standard deviation 0.2169 Yes Pearson 0.0387 0.0015 0.9213 
500 m DDW ESV-MCDA median 0.4855 Yes Pearson -0.1276 0.0163 0.7436 
500 m DDW ESV-MCDA 90th percentile 0.6997 Yes Pearson -0.0244 0.0006 0.9502 
750 m DDW ESV-MCDA min 0.0005 No Spearman -0.0996 0.0099 0.8016 
750 m DDW ESV-MCDA max 0.0393 No Spearman 0.0833 0.0069 0.8432 
750 m DDW ESV-MCDA range 0.2397 Yes Pearson 0.2701 0.0729 0.4821 
750 m DDW ESV-MCDA mean 0.7093 Yes Pearson 0.0570 0.0032 0.8842 
750 m DDW ESV-MCDA standard deviation 0.9749 Yes Pearson 0.1168 0.0136 0.7648 
750 m DDW ESV-MCDA median 0.5966 Yes Pearson 0.0853 0.0073 0.8273 
750 m DDW ESV-MCDA 90th percentile 0.6984 Yes Pearson 0.0160 0.0003 0.9673 
1000 m DDW ESV-MCDA min 0.0009 No Spearman -0.0199 0.0004 0.9683 
1000 m DDW ESV-MCDA max 0.0293 No Spearman 0.3000 0.0900 0.4366 
1000 m DDW ESV-MCDA range 0.0141 No Spearman 0.4833 0.2336 0.1938 
1000 m DDW ESV-MCDA mean 0.7151 Yes Pearson 0.2998 0.0899 0.4332 
1000 m DDW ESV-MCDA standard deviation 0.8214 Yes Pearson 0.1514 0.0229 0.6975 
1000 m DDW ESV-MCDA median 0.7896 Yes Pearson 0.2668 0.0712 0.4876 
1000 m DDW ESV-MCDA 90th percentile 0.7314 Yes Pearson 0.1863 0.0347 0.6313 
2500 m DDW ESV-MCDA min <0.0001 No Spearman -0.0456 0.0021 0.9444 
2500 m DDW ESV-MCDA max 0.3443 Yes Pearson 0.3208 0.1029 0.3999 
2500 m DDW ESV-MCDA range 0.3330 Yes Pearson 0.3154 0.0995 0.4084 
2500 m DDW ESV-MCDA mean 0.6801 Yes Pearson 0.4018 0.1615 0.2837 
2500 m DDW ESV-MCDA standard deviation 0.1879 Yes Pearson 0.2184 0.0477 0.5723 
2500 m DDW ESV-MCDA median 0.3606 Yes Pearson 0.4267 0.1821 0.2521 
2500 m DDW ESV-MCDA 90th percentile 0.3615 Yes Pearson 0.2579 0.0665 0.5028 
5000 m DDW ESV-MCDA min <0.0001 No Spearman -0.4108 0.1688 0.4444 
5000 m DDW ESV-MCDA max 0.2411 Yes Pearson 0.3497 0.1223 0.3563 
5000 m DDW ESV-MCDA range 0.2812 Yes Pearson 0.3670 0.1347 0.3313 
5000 m DDW ESV-MCDA mean 0.5092 Yes Pearson 0.2355 0.0555 0.5419 
5000 m DDW ESV-MCDA standard deviation 0.0399 No Spearman 0.1187 0.0141 0.7721 
5000 m DDW ESV-MCDA median 0.1323 Yes Pearson 0.3474 0.1207 0.3596 
5000 m DDW ESV-MCDA 90th percentile 0.5402 Yes Pearson 0.2054 0.0422 0.5959 
10000 m DDW ESV-MCDA min <0.0001 No Spearman -0.4108 0.1688 0.4444 
10000 m DDW ESV-MCDA max 0.0064 No Spearman 0.2259 0.0510 0.5582 
10000 m DDW ESV-MCDA range 0.0104 No Spearman 0.2259 0.0510 0.5582 
10000 m DDW ESV-MCDA mean 0.6224 Yes Pearson 0.5837 0.3407 0.0989 
10000 m DDW ESV-MCDA standard deviation 0.0004 No Spearman 0.4622 0.2136 0.2129 
10000 m DDW ESV-MCDA median 0.1507 Yes Pearson 0.6538 0.4275 0.0561 
10000 m DDW ESV-MCDA 90th percentile 0.0268 No Spearman 0.3431 0.1177 0.3640 
SPW EV-MCDA min No variance 
SPW EV-MCDA max 0.0013 No Spearman 0.2469 0.0610 0.5185 
SPW EV-MCDA range 0.0013 No Spearman 0.2469 0.0610 0.5185 
SPW EV-MCDA mean 0.0880 Yes Pearson 0.7109 0.5054 0.0318* 
SPW EV-MCDA standard deviation 0.0114 No Spearman 0.6276 0.3939 0.0776 
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SPW EV-MCDA median 0.4372 Yes Pearson 0.8444 0.7131 0.0042* 
SPW EV-MCDA 90th percentile 0.0284 No Spearman 0.6061 0.3674 0.0947 
250 m DDW EV-MCDA min <0.0001 No Spearman 0.0685 0.0047 0.8889 
250 m DDW EV-MCDA max 0.0551 Yes Pearson 0.5865 0.3439 0.0969 
250 m DDW EV-MCDA range 0.1841 Yes Pearson 0.3737 0.1397 0.3218 
250 m DDW EV-MCDA mean 0.6963 Yes Pearson 0.1455 0.0212 0.7088 
250 m DDW EV-MCDA standard deviation 0.5661 Yes Pearson 0.6019 0.3623 0.0864 
250 m DDW EV-MCDA median 0.5478 Yes Pearson -0.1798 0.0323 0.6434 
250 m DDW EV-MCDA 90th percentile 0.1095 Yes Pearson 0.6390 0.4083 0.0639 
500 m DDW EV-MCDA min No variance 
500 m DDW EV-MCDA max 0.5616 Yes Pearson 0.5145 0.2647 0.1564 
500 m DDW EV-MCDA range 0.5616 Yes Pearson 0.5145 0.2647 0.1564 
500 m DDW EV-MCDA mean 0.2795 Yes Pearson 0.4777 0.2282 0.1935 
500 m DDW EV-MCDA standard deviation 0.3215 Yes Pearson 0.4777 0.2282 0.1934 
500 m DDW EV-MCDA median 0.3120 Yes Pearson 0.4049 0.1639 0.2797 
500 m DDW EV-MCDA 90th percentile 0.0547 Yes Pearson 0.8064 0.6503 0.0086* 
750 m DDW EV-MCDA min No variance 
750 m DDW EV-MCDA max 0.5518 Yes Pearson 0.6563 0.4307 0.0549 
750 m DDW EV-MCDA range 0.5518 Yes Pearson 0.6563 0.4307 0.0549 
750 m DDW EV-MCDA mean 0.5487 Yes Pearson 0.6113 0.3737 0.0803 
750 m DDW EV-MCDA standard deviation 0.5561 Yes Pearson 0.5249 0.2755 0.1468 
750 m DDW EV-MCDA median 0.1044 Yes Pearson 0.3286 0.1080 0.3879 
750 m DDW EV-MCDA 90th percentile 0.1597 Yes Pearson 0.8241 0.6792 0.0063* 
1000 m DDW EV-MCDA min No variance 
1000 m DDW EV-MCDA max 0.9285 Yes Pearson 0.6215 0.3862 0.0740 
1000 m DDW EV-MCDA range 0.9285 Yes Pearson 0.6215 0.3862 0.0740 
1000 m DDW EV-MCDA mean 0.6033 Yes Pearson 0.7221 0.5214 0.0280* 
1000 m DDW EV-MCDA standard deviation 0.7768 Yes Pearson 0.5184 0.2688 0.1528 
1000 m DDW EV-MCDA median 0.0656 Yes Pearson 0.5576 0.3109 0.1188 
1000 m DDW EV-MCDA 90th percentile 0.1915 Yes Pearson 0.8214 0.6748 0.0066* 
2500 m DDW EV-MCDA min No variance 
2500 m DDW EV-MCDA max 0.1798 Yes Pearson 0.4053 0.1643 0.2792 
2500 m DDW EV-MCDA range 0.1798 Yes Pearson 0.4053 0.1643 0.2792 
2500 m DDW EV-MCDA mean 0.1026 Yes Pearson 0.6358 0.4043 0.0657 
2500 m DDW EV-MCDA standard deviation 0.4070 Yes Pearson 0.5341 0.2853 0.1385 
2500 m DDW EV-MCDA median 0.0629 Yes Pearson 0.5696 0.3244 0.1094 
2500 m DDW EV-MCDA 90th percentile 0.5107 Yes Pearson 0.6049 0.3659 0.0844 
5000 m DDW EV-MCDA min No variance 
5000 m DDW EV-MCDA max 0.0755 Yes Pearson 0.4115 0.1693 0.2712 
5000 m DDW EV-MCDA range 0.0755 Yes Pearson 0.4115 0.1693 0.2712 
5000 m DDW EV-MCDA mean 0.3985 Yes Pearson 0.3079 0.0948 0.4203 
5000 m DDW EV-MCDA standard deviation 0.1841 Yes Pearson 0.4077 0.1662 0.2760 
5000 m DDW EV-MCDA median 0.0396 No Spearman 0.2992 0.0895 0.4276 
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5000 m DDW EV-MCDA 90th percentile 0.1755 Yes Pearson 0.4286 0.1837 0.2498 
10000 m DDW EV-MCDA min No variance 
10000 m DDW EV-MCDA max 0.0029 No Spearman 0.3405 0.1159 0.3681 
10000 m DDW EV-MCDA range 0.0029 No Spearman 0.3405 0.1159 0.3681 
10000 m DDW EV-MCDA mean 0.3848 Yes Pearson 0.4702 0.2211 0.2015 
10000 m DDW EV-MCDA standard deviation 0.0031 No Spearman 0.5126 0.2628 0.1614 
10000 m DDW EV-MCDA median 0.1098 Yes Pearson 0.5519 0.3046 0.1234 
10000 m DDW EV-MCDA 90th percentile 0.0401 No Spearman 0.3405 0.1159 0.3681 
SPW OWTS count 0.0859 Yes Pearson 0.7630 0.5821 0.0168* 
250 m DDW OWTS count No variance 
500 m DDW OWTS count <0.0001 No Spearman -0.5477 0.3000 0.2222 
750 m DDW OWTS count 0.0077 No Spearman -0.6336 0.4014 0.0754 
1000 m DDW OWTS count 0.0648 Yes Pearson -0.3693 0.1364 0.3280 
2500 m DDW OWTS count 0.0002 No Spearman -0.0251 0.0006 0.9574 
5000 m DDW OWTS count 0.0148 No Spearman 0.3431 0.1177 0.3640 
10000 m DDW OWTS count 0.0326 No Spearman 0.4000 0.1600 0.2912 
SPW OWTS density 0.1047 Yes Pearson 0.5304 0.2813 0.1418 
250 m DDW OWTS density No variance 
500 m DDW OWTS density <0.0001 No Spearman -0.5477 0.3000 0.2222 
750 m DDW OWTS density 0.0009 No Spearman -0.5660 0.3204 0.1210 
1000 m DDW OWTS density 0.0297 No Spearman -0.5509 0.3035 0.1272 
2500 m DDW OWTS density 0.0008 No Spearman -0.1757 0.0309 0.6517 
5000 m DDW OWTS density 0.0875 Yes Pearson 0.2863 0.0820 0.4551 
10000 m DDW OWTS density 0.1687 Yes Pearson 0.4755 0.2261 0.1958 
SPW open water 0.0001 No Spearman -0.5000 0.2500 0.1777 
SPW developed open space 0.6374 Yes Pearson 0.4510 0.2034 0.2230 
SPW developed low intensity 0.0372 No Spearman 0.0333 0.0011 0.9484 
SPW developed medium intensity 0.0060 No Spearman 0.0333 0.0011 0.9484 
SPW developed high intensity 0.0001 No Spearman 0.2678 0.0717 0.4828 
SPW total developed 0.1815 Yes Pearson 0.4270 0.1824 0.2516 
SPW barren land 0.2852 Yes Pearson 0.4707 0.2216 0.2009 
SPW deciduous forest 0.6101 Yes Pearson 0.2019 0.0408 0.6024 
SPW evergreen forest 0.0442 No Spearman -0.4833 0.2336 0.1938 
SPW mixed forest 0.3452 Yes Pearson -0.1891 0.0358 0.6260 
SPW shrub scrub 0.3903 Yes Pearson 0.0604 0.0037 0.8773 
SPW herbaceous 0.0624 Yes Pearson -0.3636 0.1322 0.3361 
SPW hay pasture 0.1490 Yes Pearson -0.2715 0.0737 0.4797 
SPW cultivated crops 0.0872 Yes Pearson -0.2712 0.0736 0.4802 
SPW woody wetlands 0.0277 No Spearman 0.0167 0.0003 0.9733 
SPW emergent herbaceous wetlands 0.1541 Yes Pearson -0.2131 0.0454 0.5819 
250 m DDW open water 0.0002 No Spearman -0.5919 0.3503 0.0993 
250 m DDW developed open space 0.0517 Yes Pearson 0.3624 0.1313 0.3378 
250 m DDW developed low intensity 0.0012 No Spearman 0.3051 0.0931 0.4270 
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250 m DDW developed medium intensity No variance 
250 m DDW developed high intensity <0.0001 No Spearman -0.2510 0.0630 0.5556 
250 m DDW total developed 0.0586 Yes Pearson 0.0140 0.0002 0.9715 
250 m DDW barren land No variance 
250 m DDW deciduous forest 0.7586 Yes Pearson 0.3747 0.1404 0.3204 
250 m DDW evergreen forest 0.0086 No Spearman 0.0174 0.0003 0.9717 
250 m DDW mixed forest 0.0001 No Spearman 0.0198 0.0004 0.9762 
250 m DDW shrub scrub No variance 
250 m DDW herbaceous <0.0001 No Spearman -0.3651 0.1333 0.3611 
250 m DDW hay pasture 0.4985 Yes Pearson 0.0594 0.0035 0.8794 
250 m DDW cultivated crops No variance 
250 m DDW woody wetlands 0.0436 No Spearman 0.2959 0.0876 0.4365 
250 m DDW emergent herbaceous wetlands No variance 
500 m DDW open water 0.0266 No Spearman -0.7120 0.5069 0.0402* 
500 m DDW developed open space 0.7085 Yes Pearson 0.0027 0.0000 0.9945 
500 m DDW developed low intensity 0.0271 No Spearman 0.0333 0.0011 0.9484 
500 m DDW developed medium intensity 0.0035 No Spearman 0.2698 0.0728 0.4772 
500 m DDW developed high intensity 0.0138 No Spearman 0.2373 0.0563 0.5470 
500 m DDW total developed 0.0773 Yes Pearson 0.0103 0.0001 0.9791 
500 m DDW barren land No variance 
500 m DDW deciduous forest 0.8265 Yes Pearson 0.1291 0.0167 0.7406 
500 m DDW evergreen forest 0.0784 Yes Pearson -0.1934 0.0374 0.6180 
500 m DDW mixed forest 0.2593 Yes Pearson 0.0031 0.0000 0.9937 
500 m DDW shrub scrub 0.0040 No Spearman 0.1826 0.0333 0.6481 
500 m DDW herbaceous <0.0001 No Spearman -0.1741 0.0303 0.6521 
500 m DDW hay pasture 0.1088 Yes Pearson -0.2041 0.0417 0.5984 
500 m DDW cultivated crops No variance 
500 m DDW woody wetlands 0.0541 Yes Pearson 0.7076 0.5007 0.0330* 
500 m DDW emergent herbaceous wetlands No variance 
750 m DDW open water 0.0219 No Spearman -0.6611 0.4371 0.0632 
750 m DDW developed open space 0.8374 Yes Pearson -0.3110 0.0967 0.4152 
750 m DDW developed low intensity 0.1797 Yes Pearson 0.0180 0.0003 0.9634 
750 m DDW developed medium intensity 0.0138 No Spearman 0.0170 0.0003 0.9815 
750 m DDW developed high intensity No variance 
750 m DDW total developed 0.5501 Yes Pearson -0.1227 0.0151 0.7531 
750 m DDW barren land No variance 
750 m DDW deciduous forest 0.5162 Yes Pearson -0.1729 0.0299 0.6564 
750 m DDW evergreen forest 0.0018 No Spearman -0.2259 0.0510 0.5570 
750 m DDW mixed forest 0.4133 Yes Pearson -0.0378 0.0014 0.9232 
750 m DDW shrub scrub 0.0154 No Spearman -0.2350 0.0552 0.5409 
750 m DDW herbaceous <0.0001 No Spearman -0.0848 0.0072 0.8410 
750 m DDW hay pasture 0.7586 Yes Pearson 0.1140 0.0130 0.7703 
750 m DDW cultivated crops <0.0001 No Spearman 0.2739 0.0750 0.6667 
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750 m DDW woody wetlands 0.0005 No Spearman 0.6441 0.4149 0.0700 
750 m DDW emergent herbaceous wetlands <0.0001 No Spearman 0.5477 0.3000 0.2222 
1000 m DDW open water 0.0146 No Spearman -0.5085 0.2586 0.1688 
1000 m DDW developed open space 0.3877 Yes Pearson -0.2373 0.0563 0.5387 
1000 m DDW developed low intensity 0.2560 Yes Pearson 0.0198 0.0004 0.9598 
1000 m DDW developed medium intensity No variance 
1000 m DDW developed high intensity No variance 
1000 m DDW total developed 0.3911 Yes Pearson -0.0601 0.0036 0.8780 
1000 m DDW barren land No variance 
1000 m DDW deciduous forest 0.4615 Yes Pearson -0.0342 0.0012 0.9305 
1000 m DDW evergreen forest 0.0648 Yes Pearson -0.5105 0.2606 0.1602 
1000 m DDW mixed forest 0.4688 Yes Pearson -0.2230 0.0497 0.5642 
1000 m DDW shrub scrub 0.0418 No Spearman -0.2712 0.0735 0.4811 
1000 m DDW herbaceous <0.0001 No Spearman 0.0753 0.0057 0.8525 
1000 m DDW hay pasture 0.1570 Yes Pearson 0.1388 0.0193 0.7217 
1000 m DDW cultivated crops <0.0001 No Spearman -0.1369 0.0187 0.7500 
1000 m DDW woody wetlands <0.0001 No Spearman 0.6272 0.3934 0.0808 
1000 m DDW emergent herbaceous wetlands <0.0001 No Spearman 0.7303 0.5333 0.0278* 
2500 m DDW open water 0.1151 Yes Pearson -0.5515 0.3041 0.1238 
2500 m DDW developed open space 0.0691 Yes Pearson 0.0637 0.0041 0.8707 
2500 m DDW developed low intensity 0.1878 Yes Pearson -0.0908 0.0082 0.8163 
2500 m DDW developed medium intensity 0.0018 No Spearman 0.1667 0.0278 0.6777 
2500 m DDW developed high intensity 0.0004 No Spearman -0.0527 0.0028 0.9190 
2500 m DDW total developed 0.0389 No Spearman -0.0500 0.0025 0.9116 
2500 m DDW barren land 0.0550 Yes Pearson 0.5603 0.3140 0.1166 
2500 m DDW deciduous forest 0.3206 Yes Pearson -0.2878 0.0828 0.4527 
2500 m DDW evergreen forest 0.6462 Yes Pearson -0.2576 0.0664 0.5034 
2500 m DDW mixed forest 0.6988 Yes Pearson 0.4062 0.1650 0.2779 
2500 m DDW shrub scrub 0.0082 No Spearman -0.2259 0.0510 0.5570 
2500 m DDW herbaceous 0.3172 Yes Pearson 0.6532 0.4267 0.0564 
2500 m DDW hay pasture 0.3849 Yes Pearson 0.0464 0.0022 0.9056 
2500 m DDW cultivated crops 0.0010 No Spearman 0.0183 0.0003 0.9854 
2500 m DDW woody wetlands 0.0033 No Spearman 0.3390 0.1149 0.3733 
2500 m DDW emergent herbaceous wetlands 0.0123 No Spearman 0.4564 0.2083 0.2275 
5000 m DDW open water 0.1027 Yes Pearson -0.5157 0.2660 0.1553 
5000 m DDW developed open space 0.5858 Yes Pearson 0.3716 0.1381 0.3248 
5000 m DDW developed low intensity 0.0648 Yes Pearson -0.1567 0.0246 0.6873 
5000 m DDW developed medium intensity 0.0661 Yes Pearson 0.1756 0.0308 0.6514 
5000 m DDW developed high intensity <0.0001 No Spearman 0.1261 0.0159 0.7482 
5000 m DDW total developed 0.7531 Yes Pearson 0.2045 0.0418 0.5977 
5000 m DDW barren land 0.0723 Yes Pearson 0.2107 0.0444 0.5864 
5000 m DDW deciduous forest 0.2975 Yes Pearson -0.1070 0.0115 0.7840 
5000 m DDW evergreen forest 0.3312 Yes Pearson -0.3849 0.1482 0.3063 
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5000 m DDW mixed forest 0.9267 Yes Pearson 0.4686 0.2196 0.2033 
5000 m DDW shrub scrub 0.0215 No Spearman 0.0667 0.0044 0.8801 
5000 m DDW herbaceous 0.3821 Yes Pearson 0.4334 0.1878 0.2439 
5000 m DDW hay pasture 0.1996 Yes Pearson -0.0450 0.0020 0.9084 
5000 m DDW cultivated crops 0.0022 No Spearman 0.1044 0.0109 0.7893 
5000 m DDW woody wetlands 0.0025 No Spearman 0.3347 0.1120 0.3738 
5000 m DDW emergent herbaceous wetlands 0.0140 No Spearman 0.4178 0.1746 0.2618 
10000 m DDW open water 0.0156 No Spearman -0.6103 0.3725 0.0890 
10000 m DDW developed open space 0.6661 Yes Pearson 0.4719 0.2226 0.1997 
10000 m DDW developed low intensity 0.4968 Yes Pearson 0.0827 0.0068 0.8324 
10000 m DDW developed medium intensity 0.1866 Yes Pearson 0.1010 0.0102 0.7960 
10000 m DDW developed high intensity 0.0066 No Spearman 0.0335 0.0011 0.9370 
10000 m DDW total developed 0.9413 Yes Pearson 0.2993 0.0896 0.4340 
10000 m DDW barren land 0.0001 No Spearman 0.5714 0.3265 0.1141 
10000 m DDW deciduous forest 0.6399 Yes Pearson -0.0031 0.0000 0.9936 
10000 m DDW evergreen forest 0.4335 Yes Pearson -0.6519 0.4249 0.0571 
10000 m DDW mixed forest 0.5678 Yes Pearson -0.0335 0.0011 0.9319 
10000 m DDW shrub scrub 0.0118 No Spearman 0.3667 0.1345 0.3363 
10000 m DDW herbaceous 0.6783 Yes Pearson -0.0336 0.0011 0.9316 
10000 m DDW hay pasture 0.5714 Yes Pearson 0.0961 0.0092 0.8058 
10000 m DDW cultivated crops 0.0550 Yes Pearson -0.0454 0.0021 0.9077 
10000 m DDW woody wetlands 0.0543 Yes Pearson 0.0928 0.0086 0.8123 
10000 m DDW emergent herbaceous wetlands 0.0181 No Spearman 0.4854 0.2356 0.1871 
* Significant correlation (⍺ < 0.05) 
SPW – Sample point watershed 
DDW – Distance derived watershed 
ESV – Environmental and system variables 
EV – Environmental variables 
MCDA – multi-criteria decision analysis  
OWTS – Onsite wastewater treatments systems 

 


