
Popularity-Aware Storage Systems for Big Data Applications

by

Ting Cao

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 6, 2022

Keywords: Erasure Code, Cache Replacement, Malware Detection, Popularity Awareness,
Big Data Applications, Recommendations

Copyright 2022 by Ting Cao

Approved by

Xiao Qin, Alumni Professor of Computer Science and Software Engineering
Richard Chapman, Associate Professor of Computer Science and Software Engineering

Tao Shu, Associate Professor of Computer Science and Software Engineering
Santu Karmaker, Assistant Professor of Computer Science and Software Engineering

Abstract

Recommendation algorithms play an increasingly dominant role in big data services like

Netflix and YouTube. In streaming applications, it becomes unavoidable that trillion tons

of personal and industrial data are flooded into the data center. This dissertation is focused

on popularity-aware techniques anchored on recommendation algorithms to bolster the per-

formance of data processing. In this dissertation study, we make the following contributions

centered around data reconstruction, cache replacement, malware detection, and distributed

denial of service (DDoS) detection.

The first contribution of this dissertation is a popularity calculator coupled with a

scheduler, where we advocate for erasure-coded data storage systems to archive warm data.

Different from hot or cold data, warm data have to be treated in a distinctive way to

optimize system performance and storage-space utilization. We employ two machine-learning

algorithms to offer online data reconstruction in erasure coded storage systems. We also

combine the factors includes the data item size and big data storage location to adjust the

popularity value. The final popularity value indicates the malware detection priority. Our

system is reliant on a big data storage mechanism to group files into multiple clusters, in

each of which files share similar features. Furthermore, we set the prediction module with

item size record and storage location which connects the closest users, thereby projecting

files that are likely to be accessed in the not-too-distant future. The prediction module is

responsible for computing similarities among users so as to set up priority levels of data

blocks to be reconstructed. Our experimental results confirm that our system reduces the

average waiting time of data recovery while maintaining a high data access performance for

on-line users.

ii

The second contribution lies in a popularity-driven cache replacement policy - PDC

- catered for big data storage caching systems, in which future accesses predictions are

leveraged to push cache-replacement performance to the next level for big data applications.

Our PDC governs data recommendation algorithms to gauge popularity values for data

objects from active users’ access history. Popularity values signify data replacement priorities

amid making replacement decisions.

The last contribution of the dissertation study is a similarity-based DDoS detection

module. Inspired by a dynamic analysis of access behavior changes in active users, we

propose a DDoS anomaly detection model to discover DDoS attack sources by diagnosing

users’ similarities. The overarching goal of our solution is to pinpoint DDoS by monitoring

the similarity of active users around existing users at a low cost. This goal is achieved by

our proposed model embracing the following key steps. First, a sample user set is originated.

Then, the active users’ requests are tracked to assess similarity measures between each active

user and sample users. Finally, if the deviation of similarity exceeds prescribed thresholds,

detected users will be flagged as anomalous ones.

iii

Acknowledgments

This dissertation would not have been possible without invaluable guidance, help and

experience sharing from the people who constantly support and encourage me during the

course of my graduate studies at Auburn University.

First of all, I would like to express my sincere gratitude to Dr. Xiao Qin for providing

extensive knowledge in the field of computer systems and inexhaustible enthusiasm for re-

search without which this dissertation would not have been possible. While working on the

paper titled ”Popularity Aware Data Reconstruction (POST)”, he gave me numerous con-

structive advice and suggestions, including setting up strong motivations behind the project,

proposing the conceptual and mathematical underpinnings of the POST system, designing

the clustering module coupled with a recommendation module, implementing the RS code

deployed in POST, to name just a few. By the same token, Dr. Qin shepherded me through

the development of the other three research projects centered around popularity-aware data

storage services.

I would also like to acknowledge Dr. Wei-Shinn Ku for their participation and engage-

ment. His solid understanding of cloud computing and cyber security, unlimited patience in

answering my questions and meticulous working style impressed me in our discussion and

meetings. His insightful comments and suggestions helped and enlightened me with literature

reviews, appropriate topic targeting, idea extension and demonstration, and experimental

validation.

Additionally, I would like to express gratitude to Dr. Jianzhong Huang for his treasured

support, which was really influential in shaping my experiment methods and critiquing my re-

sults. His extensive experience and strong understanding of large-scale data storage systems

iv

boost my confidence to present mathematical analysis of storage systems, such as property

analysis and proofs, in the dissertation.

I would like to thank my committee members, Dr. Richard Chapman, Dr. Shu Tao, and

Dr. Shubhra Kanti Karmaker Santu, who reviewed my proposal and dissertation. They gave

me insightful and valuable suggestions, by which my dissertation had been immensely im-

proved. I am equally grateful to Dr. Hans-Werner Van Wyk, who gave me helpful comments

and suggestions on my dissertation as my university reader.

I would like to thank my friends, lab mates, and research team – Chaowei Zhang,

Xiaopu Peng, and Jianzhou Mao for a cherished time spent together in the lab, and in social

settings. My appreciation also goes out to my family and friends for their encouragement and

support all through my studies. I would like to thank all the computer science and software

engineering professors and students, who create and maintain an excellent atmosphere for

study and research.

Finally and most importantly, the endless love and support from my family is the most

powerful strength that keeps me fighting for my research. My mother Hong Hu, my father

Xiaojun Cao, my wife Kan Le and my kids Ellie, Kacie always stay with me, cheering for

achievement and overcoming all difficulties.

This dissertation research is made possible by the support from the U.S. National Science

Foundation under Grants IIS-1618669 and OAC-1642133.

v

To my parents and Kan Le.

vi

Table of Contents

Abstract . ii

Acknowledgments . iv

List of Figures . xi

List of Tables . xv

1 Introduction and Motivations . 1

1.1 Towards A Popularity-Aware Reconstruction Technique 2

1.1.1 Online Recovery of Faulty Nodes in Storage Systems 2

1.1.2 Motivations for Popularity-aware Online Recovering 2

1.1.3 Novel Features and Contributions . 4

1.2 Building A Popularity-Driven Caching System for Big Data Applications . . 5

1.2.1 Cache Replacement Policies . 5

1.2.2 Basic Ideas of Popularity-aware Caching 6

1.2.3 Motivations for Popularity-Aware Caching 6

1.2.4 Contributions of the New Popularity-Aware Caching Technique . . . 8

1.3 DDoS Detection Systems for Cloud Data Storage 9

1.3.1 Motivations for Similarity Based DDoS Detection Techniques 10

1.3.2 Contributions for Similarity Based DDoS Detection Technique 10

1.4 Malware Detection in Cloud Storage Services 11

1.4.1 Motivations for a Popularity-Aware Malware Detection Scheduler . . 12

1.4.2 Contributions of a Popularity-Aware Malware Detection Scheduler . . 12

1.5 A Road Map . 13

2 Related Work . 14

2.1 Popularity-Aware Schemes . 15

vii

2.2 Data Reconstruction . 16

2.2.1 Erasure-Coded Storage Systems . 16

2.2.2 Data Archival Schemes . 16

2.2.3 Reconstruction Schemes . 18

2.3 Cache Replacement . 19

2.3.1 Objectives of Caching Systems . 19

2.3.2 Traditional Caching Systems . 20

2.3.3 Advanced Cache Replacement Strategies 21

2.3.4 What’s New in Our PDC? . 22

2.4 DDoS Attacks and Detection Methods . 22

2.4.1 DDoS Attacks models . 22

2.4.2 DDoS Detection Models in Clouds 25

2.4.3 Application Layer DDoS Detection 26

2.5 Malware Detection in Cloud Storage Systems 28

3 A Popularity-Aware Data Reconstruction System 31

3.1 System Architecture . 31

3.1.1 Overview . 33

3.1.2 Erasure-Coded Storage Clusters . 35

3.1.3 The k-prototype Module . 36

3.1.4 The Popularity Calculator Module 38

3.2 Designing Basic Modules . 40

3.2.1 k-prototype Clustering . 40

3.2.2 User-Based Collaborative Filtering 45

3.3 Designing POST . 48

3.3.1 k-prototype Controller . 48

3.3.2 Reconstruction Controller . 50

3.3.3 Time Complexity Analysis . 53

viii

3.3.4 Examples . 54

3.4 Performance Evaluation . 57

3.4.1 Experimental Settings . 58

3.4.2 Data archival . 60

3.4.3 Space Overhead Analysis . 61

3.4.4 Impacts of Similarity . 62

3.4.5 Impacts of Number of Users . 64

3.4.6 Impacts of Number of User Requests 67

3.4.7 Impacts of Stripe Capacity . 69

3.5 Summary . 71

4 The Popularity-Aware Cache Replacement . 73

4.1 System Design . 73

4.1.1 Overview . 73

4.1.2 The Popularity Calculator Module 76

4.1.3 Cache Replacement . 76

4.2 A Generalized Popularity-Driven Cache Replacement Algorithm 77

4.2.1 User-Based Collaborative Filtering 77

4.2.2 A Popularity-Based Cache Replacement Policy 82

4.3 Performance Evaluation . 85

4.3.1 Performance Metrics and Experimental settings 85

4.3.2 Overhead Analysis . 86

4.3.3 Hit Ratio Analysis . 88

4.3.4 Byte Hit Ratio Analysis . 90

4.3.5 Impacts of Recommendation List Length 91

4.3.6 Comparison with the Advanced Cache Replacement Strategies 94

4.4 Summary . 95

5 Similarity-Based DDoS Detection . 97

ix

5.1 An Overview . 97

5.2 A Similarity-based DDoS Detection System 99

5.2.1 The Basic Idea . 99

5.2.2 High-Level System Architecture . 100

5.2.3 Concepts and Key Steps . 101

5.3 Algorithm Design . 105

5.3.1 Overhead Analysis . 107

5.4 Performance Evaluation . 108

5.4.1 Evaluation of Overhead . 108

5.4.2 Evaluation of Accuracy . 109

5.5 Summary . 110

6 Popularity-Aware Malware Detection . 112

6.1 Basic Idea . 113

6.2 System Architecture . 114

6.3 Concepts and Main Steps . 115

6.4 Algorithms . 117

6.5 Summary . 119

7 Conclusions and A Future Research Plan . 121

7.1 Conclusions . 121

7.1.1 Data processing and scheduling . 121

7.2 Advanced algorithm exploration . 122

7.3 A Future Research Plan . 123

7.3.1 Research Direction 1 . 123

7.3.2 Research Direction 2 . 123

7.4 Summary . 124

Bibliography . 126

x

List of Figures

2.1 The high-level DDoS attack procedures . 23

2.2 Main stream DDoS attacks in cloud computing platforms. 25

2.3 The high-level procedures of static and dynamic malware detection schemes. . . 29

3.1 The architecture of POST, when warm data with features comes from 3X repli-

cation storage system, the Clustering part will archive data to erasure code based

storage system by k-prototype algorithm. When users are accessing data with

data block failures, recommendation part offers a recommendation list based on

users set, and give a reconstruction list for each stripe in the storage system. . . 32

3.2 Generating parity blocks in (k+r,k) Reed-Solomon codes. 35

3.3 The layout in a conventional RS-coded storage cluster. 36

3.4 The work flow of k-prototype module. 37

3.5 The work flow of recommendation module. 40

3.6 Data objects are arranged in a way that, in most cases, data objects placed on

one stripe belongs to the same cluster. Objects A1 − A4 form the first stripe

stored across disk1− disk4. A large cluster may be handled by multiple stripes.

Objects B1−B7 are stored in two strips - (B1−B4) and (B5−B7), which are

archived on disk1− disk4 and disk1− disk3, respectively. Objects C1−C8 are

placed among three stripes. 55

xi

3.7 The case for k-prototype. The total waiting time as 13 with an average of 3.25

time unit per user. 55

3.8 The case for recommendation list. The total waiting time as 11 with an average

of 2.75 time unit per user. 56

3.9 The case for POST. The total waiting time as 10 with an average of 2.5 time unit

per user. The waiting times of the four users are 2, 3, 1, and 4, respectively. . . 57

3.10 Distribution of user ratings with respect to movie IDs. Approximately 60% of

ratings are placed on items, the movie IDs of which are smaller than 3, 500. . . 58

3.11 distribution of user ratings for the movies dataset 59

3.12 The impacts of the number of clusters on data archiving time in the POST system.

The number of iterations, the number of data nodes, the number of parity nodes,

data block size are configured to 30, 4, 4, 64 MB, respectively. The archived

dataset contains movie data objects of approximately 25 TB. 61

3.13 Impact of weight value on prediction accuracy. The weight value is proportional

to the prediction accuracy. The correlation between weight value and prediction

accuracy guides system administrators to optimize the h value in the recommen-

dation list P (ux, h) (see Eq. 3.14. 62

3.14 The impact of prediction accuracy on average waiting time. There are 100 users

concurrently accessing 1,000 data objects. Boosting the prediction accuracy

shortens waiting time. 63

3.15 The average waiting time measures of the six reconstruction strategies managing

the movie datasets and book datasets. The number of users varies from 20 to

1000 in movie dataset and 20 to 800 in book dataset. 65

xii

3.16 Average waiting times of the six reconstruction strategies. The number of re-

quested data objects per user varies from 5 to 100 with an increment of 5. The

number of users is set to 100. 67

3.17 The average waiting times of the four reconstruction strategies. The number of

data objects stored in one stripe varies from 1 to 2,048. 70

4.1 The high-level architecture of the PDC system. 74

4.2 The work flow of PDC cache replacement. 79

4.3 The impacts of cache size on the hit ratio performance of the three cache replace-

ment policies. The cache size ranges from 2 GB to 2048 GB; the number of data

objects is set to 200, 500, 1000, 2000, 4000, and 8000. 89

4.4 The impacts of cache size on the byte hit ratio performance of the three cache

replacement policies. The cache size ranges from 2 GB to 2048 GB; the number

of data objects is set to 200, 500, 1000, 2000, 4000, and 8000. 90

4.5 The impacts of recommendation-list length on the average time delay and hit

ratio performance of the PDC cache replacement policy. The cache size is set to

32GB; the recommendation list is set to 10, 20, 40, 60, 80, and 100; the number

of data objects is set to 200, 1000 and 4000. 92

4.6 The impacts of cache size on the hit ratio performance of the PDC and two

advanced technology cache replacement policies. The cache size ranges from 2

GB to 2048 GB; the number of data objects is set to 1000, 2000, 4000, and 8000 94

5.1 The architecture of similarity-based DDoS detection model running in clouds.

abnormal users are identified through the similarity comparison. 100

5.2 The main steps to check if the current user is abnormal. 101

xiii

5.3 The time cost vs. an increasing size of the training set (Users History Behavior). 109

5.4 Detection Accuracy with the an increasing number of data items. 110

6.1 The architecture of a malware detection scheduler running in clouds. Popular

data objects receive a high priority to be scanned earlier than unpopular data

objects. 114

xiv

List of Tables

I Qualitative comparisons among data storage systems that are closely related to
POST. 17

II The existing DDoS detection techniques . 26

I Symbols and Notation . 41

II sample recommendation list . 56

III sample recommendation list . 57

I Symbols and Notation . 78

I A list of candidate recommendation algorithms are readily plugged into the
popularity-aware malware detection scheduler. 116

xv

Chapter 1

Introduction and Motivations

The phenomenal growth in streaming and web services (e.g., Netflix and YouTube)

gives rise to a sharp spike in demands to construct big data centers housing high-end clus-

ters embracing tens of thousands of storage nodes. In streaming applications, it becomes

unavoidable that trillion tons of personal and industrial data are flooded into the data cen-

ter. For example, 400 billion photos were stored on Facebook servers in Feb 2014 [85]; IDC

reports that from 2005 to 2020, the global data volume grew by a factor of 300, from 130

exabytes to 40,000 exabytes, representing a double growth every two years [40]. Moreover,

cloud computing enables users to access information from anywhere and at any time on any

device [45]. Therefore, big data accompanied by its high growth rate makes it critical and

indispensable to optimize the performance and scalability of data storage systems.

In this dissertation we exploit the following four research areas to spearhead new

popularity-aware techniques to bolster reliability, performance, DDoS attack protection, and

malware detection.

• A popularity-aware reconstruction technique in erasure-coded big-data systems (see

Section 1.1).

• A popularity-driven caching system for big data applications (see Section 1.2).

• DDoS detection systems for cloud data storage (see Section 1.3).

• Data security and malware detection in cloud storage services (see Section 1.4).

The road map in Section 1.5, at the end of this chapter, gives a good overview of this

dissertation’s organization.

1

1.1 Towards A Popularity-Aware Reconstruction Technique

1.1.1 Online Recovery of Faulty Nodes in Storage Systems

It is demanding to build modern storage systems to meet requirements of big-data

applications. In data centers, about 90 percent of data have been created in the last two

years [1]; for example, 400 billion photos are stored on Facebook servers in Feb 2014 [85].

Fault tolerance is an indispensable key technique in large scale distributed storage systems.

For instance, there are on an average of 50 machines, 95500 blocks, and 180 TB of data to

be recovered each day in Facebook [85]. Recent studies advocate for replication and erasure

coding to maintain data durability [120]. Data replication has become a de facto standard;

for example, the Hadoop distributed file system [109] and the Google file system [41] utilize

the three-way replication storage policy. Replication, of course, provides good reconstruction

efficiency at the cost of high storage space consumption. In contrast, erasure code can save

storage space while paying extra cost to calculate parity. To alleviate the high computing-

time cost of erasure coded storage, we propose, in the first part of the dissertation research,

a reconstruction technique called POST to reduce user waiting times when a storage system

is carrying out data reconstruction while responding to user requests.

Based on the access frequency, the data can be differentiated as hot, warm and cold. In

general, compared to the content in hot data, warm data has a lower request rate. Warm

data in turn is accessed more frequently than data in cold storage systems.

1.1.2 Motivations for Popularity-aware Online Recovering

POST is responsible for the online recovery of faulty nodes in a storage system when

the system is actively servicing user I/O requests. The following four facts motivate us to

contrive POST.

• Warm data has been generated at a fast pace in recent years.

2

• Erasure-coded storage systems are an efficient and fault-tolerant technique to store

large-scale data.

• It is a common practice to predict future data popularity from historical accesses and

user preferences.

• There is the lack of data reconstruction techniques aiming to reduce waiting times from

the perspective of online users.

Motivation 1. The volume of warm data has been growing rapidly in recent years;

importantly, warm data account for more than 80 percent of all data types in combine [85].

The access frequencies of warm data are anywhere between those of hot data and cold

data, implying that warm data are somehow occasionally accessed. To maintain data fault

tolerance in real-world applications, data centers manage hot and cold data using the 3x

replication [23] and erasure code [70] techniques respectively. When it comes to storing and

accessing warm data, one ought to address the concerns of storage space and reconstruction

speed in a holistic way.

Motivation 2. Erasure code techniques have been widely adopted in archival stor-

age [113], data centers [115], and cloud storage systems [19]. For example, the Reed-Solomon

(RS) [100] code is a popular erasure code scheme for data encoding and decoding. The RS

code achieves a fault-tolerance level higher than that of XOR- based parity array coding [49].

In this study, we put a spotlight on erasure-coded storage systems tailored for a massive

amount of warm data.

Motivation 3. Data mining - an established cutting-edge technique - has been applied to

make predictions on customers’ preferences [97]. Most popular websites (e.g., YouTube and

Netflix) dynamically manage a preference list for each user to predict content to be accessed

by the user. This technological trend motivates us to devise a data-mining-based recommen-

dation module to govern a data reconstruction process in storage systems. Corrupted data

3

that are likely to be accessed in the not-too-distant future should be recovered in an early

stage to alleviate adverse impacts of faulty storage nodes.

Motivation 4. Ideally, a data-reconstruction system should achieve high reliability, low

storage cost, and fast reconstruction speed. From the perspective of users, superb reliability

and short response time are major concerns when data stored in a system are being accessed.

Intuitively, boosting reconstruction speed leads to short response time or waiting time in

storage systems. Apart from improving reconstruction speed, we exploit a data-mining-based

approach to slash waiting times when an erasure-code storage system is carrying out data

reduction. To the best of our knowledge, popularity-aware data reconstruction in storage

systems is still in its infancy. To fill this technology gap, we develop a recommendation

module to predict the likelihood of future data accesses from content popularity.

1.1.3 Novel Features and Contributions

POST seamlessly integrates two distinctive modules, namely, data archiving and online

reconstruction. Recognizing that a majority of data’s temperatures tend to change from hot

to warm, the data archiving module is in charge of converting warm data from three replicas

into the erasure-coding format. A salient feature of this module relies on a classification

scheme that groups relevant data into a single erasure-coded stripe. The second module

governs online data reconstruction for erasure-coded storage created by the data-archival

module. Furthermore, POST predicts user preferences, which drive the data-reconstruction

priority. Put another way, popular corrupted data are recovered by POST prior to repairing

non-popular data. POST maintains a data-reconstruction queue, in which data with high

access probability receive a high priority during the course of online data reconstruction.

In this study, we devise the POST system to classify data when the data are archived,

followed by generating a prediction list. In the clustering module of POST, K-means and

K-modes along with the text analysis are incorporated in the POST system. We develop a

user-based collaborative filtering recommendation algorithm to guide the data reconstruction

4

procedure. With recommendations in place, popular data will be recovered first, prior to non-

popular counterparts. The results from the trace-driven experiments indicate that POST is

adroit at cutting back user waiting time when an erasure-coded storage system is carrying

out online data reconstruction. The main contributions of this work are summarized as

follows:

• We articulate the design of the POST system, which offers a storage-space-efficient

solution for large-scale data centers.

• We incorporate the K-prototype and naive-Bayes-based text-analysis algorithms to

cluster files during the data archival stage.

• We develop a recommendation system to favor popular data over non-popular ones

during the course of data reconstruction.

• We replay real-world traces to evaluate the performance of the POST system.

1.2 Building A Popularity-Driven Caching System for Big Data Applications

1.2.1 Cache Replacement Policies

Caching, among cutting-edge I/O techniques, is a prominent way of improving the

overall performance of storage systems [61]. Caches have proven to be vital mechanisms for

reducing long latency of disk accesses; the effectiveness of caching is significantly influenced

by data replacement policies. A cache serves the most popular data items without querying

the back-end storage nodes, ensuring uniform I/O load among the back-end nodes [34].

Meanwhile, the I/O performance gap between data storage and main memory systems has

been widened in the past decade [82]. In large-scale data storage clusters, caching reduces

user-perceived delays as well as data loading time. In the realm of big data processing, it

remains a grand challenge to make optimal cache replacement decisions on which cached

data should be evicted. Nevertheless, existing replacement policies have been devised in

5

a heuristic way. Predominant policies, including the least recently used policy (LRU) [39]

and the least frequently used policy (LFU) [107], are top contenders across the board under

various workload conditions.

1.2.2 Basic Ideas of Popularity-aware Caching

We propose in this study a popularity-aware caching policy referred to as PDC, which

leverages future accesses predictions to push cache-replacement performance to the next level

for big data applications. Our PDC advocates for data recommendation algorithms to gauge

popularity values for data objects from active users’ access history. Popularity values in

turn signify data replacement priorities amid making replacement decisions. In addition to

orchestrating active users (e.g., log into the system) and inactive users (e.g., log out from the

system), a management module in the PDC system keeps track of access preferences (e.g.,

popularity measures) of the users.

1.2.3 Motivations for Popularity-Aware Caching

The following three facts motivate us to contrive the PDC system.

• In recent years, large-scale storage systems have been used increasingly to store complex

digital data.

• Storage systems embrace caching techniques to speed up I/O performance in terms of

loading data objects.

• It is viable and practical to predict future data popularity from historical accesses

coupled with user preferences.

Motivation 1. Big data has become a frontier topic for computer systems developers and

researchers because the growing exploitation of audio/video streams is generating a massive

amount of complex and pervasive digital data. Also, big data analysis largely depends on the

effective mining of massive datasets at multifaceted levels including modeling, visualization,

6

prediction, and optimization. It is nontrivial to acquire and integrate an enormous amount

of data from distributed locations. For instance, more than 175 million tweets containing

text, image, video, or social relationship are generated by millions of accounts distributed

globally [46]. Importantly, with the advent and accessibility of modern cloud computing

infrastructures, cutting-edge technology available to the public has turned the structure

of data towards interconnected and rapidly growing ones. When it comes to storing and

accessing big data objects, there is a pressing demand to optimize I/O performance of storage

systems in a holistic way.

Motivation 2. Storage clusters - built from the off-the-shelf commodity storage nodes -

address the growing needs of big data applications. To improve the performance of large-scale

storage clusters for active users to access, the caching technique has been paid tremendous

attention in the past decade. Large cache space residing in a storage cluster allows data

to be read and written at a high speed. Due to the limited size of the cache, there is a

preference in keeping frequently accessed data objects. When a caching buffer is full, a

cache replacement policy has to be kicked in to evict data to release space for new incoming

data objects. The cache replacement mechanism is responsible for removing unwanted data

objects that are likely to induce cache pollution and poor I/O performance. Since the

demands and characteristics of big-data applications always vary with time, the existing

caching schemes become inadequate for large-scale storage systems [38]. The commonly

adopted cache replacement policies like the least recently used (LRU) [39] and least frequently

used (LFU) algorithms [107] fail in accurately predicting data objects that have the highest

possibility to access the not-too-distant future, because the existing policies passively make

use of historical access patterns to speculate popular data. To fill this technology gap,

we propose a popularity-driven caching system or PDC that makes the most appropriate

data-replacement decisions through popularity assessments by the virtue of data mining.

Motivation 3. Recent evidence suggests that it is viable and practical to predict future

data popularity from historical I/O accesses coupled with user preferences. For instance,

7

data mining - an established cutting-edge technique - has been applied to make predictions

on customers’ preferences [97]. This technological trend motivates us to devise a data-

mining-based recommendation module in our PDC system to govern the cache replacement

process in storage systems. In PDC, we advocate for the data mining technique to speculate

future popular data objects that deserve being cached while evicting unpopular ones. The

prominent benefits of this design philosophy are three-fold. First, PDC proactively predicts

future I/O access patterns rather than relying on a conventional passive approach. Second,

PDC exploits statistic analysis to select the most appropriate data objects to be kept in the

cache. Third, PDC leverages comprehensive assessments to optimize the cache replacement

performance.

1.2.4 Contributions of the New Popularity-Aware Caching Technique

To offer an advanced cache replacement solution for large-scale data centers, we design

and evaluate the PDC system performing the role of a caching module for storage clusters.

It is noteworthy that storage clusters has become a predominant computing platform in data

centers, because multiple storage nodes offer high data access rates by the virtue of parallel

I/Os. From the perspective of system architecture, the cache region of PDC is furnished

by distributed main memory in a large storage cluster. While users are accessing big data

objects, PDC is responsible for governing the cache replacement. Upon the arrival of a user

request, requested data might be missing from the cache. In this case, PDC meticulously

determines if the requested data items ought to be kept in the memory caches while evicting

another object to release cache space. The data to be evicted from the cache must be

judiciously picked by PDC to maintain a high cache hit rate.

We devise a recommendation module in PDC to favor popular data over non-popular

ones during the course of cache replacement. This module is adroit at predicting future user

accesses derived from active users’ access preferences accompanied by personal interests. We

quantify the level of interest using user ratings history logs, which are harvested and managed

8

in the recommendation module. The recommendation module generates a popularity list of

data objects, thereby stipulating the replacement priorities of all the cached data objects.

To quantitatively and systematically evaluate the performance of PDC, we replay real-

world traces to mimic the behavior of real-world storage clusters housed in data centers.

We simulate scenarios where PDC orchestrates the cache space storing movie data objects

acquired from a real-world data set. The keep metrics used to gauge the performance include

hit ratios and byte hit ratios. Furthermore, we configure cache size and cache replacement

policy as the system parameters in PDC. To demonstrate the strengths of PDC, we compare

our design with the conventional cache replacement policies like LRU and LFU.

In a nutshell, the main contributions of the second part of the dissertation study are

summarized as follows:

• We articulate the design of the PDC system, which offers a cache replacement solution

for large-scale data centers.

• We develop a recommendation module to favor popular data over non-popular ones,

thereby enhancing the caching performance.

• We replay real-world traces accessing movie data to compare the performance of the

PDC system with the existing solutions.

1.3 DDoS Detection Systems for Cloud Data Storage

We devise the DDoS detection model that seamlessly integrates two distinct modules - a

sample user generator and a similarity comparison module. The first module elects a group

of high fitness users from all the legal users to build a sample user set, which is periodically

updated by our system. The second module is in charge of calculating the similarities among

active users and sample users. We treat a user as an abnormal user if the user’s similarity

measures are dramatically changed with a high percentage.

9

In what follows, Section 1.3.1 emphasizes the motivations for designing DDoS detec-

tion systems equipped with similarity measurement techniques. Section 1.3.2 summarizes

the contributions made in our design and development of simiarility-based DDoS detection

techniques.

1.3.1 Motivations for Similarity Based DDoS Detection Techniques

Two reasons motivate us to advocate for the similarity-based DDoS detection strategy.

First, online cloud servers are accessed and shared by a large-scale user pool. Users’ historical

access records offer excellent samples to discover outlier users such as bots. Second, when

bots attempt to simulate human users, it is a challenge to find attack sources with a low

overhead. If a DDoS detector fails in swiftly pinpointing attackers, any detection delay may

pose potential security threats to the entire system and users. Our DDoS detection model

ensures that active users’ access behaviors pass through a thorough yet lightweight analysis.

Below is the list of two motivations for this part of the dissertation research.

• Motivation 1: Historical access records registered in online cloud servers offer sampling

points to sense outlier users.

• Motivation 2: DDoS-detection delays inevitably pose security threats to online systems

and users.

1.3.2 Contributions for Similarity Based DDoS Detection Technique

We present the design of DDoS detection model to optimize a malware detection se-

quence of data objects to prioritize high-risk data in cloud storage systems. The overarching

goal of the similarity comparison module is to glean users’ current and historical request

records, followed by calculating similarity measures of active users and the sample ones.

More specifically, the similarity module illustrates the users’ behavioral changes with re-

spect to user requests. This module works in full capacity to dynamically track and monitor

the active users’ similarity metrics to sense any abnormal behaviors.

10

A summary of the contributions made in the third part of the dissertation research is

listed below.

• We spearhead the design of the similarity-based DDoS detection system, which offers

a low overhead solution for online big data storage DDoS detection.

• We develop a sampling module for user selections in hope of collecting a high fitness

user set supporting similarity comparison, thereby further curtailing detection I/O cost

and boosting detection accuracy.

• We replay two representative real-world traces accessing the data streams to evaluate

the overhead with different sizes of the training sets and the detection accuracy of the

similarity-based DDoS detection model with the existing solutions.

1.4 Malware Detection in Cloud Storage Services

In this section, we discuss the motivations for designing popularity-based malware de-

tection systems in Section 1.4. Section 1.4.2 boasts the contributions of our dissertation

research centered around the design of popularity-aware malware detection techniques.

To speed up malware detection in cloud storage, we devise a popularity-aware malware

detection system that seamlessly integrates two distinct modules - a popularity predictor and

a malware detector. The first module makes data popularity prediction possible by adopting

the user-based collaborative filtering algorithm or UBCF [133][47]. The second module is in

charge of detecting malware in data objects on the basis of future popularity. Hot data that

are likely to be frequently accessed receive a high priority to go through malware screening.

With the assistance of the popularity predictor, the malware detector ensures that data are

malware free before being retrieved.

11

1.4.1 Motivations for a Popularity-Aware Malware Detection Scheduler

There are two main reasons that motivate us, in the fourth part of the dissertation

research, to devise a popularity-driven malware detection framework, in which popular data

are a given high priority amid malware detection procedures.

• Popular data are accessed by a large number of users.

• Popular data are likely to be accessed in the not-too-distant future, making it urgent

to identify malware from the popular data.

Motivation 1. When a popular data object is approved to be malware-free, all requests

accessing the data are protected from malware. Any malware-free data that are popular can

immediately benefit a large group of users.

Motivation 2. If malware detection is not carried out on popular data in a timely

manner, the data may pose potential security threats to users. Our proposed malware

detection scheduler ensures that popular data pass through a thorough malware detection

earlier than unpopular ones.

1.4.2 Contributions of a Popularity-Aware Malware Detection Scheduler

We develop a recommendation system to favor popular data over non-popular ones dur-

ing the course of malware detection. The overarching goal of our scheduler is to optimize a

malware detection sequence of data objects by deploying a machine-learning-enabled recom-

mendation algorithm to prioritize high-risk data in cloud storage systems. More specifically,

a UBCF-based management module periodically sorts data objects according to popularity.

The schedule works in full capacity to dynamically set up the priorities of data objects with

respect to popularity measures.

Let us list the key contributions of the last component of this dissertation study here.

• We deploy a novel recommendation system to favor popular data over non-popular

ones.

12

• We devise a popularity-based scheduler to handle malware detection requests, aiming

to maximize system security.

1.5 A Road Map

The remainder of this dissertation is organized as follows. Chapter 2 surveys the related

work of popularity-aware modules and existing solutions of our proposed models without

popularity-aware techniques. The organization, algorithms, and performance evaluation of

the Popularity-aware data reconstruction model are described in Chapter 3. The organi-

zation, algorithms, and performance evaluation of the Popularity-driven cache replacement

strategy and similarity-based DDoS detection technique are proposed in Chapter 4 and Chap-

ter 5, respectively. A popularity-aware scheduler for malware detection in big data systems

including the system architecture, the algorithms are illustrated in Chapter 6. We conclude

this dissertation in Chapter 7.

13

Chapter 2

Related Work

This chapter is dedicated to the prior studies that are closed related to this disserta-

tion, which is centered around data reconstruction, cache replacement, DDoS detection, and

malware detection schemes. We kick off this chapter with the literature review focused on

popularity-aware schemes, as four popularity-driven systems designed in Chapter 3, Chap-

ter 4, Chapter 5 and Chapter 6 share a common and vital module: a popularity calculator.

Next, we survey leading-edge techniques from the perspectives of data storage and data

reconstructions, including erasure-coded storage systems, data archival schemes, and data

reconstruction techniques. Then, we continue the literature review by shifting our atten-

tion to cache replacement policies, where we elaborate on objectives of caching systems,

traditional caching strategies, advanced caching techniques, as well as the new features of

our design. This chapter also introduces the background knowledge about DDoS attacks

and detection methods: we cover the surface of DDoS attack models, detection solutions

in clouds, and application-layer DDoS detection techniques. Finally, the related work of

malware detection in cloud storage systems is presented as the last piece of the chapter.

More specifically, we organize this chapter in the following way. Section 2.1 reveals the

existing popularity-aware schemes for data processing. Section 2.2 illustrates a selection of

previous studies focused on erasure-coded storage systems, data archival and data recon-

struction schemes. Section 2.3 describes the workload and differences between traditional

and advanced cache replacement strategies. The related work of DDoS attacks and detec-

tion can be found in Section 2.4. In Section 2.5, we introduce the representative solutions of

malware detection methods customized for cloud storage systems.

14

2.1 Popularity-Aware Schemes

Previous studies have demonstrated that popularity-aware techniques are quite promis-

ing in boosting caching performance in storage systems. For example, Jin et al. devised a

GDS-Popularity (GDSP) cache management algorithm, which effectively captures and main-

tains an accurate popularity profile of web objects requested through a caching proxy [56].

Emre and Deniz proposed distributed caching policies that incorporating the mobility of

users as well as content popularity when delay deadlines are either below a certain threshold

or relaxed [88]. Ali et al. utilized the support vector machine (SVM) and decision tree tech-

niques to discover web-proxy log files, followed by predicting whether or not the classes of

objects will be re-visited. The findings confirmed that such predictions have the full potential

to brush up the performance of the cache system.

Apart from optimizing caching performance, dramatically boosting the I/O performance

of data storage systems is a well-received benefit of popularity-aware schemes. For instance,

to efficiently avoid wasting cache space for storing on-path content duplicates, PPCS is

intended to cache chunks according to content popularity in a way that improves cache

diversity [87]. Xie et al. developed a popularity-aware scheduling algorithm or PAS [124]

for network coding, where a popularity value is automatically created when a network node

encodes incoming blocks to generate a new one. PAS schedules priority-enabled blocks in

accordance with associated popularity values, thereby speeding up content dissemination

and improving information transmission efficiency.

The above popularity-aware techniques are mainly focused on optimizing I/O and par-

allel computing processes by advocating for data popularity concept. Unlike the existing

popularity-aware schemes, our PDC has a salient strength in leveraging a user-based collab-

orative filter to facilitate the popularity-aware cache replacement policies.

15

2.2 Data Reconstruction

Recent evidence shows that I/O latency and storage cost can be jointly minimized

by considering three dimensions: erasure code selections, encoded-chunk placement, and

scheduling policies [123]. These three dimensions have been explored in the context of

erasure coded storage systems, data archival techniques, popularity-aware schemes, and data

reconstruction strategies. Let us shed some light on the related studies categorized into

the four core areas, namely, erasure-coded storage (see Section 2.2.1), data archival (see

Section 2.2.2), popularity awareness (see Section 2.1), and data recovery (see Section 2.2.3).

2.2.1 Erasure-Coded Storage Systems

Table I summarizes the major differences between our proposed POST and the existing

big data storage systems. The robustness of data storage systems can be improved by either

applying file duplication or erasure code techniques. For instance, HDFS [15] augments

3x replicated files to enable data recovery. PARIX [68] transforms the original formula

of parity calculation, making use of data deltas (i.e., between current and original data

values) instead of parity deltas to obtain parities during journal replay. A novel erasure code

technique called local reconstruction codes or LRC was implemented in Windows Azure

Storage (a.k.a., WAS) [48]. Facebook’s Warm BLOB storage system [85] embraces Reed-

Solomon coding and lays blocks out on different racks to ensure resilience to disks, machines,

and rack failures within a data center.

2.2.2 Data Archival Schemes

When it comes to archiving a sheer amount of data, one has to construct archival storage

systems accompanied by data archival techniques. Archival source is originated from newly

created data; such archival storage systems are featured with strong fault tolerance. Modern

archival storage systems are designed to store big data using erasure codes to improve space

16

Table I: Qualitative comparisons among data storage systems that are closely related to
POST.

storage system
Erasure

Coded Storage

Data

Recovery

Data

Archival

Popularity

Awareness

HDFS [15] ×
√ √

×

PARIX [133]
√ √

× ×

WAS [48]
√ √

× ×

BLOB [85]
√ √ √

×

CF-hadoop [133] ×
√ √ √

POST (This Study)
√ √ √ √

efficiency. Archival sources have replicas stored in disks, where data archival techniques

migrate the data replicas into erasure-coded archival formats.

A raft of erasure-coded archival systems have been proposed in the past decade. For

example, the erasure code scheme was adopted by the following four archival storage systems.

Pergamum is an energy-efficient disk-based archival storage system [113]. Cleversafe is a

cost-effective storage system for actively archiving data [26]. Tahoe-LAFS is a decentralized

storage system, which offers provider-independent security for long-term data storage [121].

HDFS-RAID is a HDFS module deploying RS codes to store old data sets that are accessed

by a limited number of jobs in Hadoop [115]. aHDFS is an erasure-coded data archival

system dedicated to archiving unpopular data stored on Hadoop clusters [23].

Different from the aforementioned archival schemes, our POST, customized for multi-

media storage systems, leverages a recommendation algorithm to optimize reconstruction

performance. POST places data sharing similar features on the same data stripe, thereby

creating ample opportunities to optimize data reconstruction scheduling decisions to slash

user waiting time.

17

2.2.3 Reconstruction Schemes

There is a pressing need to optimize data reconstruction in RS-code-based storage sys-

tems. Representative optimization schemes include, but not limit to, maximally recoverable

local reconstruction code (i.e., MRLRC, DLRC, AZ-code) [43] [81] [125] , proactive recon-

struction I/O for erasure-coded storage clusters (i.e., PUSH) [49], decision-tree-based relia-

bility modeling [71], and Mojette-transform-based erasure correction codes(i.e., LDPC) [11].

We classify these approaches into the following four categories.

• Reducing the number of required decoding nodes. MRLRC separates data blocks into

small groups in a way that local parity blocks are fabricated to reduce the number of

needed blocks. Such small local groups make it possible to reconstruct data within

local groups rather than global groups [43].

• Exploiting lightly-loaded nodes. PUSH utilizes proactive reconstruction I/Os, in which

decoding loads are evenly dispersed among lightly-loaded nodes to dramatically im-

prove reconstruction performance by eliminating the bottleneck in replacement nodes [49].

• Recovering data blocks in advance. In the decision-tree-based modeling mechanism,

decision trees and gradient boosted regression trees are incorporated to predict failures

by exploiting features like temperatures, uncorrectable errors, and spin up time [71].

• Reducing complexity of matrix transform. Matrix transform is a bottleneck in com-

puting erasure code. LDPC substitutes mojette transform for common vandemonde

matrix transform to mitigate the expensive matrix transform cost [91].

Compared with the above reconstruction schemes, POST scheme has three salient fea-

tures. First, POST is data construction technique tailored for node-based storage clusters

by exploiting erasure code. Second, POST advocates the machine learning algorithms for

18

clustering data and scheduling reconstruction requests. Third, POST induces fairly low com-

putation overhead thanks to the fact that clustering archival and recommendation lists are

processed prior to data reconstruction.

2.3 Cache Replacement

2.3.1 Objectives of Caching Systems

Growing evidence shows that the performance of caching systems can be jointly boosted

from three dimensions, namely, cache consistency, cache pre-fetching, and cache replace-

ment [35] [37] [63]. The primary objective of an ideal cache replacement policy is to evict

undesired objects to enhance cache utilization. Cache replacement strategies aim to optimize

cache hit rates and mitigate heavy I/O loads on storage systems.

Important factors of data objects affecting cache replacement efficiency are summarized

as follows.

• Recency: time of the last reference to an object

• Frequency: number of requests to an object

• Size: data object size

• Cost of fetching the object: cost to fetch an object from its origin server

• Modification time: time of last modification

Cache replacement policies can fall into four categories, namely, (1) key-based replacement

strategies, (2) function-based replacement strategies, (3) randomized-based algorithm, and

(4) weighting-based algorithm. [95]

Most of the existing cache replacement strategies are focused on detecting frequency,

recency, and modification time to speed up performance (see, for example, SIZE, GDS,

LRU, LFU). Hit ratio and byte hit ratio are key metrics to gauge the performance of cache

19

replacement strategies. Our PDC has an edge over the existing solutions in terms of these

performance metrics because PDC gives a boost in the accuracy of frequency detection by

the virtue of data popularity values.

2.3.2 Traditional Caching Systems

In general, a fetch policy governs the appropriate time at which information is brought

into the cache. Fetch policies are categorized into two camps, namely, demand fetching and

pre-fetching schemes [78]. In this study, we make a decisive move to seamlessly integrate

our cache replacement algorithm with demand fetching rather than pre-fetching ones. The

reason for this design decision is three-fold. First, demand prefetching enables our system

to utilize large amounts of resources in support of big data applications. Second, our system

enjoys less loading latency during the startup phase. Third, fetching policies are independent

of cache replacement techniques, implying that our replacement algorithm can be readily

blended with pre-fetching counterparts. Classic cache replacement policies exhibit unique

advantages. For example, SIZE treats object size as a primary factor during the course

of caching objects. When a cache is full, SIZE proactively evicts large objects to release

excessive free cache space. SIZE is facing the “cache pollution” issue because small objects

are residing in the cache with less likelihood of being accessed. SIZE is inapplicable for

storage systems where data objects are identical in size. The greedy dual-size algorithm or

GDS keeps track of object size, access latency, as well as cost. GDS is a value-based cache

replacement policy; while making replacement decisions, GDS replaces objects that have the

smallest cache value. Unlike SIZE and GDS, PDC takes advantage of popularity as cache

values to elect the most appropriate objects removed from the cache. In contrast to the

traditional cache replacement strategies, PDC is a popularity-aware technique catered to

big-data online services.

A raft of cache replacement algorithms have been proposed in the past decade, attempt-

ing to maximize cache hit ratio. For example, greedy-dual exploited naive Bayes, decision

20

tree, and support vector machine techniques to improve the byte hit ratio and hit ratio

metrics [8]. Jain et al. optimized cache performance through the Belady’s algorithm [52].

Jaleel et al. proposed a re-reference interval prediction based cache replacement policy [53].

Sheu et al. devised wildcard rules caching algorithm and a rule cache replacement (RCR)

algorithm by the virtue of the cover-set approach [108].

A handful of intriguing studies have conducted to significantly cut back I/O latency and

energy consumption. For instance, Moriyama et al. proposed an efficient congestion control

scheme to retrieve distributed chunks from multiple nodes in information centric network-

ing [132]. Li et al. developed a load-balanced cache placement algorithm by expanding the

Bayesian networks [66]. Li et al. presented a delay-constrained sleeping scheme, which aims

to conserve energy in a cache-aided ultra-dense network [72].

The traditional caching systems are passive, because these systems rely on access history

as well as users’ preferences to predict future accesses. In thr realm of big data storage

systems, the preferences of online users are constantly changing, the predictions made by

conventional caching replacement policies become inadequate.

2.3.3 Advanced Cache Replacement Strategies

Existing advanced cache replacement techniques can be categorized into two groups.

In the first category, intelligent algorithms are independently deployed; the second one ad-

vocates for combining the intelligent algorithms with cache replacement policies. Both ap-

proaches are reliant on the predictions of future access probabilities to enhance cache perfor-

mance. Recently, the machine learning algorithms, such as artificial neural networks (ANNs),

support vector machines (SVMs), the decision tree algorithm, and naive-bayes-based pre-

diction algorithms, have been widely employed in conventional cache replacement policies

to optimize the performance. For example, Huang et al. proposed a Markov chain-based

predictive model, which was incorporated in the predictive greedy dual-size frequency artifi-

cial intelligence (PGDSF-AI) policy [50]. Semantic analysis concepts like semantic segments,

21

probe queries, and remainder queries were used to construct a segment access-aware semantic

cache, which predicts the items that are likely to be accessed by users in the future to im-

prove cache hit ratio in [75]. Most of the existing machine learning algorithm-based caching

systems embrace complicated, accurate feature selection and training processes. Generally,

these systems are executed in offline components that require extra I/O resources.

Due to dynamic changes of active users, on the other hand, the popularity of data

objects is shifted accordingly. With low-cost dynamic popularity monitoring in place, our

PDC keeps track of data-object popularity information through active users’ preferences.

Each login or logout action may spark a change in cache replacement priorities.

2.3.4 What’s New in Our PDC?

In contrast to the aforementioned cache management strategies, our PDC proposed in

Chapter 4 orchestrates a recommendation algorithm to deliver superb cache replacement

performance for storage systems in general and multimedia storage systems in particular.

Unlike the existing solutions, PDC replaces data in the cache according to popularity val-

ues. therefore, ample opportunities are fostered in PDC to make optimal cache replacement

decisions that lead to improved hit ratio.

2.4 DDoS Attacks and Detection Methods

2.4.1 DDoS Attacks models

Distributed Denial-of-Service (DDoS) attack - an advanced form of DoS attack - is

a coordinated attack against one or multiple targets through a group of computers [112].

DoS attacks are categorized into the network layer attacks, application layer attacks, data

flooding attacks, and protocol-feature-based attacks [33]. All the types of DoS attacks aim

to exhaust system resources at various layers in computing systems. For example, a network

layer attack attempts to crash routers through buffer overrun errors in the password checking

routine.

22

Figure 2.1: The high-level DDoS attack procedures

Fig. 2.1 illustrates a general DDoS attack model. Initially, a attacker scans and explores

vulnerability in remote machines. Infected machines are referred to as zombies, which au-

tomatically and repeatedly infect more agents as new zombies and send attack packages to

target victims. Finally, the attack prevents hosts from performing regular activities and ad-

dressing genuine received requests. The attack purposely makes hosts unavailable by flooding

the resources of target systems with frequent requests [114].

• Volume-based attacks. This kind of attack aims to exhaust the bandwidth of a victim’s

site. When it comes to applications that involve interactions among multiple users,

infection by other users is often necessary to warrant applications’ desired functionality.

The ability of an attacker to infect such applications is fundamental because these

applications, containing shared data, are inherently constructed to be accessed by

multiple users including collaborative users [94].

• Protocol-based attacks. This type of attack attempts to exhaust a server’s versatile

resources. For instance, a ping of death attack delivers an oversized ICMP datagram

(encapsulated in IP packets) to a victim’s computing node. The ping command fully

utilizes an ICMP echo request and echo reply messages, which are commonly applied

to check if a remote host is healthy and alive. In this case, a ping of death attack may

cause the remote system to hang, reboot or even crash [131].

23

• Application-layer-based attacks. Because of the improved robustness and bandwidth

of servers and networks developed in recent years, attackers are no longer inclined to

throttle network bandwidth of victims’ servers. Rather, the attackers are focusing on

exhausting server resources like CPU cycles, database cycles, main memory or socket

connections [14].

Not surprisingly, DDoS is a serious threat to cloud storage systems. Understanding

attack strategies is the first line of defense against DDoS threats. In the context of cloud

storage systems, DDoS attacks share the following two distinctive features [25].

• Strategy 1. Flooding attacks mainly rely on botnets to attack target hosts or networks,

forming a many-to-one attack modality to expand attack scope and to worsen the harm

of attacks in a cascading manner. Each attack has a focal point where certain services

become unavailable in a target network.

• Strategy 2. Given an open shared-resource platform lacking source IP address authen-

tication or authentication capability, attackers make use of packet source IP spoofing

to strike victims. Because regular traffic at a monitoring point ought to respond to

destination and destination-to-source addresses, source IP addresses cannot receive a

valid reply from the destination IP address.

We depict the main stream DDoS attacks in Fig. 2.2. In application-bug level attacks,

attackers exploit system vulnerabilities and weaknesses to render cloud resources un-

available for users. Among the common attack vectors are protocol vulnerability, sys-

tem weakness, outdated patches and misconfigurations. For example, vulnerabilities

in protocols used by target applications can be explored by hackers, who aim to crash

applications by delivering specially crafted packets to overload the applications. [110]

Infrastructure attacks is one of the challenging attacks to detect in the cloud and it

gained greater attention with the research community [30]. the attackers only need the

IP address of the target without the need to exploit any vulnerability. DDoS flooding

24

attack can be carried out in two different forms, namely a direct attack and a reflector

attack.

Figure 2.2: Main stream DDoS attacks in cloud computing platforms.

2.4.2 DDoS Detection Models in Clouds

To address the two strategies of DDoS threats in cloud storage systems, anomaly-based

(see Section 2.4.3) and signature-based models were proposed to facilitate DDoS attack

detection. The anomaly-based detection models utilize statistical methods for analyzing

behaviors of data packets to sense any anomalies [57]. On the other hand, signature-based

models intend to define a set of signatures or predefined knowledge from ground up, followed

by identifying a candidate pattern as an intruder [76]. Apart from anomaly- or signature-

based approach, a host of hybrid techniques were devised by mixing the two fundamental

methods [21].

Existing signature-based techniques receive a wide adoption in detecting network-layer

DDoS attacks. For example, Snort is one of the most commonly deployed signature-based

detection techniques on multiple platforms [102]. Enlightened by the traditional signature-

based approaches, Lee et al. implemented a data mining framework where inductively learned

models is applied to build supervised classifiers [65]. This novel solution enables detection

systems to discover anomalies and know intrusions by the virtue of mining consistent and

useful patterns.

25

Reference Detection technique DDoS attack type

Virupakshar et al. [116] Anomaly Infrastructural
Kown et al. [64] Anomaly Not stated

Alqahtani et al. [9] Anomaly Infrastructural
Chen et al. [24] Anomaly Application-bug
Wang et al. [117] Anomaly Infrastructural
Meng et al. [80] Anomaly Infrastructural
Bakshi et al. [13] Signature Infrastructural
Karnwal et al. [59] Signature Application-bug
Gupta et al. [44] Hybrid Infrastructural
Modi et al. [83] Hybrid Not stated

Table II: The existing DDoS detection techniques

With regard to deployment positions, the signature- and anomaly-based detection mech-

anisms can be classified into application-level and network-level mechanisms. In the past

decades, a majority of DDoS attacks were concentrated on network bandwidths because this

resource type can be easily exhausted. With the advancement in robustness of network ser-

vices, DDoS attacks against network bandwidth recently gave way to new attack modalities

that exhaust server resources like CPU and memory at the application layer.

2.4.3 Application Layer DDoS Detection

Table II summarizes an array of DDoS Detection techniques for cloud storage systems.

The prior studies were mainly focused on anomaly detection techniques that cope with

infrastructural DDoS attacks. Therefore, we propose a novel anomaly detection solution

in Section 5.2 after a thorough review of the existing anomaly detection schemes. From a

technical point of view, DDoS attacks carried out at the application layer share the following

distinctive characteristics [96].

• Legitimate Requests. An attack request mimic regular requests, making it arduous to

discriminate attack requests from legitimate ones. Since the application layer DDoS

26

attacks proceed through legitimate HTTP packets, most of network-level filters and

firewalls are unable to sense such anomaly requests from application attacks.

• Limited Resources. The bottleneck in application-layer DDoS attacks lies in server re-

sources. With the innumerable number of requests, the Internet host can be exhausted

sooner or later.

• Targeted Attacks. Application layer DDoS attack may occur on the various targets

such as CPU, memory or socket connections. An attack can only attempt to exhaust

one resource without affecting the other types of resources. Nevertheless, the entire

system becomes unavailable under such an attack that deteriorates a single resource.

A raft of DDoS detection models are aiming to protect cloud storage systems from im-

minent threats of application layer DDoS attacks. Recall that attack requests and legitimate

requests are alike, it is futile if not impossible to detect such attacks by simply examining

individual requests. More often than not, the existing solutions are generally reliant on an

analysis of requests stream tracking or requests template matching. For example, Ranjan

et al. piloted one of the earliest studies focusing on the application layer, where an attack

detection mechanism inspects characteristics of HTTP sessions by using statistical and rate-

limiting [99]. Xie et al. proposed a popularity-aware techniques to detect DDoS for popular

website through an access stream analysis [126]. On the flip side, SOAP-based DDoS re-

peatedly delivers SOAP requests to the URL, aiming to misuse the flexibility of security

specifications. Rahaman et al. devised a detection model to specify stringent requirements,

which should be fulfilled by incoming SOAP requests [98].

An increasing number of application-layer DDoS detection models are anchored on mod-

ern machine learning algorithms. For instance, the k-means clustering algorithm is adopted

to classify incoming requests [129]. Meng et al. built a learning model powered by discrete-

time Markov chains to compare users’ current behaviors with normal history behaviors [80].

27

Umarani and Sharmila explored a naive bayes and k-nearest neighbor based classifier to iden-

tify if a request stream is legitimate through an access matrix from HTTP traces. Om et

al. [62] integrated k-means, naive bayes and k-nearest neighbour to construct an anomaly de-

tection approach, where a feature selection model removes irrelevant attributes to implement

a clustering method.

The previous techniques were forged to maximize the prediction and detection accuracy

of application-layer DDoS attacks. It is evident that detection accuracy and extra resource

cost are somehow opposite aspects. Therefore, a handful of techniques were focused on

both detection accuracy and overhead control. For example, Sreeram et al. assessed the

feature metrics to diagnose request stream behaviors and to create a bio-inspired-anomaly-

based model to cut back training and testing cost [111]. Jiang et al. developed a local

measurement method accompanied by a remote counterpart to estimate the status of web

servers, thereby achieving good trade-offs between the monitoring quality and overhead [55].

Doshi et al. restricted computational overhead by using a limited feature set in the variety

of machine learning models [32].

Even though an array of existing techniques attempt to curtail detection overhead,

high detection accuracy is normally obtained at the price of extra overhead. In this paper,

we propose a similarity-analysis-based detection model catering for application-layer DDoS

attacks. The overarching goal of our new model is to strike good balance between detection

overhead and high accuracy.

2.5 Malware Detection in Cloud Storage Systems

Machine learning techniques are widely adopted in the malware detection field [4].

They generally fall into two camps, namely, static analysis [84] and dynamic analysis ap-

proaches [10]. In what follows, we articulate malware detection solutions from these two

angles - static and dynamic malware detection. Fig. 2.3 summarizes the high-level proce-

dures of static and dynamic malware detection schemes.

28

Figure 2.3: The high-level procedures of static and dynamic malware detection schemes.

Static Analysis Approaches. Amid a static analysis of malware detection, no execution

of executable programs takes place. The goal of static-analysis-based approaches is to finish

up malware detection tasks in a swift manner without being interrupted and slowed down

by third-party programs. Such malware detection solutions entail the process of analyzing

executable files by examining the code without executing them. A static analysis procedure

is comprised of two steps. First, an executable file is disassembled or reverse engineering

disassembled to retrieve the code. Next, detection of malware is carried out by scanning the

executable code derived from the previous step. Smart malware may evade static-analysis-

based methods by embedding syntactic code errors that mislead disassembly while perform-

ing functions during executions. Alternatively, an analysis can be accomplished by looking

through executable binary files followed by applying machine-learning-based detectors to

diagnose malicious software [12].

Deep learning models have been introduced into malware detection systems [12][105][106],

where malware files are diagnosed without being executed. When it comes to online malware

detection, most static analysis schemes found in the literature cope with single samples with-

out addressing the mislabeling problem or time windows of identifying malicious patterns.

[79]

Dynamic Analysis Approaches. Unlike static analysis counterparts, dynamic analysis

approaches are normally deployed in an isolated environment such as sandboxes or virtual

machines (VM). In such detection schemes, information is gathered during executions like

29

system calls, memory accesses, and network communications. The family of dynamic analysis

solutions is applicable for malware-file classification in addition to online malware detection.

It is noteworthy that online malware detection is closely related to intrusion detection sys-

tems [5].

Dahl et al. proposed a dynamic analysis solution to collect features from malware code

that runs in a lightweight virtual machine [28]. Unfortunately, this approach is inadequate

for online malware detection. Abdelsalam et al. devised an online malware detection system

in clouds. This online detection system makes use of convolutional neural network (CNN)

to maintain an optimal number of running virtual machines according to dynamic workload.

More specifically, the number of virtual machines is dynamically scaled up or down based

on load incurred malware detection. The online detection system is quite practical, because

the system detects malicious behaviors while the other applications keep running on clouds.

In a nutshell, machine-learning algorithms such neural network techniques are widely and

judiciously employed to detect malware in clouds [29][4].

More often than not, hackers embark on large-scale distributed denial of service attacks

or DDoS through malware code, phishing, and email spamming [119]. Many prior studies

(see, for example, [128]) have addressed cloud security issues from various aspects such

as networks, hypervisors, virtual machines, and operating systems, to name just a few.

These cutting-edge security solutions are derived from rule-based intrusion detection systems

accompanied by statistical anomaly detection models.

30

Chapter 3

A Popularity-Aware Data Reconstruction System

In this chapter, we describe the conceptual and mathematical underpinnings of the

proposed POST system, which embraces a clustering module and a recommendation module.

We start this section by introducing a well-known RS code deployed in POST. Next, we

present a data clustering process during the data archival procedure where data are converted

from 3X replication into erasure-coded ones. We also shed some light on a user-based

collaborative filtering algorithm, which generates a reconstruction queue aiming to shorten

user waiting time during online data reconstruction.

The rest of this chapter is organized as follows. Section 3.1 describes the organization

of our proposed popularity-aware data reconstruction model and the corresponding compo-

nents, Reed Solomon-based EC, k-prototype clustering, and user-based collaborative filtering

recommendation. The algorithm design of each component is proposed in Section 3.2. Sec-

tion 3.3 gives a comprehensive system design of POST. Performance evaluation is presented

in Section 3.4. This chapter’s summary can be found in Section 3.5.

3.1 System Architecture

In this section, we describe the conceptual and mathematical underpinnings of the

proposed POST system, which embraces a clustering module and a recommendation module.

We start this section by introducing a well-known RS code deployed in POST. Next, we

present a data clustering process during the data archival procedure where data are converted

from 3X replication into erasure-coded ones. We also shed some light on a user-based

collaborative filtering algorithm, which generates a reconstruction queue aiming to shorten

user waiting time during online data reconstruction.

31

Figure 3.1: The architecture of POST, when warm data with features comes from 3X repli-
cation storage system, the Clustering part will archive data to erasure code based storage
system by k-prototype algorithm. When users are accessing data with data block failures,
recommendation part offers a recommendation list based on users set, and give a reconstruc-
tion list for each stripe in the storage system.

32

3.1.1 Overview

Fig. 3.1 depicts the system architecture of POST, which is a multifaceted data manage-

ment system for storage clusters. First, POST archives warm data in erasure-coded storage

systems. Second, POST is responsible for reconstructing data for faulty nodes. During the

online data reconstruction procedure, POST makes judicious decisions on reconstruction

order, in which popular data are assigned high priorities to reduce user response time.

POST embraces two subsystems, namely, the online data archival subsystem and the

data reconstruction subsystem. We conducted an empirical study demonstrating that the

data archival subsystem is conducive to booting the performance of the data reconstruction

subsystem. For simplicity without loss of generality, we run the data archival subsystem once

to compare the data reconstruction performance before and after data archival procedure.

There are various ways to coordinate the data archival and reconstruction subsystems. For

example, the data archival subsystem is invoked right before a data reconstruction process

is initiated. Alternatively, one may embark on data reconstruction without kicking in the

data archival subsystem, because the data archival subsystem is periodically managed and

triggered by system administrators. Data archival intervals, of course, should be configured

at the discretion of the system administrators. Apart of periodic executions, the data archival

process might be running in full swing in a sporadic manner. Quantifying the impacts of data

archival intervals on data reconstruction performance is beyond the scope of this chapter.

The POST system embraces the following three fundamental modules to manage data

in an erasure-coded storage cluster.

• The clustering module. This module (see Section 3.1.3) classifies meta data in a way

that similar data can be grouped together to form strips during the RS coding process.

• The erasure coding module. After the data clustering is accomplished, the erasure

coding module (see Section 3.1.2) is kicked in to apply the Reed-Solomon code to store

data blocks in stripes.

33

• The recommendation module. When users are accessing data in the erasure storage

cluster, the recommendation module (see Section 3.1.4) generates recommendation

lists to be merged into a single reconstruction list. Popular data are listed on top of

the list, whereas non-popular ones are placed on the bottom. During the online data

reconstruction, popular data are rebuilt in an earlier stage.

In the POST system, data are distributed across multiple nodes, the health of which is

periodically gauged by sensors in the system (e.g., watchdog). A node becomes a faulty one

when one sensor or more frequently reports erroneous measurements. It is straightforward to

incorporate prevalent faulty-node techniques into POST. For example, [103] and [73] can be

applied to detect node failures in storage systems. In POST, we offload the node monitoring

and faulty-node detection functionality to the existing detection techniques.

We pay attention on optimizing data reconstruction performance in realm of single-node

failures, because single-node failures are the most common case that ought to be efficiently

handled. Importantly, POST has the capability to recover data from multiple faulty nodes,

provided that multiple parity nodes are configured in erasure coded storage clusters. The

number of faulty nodes tolerated in the storage clusters, of course, is reliant on the number

of parity nodes. It is prudent to immediately kick in data reconstruction upon the detection

of the first faulty node rather than postponing the recovery until subsequent faulty nodes

emerge. In doing so, the overall reliability of storage clusters can be enhanced.

It is arguably true that POST is adroit at governing data reconstruction in the worst case

where multiple nodes concurrently fail. Regardless of multi-faulty-node or single-faulty-node

cases, POST prioritizes reconstruction requests in accordance to gauged data popularity.

Compared with the single-node recovery scenario, the multi-faulty-node case takes a longer

time period to reconstruct data.

34

3.1.2 Erasure-Coded Storage Clusters

Erasure codes effectively reduce storage cost by using redundancy blocks. In this part

of the dissertation study, we use Reed-Solomon coding or RS to build an erasure-coded

storage cluster; RS is a systematic code where the encoding process is a simple application

of linear algebra. If a storage cluster adopts RS coding of the structure (k+r, k), the storage

system has k data blocks and r parity blocks. In an erasure-coded storage system, data are

encoded to construct parity blocks by multiplying k data blocks with a k×(k+r) generator

matrix, which involves a k×k identity matrix and a k×r redundancy matrix (see, for example,

Fig. 3.2) [77]. In practice, a Vandermonde matrix is applied to encode RS codes [100][92],

the coefficient α0,i is 1, where i∈{0,1,...,k-1}.

Figure 3.2: Generating parity blocks in (k+r,k) Reed-Solomon codes.

A (k + r, k) RS-coded storage cluster is comprised of an array of k+r storage nodes. k

data blocks and r parity blocks are exclusively stored on k data nodes and r parity nodes

in the storage cluster. Fig. 3.2 plots a (k + r, k) RS-coded storage cluster, in which all the

nodes (i.e., clients, manager, and storage nodes) are linked together through a switch.

To achieve high I/O throughput in the (k+ r, k) RS-coded storage cluster, a large data

is encoded into k+r blocks distributed across k+r storage nodes. A block is partitioned into

multiple stripes [93]. A collection of k data strips and r associated parity strips are referred

to as a stripe [89]. Fig. 3.3 demonstrates the layout of a conventional RS-coded storage

cluster.

In this chapter, we treat each stripe in a storage system as one basic unit, in which data

blocks share similarities according to given features. Similar data blocks are placed into a

single stripe by the k-prototype clustering algorithm (see details in Section 2.2). Put another

35

Figure 3.3: The layout in a conventional RS-coded storage cluster.

way, after the k-prototype algorithm performs data clustering, each stripe stores similar data

blocks.

3.1.3 The k-prototype Module

From the perspective of users, data stored in a storage system have semantics to be

exploited during the course of performance optimization. For example, movie data are

comprised of genres, popularity, producers, release dates, and languages; common features

of news articles include countries, types, and publishers. Our POST system incorporates

the k-prototype clustering algorithm (see the clustering module in Fig. 3.1) to (1) group data

with similar features and (2) place similar data within one stripe on a storage cluster during

the data archival procedure.

The k-prototype algorithm is one of the most prominent algorithms to facilitate data

clustering [54]. Given a large dataset, a small k value make the k-prototype approach

36

Figure 3.4: The work flow of k-prototype module.

outperform conventional hierarchical clustering techniques. In addition, k-prototype – a

convergence guaranteed algorithm – is conducive to processing big data.

To optimize storage-system performance, system administrators advocate for the 3-way-

replication scheme to store hot data (a.k.a., popular data) on storage clusters. When hot

data are cooling down, non-popular data should be archived in an erasure-coded storage

system to conserve storage space. The clustering module is triggered to classify data when

the system embarks on the data archival process. More specifically, the clustering module

plotted in Fig. 3.1 carries out the following four steps.

• To construct key-value pairs from data to be archived.

• To classify data according to their keys.

• To sort the key-value pairs according to the keys generated in the first step.

37

• To output classified key-value pairs (see details below) to the archival storage system,

which is responsible for erasure coding.

We adopt the concept of key-value store into POST because key-value store is a data

storage paradigm designed specifically for storing, retrieving, and managing associative ar-

rays. Data items are organized in the format of key-value pairs, where the key represents

an unique identifier (e.g., hash) and value is data content (e.g., images and documents).

Generally speaking, the value of a key-value pair is stored as a blob requiring no upfront

data modeling or schema definition. In our POST, we set key as a file’s identifier (a.k.a., ID),

which is referring to its data content - the value of its key-value pair. It is worth mentioning

that values, stored in an erasure-coded storage system, are commonly gigantic in size in big

data applications.

In the process of archiving warm data, meta data with features are delivered to the

managing node in an erasure-coded storage cluster. The manage node invokes the clustering

module (see Fig. 3.1 in Section 3.1.1) to classify data (i.e., key-value pairs) according to

features of the data. The k-prototype algorithm is implemented in the clustering module,

the output of which is a sorted list of keys from the key-value pairs. As a final phase

of the data archival process, data with strong similarities are stored within one strip in

erasure-coded storage cluster, which is in charge of creating parity blocks according to the

Reed-Solomon code.

3.1.4 The Popularity Calculator Module

Recall that the four popularity-driven systems designed in Chapter 3, Chapter 4, Chap-

ter 5 and Chapter 6 share a common and vital module: a popularity calculator. The goal of

the popularity calculator provides a popularity list for online big data systems to reschedule

the data processing sequence. This section details the design of the core and vital component

applied throughout the entire dissertation study.

38

The collaborative filtering algorithm, widely used in recommendation systems, offers

users personalized recommendation lists when the users log into the systems. User prefer-

ences are predicted, allowing the users to access their favorite data without searching for the

entire storage. We adopt the user-based collaborative filtering algorithm or UBCF [133][47]

in this dissertation; the rationale behind this choice is three-fold. First, UBCF benefits from

historical access patterns of an enormous number of users. A large set of active users en-

able UBCF to make practical recommendations without relying on subject area expertise.

Second, UBCF is flexible across a versatile of application domains. Collaborative filtering

approaches are well suited to highly diverse sets of items (e.g., multimedia data). Third,

UBCF tends to produce serendipitous recommendations, where accuracy might not be the

highest priority. A majority of users have interests that span a wide range of subsets, which

in theory can result in a diverse and interesting recommendations. The UBCF relies on the

following three assumptions [133].

• People have similar preferences and interests.

• The preferences and interests are stable.

• A user’s future choice can be predicted according to past preferences.

The collaborative filtering algorithm predicts people’s preferences by (1) comparing of

one user’s access behavior with the historical behaviors of the other users and (2) finding

the nearest neighbors to project the user’s future interests or preferences.

Fig. 3.5) shows the work flow of the recommendation module. When users are accessing

into the system, recommendation module originates recommendation list for all users, then

combine them into one reconstruction list based on the popularity of data. If users request

data object which is not available(a.k.a failed and has not been recovered), the data object

will be inserted into the reconstruction list as the first one.

39

Figure 3.5: The work flow of recommendation module.

3.2 Designing Basic Modules

This section is centered around the two basic modules, namely, the clustering algorithm

(see Section 3.2.1) and the filtering algorithm (see Section 3.2.2). Section 3.3 presents a way

of seamlessly integrating the clustering and filtering algorithms in the context of data recon-

struction in erasure-coded storage systems. To facilitate the presentations of the algorithms,

we summarize the symbols and notation used throughout this manuscript in Table I.

3.2.1 k-prototype Clustering

In the data archival process, keys in key-value pairs are classified by the k-prototype

algorithm. Data clustering plays a vital role, because similar data (i.e., values in key-

value pairs) are stored within one stripe in an erasure-coded storage system. The k-means

algorithm, a probabilistic solution, earns its reputation from high efficiency in clustering

large data sets. In the k-means algorithm, each data item is mapped to the Euclidean space,

where distances among data points can be measured.

The overarching goal of the POST’s clustering module (see Fig. 3.1) is to group neigh-

bouring data points together in one cluster, making a long distance between any pair of

two clusters. To achieve this goal, we implement the k-prototype algorithm, which extends

the conventional K-means algorithm by processing categorical data in addition to numeric

ones [51].

40

Table I: Symbols and Notation

Symbol Annotation

O a dataset including a set of data objects

C a set of clusters grouping data objects in O

N the number of numeric features in data objects

N ′ the number of categorical features in data objects

S a set of center points for clusters in C

oi the ith data object in dataset O

ei key of the key-value pair in ith data object

vi value of the key-value pair in ith data object

ck the kth cluster yielded by k-prototype

sk a center point in cluster ck ∈ C

fi,j jth feature data in the ith data object

d(oi, sk) Euclidean distance between object oi and center point sk

d(oi, S) a set of distances between object oi and all center points sk ∈ S

d(oi, sg) the minimal distance in distance set d(oi, S)

θ weight parameter for categorical features

sim(ux, uy) the similarity value between users x and y

Rxy a set of data objects rated by both user x and user y.

rxi ryi rate value of user x or y on data object i

r̄x the average ratings of user ux

H a set of similar neighbours of a certain user x

q the number of users in the system

q′ the number of similar neighbours of a certain user in the system

W a set of predicted ratings value

wx,i the predicted rating of data object oi for user ux

p(ux, oi) the predicted weight wx,i of data object oi for user ux

ϕx,i
an object-weight pair records the data object oi

and the corresponding weight wx,i

P (ux, h)
records h highest recommended data objects oi

and corresponding weight in p(ux, oi) for ux

B a set of faulty stripes in erasure-coded storage system

bk kth failure stripe ∈ B

41

Let O = {o1, o2, ..., on} be a set of n data objects in a dataset, where objects are

organized in the format of key-value pairs. The ith key-value pair is modeled as oi =

(ei, vi), where ei and vi represent the key and value of data object oi. The goal of the

clustering module is to partition dataset O into m clusters, which is referred to as set

C = {c1, c2, ..., cm}. It is noteworthy that the data objects are grouped in accordance to

their keys rather than values. More specifically, all the keys of data objects in cluster ci are

similar to one another. Similarities among data objects are gauged in terms of distances

among keys (see Eq. 3.1 for details). Each key is comprised multiple features, which are

mapped in an N-dimensional coordinate system (i.e., N is the number of features). Thus,

key ei can be expressed as a vector ei = (fi1, fi2, ..., fiN).

The key management in POST orchestrates keys in key-value pairs in a centralized

manner. The core data structure is a tree-like concatenation of b-trees, in which each layer

- dedicated to a fixed length of keys - effectively handles binary keys with arbitrary lengths.

Aiming to create a total of m clusters, the k-prototype algorithm randomly originates

m points as centerpoints, each of which is reserved for a cluster. Let S = {s1, s2, ..., sm}

be a set of centerpoints. Ideally, the m centerpoints should be far away from one another

in the coordinate system. This requirement is likely to be fulfilled by random centerpoint

selections. In case two randomly chosen centerpoints are too close to each other, the two

centerpoints will be updated in a way that the two points are separated with a far distance

(see Eq. 3.4 for details).

Next, the algorithm computes the distance between a candidate data object oi with all

the centerpoints. In what follows, let us define the distance between a data object (e.g., oi)

and a centerpoint (e.g., sk in cluster ck). Because the distance is a measure of similarity

between any pair of two data objects, we make use of Euclidean distance to calculate the

distance between data object oi and centerpoint sk. Thus, we have

42

d(oi, sk) =

√√√√ N∑
j=1

(fij − fkj)2, oi ∈ O, sk ∈ S, j ∈ [1, N], (3.1)

where oi is a data object and sk is a centerpoint in cluster ck, fij and fkj are the jth feature

data of object oi and centerpoint sk. Distance measure d(oi, sk) incorporates all the N

features in the two data points.

We introduce distance set d(oi, S) to include the distances between data object oi and

all candidate centerpoints available in set S. Hence, we have

d(oi, S) = {d(oi, s1), d(oi, s2), ..., d(oi, sN), } (3.2)

the k-prototype algorithm places object oi into cluster cg so that distance d(oi, sg) is

the minimal item in distance set d(oi, S). In other words, comparing the distances between

data object oi and all the centerpoints in S, the distance between oi and centerpiece sg is

the shortest one. Thus, we can express such a shortest distance d(oi, sg) as

d(oi, sg) = min
∀sj∈S

d(oi, sj). (3.3)

Center point sk (sk ∈ S) should be updated by calculating the mean position of all the

data objects in cluster ck (ck ∈ C). Thus, the update center point sk is written as

sk =
1

|ck|
∑
oi∈ck

oi. (3.4)

where ck is the kth cluster, |ck| denotes the number of objects in cluster ck, the summation

of ck means the summation of all the objects in cluster ck with respect to all the features.

Therefore, center pointsk is a vector including the number N of features. Importantly, all

the center points (i.e., s1, s2, ..., sm) in set S are updated in the same manner prescribed in

Eq. 3.4.

43

Finally, the algorithm repeatedly carries out the above steps (see Eqs.3.1-3.4) to group

data in to the number m clusters. Generally speaking, the algorithm converges and par-

titions data objects into m clusters; nevertheless, there is no guarantee for a converged

data-clustering result due to the problem’s NP-hard complexity. The algorithm terminates

under one of two conditions: (1) all the specified iterations are performed and (2) the center

points can’t be further updated. The bottom line is that the algorithm ensures to converge

quickly to a local optimal solution.

The k-prototype algorithm is capable of handling categorical features. Let N ′ be a set of

categorical features, the value of which cannot be quantified. To assess the distance between

data object oi and center point sk of cluster ck, we first introduce the distance d′j(oi, sk)

between oi and sk from the perspective of the jth categorical feature. The distance d′j(oi, sk)

is defined as a step function. If fij and fkj are identical, distance d′j(oi, sk) is 0; otherwise,

the distance is measured as 1. Thus, distance d′j(oi, sk) is expressed as

d′j(oi, sk) =

0, if fij = fkj

1, otherwise.

(3.5)

Now we derive the distance d′(oi, sk) between categorical data oi and center point sk from

Eq. 3.5 as a summation of the distances with respective of all the N ′ categorical features.

Hence, we have

d′(oi, sk) =
N ′∑
j=1

(d′j(oi, sk)). (3.6)

In case a dataset contains both numerical and categorical features, we combine Eq. 3.1

and Eq. 3.6 to measure the distance d(oi, sk) between data oi and center point sk. More

prosaically, distance d(oi, sk) is a weighted summation of the distances derived from both

44

the numerical and categorical features. Hence, we have

d̄(oi, sk) = d(oi, sk) + θ × d′(oi, sk)

=

√√√√ N∑
j=1

(fij − fkj)2 + θ ×
N ′∑
j=1

(d′j(oi, sk)). (3.7)

where θ is a weight parameter to adjust the importance of categorical features. After all

the distances are quantitatively measured, each data object in the dataset is grouped to the

nearest cluster.

3.2.2 User-Based Collaborative Filtering

During the course of online data reconstruction, data stored on faulty nodes are rebuilt

while users are accessing data in the system. To shorten user I/O response time, the collab-

orative filtering algorithm generates a recommendation list, in which popular data that are

likely to be referenced will be reconstructed first.

The collaborative filtering algorithm deployed in our POST system recommends data

objects (a.k.a., data contents) to active users by comparing ratings of similar users. It is

arguably true that recommended objects are more likely to be accessed by users and; there-

fore, POST leverages the recommendation list coupled with user-request lists as a guideline

to reconstruct data. In doing so, data with a strong access likelihood will be given a high

priority during the data reconstruction process.

The collaborative filtering module in POST is responsible for creating a recommendation

list by computing a similarity value between any pair of two users in terms of their content

ratings (a.k.a., user-item ratings). There are two steps in generating the recommendation

list:

• To find a user set in which users share similar interests to a active user.

• To project the active user’s interested data that the user has never accessed before.

45

Our system manages user-item ratings as user profiles, which are organized in the form

of a user-item rating matrix. A rating matrix consists of a table, where each row and each

column represent a user and a data object, respectively. The value sitting at the intersection

of a row and a column denotes a user rating.

The collaborative filtering algorithm calculates the similarities between users with re-

spect to user-item ratings, thereby making recommendations to active users in accordance

with the observed behaviors of similar users. Similarities can be measured in various ap-

proaches like Cosine, Pearson, and Euclidean [133]. In our POST implementation, we choose

to apply the Pearson correlation coefficient algorithm to compute similarities between any

pair of two users ux ∈ U and uy ∈ U , where U is a user set. Hence, the similarity between

ux and uy is formally expressed as

sim(ux, uy) =

∑
i∈Rxy

(rxi − r̄x)(ryi − r̄y)√∑
i∈Rxy

(rxi − r̄x)2
√∑

i∈Rxy
(ryi − r̄y)2

. (3.8)

where r̄x and r̄y are the average ratings from users ux and uy, rxi and ryi are ratings on data

object oi recorded by users x and y. Rxy is a set of data objects rated by both user x and

user y.

The algorithm collects the q′ nearest neighbours based on the similarity measures quan-

tified by Eq. 3.8. Thus, the similarity set is written as

L = {sim(ux, u1), sim(ux, u2), ..., sim(ux, uq′)}, q′ < q. (3.9)

where q′ is the number of nearest neighbours of user x, q is the number of users in the system

and sim(ux, ui) is the similarity between the target user ux and user ux’s neighbour uy.

A predicted rating p(ux, oi) is measured as a weighted average (see the second item on

the right-hand side of Eq. 3.10) of neighbour’s mean ratings plus active user ux’s mean rating

r̄x. User biases become inevitable, because a handful of users tend to constantly give high

or low ratings to all data objects. Thus, the predicted rating of user ux on object oi can be

46

expressed as

p(ux, oi) = r̄x +

∑
y∈H(ry,i − r̄y)sim(ux, uy)∑

y∈H sim(ux, uy)
, (3.10)

where sim(ux, uy) is the similarity between users ux and uy, r̄x and r̄y are embedded to

alleviate user-associated biases. Throughout this manuscript, we also refer to the predicted

rating p(ux, oi) as weight wx,i. Formally, we have

wx,i = p(ux, oi). (3.11)

A weight with a large value implies that data object i is popular. In other words, a high

weight of an object indicates an excessive number of accesses to the object.

We introduce object-weight pairs as the fundamental data structure for recommendation

lists. Given object oi and its weight wx,i from with respect to user ux, we express the object-

weight pair ϕx,i as

ϕx,i =< oi, wx,i > . (3.12)

Given a user ux, we denote P (ux) as a recommendation list with respect to ux. Applying

Eq. 3.10, we obtain all the predicted ratings (a.k.a., weights) of user ux on all the data objects

{o1, o2, ..., on}. Thus, we express the set of predicted ratings or weights with respect to user

ux as {ϕx,1, ϕx,2, ..., ϕx,m}. We place these predicted ratings in set P (ux) in an non-increasing

order. More formally, ux’s sorted predicted-rating set P (ux) is written as

P (ux) = {ϕx,1′ , ϕx,2′ , ..., ϕx,m′},

where wx,1′ ≥ wx,2′ ≥ ... ≥ wx,m′ . (3.13)

Now, we are in a position to form user ux’s recommendation list P (ux, h), which con-

tains the top h ratings in the sorted predicted-rating set P (ux). Thus, recommendation list

47

P (ux, h) can be expressed as

P (ux, h) = {ϕx,1′ , ϕx,2′ , ..., ϕx,h′)}. (3.14)

To speed up the performance of the filtering algorithm, we implement this technique

by the virtue of in-memory computing. Similar in-memory computing schemes tailored for

big-data applications can be found in the literature (see, for example, [118])

3.3 Designing POST

We take a hierarchical design approach to the design and development of POST, in which

a high-level controller is in charge of clustering (see Section 3.3.1) and another controller is

responsible for data reconstruction (see Section 3.3.2). Both high-level controllers coordinate

all the core modules in POST (see also the modules in Fig. 3.1 in Section (3.1.1)). In this

subsection, we shed light on the algorithms for the k-prototype controller (see Algorithm 1)

and the reconstruction controller (see Algorithm 2).

3.3.1 k-prototype Controller

The manager node governs the k-prototype scheme to calculate distance d(oi, sk) (see

Eq. (3.7)). Next, the distances between each data object and all the center points are

computed, followed by grouping each data to its nearest cluster. In doing so, similar data

objects are stored on the same strip in an erasure-coded storage system. Algorithm 1 shows

the high-level controller that orchestrates (1) data clustering and (2) data archiving in POST.

48

Algorithm 1: The high-level controller or-

chestrates data clustering and data archiving.

Input:

Key-value pairs of data objects

Selected features of the data objects

Output:

1: storageQueue=null;

2: k-prototype({ej}, {fjk});

3: for all clusters ci ∈ C do

4: for all data objects oj = (ej, vj) ∈ ci do

5: storeData(ej, vj);

6: storageQueue.add(ej);

7: end for

8: end for

9: return

In Algorithm 1, the k-prototype function takes a set {ej} of keys and a set {fjk} of

features as inputs (see Step 2). The goal of k-prototype is to generate multiple groups (e.g.,

ci), in which objects share similar features (e.g., fjk) in their keys. All the clusters created by

Step 2 are repeated processed by Steps 3-8. More specifically, ej and vj (see Step 4) indicate

the key and value of the key-value pair for data object oj; Function storeData() is a process

of storing the classified key-value pairs to data strips in the erasure-coded storage system

in a sequential order (see Step 5). Step 6 stores all the values (e.g., vj) of data objects as

metadata into the erasure-coded storage system. In case users and applications intend to

access data object oj, the data can be referenced through its stored key ej in the matadata

manager.

49

3.3.2 Reconstruction Controller

The recommendation scheme offers a recommendation list (see also Eq. 3.14) for each

user who is actively accessing the system. The reconstruction controller merges the recom-

mendation lists of multiple users into a single data-reconstruction list (a.k.a., reconstruction

list). Specifically, the controller carries out the four steps below to consolidate multiple

recommendation lists into a reconstruction list:

• To retrieve data objects and their corresponding weights in user ux’s recommendation

list P (ux, h) (see Eq. 3.14); to calculate the the number of occurrences and weight wi

for each key ei.

• To map key ei with stripes in the erasure-coded storage system.

• To calculate the summation of weights for each stripe, which is in faulty-stripe set

B; to generate a reconstruction list containing a two-tuple of faulty stripe B and the

corresponding weight W .

• To sort the reconstruction list by the decreasing values of weights of the stripes.

Algorithm 2 depicts the procedure of data reconstruction in POST, which carries out

the above four steps to yield a single reconstruction list by merging all the recommendation

lists for active users. The input information of Algorithm 2 include user I/O access history

and ratings as well as B = {b1, b2, ..., bn′} - a set of faulty stripes in an erasure-coded storage

system. The output is a reconstruction list recList, which contains stripe-weight pairs. The

length of recList and the size of set B are identical. Thus, we have

recList.size() = |B| = n′. (3.15)

Given stripe bk and its weight wk, we define αk = (bk, wk) as a stripe-weight pair for

the kth stripe. The reconstruction list - the output of Algorithm 2 - is formally expressed

50

as Eq. 3.16, where all the stripe-weight pairs are sorted by the Algorithm in the decreasing

order of the weights.

recList = {α1, α2, ..., αn′} = {(b1, w1), ..., (bn′ , wn′)},

where w1 ≥ w2 ≥ ... ≥ wn′ . (3.16)

It is worth noting that the weight of a stripe resembles its popularity. The most popular

stripes are listed at the head of recList; the least popular ones are placed at the end of

recList.

51

Algorithm 2: The high-level controller of

data reconstruction.
Input:

User I/O access history and rating records;

B = {b1, b2, ..., bn′}; /* Stripes to be recovered */

Output:

recList = {α1, α2, ..., αn′}; /* A reconstruction list

*/

1: for all ux ∈ U do

2: P (ux) = UbasedCoFiltering(ux); /* see

Eqs. 3.10, 3.11 */

3: end for

4: for all αk ∈ recList /* Initialize recList */ do

5: SetWeight(αk, 0); /* Initialize the weight of αk

*/

6: end for

7: for all ux ∈ U ′ do

8: for all ϕx,i ∈ P (ux) do

9: oi = GetDataObject(ϕx,i);

10: wx,i = GetWeight(ϕx,i);

11: bk = GetStripe(oi, B);

12: recList[wk]+= wx,i;

13: end for

14: end for

15: Sort(recList[wk]);

16: return recList;

52

In Algorithm 2, Steps 1-3 repeatedly perform user-based collaborative filtering to create

recommendation lists for all the users in set U . Function UbasedCoFiltering() in Step 2

implements the collaborative filtering strategy formally expressed in Eq. 3.14 Section 3.2.2.

We argue that the user-based collaborative filtering function should be executed in Step

2 prior to building the recommendation lists. This order is reasonable, because regardless

of data reconstruction, recommendation lists (see Step 2) are maintained and updated by

modern storage systems. In a real-world setting, the recommendation lists are concurrently

generated while users are accessing the system.

In Steps 4-6, all the weights of the stripe-weight pairs in recList are initialized to 0.

Let U ′ denote a set of users who are actively accessing the storage system during the data-

reconstruction process. Since all users are maintained in user set U , U ′ is a subset of U

(i.e., U ′ ⊆ U). Steps 7-14 repeatedly calculates each user’s weights with respective to data

objects. More specifically, Step 9 obtains the data object oi from object-weight pair ϕx,i (see

also the GetDataObject() function). Steps 10 and 11 derive weight wx,i and stripe bk from

object oi (see also the GetWeight() and GetStripe() functions). In Step 12, weight wk is

updated by augmenting intermediate result wx,i obtained from Step 10.

Finally, the sort() function in Step 11 sorts stripe-weight pairs in a non-increasing order

of weights in reconstruction list recList.

In case there is no user request (i.e., U ′ = ∅), the system gracefully downgrades to offline

data reconstruction where the reconstruction list is no longer required. In such an offline

data-reconstruction case, Steps 7-14 should be bypassed.

3.3.3 Time Complexity Analysis

The time complexity of user-based collaborative filtering implemented in Steps 1-3 is

O(|U | × |H|), where |U | is the size of user set U and |H| is the upper bound of the neigh-

borhood size (see Eq. 3.10). There are two iterations (see Steps 7 and 8) in Steps 7-14 and;

therefore, the time complexity of creating weights (a.k.a., popularity) is O(|U ′| × n), where

53

|U ′| is the size of user set U ′ and n is the number of objects. To be specific, we have the

time complexity of creating weights, which is O(n′ × log(n′)). The overall time complexity

is

O(|U | × |H|+ n′ × log(n′) + n′ × n). (3.17)

If the UbasedCoFiltering() function can be pre-processed in an offline style, the time

consumption should be mainly contributed by creating (see Steps 7-14) and sorting (see Step

15) a reconstruction list (i.e., recList). The time complexity can be simplified as

O(n′ × (log(n′) + n)). (3.18)

3.3.4 Examples

We make use of a simple example to elaborate on the two controllers (see Sections 3.3.1

and 3.3.2) in POST. We start the example by focusing on k-prototype that archives data in

an erasure-coded storage system. Fig. 3.6 shows the original data placement (see the layout

on the left-hand side of Fig. 3.6) and the new data placement after clustering (see the layout

on the right-hand side of Fig. 3.6). In this example, all the 24 data objects are grouped in

four clusters, which are marked as A, B, C, and D.

After clustering is performed, the data objects are arranged in a way that, in most cases,

data objects placed on one stripe belongs to the same cluster. For instance, objects A1−A4

form the first stripe stored across the four disks (i.e., disk1−disk4). If the number of objects

in a data cluster exceeds the number of disks, multiple stripes should be originated for the

cluster. For example, the size of cluster B is 7 (i.e., data objects B1−B7); objects B1−B7

are stored in two strips, of which the first one (i.e., B1 − B4) is archived on disk1 − disk4

and the second one (i.e., B5−B7) is distributed on disk1− disk3.

In this example all the data objects stored in a (4+4,4) RS-encoded system must be

recovered due to the four faulty nodes. Suppose there are four users (i.e., u1, ..., u4), each

of which issues two requests referred to as r11, r12, r21, ..., r42. Since k-prototype clusters data

54

Figure 3.6: Data objects are arranged in a way that, in most cases, data objects placed on
one stripe belongs to the same cluster. Objects A1 − A4 form the first stripe stored across
disk1 − disk4. A large cluster may be handled by multiple stripes. Objects B1 − B7 are
stored in two strips - (B1 − B4) and (B5 − B7), which are archived on disk1 − disk4 and
disk1− disk3, respectively. Objects C1− C8 are placed among three stripes.

with similar features, users have a high probability to access data objects that belong to the

same cluster. In this example, u1 requests A1 and A2, u2 accesses B2 and B3, u3 requests

C3 and C4, u4 issues requests to C4 and D5.

Figure 3.7: The case for k-prototype. The total waiting time as 13 with an average of 3.25
time unit per user.

Impacts of Data Clustering. Fig. 3.7 unravels the reconstruction time line for the

six stripes shown in Fig. 3.6. For simplicity without loss of generality, each stripe can be

recovered within a time unit. Intuitively, it takes six time units to cover all the stripes (i.e.,

stripe1− stripe6.

We consider the user waiting times for a baseline case where there is no data clustering

(see the layout on the left-hand side of Fig. 3.6). Because A2 is in stripe5 and A1 is in

Stripe3, u1 has to wait for the reconstruction of stripe5 before accessing all the requested

data. Hence, user u1 must wait for 5 time units before accessing all requested data. We

calculate the waiting times for all the users in the similar manner. Thus, the total waiting

time for all the four users to access the data objects in the baseline case is 19 time units

with an average of 4.75 time unit per user. With data clustering in place (see the layout on

55

the right-hand side of Fig. 3.6), the total waiting time is shortened to 13 with an average

of 3.25 time unit per user. Such an improvement is attributed by the fact that similar data

objects are archived in the same stripes, which can be reconstructed together.

Impacts of a Recommendation List. Now we evaluate the sample where user-based

collaborative filtering is involved without k-prototype. The data layout is illustrated on the

left-hand side of Fig. 3.6. The reconstruction list is constructed using the weight values

calculated from the recommendation lists, shown in Table III.

Table II: sample recommendation list

User recommendation weight

u1 A1,A2 5, 4

u2 B2,B3 5, 4

u3 C3,C4 5, 4

u4 C4,D5 5, 4

The four recommendation lists in Table II are combined into a single reconstruction

list (i.e., recList in Algorithm 2). Fig. 3.8 depicts reconstruction behavior of the system

governed by the reconstruction list.

Figure 3.8: The case for recommendation list. The total waiting time as 11 with an average
of 2.75 time unit per user.

Fig. 3.8 shows that the waiting time of user u3 is 1 time unit, because u3 can access all

the requested data after stripe2 is recovered. As such, we obtain the total waiting time as

11 with an average of 2.75 time unit per user. This is the evidence that popularity-aware

reconstruction can shorten user waiting time.

Impacts of Clustering and Recommendation. POST seamlessly integrates the

clustering and recommendation strategies to optimize the reconstruction list. The impacts

of clustering and recommendation are illustrated in Fig. 3.6 and Fig. 3.8), respectively.

56

Figure 3.9: The case for POST. The total waiting time as 10 with an average of 2.5 time
unit per user. The waiting times of the four users are 2, 3, 1, and 4, respectively.

Fig. 3.9 reveals the reconstruction outcomes of POST, where the total waiting time is

as low as 10 time units with an average of 2.5 time unit per user. In the case of our POST,

the waiting times of the four users (i.e., u1-u4) are 2, 3, 1, and 4, respectively. We conclude

from this example that POST significantly shortens user waiting times during the online

data reconstruction process.

Table III: sample recommendation list

Total waiting time Avg. Waiting Time Reduction

The greedy system 19 4.75 0

The clustering system 13 3.25 31%

The recommendation system 11 2.75 42%

The POST system 10 2.5 47%

3.4 Performance Evaluation

In this section, we evaluate the performance of POST driven by real-world datasets.

We compare POST with a baseline solution called Greedy, which represents data reconstruc-

tion policies that ignore k-prototype clustering and collaborative filtering. We measure the

average user waiting times of data reconstruction in an erasure-coded storage system gov-

erned by both POST and Greedy. We also test POST ’s two variants, which are referred to

as Clustering and Recommendation. In the Clustering scheme, we enable the k-prototype

clustering feature while disabling the collaborative filtering feature. In the Recommendation

scheme, we turn on the collaborative filtering feature and turn off k-prototype clustering.

All four strategies are assessed under a wide variety of workload conditions.

Before presenting experimental results, let us discuss the experimental settings in Sec-

tion 3.4.1. The impacts of data similarity on the system performance are discussed in

57

Section 3.4.4. Sections 3.4.5 and 3.4.6 presents the impacts of the number of users and the

number of user requests, respectively. Section 3.4.7 sheds some light on the effect of stripe

capacity.

3.4.1 Experimental Settings

We quantitatively evaluate the performance of POST using a real-world dataset con-

taining movie data objects [3]. The movie dataset records user ratings accompanied by users

access history. More specifically, the dataset is comprised of 26 million ratings from a total

of 270, 000 users for all 45, 000 movies. Fig. 3.10 illustrates the distribution of the movies

with respect to the number of ratings.

Figure 3.10: Distribution of user ratings with respect to movie IDs. Approximately 60% of
ratings are placed on items, the movie IDs of which are smaller than 3, 500.

We pay particular attention to this real-world dataset, because most movie data are

classified as warm data where 80% data only capture less than 20% of accesses. The warm

58

Figure 3.11: distribution of user ratings for the movies dataset

data features of movie contents are confirmed by Fig. 3.11, which shows the distribution of

user ratings with respect to movie IDs. Approximately 60% of ratings are placed on items,

the movie IDs of which are smaller than 3, 500. As such, we select the movie ID ranging

from 0 to 3, 500 in the dataset. All the ratings are on a scale of between 1 and 5 obtained

from the official GroupLens website [3].

Importantly, movie data also have distinct numeric and categorical features (e.g., years,

budgets, popularity, production companies, main actors, and genres), which are catalysts

for the data clustering module (i.e., k-prototype clustering). The selected features in our

implementation include released year, runtime, genres, production companies and main ac-

tors. In the k-prototype module (see Section 3.1.3), the number m of clusters is set to 10. In

the recommendation module (see Section 3.1.4), weight parameter θ is configured to 0.8. To

facilitate the test of average user waiting time for accesses to the data objects, the system

concurrently serves various number (i.e., anywhere between 1,000 to 10,000) of data objects

(a.k.a, movies) at the same time.

We also test our system driven by book data objects. Compared to the movie dataset,

e-book dataset encompasses small objects; one stripe stores enormous book objects. The

59

book dataset contains ratings of ten thousand popular books. There are approximately 100

reviews for each book, the ratings of which varies one to five [2].

To carry out extensive experiments, we set up a cluster consisting of eight (8) storage

nodes distributed as a (4+4,4) RS-coded storage cluster in addition to one manager node.

In the stress tests of the data-reconstruction process, all the stripes in the system are recov-

ered to replace four faulty nodes. To resemble real-world cluster computing systems (e.g.,

HDFS [109] and GFS [41]), we set data block to 64 MB and each stripe (i.e., 64MB × 4)

can hold eight movie data objects or 64 book data objects.

3.4.2 Data archival

We measure time spent in archiving data, the process of which is following the k-

prototype procedure. In POST, n data blocks of each data stripe are separated into k

clusters. We investigate the impact of the number k of clusters on archiving performance by

setting k to 5, 10, 15 and 20, respectively. Fig. 3.12 shows the data archiving time in POST

when we configure the number of iterations, the number of data nodes, the number of parity

nodes, data block size to 30, 4, 4, 64 MB, respectively. The archived dataset contains movie

data objects of approximately 25 TB [3].

In Fig. 3.12, the blue line reveals the data archival time when the k-prototype algo-

rithm is disabled (a.k.a., the baseline case); the four green bars represent the data archival

time under various numbers of clusters. We observe from the experimental results plotted

in Fig. 3.12 that data archival time measures in POST are almost identical to that in the

baseline case. Compared to the long archival time consumption, the k-prototype clustering

time merely accounts for a small proportion. It is evident that k-prototype clustering im-

poses marginal overhead in POST, suggesting that the overhead induced by the k-prototype

algorithm becomes negligible when a sheer volume (e.g., 25 TB) of data is archived. Because

the data archival process is a one time deal, the small cost of k-prototype clustering can be

reasonably ignored.

60

Figure 3.12: The impacts of the number of clusters on data archiving time in the POST
system. The number of iterations, the number of data nodes, the number of parity nodes,
data block size are configured to 30, 4, 4, 64 MB, respectively. The archived dataset contains
movie data objects of approximately 25 TB.

3.4.3 Space Overhead Analysis

It is arguably true that POST’s scheduling overhead in data reconstruction is quite

low, because files are organized in form of large blocks to cut back meta-data management

overhead. Meta data are implemented in POST to manage the popularity of data blocks.

The meta-data manager keeps track of the popularity levels and tags of data objects stored

in the POST system. It takes four bytes to hold the popularity and tag of each data object.

Therefore, the meta-data management overhead in POST largely depends on the number

of the data objects and data object size in a storage system. More broadly, the meta-data

space overhead of each data object is as small as four bytes; the overhead ratio is quantified

as a ratio between 4 bytes and the data object size (i.e., 1
object−size

). For example, when the

data object size is set to 64 MB and the number of data objects is 1000, the space overhead

of the meta data is 4 KB; the overhead ratio is 1/16M, which is approximately zero.

61

3.4.4 Impacts of Similarity

Recall that in this research we introduce a simple yet effective prediction module, where

a recommendation list is continuously updated. These predicted results serve as a guideline

to create a reconstruction list, which directly affects the performance of our POST. Fig. 3.13

depicts an overall impact of weight value wx,i on prediction accuracy. Intuitively, weight wx,i

(see predicted rating in Eq. 3.11) is proportional to the prediction accuracy. The prediction

accuracy dramatically deteriorates when the weight value is smaller than 3.

This result is vital and inspiring, because the correlation between the weight value and

prediction accuracy offers a guideline to system administrators to optimize the h value in

the recommendation list P (ux, h) (see Eq. 3.14 in Section 3.2.2). For example, when h is a

large value, the predicted ratings placed at the end of the recommendation list (see Eq. 3.14)

become inaccurate. On the other end of the spectrum, a small h value downgrades the

performance of our POST.

Figure 3.13: Impact of weight value on prediction accuracy. The weight value is proportional
to the prediction accuracy. The correlation between weight value and prediction accuracy
guides system administrators to optimize the h value in the recommendation list P (ux, h)
(see Eq. 3.14.

62

POST’s high-level controller strives to merge multiple recommendation lists to originate

a single reconstruction list. We evaluate the time cost of high-level data-reconstruction

controller (see also Steps 7−14 in Algorithm 2) by considering I/O overhead. The time cost is

augmented to the total execution time of the POST system. Fig. 3.14 unveils the relationship

between prediction accuracy and average user waiting time (i.e., waiting time). We normalize

the waiting time of POST based on that of the greedy approach. The normalization results

present the performance improvement of POST over the baseline greedy scheme. It is worth

noting that the prediction accuracy is positive correlation with similarity value in k-nearest-

neighbor(KNN) set L (see Eq. 3.9).

Figure 3.14: The impact of prediction accuracy on average waiting time. There are 100
users concurrently accessing 1,000 data objects. Boosting the prediction accuracy shortens
waiting time.

Fig. 3.14 shows that boosting the prediction accuracy can significantly shorten the

average waiting time. For instance, a prediction accuracy of 100% indicates the system is

exactly aware of users’ future interests, which lead to the most appropriate recommendation

list. On the other hand, a prediction accuracy of 0% implies that POST is downgraded

to the greedy scheme. This downgrading trend is reasonable, because the I/O overhead in

Algorithm 2 is far lower than the reconstruction cost (about 1
1000

).

63

3.4.5 Impacts of Number of Users

In this group of experiments, we compare POST with two alternatives (i.e., the clus-

tering approach, the recommendation approach) and three reconstruction strategies (i.e.,

the Greedy strategy, location-based strategy and user-request driven strategy). We quanti-

tatively evaluate the effects of the number of users on the reconstruction performance of the

six strategies. All the users issue their access requests, which are randomly selected from

the users’ history records. In particular, we randomly pick ten data objects from each user’s

history record to place on the access list. Fig. 3.15 unravels the sensitivity of our POST and

the three counterparts to the number of users ranging from 20 to 1000 with an increment of

20.

We randomly select ten (10) data objects from the access history of each user to perform

as a request list. The average waiting time of a user is derived from the time at which POST

finishes reconstructing the last movie in the user’s request list.

64

(a) The movie dataset of user group 1. (b) The movie dataset of user group 2.

(c) The book dataset of user group 3. (d) The book dataset of user group 4.

Figure 3.15: The average waiting time measures of the six reconstruction strategies managing

the movie datasets and book datasets. The number of users varies from 20 to 1000 in movie

dataset and 20 to 800 in book dataset.

Fig. 3.15 unveils that an increasing number of users in POST leads to a low average

waiting time. For example, in Fig. 3.15(a), when the number of users is set to 100, the

average waiting time in POST is 2571 seconds. In case of 400 users, the POST’s average

waiting time is reduced to 1858 seconds, representing a reduction of 28.7%. This trend is

reasonable, because increasing the number of users makes it more likely to share movies

among the active users. When the amount of shared data rises, an increasing number of

users tends to benefit from reconstructing shared data objects. In other words, with the

65

increment of number of users, the probability of multiple users accessing the same data goes

up accordingly. As such, the average waiting time is shortened thanks to requests sharing

the popular data.

Not surprisingly, the average waiting time of the greedy scheme is insensitive to the

number of users. Such a comparison between POST and Greedy demonstrates that when

the recommendation algorithm is imported, popular data that have a high probability to be

accessed by and shared among multiple users are ranked at the top of a reconstruction list.

We conclude from this group of experiments that the POST exhibits superb and scalable

reconstruction performance for a large number of users who tend to share popular data

objects in storage systems.

We conduct an array of experiments to compare POST against the two common data

reconstruction scheduling policies. Figs. 3.15(a) and 3.15(b) unveil the average waiting

time of requests governed by POST, the location-based policy, and the user-request driven

policy. We observe from Figs. 3.15(a) and 3.15(b) that the location-based data reconstruction

scheduling policy behaves in a similar fashion as the greedy algorithm. It is evident that the

scheduling decisions made by the location-based scheme are closely matching those of the

greedy policy. More importantly, POST outperforms the user-request driven policy, in which

the lack of popularity awareness makes it virtually impossible to prefetch popular data blocks.

Now we are positioned to compare Figs. 3.15(a) and 3.15(b), which show the experimen-

tal results of the movie datasets capturing the behaviors of two user groups (i.e., group 1 and

group 2). We observe from Figs. 3.15(a) and 3.15(b) that all the tested algorithms perform

better for user group 1 than user group 2. User group 1 enjoys more performance benefits

than user group 2, because users in group 1 share more similar interests than those users in

group 2. The results plotted in Figs. 3.15(c) and 3.15(d) are almost identical, because the

interest similarity of users in group 3 is close to that of users in group 4.

66

3.4.6 Impacts of Number of User Requests

This experiment tests the performance affected by various number of requests per user.

We fix the number of users to 100 while randomly choosing the number of requests per user

from 5 to 100 with an increment of 5. Fig. 3.16 illustrates the impact of the number of

requested data objects per user on average waiting time.

(a) The movie dataset of user group 1. (b) The movie dataset of user group 2.

(c) The book dataset of user group 3. (d) The book dataset of user group 4.

Figure 3.16: Average waiting times of the six reconstruction strategies. The number of

requested data objects per user varies from 5 to 100 with an increment of 5. The number of

users is set to 100.

We draw a total of four observations from Fig. 3.16. First, among the six competitive

schemes, our POST is a front runner across all the settings. This experimental result is

67

consistent with that revealed in Fig. 3.15 in Section 3.4.5. Second, the average waiting time

consistently increases with the increment of requests per user. This performance trend is

applicable to all the evaluated six schemes.

Third, when the number of requests for each user is small, the recommendation system

performs better than the clustering system. This observation suggests that the performance

comparisons between the recommendation and clustering systems largely depend on the

number of requests issued per user. The performance of the location-based system is similar

to that of the greedy system, because the only denominating parameter affects the data

reconstruction scheduling policy in the location-based and greedy systems is the data requests.

Also, we observe that the overall performance of the recommendation-based system is superior

to that of the user-request driven one. Thanks to popularity awareness, the recommendation-

based system outperforms the user-request driven system.

Fourth, regardless the number of requests per user, the recommendation module in

POST cuts back the average waiting time by approximately 20%. Such an improvement is

insensitive to the number of requests per user, because the prediction accuracy is independent

of the number of requests issued by a user. It is arguably true that in the recommendation

system, increasing the number of requested data objects does not necessarily rank the popular

data on the top of the reconstruction list.

Fifth, unlike the recommendation system, the clustering system consistently reduces

the average waiting time when the number of requests per user goes up. The reason is that

increasing the number of requests per user boosts the chance of placing the requested data

in the same cluster, thereby making it more likely to store the data within the same stripe.

We conclude from observations four and five that the recommendation system only offers

an optimization at a fixed rate; the clustering system, on the other hand, can continue in

slashing the average waiting time when we push up the number of requests per user.

Last, but not least, the performance improvements of POST over Greedy become more

pronounced when the number of requests per user is lifted. We attribute this trend to the

68

fact that when each user issues more requests, the requested data objects have a higher

probability to be classified and stored in the same cluster; that is, these objects are more

likely to be placed within the same stripe. In a nutshell, increasing the number of requests

per user allows POST to deliver outstanding performance improvements over the Greedy

scheme.

Comparing Figs. 3.16(a), 3.16(b), and 3.16(d), we observe that the clustering system

outperforms the recommendation system when the number of requests per user goes up. In

contrast, Fig. 3.16(c) illustrates that the recommendation system is superior to the clustering

system. The results indicate that increasing the number of requests per user imposes a

marginal impact on recommendation accuracy.

3.4.7 Impacts of Stripe Capacity

In the following experiments, we investigate the impacts of stripe capacity on POST’s

average waiting time. To achieve this goal, we configure the number of users to 100; we fix

the number of requests per user to 10. Also, we set the data-block size from 8 MB to 2 GB,

implying that each stripe is capable of holding anywhere between 1 to 32 movie data objects

or between 64 and 2048 book data objects. Fig. 3.17 unravels the performance impacts of

the stripe capacity on the four data reconstruction schemes. The stripe capacity is gauged

in terms of the number of data objects stored in each stripe.

69

(a) The movie dataset of user group 1. (b) The movie dataset of user group 2.

(c) The book dataset of user group 3. (d) The book dataset of user group 4.

Figure 3.17: The average waiting times of the four reconstruction strategies. The number of

data objects stored in one stripe varies from 1 to 2,048.

An intriguing observation drawn from Fig. 3.17 is that when the stripe capacity is low

(e.g., 1), the clustering system offers no performance improvement over the greedy system.

Nevertheless, the performance improvement of the clustering system over the greedy one

become more pronounced when the stripe capacity keeps rising. Is is worth mentioning

that with the increment of stripe capacity, the average waiting time of the greedy system

is worsened. For example, in Fig. 3.17(a), when the stripe capacity is configured to 16,

the average waiting times of greedy, clustering, recommendation, and POST are 4170, 3494,

3049, 2611, respectively. In case of stripe capacity being 2048 in Fig. 3.17(c), the average

70

waiting times of the four schemes are 272, 197, 192, 161, respectively. When the stripe

capacity is expanding, it spends more time in recovering each stripe; therefore, the average

waiting time becomes higher in the Greedy and Recommendation scenarios.

The experimental results plotted in Fig. 3.17 unravel that the recommendation system

offers a stable reduction in terms of average waiting time thanks to the system’s constant

predict accuracy. On the other end of the spectrum, the clustering system is conducive to

effectively reducing the average waiting time. Such waiting-time reductions are contributed

by a large number of similar data objects archived in a single stripe. In the case of POST,

popular data are more likely to be discovered and set on the top of the reconstruction list.

We observe from Figs. 3.17(a) and 3.17(b) that the clustering algorithm makes little

impact on user waiting time if the stripe capacity is fairly small. On the other end of

the spectrum, a large stripe capacity optimizes the clustering performance in the context

of data reconstruction. For instance, Figs. 3.17(b) and 3.17(d) reveal that the clustering

algorithm lowers user waiting time during the data reconstruction process. In contrast, the

recommendation algorithm is unable to cut back user waiting time even we enlarge the stripe

capacity.

In summary, the stripe capacity make very little impacts on the recommendation sys-

tem’s performance; the POST and clustering systems enjoy performance improvements by

scaling up the stripe capacity.

3.5 Summary

In this chapter, we developed an erasure-coded storage system called POST, which

seamlessly integrates the efficient data archival and online reconstruction techniques. We

implemented a k-prototype clustering controller to archive unpopular data that attract a

limited number of accesses. Our POST system is reliant on the clustering controller to

group files into multiple clusters, in each of which files share similar features.

71

In POST, we incorporated user-based collaborative filtering to deal with online data

reconstruction in which faulty data nodes are rebuilt while responding to I/O requests.

POST is conducive to recovering faulty nodes while boosting read performance for requests

accessing data residing on the faulty nodes. We implemented a prediction module where a

list of popular data is projected by keeping track of historical I/O accesses. This popular-

data list provides predictions on files that are likely to be accessed in the not-too-distant

future. The prediction module in POST is adept at computing similarities among users,

thereby promoting popular data to be reconstructed prior to unpopular ones.

We implemented our POST system in an erasure-coded storage cluster driven by real-

world datasets. We conducted extensive experiments to demonstrate that the POST system

is adroit at reducing user waiting time by the virtue of an optimized popularity-aware re-

construction list.

In particular, we showed that weights (a.k.a., predicted ratings) are proportional to

the prediction accuracy, because the correlation between the weight value and prediction

accuracy offers a guideline to system administrators to optimize recommendation lists that

lead to a reconstruction list. The evidence confirms that POST is capable of boosting the

prediction accuracy, which significantly shortens the average waiting time.

The empirical results unveils that an increasing number of users in POST leads to a low

average waiting time. Moreover, increasing the number of requests per user allows POST to

deliver outstanding performance improvements over the three alternative schemes (i.e., the

greedy, clustering, and recommendation systems), because popular data in POST are more

likely to be discovered and set on the top of the reconstruction list.

72

Chapter 4

The Popularity-Aware Cache Replacement

In this chapter, We propose a popularity-driven caching policy referred to as PDC in this

study, which leverages future accesses predictions to push cache-replacement performance

to the next level for big data applications. Our PDC advocates for data recommendation

algorithms to gauge popularity values for data objects from active users’ access history. Pop-

ularity values in turn signify data replacement priorities amid making replacement decisions.

In addition to orchestrating active users (e.g., log into the system) and inactive users (e.g.,

log out from the system), a management module in the PDC system keeps track of access

preferences (e.g., popularity measures) of the users.

Let us organize the rest of this chapter as follows. The design details of PDC system

are described in Section 4.1. Section 4.2 presents the user-based collaborative filtering rec-

ommendation algorithm. After elaborating performance metrics and experimental settings,

Section 4.3 offers the performance analysis in terms of hit ratio and byte hit ratio. We

summarize our achievements in this part of the dissertation in Section 4.4.

4.1 System Design

In this chapter, we elaborate on the overall system design of the proposed PDC system

powered by the mathematical underpinnings. We also shed some light on the functionality of

the core modules that are in charge of making recommendations and caching popular data.

4.1.1 Overview

Fig. 4.1 depicts the high-level system architecture of PDC. Our proposed PDC system

orchestrates caches, a catalog of content items (e.g., movies) and a set of historical user

73

access information. Throughout this chapter, we refer to the content set and the user-

access-information set as O and U , respectively.

Figure 4.1: The high-level architecture of the PDC system.

The caches in PDC are limited resources storing popular data to be accessed in the

not-too-distant future. In the PDC system, the caches are deployed on a back-end server.

Thanks to large-scale cluster computing systems, we construct a large cache region using

distributed main memory in a storage cluster. The large cache resources are expected to

store popular data along with the entire catalog (a.k.a., metadata).

Big content items are stored in a storage cluster, where parallel disk systems furnish high

I/O throughput. In addition to content items, metadata in the form of tags are managed by

PDC on the storage cluster. A wide range of thematic categories (e.g., movies, music, news)

are stored and archived in the storage cluster.

After users accessing the contents managed by PDC, the corresponding accesses are

treated as historical data captured in the user-access-information set U . To speed up slow

I/O processes, PDC attempts to keep popular data in the large caches to avoid unnecessary

disk I/Os. As such, users are enabled to quickly access data contents residing in main-

memory caches rather than disks. Upon the arrival of a user request, PDC determines if the

requested data items are kept in the memory caches.

When a user logs into a storage system, the recommendation module (see Section 4.1.2)

originates a recommendation list guiding the user’s future accesses. Each recommendation

list is comprised of a group of data items coupled with the user’s interest levels in the

data. Thanks to the fact that recommendation lists can be made available prior to users’

access, the storage system avoids extra overhead and resources dedicated to calculating the

74

lists on the fly. PDC aims at curtailing the I/O accesses of active users and; therefore,

recommendation lists of active users should be an input of PDC. In other words, PDC

makes cache replacement decisions using the recommendation lists of active users rather than

inactive ones. To implement this strategy, we allow PDC to backup the recommendation list

of a user when the user logs out of the storage system; the recommendation list is restored

if the user logs in the future.

The PDC gauges all active users’ interest levels with the perspective of data items in

the storage system. A data item’s popularity is derived from all users’ interest levels with

respect to the data. PDC manages a popularity list, which contains the popularity measures

of all data items to be accessed by active users. The length of the popularity list largely

depends on the cache size and the capacity of the entire storage system. A large storage

system with a big cache size tends to have a long popularity list and vice versa.

The cache replacement policy governed in PDC is driven by the popularity list. The

overarching goal of PDC is to evict the least popular data from the cache while reserving

cache resources for popular ones. The popularity list is dynamically changing and the reason

is two fold. First, user states are transitioning between active and inactive. Second, user

interests are continuously shifting. Hence, the popularity values of data are fluctuating.

From the perspective of active users, the former popular data may become warm or cold.

Data items are unpopular because the number of active users accessing the data is reduced

below a certain threshold.

For simplicity without loss of generality, we assume the preferences and interests of

individual users are relatively stable. We make use of a Poisson process - an independent

reference model - to capture the arrivals of I/O access issues by active users. It is worth

noting that the independent reference model, simulating access behaviors, has been widely

adopted in the research community (see, for example, [16], [127]).

75

4.1.2 The Popularity Calculator Module

The popularity-aware cache replacement strategy imports the idea of popularity calcula-

tor from POST. The UBCF algorithm is adroit at predicting future user accesses derived from

people’s similar preferences and interests. We argue that user preferences are predictable and

the reason is two-fold. First, the user preferences and interests are stable within a certain

time period. Second, future preferences are strongly correlated to past preferences. Similar

justifications can be found in an early study [133].

The UBCF algorithm predicts a user’s future preferences or interests by (1) comparing

the user’s access behaviors with the historical accesses of the other users and (2) searching

the nearest neighbors to project the future preferences. We select the top h data objects

that have the highest predicted level of interest to construct a recommendation list. Then,

all the recommendation lists are aggregated into a single popularity list based on the data

objects’ integral levels of interests. If users request data object is not in the cache, the least

unpopular data will be replaced first.

4.1.3 Cache Replacement

Caching system plays an essential role in improving the performance of web-based sys-

tems (e.g., minimizing the utilization of network bandwidth, decreasing user-perceived de-

lays, and reducing workloads). Three factors that have a high impact on caching system

include cache consistency, cache pre-fetching, and cache replacement [6] [63] [60]. Among

the three elements, the cache replacement method is placed under the spotlight in this disser-

tation study. We demonstrate a way of leveraging a cache replacement scheme to significantly

enhance the performance of storage systems powered by our PDC (see also Section 4.2).

When a cache is fully loaded with data objects, a replacement strategy is kicked in to

manipulate the cache to release space for newly arrived objects. The primary objective of an

ideal cache replacement policy is to evict undesired objects that are unlikely to be accessed

76

in the not-too-distant future, thereby optimizing the utilization of the cache with a high

cache hit rate.

In large-scale storage systems, data objects sharing similar features are stored in identical-

sized blocks. As such, we are devoted to maximizing cache replacement efficiency for ho-

mogeneous data objects that are considered to have similar sizes, types, and structures. In

this case, the features of data objects generally are not a key affecting cache replacement

decision.

4.2 A Generalized Popularity-Driven Cache Replacement Algorithm

This section describes the conceptual and mathematical underpinnings of the cache

replacement management model developed for establishing the PDC system. We start in

this section by introducing the UBCF algorithm. Next, we formally define the popularity list

extracted from UBCF and present the cache replacement algorithm for the big-data storage

system. To facilitate the presentations of the algorithms, we summarize the symbols and

notation used throughout this manuscript in Table I.

4.2.1 User-Based Collaborative Filtering

The Fig.4.2 shows the workflow of PDC module. During the course of cache replacement,

data accessed by users are fetched from nodes to the cache in the system. The collaborative

filtering algorithm deployed in our PDC system makes recommendations on future accessed

data objects (a.k.a., data contents) to active users by comparing ratings in terms of the levels

of interests harvested from similar users. Statistical evidence (see, for example, [101][47])

unveils that recommended data objects are more likely to be accessed by users than those

non-recommended ones and; therefore, PDC leverages the popularity list coupled with user-

request lists as a guideline to manage data’s popularity. In doing so, data with a strong

access likelihood are kept in the cache without being evicted by the cache replacement.

77

Table I: Symbols and Notation

Symbol Annotation

O a dataset includes a set of data objects

oi the ith data object in dataset O

ei key of the key-value pair in ith data object

vi value of the key-value pair in ith data object

rxi ryi rate value of user x or y on data object i

U a set of users are loging in or loging out the system

sim(ux, uy) the similarity value between users x and y

Rxy a set of data objects rated by both user x and user y.

rxi ryi rate value of user x or y on data object i

S
records the set which collects the q′ nearest

neighbors similarity set

ux uy the x/yth user in the set U

W a set of predicted ratings value

wx,i the predicted rating of data object oi for user ux

ϕx,i

an object-popularity pair records the data object oi

and the corresponding popularity wx,i

p(ux, oi) the predicted ratings wx,i of data object oi for user ux

P (ux, h)
records h highest recommended data objects oi and

corresponding popularity in p(ux, oi) for ux

L
records the single popularity list merged by multiple

recommendation lists

78

Start

User requests object

fetch from the
storage system

Cache missCache hit

compute popularity

update popularity

ret rieve from the
cache

remove object with
lowest popularity

I s enough space in
cache available?

Is the object in the
cache?

store the object
into cache

update cache
information

end

Yes No

YesNo

Figure 4.2: The work flow of PDC cache replacement.

79

We extend and incorporate the user-based collaborative filtering algorithm [133][47],

which delivers striking performance in creating recommendation lists by computing similarity

values between any pair of two users in terms of content ratings (a.k.a., user-item ratings).

The algorithm embraces two steps below in originating a recommendation list:

• Step 1: To construct a user set in which users share similar interests to an active user.

• Step 2: To project the active user’s interested data that this active user has never

accessed in the past.

Our PDC system originates and maintains user-item ratings as part of user profiles,

which are organized in the format of a user-item rating table (see also the input component

in Fig. 3.5). A rating table consists of a matrix, where each row and each column represents

a user and a data object, respectively. The value sitting at the intersection of a row and

a column denotes a user rating. For example, in the rating table plotted in Fig. 3.5, the

intersection between user ux and data object oi indicates the rating of user ux on object oi.

The collaborative filtering algorithm gauges the similarities among users with respect

to user-item ratings, thereby making recommendations to active users in accordance with

the observed behaviors of similar users. Similarities can be measured in various approaches

like Cosine, Pearson, and Euclidean [133]. In our PDC system, we advocate for the Pearson

correlation coefficient algorithm to quantify similarities between any pair of two users ux

and uy in the user set U . More formally, the similarity between ux and uy is expressed as

sim(ux, uy) =

∑
i∈Rxy

(rxi − r̄x)(ryi − r̄y)√∑
i∈Rxy

(rxi − r̄x)2
√∑

i∈Rxy
(ryi − r̄y)2

. (4.1)

where r̄x and r̄y are the average ratings from users ux and uy, rxi and ryi are ratings on data

object oi recorded by users x and y. Rxy is a set of objects rated by users x and y. z

80

The algorithm aggregates the q′ nearest neighbours based on the similarity measures

quantified by Eq. 4.1. Hence, the similarity set is written as

S = {sim(ux, u1), sim(ux, u2), ..., sim(ux, uq′)}, q′ < q. (4.2)

where q′ is the number of nearest neighbours of user x, q is the number of users in the system

and sim(ux, ui) is the similarity between target user ux and user ux’s neighbour uy.

A predicted rating p(ux, oi) is calculated as a weighted average (see also the second item

on the right-hand side of Eq. 4.3) of neighbour’s mean ratings plus active user ux’s mean

rating r̄x. An array of users tend to offer high or low ratings to all evaluated data objects

and; therefore, user biases do exist. The predicted rating of user ux on object oi is written

as

p(ux, oi) = r̄x +

∑
y∈H(ry,i − r̄y)sim(ux, uy)∑

y∈H sim(ux, uy)
, (4.3)

where sim(ux, uy) is the similarity between users ux and uy, r̄x and r̄y are embedded to

suppress user-associated biases. We refer to the predicted rating p(ux, oi) as popularity

(a.k.a., level of interest) wx,i, which is expressed below.

wx,i = p(ux, oi). (4.4)

A data object exhibiting large popularity is a popular data object. Intuitively, an

enormous number of requests accessing highly popular objects in storage systems. We make

use of object-popularity pairs as a key data structure for recommendation lists. Let us

consider object oi and its popularity wx,i with respect to user ux. We define object-popularity

pair ϕx,i of ux and oi below.

ϕx,i =< oi, wx,i > . (4.5)

81

We denote P (ux) as a recommendation list of ux. With Eq. 4.5 in place, we derive the

predicted ratings of user ux on all the data objects {o1, o2, ..., om}. Now, we express the

set of predicted ratings of ux as {ϕx,1, ϕx,2, ..., ϕx,m}, which are stored in set P (ux) in an

non-increasing order. Thus, ux’s sorted predicted-rating set P (ux) is modeled as

P (ux) = {ϕx,1′ , ϕx,2′ , ..., ϕx,m′},

where wx,1′ ≥ wx,2′ ≥ ... ≥ wx,m′ . (4.6)

Recommendation list P (ux, h) of user ux contains the top h ratings in the sorted

predicted-rating set P (ux). Hence, recommendation list P (ux, h) is written as

P (ux, h) = {ϕx,1′ , ϕx,2′ , ..., ϕx,h′)}. (4.7)

We implement the filtering algorithm using cutting-edge in-memory computing to speed

up the process. Please refer to the literature (e.g., [118]) for similar in-memory computing

schemes tailored for big-data applications.

4.2.2 A Popularity-Based Cache Replacement Policy

In our proposed system, a recommendation list (see also Eq. 3.14) is customized for

each active user accessing the system. The PDC cache replacement controller merges the

recommendation lists of multiple users into an aggregated popularity list. Let li be the

popularity measure of the ith data object. Popularity li is derived from popularity ϕx,i of

object i from the perspective of user x. We quantify popularity li as a summation of all the

popularity measures from the view points of all the users accessing object i. Thus, popularity

li is written as

li =
∑
x∈U

(ϕx,i), ϕx,i ∈ P (ux, h). (4.8)

82

Formally, the popularity list can be expressed as

L = {l1, l2, ...li, ..., ln}li ∈ O, (4.9)

where li contains the meta data object oi and the corresponding popularity value wi.

Algorithm 3 depicts the procedure of PDC’s cache replacement policy, which is fed with

an aggregated popularity list L merged from individual recommendation lists. The cache

replacement policy is kicked in when objects are evicted from the cache to release space to

accommodate new items. The input information of Algorithm 3 embraces historical user

I/O accesses coupled with ratings, which are captured in popularity list L (see also Eq. 4.9).

Algorithm 3: The popularity-based cache replacement policy.

Input:
Popularity list L; /* see also Eq. (4.9) */
All the data objects oi in cache C;
User’s request r(oi′);

Output:
An updated cache C.

1: if oi′ ̸∈ C then
2: for oi ∈ C do
3: li = (oi).getV alue()
4: if min < li then
5: min = li;
6: least pop = i;
7: end if
8: end for
9: end if
10: cache.pop(oleast pop)
11: cache.add(onew)
12: return

Algorithm 3 starts by checking if new request r(oi′) attempts to access object oi′ that is

residing in cache C (see Step 1). The algorithm continues its execution only if the requested

object oi′ has not yet been buffered in the cache. Steps 2-6 traverse the current data objects

stored in cache C in order to pinpoint the least popular one to be evicted. More specifically,

Step 6 keeps track of the object (i.e., oleast pop) with the lowest popularity in the cache.

83

Function getV alue() in Step 4 extracts popularity value li (see also Eq. (4.9)) of object oi

. The last two steps (i.e., 10 and 11) substitute the new object onew for the least popular

one oleast pop in cache C. In doing so, the cache is in the right position to maintain the most

popular objects for future user requests.

Now we are positioned to elaborate the design of the popularity-list updating algorithm

(see also Algorithm 4), which is instantly invoked each time when there is a new user log into

the system. This algorithm meticulously updates the popularity list by merging multiple

new recommendation lists (e.g., recommendation list P (ux, h) for user ux), which is derived

from Eq. 3.10. On the other end of the spectrum, the popularity-list updating algorithm is

triggered if a user logs out of the system. Algorithm 4 formally describes the procedure of

updating the popularity list upon the arrivals and departures of users. The input parameters

of Algorithm 4 include an existing popularity list L and the recommendation list P (ux, h) of

newly arrived user ux. The output parameter is an updated popularity list referred to as L′.

Algorithm 4: The controller of popularity update.

Input:
Popularity list L; /* see Eq.4.9*/
The recommendation list P (ux, h); /* the user may coming or leaving */

Output:
// for all object-popularity pairs in set P (ux, h)

1: for ϕ(x, i′) ∈ P (ux, h) do
2: oi′ = get object(ϕ(x, i′))
3: for li ∈ L do
4: oi = get object(li);
5: if oi′ == oi then
6: wx,i′ = get popularity(ϕ(x, i′));
7: wi = get popularity(li);
8: wi = wi + wx,i′ ;
9: L′ = put popularity(L,wi);
10: end if
11: end for
12: end for
13: return L′

84

Step 1 in Algorithm 4 traverses each object-popularity pair ϕx,i′ in set P (ux, h), whereas

Step 3 processes all the object-popularity pairs (e.g., li) in popularity L in a for loop. Steps

2 and 4 acquire objects oi′ and oi from recommendation list P (ux, h) and popularity list L

by invoking function get object. It is worth noting that function get object in Step 2 returns

an object from an input object-popularity pair (e.g., ϕ(x, i′)), whereas get object() in Step 4

renders an object from a given input popularity list (e.g., L). Step 5 checks the consistency

between data object oi′ and oi obtained from Steps 2 and 4. More specifically, if oi′ and oi are

identical, then popularity list L′ should be updated by Steps 6-9 as follows. Step 6 retrieves

popularity value wx,i′ from pair ϕ(x, i′). Similarly, Step 7 obtains overall popularity value wi

from pair li in set L. Step 8 aggregates popularity value wx,i′ to the corresponding overall

popularity wi for the data object oi. When user x logs into the system, popularity wx,i′ is a

positive value. wx,i′ turns out to be a negative one, if user x logs out of the system. Step 9

determines an updated popularity list L′ from the former list L and the updated popularity

value wi computed in Step 8. Step 13 returns updated popularity list L to a caller.

4.3 Performance Evaluation

As part of an empirical study, we quantitatively evaluate the performance of the pro-

posed PDC system. We emulate a storage system that maintains a collection of O of data

items, which are concurrently accessed by a number of clients.

4.3.1 Performance Metrics and Experimental settings

Predominant performance metrics adopted to quantify performance of cache replace-

ment algorithms are hit ratio (i.e., HR) and byte hit ratio (i.e., BHR). Hit ratio measures

the percentage of requested data that are residing in the cache; byte hit ratio stipulates a

ratio of bytes served by the cache over the total number of bytes requested by users. HR and

BHR measures might have a stark difference in scenarios where only a few but large data

objects are stored in the cache. We quantitatively evaluate the performance of PDC using a

85

real-world dataset containing movie data objects [20]. The movie dataset records user rat-

ings accompanied by users’ access history logs. More specifically, the dataset is comprised

of 26 million ratings from a total of 270, 000 users for all the 45, 000 movie items.

We place this real-world dataset under the spotlight, because movie data systems (e.g.,

Netflix) manage user access histories coupled with preferences. To carry out the extensive

experiments, we randomly select 20 movies from each user’s access history to construct access

workload. We configure two system parameters - cache size and cache replacement policy -

to test the impacts of the parameters on system performance.

User access patterns are collected and resembled in the movie dataset. We evaluate the

effectiveness of PDC that utilizes the access patterns of movies from a large number of online

users. Cache replacement decisions are dynamically and judiciously made by PDC based on

user access patterns.

We configure cache size at a total of 12 levels, ranging in a window of between 2 GB

and 2048 GB. The upper bound of the cache size is 2048 GB, which is sufficiently large to

accommodate an entire document set for any tested I/O traces. Therefore, the cache size of

2048 GB resembles an extreme scenario where the cache size is unbounded.

In recent years, a handful of proxy cache replacement policies have been proposed to

enhance the I/O performance of storage systems (see, for example, [7], [122], and [8]). To

make our extensive experiments manageable, we pay particular attention to the three re-

placement policies, including the LRU, LFU, and PDC algorithms. The rationale behind

selecting these caching algorithms is that the competitors are representatives of a broad range

of cache replacement policies, namely, recency-based, frequency-based, and popularity-aware

strategies, respectively.

4.3.2 Overhead Analysis

Files are organized and stored in form of large blocks to cut back meta-data management

overhead. It is worth noting that file systems (e.g., Hadoop distributed file system and Google

86

file system) built for big-data applications advocate for large blocks. Metadata in PDC is

tailored to monitor the popularity measures of data blocks. The meta-data manager keeps

track of the popularity levels and tags of data objects stored in the PDC system. It takes

four bytes to hold the popularity and tag of each data object. Therefore, the meta-data

management overhead in PDC largely depends on the number of data objects and data

object size in a storage system. More broadly, the meta-data space overhead of each data

object is as small as four bytes and; thus, the overhead ratio is quantified as a ratio between

four bytes and the data object size. Hence, we have the overhead ratio of 1
object−size

. For

example, let us suppose the data object size is set to 64 MB and the number of data objects

is 1000; the space overhead of the metadata is 4 KB. In this case, the overhead ratio is

1/16M, which is negligible.

With an increasing number of users, the probability of multiple users accessing the same

data goes up accordingly. As such, the average waiting time tends to be shortened thanks

to multiple requests accessing shared popular data. PDC induces fairly low computation

overhead because recommendation lists are pre-processed prior to the caching procedure.

The sorting algorithm - a major contributor to PDC’s overhead – has its time complexity

capped at O(n log (n)). A handful of cache replacement strategies enjoy the time complexity

lower than that of PDC. Nevertheless, PDC’s overhead caused by the sorting algorithm is

mitigated through two venues. First, such an overhead is remarkably offset by the perfor-

mance gain of a high cache hit ratio, which considerably slashes I/O access time. Second,

recommendation lists orchestrated in PDC can be originated in an offline fashion, meaning

that the recommendation model is in full swing before caching occurs.

It is arguably true that PDC’s scheduling time overhead in handling cache replacement is

fairly low, because the system calculation for the popularity value of data object is managed

by metadata. The time overhead is the time spent in computing popularity value, which is

processed in the PDC algorithm 4. To be specific, the time complexity of creating popularity

is O(n2), where n is the number of data objects in the recommendation list. It is worth noting

87

that the value of n configured in the PDC system is a relatively small value (e.g., 10). Thus,

the overhead of computing data popularity is acceptably low.

4.3.3 Hit Ratio Analysis

In this group of experiments, we measure the hit-ratio performance of the popularity

driven caching system. Recall that the PDC system incorporates the UBCF algorithm

to sense user-level of interests in data objects (see also Section 3.1.4). We quantitatively

evaluate the effects of the number of access requests from user groups on the performance

of the three cache replacement strategies. All the user requests are randomly selected from

the user access logs (a.k.a., history records). In particular, we select the number of data

objects anywhere between 200 and 8000 from the log files to place on an access list; the

access sequence is orchestrated by the timestamps in the source dataset. Fig. 4.1 unravels

the hit ratio and byte hit ratio of our PDC and the two counterparts. The cache size in the

experiments ranges from 2 GB to 2048 GB.

Comparing all the six sub-figures in Fig. 4.3, we observe that with the increasing number

of accessed data objects, the maximum hit rate surges from 30% (see Fig. 4.3(a)) to 60% (see

Fig. 4.3(f)). Expanding the number of data objects benefits hit ratio performance thanks

to the following two factors. First, statistical trends show that 80% data only capture less

than 20% of accesses. Second, when the number of users or requests increases, the popular

data objects enjoy a high possibility to be repeatedly accessed in the cache. Theoretically

speaking, it is impossible to push the maximum rate all the way to 100%, because an array

of movies must be fetched to the cache due to either cold start or cache replacements.

The results plotted in Fig. 4.3 reveal that PDC and LFU are superior to LRU, because

PDC and LFU preserve frequently requested data objects in the cache while evicting unpop-

ular ones. LRU achieves the lowest data-object hit ratios among the three evaluated policies.

When the cache size is set to a fairly low value (e.g., 2 GB), the hit ratios of LRU and LFU

are close to zero. In the case of small cache sizes, the performance of PDC is approximately

88

(a) 200 data objects in the system. (b) 500 data objects in the system. (c) 1000 data objects in the system.

(d) 2000 data objects in the system. (e) 4000 data objects in the system. (f) 8000 data objects in the system.

Figure 4.3: The impacts of cache size on the hit ratio performance of the three cache replace-
ment policies. The cache size ranges from 2 GB to 2048 GB; the number of data objects is
set to 200, 500, 1000, 2000, 4000, and 8000.

10 times better than those of LRU and LFU. PDC’s outstanding performance is expected,

because PDC makes it more likely to share data objects among the active users under a

small cache size. When the size of cache rises, PDC is still a front runner even though the

hit-ratio gap between PDC and the two counterparts is narrowed. For example, when the

size of the cache is set to 4 GB (see Fig. 4.3(b)), the hit ratio in PDC, LRU and LFU are

12.8%, 3%, and 7.2%, respectively. In the case of 32 GB, the hit ratios in the three cache

replacement policies climb to 38%, 34.1%, and 36%, respectively. In contrast, Fig. 4.3(e)

illustrates that the hit ratios of the three policies are 11.7%, 1.8%, 4.3% under the cache size

of 4 GB and 52.4%, 35.6%, 38.3% under the cache size of 128 GB. This trend suggests that

expanding cache size diminish PDC’s advantage over the conventional LRU and LFU.

Comparing the performance results depicted in Figs. 4.3(e) and 4.3(a), we observe that

scaling up the system in terms of the number of data objects boosts the hit ratio performance

of all three policies. The rationale behind such an improvement is that popular data objects

89

have an increased possibility to be accessed when the dataset is expanded. PDC collects the

popularity information from the user access logs, aiming to prune unpopular data from the

cache. With the increment of a number of users, the chance of multiple users accessing the

same popular data goes up accordingly. As such, the hit ratios spike thanks to the popular

data shared among the requests.

4.3.4 Byte Hit Ratio Analysis

This group of experiments is focused on assessing byte hit ratios of the PDC, LRU, and

LFU cache replacement policies under various cache sizes. Fig. 4.4 illustrates the impacts

of cache size on the byte hit ratios of the three policies when the number of requested data

objects ranges from 200 to 8000.

(a) 200 data objects in the system. (b) 500 data objects in the system. (c) 1000 data objects in the system.

(d) 2000 data objects in the system. (e) 4000 data objects in the system. (f) 8000 data objects in the system.

Figure 4.4: The impacts of cache size on the byte hit ratio performance of the three cache
replacement policies. The cache size ranges from 2 GB to 2048 GB; the number of data
objects is set to 200, 500, 1000, 2000, 4000, and 8000.

Fig. 4.4 reveals that PDC achieves the highest byte hit ratio among the three competi-

tors, whereas LRU ’s performance is in the last place. PDC is a winner across the board

90

(e.g., small and large objects) because PDC judiciously predicts future accesses using the

popularity values rather than historical patterns. Evidence confirms that popularity levels

are a superior tool than access logs to project future I/O access patterns. Moreover, PDC re-

tains popular data objects in the cache for a long time period without discriminating against

large data objects. When the amount of shared data is expanded, the byte hit ratio tends to

noticeably benefit from popular data objects. In other words, with the increment of number

of users and data objects, the probability of multiple users accessing the same data goes up

accordingly.

In a nutshell, PDC acquires and manages popular data information to enhance the

cache replacement policy performance. For the aforementioned reasons, PDC delivers better

hit ratios as well as byte hit ratios than the other two counterparts.

More importantly, the experimental results unravel that increasing the number of ac-

cessed data objects (see Fig. 4.4(a)-(f)) enablesPDC to significantly boost performance with

respect to byte hit ratio. This trend is reasonable, because a big set of data objects accessed

by users benefit the accuracy of popularity predictions. Regardless of the number of data

objects, LRU exhibits the worst performance among the three replacement policies. The

performance gap between PDC and LRU is widened when there is not a weak correlation

between past and future access patterns under a large number of requests in an I/O cache

system.

4.3.5 Impacts of Recommendation List Length

Now we are positioned to assess the sensitivity of time delay and hit ratio on the

length of recommendation list (see also h in Eq. 3.14). To achieve this goal, we vary the

recommendation-list length from 10 to 100 while keeping the cache size at 32 GB. Fig. 4.5

illustrates the impacts of the recommendation list length on the average time delay and hit

ratio in PDC.

91

(a) average delay while 200 data objects
in the system.

(b) average delay while 1000 data objects
in the system.

(c) average delay while 4000 data objects
in the system.

(d) hit ratio assessment while 200 data
objects in the system.

(e) hit ratio assessment while 1000 data
objects in the system.

(f) hit ratio assessment while 4000 data
objects in the system.

Figure 4.5: The impacts of recommendation-list length on the average time delay and hit
ratio performance of the PDC cache replacement policy. The cache size is set to 32GB; the
recommendation list is set to 10, 20, 40, 60, 80, and 100; the number of data objects is set
to 200, 1000 and 4000.

92

An intriguing observation drawn from Fig. 4.5 is increasing recommendation-list length

h imposes mixed impacts on time delay and hit ratio. Regardless of the performance gain or

degradation, length h makes marginal effects rather than dramatic ones. In Fig. 4.5(e), for

instance, when the length is set to 20, 60, and 100, the average time delay of PDC is 12.9,

13.7, and 14.5 seconds, respectively. This trend is reasonable because PDC pays a small

cost (1) to select the top h objects and (2) to execute the cache replacement algorithm. The

following factors inspire us to maintain a short recommendation list in PDC.

• Due to the limited cache size, only top candidates in the recommendation list length

are stored in the cache. An ideal recommendation list should be sufficiently long to

contain objects that are likely to be kept in the cache.

• Data objects at the bottom of a recommendation list tend to bear low-weight values,

which have little influence on the performance.

• An extremely large list embracing a large number of unpopular objects makes no

contribution in enhancing cache hit ratio.

• A long recommendation list inevitably escalates I/O cost. Managing the list at the

most appropriate length can remarkably suppress cost.

Thanks to the fact that the recommendation lists are made available prior to user

accesses, the time delay is observed before kicking in cache replacement. Hence, a slight

increase in time delay has few adverse impact on PDC.

Figs. 4.5(d), 4.5(e), and 4.5(f) unravel that a long recommendation list length slightly

optimize hit ratio because of improved predict accuracy. For example, in case of the recom-

mendation length being 20, 60 and 100 in Fig. 4.5(b), the hit ratios are measured as 23.7%,

24.5% and 25%, respectively. We observe from Figs. 4.5 that although time delay and hit

ratio are not sensitive to the list length h, these two performance metrics do grow marginally

when length h is moving up.

93

4.3.6 Comparison with the Advanced Cache Replacement Strategies

In this group of experiments, we dive into the comparison between PDC and the ad-

vanced cache replacement technologies - FB-FIFO [42] and PARROT [74]. FB-FIFO relies

on an analytical model to create a variable-size cache segment for data objects requested

more than once within a short period. PARROT takes an imitation learning approach to

automatically keeping track of cache access patterns.

The experiment settings are identical to those articulated in section 4.3.3. Because we

systematically compare PDC with LRU and LFU in Section 4.3.3, this section is dedicated

to the hit-ratio analysis of PDC, FB-FIFO, and PARROT. The hit-ratios of LRU and LFU

are omitted from Figs. 4.3. Figure 4.6 unravels the relationships between the hit ratios of

PDC, FB-FIFO, and PARROT and the cache size, which varies from 2GB to 2048 GB.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

2 4 8 16 32 64 128 256 512 1024 2048

Hi
t R

at
io

Cache Size(GB)

PDC FB-FIFO PARROT

(a) hit ratio assessment while 1000 data objects in
the system.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

2 4 8 16 32 64 128 256 512 1024 2048

Hi
t R

at
io

Cache Size(GB)

PDC FB-FIFO PARROT

(b) hit ratio assessment while 2000 data objects in
the system.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

2 4 8 16 32 64 128 256 512 1024 2048

Hi
t R

at
io

Cache Size(GB)

PDC FB-FIFO PARROT

(c) hit ratio assessment while 4000 data objects in
the system.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

2 4 8 16 32 64 128 256 512 1024 2048

Hi
t R

at
io

Cache Size (GB)

PDC FB-FIFO PARROT

(d) hit ratio assessment while 8000 data objects in
the system.

Figure 4.6: The impacts of cache size on the hit ratio performance of the PDC and two
advanced technology cache replacement policies. The cache size ranges from 2 GB to 2048
GB; the number of data objects is set to 1000, 2000, 4000, and 8000

94

Fig. 4.6 unveils that PDC noticeably outperforms PARROT and FB-FIFO in terms

of hit ratio measurement. Upon the increasing cache size, PDC benefits from an enormous

number of data objects sharing similar features. Not surprisingly, the hit ratio of PDC is

more sensitive to the large number of shared data objects compared with those of FB-FIFO

and PARROT. Similar to PARROT, PDC exploits the machine-learning algorithm to assess

data popularity. Nevertheless, PDC has an edge over PARROT in terms of computing

overhead, because PDC effectively hides the overhead by invoking the machine-learning

algorithm prior to sparking cache replacement. A comparison between the machine learning

(PDC and PARROT) and non-machine learning strategies (FB-FIFO) demonstrates that

when the number of users or accesses escalates, popular data have a high likelihood to

be referenced and detected by the system. Consequently, the popular data objects tend

to be kept in the cache thanks to being ranked at the bottom of the replacement list. In a

nutshell, we conclude that PDC exhibits superb and scalable cache replacement performance

for storage systems where it is not uncommon for a large number of users to share similar

access preferences and patterns.

4.4 Summary

In this chapter, we elaborated on the design and implementation of a web-proxy-cache

replacement system called PDC. We built a recommendation module to harvest popularity

values of data objects in storage systems. Our PDC is reliant on the recommendation system

to gauge data popularity, thereby evicting unpopular data from caching system.

We incorporated in PDC the user-based collaborative filtering technique to govern cache

space in which a data-object popularity list is dynamically maintained while responding to

I/O requests. PDC is beneficial to a wide range of big data applications such as video and

music streaming services (e.g., Netflix). PDC is conducive to optimizing caching resources

in terms of cache hit ratio. The popularity-data controller manipulates the priority levels of

data objects, thereby promoting popular data to be cached prior to unpopular ones.

95

PDC is capable of handling multiple distributed caching proxies, which cooperate and

share cache resources. Apart from managing a stand-alone web caching, PDC can be seam-

lessly integrated with a prefetching policy in order to dramatically improve the performance

of storage systems.

We implemented a prototype of PDC in a web-proxy caching system, the performance

of which is intensively tested by real-world datasets. We conducted extensive experiments

to demonstrate that the PDC system is adroit at pushing up cache hit ratio by the virtue

of an optimized popularity-aware list.

The empirical results unveil that PDC beats the traditional cache replacement policies

- LRU and LFU - with respect to cache hit ratio and byte hit ratio. Moreover, increasing

the cache size leads to improved cache hit ratios and byte hit ratios of LRU and LFU.

Nevertheless, PDC still outperforms LRU and LFU in the case of large cache space, because

popular data managed by PDC are more likely to be discovered and cached than those

administrated by LRU and LFU.

96

Chapter 5

Similarity-Based DDoS Detection

We devise the DDoS detection model in this chapter that seamlessly integrates two

distinct modules - a sample user generator and a similarity comparison module. The first

module elects a group of high fitness users from all the legal users to build a sample user set,

which is periodically updated by our system. The second module is in charge of calculating

the similarities among active users and sample users. We treat a user as an abnormal user

if the user’s similarity measures are dramatically changed with a high percentage.

We organize the this chapter into the following sections. Section 5.1 provides an overview

of DDoS attack models, detection techniques in cloud storage system and articulate various

application layer DDoS detection techniques in cloud. Section 5.3 outlines our proposed

similarity-based DDoS detection model. The performance evaluation of Similarity-based

DDoS detection model is described in section 5.4. Section 5.5 summarize the development

and findings described in this chapter.

5.1 An Overview

On demanding requirement of application DDoS detection models is to deliver accurate

and quick performance amid the diagnosis of cloud storage systems. Existing anomaly DDoS

detection techniques customized for cloud data storage systems are focused on monitoring

online requests at the application layer. It is urgent and prudent to detect DDoS attacks

among online requests because DDoS attacks make storage servers unavailable while infecting

remote machines through zombie code.

An effective way of preventing attacks from application layer DDoS attack is to compare

active users’ current behaviors with historical behaviors recorded in a given time period.

97

With the assistance of such behavioral comparisons, a DDoS detector is slated to determine

whether or not cloud storage servers are in risks. Another key element that improves the

DDoS detection performance is overhead control. Existing anomaly-based DDoS detection

techniques that apply user behavioral comparisons lack extra cost analysis [80][86]. It is

evident [58] that 10% of data are accessed by 90% of users, and an DDoS attack tends to

issue requests with random objects [130]. We propose a novel DDoS detection model for

application layer to boost the security of online cloud storage systems by deploying a user

similarity measure module.

We devise the DDoS detection model that seamlessly integrates two distinct modules - a

sample user generator and a similarity comparison module. The first module elects a group

of high fitness users from all the legal users to build a sample user set, which is periodically

updated by our system. The second module is in charge of calculating the similarities among

active users and sample users. We treat a user as an abnormal user if the user’s similarity

measures are dramatically changed with a high percentage.

Two reasons motivate us to advocate for the similarity-based DDoS detection strategy.

First, online cloud servers are accessed and shared by a large-scale user pool. Users’ historical

access records offer excellent samples to discover outlier users such as bots. Second, when

bots attempt to simulate human users, it is a challenge to find attack sources with a low

overhead. If a DDoS detector fails in swiftly pinpointing attackers, any detection delay may

pose potential security threats to the entire system and users. Our DDoS detection model

ensures that active users’ access behaviors pass through a thorough yet lightweight analysis.

The overarching goal of the similarity comparison module is to glean users’ current and

historical requests records, followed by calculating similarity measures of active users and

the sample ones. More specifically, the similarity module illustrates the users’ behavioral

changes with respect to user requests. This module works in full capacity to dynamically

track and monitor the active users’ similarity metrics to sense any abnormal behaviors.

98

5.2 A Similarity-based DDoS Detection System

In Section 5.2.1, we start the research road map by presenting a basic idea for the

development of a similarity-based DDoS detection system. Section 5.2.2 depicts a system

architecture where user behaviors are gleaned to furnish similarity comparisons in cloud

data storage. Then, we elaborate the key concepts and a model in Section 5.2.3. Finally, in

Section5.3 we outline the high-level algorithm of the similarity-based DDoS detection system

catering to optimize DDoS detection performance at the application layer.

5.2.1 The Basic Idea

In this study, we pay heed to DDoS attack detection at the application layer centered

around cloud storage systems. Since any security solution customized for cloud data storage

is obliged to impose a non-negligible performance overhead, we demonstrate that light-

weight similarity comparison techniques are capable of enhancing the performance of a DDoS

detection system deployed in modern cloud storage.

The basic idea of our system solution is to analyze users’ behaviors through gauging

similarity values orchestrated by a user sampling algorithm, which makes similarity decisions

in a way that abnormal users are detected for isolation purpose. One of the vital factors

benefiting the probability of successful intrusions is the number of access points [22]. As

such, we advocate for gauging the users’ abnormal behaviors by comparing with a colossal

group of normal users. User behavior is classified as abnormal in either of the following two

cases:

• First, there is a dramatic change in similarity values between a given user and normal

users compared to the given user’s history.

• Second, the number of changes in similarity values between a given user and normal

users exceeds a specified threshold.

99

In addition to similarity comparisons, we forge a user sampling module to periodically

originate a relatively small sample user set to conserve computing resources. Importantly,

the group of sample users are leveraged to optimize the accuracy of anomalous and to curtail

the overhead of similarity comparisons. In case the given user matches the above two metrics,

our proposed similarity-based detection will mark the user as an abnormal user.

5.2.2 High-Level System Architecture

Fig. 5.1 depicts the system architecture of our proposed similarity-based DDoS detection

system, where a similarity comparison manager collaborates with a user sampling module

in clouds. The entire system is slated to detect abnormal users from active users’ regular

requests. Given online user request lists sent to a server, the detection module takes similarity

measures by comparing current requests against sampled users. Similarity results will be

compared with a history record to identify potential anomalies.

Figure 5.1: The architecture of similarity-based DDoS detection model running in clouds.
abnormal users are identified through the similarity comparison.

The overarching goal of the system is to alleviate DDoS risks at the application layer

by detecting anomalous requests from all the online users requests. To achieve this goal, a

management module is engaged to gauge users’ similarity measurements, which are main-

tained as critical moving parts in the metadata of users. Anomalous behaviors are likely to

be taken out from users with a growing number of similarity comparisons. It is arguably

true that the management module in this architecture is adroit at governing anomaly detec-

tion, where similarity comparisons are configured in accordance to tracking users’ similarity

100

changes. With the similarity manager in place, outlier users are assigned a red flag to be

handled by the security module.

5.2.3 Concepts and Key Steps

Fig 5.2 illustrates the main steps undertaken in the DDoS detection system. In a given

time slot, the system checks request lists of online users. Next, the system calculates the sim-

ilarities between the online users and sample users. The similarity comparison is performed

in full swing after the similarity calculation is completed. We diagnose any anomalous users

through the help of two thresholds: (1) the similarity value change with regard to a single

sample user and (2) the amount of similarity changes with respect to multiple sample users

(see Eq. 5.7). The system defines the current online user as an abnormal user when the

metrics exceeds these two thresholds.

Figure 5.2: The main steps to check if the current user is abnormal.

Popular recommendation algorithms such as the user-based collaborative filtering al-

gorithm (UBCF) [20] offers a practical cosine similarity calculation method. Initially, the

recommendation module completes a similarity comparison between each user and all the

valid users in the system. In this study, we adopt the similarity comparison scheme inspired

from UBCF. The DDoS detection system carries out four key steps to consolidate the multi-

ple similarity values into an anomaly detection procedure, where each online user is assessed

101

by the similarity manager amid the routine access process. Given an online user ux, we

denote its requests as list Lx = {ox0 , ox1 , ... , oxi
}. Thus, we express the access of data item

oi from user ux as a step function

rxi =

1, if oi ∈ Lx

0, otherwise.

(5.1)

In our similarity manager, we choose to apply the pearson correlation coefficient algo-

rithm to compute similarities between any pair of two users ux and uk. Specifically, with

respect to user ux, the similarity is calculated by the accesses comparison defined in (5.1).

Hence, the similarity between users ux and uk is formally expressed as

sim(ux, uk) =

∑
i∈O(rxi − r̄x)(rki − r̄k)√∑

i∈O(rxi − r̄x)2
√∑

i∈O(rki − r̄k)2
. (5.2)

where r̄x and r̄k are the average access record numbers for users ux and uk. It is worth noting

that the average numbers are float numbers in a window between 0 and 1 derived from rxi

and rki lists. O is the entire data item list in the cloud storage system.

The data structure of each online user in the similarity manager is an array of user-

similarity pairs, which is defined in (5.3). Given user ux and the corresponding similarity

value sim(ux, uk) with respect to user uk, we express the user-similarity pair ϕxk as

ϕxk =< uk, sim(ux, uk) > . (5.3)

Due to high diversity and high overhead on computing similarity among all legitimate

users, we propose a user sampling module at the heart of the DDoS detection system to

minimize the overhead of similarity calculation while improving detection accuracy. In the

user sampling module, we designate a fitness value to select candidate users from the legal

102

user set. Formally, fitness fk quantifies the degree at which user k is an appropriate sample

user. We derive fk from (5.4) as:

fk = − nO

nOk

∑
i∈Rk

(rki − r̄i)
2. (5.4)

where nO is the number of available data items in the whole cloud storage and nOk
is the

number of valid data items requested in the history record of user k. If a user has a long

access history where a wide variety of data items were accessed, then this user tends to have

a high fitness. The summation in (5.4) resembles a variance estimation, where Rk is a set of

data objects rated by users k, rki is a rating record in the history of data item oi by user k

and r̄i is the average rating by all the legal users. It is evident that a low variance modeled

by (5.4) signifies that a user is an appropriate representative of legal users to be included

in the user sample set. Therefore, we set a the fitness to a negative value to acquire a high

fitness value in the user sampling module.

The similarity manager calculates similarity values of user ux with respect to all the

users registered in sample user set U . Therefore, given user x, there is a list of sim(ux, uk),

where we have k ∈ S. In the DDoS detection procedure, anomalies are identified by tracking

a changing trend in similarity value ϕxk. We assume that ϕxk and ϕ′
xk are the current and

previous similarity values between users ux and uk. We denote δxk as the discrepancy between

ϕxk and ϕ′
xk. Thus, we have δxk = |ϕxk - ϕ′

xk|.

Let fx be the status of the xth user to be evaluated. fx = 0 signifies that ux is a

legitimate user; fx = 1 indicates that ux is an anomalous one. If δxk measuring a shift

between the current and previous similarity values exceeds a prescribed threshold α, the

detection procedure will mark the user as abnormal. More formally, we have

fx =

1, if δxk ≥ α

0, otherwise.

(5.5)

103

Likewise, anomalies are pinpointed by monitoring similarity value sim(ux, uk). In case

sim(ux, uk) goes beyond a designated threshold β, user ux is flagged as an anomalous one.

Thus, we express this rule as

fx =

1, if sim(ux, uk) ≥ β

0, otherwise.

(5.6)

Merging (5.5) and (5.6), the following consolidated rule is adopted to discover anomalies.

fx =

1, if δxk ≥ α or sim(ux, uk) ≥ β

0, otherwise.

(5.7)

In the nutshell, we summarize the DDoS detection procedure into the following four

steps, which entail sample user selection, online user request collection, similarity calculation,

similarity comparison, respectively.

• Sample User Selection: The DDoS detection system groups a set of sample users by the

sampling technique. The sample users are applied for making similarity comparisons

with online users.

• Online User Request Collection: While the cloud server acquires a request list from

online users, the detection system gleans online requests as lists for all the users.

• Similarity Calculation: The DDoS detection system dynamically and repeatedly calcu-

lates the similarity measures for all the users. The similarity result of the kth user is ex-

pressed as a list of user-similarity pairs, which contains (uk0, sim(ux, uk0)), (uk1, sim(ux, uk1)),

... , (ukn, sim(ux, ukn)).

• Similarity Comparison: The user-similarity list of each user is compared against its his-

torical record. If δxk and sim(ux, uk) are moving beyond the two designated thresholds

α and β, the DDoS detection model identifies the user as abnormal.

104

5.3 Algorithm Design

Our detection model generates a sample user set prior to kicking off the detection pro-

cedure, which periodically keeps tracks of legitimate users’ behavioral trends. We illustrate

below the user sampling process in Algorithm 5.

Algorithm 5: The sample user selection algorithm.

Input:
U ′: All the legitimate users in a cloud storage system;
O: Data item set contains valid ratings in a history record;

Output:
U : Sample user set

1: avg(O);
2: for all ux′ ∈ U ′ do
3: sampleUserSet.add(fitness(ux′ , avg));
4: end for
5: sampleSelection(U, h);
6: return sample user set U ;

In Step 1, we calculate the average ratings of all the data items accessed by all the

legal users. The sampleUserSet() function generates a list of user-fitness pairs governed by

Equation (5.4) in Step 3. In case that the fitness values of all the users are obtained, the

system elects the top h user as sample users.

When the cloud storage server is accessed by online users, our detection system assumes

that every user may become a potential attacker. As such, each online user is thoroughly

measured and speculated by our detection system while handling and processing user re-

quests.

Algorithm 6 depicts the procedure of a similarity- based detection model to guard against

application-layer DDoS attacks in cloud storage. Recall that a total of four steps (see also

Section 5.2.3) are carried out to detect anomalous users by comparing the similarities between

each current online user against all the sample users originated by Algorithm 5.

105

The input information of Algorithm 6 embraces a given user ux accompanied by a list

of online requests Ox, a sample user set U , the similarity history record S(ux) of user ux and

the two thresholds α, β.

Algorithm 6: The high-level controller of anomaly user detection.

Input:
A given current user ID ux; /* potential attacker */
The online requests Ox of ux;
Sample user set U ;
The similarity history record S(ux) of ux;
The threshold settings α and β;

Output:
fx: the status of user ux;

1: C(ux) = null;
2: for all uk ∈ U do
3: C(ux).add(SimilarityCalculation(ux,uk));
4: end for
5: for all s(ux) ∈ S(ux) do
6: for all c(ux) ∈ C(ux) do
7: if s(ux).getKey() == c(ux).getKey() then
8: δx = |s(ux).getV alue() - c(ux).getV alue()
9: if δx >= α then
10: gx = gx + 1;
11: end if
12: end if
13: end for
14: end for
15: if gx >= β then
16: fx = 1; /* Anomalous User */
17: else
18: fx = 0; /* Legitimate User */
19: end if
20: return fx;

In Algorithm 6, Steps 2-4 repeatedly undertake similarity calculations to construct

a list of similarity values between the current user ux and sample users in set U forged

by Algorithm 5. More specifically, the similarity calculation is implemented by function

SimilarityCalculation() in Step 3.

106

Steps 5-16 are responsible for comparing between the current similarities calculated in

Step 3 and those registered in history record S(ux), followed by checking if the user is an

anomalous user. Set S(ux) represents a history similarity record between current user ux and

those elected in sample user set U . In Step 7-8, we gauge similarity discrepancy between the

similarity values extracted from S(ux) and C(ux). The getKey() and getV alue() functions

acquire user IDs and similarity values from the user-similarity pairs (see also Section 5.2.3).

The similarity comparison is implemented in Steps 10 and 16. While a single similarity value

changes beyond the threshold α, the abnormal value increased by 1 to record the similarity

anomaly change. While the number of anomaly changes beyond the point β, the detection

system identifies the current user ux as an abnormal user and return the user Id at Step 18.

In our design, the user sampling module ought be performed in Algorithm 5 prior to

the DDoS detection procedure. This order of execution is expected because sample user

generations are judiciously maintained by cloud storage regardless of the DDoS detection

procedure.

5.3.1 Overhead Analysis

We reckon that the similarity-based DDoS detection system imposes a relatively low

computation overhead. Compared to general machine-learning- algorithm-based detection

models, our proposed system has a leading edge in terms of minimizing the cost of data

training and analysis. In the worst scenario, the process of electing sample users consumes

computing resources in the case of a massive number of legal users. To cut down the overhead

of selecting sample users, we implement a light-weight user sampling module by incorporating

the random selection algorithm, which randomly picks a relatively small group of legitimate

users as the candidates without hefty cost.

107

5.4 Performance Evaluation

The main design goal of the similarity-based DDoS detection is, as we emphasized

early, to reduce the overhead with the competitive detection accuracy. We emulate a storage

system that maintains a collection O of data items, which are concurrently accessed by a

number of clients. The experiment selects a request object sequence of HTTP requests in

the server log as training data and HTTP request sequences as test data, whereas data of

DDoS attacks are not included. To verify the similarity-based DDoS detection mechanism’s

ability of detecting attacks, DDoS attacks anchored on HTTP requests are simulated. We

suppose that 20 attacking nodes send GET requests to a target a web server to implement

orchestrated DDoS attacks.

5.4.1 Evaluation of Overhead

This section is focused on the analysis of the overhead incurred in the DDoS detection

procedure compared against two existing anomaly-based DDoS detection techniques. The

storage system automatically triggers a series of requests to the server while an active user

is accessing the system. Therefore, the system must filter out other behaviors and extracts

the keywords in the request sequence according to the method of preprocessing data in the

database abnormality detection system, where the accesses are arranged into a sequence in

a chronological order.

In the experiment, we elect a request object sequence of 1000, 5000, and 10000 HTTP

requests from the server log as training data. Next, we measure I/O cost among the anomaly-

based detection techniques powered by multiple machine learning algorithms, in which the

size of training set is varied. The experiment results indicate that our similarity-based de-

tection model leads the lowest overhead on pre-detection compared with the two alternatives

- the behavior-learning-based algorithm and the clustering-based algorithm.

Fig. 5.3 illustrates that with an increasing number of users’ history behavior in the

training set, the overhead of training costs among the three modeling algorithms surge

108

Figure 5.3: The time cost vs. an increasing size of the training set (Users History Behavior).

- an expected trend speculated before conducting the experiment. Our similarity-based

detection model, nevertheless, has a leading edge against the other two solutions in terms

of modeling overhead: the overhead incurred by our model is less sensitive to the size of

training datasets. It is arguably true that the similarity calculation and comparison exhibit

the lowest complexity compared with the user’s behavior features extraction module and

the classification module. Similarity calculation - the main contributor to similarity-based

detection - has its time complexity capped at O(n2): such a low complexity makes our design

a winner across the board among various machine learning-based DDoS detection techniques.

Furthermore, our proposed system design gauges the similarities only between target users

and a sample user set, thereby immensely curtailing the overhead of training cost.

5.4.2 Evaluation of Accuracy

In this group of experiments, we choose the request object sequence of 5000 HTTP

requests as a test data, and we elect 1000 requests to build a the training set. The DDoS

attack is emulated as follows: (1) a total of 50 attacking nodes deliver GET requests to

the target Web server to launch a DDoS attack; (2) the content of the attack requests are

randomly generated as high-frequency GET requests.

The results plotted in Fig. 5.4 reveal that with an increasing number of accessed data

objects, the detection accuracy of the three models floats from 78% to 95%. Theoretically

109

Figure 5.4: Detection Accuracy with the an increasing number of data items.

speaking, it is strenuous to push the maximum accuracy all the way to 100% regardless of

the deployed modeling algorithms: obtaining false negatives for anomaly analysis becomes

unavoidable. Obviously, the clustering-based detection technique renders a relatively high

accuracy on DDoS detection, but the overall accuracy performance of the three models does

not gap away from each other.

5.5 Summary

We started this chapter with an overview of DDoS attacks as well as detection techniques

in cloud storage systems. After presenting a broad list of techniques for DDoS detection,

we placed a focal point to the DDoS threats and detection techniques at the application

layer. The core component of our study is centered around anomaly detection techniques as

a safeguard against application-level DDoS threats. We delved into multiple innovative and

promising ways of applying machine learning solutions to efficiently identify DDoS zombies

in cloud computing environments. Next, we shed bright light on the challenges in DDoS

detection, followed by proposing a similarity-based DDoS detection system. The overarch-

ing goal of the designed system is to trace similarity changes among users to diagnose the

behaviors of users who are out of ordinary. Such users will be marked by our system as

potential DDoS attackers at the application level.

110

At the heart of our proposed DDoS detection system, we devised a user sampling module

and a similarity comparison module. The sampling module attempts to elect the most

appropriate user set from existing legal users, whose history access records are thoroughly

inspected. The implementation of the user sampling module is crucial and indispensable to

the detection system because this module is forged to (1) minimize the overhead of DDoS

attack detection and (2) to curtail the effects of reasonable changes from a small group of

users (e.g., updates of users’ interests). Along this line, the similarity comparison module

cuts down on the calculation cost spent in comparing among users behaviors. We expect that

highly accurate DDoS threats detection will be successfully implemented in a light-weighted

manner by the virtue of our proposed users’ behavior analysis.

111

Chapter 6

Popularity-Aware Malware Detection

Cloud storage systems facilitate a platform to store and manage cyberspace data for

a wide range of applications. In cloud storage connected to the internet, a large amount

of data is uploaded and accessed by numerous users. Thus, security and privacy of data

is of utmost importance to end users regardless of the nature of the data being stored

in clouds. After outlining the development of cutting-edge of cloud storage systems, we

elaborate data security issues in cloud storage. We pay particular attention to malware

detection techniques customized for cloud storage. The overarching goal of our solution

articulated in this chapter is to guarantee that data are malware free in cloud storage prior

to being accessed by end users. Inspired by the architecture of cloud storage, we propose a

popularity-aware malware detection strategy to enhance the security of cloud storage systems

by protecting high-risk data. Data risk is gauged through popularity, because popular data

deserve high priority when it comes to access frequencies. Our designed technique speculates

data popularity, which is an avenue to prioritize data objects amid time-consuming malware

detection procedures. Our technique is conducive to keeping malware at bay when popular

data are frequently accessed by clients.

In Section 6.1, we start the research road map by presenting a basic idea for the de-

velopment of popularity-aware malware detection techniques. We depict a high-level system

architecture for schedulers supporting popularity-aware malware detection in cloud comput-

ing platforms in Section 6.2. Then, we elaborate the concepts and main steps in Section 6.3.

Finally, in Section 6.4 we outline the scheduling algorithms that optimize the performance

of malware detection systems. We summarize this chapter in Section 6.5.

112

6.1 Basic Idea

It is arguably true that cloud computing platforms can be jointly optimized by incor-

porating multiple dimensions like connection efficiency, access security, data placement, and

scheduling. In this part of the dissertation study, we pay heed to security issues centered

around cloud storage systems. The evidence from the prior studies (see, for example, [69] and

[27]) shows that they cannot unify the service because of the untrusted remote machines. In

addition, any security solution customized for cloud storage is required to impose a negligible

performance overhead. In our pilot study, we aim to demonstrate that scheduling techniques

are capable of enhancing the performance of malware detection deployed in modern cloud

storage.

The basic idea of our solution is to schedule a sequence of data objects in which malware

are detected. Scheduling decisions should be made in a way that high-risk data are scanned

by a malware detector in an early phase followed by low-risk data. When we set the high

risk data object prior to low risk data on malware detection sequence, data security will be

improved because the high-risk data experience a high intrusion possibility to systems and

a high infection possibility to users.

One of the vital factors affecting the probability of successful intrusions is the num-

ber of access points [22]. As such, we advocate for gauging the risk of data objects using

popularity measures. Compared with non-popular data, popular data objects have a high

access frequency from active users. Popular data are treated as high-risk data because of

the following two reasons.

• First, malware infection in popular data becomes a serious threat for enormous number

of users. Each popular data object is retrieved by a large group of users, who will be

victimized the malware codes.

113

• Second, there is a strong likelihood for popular data to be frequently accessed in a

short time period. The malware detection system ought to ensure that the popular

data are malware-free before being accessed by users.

For the above reasons, scheduling a detection sequence among data objects according to

access popularity improves the data security of cloud storage systems by detecting malware

of high-risk data in the first place.

6.2 System Architecture

Fig. 6.1 depicts the system architecture of our proposed malware detection scheduling

system, where a malware detection manager collaborates with a scheduler in clouds. The

entire system is responsible for scheduling a detection list in which data objects are scanned

for malware before being actively accessed by users. During the online malware detection

procedure, the scheduler makes judicious decisions on a detection order, in which popular

data are assigned high priorities to mitigate malware threats.

Figure 6.1: The architecture of a malware detection scheduler running in clouds. Popular
data objects receive a high priority to be scanned earlier than unpopular data objects.

In cloud computing environments, data are distributed across multiple storage nodes in

data centers. Unsurprisingly, it is straightforward to incorporate prevalent malware detection

techniques into cloud computing systems. For example, the leading-edge malware detection

systems reported in [10] and [31] can be applied to fight malware in cloud storage services.

The overarching goal of the system is to optimize malware-detection performance by

alleviating malware risks. To achieve this design goal, a management module is engaged

114

to gauge data popularity measures, which are maintained as key components in metadata.

Popular data objects are likely to be accessed by a growing number of users within in a short

time period. It is arguably true that the scheduler in this architecture is adroit at governing

the malware detection procedure, where detection priorities are configured in accordance to

monitored data popularities. With the scheduler in place, popular data objects are handled

by the detection module earlier than unpopular counterparts. Such scheduling decisions

play a vital role in speeding up malware detection performance, because the time spent in

identifying malware can be conserved by postponing the detection of unpopular data that

impose low risks in clouds.

6.3 Concepts and Main Steps

To assess the popularity of data objects, we adopt a recommendation scheme in the

malware-detection scheduling module. The recommendation scheme predicts a list of rec-

ommended data objects for each user who is actively accessing data from cloud storage. The

malware-detection manager merges individual recommendation lists of multiple users into

a single scheduling list for the malware detector in our system. Specifically, the manager

carries out the four steps to consolidate multiple recommendation lists into a detection list,

where the most popular data are scanned by the malware detector in an early stage. The

data structure of detection lists is an array of object-weight pairs, which is defined below.

Given object oi and its weight wx,i with respect to user ux, we express object-weight pair

ϕx,i as:

ϕx,i =< oi, wx,i > . (6.1)

Table I summarizes a list of recommendation algorithms that can be plugged into the

malware-detection scheduler. The popularity of data objects can be assessed by one of

the following recommendation algorithms in Table I. Each recommendation algorithm has

115

recommendation type basic idea advantages common algorithms

Content-based recommendation [90]
recommend an item to a user based on a description

of the item and a profile of the user’s interests
small number of structured attributes, simplicity, understandability decision tree

Collaborative Filtering Recommendation [133] [104]
use the existing user’s past behavior or comments to provide

the product which conforms with the current user’s requirements
good performance on large number of user and items

user based collaborative filtering
item based collaborative filtering

Knowledge-based Recommendation [17] [36]
Systems that rely on knowledge sources

of user requirements and domain knowledge
rely on knowledge sources that were not being
employed by the more widely-used techniques

case-based recommendation
constraint-based recommendation

Hybrid recommendation [18] a combination of recommendation components or logic high accuracy, easy to implement Feature combination, weighted, switching

Table I: A list of candidate recommendation algorithms are readily plugged into the
popularity-aware malware detection scheduler.

its unique advantages, depending on workload conditions such as number of active users,

number of data objects, and the performance of cloud storage. As a case study, we import

user based collaborative filtering as an underpinning technique to implement the popularity-

aware scheduler.

Let us introduce the fundamental concepts of key, key-value pairs, weight, and blocks

before diving into the description of the following four steps. We define data objects’ iden-

tifiers (IDs) as keys, meaning that any data object can be readily referenced through its

key. A data object is organized in the data structure of a key-value pair, where value is the

content of the data object. We refer to the access frequency of a data object as a weight - an

importance feature to capture the popularity of the data object. In a cloud storage system,

data objects are basic storage units, which form large chunks called blocks. In other words,

a data block is comprised of a group of data objects; all the data blocks share a fixed size.

It is noteworthy that the block size can be configured by in the cloud storage, in which the

default block size of our system is 64 MB.

• To retrieve data objects and the corresponding weights in a single user recommendation

list to calculate the number of occurrences and weight for each key.

• Data blocks and data objects entail a two-layer data organization, where each data

object belongs to a parent data block. The second step is to map the data objects’

keys to their data blocks in the cloud storage.

• To calculate the summation of weights of each data block so that a detection list is

constructed to embrace to-be-scanned data blocks accompanied by the corresponding

116

weights. The weight of each data block indicates the block’s popularity, which measures

the future access frequency of the block.

• To schedule the items in the detection list according to the decreasing values of weights

associated to the data blocks. In this step, data blocks with high weights are treated

as popular data that are likely to be accessed by a large group of users in the not-too-

distant future.

6.4 Algorithms

Algorithm 7 depicts the procedure of a popularity-based malware detection system in

cloud storage, in which the above four steps (see Section 6.3) are carried out to schedule a

detection list by merging all the recommendation lists predicted for active users in clouds.

The input information of Algorithm 7 includes user I/O access history and ratings as

well as a set of data blocks in a cloud storage, which is formally defined as B = {b1, b2, ..., bn}.

Here, we assume the total number of blocks managed in the cloud storage is n.

The output of Algorithm 7 is a scheduled detection list detList, which contains an array

of block-weight pairs. Ideally, the length of scheduled list detList is identical to the size of

set B. Thus, we have

detList.size() = |B| = n. (6.2)

If system administrators opt for cutting back the overhead spent in diagnosing a large

number of blocks, a subset of set B will be elected to originate scheduled list detList. Intu-

itively, increasing the length of list detList can substantially raise the overhead of scheduling

data blocks and detecting malware. List detList’s length ought to be appropriately chosen

based on the system utilization and workload of the cloud storage.

Given data block bk and its weight wk, we define αk = (bk, wk) as a block-weight pair

for the kth block bk. The detection list - an output of Algorithm 7 - is formally expressed

117

as Eq. 6.3, where all the block-weight pairs are scheduled by the Algorithm in a decreasing

order of the weights in the block-weight pairs.

detList = {α1, α2, ..., αn} = {(b1, w1), ..., (bn, wn)},

where w1 ≥ w2 ≥ ... ≥ wn. (6.3)

It is noteworthy that the weight of a block captures the popularity of data objects

residing in the block. The most popular blocks are scheduled to be detected at the beginning

of detList; the least popular ones are postponed toward the end of the list.

Algorithm 7: The high-level controller of malware detection.

Input:
User I/O access history and rating records;
B = {b1, b2, ..., bn}; /* data blocks to be detected */

Output:
DetList = {α1, α2, ..., αn}; /* A detection list */

1: for all ux ∈ U do
2: P (ux) = UbasedCoFiltering(ux);
3: end for
4: for all αk ∈ DetList /* Initialize DetList */ do
5: SetWeight(αk, 0); /* Initialize the weight of αk */
6: end for
7: for all ux ∈ U ′ do
8: for all ϕx,i ∈ P (ux) do
9: oi = GetDataObject(ϕx,i);
10: wx,i = GetWeight(ϕx,i);
11: bk = GetBlock(oi, B);
12: detList[wk]+= wx,i;
13: end for
14: end for
15: Sort(detList[wk]);
16: return detList;

In Algorithm 7, Steps 1-3 repeatedly carry out user-based collaborative filtering to

construct recommendation lists for the users in set U . More specifically, the collaborative

filtering strategy is implemented by function UbasedCoFiltering() in Step 2.

118

In our design, user-based collaborative filtering ought be performed in Step 2 prior to

establishing recommendation lists. This order is expected, because recommendation lists

(see Step 2) are judiciously maintained by cloud storage regardless of the malware detection

procedure. In a real-world cloud, the recommendation lists are proactively updated while

data objects are being accessed by users.

Steps 4-6 control the initialization of the weights of the block-weight pairs in detList;

the initial value of the weights is 0. Let U ′ represent a set of users who are actively accessing

cloud storage amid the malware detection process. Because user information is retained in

user set U , U ′ is a subset of U (i.e., U ′ ⊆ U). Steps 7-14 repeatedly calculate each user’s

weights with respect to data objects. In particular, Step 9 derives data object oi from object-

weight pair ϕx,i (see also the GetDataObject() function). Steps 10 and 11 obtain weight

wx,i and block bk from object oi (see also the GetWeight() and GetBlock() functions). In

Step 12, weight wk is modified by augmenting intermediate result wx,i yielded from Step 10.

Finally, Step 15 sorts block-weight pairs in a non-increasing order of weights in detection

list detList. Such a detection schedule is made by the sort() function in the algorithm.

We reckon that the malware detection scheduler imposes relatively low computation

overhead, because recommendation lists normally are originated prior to the malware detec-

tion procedure. In the worst case scenario, the lack of user requests (e.g., U ′ = ∅) makes

it strenuous build a recommendation list to project data popularity. In this case, the sys-

tem gracefully downgrades to offline malware detection, in which a detection schedule is no

longer needed. In such an offline malware detection case, Steps 7-14 In Algorithm 7 will be

excluded.

6.5 Summary

We started this chapter with an overview of cloud storage systems. After presenting a

list of emerging techniques adopted in cloud storage, we discussed cloud security issues to be

addressed in data storage systems in clouds. The focus of this last piece of the dissertation

119

study is centered around malware detection in cloud storage. We illustrated multiple ways

of applying machine learning solutions to efficiently identify malware codes in clouds. Next,

we shed bright light on the challenges confronted in malware detection in the realm of cloud

storage. To overcome these challenges, we proposed a popularity-aware malware detection

system, which schedules a malware- detection sequence in a way that high-risk data are

detected prior to low- risk counterparts in clouds.

At the heart of our proposed malware detection system, we designed a user-based collab-

orative filtering module to predict data popularity using established recommendation lists.

We delineated the popularity-aware algorithm to (1) prioritize data blocks and (2) make

detection schedules in a way to enhance the security of cloud storage systems. Along this

line, we expect that a diversity of machine learning techniques can be employed to forecast

data popularity, which in turn can determine malware-detection schedules. It is intriguing

to quantitatively compare a handful of prediction solutions to figure out which one delivers

the best performance for the malware detection system in cloud computing environments,

where big data must be constantly scanned.

120

Chapter 7

Conclusions and A Future Research Plan

In previous chapters, we propose a recommendation algorithm based popularity calcu-

lation technique. In this chapter, we introduce the proposed practice design of popularity-

aware data reconstruction, cache replacement strategy, DDoS detection and malware detec-

tion technology.

This chapter consists of three sections, namely, concluding remarks presented in Sec-

tion 7.1, a future research plan moving beyond this dissertation study (see Section 7.3), and

a summary of the chapter in Section 7.4.

7.1 Conclusions

7.1.1 Data processing and scheduling

Thanks to online services, cloud computing systems are widely used to support a variety

of application domains. Active users may access cloud-based applications at any time from

anywhere through the Internet. There is a dire demand to embark on time-consuming

malware detection procedures while users are accessing data from the clouds. There are

three concurrent research paths toward tackling this challenge.

• First, resources must be fittingly partitioned and allocated among users, systems, and

malware-detection services. Making a good tradeoff is the fundamental key in resource

management for future malware detection systems in clouds. On the one hand, if

the majority of resources are dedicated to malware detection, user experience will be

dragged down. On the other hand, if we favor user response time by limiting resources

for malware detection, data are likely to be accessed without malware diagnosis.

121

• Second, it is difficult, if not futile, to scan a massive amount of data to detect malware

in big data arenas. This issue can be addressed by either detecting subsets of the

big data or lowering the detection frequency. Data selection algorithms should be

developed to pick security-sensitive data from non-sensitive ones. A malware detection

system ought to guarantee that high-risk data are diagnosed before being accessed by

users. Frequency selection algorithms should be in charge of determining the most

appropriate interval between two consecutive detection instances.

Data processing and scheduling are among the dominant methods to optimize the effi-

ciency of malware detection systems deployed in a wide range of online cloud services. In

what follows, we shed bright light on novel data processing and scheduling techniques aiming

to improve system execution efficiency. The proposed models for data processing, managing

and analysis of data popularity. The models contain a flow of streaming data transferred

and processed in the two modules, namely, (1) prioritize data blocks and (2) make detection

schedules.

7.2 Advanced algorithm exploration

We will seamlessly integrate the recommendation module with a pre-fetching mechanism

to overcome this obstacle. We will pay heed to reduce overhead and push up pre-fetching

accuracy of the data pre-fetching mechanism by applying the recommendation algorithms.

We plan to leverage the recommendation list for each active user to harvest a popular data

list cultivating data pre-fetching. A second research issue that is worth being explored in

the future is to integrate advanced recommendation algorithms into PDC. The recommen-

dation module implemented in the current version is unable to address challenging issues

like frequent user-interest shifts and temporal dynamics. We plan to extend the PDC imple-

mentation by incorporating feedback-based recommendation algorithms like [67]. Feedback

on recommendation results will be utilized to capture dynamic and dramatic changes in user

interests.

122

7.3 A Future Research Plan

In the foreseeable future, we will push forward the following research agenda beyond

this dissertation study. The research plan is comprised of the following two directions.

7.3.1 Research Direction 1

Data mining in big data storage systems. I am thrilled to continue my dissertation

work on exploiting cutting-edge machine learning and data mining algorithms to improve ef-

ficiency, reliability, and scalability of big data storage systems. I will be engaged in devising

new models and methodologies to tackle various data mining challenges. My recommen-

dation algorithm-based popularity scheduler will be extended to revamp data prefetching

performance in large-scale storage systems. I intend to propose new recommendation algo-

rithms catering to data prefetching mechanism by virtue of accurate predictions of future

accesses. Prefetching data that users may not eventually request inevitably waste storage,

network bandwidth, as well as scarce cache capacity in big data storage systems. As such,

I have a concrete plan to seamlessly integrate a recommendation module with a prefetching

mechanism to overcome this obstacle. A second research task that is worth being explored

along this direction is to incorporate advanced recommendation algorithms. The recommen-

dation module implemented in my current prototype system has an open architecture in

the way that new algorithms can be readily plugged in. The expanded algorithms will be

focused on addressing challenges like frequent user-interest shifts and temporal dynamics.

7.3.2 Research Direction 2

Incremental computing for big data using machine learning. I will solve big data prob-

lems through incremental computing techniques powered by machine learning and data

mining. Periodic data analytic jobs running in storage systems tend to lead to skews in

computing and I/O resources. As a second future research direction, I will explore incre-

mental computing techniques to judiciously handle periodic big-data jobs. I will propose

123

an incremental computing module to alleviate I/O resource skewness. Again, my incremen-

tal computing module will be governed and optimized by machine learning algorithms that

predict future data access patterns of periodic analytic jobs. The incremental computing

module aims to partition each big job into an array of small tasks that incrementally process

data archived on system systems.

7.4 Summary

In this dissertation, we focused on the popularity-aware applications for online big data

servers. We proposed a popularity calculator for popularity driven data processing as well

as four applications. The experiment results confirm that our proposed models and system

design are capable of achieving optimized performance in various perspectives. We proudly

summarize the key contributions of the dissertation research in the four bulleted items.

• First, we developed an erasure-coded storage system called POST, which seamlessly

integrates the efficient data archival and online reconstruction techniques. We imple-

mented a k-prototype clustering controller to archive unpopular data that attract a

limited number of accesses. Our POST system is reliant on the clustering controller

to group files into multiple clusters, in each of which files share similar features.

• Second, we elaborated the design and implementation of a web-proxy-cache replace-

ment system called PDC. We built a recommendation module to harvest popularity

values of data objects in storage systems. Our PDC is reliant on the recommendation

system to gauge data popularity, thereby evicting unpopular data from caching system.

• Third, we devised a user sampling module and a similarity comparison module. The

sampling module attempts to elect the most appropriate user set from existing legal

users, whose history access records are thoroughly inspected. The implementation of

the user sampling module is crucial and indispensable to the detection system because

this module is forged to (1) minimize the overhead of DDoS attack detection and (2)

124

to curtail the side effects of reasonable changes from a small group of users due to a

diversity of reasons such as updated user interests.

• Fourth, we designed a user-based collaborative filtering module to predict data pop-

ularity using established recommendation lists. We delineated the popularity-aware

algorithm to (1) prioritize data blocks and (2) make detection schedules in a way to

enhance the security of cloud storage systems.

125

Bibliography

[1] Big data and what it means:. https://www.uschamberfoundation.org/bhq/

big-data-and-what-it-means.

[2] The books dataset. https://www.kaggle.com/zygmunt/goodbooks-10k#books.csv.

[3] The movies dataset. https://www.kaggle.com/rounakbanik/the-movies-dataset#
movies_metadata.csv.

[4] M. Abdelsalam, R. Krishnan, Y. Huang, and R. Sandhu. Malware detection in cloud
infrastructures using convolutional neural networks. In 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), pages 162–169. IEEE, 2018.

[5] M. Abdelsalam, R. Krishnan, and R. Sandhu. Online malware detection in cloud
auto-scaling systems using shallow convolutional neural networks. In IFIP Annual
Conference on Data and Applications Security and Privacy, pages 381–397. Springer,
2019.

[6] U. Acharjee. Personalized and artificial intelligence Web caching and prefetching. PhD
thesis, University of Ottawa (Canada), 2006.

[7] J. Alghazo, A. Akaaboune, and N. Botros. Sf-lru cache replacement algorithm. In
Records of the 2004 International Workshop on Memory Technology, Design and Test-
ing, 2004., pages 19–24. IEEE, 2004.

[8] W. Ali. Performance improvement of web proxy cache replacement using intelligent
greedy-dual approaches. Performance Improvement, 9(8), 2018.

[9] S. Alqahtani and R. F. Gamble. Ddos attacks in service clouds. In 2015 48th Hawaii
International Conference on System Sciences, pages 5331–5340. IEEE, 2015.

[10] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane. Graph-based malware detection
using dynamic analysis. Journal in computer Virology, 7(4):247–258, 2011.

[11] Ş. Ş. Arslan, B. Parrein, and N. Normand. Mojette transform based ldpc erasure
correction codes for distributed storage systems. In 2017 25th Signal Processing and
Communications Applications Conference (SIU), pages 1–4. IEEE, 2017.

[12] B. Athiwaratkun and J. W. Stokes. Malware classification with lstm and gru language
models and a character-level cnn. In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2482–2486. IEEE, 2017.

126

https://www.uschamberfoundation.org/bhq/big-data-and-what-it-means
https://www.uschamberfoundation.org/bhq/big-data-and-what-it-means
https://www.kaggle.com/zygmunt/goodbooks-10k#books.csv
https://www.kaggle.com/rounakbanik/the-movies-dataset#movies_metadata.csv
https://www.kaggle.com/rounakbanik/the-movies-dataset#movies_metadata.csv

[13] A. Bakshi and Y. B. Dujodwala. Securing cloud from ddos attacks using intrusion
detection system in virtual machine. In 2010 Second International Conference on
Communication Software and Networks, pages 260–264. IEEE, 2010.

[14] K. S. Bhosale, M. Nenova, and G. Iliev. The distributed denial of service attacks (ddos)
prevention mechanisms on application layer. In 2017 13th International Conference
on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS),
pages 136–139. IEEE, 2017.

[15] D. Borthakur et al. Hdfs architecture guide. Hadoop Apache Project, 53(1-13):2, 2008.

[16] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, et al. Web caching and zipf-like
distributions: Evidence and implications. In Ieee Infocom, volume 1, pages 126–134.
INSTITUTE OF ELECTRICAL ENGINEERS INC (IEEE), 1999.

[17] R. Burke. Knowledge-based recommender systems. Encyclopedia of library and infor-
mation systems, 69(Supplement 32):175–186, 2000.

[18] R. Burke. Hybrid recommender systems: Survey and experiments. User modeling and
user-adapted interaction, 12(4):331–370, 2002.

[19] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu,
S. Srivastav, J. Wu, H. Simitci, et al. Windows azure storage: a highly available cloud
storage service with strong consistency. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pages 143–157. ACM, 2011.

[20] T. Cao, X. Peng, C. Zhang, T. K. Al Tekreeti, J. Mao, X. Qin, and J. Huang. A
popularity-aware reconstruction technique in erasure-coded storage systems. Journal
of Parallel and Distributed Computing, 146:122–138, 2020.

[21] Ö. Cepheli, S. Büyükçorak, and G. Karabulut Kurt. Hybrid intrusion detection system
for ddos attacks. Journal of Electrical and Computer Engineering, 2016, 2016.

[22] K. Chatterjee, V. Padmini, and S. Khaparde. Review of cyber attacks on power system
operations. In 2017 IEEE Region 10 Symposium (TENSYMP), pages 1–6. IEEE, 2017.

[23] Y. Chen, Y. Zhou, S. Taneja, X. Qin, and J. Huang. ahdfs: an erasure-coded data
archival system for hadoop clusters. IEEE Transactions on Parallel and Distributed
Systems, 28(11):3060–3073, 2017.

[24] Z. Chen, G. Xu, V. Mahalingam, L. Ge, J. Nguyen, W. Yu, and C. Lu. A cloud comput-
ing based network monitoring and threat detection system for critical infrastructures.
Big Data Research, 3:10–23, 2016.

[25] J. Cheng, M. Li, X. Tang, V. S. Sheng, Y. Liu, and W. Guo. Flow correlation de-
gree optimization driven random forest for detecting ddos attacks in cloud computing.
Security and Communication Networks, 2018, 2018.

127

[26] I. CLEVERSAFE. Cleversafe dispersed storage. Open source code distribution:
http://www. cleversafe. org/downloads, 2008.

[27] S. Contiu, S. Vaucher, R. Pires, M. Pasin, P. Felber, and L. Réveillère. Anonymous and
confidential file sharing over untrusted clouds. In 2019 38th Symposium on Reliable
Distributed Systems (SRDS), pages 21–2110. IEEE, 2019.

[28] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu. Large-scale malware classification using
random projections and neural networks. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 3422–3426. IEEE, 2013.

[29] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumadhavan, and
S. Stolfo. On the feasibility of online malware detection with performance counters.
ACM SIGARCH Computer Architecture News, 41(3):559–570, 2013.

[30] A. Dhanapal and P. Nithyanandam. An openstack based cloud testbed framework for
evaluating http flooding attacks. Wireless Networks, pages 1–11, 2019.

[31] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra. Madam: a multi-level anomaly
detector for android malware. In International Conference on Mathematical Methods,
Models, and Architectures for Computer Network Security, pages 240–253. Springer,
2012.

[32] R. Doshi, N. Apthorpe, and N. Feamster. Machine learning ddos detection for consumer
internet of things devices. In 2018 IEEE Security and Privacy Workshops (SPW),
pages 29–35. IEEE, 2018.

[33] C. Douligeris and A. Mitrokotsa. Ddos attacks and defense mechanisms: classification
and state-of-the-art. Computer networks, 44(5):643–666, 2004.

[34] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky. Small cache, big effect: Provable
load balancing for randomly partitioned cluster services. In Proceedings of the 2nd
ACM Symposium on Cloud Computing, pages 1–12, 2011.

[35] H. Fang, S. S. Dayapule, F. Yao, M. Doroslovački, and G. Venkataramani. Prodact:
Prefetch-obfuscator to defend against cache timing channels. International Journal of
Parallel Programming, 47(4):571–594, 2019.

[36] A. Felfernig and R. Burke. Constraint-based recommender systems: technologies and
research issues. In Proceedings of the 10th international conference on Electronic com-
merce, pages 1–10, 2008.

[37] B. Feng, H. Zhou, H. Zhang, J. Jiang, and S. Yu. A popularity-based cache consistency
mechanism for information-centric networking. In 2016 IEEE global communications
conference (GLOBECOM), pages 1–6. IEEE, 2016.

[38] Y. Feng, J. Liao, D. D. Wang, M. J. Xu, and W. B. Yin. Cache utilization to efficiently
manage a storage system, May 23 2017. US Patent 9,658,965.

128

[39] E. Friedlander and V. Aggarwal. Generalization of lru cache replacement policy with
applications to video streaming. ACM Transactions on Modeling and Performance
Evaluation of Computing Systems (TOMPECS), 4(3):1–22, 2019.

[40] J. Gantz and D. Reinsel. The digital universe in 2020: Big data, bigger digital shadows,
and biggest growth in the far east. IDC iView: IDC Analyze the future, 2007(2012):1–
16, 2012.

[41] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In Proceedings of
the nineteenth ACM symposium on Operating systems principles, pages 29–43, 2003.

[42] H. Gomaa, G. G. Messier, C. Williamson, and R. Davies. Estimating instantaneous
cache hit ratio using markov chain analysis. IEEE/ACM transactions on Networking,
21(5):1472–1483, 2012.

[43] S. Gopi, V. Guruswami, and S. Yekhanin. On maximally recoverable local reconstruc-
tion codes. arXiv preprint arXiv:1710.10322, 2017.

[44] S. Gupta, P. Kumar, and A. Abraham. A profile based network intrusion detection and
prevention system for securing cloud environment. International Journal of Distributed
Sensor Networks, 9(3):364575, 2013.

[45] S. Han and J. Xing. Ensuring data storage security through a novel third party au-
ditor scheme in cloud computing. In 2011 IEEE International Conference on Cloud
Computing and Intelligence Systems, pages 264–268. IEEE, 2011.

[46] H. Hu, Y. Wen, T.-S. Chua, and X. Li. Toward scalable systems for big data analytics:
A technology tutorial. IEEE access, 2:652–687, 2014.

[47] J. Hu, J. Liang, Y. Kuang, and V. Honavar. A user similarity-based top-n recommenda-
tion approach for mobile in-application advertising. Expert Systems with Applications,
111:51–60, 2018.

[48] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin.
Erasure coding in windows azure storage. In 2012 {USENIX} Annual Technical Con-
ference ({USENIX}{ATC} 12), pages 15–26, 2012.

[49] J. Huang, X. Liang, X. Qin, Q. Cao, and C. Xie. Push: A pipelined reconstruction
i/of or erasure-coded storage clusters. IEEE Transactions on Parallel and Distributed
Systems, 26(2):516–526, 2015.

[50] X.-y. Huang and Y.-q. Zhong. Web cache replacement algorithm based on multi-markov
chains prediction model. Microelectron. Comput, 31(5):123–125, 2014.

[51] Z. Huang. Extensions to the k-means algorithm for clustering large data sets with
categorical values. Data mining and knowledge discovery, 2(3):283–304, 1998.

[52] A. Jain and C. Lin. Back to the future: leveraging belady’s algorithm for improved
cache replacement. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pages 78–89. IEEE, 2016.

129

[53] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer. High performance cache
replacement using re-reference interval prediction (rrip). ACM SIGARCH Computer
Architecture News, 38(3):60–71, 2010.

[54] J. Ji, W. Pang, C. Zhou, X. Han, and Z. Wang. A fuzzy k-prototype clustering
algorithm for mixed numeric and categorical data. Knowledge-Based Systems, 30:129–
135, 2012.

[55] M. Jiang, C. Wang, X. Luo, M. Miu, and T. Chen. Characterizing the impacts of
application layer ddos attacks. In 2017 IEEE International Conference on Web Services
(ICWS), pages 500–507. IEEE, 2017.

[56] S. Jin and A. Bestavros. Popularity-aware greedy dual-size web proxy caching algo-
rithms. In Proceedings 20th IEEE International Conference on Distributed Computing
Systems, pages 254–261. IEEE, 2000.

[57] P. Kamboj, M. C. Trivedi, V. K. Yadav, and V. K. Singh. Detection techniques of ddos
attacks: A survey. In 2017 4th IEEE Uttar Pradesh Section International Conference
on Electrical, Computer and Electronics (UPCON), pages 675–679. IEEE, 2017.

[58] M. Kantardzic. Data mining: concepts, models, methods, and algorithms. John Wiley
& Sons, 2011.

[59] T. Karnwal, T. Sivakumar, and G. Aghila. A comber approach to protect cloud com-
puting against xml ddos and http ddos attack. In 2012 IEEE Students’ Conference on
Electrical, Electronics and Computer Science, pages 1–5. IEEE, 2012.

[60] C. C. Kaya, G. Zhang, Y. Tan, and V. S. Mookerjee. An admission-control technique
for delay reduction in proxy caching. Decision Support Systems, 46(2):594–603, 2009.

[61] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu. Evaluating phase change memory
for enterprise storage systems: A study of caching and tiering approaches. In 12th
{USENIX} Conference on File and Storage Technologies ({FAST} 14), pages 33–45,
2014.

[62] J. Kim, N. Shin, S. Y. Jo, and S. H. Kim. Method of intrusion detection using deep
neural network. In 2017 IEEE International Conference on Big Data and Smart Com-
puting (BigComp), pages 313–316. IEEE, 2017.

[63] C. Kumar. Performance evaluation for implementations of a network of proxy caches.
Decision Support Systems, 46(2):492–500, 2009.

[64] H. Kwon, T. Kim, S. J. Yu, and H. K. Kim. Self-similarity based lightweight intrusion
detection method for cloud computing. In Asian Conference on Intelligent Information
and Database Systems, pages 353–362. Springer, 2011.

[65] W. Lee, S. J. Stolfo, and K. W. Mok. Adaptive intrusion detection: A data mining
approach. Artificial Intelligence Review, 14(6):533–567, 2000.

130

[66] C. Li, J. Zhang, and H. Tang. Replica-aware task scheduling and load balanced cache
placement for delay reduction in multi-cloud environment. The Journal of Supercom-
puting, 75(5):2805–2836, 2019.

[67] H. Li and D. Han. A novel time-aware hybrid recommendation scheme combining user
feedback and collaborative filtering. IEEE Systems Journal, 2020.

[68] H. Li, Y. Zhang, Z. Zhang, S. Liu, D. Li, X. Liu, and Y. Peng. {PARIX}: Specu-
lative partial writes in erasure-coded systems. In 2017 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 17), pages 581–587, 2017.

[69] J. Li, M. N. Krohn, D. Mazieres, and D. E. Shasha. Secure untrusted data repository
(sundr). In Osdi, volume 4, pages 9–9, 2004.

[70] J. Li, B. Li, and B. Li. Mist: Efficient dissemination of erasure-coded data in data
centers. IEEE Transactions on Emerging Topics in Computing, 2018.

[71] J. Li, R. J. Stones, G. Wang, X. Liu, Z. Li, and M. Xu. Hard drive failure prediction
using decision trees. Reliability Engineering & System Safety, 164:55–65, 2017.

[72] P. Li, S. Gong, S. Gao, Y. Hu, Z. Pan, and X. You. Delay-constrained sleeping mecha-
nism for energy saving in cache-aided ultra-dense network. Science China Information
Sciences, 62(8):82301, 2019.

[73] W. Li, L. Galluccio, M. Kieffer, and F. Bassi. Distributed faulty node detection in dtns.
In 2016 25th International Conference on Computer Communication and Networks
(ICCCN), pages 1–9. IEEE, 2016.

[74] E. Liu, M. Hashemi, K. Swersky, P. Ranganathan, and J. Ahn. An imitation learning
approach for cache replacement. In International Conference on Machine Learning,
pages 6237–6247. PMLR, 2020.

[75] K. Ma, B. Yang, Z. Yang, and Z. Yu. Segment access-aware dynamic semantic cache in
cloud computing environment. Journal of Parallel and Distributed Computing, 110:42–
51, 2017.

[76] X. Ma and Y. Chen. Ddos detection method based on chaos analysis of network traffic
entropy. IEEE Communications Letters, 18(1):114–117, 2013.

[77] M. Manasse, C. Thekkath, and A. Silverberg. A reed-solomon code for disk storage,
and efficient recovery computations for erasure-coded disk storage. Microsoft Research,
2009.

[78] V. Martina, M. Garetto, and E. Leonardi. A unified approach to the performance
analysis of caching systems. In IEEE INFOCOM 2014-IEEE Conference on Computer
Communications, pages 2040–2048. IEEE, 2014.

131

[79] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller, S. Sezer,
Y. Safaei, E. Trickel, Z. Zhao, A. Doupé, et al. Deep android malware detection. In
Proceedings of the Seventh ACM on Conference on Data and Application Security and
Privacy, pages 301–308, 2017.

[80] B. Meng, W. Andi, X. Jian, and Z. Fucai. Ddos attack detection system based on anal-
ysis of users’ behaviors for application layer. In 2017 IEEE International Conference
on Computational Science and Engineering (CSE) and IEEE International Conference
on Embedded and Ubiquitous Computing (EUC), volume 1, pages 596–599. IEEE, 2017.

[81] Y. Meng, L. Zhang, D. Xu, Z. Guan, and L. Ren. A dynamic erasure code based on
block code. In Proceedings of the 2019 International Conference on Embedded Wireless
Systems and Networks, pages 379–383. Junction Publishing, 2019.

[82] S. Mittal and J. S. Vetter. A survey of software techniques for using non-volatile
memories for storage and main memory systems. IEEE Transactions on Parallel and
Distributed Systems, 27(5):1537–1550, 2015.

[83] C. N. Modi, D. R. Patel, A. Patel, and R. Muttukrishnan. Bayesian classifier and
snort based network intrusion detection system in cloud computing. In 2012 Third
International Conference on Computing, Communication and Networking Technologies
(ICCCNT’12), pages 1–7. IEEE, 2012.

[84] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection.
In Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007),
pages 421–430. IEEE, 2007.

[85] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan, S. Shankar, V. Sivaku-
mar, L. Tang, et al. f4: Facebook’s warm {BLOB} storage system. In 11th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 14), pages
383–398, 2014.

[86] M. M. Najafabadi, T. M. Khoshgoftaar, C. Calvert, and C. Kemp. User behavior
anomaly detection for application layer ddos attacks. In 2017 IEEE International
Conference on Information Reuse and Integration (IRI), pages 154–161. IEEE, 2017.

[87] Q. N. Nguyen, J. Liu, Z. Pan, I. Benkacem, T. Tsuda, T. Taleb, S. Shimamoto, and
T. Sato. Ppcs: a progressive popularity-aware caching scheme for edge-based cache
redundancy avoidance in information-centric networks. Sensors, 19(3):694, 2019.

[88] E. Ozfatura and D. Gündüz. Mobility and popularity-aware coded small-cell caching.
IEEE Communications Letters, 22(2):288–291, 2017.

[89] D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays of inexpensive
disks (RAID), volume 17. ACM, 1988.

[90] M. J. Pazzani and D. Billsus. Content-based recommendation systems. In The adaptive
web, pages 325–341. Springer, 2007.

132

[91] D. Pertin, S. David, P. Evenou, B. Parrein, and N. Normand. Distributed file system
based on erasure coding for i/o intensive applications. In 4th International Confer-
ence on Cloud Computing and Service Science (CLOSER), volume 1, pages 451–456.
SciTePress, 2014.

[92] J. Plank et al. A tutorial on reed-solomon coding for fault-tolerance in raid-like systems.
Software Practice and Experience, 27(9):995–1012, 1997.

[93] J. Plank, J. Luo, C. Schuman, L. Xu, and Z. Wilcox-O’Hearn. A performance evalua-
tion and examination of open-source erasure coding libraries for storage. In Proccedings
of the 7th conference on File and storage technologies, pages 253–265. USENIX Asso-
ciation, 2009.

[94] R. Poddar, S. Wang, J. Lu, and R. A. Popa. Practical volume-based attacks on
encrypted databases. In 2020 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 354–369. IEEE, 2020.

[95] S. Podlipnig and L. Böszörmenyi. A survey of web cache replacement strategies. ACM
Computing Surveys (CSUR), 35(4):374–398, 2003.

[96] A. Praseed and P. S. Thilagam. Ddos attacks at the application layer: Challenges
and research perspectives for safeguarding web applications. IEEE Communications
Surveys & Tutorials, 21(1):661–685, 2018.

[97] F. L. Quilumba, W.-J. Lee, H. Huang, D. Y. Wang, and R. L. Szabados. Using smart
meter data to improve the accuracy of intraday load forecasting considering customer
behavior similarities. IEEE Transactions on Smart Grid, 6(2):911–918, 2015.

[98] M. A. Rahaman, A. Schaad, and M. Rits. Towards secure soap message exchange in
a soa. In Proceedings of the 3rd ACM workshop on Secure web services, pages 77–84,
2006.

[99] S. Ranjan, R. Swaminathan, M. Uysal, and E. W. Knightly. Ddos-resilient scheduling
to counter application layer attacks under imperfect detection. In INFOCOM, pages
1–14. Citeseer, 2006.

[100] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the
society for industrial and applied mathematics, 8(2):300–304, 1960.

[101] F. Rezaeimehr, P. Moradi, S. Ahmadian, N. N. Qader, and M. Jalili. Tcars: Time-
and community-aware recommendation system. Future Generation Computer Systems,
78:419–429, 2018.

[102] M. Roesch et al. Snort: Lightweight intrusion detection for networks. In Lisa, vol-
ume 99, pages 229–238, 1999.

[103] S. Sahoo. Faulty node detection in wireless sensor networks using cluster, 2013.

133

[104] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl, et al. Item-based collaborative
filtering recommendation algorithms. Www, 1:285–295, 2001.

[105] J. Saxe and K. Berlin. Deep neural network based malware detection using two dimen-
sional binary program features. In 2015 10th International Conference on Malicious
and Unwanted Software (MALWARE), pages 11–20. IEEE, 2015.

[106] S. Seok and H. Kim. Visualized malware classification based-on convolutional neu-
ral network. Journal of the Korea Institute of Information Security & Cryptology,
26(1):197–208, 2016.

[107] K. Shah, A. Mitra, and D. Matani. An o (1) algorithm for implementing the lfu cache
eviction scheme. no, 1:1–8, 2010.

[108] J.-P. Sheu and Y.-C. Chuo. Wildcard rules caching and cache replacement algorithms in
software-defined networking. IEEE Transactions on Network and Service Management,
13(1):19–29, 2016.

[109] K. Shvachko, H. Kuang, S. Radia, R. Chansler, et al. The hadoop distributed file
system. In MSST, volume 10, pages 1–10, 2010.

[110] K. J. Singh and T. De. Mlp-ga based algorithm to detect application layer ddos attack.
Journal of information security and applications, 36:145–153, 2017.

[111] I. Sreeram and V. P. K. Vuppala. Http flood attack detection in application layer
using machine learning metrics and bio inspired bat algorithm. Applied computing and
informatics, 15(1):59–66, 2019.

[112] L. Stein. The world wide web security faq, version 3.1. 2. http://www. w3.
org/Security/Faq/, 2002.

[113] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti. Pergamum: Replacing
tape with energy efficient, reliable, disk-based archival storage. In Proceedings of the 6th
USENIX Conference on File and Storage Technologies, page 1. USENIX Association,
2008.

[114] V. L. Thing, M. Sloman, and N. Dulay. Adaptive response system for distributed
denial-of-service attacks. In 2009 IFIP/IEEE International Symposium on Integrated
Network Management, pages 809–814. IEEE, 2009.

[115] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma, R. Murthy,
and H. Liu. Data warehousing and analytics infrastructure at facebook. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data, pages
1013–1020. ACM, 2010.

[116] K. B. Virupakshar, M. Asundi, K. Channal, P. Shettar, S. Patil, and D. Narayan. Dis-
tributed denial of service (ddos) attacks detection system for openstack-based private
cloud. Procedia Computer Science, 167:2297–2307, 2020.

134

[117] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou. Ddos attack protection in the era of
cloud computing and software-defined networking. Computer Networks, 81:308–319,
2015.

[118] Y. Wang, W. Chen, J. Yang, and T. Li. Towards memory-efficient allocation of cnns
on processing-in-memory architecture. IEEE Transactions on Parallel and Distributed
Systems, 29(6):1428–1441, 2018.

[119] M. R. Watson, A. K. Marnerides, A. Mauthe, D. Hutchison, et al. Malware detection
in cloud computing infrastructures. IEEE Transactions on Dependable and Secure
Computing, 13(2):192–205, 2015.

[120] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs. replication: A quantitative
comparison. Peer-to-Peer Systems, 2002.

[121] Z. Wilcox-O’Hearn and B. Warner. Tahoe: the least-authority filesystem. In Pro-
ceedings of the 4th ACM international workshop on Storage security and survivability,
pages 21–26, 2008.

[122] X. Wu, H. Xu, X. Zhu, and W. Li. Web cache replacement strategy based on reference
degree. In 2015 IEEE International Conference on Smart City/SocialCom/SustainCom
(SmartCity), pages 209–212. IEEE, 2015.

[123] Y. Xiang, T. Lan, V. Aggarwal, and Y.-F. R. Chen. Joint latency and cost optimiza-
tion for erasure-coded data center storage. IEEE/ACM Transactions on Networking,
24(4):2443–2457, 2015.

[124] F. Xie, L. Du, Y. Bai, and L. Chen. Popularity aware scheduling for network cod-
ing based content distribution in ad hoc networks. In 2007 IEEE 18th International
Symposium on Personal, Indoor and Mobile Radio Communications, pages 1–5. IEEE,
2007.

[125] X. Xie, C. Wu, J. Gu, H. Qiu, J. Li, M. Guo, X. He, Y. Dong, and Y. Zhao. Az-code:
An efficient availability zone level erasure code to provide high fault tolerance in cloud
storage systems. In 2019 35th Symposium on Mass Storage Systems and Technologies
(MSST), pages 230–243. IEEE, 2019.

[126] Y. Xie and S.-Z. Yu. Monitoring the application-layer ddos attacks for popular websites.
IEEE/ACM Transactions on networking, 17(1):15–25, 2008.

[127] J. Xu, Q. Hu, W.-C. Lee, and D. L. Lee. Performance evaluation of an optimal cache
replacement policy for wireless data dissemination. IEEE Transactions on knowledge
and Data Engineering, 16(1):125–139, 2004.

[128] S. Xu, G. Yang, Y. Mu, and X. Liu. A secure iot cloud storage system with fine-grained
access control and decryption key exposure resistance. Future Generation Computer
Systems, 97:284–294, 2019.

135

[129] C. Ye, K. Zheng, and C. She. Application layer ddos detection using clustering analysis.
In Proceedings of 2012 2nd International Conference on Computer Science and Network
Technology, pages 1038–1041. IEEE, 2012.

[130] W. Yen and M.-F. Lee. Defending application ddos with constraint random request
attacks. In 2005 Asia-Pacific Conference on Communications, pages 620–624. IEEE,
2005.

[131] F. Yihunie, E. Abdelfattah, and A. Odeh. Analysis of ping of death dos and ddos
attacks. In 2018 IEEE Long Island Systems, Applications and Technology Conference
(LISAT), pages 1–4. IEEE, 2018.

[132] S. Zhang, L. Wang, H. Luo, X. Ma, and S. Zhou. Age of information and delay tradeoff
with freshness-aware mobile edge cache update. In 2019 IEEE Global Communications
Conference (GLOBECOM), pages 1–6. IEEE, 2019.

[133] Z.-D. Zhao and M.-S. Shang. User-based collaborative-filtering recommendation algo-
rithms on hadoop. In 2010 Third International Conference on Knowledge Discovery
and Data Mining, pages 478–481. IEEE, 2010.

136

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction and Motivations
	Towards A Popularity-Aware Reconstruction Technique
	Online Recovery of Faulty Nodes in Storage Systems
	Motivations for Popularity-aware Online Recovering
	Novel Features and Contributions

	Building A Popularity-Driven Caching System for Big Data Applications
	Cache Replacement Policies
	Basic Ideas of Popularity-aware Caching
	Motivations for Popularity-Aware Caching
	Contributions of the New Popularity-Aware Caching Technique

	DDoS Detection Systems for Cloud Data Storage
	Motivations for Similarity Based DDoS Detection Techniques
	Contributions for Similarity Based DDoS Detection Technique

	Malware Detection in Cloud Storage Services
	Motivations for a Popularity-Aware Malware Detection Scheduler
	Contributions of a Popularity-Aware Malware Detection Scheduler

	A Road Map

	Related Work
	Popularity-Aware Schemes
	Data Reconstruction
	Erasure-Coded Storage Systems
	Data Archival Schemes
	Reconstruction Schemes

	Cache Replacement
	Objectives of Caching Systems
	Traditional Caching Systems
	Advanced Cache Replacement Strategies
	What's New in Our PDC?

	DDoS Attacks and Detection Methods
	DDoS Attacks models
	DDoS Detection Models in Clouds
	Application Layer DDoS Detection

	Malware Detection in Cloud Storage Systems

	A Popularity-Aware Data Reconstruction System
	System Architecture
	Overview
	Erasure-Coded Storage Clusters
	The k-prototype Module
	The Popularity Calculator Module

	Designing Basic Modules
	k-prototype Clustering
	User-Based Collaborative Filtering

	Designing POST
	k-prototype Controller
	Reconstruction Controller
	Time Complexity Analysis
	Examples

	Performance Evaluation
	Experimental Settings
	Data archival
	Space Overhead Analysis
	Impacts of Similarity
	Impacts of Number of Users
	Impacts of Number of User Requests
	Impacts of Stripe Capacity

	Summary

	The Popularity-Aware Cache Replacement
	System Design
	Overview
	The Popularity Calculator Module
	Cache Replacement

	A Generalized Popularity-Driven Cache Replacement Algorithm
	User-Based Collaborative Filtering
	A Popularity-Based Cache Replacement Policy

	Performance Evaluation
	Performance Metrics and Experimental settings
	Overhead Analysis
	Hit Ratio Analysis
	Byte Hit Ratio Analysis
	Impacts of Recommendation List Length
	Comparison with the Advanced Cache Replacement Strategies

	Summary

	Similarity-Based DDoS Detection
	An Overview
	A Similarity-based DDoS Detection System
	The Basic Idea
	High-Level System Architecture
	Concepts and Key Steps

	Algorithm Design
	Overhead Analysis

	Performance Evaluation
	Evaluation of Overhead
	Evaluation of Accuracy

	Summary

	Popularity-Aware Malware Detection
	Basic Idea
	System Architecture
	Concepts and Main Steps
	Algorithms
	Summary

	Conclusions and A Future Research Plan
	Conclusions
	Data processing and scheduling

	Advanced algorithm exploration
	A Future Research Plan
	Research Direction 1
	Research Direction 2

	Summary

	Bibliography

