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Abstract 

 

 

 Maintaining food safety and preventing spoilage are paramount during food distribution. 

However, in the last segment of the cold chain (Last Mile), less-than-truckload (LTL) shipping 

practices can lead to cyclic temperature abuse (TA). Therefore, two experiments were conducted 

to develop predictive models of the effects of LTL TA on the safety and shelf-life of a model 

temperature sensitive food (boneless skinless chicken breast). For both experiments, simulated 

LTL TA conditions (cyclic 2 h at 4°C, then 2 h 25°C) were used. In experiment 1, inoculated 

(Salmonella Typhimurium) fillets were subjected to TA in a programmable incubator. Using 

temperature and microbial results, an acceptable tertiary model for the prediction of Salmonella 

growth was created. Experiment 2 was conducted using a commercial pallet of chicken breast 

fillets and a walk-in cooler. Using Monte Carlo methods, predictions were obtained for risk-of-

loss and shelf-life. The research presented in the thesis is an amalgamation of two distinct fields 

of food microbiology and supply chain to create a broader impact on food safety and security. 
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Introduction to Salmonella 

Salmonella is the second leading cause of foodborne illness each year in the United States 

with the Center for Disease Control and Prevention (CDC, 2022a) estimating approximately 420 

deaths and over 26,000 hospitalizations are the result of Salmonella infections. Also, Salmonella 

infections result in a large economic burden. The economic burden of the leading 15 foodborne 

pathogens is $17.5 billion with Salmonella contributing $4.1 billion (Hoffmann and Ahn, 2021). 

Salmonella cases in poultry alone may account for approximately $2.8 billion (Scharff, 2020). 

Because of its impact, it is of extreme importance to understand the characteristics and tendencies 

of Salmonella growth. Salmonella is a gram-negative, rod-shaped facultative anaerobe (Giannella, 

1996). Being a facultative anaerobe, Salmonella can grow in environments with and without the 

presence of oxygen. Regarding the taxonomy of Salmonella, there are 2 species, with Salmonella 

enterica having 6 subspecies, and approximately 2600 serovars (Grimont and Weill, 2007). 

Salmonella enterica subspecies enterica serovars account for nearly all illnesses in both humans 

and animals (Jajere, 2019). The disease caused by these serovars in known as nontyphoidal 

salmonellosis which can be characterized by gastroenteritis and in more severe cases bacteremia 

(Shimoni et al., 1999). The infectious dose of Salmonella can vary depending on the serovar 

(Kothary and Babu, 2001; Hara-Kudo and Takatori, 2011). Also, individuals from different age 

groups and immunity levels may be susceptible to more serious cases of salmonellosis. (Shimoni 

et al., 1999). For example, stomach acid is one of the major barriers Salmonella must overcome to 

infect its host and elderly people have a greater chance of decreased acidity in their stomachs 

(Smith, 1998). Therefore, the elderly may have an increased risk for infection. To determine the 

connection with age and susceptibility to Salmonella Typhimurium, a study was conducted using 

inoculated mice (Ren et al., 2009). It was determined that old mice had higher bacterial loads in 
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the GI tract and liver, lost more weight, and had decreased production of neutrophils than younger 

mice. 

Salmonella and Poultry 

According to the Food and Drug Administration (FDA, 2020a), chickens naturally have 

Salmonella thriving in their guts and poultry products are a leading cause of salmonellosis. The 

carcasses may become contaminated throughout the chicken supply chain particularly during the 

transport and processing of the birds (Slader et al., 2002; Mainali et al., 2009). If fecal matter 

comes into contact, directly or indirectly, with the chicken carcasses it is possible for there to be a 

presence of Salmonella (Guerrero et al., 2020). The poultry industry has implemented many 

practices to mitigate the growth of Salmonella on poultry carcasses and reduce food safety risk 

(Kataria and Morey, 2020). However, Salmonella outbreaks continue to be a public health issue 

(CDC, 2022b). According to a report from the National Antimicrobial Resistance Monitoring 

System (FDA, 2020b), 4% of retail chicken is contaminated with Salmonella in the United States. 

A study done in Seattle, Washington by Mazengia et al. (2014) studied the prevalence of 

Salmonella on poultry in retail markets and found that 11% of samples were positive with organic 

production methods resulting in a higher recovery of Salmonella. Guran et al. (2017) found that 

skin-on chicken breasts from retail markets in Atlanta, Georgia may be as high as 44.7%. 

Internationally, Salmonella prevalence was found to be 52.2%, 26.7%, 31.5%, and 45.9% for 

China, Columbia, Russia, and Vietnam, respectively (Alali et al., 2012). Another study in China 

found an overall Salmonella prevalence of 52.2%, and additional work in Vietnam resulted in 

45.9% of samples from markets testing positive for Salmonella (Yang et al., 2011; Ta et al., 2012). 

Lastly, research in Selangor, Malaysia found a prevalence of 20.08% in wet and hypermarkets 

(Thung et al., 2016). The serovars most responsible for Salmonella infection related to poultry can 
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vary based on region. Many studies have been conducted to determine which Salmonella isolates 

were present on poultry samples. Kumar et al. (2019) and others found the most common poultry 

related serovars to be Salmonella Typhimurium, Salmonella Gallinarum, and Salmonella 

Enteritidis in India with Salmonella Montevideo, Salmonella Newport, Salmonella Infantis, and 

Salmonella Pullorum also being detected. In Guatemala, Salmonella Paratyphi B, Salmonella 

Heidelberg, and Salmonella Derby were determined to be the most prevalent in retail markets 

(Jarquin, et al., 2015). Also, it has been shown that markets in Greece have higher occurrences of 

Salmonella Hadar, S. Enteritidis, and Salmonella Blockley (Zdragas et al., 2012). According to the 

CDC’s National Center for Emerging and Zoonotic Infectious Diseases (2016) the 4 most common 

serovars from human sources are S. Enteritidis, S. Typhimurium, S. Newport, Salmonella Javiana.  

Salmonella Growth and Temperature on Poultry Meat 

Temperature remains a primary factor in preserving the safety and quality of food. 

Studying the connection between temperature and bacterial growth is not a new concept (Hampil, 

1932). Understanding the optimal temperature range as well as the extremes under which a 

particular microorganism can grow is extremely important to be able to develop a plan to combat 

its growth at every step along the cold chain. Regarding Salmonella, Matches and Liston (1968) 

investigated the minimal growth temperatures for different serovars including Salmonella 

Typhimurium and Salmonella Heidelberg with results of 5.5-6.5°C. Also, it has been shown that 

Salmonella struggles to survive at temperatures above 50°C (Elliot and Heiniger, 1965). Because 

of its temperature requirements (>5°C and <50°C), Salmonella is classified as a mesophile 

(Wiegel, 1990). When bacteria are heated to greater than their tolerable temperature ranges, 

proteins denature, enzymes deactivate, and intracellular materials leak out of the cell (Russel, 

2003). Also, low temperature can result in damage to cell membranes (El-Kest and Marth, 1992). 



15 
 

The USDA (2020) lists the temperature range of 4°C to 40°C as the “danger zone” because it is 

the range in which most bacteria that cause foodborne illness grow the fastest. There has been 

extensive research, on the connection between Salmonella growth on poultry products and 

temperature (Ackbar and Anal, 2015; Borges et al., 2018; Kiel et al., 2018; Biswas et al., 2019; 

Trinetta et al., 2019). A study in China collected whole chicken carcasses from large, small, and 

wet markets and found that frozen fillets had a significantly lower prevalence of Salmonella 

(45.7%) than those stored at ambient (56.0%) and chilled temperatures (52.4 %) (Yang et al., 

2011). A study by Morey and Singh (2012) compared the growth of both S. Typhimurium and S. 

Heidelberg in sterile broth and chicken slurry. The growth mediums were held at 4°C, 7°C, or 

10°C, and the results showed a significant difference in the growth of both strains at 4°C compared 

to other temperatures in both sterile broth and the chicken slurry. Also, Salmonella growth was 

greater in the sterile media because of the lack of competition provided by microflora (Morey and 

Singh, 2012). Pradhan et al. (2012) investigated the growth of Salmonella Typhimurium on 

chicken breasts at −20°C, −12°C, 0°C, 4°C, and 8°C up to 21 days. The results indicated that 

Salmonella growth on breasts kept at 8°C were significantly different than the other temperatures 

with a 1.2 log CFU/g increase after 1 week. Another study was conducted looking at the effect of 

storage temperature, time, and gas environment on the growth of a Salmonella and Listeria cocktail 

on cooked chicken patties (Murphy et al., 2001). The patties were inoculated with a Salmonella 

cocktail and processed using a convection oven at high and low humidity levels, and the patties 

were then stored at 4°C, 8°C, and 15°C under air, vacuum, and CO2 conditions. The results 

indicated that lower temperatures, lower storage times, and vacuum packaging reduced growth. In 

a study done by T.P. Oscar (2009), Salmonella Typhimurium growth on chicken skin was found 

to be optimal at 40°C with a lag time of only 2.5 h and growth rate of 1.1 logs per h. Growth 
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occurred in the temperature range of 25 °C to 45°C with survival happening at 5°C and 50 °C. 

Another study was conducted to compare the lag times and specific growth rates of 11 different 

Salmonella serovars on sterile chicken breast burgers at 25°C (Oscar, 2000). The average lag time 

and specific growth rates were 2.8 h and 0.35 log10 per h, respectively with Salmonella Harrdt 

having statistically different lag time than Salmonella Brandenburg and Salmonella Agona. Next, 

Salmonella growth in the presence of native microflora was studied at isothermal temperatures 

ranging from 8°C to 33°C (Jia et al., 2020). Results indicated that Salmonella grew at all 

temperatures above 8°C. A study on ready to eat poultry meat sausages was conducted by 

inoculating the sausages with S. Enteritidis (Akbar and Anal., 2014). The sausages were stored at 

either 2-4°C or 6-8°C and kept for 35 days. The higher temperature scenario had a climax of 

approximately 6.5 log CFU/g after 7 days and then decreased back to initial levels after 35 days. 

In comparison, at lower temperatures the Salmonella concentration never rose above inoculation 

levels. Ferreira, and Lund (1987) studied the connection between pH and temperature on the 

growth of different Salmonella serovars. They found that higher incubation temperatures resulted 

in the ability to grow at lower pH values. Because of Salmonella growths connection to 

temperature, Akil et al. (2014) collected meteorological and infection data in 3 southeastern states 

to determine if climate change could influence the amount of salmonellosis cases. Their model 

concluded that a rise in environmental temperature will likely result in an increase in Salmonella 

infections with an increase of 1°F correlating with 4 additional positive cases. 

While large amounts of scientific literature exist for Salmonella growth during various 

isothermal conditions, there is less literature on Salmonella growth on poultry during dynamic 

temperature conditions. An experiment was completed where chicken was inoculated to a 

concentration of 102 CFU/mL and moved between incubators set at 10°C and 30°C (Bovill et al., 
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2000). Salmonella concentrations reached 9 logs CFU/mL at isothermal 30°C after 30 h. However, 

4 fluctuations of 10°C to 30°C resulted in 7-8 logs CFU/mL after 150 h. Bovill et al. (2001) studied 

the effect of rapid temperature changes on the survival and growth of S. Typhimurium. This was 

accomplished by transferring 200 mL of culture between water baths set at 1°C and 15°C in 3 

different time intervals. The scenarios were: 1) Every 6 h, conicals kept at 1°C were moved to 

15°C for 20 min, 2) Alternating 2 h at 15°C and 1°C, and 3) Dropping from 15°C to 1°C for 6 h 

then increasing temperature again to 15°C. Results showed little effect of temperature changes on 

the growth or survival of Salmonella. Another experiment on Salmonella growth during fluctuating 

temperatures was completed in cow manure (Semenov et al., 2007). This study incorporated 4 

temperatures (7°C, 16°C, 23°C, and 33°C) and 4 temperature fluctuation ranges (0, ±4°C, and 

±7°C), and results indicate the greatest increase of Salmonella concentration at 37±7°C. Next, a 

study was done to investigate the effects of breaks in the cold chain on S. Typhimurium growth on 

goat cheese (Tamagnini et al., 2008). Three treatments were created: 1) A control kept at 5°C for 

up to 40 days, 2) 8 h at 25°C then 5°C until the experiment finished, 3) 24 h at 25°C then 5°C until 

the experiment finished. The cheese was inoculated to an initial concentration of approximately 5 

log CFU/g. Salmonella in the third treatment increased the most dramatically with a maximum 

increase of 2.4 logs, while treatments 1 and 2 decreased to approximately 4 logs CFU/g. 

Temperature and Salmonella Biofilms 

 Salmonella is known to form biofilms and studies have been performed to discover the 

connection between temperature and biofilm formation (Steenackers et al., 2012). A study on the 

effects of environmental conditions on S. Enteritidis biofilm formation on stainless steel was 

performed and found 20°C to be the ideal temperature for biofilm development (Giaouris et al., 

2005). In addition, after 7 days at 20°C, biofilm formation was no longer connected to the pH 



18 
 

values tested. As similar study was completed on S. Typhimurium on stainless still and acrylic at 

28°C, 37°C, and 42°C (Nguyen et al., 2014). Results indicated a correlation between higher pH 

and temperatures and faster biofilm formation. Furthermore, Obe et al. (2022) showed differences 

in the strength of biofilm formation on plastic and stainless steel at different temperatures with the 

highest formation rate (40%) being at 25°C on plastic. Additionally, S. Kentucky biofilm formation 

at 5 different temperatures (4°C, 10°C, 25°C, 37°C, and 42°C), 3 surfaces (plastic, rubber, and 

chicken skin), and 5 pH values has been studied with optimal biofilm conditions found to be at a 

pH of 7.0 and a temperature of 37°C (Roy et al., 2021). Next, De Oliveira et al. (2014) studied 

Salmonella biofilm formation on 3 different surfaces at 4 different temperatures (16°, 20°, 28°, 

and 35°C). They found the rdar morphotype at 28°C to be >50% and <5% at 35°C. Also, they 

found stainless steel to be the easiest material for biofilm formation with growth at the lowest 

temperature studied. Lastly, a study demonstrated biofilm formation of different Salmonella 

serovars and strains is not uniformly affected by temperature (Borges et al., 2018). Results showed 

a biofilm formation rate of 71.6%, 63%, 52.3%, and 39.5% at 37°C, 28°C, 12°C, and 3°C, 

respectively. 

Antimicrobial Resistance of Salmonella 

According to the CDC (2019a), the development of antibiotic resistant strains of 

Salmonella is increasing and can result in more serious illness. These strains are the result of the 

us of antimicrobials in the animals, and if a person becomes seriously ill the resistance to 

antibiotics of the bacteria can make it more difficult to treat them (CDC, 2019b). This is a principal 

reason as to why proper temperature management is so important. Because the continual use of 

antibiotics in poultry is creating antibiotic resistant strains, understanding proper cold chain 

management will likely continue to be paramount to prevent outbreaks in the future. A study by 
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Arslan and Eyi (2010) looked at the antimicrobial resistance of Salmonella recovered from retail 

poultry meat and beef. The results showed a prevalence of 29% in poultry meat with S. 

Typhimurium being the most common serovar. Ampicillin and cephazolin were the 2 most resisted 

antibiotics, and it was found that 62% of the Salmonella isolates recovered were resistant to more 

than 3 drugs. Another study in Pakistan investigated the prevalence of antibiotic resistant strains 

of Salmonella in 100 retail broiler meat samples (Soomro et al., 2010). From the 38 positive 

samples, all were resistant to ampicillin, and most were resistant to streptomycin, tetracycline, and 

nalidixic acid. In China, it was found that 37.5% of poultry meat samples tested were positive for 

Salmonella with S. Enteritidis, Salmonella Indiana, and S. Typhimurium being the most common 

(Yang et al., 2020). The antibiotic resistance to a minimum of 3 of the used antimicrobials was 

determined to be 60.1%, and the highest resistance rates were 72.3 % for nalidixic acid, 55.3% for 

ampicillin, and 48.7% for streptomycin. Abd-Elghany et al. (2015) did a similar experiment in 

Egypt and found an overall positive for Salmonella rate on chicken samples to be 34% (2015). S. 

Typhimurium, S. Enteritidis, and Salmonella Kentucky were the 3 most common serovars. 

Regarding the isolates, all were resistant to erythromycin, penicillin, and amoxycillin, and greater 

than 90% were resistant to nalidixic acid and ampicillin. Another study looked at the pervasiveness 

and resistance to antibiotics from processed poultry carcasses (Parveen et al., 2007). In this 

experiment, carcasses were collected prechill and postchill. The results showed a Salmonella 

prevalence of 88.4% on prechilled carcasses and 84.1% on post chill carcasses. S. Kentucky and 

S. Typhimurium were most prevalent and greater than half of the isolates were resistant to at least 

3 antimicrobial drugs. The drugs the isolates were most resistant to (>50%) were tetracycline, 

ampicillin, amoxicillin-clavulanic acid, and ceftiofur. 
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Food Waste 

Both food waste and food loss are massive problems globally. According to the United 

Nations (UN, 2022), 14% of food is lost and 17% of food is wasted globally. The Food and 

Agriculture Organization of the United Nations (FAO, 2022a) defines food loss as a decrease in 

the food supply in the supply chain before retail stores, households, or food service establishments, 

while food waste occurs from the actions of retail stores, households, and food service 

establishments. In the U.S. alone it is estimated 30-40% of the food supply is lost or wasted 

(USDA, 2022). The loss or waste of food can have negative impacts on hunger, the economy, and 

the environment. The FAO (2021) reports that 768 million people could have struggled with 

hunger in 2020 with nearly 400 and 300 million coming from Asia and Africa, respectively. In the 

U.S. over 10% off the population may be experiencing some level of food insecurity (USDA, 

2021). Globally, food waste costs $2.6 trillion each year (FAO, 2022b). The United States 

Environmental Protection Agency (2021) states the consequence for food loss and food waste in 

the U.S. amounts to nearly $220 billion annually. Next, the reduction of food loss and food waste 

can improve resource efficiency and mitigate the pressure on natural resources (Cattaneo et al., 

2021). Read et al. (2010) investigated which points along the supply chain would have the greatest 

positive impact on the environment. They found that food service, processing, and households 

have the greatest positive impact on energy use, land use, and water use, respectively. At the retail 

level, it has been shown that the causes of food waste vary but are likely due to erratic demand and 

replenishment policies (Teller et al., 2018). In addition, up to 35% of food wasted at retail stores 

may still be fit for human consumption (Cicatiello et al., 2017). Because of both the food safety 

and food waste risk associated with improper management at the retail level of the food chain, 

innovative methods are needed to effectively combat the microorganisms responsible. 
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Management decisions may be a foundational change that a company can make to improve the 

food safety and reduce the waste of their operations. 

Spoilage Background 

Spoilage is a major factor causing food waste in the world today. There are 3 main types 

of food spoilage: 1) Microbial, 2) Chemical, and 3) Physical (Petruzzi et al., 2017). Chemical 

spoilage is caused by chemical reactions in or on the food product such as oxidation, while physical 

spoilage is usually characterized by water entering or leaving a food product such as freezer burn 

(Blackburn, 2006). However, for the purposes of this review the focus will be on microbial 

spoilage. Some of the most common microorganisms responsible for the spoilage of poultry meat 

are: Carnobacterium sp., Psuedomonas sp., Yersinia sp., Serratia sp., Enterobacteriaceae, 

Brochothrix thermosphacta, and lactic acid bacteria (Höll et al., 2016; Rouger et al., 2017). The 

composition of bacteria present on meat samples can be affected by temperature and packaging 

conditions as certain conditions can inhibit or promote growth (Cerveny et al., 2009). All poultry 

meat naturally has a “background microflora” and will eventually spoil due to the metabolites 

produced from the metabolic byproducts (Rouger et al., 2017). Microorganisms are placed in 

different groups based on the temperatures in which they grow (Fung, 2009). Mesophilic bacteria 

grow best between 15-45°C and have an optimum growth temperature of approximately 37°C 

(Fung, 2009). Aerobic plate counts (APC) are often used to measure the growth of mesophilic 

bacteria (Mendonca et al., 2020). In contrast psychrotrophs (PSY) have an optimum growth 

temperature of approximately 21°C but can still grow at refrigeration temperatures (Fung, 2009). 

Research has been completed that demonstrates the viability of the use of PSY rather than APC 

for shelf-life (Pothakos et al., 2012). 
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Spoilage During the Last Mile 

One challenge in controlling spoilage is ensuring that temperature sensitive foods never 

experience temperature abuse (TA). While maintaining refrigeration temperatures (≤4°C) does not 

outright prevent spoilage (PSY), it does decrease the rate of spoilage and prolong shelf-life 

(USDA, 2015). Therefore, preventing TA during the cold chain is essential in preventing a 

reduction of shelf-life (Global Cold Chain Alliance, 2020). These “breaks” in the cold chain can 

happen at different segments (Freiboth et al., 2013; Goedhals-Gerber and Khumalo, 2020). This is 

particularly true for the last segment of the supply chain known as the “last mile” (Balcik et al., 

2008; Shu et al., 2015). Two of the primary methods used for shipping freight are “less-than-

truckload” (LTL) and “full-truckload” (FTL) (Vega et al., 2021). LTL shipping is used when there 

is not enough product to fill an entire trailer, and the shipper wishes only to rent the space that their 

product occupies (FedEx.com, 2022). Therefore, when using LTL, there may be different products 

from multiple shippers present on the trailer. In contrast, FTL is used when a single company has 

enough product to fill an entire trailer (Jothi Basu et al., 2015).When products are shipped using 

LTL methods, multiple stops may be required for unloading (Montecinos et al., 2021). 

Temperature heterogeneity in refrigerated trucks has been observed with the air around the doors 

being the highest risk for TA (Moureh and Flick, 2004; Jedermann et al., 2009). In addition, the 

opening and closing of doors on refer trucks has presented issues with maintaining safe 

temperatures (Taher et al., 2021). This problem can cause complication later in the food chain 

when decisions regarding product rotation are made at the retail level (Kozak et al., 2014). The 

“first-in, first-out” (FIFO) and “first-expire, first-out” methods are two of the most common 

strategies used (Mendes et al., 2020) In the FIFO model, product rotation is based on the arrival 

date of a product and assumes all products that arrive at the same time will have the same remaining 



23 
 

shelf-life (Hertog et al., 2014). In contrast, the FEFO model considers the remaining shelf-life of 

each individual product (Hertog et al., 2014). The FEFO policy has been shown to be better for 

the environment and reduce waste in comparison to the FIFO policy (La Scalia et al., 2019). 

However, implementation requires greater communication throughout the supply chain so that 

managers can have a greater understanding of the remaining shelf-life (Hertog et al., 2014). 

Popularity of Poultry Meat 

The statistics provided by The National Chicken Council (NCC, 2022a) report that over 

the last 60 years per capita consumption of chicken has increased by nearly 70 pounds while red 

meat has decreased from 138 pounds to 111 pounds. In addition, poultry meat has had the largest 

difference in consumer availability over the last 50 years with per capita availability increasing by 

30 pounds in the United States (Bentley, 2019). The shift in consumers choice from red meat to 

poultry is likely in part due to the reduced price of poultry meat. As of 2021, the wholesale prices 

(cents per lb.) of beef and chicken are 370.9 and 85.4, respectively (NCC, 2022b). Also, 724.9 and 

209.4 are the retail prices of beef and chicken, respectively (NCC, 2022b). Next, poultry meat is 

proven to be healthier than red meat with 100 g portions of chicken breast and t-bone steak having 

approximately 32 g and 27 g of protein and 1 g and 4.7 g of saturated fat, respectively (USDA, 

2019a; USDA, 2019b). These differences make chicken the more appealing option to lower 

income consumers looking for a source of healthy protein in their diets. The production of poultry 

has also increased largely to meet the increase in demand. In 1950, there as nearly 1400 million 

pounds of broilers produced in the U.S., while in 2022 it is estimated that over 44,700 million 

pounds of broilers will be produced (NCC, 2022c). Lastly, the market segments for poultry meat 

have shifted to almost 50% retail 50% foodservice over the last 50 years (NCC, 2022d). The 

increase in both consumption and production of poultry meat indicates the strict attention that 
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needs to continue to be given to the food safety and spoilage challenges that plague the poultry 

industry.  

Mathematical Modeling of Bacterial Growth 

Mathematical models for the prediction of bacterial growth are helpful tools to maintain 

food safety. Mathematical modeling consists of primary, secondary, and tertiary models (Whitling, 

1995). Primary models describe changes in bacterial concentrations, in specific conditions, over 

time (Fakruddin et al., 2011). Secondary models describe parameter from primary models (such 

as growth rate and lag time) at different environmental conditions (Fakruddin et al., 2011). Lastly, 

tertiary models are a combination of primary and secondary models in a user interface 

(Stavropoulou and Bezirtzoglou, 2019). Having a method for the reliable prediction of bacterial 

growth under different environmental conditions is extremely important because it allows users to 

investigate many scenarios and their impact on food safety (McMeekin et al., 2008). Popular 

examples of primary models are the Gompertz and Baranyi models (Baranyi and Roberts, 1994). 

However, the Gompertz model is without biological basis, and the Baranyi model was developed 

so that it would not share the shortcomings of the older Gompertz model (Baranyi et al., 1993). 

Also, research has shown that the Baranyi model outperforms the modified Gompertz model 

(Juneja et al., 2007). Regarding secondary modeling, the Arrhenius relationship and the 

Ratkowsky square root model are popular models (Ratkowsky et al., 1982). Ratkowsky et al., 

(1983) later expanded the model to include the entire biokinetic temperature range. Models have 

been developed to predict both pathogen and spoilage microorganism growth and have wide 

applicability in keeping food safe and reducing food waste (Bovill et al., 2000; Juneja et al., 2007; 

Racioppo et al., 2022). Additionally, the Huang model has proven its validity when has been 

compared with Ratkowsky model (Huang et al., 2011). To test a model’s validity, accuracy factors 
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(AF) factors and bias factors (BF) can be considered (Ross, 1996; Oscar, 2005) The AF shows the 

overall prediction error with a value of 1 being perfect, and the BF indicates whether a model is 

overpredicting (>1) or underpredicting (<1) (Ross, 1996). Ross et al. (2000) states that acceptable 

value for accuracy factors increases by up to 0.15 for each additional variable (pH, temperature, 

etc.) included in the model. Additionally, Ross et al. (2000) defined the acceptable range for BF 

to be approximately 0.7-1.15. Modelling the growth of Salmonella has been performed in a number 

of ways previously. Bovill et al. (2000) developed a model for the growth of Salmonella and 

another pathogen in three animal products. Milkievicz et al. (2020) created a model for the growth 

of Salmonella on chicken meat using the Huang primary model and the Ratkowsky and Huang 

square root secondary models. A tertiary model for the growth of S. Typhimurium on chicken skin 

has been developed (Oscar, 2009). Additionally, Kim et al. (2018) designed a growth model for 

Salmonella on eggs, and Velugoti et al. (2011) designed a Salmonella growth model for pork. In 

many cases, the models in the literature have acceptable BF and AF. However, many models are 

limited as they can only reliably predict growth under the specific conditions in which they were 

designed. For example, models have been developed that consider dynamic or isothermal 

temperatures, sterile growth medium or nonsterile, and individual strains or bacterial cocktails 

(Zwietering et al., 1994; Oscar, 1999; Oscar, 2009; Fang et al., 2015). There is a need for a model 

developed specifically for use in the supply chain to address both for food safety and spoilage 

concerns. 

Introduction to Monte Carlo Simulations 

A potential tool for risk analysis and predictions are simulation models. There are many 

simulation models used in agriculture today. One popular example is the Monte Carlo method. 

According to Johansen (2010), the method was most likely named in honor of the casinos in Monte 
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Carlo by physicists in the 1940’s and involves the use of random numbers to replace physical 

experiments. Through its use, it is possible for the user to have an estimate of the sampling 

distribution from the generation of a pseudo-population that is similar to the actual population 

(Mooney, 1997). A benefit of simulation models is they allow the user to observe potential 

outcomes of different inputs to answer “what if?” questions (Bonate, 2012). The uses for Monte 

Carlo methods are diverse, and its implementation has spanned across several fields 

(Raychaudhuri, 2008). Andreo (1991) states that Monte Carlo methods have been studied in a 

variety of areas under the umbrella of medial radiation physics. Boda (2014) showed how Monte 

Carlo simulations can be used in electrolyte solutions. Markov chain Monte Carlo has been used 

in the field of cognitive psychology (Sanborn et al., 2010). In business, Alrabadi and Aljarayesh 

(2015) found Monte Carlo simulations to be an accurate method in forecasting stock market 

returns. Lastly, Monte Carlo has been used in a wide variety of agricultural applications such as 

modeling light transport in food products (Hu et al., 2020). 

Monte Carlo in Agriculture 

Monte Carlo methods have been used in a variety of applications within the agricultural 

industry. There is no singular “Monte Carlo Model” as there are many different versions of the 

method, and it is often customized on a case-by-case basis (Harrison, 2019). Talwariya et al. (2019) 

used Monte Carlo simulations to simulate power usage of different types of consumers. They were 

able to determine that agricultural consumers benefit from the use of renewable energy. Second, 

Monte Carlo simulations have been used in agricultural sampling in Kenya (Maeda et al., 2010). 

They were able to estimate the proportion of different crop types in a synthetic crop field before 

actual physical sampling was carried out. Their method was useful in reducing the labor and funds 

necessary to perform agricultural sampling with a root mean squared error (RMSE) of less than 
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1% when over 1,000 samples are used. Gibbons et al. (2006) designed a model to investigate the 

effects of uncertainty of greenhouse emissions data on cost minimizing solutions. Using Monte 

Carlo and a farm-level optimization model, they were able to breakdown the implications of 

greenhouse gas uncertainty on the cheapest methods for combating farm emissions. Next, Hong et 

al. (2016) used Monte Carlo simulations to test for the lethality of microwave assisted 

pasteurization with a goal of a 6-log reduction in Clostridium botulinum spores. Through Monte 

Carlo methods, they were able to determine what percentage of processes will result in 5 and 6 log 

reductions in beef and salmon samples. Further, Monte Carlo has been used to estimate health risk 

of pesticides on dates in Iran (Eslami et al., 2021). Researchers were able to determine that date 

consumption does not present a significant health risk due to pesticide residues. Also, Monte Carlo 

methods have been used to determine the feasibility of alternative farming practices on rice farms 

in Tanzania (Kadigi et al., 2020). They were able to perform risk analysis so that decision makers 

can consider the best pathways to take to increase rice production. Lastly, Guarav and Sharma 

(2020) used the Monte Carlo method to analyze the uncertainty of the parameters for negative 

health risks (carcinogenic and noncarcinogenic) from heavy metals as a result of the use of 

wastewater in agriculture.  

Monte Carlo in the Poultry Industry 

 The poultry industry has found use for the Monte Carlo method in a variety of ways. Market 

risks of the poultry industry in Indonesia was performed using Monte Carlo methods 

(Purwaningsih et al., 2018). Results showed a market risk of loss of approximately 54% on 

Indonesian farms. Rico-Contreras et al. (2017) used Monte Carlo to estimate economic risk 

associated with different moisture levels (40%, 35%, 30%, and 25%) of poultry litter used for 

energy production, and they found the 40% moisture content scenario to require the least economic 



28 
 

investment. While, the 25% scenario produces more energy, financially it was found to be the 

worse option due to the effort required to reduce moisture to this level. Risks of negative impacts 

because of volatile organic compounds in slaughterhouses was investigated (Omidi et al., 2019). 

Results indicated concentration and frequency of the exposure were the most important variables 

relating to negative health risks. Also, a study done in the United Kingdom to determine the 

environmental impact of the 4 major types of egg production systems (Leinonen et al., 2012). They 

were able to utilize Monte Carlo to quantify the impact uncertainties on the outputs of their Life 

cycle assessments model. Next, Monte Carlo methods were used to investigate the impact of 

predetermined parameters on the likelihood of Salmonella infection from the consumption of a 

common chicken dish in South Korea (Jeong et al., 2018). Because of the benefits of the Monte 

Carlo method, they were able to run 100,000 iterations, and they found that Salmonella prevalence 

at retail and cooking temperature were the 2 most important parameters contributing to the 

likelihood of Salmonella infection. In a different experiment, Coleman and others (2003) utilized 

Monte Carlo methods to simulate unrestrained bacterial growth and growth inhibited by the 

“Jameson effect.” Results for ground beef and poultry meat at were obtained from the simulations 

of backroom refrigeration, meat case refrigeration, and home refrigeration conditions. Only 1% of 

simulations reached temperatures where Salmonella could grow, but over 80% had temperatures 

that allowed the growth of the native microflora on chicken.  

Markov Chain Monte Carlo 

Markov Chain Monte Carlo (MCMC) is a popular method that takes advantage of the 

principles of Monte Carlo by combining it with Markov chains (Geyer, 2011). MCMC is 

predominantly used in Bayesian models where probability is used to measure uncertainty 

(Jackman, 2000). A Markov chain is a mathematical system that describes the probability of 
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changing from one state to another; however, the predictions are only dependent on the current 

state as the model does not remember past states (Geyer, 2011). In stochastic processes, it can be 

difficult to obtain independent samples. Therefore, dependent sampling via MCMC is a useful tool 

to increase the efficiency of sampling if gathering independent samples proves to be an issue 

(Geyer, 1992). MCMC has been used in a variety of applications including agriculture. For 

example, Parson et al. (2005) compared 3 models, including MCMC, for risk assessment using 

Salmonella and the poultry production chain. They found the MCMC method to be beneficial 

because it does not require discrete variables and allows the formation of inferences from the 

results. Also, Huang and Li (2020) used MCMC to compare Bayesian analysis with deterministic 

methods in the prediction of the growth of Clostridium perfringens spores in chicken meat during 

cooling. They were able to determine through MCMC that Bayesian analysis had more accurate 

predictions. Next, Ali et al. (2018) created a hybrid model called Markov chain Monte Carlo-

copula integrated with genetic programming. In their model, they are able to use climate 

parameters to estimate the yield of cotton. The ability of MCMC to predict soil moisture profile 

has been studied (Yan et al., 2015). MCMC was compared with another particle filter soil moisture 

prediction model, and it was concluded that MCMC was the more accurate scheme. Additionally, 

Gibson (1997) used MCMC to fit a stochastic model to citrus tristeza virus data in an effort to aid 

in the control of plant epidemics. In addition, MCMC has been used to study the effects of closing 

and reopening poultry markets on the infection of humans with the avian influenza virus A (Yu et 

al., 2014; Lu et al., 2016). The studies concluded that closing markets when there are outbreaks of 

avian influenza is an effective measure in preventing its transmission. Diagnostic tests for avian 

influenza have been compared using MCMC (Yamamoto, 2007). Because of MCMC, a more 

sensitive test was identified and implemented for viral screening. Finally, Wang et al. (2012) were 
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able to investigate substitution rates of a viral gene as a result of mass vaccinations for avian 

influenza in chickens. Results showed that mass vaccinations can lead to vaccination resistant 

viruses thus limiting the effectiveness of future vaccinations.  

Monte Carlo Shelf-life Predictions 

 Monte Carlo methods have been previously used by researchers to estimate the remaining 

shelf-life of both food and pharmaceutical products (Waterman et al., 2007; Lau et al., 2022). This 

is an extremely helpful technique because it allows managers to investigate what the effects on 

spoilage might be under a wide range of possible scenarios. In an experiment on milk, shelf-life 

was investigated with Monte Carlo being used to construct probability distributions of storage 

temperature, initial bacterial concentration, and generation times (Schaffner, 2003). Results from 

this study showed that a decrease in storage temperature of 2.1°C correlated with a 50% and 75% 

decrease in psychrotrophic and mesophilic spoilage, respectively after 2 weeks. Next, 

Giannakourou and Taoukis (2020) utilized Monte Carlo method with cold chain distribution and 

temperature data. They were able to compare the shelf-life predictions of their model with the 180-

day shelf-life predicted by the “use-by” date, and they concluded that the uncertainty calculations 

built into their model resulted in more accurate shelf-life predictions. Additionally, Giannakourou 

et al. (2001) investigate the applicability of a shelf-life decision system (SLDS). They implemented 

Monte Carlo methods to simulate the results of the SLDS method, and they determined in local 

markets 12% and 2% of products were spoiled at the time of consumption for the FIFO system 

and the SLDS system, respectively. Also, in export markets unacceptability due to quality 

deterioration was reduced from 38% to 20% when the SLDS method was used. In a study 

performed by Escobedo-Avellaneda et al. (2012), Monte Carlo was used to monitor the variability 

of parameters on the predicted shelf-life of vegetables with different moisture levels. They were 
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able to predict the remaining shelf-life of tomatoes, onion flakes, and sliced green beans. When 

comparing the Monte Carlo simulations with the deterministic values, they determined that 51.6%, 

48.6%, and 53.0% were the probabilities that shelf-life was shorter than the deterministic values 

for tomato slices, onion flakes, and sliced green beans, respectively  
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Abstract 

Current less-than-truckload (LTL) shipping practices, in the last mile of the cold chain, 

allow for temperature abuse (TA) of perishable goods, resulting in potential food safety issues at 

the retail level. Commercially produced boneless skinless chicken breast, were inoculated with 

Salmonella Typhimurium (104 CFU/mL). Non-inoculated breast fillets were used for evaluation 

of spoilage. Breast fillets were placed in sterile bags then placed in a programmable incubator set 

to cycle between 4°C (2 h) and 25°C (2 h) for 24 h time period. Additionally, trials were completed 

at isothermal 4°C and 25°C for 24 h. Microbial sampling was performed every 6 h (n=3 breast 

fillets/trial x 3 trials) by plating serial dilutions of breast fillet rinsates on xylose lysine tergitol 4 

agar for inoculated fillets and plate count agar or non-inoculated fillets. Starting with an existing 

model for the growth of Salmonella Typhimurium on chicken skin, temperature and microbial data 

were used to develop a new predictive model. This tertiary model was developed to predict the 

growth of Salmonella Typhimurium on cyclically TA fillets and fillets kept at 25°C. Salmonella 

Typhimurium and aerobic microorganisms increased, 0.93 and 0.84 logs, respectively when 

experiencing cyclic TA. The bias factors (BF) and accuracy factors (AF) of the model were 0.993 

(“fail-safe”) and 1.037 for TA fillets and 1.082 (“fail-dangerous”) and 1.087 for 25°C. These 

values are in the acceptable range indicating the model performs well. This study demonstrates 

that current LTL practices during the last mile of the cold chain does impact the food safety and 

spoilage of perishable foods. Predictive modeling can be used in food supply chains to predict the 

growth of Salmonella spp. and allow retailers to make decisions regarding shelf-life, while 

improving food safety and reducing food waste. 

Highlights 

• Current LTL practices during the “last mile” may lead to temperature abuse. 
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• Temperature abuse leads to more rapid growth of pathogens such as Salmonella. 

• Mathematical models can aid retailers in reducing food safety risks. 

Maintaining food safety during the food supply chain is one of the biggest challenges faced by 

the agriculture industries of the world today. Over 600 million (48 million in U.S.) people suffer 

from foodborne disease each year with over 418,000 deaths (3,000 in U.S.) (WHO, 2015; CDC, 

2022a). Bacteria cause 58% of foodborne illnesses with non-typhoidal Salmonella enterica 

contributing nearly 79 million cases alone (WHO, 2015). Of the pathogens responsible for illness, 

nontyphoidal Salmonella ranks second, first, and first in illnesses, hospitalizations, and deaths in 

the U.S., respectively (Scallan et al., 2011). Salmonella infection is characterized with stomach 

pain, fever, and diarrhea with most cases the result of eating contaminated food (CDC, 2022a). 

Also, successful treatment of salmonellosis (the disease caused by Salmonella infection) is 

becoming more complicated because of rising antibiotic resistance (Nair et al., 2019). There are a 

variety of foods in which consumption could lead to infection, but raw animal products present the 

highest risk (CDC, 2022b). According to the United States Food and Drug Administration (FDA; 

2020a), poultry meat is a primary source of Salmonella infection with 4% of retail chicken testing 

positive in 2018. Salmonella can live in the gastrointestinal tract of animals such as chickens and 

food may become contaminated from the pathogen containing feces (FDA, 2020b). Studying the 

connection between poultry and Salmonella has been a focus of food scientists for many years 

(Morris et al.,1960). Because it presents a major challenge in poultry production, extensive 

Salmonella research has been performed at the live, processing, and storage segments of poultry 

meat production (Chia et al., 2009; Wales and Davies, 2020; Nychas and Tassou, 1996). There are 

over 2500 serovars of Salmonella (Grimont and Weill, 2007). The most common serovars to cause 

human illness are Salmonella Typhimurium and Salmonella Enteritidis, both of which are common 
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in poultry (European Food Safety Authority and European Centre for Disease Prevention and 

Control, 2019; Guillén et al., 2020). In addition to the negative health impacts, Salmonella 

infection produces a large economic burden from the federal government to the consumer. These 

costs may come from hospitalizations, drugs, or outpatient visits (Hoffmann and Ahn, 2021). In 

2018, nontyphoidal Salmonella cases were found to have the largest associated costs ( >$4 billion) 

in the United States, among the top 15 foodborne pathogens (Hoffmann and Ahn, 2021). 

Salmonella is a gram negative facultative anaerobe that grows best in the mesophilic temperature 

range (D’Aoust, 1991; Andino and Hanning, 2015). However, it has been demonstrated that 

Salmonella can grow at temperatures as low as 5.5°C in sterile broth and >10°C in the presence of 

background microflora (Matches and Liston, 1968; Morey and Singh, 2012). Also, Salmonella 

grows at a pH range of approximately 4.1-9.0 (Catalano and Knabel, 1994; Chung and Goepfert, 

1970). Chicken breast pH may range from 5.91 to 6.36, and raw meats have water activities >0.95 

(Swatland, 2008; Schmidt and Fontana Jr, 2020). In addition to its role as a possible conduit for 

Salmonella infection, chicken requires extra attention from food safety experts because of its 

continued increase in popularity. The National Chicken Council (NCC) reports a dramatic rise in 

consumption of chicken meat since the 1960’s (2022). Furthermore, the marketing of chicken has 

trended from predominantly whole carcasses in the 1960’s to parts and further processed chicken 

in more recent years (NCC, 2019a). Consumers are receiving approximately 50% of their poultry 

meat from retail grocery stores where these individual cuts are sold (NCC, 2019b). It has been 

shown that retail markets may have the highest incidence of contaminated carcasses (NidaUllah et 

al., 2016). 

 For the purposes of this paper, the term “Supply Chain” is defined as all the inputs 

(supplies, people, technology, etc.) necessary to deliver a product to an end user. The food supply 
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chain is composed of many segments that make up the journey from raw product to finished 

product at the end user (National Research Council, 2015). The end user may be a customer 

purchasing food from a retail store or a restaurant using the food to prepare products for consumers. 

Since many foods are temperature sensitive (e.g., chicken breast), they must travel along a version 

of the supply chain referred to as the “cold chain”. When cold chain integrity is maintained, the 

quality, shelf-life, and safety of perishable products is protected (Global Cold Chain Allinace, 

2020). When there are breaks in the cold chain, it allows for the opportunity of temperature abuse 

(TA) (Goedhals-Gerber et al., 2017). Bacteria grow most rapidly on foods between 4°C and 160°C 

(USDA, 2017). The FSIS refers to this as the “Danger Zone” for bacterial growth. It is 

advantageous for companies that do not have a sufficient freight to fill an entire trailer and wish 

only to pay for the space their products are occupying on the trailer to use less-than-truckload 

(LTL) shipping (FedEx, 2022). Next, the “last mile” of the supply chain is the final segment that 

comprises the journey of a product to an end user (Lim et al., 2018). During the last mile, delivery 

vehicles must make multiple stops along the route due to multiple shippers using the same 

truck/trailer. This may allow for TA to occur at each stop. At the retail level, stores often utilize 

the “First-In, First-Out” (FIFO) model which operates under the principle that products that arrive 

first, will expire first (Mendes et al., 2020). In contrast, the “First-Expire, First-Out” (FEFO) model 

considers the shelf-life dynamic and it utilizes a remaining shelf-life to make decisions regarding 

perishable products (Hertog et al., 2014). 

Modeling of bacterial growth on foods can be a valuable tool in combating food safety and 

food waste. The advantage of models are they allow the decision maker to have and educated guess 

on where that product stands without having to perform microbial sampling. There are 3 levels of 

predictive modelling: 1) Primary models, 2) Secondary Models, and 3) Tertiary models 
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(Stavropoulou and Bezirtzoglou, 2019). Primary models measure the reaction of bacteria to 

specific conditions over a set period of time, and secondary models measure the response of 

primary model parameters during changes in environmental conditions such as temperature 

(Fakruddin et al., 2011). Tertiary models are user interfaces that utilize secondary and primary 

models in order to make predictions (Stavropoulou and Bezirtzoglou, 2019). Perhaps the most 

popular primary model prior to the 1990’s was the Gompertz model. (Gompertz, 1825). This model 

did not originally contain parameters relevant to bacterial growth but was later modified to do so 

(Zwietering et al., 1990). Additionally, in the early 1990’s the Baranyi model was developed with 

biological basis and introduced a variable for lag time (Baranyi et al., 1993). A popular secondary 

model uses the Arrhenius Law that has been modified for nonlinear regression (Schoolfield et al., 

1981). However, this equation was originally used to determine the effect changes in temperature 

will have on the rate of a chemical reaction (McKeen, 2017). This equation often struggled to fit 

growth data because the Arrenhius law predicts a linear relationship between growth rate and 

temperature; however, the result of plotting the logarithm of the growth rate constant by the 

reciprocal of the absolute value of temperature (Arrenhius Plot) results in a curve that poorly fits 

bacterial growth data (Ratkowsky et al., 1982). A new secondary model for bacterial growth below 

optimum temperature was created where a linear relationship was discovered between the square 

root of the growth rate constant and temperature (Ratkowsky et al., 1982). This model was 

improved to include the entire temperature range by adding variables for maximum and minimum 

temperature (Ratkowksy et al., 1983). Growth models have been designed to accurately predict 

the proliferation of bacteria on many different foodstuffs (Alavi et al., 1999; Juneja et al., 2009; 

Sutherland and Braxton, 1995). Several studies modeling the growth of Salmonella on raw poultry 

meat using different isothermal temperatures have been completed (Dominguez and Schaffner, 
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2008; Juneja et al., 2007; Pradhan et al., 2012). Also, similar studies for Salmonella modelling on 

cooked chicken products have been performed (Oscar, 2002; Oscar, 2009; Li et al., 2017). 

There is a need for predictive models that consider TA during the last mile of the supply 

chain in LTL conditions. In many cases, these conditions more accurately reflect the journey the 

product will endure. The resulting TA could have a negative effect on the shelf-life and food safety 

of temperature sensitive food products. Also, the severity of TA may vary according to the number 

of stops that occur before product reaches its destination. Furthermore, this cyclic heating up and 

cooling down is not accounted for in the FIFO model. There is a gap in the literature on the 

modelling of pathogen growth during dynamic temperature conditions like those experienced 

during LTL conditions. The objectives of this research are to determine the effects of simulated 

LTL conditions during the last mile on the growth of Salmonella Typhimurium and develop a 

predictive growth model for theses specific conditions.  

Materials and Methods 

Experimental design. Boneless skinless chicken breast (n=270) was used to study Salmonella 

growth. Three replications were completed for 3 separate storage scenarios (4°C, TA, and 25°C). 

In each replication, 3 breast fillets were randomly placed on 3 levels of a programmable incubator 

(MIR-554 Cooled Incubator, Japan) to monitor temperature. For all replications, 30 fillets (15 

inoculated and 15 uninoculated) were individually bagged in sterile bags (18 x 30 cm, 1650mL, 

VWR, Radnor, PA) and placed in separate totes according to inoculation status. The inoculated 

fillets were used to study Salmonella Typhimurium growth, and the uninoculated fillets were used 

for aerobic plate counts. Sampling was conducted during 5 sampling periods (0, 6, 12, 18, and 24 

h).  
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Temperature monitoring and microbial sampling. Commercially produced boneless skinless 

chicken breast were procured from a local processor. Breast fillets (n=3) were randomly selected 

for temperature monitoring and thermocouple (Type K) wires attached to a data logger (TM500: 

12-Channel Data Logging Thermometer, Extech Instruments, Nashua, New Hampshire) were 

centrally inserted. The fillets were placed in bags and situated on the top, middle, and bottom racks 

of a programmable incubator. The data logger recorded temperature data every 60 seconds for 24 

h. After completion, the data was downloaded, and the data was analyzed in Excel (version 16, 

Microsoft Corpporation, Redmond, WA). A culture of nalidixic acid resistant (35 μg/mL) 

Salmonella Typhimurium (isolated from the Auburn University Poultry Research Farm and 

selected for resistance to 35μg/mL nalidixic acid; Bauermeister et al. 2008; Kataria et al., 2020) 

was grown for 18 h (108 CFU/mL) in brain heart infusion broth (Neogen Corporation, Lansing, 

MI) and serially diluted in buffered peptone water (BPW; Neogen Corporation) to prepare 

inoculum. Fifteen fillets were placed in sterile aluminum trays (Heavy Duty Reusable Eco-

Friendly Aluminum Foil Full Size Medium Pan, 20.75" L X 12.75" W X 2.2" D, King Zak 

Industries, Goshen, NY) and inoculated with 1 ml of Salmonella Typhimurium to achieve 104 CFU 

per fillet. These fillets were covered and kept at 4°C for 30 min to allow for bacterial attachment. 

Also, fifteen additional fillets were placed in sterile bags and kept to determine spoilage. Three 

randomly selected inoculated and non-inoculated breast fillets were sampled at 0, 6, 12, 18, and 

24 h during the 24 h storage period, by aseptically transferring the fillet to a sterile bag and rinsing 

with 50 mL of BPW (Neogen Corporation) for 1 min. Fillet rinsates were used to prepare serial 

dilutions in BPW. The dilutions were plated on xylose lysine tergitol 4 agar (Neogen Corporation) 

containing 25μg/mL of nalidixic acid (Sigma-Aldrich, St. Louis, MO) for the inoculated fillets and 
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plate count agar (Neogen Corporation) for the uninoculated fillets. All plates were placed in a 37°C 

incubator (5EG, Precision, Winchester, VA) for 24-48 h before counting.  

Developing a tertiary growth model for cyclic temperature abuse. To model the growth of 

Salmonella Typhimurium during simulated supply chain conditions, we began with Oscar’s 

(Oscar, 2009) model for Salmonella Typhimurium growth on chicken skin. In Oscar's model, a 

modified version of the Baranyi model (Baranyi and Roberts, 1994), was used for primary 

modeling of lag time and specific growth rate at 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50°C. Also, 

in Oscar’s model (Oscar, 2009) samplings were conducted after 0, 2, 4, 6, and 8 h. For the model 

described in this paper we utilized Oscar’s (Oscar, 2009) secondary model for lag time (Equation 

1) and the associated values for the parameters. In Oscar’s (Oscar, 2009) model, secondary 

modeling for lag time was completed by fitting a 2-phase exponential model to the lag time data 

(from primary modelling) that was graphed as a function of temperature. 

λ = λmin + (λmax − λmin) × exp[−λrate × (𝑇 − 𝑇min)]                                    (1) 

In equation 1, λmin and λmax are minimum and maximum lag time in h, λrate is the rate at 

which the lag time changes as a function of temperature, and Tmin is the minimum growth 

temperature. For secondary modeling of specific growth rate, data from Oscar’s (Oscar, 2009) 

primary modeling was used (Table 1). The square root of growth rate was plotted as a function of 

temperature and fit to the extended Ratkowsky model (equation 2) (Ratkowsky et al., 1983) 

using MyCurveFit (MyCurveFit, 2022).  

√r = b(T − Tmin) × {1 − exp[c × (T − Tmax)]}                                                   (2) 

In equation 2, b is the regression coefficient, Tmin and Tmax are the minimum and 

maximum temperatures where growth rate is equal to 0, and c is the parameter that allows the 
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model to fit when temperatures are greater than the optimum (Ratkowsky et al., 1983). The 

parameter values from secondary modeling of specific growth rate are as follows: 1) Tmin 

(0.669°C), 2) Tmax (48.197°C), 3) b (0.028), 4) c (0.472). However, the b value was adjusted to 

0.20 to achieve a better fit to observed data.  

For tertiary modeling the secondary models for lag time (λ) and specific growth rate (μ) 

were combined using Excel. The inputs for the model are initial bacterial concentration (log 

CFU/mL), time increment (h), and the temperature profile (°C). In addition, the model allows for 

the assumption of no lag time and a maximum limit in bacterial concentration. The outputs of the 

model are a bacterial growth curve (Figures 1 and 2) under the simulated conditions, values for 

lag time and growth rate, and a remaining time (h) until the “max limit” is reached.  

To test the validity of the model during TA and at 25°C, bias factors (BF) and accuracy 

factors (AF) were calculated (Tables 2 and 3) using the formulas (Equations 3 and 4) developed 

by Ross (Ross, 1996). 

𝑏𝑖𝑎𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 = 10(
Ʃ log(

𝐺𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐺𝑇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
)

𝑛
)                                                                       (3) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 = 10(
Ʃ|log(

𝐺𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐺𝑇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
)|

𝑛
)                                                            (4) 

 

For equations 3 and 4, GTpredicted and GTobserved are the predicted and observed growth 

time and n represents the number of observations (Ross, 1996). For BF, the predicted values are 

divided by the observed values (P/O). Next, the log10 of the P/O values was summed and divided 
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by the total number of observations (n). Lastly, 10 is raised to sum/n value. To determine the AF, 

the same process is followed with the absolute value of the log10 values.  

Results and Discussion 

A new tertiary model was developed to predict Salmonella growth during the last mile of 

the cold chain, and model predictions were compared to results from samples collected after 

simulated LTL conditions. Boneless skinless chicken breast fillets that endured the TA scenario 

spent a large amount of time above 10°C (Figure 3). Morey and Singh (Morey and Singh, 2012) 

demonstrated that Salmonella growth increased at temperatures above 10°C when background 

microflora is present, such as in a food matrix. The fillets used for a negative control (4°C) 

maintained a constant temperature (Figure 3) for the duration of the experiment, while positive 

control (25°C) fillets reached and maintained 25°C after 6 h of elevated temperature storage 

(Figure 3). 

Salmonella Typhimurium and aerobic bacteria growth during simulated last mile cold 

chain conditions (negative control [4°C], positive control [25°C ], cyclical TA) are shown in Figure 

4 and Figure 5, respectively. The initial concentrations of Salmonella Typhimurium (Figure 4) and 

aerobic organisms (Figure 5) were approximately 103 CFU/ml of rinsate for all simulated 

temperature scenarios. Similar to Morey and Singh, (Morey and Singh, 2012) there was no growth 

in the Salmonella Typhimurium for the negative control (4°C; Figure 4). The aerobic organisms 

(Figure 5) followed the same trend indicating that both Salmonella Typhimurium and aerobic 

organisms remained in the lag phase, for the duration of the experiment, with no increase in growth 

at 4°C. In contrast, the positive control (25°C,) reached log phase after approximately 6 h for both 

Salmonella Typhimurium (Figure 4) and aerobic organisms (Figure 5) with both approaching 108 

CFU/ml of rinsate, by the end of the experiment. When exposed to simulated cyclic TA conditions 
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in the cold chain, the Salmonella Typhimurium (Figure 4) increased by 0.93 logs, and the aerobic 

organisms (Figure 5) increased by 0.84 logs after 24 h. Also, it longer for both bacterial populations 

(Figures 4 and 5) to reach log phase (~12 h) during the simulated cyclic TA conditions, compared 

to the positive control (25°C). In addition, it is important to note that under simulated cyclic TA 

conditions, the log phase of bacterial growth was reached and increasing the growth rate of both 

Salmonella Typhimurium and spoilage (aerobic) microorganisms in comparison to the negative 

control (4°C). Boneless skinless chicken breast fillets that have been TA during the last mile of 

the cold chain, is at a higher risk for Salmonella growth than breast fillets that have been 

maintained in a controlled (4°C) environment. This TA data would likely be applicable to other 

meat and poultry parts that are exposed to TA conditions during the last mile of the cold chain. 

If control measures are not taken to protect temperature integrity during the last mile in the 

cold chain, companies may be allowing the proliferation of pathogens and spoilage organisms on 

their food products. However, many supply chains are not monitoring this closely to determine if 

TA is occurring and affecting product shelf-life and safety. Admittedly, the simulated cyclical 

breaking of the cold chain described in this paper is an extreme scenario, and it would not be likely 

that there would be the same level of TA at each stop of a delivery route. However, for 

experimental purposes if the extremes are understood and proven to potentially result in a problem, 

then companies can individually focus on more realistic scenarios and determine what changes 

may need to be made to their own cold chains based on the nature of their products, delivery routes, 

etc. Temperature is the only mechanism protecting the quality and safety of the food once the 

product has reached the last mile. This means heterogeneity of the temperature must be maintained. 

The impact of cold chain temperature shifts of the shelf-life of pork and poultry meat has been 

studied (Bruckner et al., 2012). Results indicated a single 4 h temperature shift to 7°C resulted in 
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shelf-life reductions of 10.7% and 8.5% for pork and poultry respectively. Also, it has been shown 

that quality and shelf-life of another perishable food, fish, was negatively impacted by a fluctuation 

of only 2°C (Tingman and Xiaoshuan, 2010). While these temperatures are much less of a 

fluctuation than in our experiment, the result is the same, a reduction of shelf-life. To record cold 

chain temperatures more diligently, advances in technology are needed. Radio-frequency 

identification (RFID) research has been suggested to help record temperatures in food and 

pharmaceutical supply chains (Grunow and Piramuthu, 2013; Vivaldi et al., 2020). The technology 

is rapidly advancing, and it may be a viable option for companies in the future. In addition, 

standards and regulations would need to be developed for its use. Also, a rise in global 

temperatures will pose a risk for cold chains. Only 1% of CO2 production is the result of cold 

chains (James and James, 2010). However, if temperatures rise it would likely place more strain 

on cold chain integrity, lead to increased spoilage and food safety risk, and require the use of more 

energy to maintain temperature homogeneity during the last mile. It is important for companies to 

maintain and update their cold chains while considering future challenges. Cold chain research has 

been primarily performed in developed countries with the status of less developed countries being 

more of a mystery (Ndraha et al., 2018). It could be inferred that the lack of technology and 

understanding of the importance of cold chain integrity is negatively impacting the populations 

that are the most food insecure.  

 Preventing favorable growth conditions for pathogenic and spoilage bacteria are the 

principal reasons controlling cold chain temperatures in the last mile is paramount. Our microbial 

data (Figures 4 and 5) demonstrate that the simulated cyclic TA scenario was approaching 1 log 

of growth of Salmonella and spoilage organisms, in contrast to the negative control (4°C) scenario 

that had no growth. Microbial spoilage in meat has been shown to occur when aerobic bacteria 
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reach 7 logs CFU (Pothakos et al., 2014; Reid et al., 2017). APCs did not reach spoilage levels 

during the TA scenario. However, this is likely due to the experiment stopping at 24 h. All spoilage 

and pathogenic bacteria present challenges if temperature homogeneity is not maintained. For 

example, a study was completed in Iran, showing dynamic temperature conditions allowed for the 

proliferation of Pseudomonas on chicken (Ghollasi-Mood et al., 2016). Also, when a Salmonella 

spp. and Listeria cocktail was used to inoculate chicken patties, experimentation showed that 

Listeria and Salmonella spp. growth correlated with higher temperatures (Murphy et al., 2001). 

Future research on the shelf-life of poultry products in simulated supply chain conditions is needed. 

This study only looked at the aerobic plate count data which is an indication of mesophilic bacterial 

growth. Psychrotrophic data would also be valuable information since these are the bacteria that 

are more likely to grow in cold storage conditions (Ercolini et al., 2009). The bacterial species that 

are most responsible for poultry spoilage include lactic acid bacteria, Enterobacteriaceae, and 

Pseudomonas spp., and the most common pathogens are Salmonella spp. and Campylobacter 

(Rouger et al., 2017). However, bacterial diversity on chicken meat is greater when fluctuating 

temperatures are present rather than isothermal conditions (Zhang et al., 2012). Meat spoilage is 

subjective; however, a few generally accepted characteristics of spoilage include the formation of 

slime and meat discoloration (Nychas et al., 2008). Current practices during meat distribution may 

need to be refined to protect meat and poultry products from TA that leads to the formation of 

these undesirable characteristics on perishable foods. 

Ultimately, the issue with spoilage is the resulting food loss and food waste. Food loss 

occurs before the product reaches the consumer, while food waste occurs at the retail level and 

beyond (FAO, 2022). A large portion of food waste takes place in consumer homes, but 26% and 

13% occurs at food service and retail, respectively (UN, 2021). Regarding TA during the last mile 
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of the cold chain in LTL shipping, food waste is a major concern. The “use-by” date that is visible 

on product packaging is determined before the product enters the last mile. Therefore, any TA 

abuse occurring during the last mile is not considered in shelf-life determinations for product “use-

by” dates. This is the primary issue with the FIFO model for product rotation in retail stores. The 

temperature and microbial data in this paper and previously published studies indicates that TA is 

likely having a negative impact on the shelf-life of products. Furthermore, different products 

within a reefer truck or van may be experiencing different levels of temperature abuse based on 

location (Jedermann et al., 2009). Detailed temperature modeling of products is needed for the 

development of a “First-Expire, First-Out” (FEFO) model for retailers. This would give the 

retailers valuable data to make data based decisions regarding the product rotation of perishable 

goods in their store. The principle behind such a model would be as follows. First, pallets or boxes 

of goods would be fit with individual temperature monitoring devices such as RFID technology. 

Second, as the products travel along the last mile of the cold chain, the TA data would be collected 

and stored with the RFID. Lastly, when the product arrives to the end user, managers could use 

the data to determine which products are most likely to expire first and put them on display first. 

This method is more objective than the current FIFO model and does not operate under the 

assumption that products that arrive first, expire first. Also, by following the FEFO model food 

producing companies could limit their food safety risk as the most TA product will likely be the 

products with higher pathogen counts. The benefits of this change would be felt throughout the 

supply chain. Companies could better protect their reputations, reduce recalls, reduce food waste, 

and have larger quantities of sales. Food waste and foodborne illnesses are large and complicated 

problems, but it is best to address them with data driven methods. 
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The temperature and microbial growth data collected in this study were used to develop 

mathematical models (Tables 2 and 3), to describe the growth of different microorganisms under 

various last mile temperature scenarios (cyclic TA and 25°C). No modeling was completed for the 

negative control (4°C) because the Salmonella Typhimurium counts did not change in this 

scenario. For Salmonella Typhimurium growth during simulated cyclic TA (Table 2), the lowest 

P/O value was 0.900 and the highest was 1.045, while at 25°C (Table 3) the lowest was 0.863 and 

the highest was 1.038. A P/O value for the comparison of predicted and observed values equal to 

1.0 indicates a perfect match (Ross, 1996). BF of 0.987 and 0.939 were calculated for simulated 

cyclic TA and 25°C, respectively. While, the AF were 1.032 and 1.073 for cyclic TA (Table 2) 

and 25°C Table 3), respectively. The BF indicate a prediction model that is on average 1.3% less 

than our observed data for cyclic temperature abuse (Table 2) and on average 6.1% less than our 

observed data for 25°C (Table 3). This indicates a “fail-safe” model rather than a “fail-dangerous” 

model for both TA and 25°C. A fail-dangerous model predicts, on average, longer generation times 

than are observed, and a fail-safe model predicts, on average, shorter generation times than are 

observed (Ross, 1996). Regarding the AF, the model’s predictions are on average factors of 1.032 

(during TA; Table 2) and 1.073 (during 25°C; Table 3) different from the observed values (Ross, 

1996). Ross et al. (Ross et al., 2000) recommended limits for BF ranging from 0.7-1.15. There is 

more forgiveness in a model that under predicts than over predicts bacterial generation times 

because of the consequences associated with each scenario. For example, an under prediction in 

generation time leads to the interpretation of higher bacterial numbers, than are actually present. 

The consequence of this might be discarding product that is still safe/fresh. However, and over 

prediction of generation time leads to the belief that there are fewer bacterial numbers than are 

present. Therefore, product may be saved that is spoiled or presenting food safety risk. The BF for 
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the models described in Tables 2 and 3 fall within the acceptable range. Additionally, Oscar (Oscar, 

2005) proposed a more specific method of validating predictive growth models using the BF and 

AF in tandem. This method of validation is more robust. The recommendation states if a model 

has a BF less than or equal to 1.0, then the AF should be less than 1.3. On the opposite side, if the 

BF is greater than 1.0, the AF should be less than 1.5. In both cases, the model described in this 

paper was an acceptable model using the recommended limits defined by Ross et al. (Ross et al., 

2000) and Oscar (Oscar, 2005). 

Many other mathematical models have already been developed to describe the growth of 

microorganisms on meat in isothermal conditions, however, there is a gap in the literature that 

considers a simulated cold chain LTL TA scenario. Bruckner et al. (Bruckner et al., 2013) 

developed a predictive model to describe the shelf-life of pork and poultry, as well as Pseudomonas 

growth (Bruckner et al., 2013). Their model used the Gompertz model (primary) and Arrhenius 

model (secondary) for prediction. They found that their model underestimated the shelf-life of 

poultry by 11.1%. In comparison, our model underestimated poultry subjected to TA by 

approximately 1.3% (Table 2). Also, we chose the Ratkowsky model for secondary modeling 

because of its biological basis (Ratkowsky et al., 1983). Different primary models for the growth 

of Salmonella on chicken have been compared (Juneja et al., 2007). Experimentation found that 

the Baranyi model performed the best based on R2 and mean square error values. Another model 

was developed to describe the shelf-life of packaged chicken in dynamic storage conditions 

(Yimenu et al., 2019). Like Oscar’s model (Oscar, 2009) model, this model utilized the Baranyi 

model and fluctuating temperatures. The AF and BF for this model were 1.045 and 0.991, 

respectively. Also, similarly to our model for dynamic temperatures, they had “fail-safe” 

predictions. In addition, a Salmonella prediction model for chicken stored at low temperatures was 
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developed (Oscar, 2011). For this model, chicken skin was inoculated with Salmonella 

Typhimurium and kept at 4°C to 12°C and predictions were found to be over 84% accurate in all 

scenarios. The importance of these models is they provide the framework for a FEFO model and 

show that both pathogenic and spoilage bacteria can be modeled confidently. They provide a 

necessary tool to battle foodborne illness and food waste and could be extremely useful in 

managing cold chains. Models can even predict the remaining shelf-life, essentially making the 

decisions for the retailers. For example, the remaining shelf-life of chicken meat using several 

primary models and Pseudomonas spp. growth data has been developed, with the Baranyi model 

performing the best (Tarlak and Pérez-Rodríguez, 2021). There have been many different models 

developed for Salmonella and spoilage microorganism growth on chicken. The range of 

parameters considered in these models has been thorough. They include different temperatures 

(both isothermal and dynamic), microflora (sterile or with native microflora), and different types 

of packaging (Oscar, 2005; Oscar, 2008; Wei et al., 2001). With an abundance of models to choose 

from, companies should implement these models or develop their own to best combat some of the 

biggest food chain problems in the world today. By combining more diligent temperature 

recording with these mathematical models, it will be possible in real time to make decisions 

regarding the food safety and spoilage that are best for business and the consumer. 

In conclusion, the current practices in the “Last Mile” of the cold chain are allowing for 

cyclic TA when trucks are stopping to unload cargo in LTL scenarios. However, this TA is not 

accounted for when retailers are making decisions on how to rotate their products to the shelves. 

Both our data and data from others indicate that fluctuating temperatures can result in the increased 

rate of growth for foodborne pathogens and spoilage microorganisms on temperature sensitive 

products. Temperature data shows products may spend most of their time above 10°C allowing for 
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the growth of Salmonella therefore increasing food safety risk of chicken. Mathematical models 

can utilize temperature and microbial data and reliably predict pathogen growth and spoilage of 

chicken. These models can be used to implement an objective FEFO model rather than the existing 

FIFO model used by retailers today.  
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Abstract 

Current less-than-truckload (LTL) shipping practices in the last mile lead to temperature 

abuse (TA) of perishable products causing rapid food spoilage and ultimately contributing to food 

losses. There is a need to study the implications of TA in LTL on the shelf-life of perishable foods 

such as raw poultry and design data-based decision models to predict the remaining shelf-life of 

the products. A pallet of boxes (n = 5 boxes/layer x 4 layers) each containing commercially 

packaged trays of boneless skinless chicken breast fillets was exposed to cyclic TA (2 h at 4°C 

followed by 2 h 25°C) for 24 h. Temperature of the chicken fillets in each box on the pallet was 

recorded via thermocouple data loggers every 5 min for 24 h and infrared images were taken at 

the beginning of each temperature change (every 2 h). Microbiological sampling (aerobic plate 

counts (APC) and psychrotrophic plate counts (PSY) was conducted on breast fillets before the 

beginning of TA (h 0) and at the end of TA (h 24). After the 24 h TA, the tray packs from the most 

TA box and the control trays (maintained at 4°C without TA) were stored at 4°C sampled (APC 

and PSY) on alternate days until the bacterial counts reached the spoilage limit of 7 log CFU. 

Temperature data from each box was analyzed using Monte Carlo simulations (500 iterations) to 

determine the risk of temperature reaching the food safety and microbiological spoilage “danger 

zone” (> 4°C) after 0, 6, 12, 18, and 24 h. Additionally, Monte Carlo simulations were used to 

calculate risk-of-loss (shelf-life of <4 days) and remaining shelf-life based on time spent above 

4°C. Temperature data indicates that the 4 layers of boxes on a pallet, as well as individual boxes 

on each layer, experience TA differently. The top and bottom layers were most affected due to TA 

compared to the middle layers while the boxes located on the perimeter crossed 4°C the fastest. 

TA reduced the shelf-life of raw chicken breast fillets to 4.1 days compared to 7.2 days for the 

control samples. Monte Carlo results indicate top layer boxes have the highest risk (94.96% 
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average) of reaching 4°C after 24 h of TA with bottom layer boxes having the second highest risk 

(75.12% average). However, the middle layers demonstrated a decreased risk of TA with averages 

of 43.2% and 27.2% for layers 2 and 3, respectively. Also, remaining shelf-life was reduced by 

42.4% and had a risk-of-loss of 43.8% after 8 h of simulated LTL TA. The study demonstrates 

heterogeneity of TA during the last mile and emphasizes the need to replace the traditional “First-

In, First-Out” model with a “First-Expire, First-Out Model” in the food supply chain. 

Introduction 

Supply chain management can be difficult to master for any corporation especially those 

transporting temperature sensitive products such as perishable food commodities. According to 

the Global Cold Chain Alliance (GCCA, 2020), the cold chain is a version of a supply chain that 

places focus on maintaining product integrity and quality through temperature management, and 

it runs from a products origin to the final consumer. If appropriate refrigeration temperatures are 

not maintained throughout the supply chain, temperature sensitive and high-value products, such 

as raw poultry, may experience temperature abuse (TA; Ndraha et al., 2018). The refrigerated 

warehousing industry has large financial implications. The industry generates over $6 billion in 

revenue and employs over 62,000 people (GCCA, 2020). A product may need to be transformed, 

packaged, and shipped all while preventing breaks in the cold chain and allowing TA. It is known 

that 2 popular shipping methods utilized by companies are full truckload (FTL) and less-than-

truckload (LTL) shipping (Vega et al., 2021). LTL shipping is utilized when the cargo requires 

only a portion of the space in a trailer (FedEx, 2022) such that the shipper does not pay the rent of 

an entire truck but only for the space their cargo occupies (Özkaya et al., 2010). In contrast, FTL 

is used when a shipper has enough cargo to fill a truck/trailer entirely (FreightQuote, 2019). 

Because of the rise in e-commerce (United States Department of Commerce, 2020), the popularity 



93 
 

of LTL shipping is expected to continue to rise in popularity with Old Dominion Freight Line 

(2022) reporting an 18.3% increase in LTL tons per day and a 19.8% increase in LTL shipments 

per day from February 2021 to February 2022. Also, consumers prefer home delivery (64%) over 

pickup (23%) for all categories of products except groceries (Pitney Bowes, 2022). The Covid-19 

pandemic had a major impact on this trend with online sales increasing by 43% in 2020 (United 

States Census Bureau, 2022). One of the biggest challenges of LTL is understanding how to 

approach the “Last Mile” problem (Deutsch and Golany, 2017).The last mile is the last segment 

of a supply chain where product is transported to the end user (Shu et al., 2015). Addressing how 

to best approach last mile problems is a key component of the Food and Drug Administration’s 

(FDA) “New Era of Smarter Food Safety” (2021). During the last mile, temperature fluctuations 

and condensation can occur on perishable food products (Mirzaee and Bishop, 2009). A potential 

cause of this may be that delivery vehicles must make multiple stops to deliver packages during 

the last mile in LTL scenarios (Aljohani and Thompson, 2020). It is known that TA occurs in the 

food supply chain, the effects of Covid-19 has been studied (Skawińska and Zalewski, 2022). 

Additionally, studies have been completed on warm air infiltration during unloading (Tassou et 

al., 2009). Rai et al. (2018) studied how the use of curtains can limit warmer air entering reefer 

trucks during unloading. The effect of different loading patterns on the temperature and airflow 

inside refrigerated trucks has been studied (So et al., 2022), and de Frias et al. (2020) investigated 

the temperature implications of opening doors to a refrigerated display case with the most extreme 

scenarios (opening every 5 min for 60 s) resulting in significant differences in product temperature. 

Because of the importance of proper temperature management many different technologies have 

been developed to improve refrigerated trucks and containers (Kehinde et al., 2022). However, 

limited research has been completed on the effects of last mile TA on shelf-life and food safety.  
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TA during the last mile of the cold chain may create an environment conducive to the 

growth of spoilage and pathogenic microorganisms (Labuza and Fu, 1995; Oscar, 2009). 

According to the United States Department of Agriculture (USDA, 2021a), optimal growth 

temperature for most bacteria is between 40°F-140°F or 4°C and 60°C. This range is referred to 

as the “danger zone”. Foods are kept below the “danger zone” temperatures to prevent spoilage 

and mitigate food safety risks (Godwin et al., 2012). For example, poultry meat should be kept at 

or below 4°C after slaughter to help control the growth of spoilage bacteria and foodborne 

pathogens (USDA, 2021a). Microbial growth is characterized by lag phase, exponential phase, 

stationary phase, and death phase (Maier, 2015). The purpose of refrigeration is to extend the lag 

phase, or the postponement of log phase, of microorganisms thus slowing down the growth (Berk, 

2013). Common spoilage microorganisms include bacteria, molds, and yeast (Rawat, 2015). Some 

common spoilage bacteria in foods are lactic acid bacteria, Pseudomonas spp., Acinetobacter spp., 

Bacillus spp., and many others (Quintela-Baluja et al., 2014). When investigating the bacteria 

responsible for spoilage, there are 2 groups that require special interest. These are the mesophilic 

bacteria (APC) and psychrotrophs (PSY) (Gill and Newton, 1978; Ercolini, et al., 2009). The APC 

is often used as an overall estimation of the bacterial concentrations in foods (Maturin and Peeler, 

2001). It has been demonstrated that TA leads to increases in the total viable counts on many 

different food products (Oblinger et al., 1982; Rothenberg, 1982; Senter et al., 2000; ). 

Additionally, shelf-life studies have been conducted using APC (Reddy et al., 1994; Rogers et al., 

2014; Pfeiffer et al., 2019; Zhou et al., 2022). However, it may be more beneficial to look at the 

PSY counts because these are the bacteria adapted to survive at storage temperatures of perishable 

food products such as poultry (Wei et al., 2019). Also, it has been shown that APC can 

underestimate the bacterial populations present on food products (Pothakos et al., 2012). Many 
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studies have been completed on PSY spoilage in foods (Russel et al., 1992; Jensen et al., 2001; 

Zhou et al., 2022). Furthermore, the prevention of spoilage and extension of shell life concerning 

PSY have been research interests. Tomac et al. (2013) modeled the effect of gamma irradiation of 

PSY to extend shelf-life of squid. Munsch-Alatossava (2010) determined the use of nitrogen gas 

can limit PSY growth in Raw milk. Also, legume proteins have proven to control PSY in buffalo 

milk (Sitohy et al., 2011). For both APC and PSY, 7 logs of colony forming units (CFU)/mL is 

considered the point spoilage for meat products because this is when the meat has reached an 

undesirable status (Dainty and Mackey, 1992).  

Addressing the food waste problem is important to feed a continuously growing population 

which could reach 8.5 billion by 2030 (United Nations, 2022a). This increase in population will 

likely apply pressure on agricultural supply chains of many countries around the globe (Da Silva, 

2012; Chapman et al., 2021). The countries without the infrastructure to manage large complicated 

cold chains may be affected the most (Gligor et al., 2018). According to the UN (2022b), up to 

660 million people may be battling hunger in 2030. The Food and Agriculture Organization of the 

United Nations (FAO, 2021) states the prevalence of moderate and severe food insecurity has 

grown over the past 5 years reaching approximately 30% in 2020. Resources, money, and labor 

are all required to produce healthy food, and it is paramount that these inputs are not fruitless 

(Khan and Hanjra, 2009; Zhichkin et al., 2020; Luckstead et al., 2021). According to the FAO 

(2019), food loss occurs in the supply chain before the retail segment, and food waste occurs at 

retail and beyond. Spoilage of foods contributes to the global problem of food waste (USDA, 

2022a). Globally food waste has been a focus for researchers. In the United States, food waste 

could be as high as 40%, and 133 billion pounds may be lost at the levels of retail and consumption 

(USDA, 2022a). Brancoli et al. (2017) conducted supermarket research in Sweden and found that 
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meat and bread are the foodstuffs whose associated wastes have the largest negative environmental 

impact. Cicatiello et al. (2016) quantified the amount of food waste at a supermarket in Italy and 

determined 23.5 tons of food were able to be recovered over 300 days that would have otherwise 

been wasted. Another study in Italy revealed that bread, fruits and vegetables were the most wasted 

foods at the retail level (Cicatiello et al., 2017). In New Zealand, Goodman-Smith et al. (2020) 

found that vegetables, baked goods, and meat were the 3 most wasted food types. German 

consumer acceptance of produce that was less than perfect in appearance was found to be a major 

driver in retail food waste (Hermsdorf et al., 2017). Bilska et al. (2018) found that a single polish 

supermarket could waste over 3 tons of food in 2 weeks. Additionally, the environmental impact 

of food waste has been investigated (Hall et al., 2009; Scherhaufer et al., 2018; Dilkes-Hoffmann 

et al., 2018). It has been demonstrated that 7% of greenhouse gas emissions originate from the 

retail and distribution steps in Europe (Scherhaufer et al., 2018). Lastly, High value products such 

as meat and seafood have been shown to be wasted at the retail and distribution levels (Nychas et 

al., 2008; Love et al., 2015). Karwowska et al. (2021) investigated the loss and waste of meat with 

results indicating consumption, manufacturing, and distribution account for 96%. 

The negative effects of LTL TA on food waste at the retail level may be impacted by 

managerial decisions regarding product rotation (Hertog et al., 2014). Two of the dominant 

methods of product rotation at retail stores are “First-In, First-Out” (FIFO) and “First-Expire, First 

Out” (FEFO) (Mendes et al., 2020). The FIFO model operates under the assumption that products 

that arrive first should be rotated out first because they will expire first (Pikora et al., 2021). In 

contrast, the FEFO model takes into consideration the remaining life of a product (Mendes et al., 

2020). Issues with cold storage during transportation and retail of temperature sensitive products 

may lead to spoilage and food waste (Buzby et al., 2014). Additionally, the environment inside 
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refrigerated trailers and containers is not temperature homozygous; therefore, the level of TA 

experienced by products inside may be different (Jedermann et al., 2009; Getahun et al., 2017). 

The heterogeneity of temperature of a TA pallet of berries has been demonstrated previously (do 

Nascimento Nunes et al., 2014). It is possible that FIFO is leading to the waste of high value 

temperature sensitive products that could be saved with the FEFO method (do Nascimento Nunes 

et al., 2014). For example, 50% of the chicken market was projected to be in retail grocery in 2022 

(NCC, 2022a). A dynamic shelf-life has been demonstrated to have greater financial gains and 

reduce food waste when compared to a fixed shelf-life (Buisman et al., 2019). The FEFO model 

has been demonstrated to outperform the FIFO model in the reduction of food waste in strawberries 

(Leithner and Fikar, 2018). Additionally, other nonfood products, such as pharmaceuticals, could 

benefit from the use of FEFO (Sukasih et al., 2020; Rezeki at al., 2022). A primary disadvantage 

of FEFO is it requires information sharing between different members of the cold chain to work 

properly (Hertog et al., 2014). However, in industries that have vertical integration, such as poultry 

(Vukina, 2001), the task of information sharing becomes much easier. In recent years, the 

development of new technologies, such as RFID, has made the use of a dynamic shelf-life more 

realistic (Grunow and Piramuthu, 2013; Gaukler et al., 2017).  

Because of its continuous growth in popularity and its economic importance, poultry meat 

was chosen as a model temperature sensitive food product. The National Chicken Council (NCC, 

2021) reports that in last 60 years the amount of chicken consumed per person has increased by 

almost 70 pounds in the United States. However, red meat consumption has decreased by 22 

pounds in the same period (NCC, 2021). This shift in consumer choice may be due to the reduced 

price and health benefits that come with consuming poultry meat as compared to red meat with 

100g of boneless skinless chicken breast having less calories and fat than that of a T-bone steak 
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(USDA, 2019a, 2019b). Additionally, in the year 2021, the retail price of chicken was 209.4 cents 

per pound while beef was 724.9 cents per pound (NCC, 2022b). This difference in price is likely 

to be appealing for lower income consumers looking for a cheaper option to have protein in their 

diets. Also, to have adequate supply for this increase in demand, production of broilers has 

increased from 1,381 million pounds in 1950 to an estimated 44,933 million pounds in 2022 (NCC, 

2022c). Also, the poultry production has a positive effect on the economy because of its export to 

other countries with approximately 18% (8,000 million pounds) exported in 2021 (USDA, 2021b). 

This increased in both consumption and production of poultry meat makes it a great example to 

investigate how decisions in the cold chain can affect temperature sensitive products.  

The development of models to aid in FEFO decision making are needed. One such tool for 

retailers could be through the use of Monte Carlo simulations (La Scalia et al., 2019). Monte Carlo 

simulations are a vast group of algorithms that solve mathematical problems using random number 

generation (Johansen, 2010). Essentially, the Monte Carlo method allows the user to approach 

problem through the generation of random numbers (Joy, 1991). Previously, Monte Carlo 

simulations have been used in a variety of fields including, finance, engineering, and physics 

(Raychaudhuri, 2008). Monte Carlo simulations have been used in retail settings before in 

applications such as scheduling, customer satisfaction, and demand estimation (Blodgett and Li, 

2007; Wan et al., 2018; Abello et al., 2020). Additionally, researchers have taken advantage of 

Monte Carlo methods to combat food loss and food waste (Aiello et al., 2011; Jedermann et al., 

2014; La Scalia et al., 2019). However, there is limited research on TA during LTL in the last mile 

and its effects on shelf-life and food waste. Therefore, we conducted experiments to test the 

microbiological shelf-life implications of TA in the last mile during LTL shipping on a temperature 

sensitive product. Additionally, Monte Carlo simulation models are developed using temperature 
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data to assess the risk of TA and predict remaining shelf-life of different boxes on a TA pallet. The 

objective of this research is to provide mangers at the retail level to have better tools at their 

disposal to make better decisions regarding product rotation and storage of temperature sensitive 

products to maximize profits and reduce food waste.  

Methodology 

Recording Pallet Temperature 

A commercially produced pallet containing boxes with tray packs of fresh, raw, boneless, 

skinless chicken breast fillets was transported to the Charles C. Miller Jr. Poultry Research Center 

at Auburn University under refrigeration and stored in a walk-in cooler (4°C for 12-16 h) prior to 

experiment. The dimensions of the pallet were as follows: 4 layers of boxes x 5 boxes per layer x 

24 tray packs per box x 3-6 fillets per tray pack. Boxes were serially marked from 1-20 (layer 1: 

1-5; layer 2: 6-10; layer 3: 11-15 and, layer 4: 16-20). Temperature at the center of the breast fillet 

and the air inside the box were measured every 1 to 5 min interval for 24 h using TM500 12-

channel thermocouple dataloggers connected with wire temperature probes (Extech Instruments, 

Nashua, New Hampshire, USA) with 2 temperature probes per box. The tray located 

approximately in the center of each box was chosen and the temperature probe was inserted in the 

center of the middle fillet in the tray and the wire was secured by sous vide tape. At the conclusion 

of the experiment, temperature data was retrieved from the data loggers using MS Excel (Version 

16, Microsoft Corporation, Redmond, WA). This experiment was repeated 5 separate times, and 

the temperature patterns was analyzed using line graphs generated using Excel.  

Simulated Temperature Abuse 

TA during LTL was simulated as follows: The pallet was exposed to 2 h at 4°C, simulating 

a refrigerated truck, and 2 h at 23±2°C, simulating hypothetical TA that occurs when the truck 
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doors are open. The experiments were conducted by moving the pallet in and out of the walk-in 

cooler maintained at 4°C for a total of 6 TA cycles. A separate representative box was kept in the 

walk-in cooler for the duration of the 24 h experiment which acted as the control. The temperature 

of the control box and the outside room temperature were recorded with a probe thermometer every 

2 h.  

Thermal Imaging 

During the TA trials, thermal images of the pallet were taken using an infrared camera 

(BCAM 9Hz 120 x 120 Thermal Infrared Camera, Teledyne FLIR, Wilsonville, OR, United States) 

every 2 h of the experiment. The camera was pointed centrally at the pallet from all 4 sides at a 

distance of 4 ft when shooting images. The images were saved to a removable memory card in the 

camera and were retrieved at the conclusion of each trial of the experiment. 

Spoilage Study 

Microbiological sampling was conducted before (0 h) and immediately at the end of the 

simulated TA (24 h) to determine if TA impacted the bacterial levels of the raw poultry breast 

meat. Two predetermined boxes were chosen from each layer to have microbial sampling. The 

boxes sampled were as follows: layer 1: boxes 1 and 4, layer 2: boxes 7 and 10, layer 3: boxes 12 

and 14, and layer 4: boxes 17 and 19. Two tray packs were randomly chosen from each box and 1 

fillet per tray was sampled for microbiological analysis. One fillet from each selected tray pack 

was aseptically placed in a sterile bag (18 x 30 cm, 1650mL, VWR, Radnor, PA, United States) 

and manually rinsed with 50 mL of buffered peptone water (Neogen Corporation, Lansing, MI) 

for 1 min, and the rinsate was serial diluted and spread plated in duplicate onto Standard Methods 

Agar Petri plates (Neogen Corporation). The Petri plates were incubated either at 37°C for 24-48 

h to estimate aerobic plate counts (APC) or at 4°C for 10 days to estimate psychrotrophic plate 
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counts (PSY). After the incubation period, viable colonies on the Petri plates were counted and 

reported as log CFU/mL of rinsate. 

Shelf-life Assessment of Raw Breast Fillets After Temperature Abuse 

The effect of TA on the changes in shelf-life of raw chicken breast meat was assessed using 

2 boxes from a TA abused pallet. The trays from 2 boxes that crossed 4°C the fastest were pooled 

together, stored at 4°C and sampled for microbiological analysis every 2 days until the APC counts 

reached 7 logs. Non-TA chicken trays were stored and sampled in a similar manner to act as a 

control. During each sampling time, 3 trays from the TA and control samples were sampled in the 

same manner as in the spoilage study. Plates were counted after 24 h (APC) and 10 days (PSY), 

and a two-sample equal variance t-test was performed using Excel at each sampling day to 

determine if bacterial concentrations are significantly different at the chosen sampling times.  

Monte Carlo Simulations 

Two methods were developed using Monte Carlo simulations. One method predicts the 

risk of TA based on box number, and the other predicts the remaining shelf-life according to the 

level of TA experienced. The simulations allow us to take our existing data at specific time points 

and increase it to a large degree. The data generated through these simulations enabled us to 

develop predictions based on 500 data points rather than only using the limited amount of data 

acquired through physical testing. For the first method, Monte Carlo simulations using temperature 

data from h 0, 6, 12, 18, and 24 were performed. Temperature recordings from 4 or 5 of the trials 

at these time points was used to calculate an average temperature and standard deviation of 

temperature for each box at each time point. Next, using the mean and standard deviation, we 

generated a random number using the Excel formula: NORMINV(rand(),mu,sigma) In this 

formula, rand() creates a random value between 0 and 1, mu is the sample mean, and sigma is the 
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sample standard deviation (Winston, 2022). When using this formula, the user is calculating the 

pth percentile of a normal random variable occurring with the chosen mean and standard deviation 

(Winston, 2022). Following the initial number generation, 500 iterations were run at each 

timepoint for each box. From the 500 generated numbers, we obtained an average, standard 

deviation, maximum, and minimum temperature for each box at each time point. Lastly, we 

calculated what percentage of the 500 numbers was >4°C at each time point. Formula 1 illustrates 

how risk of TA was calculated with n>4 being the number of simulations >4°C. 

%𝑅𝑖𝑠𝑘 𝑜𝑓 𝑇𝐴 = 𝑛>4°𝐶 ×
100

500
                                                               (1) 

The second method used temperature data and APC data from the control and TA fillets. 

The remaining shelf-life was calculated for 3 control fillets (0 h >4°C) and 3 TA fillets (8 h >4°C). 

A graph was constructed with shelf-life graphed vs. time >4°C. Next, a trendline was fit to the data 

and a linear regression equation was obtained (Formula 2). 

𝑌 = −0.379𝑥 + 7.1597                                                             (2) 

  Estimates of shelf-life were obtained for different levels of TA by substituting values in for 

“x” (0, 2, 4, 6, and 8 h) and solving for “y.” The shelf-life values (y) and a standard deviation (1) 

were used to run Monte Carlo simulations (500 iterations) in the same manner as previously 

described using Excel. From the 500 generated numbers, the percentage l<4 days were calculated. 

This value is referred to as “risk-of-loss” because of the assumption retailers cannot sale all the 

product before spoilage before 4 days. Formula 3 shows how risk-of-loss was calculated with n<4 

days being the number of simulations being <4 days of shelf-life. 

%𝑅𝑖𝑠𝑘 𝑜𝑓 𝐿𝑜𝑠𝑠 = 𝑛<4 𝑑𝑎𝑦𝑠 ×
100

500
                                                  (3) 
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Results 

Pallet Temperature Profile 

The graphs in Figures 6-9, illustrate the average temperature profiles of each layer of the 

pallet from 4 replications of the TA experiment. For each layer, the individual temperature profiles 

for each box are illustrated, and a line has been placed at 4°C to make it easier to see layers and 

boxes crossed into the “temperature “danger zone”. Overall, the TA affected the top and bottom 

layers of the pallet more severely than the middle 2 layers. Figure 6 shows all the boxes in layer 1 

crossing 4°C by approximately 12 h. Next, Figure 9 shows that all but 1 of the boxes (box 19) had 

crossed 4°C by 24 h. The middle 2 layers of the pallet (Figures 7 and 8) were less impacted as 

shown by the less dramatic increase in temperature. In these layers, most of the boxes never 

reached 4°C with only boxes 6 and 13 crossing 4°C for layers 2 and 3, respectively. Box 13 in 

layer 3 had a much more dramatic increase than any of the other boxes in the middle 2 layers of 

the pallet. In all layers, the temperature profiles show peaks and valleys. These peaks and valleys 

of temperature are the more dramatic in the top and bottom layers (Figures 6 and 9) than in the 

middle layers (Figures 7 and 8). 

Figure 10 shows how the boxes were oriented in each layer. Layer 1 has a different 

orientation than the rest of the layers. The boxes are color coded for each layer according to the 

order in which they reached 4°C. Regarding the severity of TA, the box order is as follows from 

hottest to coldest: red, orange, yellow, blue, and purple. Also, each box has the average time (h) 

required to reach 4°C listed inside it. In layer 1, all boxes crossed 4°C by 12.03 h on average. The 

fastest box to reach 4°C was box 5 which averaged 9.68 h, and the slowest box was box 4 which 

averaged 12.03 h. In layers 2 and 3, only 1 box reached 4°C. In layer 2, box 6 required 16.95 h on 

average to surpass 4°C, and in layer 3 box 13 required 20.02 h on average to reach 4°C. In the 
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bottom layer (layer 4), 4 boxes reached 4°C by 24 h. Boxes 16, 17, 18, and 20 surpassed the 

“temperature danger zone” threshold at 20.98, 16.85, 15.87 and 17.73 h, respectively. From a 

layer-by-layer perspective, layer 1 had 5 boxes, layers 2 and 3 had 1 box, and layer 4 had 4 boxes 

reach 4°C. The impact of box position is indicated by the colors in each layer. In all layers, the 

centrally placed box is colored purple indicating it was either the least abused box or it never 

crossed 4°C. Also, the most abused box was always a perimeter box. In the case of layers 2, 3, and 

4, the most TA box were stacked at the same location of the pallet. 

Thermal Images 

The images in Figures 11 and 12 show the immediate and long term impacts of cyclically 

removing the pallet of chicken breast from the walk-in cooler. Figure 11’s images were taken less 

than 5 min after the pallet was pulled out of the cooler for the first time. The darker colors show 

where the pallet is the coldest and the lighter colors show where it is the hottest. The center of the 

pallet (layers 2 and 3) shows darker purples and blues because they are the coldest areas. The 

outside edges have already demonstrated lighter colors after only 5 min of TA. In the images from 

Figure 12, the pallet has experienced 6 TA cycles and is at the conclusion of the experiment. These 

images show most of the pallet is reddish yellow. Therefore, box temperatures have increased in 

comparison to original temperatures (Figures 11 and 12). However, even after 24 h of TA, thermal 

imaging shows heterogeneity in box temperatures based on location. The is exemplified by the 

darker colors still visible in the central regions.  

Microbiological Results 

 Results were obtained from 2 kinds of spoilage microorganisms. The results are from 

immediately before TA and immediately after TA or 24 h later. For both APC and PSY there was 

no growth on the chicken breasts sampled after 24 h. The APC decreased by ~0.2 logs and the 
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PSY decreased by ~0.1 logs at the conclusion of the experiment. However, the similarity in 

bacterial concentration at the beginning and end of TA is not conducive of potential growth if 

fillets are kept for shelf-life. 

Figures 13 and 14 show the shelf-life results of the fillets kept after the TA experiment had 

concluded. The fillets from the 2 hottest boxes from layer 1 was kept for sampling with the control 

box. The results of both the APC and PSY show a difference in shelf-life of a couple of days 

between TA and control fillets. Regarding APC, the TA fillets reached spoilage (7 logs) after 

approximately 4.1 days. While the control fillets required approximately 7.2 days. This is about a 

3 day difference in time required for spoilage to occur. The PSY results showed the control fillets 

took 5.5 days, while the TA fillets required only 3.9 days to reach spoilage. This is a difference of 

approximately 1.5 days in shelf-life. When comparing the values at each sampling time, it was 

found that the means were significantly different at day 4 for both the APC and PSY. The values 

at day 4 for APC were 5.8 ±0.64 and 6.8 ±0.11 log CFU/mL for control and TA, respectively. 

Further, the values for PSY at day 4 were 6.1 ±0.33 and 7.2 ±0.15 logs for control and TA, 

respectively. However, no other days were observed to be significantly different with all p-values 

being greater than 0.05. For APC, variance in bacterial concentrations ranged from 0.29 on day 8 

to 0.99 on day 6 for control fillets and 0.11 on day 4 to 1.04 on day 2 for TA fillets. Regarding 

PSY, variance in bacterial concentrations ranged from 0.03 on day 8 to 0.40 on day 2 for control 

fillets and 0.15 on day 4 to 1.11 on day 2 for TA fillets.  

Monte Carlo Results 

Tables 4-7 show the results of the Monte Carlo simulations on the 4 layers of the pallet and 

have the percent chance of each box within that layer of reaching 4°C at 5 different time points. 

The results of these simulations are consistent with the temperature profile results in that the 
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middle layers (Tables 5 and 6) appear to be less affected than the top (Table 4) and bottom layer 

(Table 7). For layer 1, there is a linear growth in risk of reaching the “temperature danger zone” 

as time goes on. After only 12 h, all boxes are approximately 50%, and all layer 1 boxes have at 

least an 86.5% chance of reaching 4°C by the end of the experiment (Table 4). Layer 2’s results 

show a risk of less than 41% after 24 h (Table 5). However, box 6 has a 91% risk level after 24 h 

(Table 5). Next, layer 3 boxes have the lowest overall risk for reaching 4°C (Table 6). At 12 h, 

layer 3 boxes were all below 11% with 4 out of 5 boxes being below 4%. Only 1 box in layer 3 

(box 13) crossed 50% after 24 h. Lastly, layer 4 results show 2 boxes above 10% after 12 h. Four 

of the boxes in layer 4 were above 64% with the remaining box being at 47.4% after 24 h. Layer 

4 boxes were relatively similar to layers 2 and 3 after 12 h (Table 7). However, after 18 h, the 

percentages spike and results start approaching the numbers seen for layer 1 (Table 7). This is in 

contrast to layer 1 where there was a linear increase in risk. Results from the second Monte Carlo 

method are shown in Table 8.Values for the prediction of shelf-life and risk-of-loss at 5 different 

TA scenarios (0, 2, 4, 6, and 8 h >4°C) are shown. The risk-of-loss increases dramatically after 6 

h >4°C (17.8%) and reaches a maximum of 43.8% after 8 h >4°C. Also, shelf-life reduction 

increase by approximately 10% every additional 2 h spent >4°C with a maximum value of 42.4% 

after 8 h. Lastly, the shelf-life decreases by approximately 3 days if 8 h above 4°C is achieved 

(Table 8). 

Discussion 

Temperature Profiles 

The temperature profiles of the 4 layers seem to follow a trend. The top and bottom layers 

were most affected by the TA, while the middle 2 layers seem to be less affected. The top layer 

was the most affected as by the halfway point of the experiment all boxes had reached 4°C (Figure 
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6) and entered the “danger zone” for bacterial growth. This is the layer that needs to be managed 

differently as it is in the most danger of spoilage. Next, the bottom layer (Figure 9) is the second 

most affected. By the end of the experiment all boxes had reached, or were approaching, 4°C. It is 

likely the reason for this is the top layer of the pallet is more exposed than the other layers, and the 

sides are in contact with the air surrounding the pallet. This is also evident in how the peaks and 

valleys of the boxes on layer 1 is more dramatic than that of the other layers. Furthermore, the 

bottom layer (layer 4) is in direct contact with the wooden pallet which is in direct contact with 

the floor likely resulting in more dramatic influence by the TA. However, layers 2 and 3 of the 

pallet (Figures 7 and 8) are shielded by the top and bottom layers of the pallet. Also, the pallet has 

a plastic wrap that is applied around the perimeter of the box. This wrap may be helping the middle 

2 layers stay insulated and less impacted by the TA. TA studies have been conducted using 

different foodstuffs previously. In South Africa, a study was done to record the temperature 

profiles of fruits and vegetables being shipped in reefer trucks (Emenike and Hoffmann, 2014). 

They used temperature loggers to measure the deviations from the set temperature of 2°C at 

different locations inside the reefer truck. However, like our experiment they found that it is 

possible to have serious deviations from the set temperate with average temperatures being as high 

as 12.5°C to 14.9°C. Margeirsson et al. (2012) determined that box position did result in different 

levels of TA when investigating air and sea transport conditions for cod fillets. While this 

experiment differs in the mode of transport the principles are similar. They found that TA boxes 

had shorter shelf-lives when compared to control boxes. A study on home delivery services in 

Taiwan estimated the impact of TA on frozen shrimp (Ndraha et al., 2019). In this study, they 

observed that there was temperature greater than the target -18°C in over 50% of the time during 

transport. Not unlike our study on the pallet, experiments on meal delivery kits or home delivery 
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services face similar challenges throughout the cold chain. They will need to meet temperature 

standards as well so that the customers do not receive spoiled or unsafe food. 

When looking at the boxes on a more individual level (Figure 10), it appears that box 

position has an impact on the level of TA experienced. The more centrally located boxes were all 

purple indicating they experienced the least TA in that layer of the pallet. However, a perimeter 

box was always the most abused for that layer. This indicates that not all boxes are equal in terms 

of the level of abuse they experience. If this is the case, it could be inferred that the remaining 

shelf-life of each box is not equal. However, up to this point all boxes on a pallet would be treated 

the same because of the same arrival time. In layer 1, after only 9.68 h there is already a box that 

has crossed into the “temperature danger zone”. While in the middle layers (layers 2 and 3) 8 out 

of 10 boxes never crossed 4°C (Figure 10). The results of the temperature profiles indicate the 

need for more intense temperature recording because of the diverse levels of abuse experienced by 

different boxes. In contrast to our results, a study was done by Göransson et al. (2018) where they 

found that the position on the pallet does not have an impact on shelf-life. However, they calculated 

thermal time constants and used it to find the most at risk spots on the pallet. From there they 

estimated the difference in shelf-life. Lastly, our experiment only looks at a single pallet, However, 

in LTL shipping it is likely there will be multiple pallets of different sizes in the same reefer truck. 

It has been shown that it is possible for different zones of the refrigerated truck to have different 

air velocities resulting in higher or lower temperatures (Moureh and Flick, 2004). 

Thermal Images 

For this experiment, the overall thermal picture of the pallet was of primary interest. The 

goal was to determine if a noticeable difference in temperature between layers or boxes existed. 

However, the goal was not to record the actual temperatures since individual thermocouple wires 
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were already placed in each box. The results of are thermal images are consistent with that of the 

temperature profile results (Figures 11 and 12). Layers 1 and 4 of the pallet are hotter than layers 

2 and 3 (Figure 11 and 12). Also, the interior boxes are cooler than the perimeter boxes (Figures 

11 and 12). Thermal images are useful in that they provide a quick and straightforward way to 

visualize the current state of a food product. Also, thermal imaging is a nondestructive method 

since the user can stand several feet away when taking the images (Vadivambal and Jayas, 2011). 

Perhaps loading docks or cold storage facilities could benefit in the investment in thermal imaging 

cameras because it will aide in the decision making process of rotating their product onto shelves. 

Thermal cameras allow decision makers to have an idea of which product is in the most danger of 

spoiling. In agriculture thermal imaging is already being studied in a multitude of ways. For 

example, Ding et al. (2017) investigated using thermal imaging as a classification tool for grapes 

at different levels of decay. They were able to categorize the grapes with greater than 90% 

accuracy. In India, a study was conducted using thermal imaging to aide in the decision making 

process regarding the storing of grains (Nanje et al., 2013). Additionally,, thermal imaging is 

helpful in detecting bruises on fruit (Varith et al., 2003). In this experiment, Varith et al. (2003) 

were able to use the thermal imaging technology to detect differences in temperature between the 

bruised and healthy tissue of the fruits. Cold chain management could be another area of use tin 

the future for thermal imaging technologies. However, the results in terms of an actual temperature 

reading may not be accurate enough if the pallet has certain types of covers (Badia-Melis et al., 

2017). 

Bacterial Growth During TA and Shelf-life 

APC and PSY both had almost no differences in their initial and final concentrations when 

sampled immediately before and immediately after TA. This is likely because the conditions chose 
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by us to TA the chicken was not severe enough to cause the bacteria to immediately enter log 

phase. However, differences are visible when the fillets are kept for shelf-life. Results indicate, 

TA can result in a difference in shelf-life up to approximately 3 days for boneless skinless chicken 

breast fillets (Figure 13). Our temperature results indicate that there is a difference in the amount 

of abuse experienced based on the box location on the pallet (Figures 6-12). Therefore, the boxes 

chosen to be kept for the shelf-life study may have impacted the remaining shelf-life. In our case, 

only 2 TA boxes were kept. The shelf-life of boxes that did not cross 4°C (Figure 10) may have 

been similar to that of the control had they been selected. The shelf-life experiment demonstrates 

the most TA boxes spoil before the control. If decision makers in the cold chain had this 

knowledge, new practices could be put in place to sale temperature sensitive products more 

efficiently. It is possible that a pallet received a day before may have boxes that will keep for 

longer than boxes on a more recently received pallet. However, under current practices, it is likely 

that the boxes from a pallet that arrives first will be put on display first. This may allow for food 

waste to occur due to spoilage. Both food waste and monetary loss are likely outcomes in this 

situation. In contrast, the product that is more likely to expire first could be displayed first allowing 

for less waste. This could benefit consumers and poultry meat suppliers at poultry consumption is 

likely to continue to rise in the coming years (NCC, 2021a). 

A study by Senter et al. (2000) found that holding chicken meat samples at a temperature 

of 13°C for 48 h had similar APC results to their TA scenario (3 days at 4°C then 1 day at 13°C 

then 1 day at 4°C). They recorded APC values of 8.19 and 9.48 log CFU/mL for the 13°C and TA 

scenarios, respectively. Like our experiment, this study was attempting to simulate TA during the 

shipping of temperature sensitive products. However, in our study cyclic TA was used to simulate 

LTL rather than 1 prolonged TA situation followed by cold storage. Another bacterial growth 
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study on TA chicken was performed by exposing inoculated chicken breast to different 

temperatures for 12 h before storage at 5°C (Casanova et al., 2021). The chicken breasts exposed 

to 20°C and 25°C were found to only be fit for consumption for up to 12 h, while the control was 

good for 12 days. In Iran, Ghollasi-Mood et al. (2016) exposed chicken to 4°C, 10°C, and 15°C 

for 8 h each. They found that it took approximately 125 h for total viable counts to reach spoilage 

levels under ideal storage conditions, while TA (cyclic 8 h at 0°C then 8 h at 10°C then 8 h at 

15°C) chicken took approximately 50 h. Russell et al. (1996) exposed whole chicken carcasses to 

TA of 25°C for 12 h before returning them to ideal storage temperatures. This was done each day 

for 7 days before all carcasses were sampled after 9 days. They found that the day in which the TA 

occurred had little impact on the bacterial growth. Also, a study was done on the affects TA has 

on bacterial diversity growing on the surface of chicken (Zhang et al., 2012). In this work, chicken 

meat was packaged in air and subjected to isothermal 4°C and 2 fluctuating temperature conditions 

(0-4°C and 4-10°C). Zhang et al. (2012) found that when the temperature is fluctuating there is a 

more intricate diversity of microflora present. 

Monte Carlo 

Our analysis of the risk associated with our TA conditions using the Monte Carlo method 

was consistent with what we observed in our temperature profiles. The results indicate an increased 

risk of crossing 4°C for the top (layer 1; Table 4) and bottom layer (layer 4; Table 7) of the pallet. 

The top layer seems to follow a linear trend in that the risk increases in a relatively consistent 

manner over the 24 h (Table 4). However, the bottom layer is perhaps more interesting in that up 

to h 12 all boxes are below 15%, but once 18 h is reached the risk increases more dramatically for 

all boxes (Table 7). Also, box 6 is an outlier with a higher risk (91.4%) than all other boxes in the 

middle 2 layers (Tables 5 and 6). The reason for this is unknown, but we do know that box 6 is a 
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perimeter box and because of this it may have been more impacted than the others. This does not 

explain why the other perimeter boxes were not influenced in a similar manner. This information 

demonstrates the complexity associated with the TA that might occur in the supply chain and why 

more intense temperature monitoring is needed. Perhaps a retailer could have a program already 

in place at the store and have the temperature history uploaded via other technologies (for example 

RFID) allowing the retailer to take advantage of the information at their disposal. Once this data 

is observed, the managers could easily and quickly make the most beneficial decision regarding 

product spoilage. Having simulations or predictive models at their disposal would allow the end 

user in the cold chain to make decisions without having to have an in depth understanding of 

microbiology. There would be no microbiological sampling involved, and it would not be 

necessary to have a lab to perform tests on the samples to determine the remaining shelf-life. 

Shaffner et al. (2003) used the Monte Carlo method to present its usefulness in risk 

assessment of milk. Using the method, they found that decreasing the temperature of the milk by 

approximately 2°C resulted in a decrease in greater than 50% of spoilage of milk after 14 days. 

Next, a predictive model using Monte Carlo was developed to predict the spoilage of milk that has 

been contaminated after pasteurization (Lau et al., 2012). This model allowed the developers to 

investigate the effectiveness of different measure in controlling the spoilage of milk. Monte Carlo 

simulations are not limited to just assessing risk of spoilage microorganisms, and they can be used 

for food safety implications. For example, risk assessment of illness caused by Salmonella 

Enteritidis in eggs has taken advantage of Monte Carlo simulations (Schroeder et al., 2006). Using 

this method, they were able to estimate the decrease in illnesses that would occur if the eggs were 

pasteurized to different levels of bacterial reduction. Zeng et al. (2014) studied pathogen growth 

in lettuce due to fluctuating temperatures during the last mile. They used Monte Carlo methods to 
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perform over 8 billion simulations of scenarios that might occur. This level of sampling might 

prove to be costly and labor intensive. However, because of the simulations they were able to 

quicky and cheaply get feedback on how best to manage leafy greens to control pathogen growth. 

Also, fungal spoilage of yogurt has been studied using similar simulations (Gougouli and 

Koutsoumanis, 2017). They were able to estimate the diameter of fungal growth in the yogurt and 

develop a model that may be useful in quality decisions regarding the production of yogurt 

products. 

The risk-of-loss predictions via Monte Carlo methods indicate that approximately 44% of 

chicken breast fillets will have a shelf-life of less than 4 days after 8 h >4°C. This method is 

assuming a retailer will be unable to sale product fast enough once a minimum acceptable shelf-

life is reached. Therefore, the product would have to be discarded leading to food waste. In this 

experiment, 4 days was chosen, but the method could be altered to predict risk-of-loss at a different 

value for minimum shelf-life. The significance of a 44% loss becomes evident when observing the 

monetary impact. If a pallet of chicken breasts weighs 1000 pounds, 440 pounds could potentially 

be wasted. According to the USDA (2022b), the price of tray packed chicken breasts is 

$3.06/pound. Therefore, 1 pallet could result in a financial loss of $1,346.40 if 8 h of LTL TA 

occurs. This highlights the need for a reliable prediction method to mitigate this food waste and 

associated monetary loss. Monte Carlo methods have been used to predict shelf-life of various 

perishable products (Hutter et al., 2001; Schaffner et al., 2003; Giannakourou and Taoukis, 2019). 

These products include different foodstuffs (Ndraha et al., 2019; Lau et al., 2022) and 

pharmaceuticals (Su et al., 1994; Waterman et al., 2007), but there is limited literature on the use 

of Monte Carlo simulations for the prediction of poultry meat shelf-life. A study was conducted 

using Monte Carlo to validate another method (delta method) to predict the shelf-life of several 
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cultivars of tomatoes (De Ketelaere et al., 2004). In this study, it was determined that the delta 

method’s predictions closely matched the predictions of the Monte Carlo method making their 

model an acceptable method. Also, Mataragas and Drosinos (2007) used Monte Carlo simulations 

and time-temperature profiles to create probability distributions of shelf-life and food safety risk 

associated with of ready to eat sliced ham. Lactic acid bacteria and Listeria monocytogenes were 

used for shelf-life and food safety risk, respectively. However, they determined time-temperature 

profiles were the better choice for shelf-life because of the overpredictions of the Monte Carlo 

methods. Additionally, the variability of parameters associated with the deterioration of frozen 

fruits and vegetables has been successfully implemented in remaining shelf-life models via Monte 

Carlo methods (GiannKouro and Taoukis, 2019). 

Conclusions and Future Work 

The last mile presents challenges to cold chain management in LTL scenarios. Therefore, 

the current FIFO model may be outdated and need to be replaced with the FEFO model. To achieve 

this a pallet of boneless skinless chicken breast was subjected to simulated supply chain TA 

conditions. From this experiment, we found that when exposed to cyclic TA, the pallet’s layers 

react differently to the TA. The top and bottom layers (layers 1 and 4) of the pallet increased in 

temperature at a faster rate than the middle 2 layer likely due to the level of protection experienced 

by the middle layers (layers 2 and 3). Also, the boxes that were centrally placed in each layer 

experienced less TA than the boxes positioned on the perimeter of the pallet. Thermal imaging 

followed a similar trend with the outside edges of the pallet already appearing warmer than the 

middle of the pallet after minimal exposure to hotter temperatures. Microbial sampling of both 

APC and PSY showed a difference in shelf-life between TA fillets and control fillets. This 

indicates that LTL TA has a negative result on the spoilage of palletized chicken breasts. Monte 
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Carlo simulations demonstrated an increased risk to reach abuse level temperatures in the boxes 

located on the top and bottom layers (layers 1 and 4) of the pallet with the top layer being the 

highest risk (>86%) after 24 h. Lastly, shelf-life and risk-of-loss predictions were completed (Table 

8). After 8 h of exposure to temperatures >4°C, the risk-of-loss reaches nearly 44%, and shelf-life 

reduces from 7.2 days to 4.1 days. This study’s results show the significance of improper 

management of the cold chain, especially at the retail level. Simulations and can be useful tools 

for managers when deciding how to treat their stock of temperature sensitive products, and they 

can allow them to more accurately judge which products to sell first. 

In the future, more research is needed in last mile TA. More scenarios regarding the 

duration and levels of TA are needed. Also, merging modern technologies into similar experiments 

will be essential. For example, the use of RFID technology to record temperatures is a more 

realistic way of collecting TA data in the cold chain. Therefore, the same experiments should be 

conducted with RFID rather than dataloggers. Also, using the temperature and microbial data, 

work on calculating actual remaining shelf-life of products based on their level of TA during other 

durations and temperatures would be beneficial. Next, our experiment was on a single pallet of 

chicken breast, but we were unable to use an actual reefer truck. Exploring how other temperature 

sensitive products behave in similar scenarios as well as how the conditions in different positions 

of a reefer trick trailer would help to provide a clearer picture of what is happening in industry 

today.  
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Tables and Figures 

TABLE 1. Primary Modeling results: specific growth rate (μ) and the square root of 

specific growth rate (√μ) of Salmonella Typhimurium on chicken skina and predictions of 

the square root of specific growth rate and growth rate using the extended Ratkowsky 

modelb. 

Temperature 

(°c) 
μc √μd Predicted √μ Predicted μ 

25 0.469 0.685 0.670 0.449 

30 0.600 0.775 0.807 0.652 

35 0.928 0.963 0.943 0.890 

40 1.118 1.057 1.060 1.124 

45 0.904 0.951 0.951 0.904 
a(Oscar, 2009) 

b(Ratkowsky et al., 1983) 

cSpecific growth rate 

dSquare root of specific growth rate 
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TABLE 2. Tertiary model results: Growth of Salmonella Typhimurium on inoculated 

boneless skinless chicken breast fillets during simulated temperature abuse less-than-

truckload (LTL) conditions in the last mile of the cold chain. 

 Time (h)a Observed Predicted P/Ob Log10
c ABSd 

Trial 1 0 3.2 3.2 1.000 0.000 0.000 
 6 3.2 3.2 1.000 0.000 0.000 
 12 3.3 3.2 0.970 -0.013 0.013 
 18 3.8 3.4 0.900 -0.046 0.046 
 24 4.2 3.9 0.921 -0.036 0.036 

Trial 2 0 3.0 3.0 1.000 0.000 0.000 
 6 2.9 3.0 1.034 0.015 0.015 
 12 3.1 3.0 0.968 -0.014 0.014 
 18 3.1 3.2 1.045 0.019 0.019 
 24 3.9 3.7 0.938 -0.028 0.028 

Trial 3 0 3.1 3.1 1.000 0.000 0.000 
 6 3.0 3.1 1.033 0.014 0.014 
 12 3.1 3.1 1.000 0.000 0.000 
 18 3.5 3.4 0.980 -0.009 0.009 
 24 3.8 3.9 1.021 0.009 0.009 
     BFe AFf 

    Sum -0.088 0.202 
    Sum/n -0.006 0.013 
     0.987 1.032 

aTime (h): Time in h. 

bP/O: Predicted value divided by observed value during TA conditions. 

cLog10: Log base ten of P/O value. 

dABS: Absolute value of Log10. 

eBF: Bias factor; sum of Log10 values divided by the number of observations used. 

fAF: Accuracy factor; sum of ABS values divided by the number of observations used. 
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TABLE 3. Tertiary model results: Growth of Salmonella Typhimurium on inoculated 

boneless skinless chicken breast fillets kept at 25°C. 

 Time (h)a Observed Predicted P/Ob Log10
c ABSd 

Trial 1 0 2.6 2.6 1.012 0.005 0.005 
 6 3.0 2.6 0.871 -0.060 0.060 
 12 4.2 4.0 0.943 -0.025 0.025 
 18 6.2 5.4 0.863 -0.064 0.064 
 24 7.8 6.8 0.871 -0.060 0.060 

Trial 2 0 2.9 2.9 0.998 -0.001 0.001 
 6 3.2 2.9 0.916 -0.038 0.038 
 12 4.5 4.0 0.890 -0.051 0.051 
 18 5.8 5.4 0.922 -0.035 0.035 
 24 7.3 6.8 0.927 -0.033 0.033 

Trial 3 0 2.7 2.7 1.009 0.004 0.004 
 6 2.8 2.7 0.964 -0.016 0.016 
 12 3.9 4.1 1.038 0.016 0.016 
 18 5.5 5.4 0.987 -0.006 0.006 
 24 7.6 6.8 0.897 -0.047 0.047 
     BFe AFf 

    Sum -0.410 0.461 
    Sum/n -0.027 0.031 
     0.939 1.073 

aTime (h): Time in h. 

bP/O: Predicted value divided by observed value during 25°C conditions. 

cLog10: Log base ten of P/O value. 

dABS: Absolute value of Log10. 

eBF: Bias factor; sum of Log10 values divided by the number of observations used. 

fAF: Accuracy factor; sum of ABS values divided by the number of observations used. 
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TABLE 4. Monte Carlo derived risk (% chance) of top layer (layer 1) boxes of palletized 

chicken breasts reaching 4°C during 24 h of simulated less-than-truckload temperature 

abuse (2 h at 4°C then 2 h at 25°C). 

 Box 1 Box 2 Box 3 Box 4 Box 5 

Hour 0 1.6 1.6 0 0 0 

Hour 6 12.6 5.6 0.2 18 0.8 

Hour 12 46.2 55 75 51.4 81.6 

Hour 18 99 98.2 94 66.8 98.4 

Hour 24 100 100 88.2 86.6 100 
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TABLE 5. Monte Carlo derived risk (% chance) of second layer from the top (layer 2) 

boxes of palletized chicken breasts reaching 4°C during 24 h of simulated less-than-

truckload temperature abuse (2 h at 4°C then 2 h at 25°C). 

 Box 6 Box 7 Box 8 Box 9 Box 10 

Hour 0 0 0 0 0 0 

Hour 6 0.2 0 0 0 0 

Hour 12 3.8 0 0 2.6 0.2 

Hour 18 52.2 6.2 9.6 23.6 0.8 

Hour 24 91.4 26.4 40.2 36.8 21.2 
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TABLE 6. Monte Carlo derived risk (% chance) of third layer from the top (layer 3) boxes 

of palletized chicken breasts reaching 4°C during 24 h of simulated less-than-truckload 

temperature abuse (2 h at 4°C then 2 h at 25°C). 

 Box 11 Box 12 Box 13 Box 14 Box 15 

Hour 0 0 0 0 0 0 

Hour 6 0 0 0 0 0 

Hour 12 2.6 0 10.6 0 3.8 

Hour 18 8 0.4 35.4 3 7.8 

Hour 24 27 11.8 54.2 11.6 31.4 
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TABLE 7. Monte Carlo derived risk (% chance) of bottom layer (layer 4) boxes of 

palletized chicken breasts reaching 4°C during 24 h of simulated less-than-truckload 

temperature abuse (2 h at 4°C then 2 h at 25°C). 

 Box 16 Box 17 Box 18 Box 19 Box 20 

Hour 0 0 0 0 0 0 

Hour 6 0 0 0 0 0 

Hour 12 0 6.6 13.2 0 19.8 

Hour 18 24.4 43.6 66 15.2 44.8 

Hour 24 64.4 82.8 94.2 47.4 86.8 
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TABLE 8. Monte Carlo derived shelf life predictions for cyclically temperature abused 

(TA; 2 h at 4°C then 2 h at 25°C) chicken breasts fillets determined by time (h) spent above 

4°C.  

TA >4°C 

(h) 

Risk-of-Loss 

(%) 

Shelf life 

remaining 

(days) 

Shelf life 

remaining 

(%) 

Shelf life 

reduction 

(%) 

0 0 7.2 100 0 

2 0.8 6.4 89.4 10.6 

4 5.8 5.6 78.8 21.2 

6 17.8 4.9 68.2 31.8 

8 43.8 4.1 57.6 42.4 
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FIGURE 1. Predicted and observed growth curves from tertiary modelling of the growth of Salmonella Typhimurium on 

chicken breasts during 24 h of simulated LTL temperature abuse (2 h at 4°C then 2 h at 25°C). 
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FIGURE 2. Predicted and observed growth curves from tertiary modelling of the growth of Salmonella Typhimurium on 

chicken breasts during 24 h of temperature abuse at 25°C. 
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FIGURE 3. Temperature profiles of boneless skinless chicken breast fillets during three simulated supply chain storage 

scenarios (4°C, 25°C, and cyclic temperature abuse [TA]). 
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FIGURE 4. Salmonella Typhimurium growth during three simulated supply chain transportation temperature scenarios (4°C, 

25°C and cyclic temperature abuse [TA]). 
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FIGURE 5. Aerobic plate counts during three simulated supply chain transportation temperature scenarios (4°C, 25°C and 

cyclic temperature abuse [TA]). 
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FIGURE 6. Averaged temperature profiles (4 replications) of top layer (layer 1) boxes of palletized chicken breasts while 

experiencing simulated LTL cyclic TA (2 h at 4°C then 2 h at 25°C). 
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FIGURE 7. Averaged temperature profiles (4 replications) of second layer from the top (layer 2) boxes of palletized chicken 

breasts while experiencing simulated LTL cyclic TA (2 h at 4°C then 2 h at 25°C). 
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FIGURE 8. Averaged temperature profiles (4 replications) of third layer from the top (layer 3) boxes of palletized chicken 

breasts while experiencing simulated LTL cyclic TA (2 h at 4°C then 2 h at 25°C). 
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FIGURE 9. Averaged temperature profiles (4 replications) of bottom layer (layer 4) boxes of palletized chicken breasts while 

experiencing simulated LTL cyclic TA (2 h at 4°C then 2 h at 25°C). 
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FIGURE 10. Cross sections of 4 layers of palletized boxes of chicken breasts with time required for each box to reach 4°C. 

 

 

 

 

 

 



 

 
 

1
5
4
 

FIGURE 11. Thermal images of all sides of a pallet of chicken breasts immediately after being removed from a walk-in cooler 

(4°C). 
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FIGURE 12. Thermal images of all sides of a pallet of chicken breasts after 24 hours of cyclic TA (2 h at 4°C then 2 h at 25°C). 
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FIGURE 13. APC shelf life of simulated less-than-truckload temperature abused (TA; 2 h at 4°C then 2 h at 25°C) and control 

chicken breast fillets kept in simulated retail conditions. 
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FIGURE 14. Psychrotroph shelf life of simulated less-than-truckload temperature abused (TA; 2 h at 4°C then 2 h at 25°C), 

and control chicken breast fillets kept in simulated retail conditions. 
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