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Abstract

Computed tomography (CT) has become an essential tool in diagnostic and sports medicine.

It is able to generate a three-dimensional rendering that can be used to interrogate a given region

or desired structure from any orientation. However, in pre-clinical research, its deployment re-

mains limited due to relatively high upfront costs. Besides, existing integrated imaging systems

that provide X-ray modalities also dwarf its popularity in small laboratories. This lag of pre-

clinical use of CT has resulted in small academic labs having to run pre-clinical CT scans on

clinical veterinary scanners.

This dissertation seeks to generate CT images using an existing small-animal X-ray imager

with a specialized add-on specimen rotation system, the MiSpinner. This setup conforms to the

cone-beam computed tomography (CBCT) geometry, which requires high spatial accuracy.

The key problem in retrofit studies is that the relative position of portable add-on devices varies

by case. Therefore, in this research, we pursue three aims based on projection-based image

processing methods and neural network methods: 1. System geometry calibration, 2. Low-

dose projection denoising, and 3. sparse sampling enrichment.

System geometry calibration is achieved by our proposed structure tensor-based two-step

online (ST-TSO) calibration method. It combines with a comprehensive edge detection tech-

nique to detect spatial misalignment information on projections. Specifically, the first pro-

cessing step employs a modified projection matrix-based calibration algorithm to estimate the

relevant geometric parameters, and the second processing step fine-tunes the parameters with

an iterative strategy based on the symmetry property of the sum of projections. We showed that

by using this calibration method we can successfully reconstruct the image, and its accuracy

outperforms other online calibration method.

Low-dose projection image denoising is achieved with a model-based iterative reconstruc-

tion (MBIR) method. We consider the noise generation statistical model under a maximum a

posterior probability (MAP) framework with a structure tensor based total directional variation
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(ST-TDV) image prior regularization term. We demonstrated that the proposed method can

effectively remove the noise in low-dose cases using a digital phantom study.

Sparse sampling introduces extra streak artifacts into reconstructed images that degrade

the image quality. We propose an adversarial learning-based spatial transformer network for

projection image synthesis, which aims to improve the quality of reconstructed images by rea-

sonably increasing the number of projection images based on the existing projection data. Sim-

ulation and experiments have shown that this data-driven model can give rise to competitive

results compared with conventional algorithms.

Additionally, due to the lack of electron density reference standards, we have tried an

image style transfer network, cycle generative adversarial network (cycle-GAN), to improve

the reconstructed image contrast. The deployed network that only requires two group of im-

age datasets instead of image pairs has shown promise in retrofit studies, and our testing has

confirmed its promising competitive performance.
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Chapter 1

Introduction to Small-Animal Imaging

The goal of this thesis is to develop new systems, models, and analysis methods ensuring that

a retrofit imaging system with an add-on device works properly. The work focuses on applying

image processing methods to yield high-quality CT-like reconstruction images. In this chapter,

we review the fundamentals of tomographic imaging and the imaging system.

1.1 Background

For decades of development, Computed Tomography (CT) has become an essential tool in

diagnostic and sports medicine. Its use has revolutionized the management of the progress

of chronic diseases in the clinical field, such as demineralization during osteoporosis [1], joint

degradation during osteoarthritis [2], and hemorrhage detection during stroke [3]. In pre-clinical

research, its application in small-animal imaging can help to understand human molecular biol-

ogy and pathophysiology using virus injected or genetically engineered mice with spontaneous

diseases that closely mimic human disease [4].

CT imagers typically use a juxtaposed X-ray source and multiple detector arrays that main-

tain their relationship to each other during a scan to generate X-ray projections from various

perspectives as they travel either circularly around or in a spiral path (a.k.a. helical CT) [5].

The development of higher-resolution imaging techniques, such as micro-CT [6], PET/CT [7,

8], and SPECT/CT [9] have enabled the study of molecular interactions in disease progression

that assist in evaluating therapeutic efficacy. Furthermore, newer CT reconstruction algorithms

and procedures have improved spatial resolution and eliminated errors caused by the collection

methods and object scattering [10, 11].
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However, pre-clinical use of CT has experienced a lag that is likely related to relatively

high upfront instrument cost [12], which has sometimes forced academic labs to run pre-clinical

CT scans on clinical veterinary scanners. Although recently developed micro-CT imaging sys-

tems have become more cost-effective and widely available [13], a price ranging from $100,000

to $1,000,000 remains a concern for many small laboratories [14]. Moreover, in lieu of ded-

icated CT imagers, pre-clinical labs settle for planar systems that allow X-rays to be com-

bined with fluorescence, bioluminescence, or Cherenkov imaging. The availability of these

systems dwarfs the population of CT imagers in the pre-clinical space [15]. Furthermore, there

are inherent logistical considerations in conducting sequential imaging sessions with immune-

compromised animals on shared equipment that has been used immediately prior to viral or

bacterial pathogen work.

To address these limitations in the pre-clinical field and to provide avenues for researchers

to collect meaningful endpoint 3D structural information, we sought to evaluate the use of

a limited number of X-ray projections to generate CT-like data using a small-animal X-ray

system.

1.2 Instrument

The imaging instrument used in this thesis consists of two components, a main imaging system

and an add-on object rotation device, termed the MiSpinner, seen in Fig. 1.1.

The imaging system, the In Vivo Imaging System (IVIS) Lumina XRMS machine (PerkinElmer,

Waltham, MA), is a high-sensitivity, in vivo imaging platform that provides the opportunity to

view the inside of the body without harming it and to track cellular and genetic activity within

a living organism through optical and X-ray modalities. A complete imaging system, Fig. 1.1

Left, consists of a pre-configured computer with Living Image software installed, an imaging

chamber for taking pictures and an XGI-8 Gas Anesthesia Delivery System providing isoflu-

rane to anesthetize small animals inside the chamber. Specifically, the main component, the

imaging chamber, includes a fixed-position X-ray source at the bottom, a scintillation plate,

and a charged coupled device (CCD) camera at the top. It provides three modalities for imag-

ing: bioluminescence, fluorescence, and X-ray.
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A movable stage provides a platform for the sample rotation system, which fits snugly

under the scintillation plate. The scintillation screen is used to convert the X-rays into photons

that can be collected by the super-cooled camera. The stage has four set increments that essen-

tially allow some moderate magnification of a given region. X-ray projection images can be

acquired at different contrast levels under a fixed 10×10 cm2 field of vision.

The add-on object rotation device, the MiSpinner, is made up of a 3D printed stage, an

actuated motor,a 50-mL conical mouse holder, a foam insert, a cap connector, and a controller,

shown in Fig. 1.1(a). The specific assembly process, as Fig. 1.1(b) shows, is the motor attached

to a customized 3D-printed stage, stabilizing the animal holder during the rotation process.

Moreover, the actuated motor rotates in multi-angle selection mode, which offers at most 96

intervals for a full 360◦ scan, and the holder is connected to the central drive shaft of the motor

with a 3D-printed cap with a central square hole that mounts the holder directly to the actuated

motor. Initial trials had a square punch used to modify a 50-mL conical tube cap. Because this

was not reproducible, we chose to 3D print a conical tube cap with a perfectly centered square

hole. In summary, we used a FlashForge Creator Dual Extrusion 3D printer equipped with a

polylactic acid filament reel (1.75 mm) to print the mounting cap. The printing was driven by

the use of the Simplify3D software (version 4.1).

With the help of the MiSpinner, specimen scanning can be taken through a sequence of

angles, seen in Fig. 1.1(c). The actuator motor rotates the mouse holder to form an iso-center

projection image stack, which conforms to the geometry of projections obtained from cone

beam computed tomography (CBCT) .

The movable stage can be raised to different preset levels, providing different magnifica-

tions within a given 10×10 cm2 field of view, marked as A (268.37 mm from the CCD), B

(179.44 mm), C (85.75 mm), and D (4.76 mm). There is also a Z mode that is available at the

A level but using a zoom lens. This paper selects the B position as the appropriate place for

data collection. Detailed instrument information is shown in Table 1.1.
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Table 1.1: The scanning protocol of IVIS Lumina XRMS in X-ray mode

X-ray Source 36 kV, 100 mA
Source to the MiSpinner distance 32.1 cm
Source to the Plate distance 37.4 cm
Field of view 10×10 cm2

Detector pixel size 13×13µm
Detector resolution 1024×1024
Angular Sampling 1 projection per 3.75 degree
Angular coverage 360 degree
Exposure time 7.8 s per projection

Figure 1.1: Instrument introduction of small-animal imaging. Left: Complete IVIS Lumina
XRMS imaging system. Right: Display of the add-on object rotation device, the MiSpinner.
(a) shows the detail of the MiSpinner for each component, (b) is a complete view of the device
and (c) shows its placement in the imaging system.

1.3 CT Fundamentals

CT imaging aims to reconstruct cross-sectional images of the Region-of-Interest (ROI) from

the data (projections) measured by the detector at different angle, which can help user observe

inside information of the specimen without cutting. In this section, we introduce related funda-

mental physics in CT imaging to assist in implementation.

1.3.1 The Beer-Lambert Law

In transmission tomography, an external X-ray source sends a narrow X-ray beam passing

through the object and detected by a 2D flat-panel detector. The object can be modelled by
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its density map µ in R2 (single slice reconstruction) or R3(volume reconstruction). When an

object is irradiated, X-rays with initial intensity I0 will be absorbed by the object following the

Beer-Lambert law [16]

I = I0e
−

∫
µ(l)dl, (1.1)

where I denotes the outgoing X-ray intensity recorded by the detector and l denotes the unit

length of the photon traveling path. Since our interest is the distribution of density map µ, a

characteristic feature of the object describing its attenuation coefficients, a negative log trans-

formation will be applied to the collected data first no matter what scanning mode is used.

1.3.2 Sinogram: Forward Projection

Several basic integral equations model the variety of possible scanning geometries, e.g. Radon

transform [17], which maps a density function to the set of its integrals over hyperplanes, called

a sinogram in the CT field.

Definition 1.1 (The Radon Transform). Let µ ∈ Rn, the Radon transform is defined as

ℜµ(θ⃗, s) =

∫
x⃗·θ⃗

µ(x⃗)dx⃗ =

∫
Rn

δ(x⃗ · θ⃗ − s)µ(x⃗)dx⃗, θ⃗ ∈ Sn−1, s ∈ R, (1.2)

Sn−1 refers to the set of unit vectors in Rn, which has dimension n-1.

Note that the variables of the Radon transform can identify one hyperplane where θ⃗ is the

normal unit vector and s is its distance to the origin. We can observe that in the 2D case, a

hyperplane is a line and the Radon transform suits the physical reality of X-ray measurements,

seen in Fig. 1.2(a). While in the 3D case, it is a plane but does not model X-ray acquisition.

Therefore, we introduce the X-ray transform in the 3D case.

Definition 1.2 (The X-ray Transform). Let µ ∈ R3, the X-ray transform is defined as

Pµ(θ⃗, y⃗) =

∫
R

µ(y⃗ + lθ⃗)dl, θ⃗ ∈ Sn−1, y⃗ ∈ θ⃗⊥. (1.3)
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Note that the previous two transforms are parallel acquisition cases, which means all X-

rays are parallel in one projection. For the case where the rays diverge from a point, we intro-

duce the divergent-beam transform for X-ray emission from a point source.

Definition 1.3 (The Divergent-beam Transform). Let µ ∈ R3, and S⃗λ denotes the 1D trajectory

of an X-ray source. Then the divergent-beam transform is defined as

Dµ(λ, α⃗) =

∫ ∞

0

µ(S⃗λ + tα⃗)dt, λ ∈ [0, 2π], α⃗ ∈ Sn−1, (1.4)

λ is in polar coordinates and indicates the source position, and α⃗ is in spherical coordinate

representing the X-ray path.

In this case, we assume the source is outside the ROI and the range of the divergent beam is

wide enough to cover the region. Without loss of generality, we consider the circular trajectory

centered on the origin of the ROI, shown in Fig. 1.2(b). In the 3D case, it refers to CBCT

imaging. Generally, we use p to denote a projection from the parallel beam case and g to

represent the fan beam case. Then, the relationship between parallel projection and fan beam

projection is

g(λ, α) = p(λ− α,R sinα). (1.5)

The process of beam re-binning maps divergent-beam data to parallel-beam data, which is

crucial in fan beam reconstruction.

1.3.3 Image Reconstruction: Backward Projection

In this section, we introduce several CT image reconstruction techniques in the 2D case, includ-

ing the projection-slice theorem, filtered back projection algorithm in parallel mode, re-binning

in fan beam mode and revised volume reconstruction algorithm in the 3D case.

Recall that the Radon Transform is the same as the X-ray transform in the 2D case, noted

as p(R, θ) and re-written in 2D Cartesian coordinates:

p(R, θ) =

∫∫
f(x, y)δ(x cos θ + ysinθ −R)dxdy (1.6)
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Figure 1.2: Sketch of forward projection: (a) Radon transform in the 2D case, (b) divergent-
beam transform in the 2D case.

Projection-Slice Theorem (PST): The PST is proposed based on the principle that the 1D

Fourier transform of a projection equals one line at an angle of the 2D Fourier transform of the

density function. The proof is shown below:

G(ρ, θ) = F [p(R, θ)] =

∫ ∞

−∞
p(R, θ)e−2πjρRdR

=

∫∫
f(x, y)e−2πjρ(x cos θ+y sin θ−R)dxdy

= F [f(x, y)]|v=ρ sin θ
u=ρ cos θ.

(1.7)

Thus, the basic implementation of PST is:

1. Take the 1D FFT of each projection.

2. Use the PST to arrange data in 2D Fourier space.

3. Interpolate those data onto a regularly-spaced grid.

4. Take the inverse FFT to obtain the density of attenuation coefficients.

7



The PST method has two main advantages. First, it reduces the computational cost compared

with 2D Fourier transform calculation from k×M×N×(log(M×N)) to k×M×N×(log M). Sec-

ond, Fourier transforms can take place during measurement. Theoretically the PST method

could provide accurate results given a full 2D scan with an infinite number of slices. However,

in the limited projection case, inaccuracy and high time cost interpolation between adjacent

projections makes it less desirable for limited projections.

Filtered Back Projection (FBP): The FBP algorithm is an alternative reconstruction method

in CT that aims to simplify Steps 2 and 3 in the PST method.

Given the 2D inverse Fourier transform (IFT) equation

f(x, y) =

∫∫
F(u, v)e2πj(µx+vy)dudv, (1.8)

and combining with the PST method, we have the following reconstruction

f(x, y) =

∫∫
G(ρ, θ)e2πj(µx+vy)dudv|v=ρ sin θ

u=ρ cos θ

=

∫ 2π

0

∫ ∞

0

G(ρ, θ)e2πjρ(x cos θ+y sin θ)ρdρdθ

=

∫ π

0

dθ

∫ ∞

−∞
G(ρ, θ)e2πjρ(x cos θ+y sin θ) |ρ| dρ.

(1.9)

Rewriting the IFT form, we obtain

f(x, y) =

∫ π

0

dθ

∫ ∞

−∞
G(ρ, θ)e2πjρ(x cos θ+y sin θ) |ρ| dρ

=

∫ π

0

dθ

∫ ∞

−∞
[

∫ ∞

−∞
G(ρ, θ) |ρ| e2πjρRdρ]δ(x cos θ + y sin θ −R)dR

=

∫ π

0

dθ

∫ ∞

−∞
g(R, θ)δ(x cos θ + y sin θ −R)dR,

(1.10)

where

g(R, θ) =

∫ ∞

−∞
G(ρ, θ) |ρ| e2πjρRdρ. (1.11)

The difference between the projections g(R, θ) and p(R, θ) is the former is the result of mul-

tiplying the original projection by an operator |ρ|, the ramp filter, in the frequency domain, as
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a means of filtering out low-frequency components. After that, we can obtain accurate recon-

struction by smearing the projection data back into the spatial domain.

The basic procedure is:

1. Take the 1D Fourier transform of projection data.

2. Multiply the operator in the frequency domain.

3. Take the inverse Fourier transform of the result of Step 2.

4. Smear back across the image.

5. Loop the procedure to all projection data.

Convolution Back Projection (CBP): The CBP method is a modification of the FBP algorithm

in the spatial domain. It modifies Steps 2 and 3 in the FBP with convolution as follows:

F−1[F{g(R, θ)} |ρ|] = g(R, θ) ∗ F−1{|ρ|}, (1.12)

where ∗ represents convolution. Let C(R) = F−1{|ρ|}, then

f(x, y) =

∫ π

0

dθ

∫ ∞

−∞
{g(R, θ) ∗ C(R)}δ(x cos θ + y sin θ −R)dR. (1.13)

The drawback of the FBP and CBP algorithms is that |ρ| is non-integrable in continuous space.

Therefore, it will produce non-negligible degradation problem in discretization. Classic pro-

cessing methods add a window function on |ρ| for approximation, either the R-L window, S-L

window or the Hamming window. Here we will use R-L filter, or ramp filter, to maintain low

computational cost for simplicity.

Beam Re-binning Strategy: In fan beam reconstruction, a common solution is to apply beam

re-binning to convert the divergent beam projection data into corresponding parallel data based

on the mapping relationship introduced before. The advantage is convenience, while the draw-

back is sparsity and uneven sampling in the corresponding parallel case simulation.

9



A general solution in the fan beam case can be derived from the CBP algorithm, and

Fig. 1.3 shows an example. Assume detectors on a flat plane that are spatially distributed

evenly, distance from the source to the object center (DSO) is D, and distance from the source

to the detector plane (DSD) is D′ . For any incident X-ray, e.g., line SB in Fig. 1.3, assume its

distance from the origin O to the projected point A is s. Then we have the relationship:

P (R, θ) = qβ(s), (1.14)

where

θ = α + β, R = s cosα =
sD√

s2 +D2
. (1.15)

Rewriting the CBP algorithm in polar coordinates,

f(x, y) = f(r, ϕ) =
1

2

∫ 2π

0

∫ Rm

−Rm

P (R, θ)× C(r cos(θ − ϕ)−R)dRdθ, (1.16)

then we have fan beam reconstruction

f(r, ϕ) =
1

2

∫ 2π

0

∫ sm

−sm

qβ(s)× C[r cos(β + α− ϕ)− sD√
s2 +D2

]
D3

√
s2 +D2

dsdβ, (1.17)

where

α = arctan
s

D
(1.18)

For simplicity, we can modify Eq. (1.17) as

f(r, ϕ) =

∫ 2π

0

1

U2
{[qβ(s)×

D√
D2 + s2

] ∗ 1

2
C(s)}dβ (1.19)

where

U(r, ϕ, β) =
D + r sin(β − ϕ)

D
. (1.20)

The equation is similar to the CBP algorithm. The difference is it pre-processes the projection

data before with a weighted function related to its position and its numerical implementation:

1. Pre-process the projection data by multiplying by a weighted function.
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Figure 1.3: Sketch of fan beam geometry on a flat panel

2. Convolve with a modified filter function.

3. Add another weighted function and then backproject as FBP does.

FDK reconstruction: An analogue for volumetric reconstruction from 2D projections is the

Feldkamp, Davis and Kress (FDK) algorithm [18, 19], which contains additional weights to

account for fan and cone angles. It was first proposed by Feldkamp et al. in 1984, solving a

cone-beam structure problem with a circular orbit of the X-ray source in 3D image reconstruc-

tion. It implements the reconstruction row by row with three steps:

1. Adding pre-weighting factor to the projection data: a pre-weighting factor, dependent

on both the fan angle and cone angle, is applied to the projection data to approximate

equivalent 2D fan beam data as

g
′

θ =
RD√

R2
D + u2 + v2

gθ(u, v), (1.21)
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where gθ(u, v) is the 2D projection data of 3D object and u,v are coordinates in the

detector plane. RD is the distance from the X-ray source to the detector plane.

2. One-dimensional filtering: FDK applies a one-dimensional filter to process the weighted

projection with convolution:

Gθ(u, v) = h(u) ∗ g′

θ(u, v), (1.22)

where h(u) is a ramp filter.

3. 3D reconstruction: after obtaining the filtered projection data, multiply by a weight func-

tion, and then reconstruct the 3D object volume slice by slice along the normal vector

direction perpendicular to the fan beam plane.

µ(x, y, z) =

∫ 2π

0

R2

(R + x cos θ + y sin θ)2
Gθ(u

′, v′)dθ, (1.23)

where

u′ =
RD(−x sin θ + y cos θ)

R + x cos θ + y sin θ
, v′ =

RDz

R + x cos θ + y sin θ
, (1.24)

µ(x, y, z) denotes the reconstructed 3D object attenuation coefficient and R is the dis-

tance between X-ray source and object center.

In addition, Parker weighting was introduced to account for short scans (210◦ arc) generated

by extremity CBCT prototypes [20].

1.4 Thesis Outline

Chapter 2 describes a multi-level thresholding algorithm for system calibration inspired by

global variance assessment criteria. A version of this chapter is published in:

• Zhou, H., Reeves, S.J. and Panizzi, P.R., Center of Rotation Correction for in vivo Com-

puted Imaging System with Limited Projections. In 2020 IEEE 17th international sym-

posium on biomedical imaging (ISBI 2020) . IEEE.
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• Zhou, H., Reeves, S.J. and Panizzi, P.R., 2021, November. Estimating the Center of

Rotation of Tomographic Imaging Systems with a Limited Number of Projections. In

2021 43rd Annual International Conference of the IEEE Engineering in Medicine &

Biology Society (EMBC) (pp. 3157-3160). IEEE.

Chapter 3 has further introduced a novel geometry based system calibration algorithm

that utilizes scanning projection data directly. Furthermore, we have extended our research into

more general case with extra constrained condition. The contents of this chapter can be found

in:

• Zhou, H., Chou, C., Reeves, S.J., Brannen, A., and Panizzi, P.R. Online Geometry Cali-

bration for Retrofit Computed Tomography from a Mouse Rotation System and a Small-

Animal Imager. Medical physics

Chapter 4 shows how we improve the image quality after obtaining the correct reconstruc-

tion result. It includes two parts, model based denoising algorithm for projection pre-processing

and machine learning based image synthesis algorithm for solving sparse sampling problem.

This chapter includes:

• Zhou, H., Wang, W., Chou, C., Reeves, S.J. and Panizzi, P.R., Projection Image Syn-

thesis Using Adversarial Learning Based Spatial Transformer Network for Sparse Angle

Sampling CT. In 2022 44th Annual International Conference of the IEEE Engineering in

Medicine & Biology Society (EMBC). IEEE

Chapter 5 concludes our contribution to the retrofit system study and highlights the chal-

lenges associated with further improvement and reconstructing high-resolution results.
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Chapter 2

Multi-level Thresholding Algorithm for 2D Online Calibration

X-ray imaging system with an add-on MiSpinner conforms to the CBCT geometry, which is

sensitive to errors in the scanning geometry. Incorrect geometry will lead to severe image qual-

ity degradation problems, noted by image blurring and other structure artifacts. This chapter

introduces the projection-based calibration algorithm to correct the geometry error. Test re-

sults have validated its accuracy in system correction, thus demonstrating the potential of the

described system to be modified and adapted for pre-clinical research.

2.1 Introduction

A complete view of the retrofit imaging system is displayed in Fig. 2.1. We present our scan-

ning mode simulation model which conforms to the CBCT imaging principle. In CBCT, the

complete scanning geometry can be described by nine parameters. [21] In the special case of

object-rotation small-animal imaging, the flat detector relative position to the X-ray source is

always fixed during scanning. Therefore, the number of parameters is reduced to seven [22]

since the detector coordinate-related parameters are aligned with the X-ray source translation

coordinates; therefore, they can be removed from the estimation. However, not all parameters

have the same impact on the reconstruction quality. Xi et al. [23] have pointed out that bias

in the perpendicular direction to the rotation axis and in-plane rotation angle error can lead to

more severe degradation than the other five parameters. More precisely, a 0.5-unit bias or a 0.5-

degree misalignment is large enough to observe visible artifacts in the reconstruction images,

while other parameters can tolerate a wider error range [22, 24].
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In our imaging system, geometry errors are most likely to appear in the object rotation

area, e.g., inaccurate placement of the MiSpinner or inclination of the animal holder. This can

lead to object deformation in forward projections. Furthermore, the sample in the spinning sys-

tem may not be placed precisely or consistently relative to the imaging coordinate system, the

actual center of rotation (COR) is often uncertain. In addition, the sample may not consistently

spin around an assumed axis because of variations in the attachment to the holder or due to

gravity. Therefore, the specimen presented in the projection images may appear to be tilted or

off-center. As a result, the reconstruction of such datasets may show ringing or streaking arti-

facts. Therefore, calibration of the geometry is essential before adequate image reconstruction

can occur.

2.2 Related Work

Generally, geometry calibration approaches can be divided into two categories, offline methods

and online methods. For offline methods, researchers use a precisely designed phantom with

known spatial information to estimate the errors in geometric parameters and then calibrate

the geometry either through adjustment of mechanical equipment or accounting for errors with

reconstruction algorithms. For example, Cho et al. [25] used 24 steel beads as a phantom to get

a set of projections for parameter estimation. Yang et al. [26] reduced the phantom to 12 steel

beads on two planes in a cylinder phantom for error assessment. Sun et al. [27] combined prior

relative position information with only 4 beads in a single projection to calculate the results.

Ouadah et al. [28] proposed a 3D-2D registration algorithm that utilized a projection matrix

(PM) to characterize system geometry. Parameters are optimized by comparing the similarity

of scans and forward projections of previously acquired 3D volumes. In such methods, ample

markers and related position locating algorithms (PM method) are crucial for accurate param-

eter estimation. This approach requires the design of a dedicated phantom that is difficult for

other users to duplicate. Another challenge is the changing scanning geometry in pre-clinical

research. Our MiSpinner device may not always be placed in the imaging system precisely and

consistently. Hence, one-time offline calibration using a phantom may not be appropriate for

continuously scanning in pre-clinical research.
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Figure 2.1: MiSpinner design and orientation in the pre-clinical scanner. (a) Imaging chamber
of IVIS Lumina XRMS machine, fixed position of an X-ray source and scintillation plate,
movable stage where for the MiSpinner. (b) 3D geometry of projection image taken in Lumina
XRMS machine; the origin is defined at the center of the object, and (x,y,z) is the defined
coordinate axis system. Object rotates around the x-axis. (c-d) The MiSpinner structure when
placed in Lumina XRMS machine; ideally, the actuated motor can rotate mouse holder to form
an iso-center projection image group.
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In contrast, online calibration methods directly evaluate the projection image parameters

without requiring any dedicated calibration phantoms. These methods fall into two classes, one

that takes advantage of data redundancy in full scanning and the other that uses iterative opti-

mization based on a designed cost function. For data redundancy, Donath et al. [29] proposed

an image registration method, which estimates the maximum correlation on two opposite pro-

jections, for the COR correction, while Zhu et al. [30] utilized the centroid method, which is an

application of the Helgason-Ludwig consistency condition (HLCC). Furthermore, Yu et al. [31]

extended the HLCC into fan-beam cases to evaluate the angle errors. For iterative algorithms,

Nghia et al. [32] developed a quality assessment algorithm based on the observation that key

magnitude coefficients of the sinogram image Fourier transform lie in a particular region in

the frequency domain. Dong et al. [33] proposed a global variance-based estimation matrix for

COR calibration. Kyriakou et al. [34] optimized the system by minimizing the entropy. How-

ever, an obvious flaw of these algorithms is that they only focus on correcting one or two key

geometric parameters. In a recent development, Meng et al. [22] developed a sum of projec-

tions (SOP) method, which could estimate five geometric parameters. However, execution time

is an unavoidable problem. To make it converge faster, the authors limited the error bounds of

the parameters in their simulation.

Given the challenge that our add-on device is not placed permanently, this research mainly

focuses on solving the problem of online calibration. We first review existing work in detail.

2.2.1 Image Registration Method

The image registration method, also known as the opposite-angle method, is an analytical solu-

tion that aims to calculate COR bias. Fig. 2.2 shows an example of COR error in scanning. We

can observe that in a full scan, a specific incident X-ray, the central ray, crosses the same region

after 180 degree rotation. Thus it will give rise to the same projection value on the detector.

In Fig. 2.2, this incident X-ray is the line SO that transmits from the source S to the rotation

center O. Accordingly, the central ray can be determined by identifying the pair of angles that

generate the same projections on the detector. Every angle has a corresponding pair with the

relationship that θ2 = θ1 + π and θ1 ∈ [0, π).
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Figure 2.2: Illustration of image registration method in COR determination

Following this relationship, we can divide the full scan projections into two parts and then

calculate the cross-correlation coefficient of projection data along the detector bins as Eq. (2.1)

shows. If we find the maximum value of Q, we can determine the COR position.

Q(A,B) =

∑
i(Ai, Bi)√

(
∑

i A
2
i )(
∑

iB
2
i )

(2.1)

The drawback of this approach is it requires one or several π-pair-projections in measure-

ments which will be violated in sparse sampling. Besides, this method is sensitive to the noise

as well as low signal-noise-ratio (SNR) case.

2.2.2 Center-of-Mass method

The center-of-mass method, also known as the centroid method, is an application of HLCC [35].

Recalling the Definition 1.1, we denote the projection data as p(R, θ). Then HLCC is defined

as

Jk(θ⃗) =

∫
p(θ, R)RkdR =

k∑
r=0

k!

r!(k − r)!
cosr(θ) sink−r(θ), (2.2)

where

mi,j =

∫∫
xiyjf(x, y)dxdy, k = i+ j, (2.3)

is called the geometry moment of the ROI region.
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According to the centroid definition, for projection data at angle θ, its centroid calculation

is

S⃗θ =

∫
p(R, θ)RdR∫
p(R, θ)dR

. (2.4)

Meanwhile, the center of mass of the ROI is

x̄ =

∫∫
µ(x, y)xdxdy∫∫
µ(x, y)dxdy

, ȳ =

∫∫
µ(x, y)ydxdy∫∫
µ(x, y)dxdy

. (2.5)

Based on a physical interpretation, we can draw the conclusion that the integral of the projection

data equals the sum of the ROI region, that is,

∫
p(R, θ)dR =

∫∫
µ(x, y)dxdy. (2.6)

Referring to Fig. 2.3, we define a new coordinates system, s, t coordinates, where the s-axis is

along the detector bin direction and the t-axis is along view angle direction. Then we have

s = x cos β + y sin β, t = −x sin β + y cos θ, (2.7)

where β is the view angle in Fig. 2.3 which is the same as θ in other equations and s equals R

in previous equations. Hence, we can infer that

S⃗θ =

∫
p(s, θ)sds∫
p(s, θ)ds

=

∫∫
µ(x, y)(x cos β + y sin β)dxdy∫∫

µ(x, y)dxdy

=

∫∫
µ(x, y)x cos βdxdy∫∫

µ(x, y)dxdy
+

∫∫
µ(x, y)y sin βdxdy∫∫

µ(x, y)dxdy

= x̄ cos β + ȳ sin β.

(2.8)

It can be concluded that the centroid coordinate of a projection is the projection of the

mass center of the ROI projected at that angle. Compared with the HLCC definition Eq. (2.2),

Eq. (2.8) is a simplified version with m = 1.
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Figure 2.3: Illustration of Center-of-Mass method in COR determination

Next we extend the HLCC into the fan beam case following the beam re-binning strategy;

that is,

Jk(θ⃗) =

∫ ∞

−∞
gF (θ − arctan

u

D
, u)(

Ru√
D2 + u2

− d1(t) cos θ − d2(t) sin θ)
k

×(
RD2

D2 + u2

3/2

+
D(d1(t) cos θ + d2(t) sin θ)

ω(D2 + u2)
)du,

(2.9)

where d(t) = (d1(t), d2(t)) is COR translation in two directions that varies with time t, ω is

gantry rotation speed. The derivation is detailed in the Appendix A. Estimation of d(t) can be

found in Yu et al. [31].

2.2.3 Frequency-Based Method

The frequency-based method utilizes the Fourier transform of the sinogram in parallel beam

tomography. The sinogram is the projection of the ROI data in the 2D case. Given projection
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data p(R, θ), its Fourier transform in the (R, θ) domain is

P̃ (ω, n) =
1

2π

∫ 2π

0

∫ ∞

−∞
p(R, θ)dRdθ. (2.10)

Assume each point µ(x, y) in the ROI is independent. Then

µ(x, y) = δ(x− rp cosϕ, y − rp sinϕ), (2.11)

where (rp, ϕ) are the corresponding polar coordinates. P̃ (ω, n) becomes

p(s, θ) = δ(s− rp cos(ϕ− θ)),

P̃ (ω, n) =
1

2π

∫ 2π

0

e−i[ωrp cos(ϕ−θ)+nθ]dθ.
(2.12)

This is similar to the Bessel integral representation [36, 37],

P̃ (ω, n) = Jn(ωrp)e
−in(ϕ+pi/2),

Jn(x) =
1

2π

∫ π

−π

ei(x sin τ−nτ)dτ .
(2.13)

Refer to the Bessel function property introduced in [37]; i.e., for large |n|, the function Jn(x)

decreases rapidly in magnitude as |ωrp| decreases below |n| − 1. Accordingly, we have a

double-wedge region at the boundary n = ωrp and n = −ωrp in the frequency domain where

significant Fourier coefficients of the sinogram are found in the region

|n| ⩽ |ω| rp, (2.14)

where ω is the spatial-frequency variable, n is the angular harmonic number, and rp is the

outmost radius of the ROI. A demonstration of this property is shown in Fig. 2.4.

A typical application of this property includes reconstruction image quality improvement

by interpolating extra information into the sinogram at certain places [38], while another ap-

plication is COR correction [32] which is based on the assumption that sinogram data in range

[0, π) and [π, 2π) are strictly antisymmetric. Fig. 2.5 shows an example of the double-wedge
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property application in Shepp-Logan phantom. We create the second half sinogram data,

which refers to [π, 2π), by reflecting the first half one, and then form a complete sinogram

as Fig. 2.5(b) shows. Then we can observe that Fourier transform of the artificial sinogram

will show non-negligible Fourier coefficients outside the double-wedge region in Fig. 2.5(d),

which is mainly because the broken part of the sin-like information will create non-negligible

high frequency information in Fourier domain. A general calibration procedure could be im-

plemented as:

1. Synthesize complete sinogram in [0, 2π) by reversing the [0, pi) sinogram as described.

2. Apply 2D Fourier transform to the synthetic sinogram and set an assessment function

QSF to evaluate the non-negligible Fourier coefficients. To simplify the calculation, a

binary mask function M(u, v) in frequency domain is multiplied to ensure our focus on

the region outside the double-wedge:

QSF =

∫∫
real(P̃ (u, v))M(u, v)dudv∫∫

M(u, v)dudv
, (2.15)

where

M(u, v) =

1, else

0, |v| ≤ |u| r
(2.16)

3. Repeat 1 and 2 in search range and find the global minimum QSF .

2.2.4 Metric Evaluation Method

Metric evaluation, also known as scoring of reconstructions, is derived from the basic idea that

the best approximation to the true COR will give the best reconstruction result.

In the past, scoring of a reconstruction was completed manually, selected with the fewest

artifacts in the researcher’s subjective opinion. This procedure has gradually developed to

design a scalar metric to assess the reconstructed image quality. The best COR is found through

optimization of the metric value with respect to the shift distance variable. We will introduce

several metrics applied in this field:
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Figure 2.4: Illustration of double-wedge property of Bessel function in image frequency do-
main. (a) Shepp-Logan Phantom; (b) Corresponding [0, 2π) parallel sinogram; (c) Fourier
transform of the sinogram; (d) Significant Fourier coefficients after 25% thresholding.

Figure 2.5: Illustration of frequency based method in COR correction (a) Reconstructed Shepp-
Logan Phantom with 10 pixels COR bias; (b) Corresponding [0, 2π) parallel sinogram; (c)
Fourier transform of the sinogram; (d) Significant Fourier coefficients after 25% thresholding
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Metric QIA (Integral of Absolute Value) The metric is defined as

QIA =
1

m0

∫∫ ∣∣∣f̃(x, y)∣∣∣ dxdy, (2.17)

where f̃(x, y) represents the reconstructed image pixels and

m0 =

∫∫
f(x, y)dxdy =

∫
p(θ, l)dl. (2.18)

This is based on the mathematical explanation that if f(x, y) ⩾ 0,

∫∫
|f(x, y)| dxdy =

∣∣∣∣∫∫ f(x, y)dxdy

∣∣∣∣ = ∣∣∣∣∫∫ f̃(x, y)dxdy

∣∣∣∣ ⩽ ∫∫ ∣∣∣f̃(x, y)∣∣∣ dxdy. (2.19)

Hence, the best estimate of the COR can be reached when QIA reaches a minimum value.

Metric QIN (Integral of Negativity) The metric is defined as

QIN = − 1

m0

∫∫
u[−f̃(x, y)]f̃(x, y)dxdy, (2.20)

where

u(α) =

0, α < 0

1, α ⩾ 0
(2.21)

Similar to the QIA method, the best COR can be found at the minimum value of QIN .

Metric QH (Histogram Entropy) The metric is defined as

QH = −
∫

p(g) log2(p(g))dg = −
G∑

k=1

pk log2(pk). (2.22)

This originates from the basics of information theory in image processing, i.e., measuring the

amount of information in the image. It is valid for the assumption that a wrong value of the COR

will lead to extra structures and gradients in the reconstruction, and smear out the histogram

of the image, which means it is in the most randomly distributed state and requires the most
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information to represent when the COR shifts. Therefore, the best COR can be found at the

minimum value of QH .

Metric QTV (Total Variation) The metric is defined as

QTV =
m∑
y=1

n∑
x=1

√
I2x + I2y (2.23)

where

[Ix, Iy] = [
I(x+ 1, y)− I(x− 1, y)

2
,
I(x, y + 1)− I(x, y − 1)

2
]. (2.24)

Total Variation (TV) is another way to measure the “information”, i.e., the sum over all pixels

of squared differences from neighboring pixels, in other words, measuring gradient information

in the spatial domain. It is based on the assumption that TV is large if the image contains high-

frequency signals such as noise and edges, and a tomographic image with errors (biases of

the rotational axis and errors in the projection angle) contains extra artifacts of arcs and lines.

Similarly, the best approximation of the COR can be found at the minimum value of QTV .

Metric QV (Global Variance) The metric is defined as

Qv =

∑∑
(I(x, y)− Ī)2

Ī ×N2
. (2.25)

This metric is based on the observation that small COR shifts lead to blurring of the image

which degrades the variance of the image. Moreover, large COR errors will segment the useful

information into small pieces, which will also decrease the variance of the image. Thus, the

best COR can be found at the maximum value of QV .

2.3 Multi-level Thresholding Algorithm

As mentioned in the Introduction section, both in-plane rotation angle error and the off-centering

bias error can highly affect the reconstruction image quality. However, analytical algorithms,

e.g., the registration method or the centroid method, are sensitive to noise. Inspired by the
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work of “automated motion correction” [30], we adapt the proposed coarse-fine search strat-

egy in our research to improve the COR determination efficiency and meanwhile address the

in-plane rotation angle error simultaneously.

2.3.1 Material

A CT phantom was used to verify the proposed method in practice, which is shown in Fig. 2.6.

Specifically, it consists of two components, the QRM and the GmbH phantom. The QRM

phantom, seen in Fig. 2.6(d), comprises two perpendicular 5×5 mm2 silicon chips. Each chip

contains a bar (trench) and a point pattern with diameters from 5 to 150 µm line/point thickness.

The GmbH phantom, seen in Fig. 2.6(f), incorporates five electron densities inside, which

approximates five different human tissues: air, muscle, water, adipose, and bone.

Furthermore, for this study, 4 C57BL/6 mice were produced by an in-house breeding

colony maintained under protocol number 2018-3438, as approved by the Institutional Animal

Care and Use Committee of Auburn University. All procedures were designed in accordance

with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

In this study, no living mice were imaged. The imaged carcasses were obtained from normal

maintenance of a breeding colony. All mice were euthanized with CO2 asphyxiation.

2.3.2 Coarse Search

In the coarse search, Zhu et al. [30] applied the center-of-mass algorithm to estimate the raw

COR position given the assumption that the system works in parallel projection mode. How-

ever, in small-animal research, this assumption is not satisfied.

Instead, a coarse estimation of COR can be simply realized by calculating the average of

two edges. The edges of the conical tube projection can be used as an indicator of the upper

and lower boundaries, which are approximately equally displaced from the nominal axis of

rotation.

CORraw =
Pupboundary + Pbotboundary

2
(2.26)
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Figure 2.6: Arrangement of CT phantoms. (a) Single planar X-ray projection through a 50-
mL cylindrical tube. (b) Edge detection on the image (a), where yellow and red dots are the
endpoints of the detected lines.(c) Corresponding calibrated and centered projection image. (d)
QRM micro-CT bar pattern chip phantom. (e) Reconstruction slice of QRM phantom with ST-
TSO calibration method. (e) GmbH phantom with the indicated five human tissue equivalents
densities: air, muscle, water, adipose, and bone. (f) Reconstruction slice of GmbH phantom
after calibration
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The boundaries of the holder have low contrast in the projection images. To address this prob-

lem, we proposed an edge detection algorithm as Fig. 2.7 shows. It is an auto boundary selec-

tion strategy combining the Canny detection algorithm [39, 40], the Hough Transform [41] and

the RANSAC selection technique [42] that includes three steps:

1. Apply classic Canny kernel on scanned projection to detected boundary information. See

Fig. 2.7(a).

2. Apply the Hough transform to automatically detect the horizontal lines. See Fig. 2.7(c).

3. Regard inner boundary coordinates as undesired points and select the desired boundaries

with the RANSAC algorithm. See Fig. 2.7(d).

An average on 0◦, 90◦, 180◦ and 360◦ projection images is calculated to further remove the

error caused by light scattering or device vibration during measurement. After rotation axis

(COR) position is determined, in-plane rotation degree is estimated by calculating the angle

between the rotation axis and the lateral axis simultaneously.

Fig. 2.8 shows an example of the proposed procedure in in-plane angle correction on

mouse and CT phantom data. Numerical performance before and after the calibration is shown

in Table 2.1. Since raw estimation is designed to find a suitable starting point to narrow down

the search range in a later iterative algorithm in the fine search step, high accuracy is not re-

quired. Instead, three main advantages of the proposed coarse search step are as follows: 1)

easy to realize and robust; 2) independent of the scanning mode; and 3) applicable to in-plane

rotated projection images.

Table 2.1: In-plane rotation angle estimation before and after calibration

CT Phantom(#) 1 2 3 4 5 6 7 8 9 10
before 0.51 0.48 0.43 0.42 0.47 0.51 0.49 0.48 0.51 0.52
after 0.04 -0.05 0.07 0.08 0.15 0.01 0.12 0.22 0.17 0.08

Mouse Data(#) 1 2 3 4 5 6 7 8 9 10
before -0.74 -0.65 -0.55 -0.66 -0.62 -0.60 -0.54 -0.69 -0.59 -0.60
after 0.01 -0.11 -0.05 -0.18 -0.08 0.02 -0.05 -0.12 -0.09 -0.25
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Figure 2.7: Demonstration of edge detection method. (a) Detected CT phantom projection, (b)
Detected edge information with Canny kernel, (c) Auto-discovered edges with Hough Trans-
form, (d) Determined boundaries with RANSAC selection algorithm

Figure 2.8: In-plane angle estimation and calibration with proposed edge detection algorithm.
(a) Detected CT phantom projection, (b) CT phantom after calibration, (c) Detected Mouse
projection, (d) Mouse projection after calibration.
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2.3.3 Fine Search

Once the raw COR of the holder is determined, the fine search region is set to ±30 pixels. Then

we evaluate the reconstruction image quality by the metric evaluation algorithm for each possi-

ble COR position. In [30], the evaluation is defined on the global variance of the reconstruction

image, based on the assumption that the maximum variance occurs when reconstructing with

the correct COR [43]. Unfortunately, this does not hold for the low-dose case where global

variance estimation is highly affected by the presence of scattering and blurring as well as the

extra background structure caused by limited projections.

Therefore, we use a multi-level thresholding on the image histogram with Otsu’s method to

distinguish the ROI from the background under two assumptions: 1. background artifact values

are generally smaller than specimen values, and 2. most variance contributions are from high-

value components. To better demonstrate our proposed multi-level thresholding algorithm, an

image analysis is presented in Fig. 2.9. For phantom data, we can segment the image into three

groups: a background region that equals 0, streak artifacts that oscillate around 0, and useful

signal which is the object region, as Fig. 2.9(a) shows. For the object image in Fig. 2.9(b),

ROI classification includes three parts as well: bone structures, soft tissue region, and foam

region, whose intensity is close to the background region. In contrast to the phantom data, the

mouse data shows greater artifacts in the object region due to the existence of quantum noise.

In addition, when COR error is small, global variance will be decreased by blurring in theory.

However, extra streak artifacts from the background region will compensate this loss, which

leads to global variance estimation being inaccurate. Segmenting the ROI from the background

can effectively reduce the quantum noise and artifact impact on variance estimation.

Our revised variance estimation metric can be described as:

QM−V =

∑∑
(Ĩ(x, y)− Ĩ)2

Ñ2
, (2.27)
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where
Ĩ = Otsu(I, n) ∗ I,

Otsu(I, n) = argmax{(σ′

B)
2{t1, t2, ..., tn − 1}},

(σ
′

B)
2 =

n∑
k=1

ωkµ
2
k,

(2.28)

I is the reconstruction result, Ĩ is the reconstruction after multilevel thresholding, (σ′
B)

2 is the

modified between-class variance and t1, t2, . . . , tn−1 are multilevel thresholds in the histogram.

The multi-level thresholding can be used to focus the variance calculation on image contents

rather than background areas with noise.

For each reconstruction in the fine search range, the maximum value of QM−V indicates

the correct COR position in the system, and its position in the fine search range can help calcu-

late the bias of the COR.
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Figure 2.9: Analysis of S-L Phantom and Mouse reconstructions in intensity histogram distri-
bution and line profile. A three-level thresholding was determined visually to demonstrate the
multi-level OTSU method.

2.4 Simulation and Experiment

2.4.1 Shepp-Logan Phantom Simulation

To compare the performance of the proposed method, both variance-based and multi-level

thresholding methods were tested on the Shepp-Logan phantom in an interval ±15 pixels away

from the correct COR position with sufficient projections. As Fig. 2.10 shows, an evaluation

curve was obtained after an exhaustive estimation on 31 reconstruction images. We can observe

that both algorithms are able to find the correct COR position corresponding to the largest value
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in its estimation curve, indicating that our proposed criterion can produce similar performance

compared with the widely used global variance estimation algorithm in high-contrast situations.

Figure 2.10: Fine search test on Shepp-Logan phantom with limited number of projections.
(a), (d), (g) are correct reconstruction images from 360, 97, and 40 projections. (b), (e), (h)
are estimation results from variance-based algorithm in [30], (c), (f), (i) are results from our
method. X-axis is the search range from -15 to 15 pixels.

2.4.2 Actual Projection Data Test

To further verify the validity of the proposed method in practice, we tested the proposed algo-

rithm on actual scanned projection data. In summary, the IVIS imaging system provided a total

of 97 projections in a full scan, and size of each projection is 1024×1024 pixels.
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For comparison, those aforementioned objective functions were evaluated as well, and

their performance is presented in Fig. 2.11 and Fig. 2.12. Due to the lack of a ground truth im-

age, we ran an exhaustive search along the bias direction and determined the best reconstruction

based on human observation, labeled ”Human Decision” in figures. In Fig. 2.11, which rep-

resents high contrast and simple structure, we could observe that the variance-based algorithm

outperformed other algorithms with a much smoother objective function curve. Apparently,

streak artifacts caused by sparse sampling can be considered as a pattern in background images

with the variance-based algorithm, which also deviates when the COR changes. Therefore,

variance reaches the maximum value when the image is reconstructed at the correct COR po-

sition. However, in Fig. 2.12, i.e., the mouse projection data, the variance curve around the

correct position showed some difficulty in accurately determining the COR location.

We also tested our proposed algorithm on the mouse data. In order to compare the perfor-

mance, the same coarse search was conducted first to make sure they exhaustively searched the

same region. The raw FBP reconstruction result shown in Fig. 2.13(a) has significant artifacts.

Meanwhile, a rough estimate of the center of the tube by a coarse search is pixel coordinate

551, which becomes the center point for the fine search. The curve in Fig. 2.12(c) describes the

global variance estimated by the normalized variance equation, and the curve in Fig. 2.12(d) is

local variance estimation after multi-level thresholding to eliminate the effect from the back-

ground. As a scoring method, its maximum position maps to the desired COR position. In

Fig. 2.12(c), the maximum value occurred at -1, indicating the axis equals 550. In Fig. 2.12(d),

the value occurred at -5, indicating a value of 546. Fig. 2.12(e) and Fig. 2.12(f) are correspond-

ing reconstruction slices.

34



Figure 2.11: Test of aforementioned algorithms on CT phantom data: upper left table presents
the final result of each algorithm on COR location, lower left image shows the result before
and after calibration, middle plots show the curve of each metric-based algorithm, right shows
the material in the test

Figure 2.12: Test of aforementioned algorithms on mouse data: upper left table presents the
final result of each algorithm on COR location, lower left image shows the result before and
after calibration, middle plots show the curve of each metric-based algorithm, right shows the
material in the test
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Figure 2.13: Application of coarse-fine search strategy on mouse dataset. (a) is FBP result
without any correction, (b) is the best reconstruction result found within the search interval, (c)
is variance estimation curve from [30], (d) is the curve from the proposed multi-level threshold-
ing method, (e) is the image reconstructed at the maximum point of the curve (c), mis-aligned
structure are pointed out by green arrows, (f) is the result at the maximum point of the curve
(d), mis-aligned structure are fixed.
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2.5 Conclusion and Discussion

Structure mismatch can occur in both bone structure and soft tissue regions when COR errors

are made, as in Fig. 2.13(e). Besides, in low SNR cases, blur can act as a smoothing of the

original signal that actually decreases the variance estimation when approaching the correct

COR position. This can be observed as the flat region in the interval [-6,0] in Fig. 2.12(c),

where the correct COR position is obscured. Multi-level thresholding can successfully address

this drawback by separating the ROS from the background to increase the usefulness of vari-

ance estimation at lower SNR and provide a clear and accurate maximum for COR position

estimation.

In summary, this work has shown that our revised method has superior performance in

solving in-plane angle error and predicting the COR given a limited number of projections in

the low SNR case.
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Chapter 3

Structure Tensor Based Two-step Online Method for System Geometry Calibration

Although multi-level thresholding has shown improvement in system calibration, its focus on

solving the dominant geometry parameters limits its accuracy. This work aims to develop an

algorithm to calibrate more parameters. Therefore, we propose a revised method—structure

tensor-based two-step online (ST-TSO) geometry calibration algorithm—that utilizes the pro-

jection image for system calibration. Specifically, in our first step of processing, we apply

the PM method for coarse estimation of parameters. The results obtained are then fine-tuned

through a second step, where an iterative optimization algorithm based on the global distribu-

tion of intensities is applied. Finally, the determined parameters are entered into a modified

Feldkamp, Davis, Kress (mFDK) algorithm[44] for 3D volume reconstruction.

3.1 Introduction

A general workflow is presented in Fig. 3.1. Specifically, two datasets are needed, namely a

baseline intensity calibration measurement and an actual measurement. An intensity calibration

measurement detects the background of the system forward X-ray projections. A study on the

background image reveals the characteristics of the X-ray photon distribution and thus provides

a reliable estimate of the imaging geometry origin. Actual measurements consist of an X-ray

of the intended object, including possible geometry errors.

The system configuration and layout are shown in Fig. 2.1, where Fig. 2.1(b) describes the

3D mathematical geometry. For an accurate geometry description and calibration, the coordi-

nate system used in this thesis is depicted in Fig. 3.2(a). For a 3D object, the Y-axis is along
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the object rotation axis direction, and the Z-axis OS is along with the X-ray focus spot (X-ray

source S ) direction from the origin. The X-axis is perpendicular to the Y-Z plane, consistent

with the right-hand rule. For projection coordinates, image axes U and V parallel the X and Y .

Referring to Fig. 3.2, Table 3.1 gives the definition of all geometric parameters, m, n, θ,

ϕ, η, SOD, and SDD. (m,n) are object COR offsets in X and Y direction (Fig. 3.2(c) and

Fig. 3.2(d)). (θ, ϕ, η) describe the object orientation caused by the MiSpinner mechanical error

or incorrect manual placement. SOD and SDD affect the image scaling.

In practice, SOD and SDD are constants for each time scanning since the imaging equip-

ment is stationary during measurement and the movable stage is fixed at a preset level before

scanning (i.e., device information in Table 2.1). For convenience, distance SOD and SDD are

transformed into pixel length by dividing the pixel resolution, r = 0.0098 cm/pixel, calculated

from Table 2.1. Moreover, a 3D-printed stage ensures the uniformity of the front and rear parts

of the MiSpinner, thus decreasing the roll angle ϕ error. Therefore, this paper mainly focuses

on estimating the remaining four parameters (m,n, θ, η).

Table 3.1: Definition of The Geometry Parameters

m COR offset in X direction
n COR offset in Y direction
θ(Tilt) rotation angle of the object along the X-axis
φ(Roll) rotation angle of the object along the Y-axis
η(Skew) in-plane rotation of the object along the Z-axis
SOD Source to object (COR) distance
SDD Source to detector (the Scintillation Plate) distance

Figure 3.1: Introduction of system geometry calibration
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Figure 3.2: A description of imaging coordinates used in the described imaging system. X-,
Y- and Z- axis obey the right-hand rule. Besides the coordinates, in each sub-plot, the corre-
sponding geometric error is present as well. (a) A general 3D view of the scanning geometry.
The dotted line shows the original projection of the cylinder phantom, and the solid line shows
the actual projection due to the geometry errors. (b) Frontal plane of (a), the blue dotted line
shows the error caused by the tilt (θ in (d)) parameter, and the orange dotted line shows the
error caused by in-plane rotation (η) error. (c) Profile plane of (a), the orange line shows the
vertical projection shift in U-direction caused by misalignment (m) in X-axis. (d) In the top
view of (a), the orange line shows the lateral projection shift in V-direction caused by offset (n)
in Y-axis. Tilt error (θ) is depicted as well.

3.2 Structure Tensor based Two-step Online Geometry Calibration Algorithm

3.2.1 System Origin Estimation

Calibration measurement reveals the photon distribution in cone-beam geometry.[45] For any

pixel (i, j), its detected light intensity is

I =
dΩ

4π
I0e

−
∑

aiLi =
dS ×D

4π × (
√
D2 + i2 + j2)3

I0e
−a
√

D2+i2+j2 , (3.1)
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where dS is the unit area at pixel (i, j) whose origin is the X-ray source projected point, D

is SDD in pixels, I0 is raw intensity, and a is the attenuation coefficient of air. The equation

indicates that the light intensity distribution is circular around the origin, which is shown in

Fig. 3.3 . A raw estimation of the origin is acquired through a centroid calculation on the

binarized background image. To minimize the electronic noise in scanning which is assumed to

follow a Gaussian distribution, 40 background images were taken repeatedly and the averaged

result was treated as the noiseless background image.

Figure 3.3: Estimation of the X-ray source projected point. (a) Background Image Ave: an
average background image of 40 times image taken aiming to minimize the Poisson noise in
photon propagation. (b) Pixel Value Distribution: background image intensities are transformed
into color bar format to demonstrate symmetrical distribution, which appears as a light spot. (c)
Binarized Background Image: estimation of the light spot center through centroid calculation
by applying hard thresholding on the image (a).

3.2.2 First Step: Geometric Parameter Estimation

We model the object-rotating system as a pinhole camera model[46] described as

P ′ = MPw = K[R, T ]Pw, (3.2)
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where Pw are voxel coordinates in the world coordinate system, M is the projection matrix

(PM) consisting of K, R, T : intrinsic matrix, rotation matrix, and translation vector. Each

projected point P ′ can provide two forward projection equations. Thus, we need at least four

points in a single projection to accurately estimate the seven parameters in the PM, which form

a rectangle shown in Fig. 3.2(a). Equivalently, the four sides of a rectangle can provide the

same rich information.

In our work, the application of the MiSpinner has provided a scenario for the PM method.

The specimen holder, a cylindrical tube, is simultaneously projected onto the image when scan-

ning. Its shape is almost a rectangle. The geometric information describing both sides can be

obtained by the edge detection method described in the previous chapter. To figure out the

forward mapping relationship (Fig. 3.2(a)), we build a local coordinate system, (s, t, z′), to as-

sist the analysis, as Fig. 3.2(d) shows. The origin is the X-ray source point projected onto the

s-axis, noted as O′. The length of |OO′| is

|OO′| = |OS| × cosα, (3.3)

where

|OS| =
√
SOD2 + n2, (3.4)

and

α = π − θ − tan−1(
SOD

n
). (3.5)

We have points O and S (Fig. 3.2(d)) in new local coordinates equal to (m,− |OS| × cosα, 0)

and (0, 0, |OS| × sinα). Then for tangent points a, b, c, d (referring to Fig. 3.2(c)), we obtain

tangential equations  (t−m)2 + z′2 = r2

t−m
z′

× t
z′−|OS|×α

= −1
(3.6)

Solutions of variables z′ and t are

z′1 =
r2l1 +mr

√
m2 + l21 − r2

m2 + l21
, t1 =

m2 − r2 + z′1 × l1
m

, (3.7)
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and

z′2 =
r2l1 −mr

√
m2 + l21 − r2

m2 + l21
, t2 =

m2 − r2 + z′2 × l1
m

, (3.8)

where l1 is the length of |O′S| that |O′S| = |OS| × sinα and |OO′| is denoted as l2. Hence,

tangent points a, b, c, d in local coordinates are a(t2,−l2 − l, z′2), b(t1,−l2 − l, z′1), c(t2,−l2 +

l, z′2), and d(t1,−l2 + l, z′1) if m < 0 or a(t1,−l2 − l, z′1), b(t2,−l2 − l, z′2), c(t1,−l2 + l, z′1),

and d(t2,−l2 + l, z′2) if m > 0. l (l > 0) is a constant. In the following analysis, we use the

m < 0 case for convenience.

If we translate the local coordinates to point O, new tangent coordinates will be a(t2 −

m,−l, z′2), b(t1 −m,−l, z′1), c(t2 −m, l, z′2), and d(t1 −m, l, z′1). According to Eq. (3.2), we

decompose the PM method into two steps. First, rotation and translation are considered:


x

y

z

 =


cos η − sin η 0

sin η cos η 0

0 0 1




1 0 0

0 cos θ sin θ

0 − sin θ cos θ




t

s

z′

+


m

n

z̃

 , (3.9)

where z̃ = SDD − SOD. Substituting the coordinates of each point into the formula, we

calculate their new coordinates in (x, y, z). Second, points are projected onto the detector plane,

noted as A, B, C, D (Fig. 3.2(a)) by vector projection; that is, A⃗ = S⃗ +
−→
SA = S⃗ + k ×

−→
Sa.

Then the two edges AC and BD (Fig. 3.2(a)) have the extension relationships:

KAC =
−kX2 sin η +X2 cos η sin θ − n sin η sin θ +m sin θ

−kX2 cos η − X2 sin η sin θ − n cos η sin θ − n sin θ
, (3.10)

KBD =
kX1 sin η +X1 cos η sin θ − n sin η sin θ +m sin θ

kX1 cos η − X1 sin η sin θ − n cos η sin θ − n sin θ
, (3.11)

bAC =
X2 cos θ + n cos θ sin η +m cos θ cos η

−kX2 cos η −X2 sin η sin θ − n cos η sin θ − n sin θ
· (−SDD), (3.12)

and

bBD =
X1 cos θ + n cos θ sin η +m cos θ cos η

kX1 cos η −X1 sin η sin θ − n cos η sin θ − n sin θ
· (−SDD), (3.13)
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where

X1 =
−mr2 + rl1

√
m2 + l21 − r2

m2 + l21
, (3.14)

X2 =
−mr2 − rl1

√
m2 + l21 − r2

m2 + l21
, (3.15)

k =

√
m2 + l21 − r2

r
, (3.16)

and

l1 = |OS| sinα = n · sin θ + SOD · cos θ. (3.17)

KAC and KBD are slopes of two lines, and bAC and bBD are two intercepts. SDD, SOD, and

r are known constants where r is the cylindrical tube radius equal to 29 mm. This extension

frees us from finding specific geometric relation points (e.g., a−A pair in Fig. 3.2(a)) on each

projection.

3.2.3 Constrained Condition

Theoretically, the above equations can be solved analytically. However, due to the parallel

nature of the detected edges, under some special conditions, our proposed line conditions may

encounter a limitation. That is, in Eqs. (3.10)-(3.13), when θ and η are equal to zero, variable

n will be eliminated from the formula, leading to n being unsolvable. Therefore, we propose

adding an extra condition to assist in solving the problem.

Specifically, for long-object scanning, which refers to the projection of objects (includ-

ing the projection of conical tubes) covering the field of view (FOV) along the Y-direction

(Fig. 3.2(a)), the value of n that predicts the offset in the Y-direction will be equal to 0 when

we migrate the projection image centered at the system origin. And, as we described before,

the system origin can be estimated through the centroid coordinates of the background image.

Considering the complexity of finding an analytical solution, we seek to find its numerical
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solution by minimizing the least squares cost function as follows:

F = (KAC −RHS1)
2 + (KBD −RHS2)

2 + (bAC −RHS3)
2 + (bBD −RHS4)

2, (3.18)

where RHSi is the corresponding right-hand side part in Eqs. (3.10)-(3.13). A gradient-free

algorithm, the Nelder-Mead simplex method [47], is employed to find the optimized value of

the remaining m, θ, η parameters starting from zero initialization. Redundant equations with

an extra system origin coordinate condition ensure that variables converge to near-optimal so-

lutions.

For short-object scanning, to overcome the limitation in n estimation, an extra condition,

the image structure tensor, is added [48]. The structure tensor measures the geometry of image

structures in the neighborhood of each point, and its definition is shown below:

SKu(x) = K ∗ [▽uT ▽ u](x), (3.19)

where K stands for a Gaussian filter, ▽u stands for image gradient, and ∗ is convolution. In

the image domain, it is a 2 × 2 matrix for each pixel. Through the eigendecomposition of

the structure tensor, acquired eigenvectors define the orientation of maximum and minimum

variation of image u, and the square root of the corresponding eigenvalues measures these

variations.[48] Typically, when both eigenvalues are relatively small, it means a small variation

in all directions, indicating a homogeneous region. When one value is large and the other is

small, it means strong variation exists but only in a dominant direction, indicating an edge

area. When both values are large, it means strong variation in all directions, implying a corner

in the image. Therefore, in short-object scanning, we combine the structure tensor with the

edge detection technique to help detect the object vertices on projections (refer to Fig. 3.2(a)

A,B,C,D points). The average of the point coordinates in the Y-direction multiplied by a scaling

factor SOD/SDD yields a good estimate of the n parameter, and the remaining parameters

can be obtained numerically from Eq. (3.18) as well.
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3.2.4 Second Step: Parameter Fine-Tuning

For a non-convex optimization problem, the Nelder-Mead simplex algorithm sometimes will

fall into a local minimum trap. Hence, in our second step, parameter fine-tuning is performed.

Instead of using local image information, the second step utilizes the SOP property to analyze

the full intensity distribution [22].

SOP (u, v) =

∫
Rα′

[µ(r, α, z)]dα′, (3.20)

where Rα′
[.] represents the Radon transform of the attenuation coefficients µ at rotation angle

α′. The SOP property has been proven to be symmetric about the rotation axis in a perfect

imaging geometry in a full scan[49]. Thus, ideally, the difference between the upper and lower

half of the SOP along the rotation axis equals zero, as the equation shows:

Err(ideal) =
∑∑

[SOP (u, v)− SOP (2uc − u, v)]2 = 0, (3.21)

where (u, v) are coordinates in the detector plane and uc is the rotation axis position. A small

error in the geometry will lead to the system being asymmetric and thus increase the difference.

Accordingly, to verify the correctness of the estimated parameters, we first resample the

original projections to obtain corresponding virtual projections (V and V ′ in Fig. 3.4) and then

test the SOP Err difference on them. Note that in Fig. 3.4(b), the existence of the tilt angle θ

modifies the SOD and SDD into SOD′ and SDD′ in the virtual projection CBCT system.

SOD′ = SOD · cos θ − n · sin θ, (3.22)

and

SDD′ = SOD′ · SDD/SOD. (3.23)

Traditionally, parameters are considered independent of each other [26]. We fix the geom-

etry error in the order of (η, n, θ,m, φ). First of all, in-plane rotation angle η is corrected by

the corresponding reverse rotation. Then n and θ are fixed by linear interpolation (Fig. 3.4(b)):
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v =
SDD′ · (V0 + v′ cos θ)

SDD′ − v′ sin θ
, (3.24)

and

u =
SDD′ · u′

SDD′ − v′ sin θ
, (3.25)

where u′ and v′ are the coordinates in virtual projections and u and v are the coordinates in

the original projection. The origin of the CBCT virtual projection coordinates is point V0

(Fig. 3.4(b)) which is the projection of the object center. Finally, m and φ are fixed by

(u− U0) cosφ

u′ =
(u− U0) sinφ+

√
U2
0 + SDD′2√

U2
0 + SDD′2

=
v

v′
, (3.26)

where U0 is the offset of the object center in the detector plane (Fig. 3.4(a)).

In summary, the second-step iteration includes three steps: prediction of spatial param-

eters, creation of the corresponding virtual projection, and calculation and assessment of the

SOP Err. These steps are executed repeatedly until the stopping criterion is satisfied.

To avoid the local minimum trap, people use heuristic algorithms such as simulated an-

nealing (SA) [50]. In this work, to accelerate the convergence process, we apply a modified

Evolutionary Annealing Simplex (EAS) algorithm [51], which combines the advantage of the

SA algorithm that gets rid of the local minimum and the advantage of the Nelder-Mead simplex

method that converges faster.
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Figure 3.4: Virtual projections re-sampled from the original projections: the original detector
plane is in black where projected points from the object a,b,c,d are noted as A,B,C,D. The
virtual detector plane is green where projected points are A’,B’,C’,D’. (a) virtual detector plane
in X-Z plane to fix the geometric error φ and m, where artificial roll angle φ is created by m.
(b) virtual detector plane in Y-Z plane is used to fix the geometric error θ and n; in this sketch,
n = 0.

3.3 Experimental Results

3.3.1 Digital Phantom Simulation

A digital simulation was conducted to support our statement that direct PM calibration is not

able to accurately estimate all geometric parameters in our research. We created a digital cylin-

der phantom to approximate the cylindrical tube in scanning and a cube inside to simulate the

specimen. The size of the cylinder was 256×256×400 in height×width×length in pixels, and

the size of the cube was 128×128×128 outside and 64×64×64 inside. SDD was set at 2000

pixels, and SOD was 1500 pixels in the simulation. Digital phantom simulations were per-

formed in both noisy and noiseless cases. For the noisy case, we added both Poisson noise and

Gaussian noise as follows:

I = Poisson(I0e
−qi) +Gauss(0, σ2

e), (3.27)
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where I0 represents the intensity of the incident X-ray source, qi is the line integral of the phan-

tom volumes corresponding to pixel i on projection image, and σ2
e is the background electronic

noise variance. In this simulation, we set I0 to 10,000 and σ2
e to 10.

Six cases were simulated and the prediction results are presented in Table 3.2. For each

case, we first obtained the forward projection with geometric errors according to the preset pa-

rameters and then used the calibration method to detect these parameters to verify the accuracy

of the method. Specifically, Case 1 is a standard case in which each parameter equals zero,

Cases 2–5 have only one parameter modified in the simulation, and Case 6 is the combination

of all parameters. From Table 3.2, we can observe that the direct PM method shows obvious

defects in the parameter n prediction in most cases, and the maximum error is 251.74 pixels.

On the contrary, our proposed ST-TSO method shows better performance. In the noiseless sim-

ulation, the maximum errors for each parameter θ, η, m and n are 1.82◦, 0.055◦, 0.62 pixel

and 6.24 pixels, respectively. In the noisy simulation the maximum errors have increased to

2.22◦, 0.055◦, 2.95 pixels, and 6.37 pixels, respectively, but are still within the margin of error

proposed by Xi at al. [23]. To better view the effect of geometric error in the reconstructed

volume, Fig. 3.5 shows the same phantom slice before and after calibration in each case. The

results show that the proposed ST-TSO method can successfully fix the geometric error in both

noisy and noiseless cases, verifying the robustness of the proposed method.

3.3.2 Fundamental Study

The Hounsfield Unit (HU) scale is a linear transformation of the original linear attenuation

coefficient measurement [52]. Specifically, the radio density of distilled water at standard pres-

sure and temperature (STP) is defined as 0 HU, while the radio density of air at STP is defined

as -1000 HU. In a voxel with average linear attenuation coefficient µ , the corresponding HU

value is therefore given by:

HU = 1000× µ− µwater

µwater − µair

, (3.28)

where µwater and µair are respectively the linear attenuation coefficients of water and air.
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Table 3.2: Calculated Results of Varying Misalignment

θ (◦) η (◦) m (pixel) n (pixel)
Case 1 0 0 0 0

PM method 0 0 0.5567 0
ST-TSO method 0.0018 0.0013 0.5578 0.0004

@ noisy case 0.4284 -0.0052 0.6100 -0.4927
Case 2 5 0 0 0

PM method 6.9240 -0.0023 0.9661 -87.4890
ST-TSO method 6.8158 -0.0001 0.6170 -0.1762

@ noisy case 6.6581 -0.0022 0.6155 -1.2840
Case 3 0 5 0 0

PM method 0.2378 4.9146 22.3509 -251.7403
ST-TSO method 0.9769 4.9907 0.4550 1.4841

@ noisy case 0.5886 5.0011 0.5659 0.1915
Case 4 0 0 -100 0

PM method -0.0241 -0.0037 -98.7257 26.3856
ST-TSO method 0.2168 0.0113 -99.3883 -0.9203

@ noisy case 0.5424 0.0298 -99.3832 -0.3726
Case 5 0 0 0 -100

PM method 0 0 0.5567 0
ST-TSO method -0.3349 -0.0004 0.6171 -99.9070

@ noisy case 0.1874 0.0052 0.5973 -93.7637
Case 6 5 5 -100 -100

PM method 5.2766 4.8963 -84.3994 -291.7787
ST-TSO method 6.319994 5.049118 -99.9043 -93.6365

@ noisy case 5.261392 4.958395 -99.6007 -98.0518

A change of one HU represents a change of 0.1% of the attenuation coefficient of water

since the attenuation coefficient of air is nearly zero. Moreover, the linear attenuation coeffi-

cient is related to the incident X-ray source energy. Thus in this thesis, a fundamental study

on determination of the specific water and air linear attenuation coefficients, which are close to

our imaging environment, is performed.

An air test is shown in Fig. 3.6 where we measured the conical tube projection data with-

out any sample included. Fig. 3.6(c) shows the reconstruction where each pixel represents the

linear attenuation coefficient after post-log calculation following Beer’s Law. Uneven distribu-

tion around the tube wall indicates the existence of the tilt angle error in the system scanning

geometry. Fig. 3.6(d) shows the intensity distribution of the reconstructed image, which ap-

proximates a Gaussian distribution, and the mean value equals 0.00067/mm. Note that we
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Raw Recon Fixed Recon Fixed Recon (Noisy)

(a-i) (a-ii) (a-iii)

(b-ii) (b-iii)(b-i)

(c-i) (c-ii)

(e-i)

(f-i) (f-ii) (f-iii)

(e-ii) (e-iii)

(c-iii)

(d-ii)(d-i) (d-iii)

Figure 3.5: Same reconstructed slices using different sets of geometrical parameters (θ, η,
m and n). Columns (i), (ii) and (iii) are the results for Raw Recon showing reconstruction
without calibration, Fixed Recon showing reconstruction after the proposed ST-TSO method
calibration on noiseless projection data and Fixed Recon (Noisy) showing reconstruction after
the calibration on noisy data, respectively. Rows (a)-(f) represent different geometry parameter
cases: (a) standard case that all parameters equal zero, (b) η = 5, (c) θ = 5, (d) m = −100, (e)
n = −100 and (f) θ = 5, η = 5,m = −100, n = −100.

multiply the reconstruction with a mask image, whose value equals 1 in the ROI and 0 outside,

for air attenuation coefficients estimation, thus leading to the large spike in Fig. 3.6(d). Simi-

larly, a water test is presented in Fig. 3.7 and the mean value of the water attenuation coefficient

is 0.005/mm.
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Figure 3.6: Air linear attenuation coefficient test. (a) is empty conical tube projection, (b) is
corresponding after-log projection data, (c) is FDK reconstruction result, and (d) is correspond-
ing intensity distribution, the large spike arises from the background region outside the ROI.

Figure 3.7: Test on water linear attenuation coefficient. Similar to air test, (a) is raw projection
data, (b) is corresponding after-log projection with geometry calibration, (c) is FDK result, and
(d) is its histogram
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3.3.3 CT Phantom Test and Analysis

Finally, a qualitative comparison of the CT reconstruction in different processing cases is

demonstrated in Fig. 3.8. CT slices (Figs. 3.8(a), (e), and (i)) in the first column show that

the reconstruction without calibration completely ruins the phantom structure in all regions.

CT slices (Figs. 3.8(b), (f), and (j)) in the second column reveal that the global variance-based

online calibration algorithm (noted as the GV method) proposed by Dong et al. [33] can only

recover the structures owing to thickness (Figs. 3.8(b) and (f)) but does not work in the thin

case (Fig. 3.8(j)). This is mainly because of the assumption made by Dong et al. that approxi-

mated the 3D volume into multi-2D slices. The filtered back propagation (FBP) method cannot

reconstruct a thin slice due to the lost image information. Furthermore, structure deformation

(Fig. 3.8(f) density phantom) is also in evidence. The third column presents the results after

FDK reconstruction on projections where only two dominant parameters, vertical offset m and

in-plane rotation angle η, are fixed by our ST-TSO method. The fourth column displays the re-

sults fully calibrated by the proposed method. We can visually observe that the last two column

results outperformed the first two column results.

To assess the performance numerically, a further comparison on bar pattern slices was

conducted, shown in Fig. 3.9. We cropped the silicon regions in Figs. 3.9(b), (c), and (d), and

two numerical analysis methods—full width at half maximum (FWHM) method and module

transfer function (MTF)—were applied. FWHM measures the separation between two indi-

vidual point sources, and MTF measures the relative contrast in the image. MTF is defined as

the absolute value of the optical transfer function, which is calculated as the discrete Fourier

transform of the line spread function. Its values indicate how much of the object’s contrast is

captured in the image as a function of spatial frequency. In theory, when drawing a line (the

red one) crossing through the region, its cross-sectional curve depicted in Figs. 3.9(a), (d), and

(g) would drop rapidly at the edge side like a step function. However, the line profiles varied

gradually due to the line spread function (LSF) effect. Given the spatial resolution at posi-

tion B, 0.0073 cm/pixel, the FWHM of each plot was 0.1703 mm, 0.1824 mm and 0.1745mm

(Figs. 3.9(b), (e), and (h)) respectively, which was consistent with our observation on CT bar
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phantoms that 150 µm resolution could be recognized. The MTF analysis provided similar re-

sults (Figs. 3.9(c), (f) and (i)). All three MTF curves have a 10% drop-off frequency of around

0.13 mm. Moreover, compared with Fig. 3.9(f) and Fig. 3.9(i), we can observe that Fig. 3.9(i)

provides a smoother standard MTF curve (the blue one), illustrating that the proposed method

of fixing all geometric parameters can provide better contrast details than fixing only two pa-

rameters.

GV Method Our Method (Part) Our Method (Full)Raw Recon

(a) (b) (c) (d)

(e)

(i)

(f)

(j)

(g)

(k)

(h)

(l)

Figure 3.8: Qualitative comparison of reconstruction results on different projection calibration
cases. The first column (a, e, and i) is FDK reconstruction on scanned projections without any
calibration, noted as Raw Recon. The second column (b, f, and j) follows the method proposed
by Dong et al.[33] modifying the geometry and then performs fan-FBP reconstruction, noted as
GV Method. The third column (c, g, and k) refers to the FDK on projections calibrated by the
proposed ST-TSO method but with only two dominant parameters fixed,[23] vertical offset and
in-plane rotation angle, noted as Our Method (Part). The last column (d, h, and l) is the FDK on
projections where all parameters are fully corrected, noted as Our Method (Full). Specifically,
(a) - (d) are CT slices of QRM phantom, (e) - (h) are CT slices of GmbH phantom and (i) - (l)
are texture slices.
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Figure 3.9: Quantitative comparison of silicon chip slice in Fig. 3.8. The first row, a zoom-
in of Fig. 3.8(b), noted as GV Method. The second row, a zoom-in of Fig. 3.8(c), noted as
Our Method (Part). The third row, a zoom-in of Fig. 3.8(d), noted as Our Method (Full).
Two quantitative assessment methods, FWHM and MTF, were applied. (a), (d) and (g) are line
profiles of the red line across the three slices, where the horizontal axis indicates the pixel index
and the vertical axis indicates intensity. (b), (e) and (h) are corresponding gradient curves and
the red cross-line region are their FWHM values. (c), (f) and (i) are normalized MTFs applied
on the green rectangle region in the slices, where the horizontal axis is cycles/mm. In the
legend, MTF is the standard MTF function, MTF G is MTF on Gaussian approximation of line
spread function (LSF), MTF s indicates the smoothed MTF function, and MTF sG indicates
the MTF on smoothed Gaussian approximation of LSF.

3.3.4 Ex Vivo Mice Volume Rendering

To evaluate our strategy in a practical situation, the CSTO method is applied on a mouse scan-

ning dataset for a test. Fig. 3.10 shows an example of the 3D volume rendered from a euthanized

mouse. The acquisition and reconstruction approach is the same as that of the CT phantom. It

provides a unique opportunity to examine the bone structure of a biological sample.
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A complete view of the rendered 3D volume is shown in Fig. 3.10(A) using 3D Slicer

[53], and selected 2D slices are presented in Fig. 3.10(B). Much like our phantom data, slices

reconstructed after the ST-TSO method calibration are superior and possess better spatial res-

olution in all regions compared with the reference GV method. Despite these improvements,

it is difficult to judge which method is better without a reference image, since neither shows

obvious structural errors in the 2D case. However, in 3D volume rendering, the GV-method

result shows some defects in the overall structure; that is, rough bone structures and burrs in

Fig. 3.10(A-i), indicating that the reference method has some flaws in accuracy. 3D volume

rendering tests the performance of the calibration algorithm in the axial direction. A smooth

and continuous 3D volume profile, Fig. 3.10(A-ii), confirms the accuracy of the proposed cal-

ibration algorithm in practice. In addition, the 3D volume also provides another perspective

for us to observe some experimental phenomena. For example, in Fig. 3.10(C), we can clearly

observe the spinal injury of the mouse through the volume data. The process was repeated for

three additional animals to demonstrate the reliability of our methodology.
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Figure 3.10: Comparison of pseudo-CT images generated from same mouse data after two
calibration strategies, the GV method with fan FBP reconstruction and the ST-TSO method
with FDK reconstruction. (A) 3D volume rendered in 3D Slicer given reconstructed data, (i)
is the result from the GV method, and (ii) is from the ST-STO method. (B) A presentation of
selected slices in (A) corresponding to the skull, ribs, and intestine regions. (C) An example of
applying 3D volume rendering in spinal injury detection

3.3.5 Two-Step Processing Necessity Analysis

Although experiments verified the effectiveness of the ST-TSO method, the complete frame-

work reached a complexity level that raised the question of whether each step actually makes a

difference. For this reason, we carried out a study where we analyzed the impact of each step

in isolation.
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In this section, both simulation and experiment were performed to verify the necessity of

two-step processing. As we stated before, cost function (Eq. (3.18)) in first-step processing may

drop to a local minimum. In Fig. 3.11, we simulated three cases and each plot represents the

cost function value distribution in relation to angle parameters. It is hard to depict Eq. (3.18),

since it is a function of four variables. To better visualize the cost function, in Fig. 3.11, we set

the two variables m and n constant and the angle variables vary from -10 degree to 10. We can

observe that in Fig. 3.11(a) and (b), plots show a convex property along the η side and appear

smooth at the bottom region along the θ direction. In Fig. 3.11(c), there is a ridge along the θ

direction at the bottom where a local minimum exists on both sides. Therefore, it is reasonable

to add one more step in our proposed method to strengthen its accuracy and robustness.

In addition, a practical experimental result also supports our statement. Fig. 3.12 presents a

comparison of two processing approaches, the first-step-only ST-TSO method and the complete

two-step ST-TSO method. For the CT phantom case, there is no obvious difference between

two sagittal views. However, for mouse data, we could observe that the reconstructed volume

with the first method (Fig. 3.12(b)) appears blurry, while the second one (Fig. 3.12(d)) main-

tains greater resolution. Moreover, we can still observe that a mismatch structure error exists in

Fig. 3.12(b), indicating that the first-step-only ST-TSO method cannot guarantee the accuracy.

In Fig. 3.12(d), the two-step ST-TSO method successfully fixes the problem.

Figure 3.11: Digital phantom simulation of the cost function value distribution in relation to
rotation angles. For each case, ground truth value of θ, η, m, and n are pre-determined, which
means projection image information are fixed as well. Distribution plots describe the Eq. (3.18)
values when θ, η vary from -10 to 10. (a) is case θ = -3, η = -3, m = -100, n = -100, (b) is case
θ = -3, η = -3, m = 0, n = -100 and (c) is case θ = -3, η = -3, m = -100, n = 0.
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Figure 3.12: Demonstration of two-step processing necessity in geometry correction. Images
(a) and (b) are sagittal views of reconstructed 3D volume with a first-step only ST-TSO calibra-
tion algorithm, and images (c) and (d) are volume data reconstructed after a complete two-step
ST-TSO method calibration

.

3.3.6 EAS algorithm analysis

Our EAS algorithm is an extension from the classic heuristic SA algorithm that aims to acceler-

ate the second-step iteration. For each loop, the classic SA algorithm randomly selected a few

candidate points within the search range for global minimum value updating. Instead, in the

EAS algorithm, we replaced the random selection with the controlled selection, Nelder-Mead

algorithm based search strategy, to accelerate the convergence and avoid resource waste. A

comparison of the EAS algorithm and the conventional SA algorithm is shown in Table 3.3.

Both of them initialize with the same parameter, and results have shown that the convergence

of the EAS algorithm to similar SOP Err is four times faster than the SA method. This result

indicates that our modified EAS algorithm can successfully accelerate the algorithm.

59



Table 3.3: Comparison of the EAS algorithm and the SA algorithm

SA algorithm EAS algorithm
tilt(θ) slant(η) m n tilt(θ) slant(η) m n

start point -2.13668 -0.08348 -77.3422 0 -2.13668 -0.08348 -77.3422 0
end point -0.92153 0.125145 -76.3399 -0.7103 -1.2408 0.062757 -76.3598 1.044854
SOP Err 14.0791 14.0341
iterations 110(20 tests for each loop) 200

time 15354s 3689s

3.4 Conclusion and Discussion

In this chapter, we have proposed a novel structure-tensor-based two-step (ST-TSO) online

calibration method for our CBCT imaging prototype design. Four parameters can be estimated

simultaneously: the offset perpendicular to the rotation axis (vertical offset), the offset along

the rotation axis (lateral offset), the tilt angle, and the skew angle. Our first-step processing

extends the traditional projection matrix (PM) method to line conditions. Combined with image

structure tensor information, it is able to make an initial prediction of geometric parameters

quickly. Our second-step processing fine-tunes the parameters iteratively by fully utilizing

projection image intensities.

In the past, an intuitively appealing approach to calibrating the geometric parameters on-

line was to utilize the reconstructed images. Cost functions on image entropy, sharpness, and

global variance have been well designed in the past decades. Unfortunately, a general iter-

ative calibration process includes continuous reprojection and reconstruction, which is time-

consuming in 3D volume rendering. Instead, our fine-tuning method that involves iterations

only computes the resampling and the cost function in the projection image domain, which can

greatly shorten the optimization time and reduce the memory requirements in the iteration.

Our proposed ST-TSO method based on the actual situation consists of two-step process-

ing and an additional condition, which creates some complexity. To justify this added com-

plexity, subsequent digital phantom simulation was performed to verify the necessity of each

step in the method—for instance, the addition of a structure tensor in assisting parameter pre-

diction. Extended line conditions have provided sufficient information in predicting unknowns.

However, the edge-parallel nature of detection leads to the direct PM method showing some
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drawbacks in practice. As a solution, the addition of a structure tensor has shown tremen-

dous performance improvement in simulation. Moreover, a test on actual data verifies that the

two-step processing framework can ensure that the reconstruction results are closer to the real

situation, which improves the robustness of the algorithm. Furthermore, our simplified version

of ST-TSO method in estimating one or two variables is attached in Appendix B

In small-animal imaging, the acquisition of endpoint anatomical data has the potential to

provide valuable insights that could allow for increased scientific rigor in small-animal imag-

ing studies and thereby reduce overall animal usage. The add-on device, the MiSpinner, was

initially designed for bioluminescence imaging. It can be placed within popular small-animal

imaging systems to aid in 360◦ image collection. We showed here that minor alterations in the

way MiSpinner data are processed can be used to provide CT reconstructions. By exploiting

the characteristics of the MiSpinner insert, our analysis has revealed that distortion of bound-

aries can reflect geometric errors in the actual scanning. This finding helps us avoid the need

for dedicated phantoms in system calibration and applies the PM method here.

With the help of edge detection techniques, the performance in the CT phantom test has

verified that our method outperforms the reference method in correcting geometry errors. The

reconstructed image structure has no obvious deformation, and the contrast is well maintained.

To show that this is a reproducible result, we imaged three additional animal carcasses through

the acquisition of 96 intervals and applied the same method. Our approach yields similar high-

quality results. A limitation is the threshold variability between samples and our lack of elec-

tron density reference standards for any given scan. Having these references will allow us to

use this approach to interrogate, for instance, changes in bone density seen between animal

cohorts[54].
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Chapter 4

Structure Tensor Total Directional Variation Based Projection Image Denoising and Synthesis

Projections from our retrofit system generally suffer from low-dose noise effects and sparse

sampling in the angular domain, leading to streak artifacts in the CT reconstruction. This

chapter proposes a novel method for noise removal and projection synthesis. It is based on an

adversarial based semi-supervised learning network, named Proj-SynNet, wherein the detected

low-dose noisy projections are used for network training.

4.1 Introduction

Two main types of artifacts arise in the retrofit imaging system, low-dose radiation noise [55]

and sparse sampling artifacts [56]. Low-dose radiation—1-3 mGy average dosage in our sys-

tem compared with typical 100 mGy dosage in pre-clinical in vivo CT imaging [57]—inevitably

causes photon fluctuation from the mean during propagation [58]. Furthermore, use of a scin-

tillator that converts X-rays to visible light leads to photon scattering in pre-clinical imaging,

which degrades the projection image resolution [59] and increases the electronic background

noise [58, 60]. Likewise, sparse sampling, e.g., taking projections every 3.75 degrees in a full

scan, introduces streak artifacts into the reconstructed image [56].

To improve the reconstructed image quality, numerous advanced methods have been pro-

posed [58, 61–71]. Typical solutions are model-based algorithms that simulate the photon prop-

agation according to statistical properties, e.g., the penalized weighted least-square (PWLS)

model [61–63, 66] based on a Gaussian noise assumption and the Rudin-Osher-Fatemi (ROF)
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model [69, 72, 73] based on a Poisson noise distribution or comprehensive model [58] that ap-

proximates the photon fluctuation as a Poisson distribution and electronic background noise as

Gaussian distribution. Generally, there are three ways to model the problem:

1. image-based iterative reconstruction, which yields the desired CT image from the post-

log sinogram data by iterative optimization. This approach constructs the forward model

according to the scanning geometry and usually incorporates a CT image prior distribu-

tion term to improve algorithm performance, e.g., using the Markov random field (MRF)

hypothesis which is characterized by the Gibbs distribution [66, 74] or total variation

(TV) or its variants based on compressed sensing (CS) theory [64, 65, 68].

2. projection-based pre-processing method, which aims to recover the pre-log projection

data from a noisy measurement and then reconstructs the image [58, 70, 71]. This

approach constructs the forward model according to the Beer-Lambert law and com-

bines with the projection image intrinsic characteristics such as edge-preserving Huber

penalty [75] or sinogram piece-wise linear assumption [58] as a penalty term.

3. image-based post-processing method, which directly generates the desired CT image

from its noisy reconstruction [69, 73, 74]. This approach originates from an image denos-

ing perspective that regards the noisy image as being obtained by corrupting a noiseless

one. Moreover, some post-processing methods directly apply denoising algorithms, e.g.,

BM3D [76] and non-local means [77].

Despite the promise of these methods, questions still exist in practical applications:

1. For the model-based iterative method, the forward model design is normally assumed

to be a standard geometry while in practical scanning, acquired projection data often

possess geometric errors.

2. For projection-based pre-processing method, the model alone cannot solve the sparse-

sampling problem.

3. For image-based post-processing method, it is hard to handle complex textures due to

insufficient prior knowledge about the reconstructed image.
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Other than those model-driven methods, emerging data-driven methods, such as deep

learning (DL) neural networks, have also gained increasing attention in CT image recon-

struction [78–90]. Application of DL has covered every step in CT imaging, including pre-

processing [88–90], reconstruction [85–87] and post-processing [82–84]. These proposed learn-

ing algorithms are typically supervised, requiring pairs of low-dose or sparse reconstructed CT

images and the corresponding high-dose ground truth images for network training. The key to

the model success lies in the use of sufficient training data. In clinical research, the acquisi-

tion of ground truth data may be accessed through professional equipment and a large number

of scans. However, in pre-clinial research, ground truth image insufficiency is an inescapable

problem, especially in retrofit studies of existing imaging systems. Instead, a large number of

unlabeled low-dose noisy projections are easier to obtain.

Therefore, it is critical to utilize the unlabeled low-dose projections for DL training, which

applies to unsupervised or semi-supervised learning. The unsupervised DL methods fully uti-

lize the unlabeled data for data-driven decision-making, while the semi-supervised methods

approximate the deep transfer learning using a few supervised image pairs and massive unla-

beled data for network training. Recently, Liang et al. proposed a model-based unsupervised

DL network that consists of a projection block, a domain transform block, and an image block

for low-dose CT denoising [91]. Zeng et al. proposed a noise-generating-mechanism(NGM)-

driven unsupervised DL network for sinogram data restoration [92]. Meng et al. presented

a semi-supervised learned sinogram restoration network (SLSR-Net) for low-dose CT recon-

struction [93]. Although many DL regimes have been designed and verified impressive perfor-

mance in image quality enhancement, few of them focus on unsupervised or semi-supervised

DL networks in solving sparse sampling problem.

In the past, sparse sampling was resolved by sinogram interpolation in the 2D case. Es-

maeil et al. interpolated the missing data along the angle direction with cubic-spline interpo-

lation [94]. Zeng et al. proposed a displacement function interpolation method which aims to

simulate intensity variation along the angle direction [95]. Li et al. decomposed the sinogram

value into a series of sinusoid-like curves and interpolated the data by estimating the intensity
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change through tensor matrix eigenvector decomposition [96]. Lately, in projection domain, al-

gorithms that aim to maintain a data-spatial relationship, i.e., inter-slice consistency, have also

been proposed through synthesizing intermediate projections to increase view angles [97, 98].

In this research, inspired by the development of video frame synthesis in DL [99], we

present a structure tensor (ST) based systematic projection processing framework that aims to

solve the low-dose sparse sampling problem, which consists of two processing blocks, a model-

based denoising block and a semi-supervised image synthesis block. Specifically, in the model-

based denoising block, we consider the noise generation statistical model under maximum a

posterior probability (MAP) framework with a structure tensor based total directional varia-

tion (ST-TDV) term. The regularization term, which approximates the directional TV [100,

101], is able to reduce the stair artifact caused by the standard TV kernels [48, 102]. In the

semi-supervised image synthesis block, we synthesize extra high-quality projections with an

adversarial based convolutional neural network (CNN). Different from the unsupervised/self-

supervised DL that treats the denoised image as ground truth data, in this work, we believe

access to a small number of high-dose images, which refers to the pre-clinical CT scans from

clinical veterinary scanner, can achieve better performance in network training. Papyan et al.

has shown that the forward pass of the CNN is tightly connected to the multi-layer convolu-

tional sparse coding (ML-CSC), which guarantees uniqueness and sparsity of the high latent

feature maps [103]. Thus U-net structure CNN is applied to capture the image geometry feature

and then transferred into a sampler generator for intermediate projection image synthesis. Fi-

nally, the synthesized images are added to the original projection image sequence for CT image

reconstruction.

To the best of our knowledge, this is the first attempt to use semi-supervised DL to solve

the low-dose sparse sampling problem. Compared with traditional directional interpolation

algorithms, a well-trained network can significantly reduce the computation time for image

synthesis. Numerical simulation has shown that the proposed network can yield competitive

results, and tests on real data have shown its ability to improve the image quality.
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4.2 Iterative Reconstruction Technique

Apart from the FBP/FDK algorithm, iterative reconstruction (IR) is an alternative solution to

obtain a CT image. Generally, the forward Radon transform can be described as

g = Hf +N (4.1)

where f stands for the integral of attenuation coefficients along the X-ray path inferred from the

observed projection data, H is a weighted matrix representing the forward Radon transform, f

is a vector of attenuation coefficients representing 2D images re-arranged into a 1D vector and

N stands for the noise occurred during measurement. Moreover, in this research, we ignore the

variability of the image object f and consider it to be deterministic.

Incomplete projections, or sparse sampling, will lead to the matrix H being ill-conditioned

due to the matrix H having more columns than rows. For instance, given the size of H is m×n,

m may be far smaller than n. Moreover, note that the additive noise N does not limit our

analysis, since it refers to the deviation of an instance of projection data from its expectation.

Thus, to solve this problem, we use the iteration technique to transform the equations into an

optimization problem and find the solution.

Algebraic Reconstruction Technique (ART) is one of the early iteration methods applied

in CT to restore the image. Its basic idea is to consider each element of projection data gi as a

projection of an n-variable into an m-length hyperplane. Then project the initial guess of the

variables onto different projections, and update the difference by iteration until it meets certain

condition. The algorithm is based on the Kaczmarz method [104] for solving the linear system

g = Hf . Its accuracy is highly affected by the number of projections.

Compared with FBP that relies on idealized mathematical models, ART-based algorithms

model the acquisition geometry numerically, which better represents the actual situation. Later
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developed SART and SIRT algorithms accelerate the iteration by simultaneous processing us-

ing a projection-based iteration [105]. Furthermore, the geometry model may suffer from non-

idealities, e.g., system blur, geometry error, etc. Iterative methods incorporating these models

are often called model-based iterative reconstruction (MBIR).

4.2.1 Model-Based Image Reconstruction

Generally, MBIR originates from a MAP approach based on Bayes Theorem [106], i.e.,

f̃ = argmax
f

P (f |g) = argmax
f

P (g|f)P (f), (4.2)

where P (f |g) is the posterior, P (g|f) is the likelihood function, and P (f) is the image prior.

The forward model and noise model are described by the likelihood function in statistics, called

the data fidelity term. And the image prior is denoted as the regularization term. For simplicity,

in this research, we assume X-rays are monochromatic. To ensure that the symbols are con-

sistent in context, we change the projection data f to Y and measured data g to P as in the

previous section.

4.2.2 Data Fidelity Term

Previous analysis of repeated measurements from the sample phantom has revealed that low-

dose projection data follows approximately a Gaussian distribution [61, 66], whose variance is

associated with the data sample mean, expressed as

σ2
i =

1

I0
eq̄i [1 +

1

I0
eq̄i(σ2

e − 1.25)], (4.3)

where q̄i is the mean, σ2
i is the variance of the repeated measurements at detector bin i, and σ2

e is

the variance of the background noise. Further analysis also indicates that there is no statistical

correlation between the noise and the projection views [61]. These observation with the MAP

67



framework lead to the well known weighted least squares (WLS) model [66], which is

P (P |Y ) =
N∏
i=1

p(Pi, Yi) =
∏
i

1√
2πσ2

i

e
− (Pi−Yi)

2

2σ2
i , (4.4)

and its negative logarithm is

ϕ(Y ) =
1

2
(P − Y )TΣ−1(P − Y ) +

1

2
ln(2πΣ), (4.5)

or

ϕ(Y ) =
1

2
(P −Hx)TΣ−1(P −Hx) +

1

2
ln(2πΣ), (4.6)

where ϕ(Y ) denotes the cost function and the covariance matrix Σ is diagonal with the i-th

entry σ2
i .

Although WLS possesses advantage in computation, it fails to accurately use the Poisson

distribution characteristic in phantom transmission. In this research, our noise generation model

incorporates both Poisson noise and Gaussian noise as [61, 67]

I = Poisson(I0e
−Yi) +Gauss(0, σ2), (4.7)

where I0 represents incident X-ray source intensity, Yi is the line integral of phantom volumes

corresponding to pixel i on the projection image, and σ2 is the background electronic noise

variance. Specifically, a full expression of the noise generation statistical model is

for each bin i,

 PoissonQi ∼ P (Qi|Yi) =
Y

Qi
i

Qi!
e−Yi

Gaussian εi ∼ N(0, σ2) = 1√
2πσ2

e−
ε2i
2σ2

, (4.8)

where Q is intermediate-state projection data corrupted by Poisson noise. Then the measured

data P is

P (P |Y ) = P (P |Q)P (Q|Y ) =
N∏

n=1

(I0e
−Yi)Qi

Qi!
e−I0e−Yi × 1

(
√
2πσ2)N

e−
∥P−Q∥22

2σ2 (4.9)
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4.2.3 Regularization/Penalty Term

In image processing, to further improving the IR accuracy, a regularization term, e.g., Tikhonov

operator [107], is introduced to refine the image texture. A standard form in IR with a regular-

ization term is expressed as

fλ = argmin
f

{∥Hf − g∥22 + λ ∥Lf∥22} (4.10)

where λ is a weighting scalar and Lf is the regularization term, and f and g are defined as in

Eq. (4.1).

Similarly, in MBIR, we incorporate the image prior as a regularization term. For instance,

in the PWLS model, an MRF is used to model the sinogram prior distribution, i.e.,

P (Y ) =
1

Z
e−

α
2
Y TMY , (4.11)

where Z is a constant, α is a weighting parameter, and M is an N×N square matrix possessing

a highpass property. Then combining Eq. (4.5) and Eq. (4.11), we got corresponding PWLS

model; that is,

ϕ(Y ) =
1

2
(P − Y )TΣ−1(P − Y ) +

1

2
ln(2πΣ) +

1

2
Y TMY, (4.12)

and

Ỹ = argmin
Y ⩾0

ϕ(Y ), (4.13)

where Ỹ is the desired sinogram data.

The image prior is crucial to successful recovery of the CT sinogram data. By utilizing

prior information, MBIR methods have shown to be superior in noise-induced artifact suppres-

sion as compared to the traditional FBP method. However, minimization of the MRF penalty

term, which approximates a quadratic l2-norm, will lead to too much spatial regularization

(smoothing) compared to the original signal. Besides, in the sinogram domain, quadratic de-

sign in Eq. (4.12) ignores the intrinsic image properties, i.e., the different dimensions represent
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different physical or geometric meanings, which leads to certain kinds of blur in reconstruc-

tions [61, 70]. Hence, a non-quadratic penalty term is applied to preserve the high-frequency

components, e.g, total variation (TV) kernel.

CS theory has proved that accurate reconstruction of sparse signals can be realized under

certain constraint conditions, signal sparsity and restricted isometry property (RIP), or incoher-

ent sampling [108, 109]. In CT image reconstruction, considering that attenuation occurring in

soft tissue is similar to a piecewise constant, its gradient image meets the sparsity condition and

its limited projections at different angles meet the incoherent sampling condition in CS theory.

Therefore, TV minimization can be used as a penalty term in CT iterative reconstruction. A

common cost function can be described as [110]

f̃α = argmin{∥Hf − g∥22 + α ∥f∥TV }, (4.14)

where

∥fs,t∥TV =
∑
s,t

√
(fs,t − fs−1,t)2 + (fs,t − fs,t−1)2, (4.15)

f , g, H definition are aligned with Eq. (4.1). TV penalty uses the l1-norm to enforce the

sparsity constraint, where the formulation is also known as the basis pursuit denoising (BPD)

problem or the least absolute shrinkage and selection operator (LASSO) problem in other fields.

By assuming those projections (hyperplanes) are convex sets, the projection onto convex sets

(POCS) method, which aims to find the solution through moving f toward the intersection of

all hyperplanes, is applied [68, 110, 111]. Another simpler realization is to apply the steepest

decent algorithm with Huber approximation on TV term, which is

fn+1 = fn + λ[HT (g −Hf)− α(▽ ∥f∥TV )], (4.16)

where

∥f∥TV ≈ φτ (x) =

|x| − T
2

|x| > T

1
2τ
x2 |x| ⩽ T

. (4.17)

The approximation guarantees the existence of a gradient within the domain.
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Although TV has shown good performance in edge preservation, in soft tissue regions

the TV term tends to introduce extra artifacts; that is, the region is segmented due to the exis-

tence of small steps around the low-contrast part, called staircase artifacts [112, 113]. To solve

this problem, the subgradient must be defined properly using a higher-degree total variation

(HDTV), such as using the total generalized variation (TGV) kernel [67, 114]. Some algo-

rithms use spatially-dependent edge and texture orientations in the form of total directional

variation (TDV) to preserve the edge information [100, 101, 115].

Total Generalized Variation (TGV): In order to eliminate the staircase artifacts from TV-

based algorithms, Bredies et al. proposed the TGV term, whose definition is [114]

TGV k
α (u) = sup{

∫
Ω

udivkvdx|v ∈ Ck
c (Ω, Sym

k(Rd)),
∥∥divlv

∥∥
∞ ⩽ αl}, (4.18)

where l = 1, 2, 3, ..., k − 1 and k is an order of TGV, α = (α0, α1, ..., αk − 1) represents the

positive weights for TGV. Its primal form is

TGV k
α (u) = inf

ul∈Ck−1
c

k∑
l=1

αk−l ∥ε(ul−1)− ul∥1 , ε(ul−1) =
1

2
(▽ul−1 + ▽uT

l−1) (4.19)

When k = 1, TGV coincides with the TV term. When k = 2, it becomes

TGV 2
α (u) = sup{

∫
udiv2vdx|v ∈ C2

c (Ω, S
d×d), ∥v∥∞ ⩽ α0, ∥divv∥∞ ⩽ α1}, (4.20)

where

∥v∥∞ = sup(
d∑

i=1

|vii(x)|2 + 2
∑
i<j

|vij(x)|2)1/2

∥div v∥∞ = sup(
d∑

i=1

∣∣∣∣∣
d∑

j=1

∂vij
∂xj

∣∣∣∣∣
2

)1/2.

(4.21)

Likewise, its second-order primal form can be written as

TGV 2
α (u) = min

w
α1

∫
Ω

|▽u− w| dx+ α0

∫
Ω

|ε(w)| dx. (4.22)
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Here, ε(w) = 1
2
(▽w + ▽wT ), x is the index, u is the image, v is the dual variable of the

TV term, and ε(w) is a matrix-valued Radon measure. The second-order TGV provides a

way to balance the first- and second-derivative terms via the weights α0 and α1. Specifically,

through the second-order TGV definition, we can observe that in smooth regions, where w ≈

▽u, minTGV 2
α (u) ≈ min ∥▽2u∥; in edge regions, where ∥▽2u∥ > ∥▽u∥, minTGV 2

α (u) ≈

min ∥▽u∥ .

A classic application of the TGV term in MBIR methods is the PWLS-TGV algorithm,

which is

ϕ(f) = argmin
f⩾0

(g −Hf)TΣ−1(g −Hf) + βTGV 2
α (f). (4.23)

By introducing the auxiliary variable µ, we can reformulate the function as

argmin
f,µ

(g −Hµ)TΣ−1(g −Hµ) + βTGV 2
α (f)

s.t.µ = f,

(4.24)

and rewrite in Augmented Euler-Lagrange form [116]:

L(µ, f, λ) = argmin
f,µ,λ

(g −Hµ)TΣ−1(g −Hµ) + λ ∥µ− f∥2 + βTGV 2
α (f). (4.25)

This problem can be decomposed into two alternating optimization steps, P1 for raw estimation

and P2 for accurate optimization:

(P1) : µ = argmin
µ

(g −Hµ)TΣ−1(g −Hµ) + λ ∥µ− f∥2

(P2) : f = argmin
f

λ ∥µ− f∥2 + βTGV 2
α (f)

(4.26)

In the implementation, a separable surrogate algorithm [63] is used to solve (P1), and a first

order primal-dual (FOPD) method [114] is appled to solve (P2).

Total Directional Variation (TDV): In functional analysis, Eq. (4.14) can be treated as a gen-

eral function with a perturbation. Then we can derive its corresponding Euler-Lagrange partial
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differential equation (PDE):

2(Hf − g)− ▽ · ▽f

|▽f |2
= 0. (4.27)

We can find that the TV kernel is an isotropic diffusion kernel that smooths the image in all

directions, which is not very suitable for images with a dominant direction, e.g., sinograms.

Based on this, Bayarm et al. [100] proposed the TDV to increase the kernel sensitivity. Re-

calling the TV definition Eq. (4.15), let ∆1 and ∆2 denote horizontal and vertical difference:

∆1f(s, t) = f(s, t)− f(s− 1, t), ∆2f(s, t) = f(s, t)− f(s, t− 1). (4.28)

Then, TV can be rewritten as

∥f∥TV =
∑
s,t

∥∆f(s, t)∥2 =
∑
s,t

sup
t∈B2

⟨∆f(s, t), t⟩ , (4.29)

where B2 is the unit ball of the l2 norm. A directional total variation can be realized by replacing

B2 with an ellipse domain Eα,θ that is oriented along the angle θ with unit length minor axis

and a major axis of length α as shown in Fig. 4.1:

∥f∥TV =
∑
s,t

sup
t∈Eα,θ

⟨∆f(s, t), t⟩ = TVα,θ(f). (4.30)

Then Eq. (4.14) becomes

f̃α = argmin{∥Hf − g∥22 + αTVα,θ(f)}. (4.31)

When direction θ aligns with the gradient vector ∆f direction, TDV reaches the minimum

value. Let matrix Rθ and Λα denote the rotation and scaling matrices,

Rθ =

cos θ − sin θ

sin θ cos θ

 , Λα =

α 0

0 1

 , (4.32)
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then we obtain

Eα,θ = RθΛαB2, (4.33)

and
TVα,θ(f) = sup

t∈Eα,θ

⟨∆f, t⟩

= sup
v∈B2

⟨∆f,RθΛαv⟩ .
(4.34)

Similar to the Huber approximation in the TV algorithm, results can be approximately acquired

through gradients by y − λ∆TRθΛαv
∗, where

v∗ = arg min
v∈B2

∥∥y − λ∆TRθΛαv
∥∥2
2
. (4.35)

Typical numerical solutions can be estimated through the fast iterative shrinkage algorithm

(FISTA) [117]. Furthermore, we find that TDV is similar to the first-order TGV but multiplied

by a weighting function related to derivative orientation.

Figure 4.1: Illustration of TDV ellipse domain: ∆f , which is a gradient vector, represents
the dominant direction of the texture in the image, α is the ratio of the horizontal and vertical
difference that larger than 1.
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4.2.4 ST-TDV based MBIR Algorithm

Recalling the structure tensor definition in Section 3.2.3, we determine the image geometry

variation through the eigenvector decomposition of the image structure tensor. In [48], Lefkim-

miatis et al. proposed a structure tensor based total variation kernel, which is

STV (Y ) =
N∑
i=1

∥∥∥∥(√λ+
i ,
√

λ−
i )

∥∥∥∥
1

, (4.36)

where λ+
i and λ−

i are two eigenvalues of the structure tensor with eigenvector decomposition.

In this research, inspired by the TDV, we propose the ST-TDV, which utilizes the corresponding

eigenvectors that define the maximum and minimum variation orientation, as image prior. To

better demonstrate the ST-TDV, we provide the following definition:

Definition 4.1 (Weighted Directional Derivative). Let ▽ = (∂1, ∂2)
T be derivative, then ▽u =

▽⊗ u = (∂1u, ∂2u)
T , and let M denote the directional matrix, i.e., its diagonal element Mj =

Λα(Rθ)
T . If we use the vector v = (cos θ, sin θ)T and v⊥ to denote the direction, then we obtain

the weighted directional derivative of u:

M▽⊗ u = Λα(Rθ)
T▽⊗ u =

(
α1▽vu

α2▽v⊥u

)
, (4.37)

where the directional derivative along a vector field z is

▽zu(x) = ▽u(x) · z =
2∑

i=1

∂iuzi. (4.38)

Then ST-TDV becomes

ST − TDV (Y ) =

(
▽e1Y

α▽e2Y

)
, (4.39)

where e1, e2 are normalized eigenvectors aligned with the direction vector v and v⊥ and α is a

scaling matrix related to the eigenvalues, equaling M in Definition 4.1. Moreover, referring to
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the TV semi-norm definition [114], ST-TDV can be re-written as

ST − TDVβ(Y,M) = sup
Ψ

{∫
Ω

Y divMΨdx| ∥Ψ∥∞ ⩽ β

}
, (4.40)

which is similar to the first-order TGV with a weighting matrix. Since the directional derivative

acquired from an eigenvector is highly related to each projection pixel, we believe a pixel-

wise anisotropic diffusion property can effectively mitigate the staircase artifact caused by the

standard TV kernel. Thus our projection image prior design equals

p(Y ) = e−τST−TDV (Y ), (4.41)

where τ is a scaling parameter.

By combining Eq. (4.9) and Eq.(4.41), we can obtain the entire posterior distribution

p(P,Q|Y )p(Y ). In fact, instead of maximizing its logarithm, we solve it by minimizing

−log(p(P,Q|Y )p(Y )), that is,

min
Y,Q

N∑
n=1

(
(Pi −Qi)

2

2σ2
−Qi ln I0i +QiYi + ln(Qi!) + I0ie

−Yi) + τST − TDV (Y ). (4.42)

As Eq. (4.25) and Eq. (4.26) show, we can decompose the objective function into two

optimizing sub-problems with adding an extra auxiliary variable V :

(P1) : min
Y,Q

N∑
n=1

(
(Pi −Qi)

2

2σ2
−Qi ln I0i +QiYi + ln(Qi!) + I0ie

−Yi) +
µ

2
(Y − V )2

(P2) : min
V

µ

2
(Y − V )2 + τST − TDV (V )

(4.43)

Then we can apply an alternating optimization method to solve the equation. Specifically, for

(P1), we deploy the alternating direction method of multipliers (ADMM) strategy [118] as

follows:
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1. Solving Q: With the other parameter fixed, Q can be updated by solving

h(Q) = min
Q

N∑
i=1

(
(Pi −Qi)

2

2σ2
−Qi ln I0i +QiYi + ln(Qi!)), (4.44)

which can be calculated separately as Algorithm 1 shows:

Algorithm 1 Algorithm for Updating Q
Input: Y , P , I0 and σ

1: Initialize Q stored from last loop
2: for i = 1 : N do
3: while h(Qi) > h(Qi + 1) do
4: Update Qi = Qi + 1
5: end while
6: while h(Qi) < h(Qi + 1) do
7: Update Qi = Qi − 1
8: end while
9: end for

Output: Q∗ = Q

2. Solving Y: With the other parameter fixed, Y can be updated by solving

min
Y

N∑
i=1

(QiYi + I0ie
−Yi) +

µ

2
(Y − V )2. (4.45)

A similar surrogate algorithm is performed for a numerical solution. Let Y k denote the

k-th step approximation, then we obtain new cost function:

Q(Y, Y k) = (Q− I0 ⊙ e−Yk)(Y − Yk) +
L

2
(Y − Y k)2 +

µ

2
(Y − V )2

=
L

2

[
Y − Y k +

1

L
(Q− I0 ⊙ e−Yk)

]2
+

µ

2
(Y − V )2,

(4.46)

where ⊙ denotes element-wise multiplication, L is the Lipschitz constant to ensure con-

tinuity, and µ is a positive scalar. A closed-form solution is

Ỹ k =
µV + LY k − (Q− I0 ⊙ e−Yk)

L+ µ
. (4.47)

Then entire iteration in the FISTA framework can be described as Algorithm 2 shows.
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Algorithm 2 Algorithm for Updating Y

Input: Y 0, V , I0 and µ
1: Initialize Y k = Y 0 and tk = 1
2: for k = 1 : M do
3: Update Ỹ k = argminY Q(Y, Y k) with Eq. (4.43)

4: Update tk+1 =
1+
√

1+4(tk)2

2

5: Update Y k+1 = Ỹ k + tk−1
tk+1 (Ỹ

k − Ỹ k−1)
6: end for

Output: Y ∗ = Y k

In (P2), to numerically solve the Eq. (4.40), we first rewrite the image prior numerically as

in [101, 114]:

ST − TDVα(V,M) = sup ⟨V, divMΨ⟩ , ∥divvΨ∥∞ ⩽ α. (4.48)

Its corresponding primal format is

ST − TDVα(V,M) = inf
z0=V,zq=0,j=0,...,q

q∑
j=1

αq−j ∥Kjzj−1 − zj∥1 , Kj = Mj▽, (4.49)

where zj is the image higher-order derivative component. Then (P2) is transformed into a

nonlinear optimization problem, to which we apply the FOPD algorithm [119] as TGV method

did.

first order primal dual (FOPD): Given a nonlinear optimization problem:

min
x

F (k(x)) +G(x), (4.50)

The FOPD algorithm aims to solve the primal-dual form of the problem:

min
x∈X

max
y∈Y

⟨Kx, y⟩+G(x)− F ∗(y), (4.51)

which is also known as the generic saddle-point problem. The general solution is
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Algorithm 3 FOPD algorithm

1: Initialization: choose τ, σ > 0, θ ∈ [0, 1] and set x̄0 = x0

2: Iterations (n ⩾ 0): Update xn, yn, x̄n as follows:
yn+1 = proxσ,F ∗(yn + σKx̄n)
xn+1 = proxτ,G(x

n − τK∗yn+1)
x̄n+1 = xn+1 + θ(xn+1 − xn)

(4.52)

Referring to the FOPD algorithm, we can re-write the (P2) problem as

V ∗ = argmin

q∑
j=1

αq−j ∥Kjzj−1 − zj∥1 +
µ

2τ
∥V − Y ∥22 , (4.53)

and its primal-dual format is

min
z

max
w

=

〈
q∑

j=1

Kjzj−1 − zj, wj

〉
−

q∑
j=1

I{∥·∥∞⩽αq−j}(wj) +
µ

2τ
∥V − Y ∥22 , (4.54)

where I{∥·∥∞⩽αq−j}(wj) is an indicating function that equals 0 within the feasible domain and

∞ outside. To solve Eq. (4.54), we apply the proximal gradient descent method [115, 119,

120]. Based on the assumption that variable zj is independent, we extend the Eq. (4.54) as

follows

min
z

max
w

=

〈
q∑

j=1

Kjzj−1 − zj, wj

〉
−

q∑
j=1

I{∥·∥∞⩽αq−j}(wj) +
µ

2τ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



V

0

...

0


q×1

−



Y

0

...

0


q×1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

,

(4.55)

then it can be divided into multiple small problems, i.e, for each j,

q∑
j=1

[
⟨Kjzj−1 − zj, wj⟩ − I{∥·∥∞⩽αq−j}(wj) +

µ

2τ
∥Vj − Yj∥22

]
. (4.56)

Then Algorithm 3 becomes: ProxσF ∗: Given the indicating function I , the proximal problem

can be transformed into a projection problem that projects onto the convex sets wi| ∥wi∥∞ ⩽
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αq−j . The associated projections can be presented as follows:

proxσF ∗(w̃) =

q∑
j=1

projσF ∗(w̃j), projσF ∗(w̃j) =
w̃j

max(1, α−1
q−j ∥w̃j∥2)

. (4.57)

ProxτG: Given Eq. (4.51), the proximal problem of function G is

projτ,G(z̃) = argmin
z


µ

2τ

∥∥∥∥∥∥∥∥∥∥∥∥∥



z̃0 − Y

0

...

0



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

+
1

2m

∥∥∥∥∥∥∥∥∥∥∥∥∥



z0

z1
...

zq


−



z̃0

z̃1
...

z̃q



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2


, (4.58)

where z0 = V, z1 = V1, ..., zq = 0. The minimum value can be acquired through gradient

method. Therefore, we have similar iterations as follows


wn+1 = proxσ,F ∗(wn + σKz̄n)

zn+1 = proxm,G(z
n − τK∗wn+1)

z̄n+1 = zn+1 + θ(zn+1 − zn)

, (4.59)

where a detailed description is presented in Algorithm 4.

Algorithm 4 Algorithm for Updating V
Input: Y , α, K = M▽, τ , θ and µ

1: Initialize z = [V, 0, ...0]T and w = 0
2: while stopping criteria is not satisfied do
3: for j = 1 : q − 1 do
4: wn

j = wn
j + σ

(
Kj z̄

n
j−1 − z̄nj

)
5: wn+1

j = wn
j /max(1, α−1

q−j ∥w̃j∥2)
6: end for
7: wn

q = wn
q + σKqz̄

n
q−1

8: wn+1
q = wn

q /max(1, α−1
0 ∥w̃q∥2)

9: for j = 2 : q do
10: znj−1 = znj−1 −mK∗

jw
n+1
j − wn+1

j−1

11: zn+1
j−1 = znj−1

12: end for
13: zn0 = zn0 −mK∗

1w
n+1
1

14: zn+1
0 = (zn0 + Y )(1 + µm/τ)−1

15: z̄n+1 = zn+1 + θ(zn+1 − zn)
16: end while
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In summary, a general solution to our proposed MBIR method, called the MAP-ST-TDV

method that combines ST-TDV prior and a MAP model, is shown in Algorithm 5.

Algorithm 5 Algorithm for solving Eq. (4.43)

Input: I0, P = I0 ⊙ e−Y

1: Initialize µ, ρ, τ , Y = max(ln(I0)− ln(P ), 0)
2: while stopping criteria is not satisfied do
3: Update Q by Algorithm 1
4: Update Y by Algorithm 2
5: Update V by Algorithm 4
6: Update µ = ρµ
7: end while

4.3 Projection Synthesis Technique

The denoised projection image is further calibrated by our proposed geometry calibration al-

gorithm, and then we increase the projection through image synthesis to assist in solving the

sparse sampling problem. In this research, synthesis is realized through a DL network, since

conventional methods are time-consuming.

4.3.1 Deep Learning Introduction

Neural networks (NN) are inspired by the inner working of human brains based on the con-

cept of biological neurons and networks. In biology, neuron interaction with another involves

complicated biochemical reactions, shown in Fig. 4.2(a). In short, a single neuron will pass a

message to another once the input signal exceeds a certain threshold. Similarly, a mathematical

model of this reaction is shown in Fig. 4.2(c), which is the unit module in NN. Its interaction

includes two steps, accumulation and activation, which can be represented as

f = σ(wTx+ b) (4.60)

where w is a weighting matrix, x is the input signal, b is a bias signal and σ(·) is the activation

function. For instance, a widely deployed activation function is called a rectified linear unit
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(ReLU) function [121]:

σ(x) = max(x, 0) (4.61)

Other common activation functions are the logistic sigmoid function and the hyperbolic tan-

gent function [121]. In summary, from Eq. (4.60), we can treat the single neuron as a nonlinear

nonnegative optimization function, and a NN is a function of these functions, whose output is

a nonlinear response to the input data. In DL, a NN not only builds the nonlinear mapping

between input and output, but also incorporates representation learning or feature learning in

layer design to capture high-level latent information. One advantage of high-level representa-

tion learning is that DL is able to compensate for the lack of prior knowledge of features or

unavailability of labeled data in the output.

In DL, CNN, which uses kernel function to realize sparse interaction, is the most com-

monly applied one in analyzing images inspired by the study of Visual Cortex [122]. It reveals

that individual neurons respond to stimuli only in restricted region (known as the Receptive

Field) which can tremendously reduce the storage request.

For each layer of a CNN, the signal is processed by a kernel function to capture the spatial

and temporal dependencies, which is similar to a convolution of a 2D image. Compared with

other NN types, CNN has shown certain advantages:

1. weights are shared for the kernel function based on the assumption that the feature has

the same importance at different location, thus CNN can reflect any affine transformation

and save storage on weights.

2. CNN has introduced a pooling layer to further reducing the image size, especially ap-

plying max pooling to perform noise suppression simultaneously, which is similar to a

pyramid structure to extract high-level features.

The later developed generative adversarial network (GAN) framework has strengthened CNN

performance, which consists of a generator and discriminator. The generator is typically a

deconvolutional neural network, and the discriminator is a CNN.
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Figure 4.2: Introduction to Neural Networks. (a) biological neural network modeling brain’s in-
teraction (Wikipedia:https://en.wikipedia.org/wiki/Artificial_neural_
network ). (b) single biological neuron modeling message passing. (c) artificial neuron
that simulates (b)

4.3.2 Spatial Transformer Network

A conventional image synthesis algorithm is time-consuming. In our simulation, implementa-

tion of the algorithm in [98] takes 3 hours to obtain 4 times the projection images from 96 to

384. Such inefficiency limits its application in practice. In order to accelerate the image syn-

thesis, inspired by the spatial sampling [123] problem in video frame synthesis, we propose to

use a data-driven network as a replacement regardless of the complicated mathematical back-

ground. Our proposed spatial transformer network is shown in Fig. 4.3. As the figure shows, a

five-layer convolution block has been applied to encode the high-level image information and

then deconvolved into a three-channel feature map—called tensor block in the context—for

further processing. Besides, each channel represents an image tensor component along one

dimension in space, i.e.,

T = (Tx, Ty, Tz) = U(x1, x2), (4.62)

where U stands for the U-net autoencoder and x1 and x2 represent the previous and next pro-

jection image. With the assumption that the intermediate projection is linearly, equally inter-

polated by two adjacent projections, two sampling matrices m1 and m2 on the two images are
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calculated once the tensor block is transferred into the Bilinear Sampler Generator and the new

projection image is interpolated as the equation shows.

x = Tz ∗B(x1,m1) + (1− Tz) ∗B(x2,m2), mi,j = (i± Tx

2
, j ± Ty

2
) (4.63)

where m is the sampling matrix and B is a bilinear interpolation. Positive and negative cal-

culation represents the corresponding coordinates in later and earlier images. After the matrix

is obtained, a pixel-wise bilinear interpolation is applied to form an intermediate projection

image.

Figure 4.3: Introduction of proposed network structure. Top: Spatial Transformer Network
which consists of 5 convolution layers. For each layer, the number of filters equals 64, 128, 256,
512, 1024, respectively. Image size is reduced to half by convolution pooling from one layer
to another and upsampling realized by deconvolution. Input is two adjacent sparse sampled
projection images and output is a 3-channel feature map recording intensity-flow information.
Bilinear Sampler Generator is a coordinates production block that transforms a tensor block
into two sampling matrices.
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4.3.3 GAN framework

Previous work has demonstrated that adversarial learning can successfully compensate the

structure loss between two domains, source image and target image. In this research, we adopt

a GAN framework for our network training, Fig. 4.4, where the spatial transformer network

is treated as a generator and a discriminator is added to distinguish between real images and

synthetic images. In order to improve the accuracy and stability of GAN training, besides the

general adversarial loss applied for discriminator training, a comprehensive loss function has

been applied for generator training.

G∗ = arg minG[λ1LGAN + λ2L1(y, ŷ) + λ3LDP (y, ŷ)] (4.64)

LGAN = Ey,ŷ[logD(y)] + Ex,z[log(1−D(G(x)))] (4.65)

L1(y, ŷ) = ∥y − ŷ∥1 (4.66)

LDP (y, ŷ) =
1

N

N∑
j=1

1

CjHjWj

∥ϕj(ŷ)− ϕj(y)∥22 (4.67)

where LGAN is adversarial loss that enables the network to synthesize images with more real-

istic features, L1 is content loss that enables an image to share a similar global structure, and

LDP is discriminator perceptual loss[79] that strengthens training stability, ϕj is the activation

layer in the discriminator. Parameters λ1 = 1, λ2 = 50 and λ3 = 20 are used to balance the

losses here. The number of training epochs is set to 200, the learning rate obtained from 5-fold

cross-validation is 0.0001, and the batch size is set to 4 due to the image size. For comparison,

two learning-based sinogram interpolation algorithms, U-net [88] and GAN based sinogram

inpainting network (SIN) [79], are applied as well.
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Figure 4.4: GAN framework: x is input multi-projections, y is output of the spatial trans-
former generator, ŷ is ground truth projection image. Discriminator consists of three convolu-
tion blocks that include one convolution layer, one batch normalization layer, and one ReLU
activation layer for each block.

4.3.4 Extra: Deep Transfer Learning

Deep transfer learning (DTL) [124] is another framework that aims to solve the insufficient

training data problem. Wide application of U-net in medical imaging has proved its ability

to effectively extract the high-dimensional features and establish links between input images.

However, the requirement of a large number of training images has limited its application.

Therefore, DTL has been proposed to improve the reconstructed image quality with reduced

computational cost while maintaining accuracy. The detailed workflow is shown in Fig.4.5.

We first collected a publicly available large-scale dataset M, which is also mouse data but

scanned from another device (denoted as device A), for initial training. The major challenge is

that the publicly available dataset M is based on Device A, whose noise pattern is different from

ours. It is infeasible to directly use a model that is trained based on Device A to our device.

However, we are able to obtain small-scale phantom images that are collected from our own

device, and we use the TV based reconstruction images as true label (denoted as dataset P). We

choose phantom data since the TV based reconstructions are more ideal, and we use dataset P

for the further task of fine-tuning weights. The datasets details are shown in Table 4.1.

In summary, we propose to train a reconstruction deep model using publicly available

large-scale dataset M (denoted as Supervised Task A) to learn the reconstruction mapping of
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a mouse (possibly biased to Device A). The pre-trained model cannot be directly applied to

our device, since the model is not exposed to our device and has no prior knowledge about the

unique configurations of our device. Thus, we propose to fine tune the pre-trained model using

dataset P (denoted as Supervised Task B), and we hypothesize that dataset P contains knowl-

edge about our own device. Once fine-tuned on dataset P, the specific knowledge regarding our

device can be fed to the original reconstruction model.

As shown in Fig 4.6, in Fine-Tuning U-net structure, the max pooling layer has been re-

placed by an average pooling layer given the consideration that an average pooling can smooth

the flattened region from a noise pattern in a way that is closer to the distribution of the ideal

image. Also, the average of four adjacent pixels can utilize more image content information

than max pooling since limited training data is provided in task B.

Table 4.1: Datasets Descriptions

Dataset Device Input True Label
M A simulated mice sparse CT ground truth mice CT
P Ours sparse CT on CT phantom CT phantom sparse CT + TV

Target Ours reconstructed mice sparse CT target restored CT images

Further improvement is realized by cycle training, CycleGAN, which frees us from the

paired data requirement [125, 126]. The framework is shown in Fig. 4.7, which includes two

U-nets. This design enables us to avoid the limitation of DTL; that is, we use the MBIR result

as the true label in DTL fine tuning. Instead, it utilizes two types of images, input FDK result

and target clinical CTs, for network training. A well-trained network is able to transform the

reconstruction image contrast to the target image.

87



Figure 4.5: Deep tranfer learning framework: Supervised task A is to learn the mapping of
image constructions possibly with device bias. Supervised task B is to neutralize the device
bias and transfer to our own device. Our final task C is to reconstruct mouse images scanned
by our own device.

Figure 4.6: Transfer Model Structures. A) Model at left is the pre-trained model on Dataset M
with max-pooling intertwined; B) Model at right is the fine-tuning procedure on Dataset P with
average-pooling intertwined.
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Figure 4.7: Illustration of CycleGAN framework, which includes two generators and two dis-
criminators. Each generator includes a 5-layer U-net, and each discriminator includes a 3-
convolution block as Fig. 4.4 shows.

4.3.5 Data Preparation

In this investigation, the PM Public Micro-CT Image Database was used for network training.

It consists of an image set of longitudinal micro-CT scans of four live mice and three post-

mortem mice, which were made and uploaded by the VIA group and the Weiss lab. To avoid

the possibility of motion and breathing artifacts caused by live mice, we only selected the three

dead mouse images for training.

In image synthesis network training, the training dataset consisted of 97 projections pro-

duced for each selected mouse volume data, together with five other mouse projection datasets

scanned from the MiSpinner. Every three projections formed a training unit where head and

tail projections were used as network input and the mid projection was used as the ground truth

image for discriminator input in GAN training.

For the comparison test, 4 times sampling projection data, 384 projections for each mouse

were used as ground truth images. The original 97 projections were converted to 384 projec-

tions by linear interpolation. Then the interpolated projections and corresponding ground-truth

images were fed into the discriminator for training.

In DTL training, for supervised task A, three dead mouse images provided a total of 2566

low-dose micro-CT slices of the mouse thorax region. Each slice and its corresponding FDK

sparse reconstruction were produced by the ASTRA toolbox [127]. We also divided the images
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into smaller size patches, 256×256, before feeding them into the network to increase the ca-

pacity of the training set and to ensure the distribution of weights among neural networks were

independent from the image pattern.

For supervised task B, instances-based deep transfer learning means that partial instances

in the source domain can be utilized by the target domain with appropriate weight. Thus TV

iterative results of the CT phantom image were labeled as images with “appropriate weight” to

compose a distribution in the target domain and then together with their FDK results used for

model transfer learning in task B.

4.4 Experimental Results

4.4.1 MAP-ST-TDV Denoising Study

To verify the robustness and feasibility of the proposed MAP-ST-TDV method, two simulations

were conducted: a 2D Lungman chest phantom simulation and a 3D Shepp-Logan phantom

simulation. In the 2D simulation, for simplicity, we applied the parallel scanning mode in

projection generation, i.e., a total of 97 projections evenly distributed around 360 degrees were

generated. The phantom image size was 512× 512 in pixels. In the 3D simulation, similar

to the Chapter 3 simulation, we set SOD equal to 1500, SDD equal to 2000, and the phantom

volume size to 512× 512 × 512. Besides, to simulate the low-dose radiation case, we set the

incident X-ray intensity to 1× 104, which is 1/100 of other simulation [67] and added the same

Poisson and Gaussian noise into projections as Eq. (4.7) described.

Lungman chest phantom simulation is presented in Fig. 4.8, which includes a comparison

of our algorithm with other state-of-the-art MBIR methods. The original phantom image is

displayed in Fig. 4.8(a), and the corresponding sparse reconstruction is shown in Fig. 4.8(b)

and Fig. 4.8(c) with and without noise. It can be seen that the FBP result is clearly corrupted

by sparse sampling and noise. A comparison of different MBIR methods, PWLS, PWLS-

TV, PWLS-TGV, MAP-TV, MAP-TV2 is displayed in Figs.. 4.8(d-h). To ensure fairness in

the comparison, we set the main loop in each algorithm to 40 iterations and the inner loop

when relevant, e.g., FOPD in TGV and ST-TDV, to 100 iterations. Generally, we can observe
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that MAP-TV2 and MAP-ST-TDV results outperformed other results, where they can both

effectively suppress noise-induced artifacts and recover the phantom structure. Meanwhile,

a residual image, the difference between the reconstructed image and the original phantom

image, is presented in Fig. 4.9 to support our observation, where we find that PWLS, MAP-TV2

and MAP-ST-TDV can better preserve the edges with fewer boundary detail loss. Furthermore,

the line profile at pixel position x = 170 and y from 110 to 140, shown in Fig. 4.8(a) with a

red mark, is displayed in Fig. 4.10. We can see that our MAP-ST-TDV result overall is closer

to the phantom data than other methods. Specifically in high value region, where we marked

with red rectangle, we can view that MAP-ST-TDV method maintains similar shape and closer

values than other methods.

A quantitative comparison is shown in Table 4.2. The comparison uses three measure-

ments: peak signal-to-noise ratio (PSNR), structure similarity index measure (SSIM), and mean

absolute error (MAE) for all competing methods. The larger PSNR and SSIM are, the closer

the target image is to the reference one. On the contrary, the smaller the MAE is, the better

the reconstructed image is. From the table, it is clear that our proposed algorithm outperforms

other competing methods in terms of all these evaluations.

Table 4.2: PSNR, SSIM and MAE measurements of the Lungman Phantom reconstructed by
all MBIR methods

nFBP PWLS PWLS-TV PWLS-TGV MAP-TV MAP-TV2 MAP-ST-TDV
PSNR 19.40 19.55 23.47 21.67 22.54 23.11 23.62
SSIM 0.2038 0.2081 0.4439 0.4561 0.3318 0.3975 0.4562
MAE 0.0753 0.074 0.0417 0.0414 0.0499 0.0442 0.0405

Next we extended the simulation into 3D volume case, i.e., Shepp-Logan phantom, and

the simulation result is presented in Fig. 4.11. In this case, instead of processing the sinogram

which is a 2D image along the scanning angle distribution, we sequential denoised the object

projection image directly with three MBIR methods, PWLS-TV, MAP-TV and MAP-ST-TDV

algorithm, based on the piece-wise constant assumption on the natural projection image. Sim-

ilarly, numerical analysis, PSNR, SSIM, MAE and MSE in Table 4.3, have shown that our

proposed method can achieve the best performance in image denoising.
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Table 4.3: PSNR, SSIM, MAE and MSE measurements of the Shepp-Logan Phantom recon-
structed by PWLS-TV, MAP-TV, MAP-ST-TDV methods

nFBP PWLS-TV MAP-TV MAP-ST-TDV
PSNR 22.95 23.98 23.91 24.64
SSIM 0.2061 0.03357 0.2713 0.4223
MAE 0.0469 0.0354 0.0389 0.0303
MSE 0.0051 0.0040 0.0040 0.0034

Figure 4.8: Comparison of different MBIR methods on LungMan chest phantom image: (a)
Original phantom image, (b) low-dose 97-projection sparse reconstruction, (c) sparse recon-
struction with noise, (d) sinogram denoising with PWLS method and corresponding reconstruc-
tion, (e) PWLS-TV result, (f) PWLS-TGV result, (g) MAP-TV result, (h) MAP-TV2 result, (i)
Our proposed MAP-ST-TDV method result.
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Figure 4.9: (a) - (f) are residual images of the result reconstructed by PWLS, PWLS-TV,
PWLS-TGV, MAP-TV, and MAP-TV2.

Figure 4.10: Line profile of the red line marked in phantom image Fig. 4.8(a) and recovery
results of the six MBIR methods.
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Figure 4.11: ST-TDV method test on 3D Shepp-Logan phantom: (a) original phantom image,
(b) 97-projection sparse reconstruction, (c) sparse reconstruction with noise, (d)-(f) are FDK
result after PWLS-TV, MAP-TV, and MAP-ST-TDV denoising.

4.4.2 Image Synthesis Study

Further study was done to verify the feasibility of the proposed network, which we call Proj-

syn-net. A simulation on the 3D Shepp-Logan phantom was conducted, and the result is shown

in Fig. 4.13. To ensure the alignment of the units in CBCT simulation, the source to de-

tector/scintillation plate distance and source to isocenter distance were converted into pixel

length, 5106 and 4382 respectively. Two numerical analysis methods, SSIM and PSNR, were

applied for image quality assessment. In this case, a mix of open source data, PM public data,

and some of the real-world denoised projection were used for semi-supervised learning. A

comprehensive loss, Eq. (4.64) to Eq. (4.67), was applied and Adam optimizer was used for

acceleration.

A five-fold cross validation was applied in the network training, and Fig. 4.12 shows

the change of learning curve with respect to different learning rates. Determination of hyper-

parameters is crucial to the network performance, especially the learning rate. A large learning

rate will lead to the network overfitting and collapsing, as shown in Fig. 4.12(d), where training
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loss and validation loss do not converge. Furthermore, we can observe that lr = 0.0001 gener-

ates the least MSE—0.2771—in network training. Accordingly, we applied the same learning

rate to other learning-based methods to ensure fairness.

A comparison of all three DL methods is shown in Fig. 4.13(a). We can see that all of them

can successfully reconstruct the phantom structure meanwhile effectively reducing the streak

artifacts. More specifically, our proposed network, (a-f), improves the SSIM from 0.3143 to

0.6202, landing in the interval between the two comparison methods, (a-d) and (a-e). Even

though PSNR has shown a reduction, line profiles (b) and (c) along the center column have

shown similar intensity distribution of the three nets.

Figure 4.12: Illustration of learning rate effect one the network training. Minimum MSE loss is
acquired at 0.2771, 0.3308, 0.4072, 3.4921 with respect to learning rate equals 0.0001, 0.0007,
0.001 and 0.07, separately.
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(a) Shepp-Logan phantom simulation

(b) line profile of center column with U-net and
GAN

(c) line profile of center column with proposed
method

Figure 4.13: Illustration of proposed network performance in phantom simulation: (a) simu-
lation of 3D S-L phantom under different situations: (a-a) phantom ground truth image, (a-b)
reconstruction under 97 sparse-angle sampling, (a-c) result under 384 sampling, (a-d) recon-
struction from the sinogram extended by trained U-net, (a-e) reconstruction from the sinogram
extended by trained GAN, (a-f) reconstruction from the proposed network; (b) line profile of
the center column from the result (a-d) and (a-e); (c) line profile of the center column from the
result (a-f).

A qualitative test on real data further comparing the network performance and the result is

shown in Fig. 4.14. Extra competing methods—classic TV-based MBIR method and structure

tensor based image synthesis method, also known as directional image interpolation (DI)—

are included for comparison. The rectangle region has revealed that both DI method result,
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Fig. 4.14(c) and the U-net interpolation method result, Fig. 4.14(d), introduce extra ringing

artifacts into reconstruction, while the GAN result, Fig. 4.14(e) oversmooths the text region.

Only the proposed method result, Fig. 4.14(f), preserve the texture details well and give rise

to the competing result with the MBIR result. Furthermore, we can see that the Proj-syn-net

result possesses better contrast than Fig. 4.14(b), where quantum noise and the dark region in

the center are effectively removed. Therefore, we can conclude that our proposed network can

successfully improve the image quality in terms of the existing limited projection data.

Figure 4.14: Reconstruction of QRM phantom in real-world scanning with the MiSpinner: (a)
FDK result from 97 angles scanned, (b) Post-processing with classic MBIR method: ISTA-TV,
(c) FDK result from 388 synthetic projections interpolated by classic structure tensor based
image synthesis method, (d) FDK after U-net sinogram interpolation, (e) FDK after GAN sino-
gram interpolation, (d) FDK after Proj-syn-net projection synthesis.

4.4.3 DTL Learning

In supervised task A, the sparse reconstruction images of PM public data were fed into the

network and the output compared with the corresponding ground truth image. As previously

mentioned, we divided the image into 256×256 smaller patches. Some regions overlap since

image size was not divisible by 256, so that the training data capacity reached a total of 10,266

images. 9293 of them are randomly assigned to a training dataset, and the remaining 973 are
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assigned to a validation dataset. The ratio of the norm of the error between two images and the

norm of the ground truth image was computed as the loss function, and the Adam optimizer was

used to optimize the loss function. After feeding all the training data into the network, the net-

work weights were updated with the objective to minimize the loss function. The process was

repeated until the loss could not be further optimized, roughly about 130 epochs. The learning

rate was set to be 0.01 initially. Trained weights were stored and preloaded into supervised task

B network for transfer learning.

In supervised task B, the input was the measured CT phantom FDK result, and the output

was compared with the corresponding TV IR result. In contrast to task A, we cropped the image

to 256×256 and only 850 images were obtained for task B training. In order to get a reliable

and stable model, we employed a 5-fold cross validation for network weights fine tuning, which

accounts for 70% for training, 20% for validation, and 10% for testing of the whole dataset

respectively. Mean square error was used as loss function, and the Adam optimizer was still

used for optimization. The validation evaluation curve is shown in Fig. 4.15. The average

validation SNR increased from 35.362 to 35.798 dB. Test evaluation shows that SNR increased

from 33.1417 to 33.3750 dB.

Figure 4.15: Signal-to-noise ratio estimation on FBPConvNet/U-net model and modified model
in dB
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Once measured projection data finished calibration, FDK reconstruction was conducted

and then fed into the trained neural network for prediction. SIRT, CGLS, and TV IR methods

were tested as well. A qualitative comparison of different algorithms on the same slice of the

same mouse data is shown in Fig. 4.16. A rectangular area within the center region is zoomed

in for detailed observation. For all iteration algorithms, their results restored the image features

and maintained good contrast but also left the streak artifacts. For FBPConvNet, relevant re-

sults were oversmoothed and lost some detailed contrast in the soft tissue region. A good result

was obtained through joint processing of the iteration algorithm and the trained network, shown

in Fig. 4.16(f,i,l). Among these results, TV based iteration combined with network after DTL

showed a good balance between feature contrast maintenance and artifact removal. The exper-

imental results qualitatively verify the feasibility of the proposed DTL method and reveal that

image restoration can potentially be significantly improved through a combination processing

of a conventional iterative algorithm and a trained neural network.

In our study, the MBIR-related algorithm was realized through MATLAB, and the network-

related realization was implemented with Python based on PyTorch. The training was done on

a Google cloud workstation with 25GB RAM, and an online GPU was used to accelerate the

training process.
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Figure 4.16: Comparison of various algorithms on mouse cross-sectional image restoration un-
der sparse sampling. (a) FDK reconstruction on mouse data, which is also the raw input in
iterative algorithms and trained network. The white rectangle region for each image is zoomed
in for qualitative comparison. (b) output from the FBPConvNet trained by open-source data,
which shows blur in the region. (c) output from the FBPConvNet + DTL, where artifacts
remain. (d) result (a) after 150 SIRT iteration, while the contrast is worse than (c). (e) FBP-
ConvNet output given input (d), where blur still exists. (f) FBPConvNet + DTL output after
(d) that is better than (e) in contrast. (g) (a) after 150 CGLS iterations similar to (d). (h) re-
sult (g) corresponding FBPConvNet output. (i) result (g) corresponding FBPConvNet + DTL
output that looks better than (f). (j) result (a) after 20 TV-M iteration, where artifacts remain
but are an improvement over (d) and (g). (k) result (j) corresponding to FBPConvNet output,
which shows an oversmoothed result. (l) result (j) corresponding to FBPConvNet + DTL out-
put, which shows a balance between feature restoration and artifact region smoothing.
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4.4.4 CycleGAN Exploring

Fig. 4.17 shows our network cycling training as Fig. 4.7 described. In this test, the input source

domain images A are FDK results from actual scanning. The target domain images B are

mouse micro-CT slices from outside the vet lab. A total of 6 mouse datasets, 3 from A and 3

from B, are used for network training. The image size equals 512×512 in pixels, and we set

the network batch size to 2, epochs to 200, and learning rate to 0.0002. As Fig. 4.17 shows,

the corresponding output A′ of A not only possesses the same texture information but also

maintains good contrast as well as B does.

Figure 4.17: Reconstruction image quality enhancement by CycleGAN network under self-
supervised learning. A is the source domain image, and B is the target domain. A′ is the output
of A in the target domain and B′ is the output of B in the source domain.
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The proposed method has shown some flaws in accuracy. We can see in the last two col-

umn results that it has introduced some extra image contents. However, it has shown potential

to improve the reconstruction quality to a level that supervised network and MBIR methods

cannot achieve in the absence of a more informed prior, such as clinical paired CT slices or

accurate organ attenuation coefficient information.

4.5 Conclusion and Discussion

In this chapter, we have proposed a novel structure-tensor-based MBIR model, MAP-ST-TDV,

for projection image pre-processing. Specifically, our model follows the MAP framework,

which accounts for the photon propagation error and electronic background noise simultane-

ously, to fully utilize the projection data statistical properties for data denoising. Furthermore,

we construct a new regulation term, ST-TDV, to better describe the image prior under low-dose

imaging. Given that the structure tensor is capable of measuring the image geometry, we apply

the eigenvector decomposition to find the direction in which the image intensity varies most.

This enables our model to conduct an anisotropic diffusion processing on projection data to

effectively reduce the staircase artifacts and maintain the high-frequency detail. An effective

alternating algorithm, including ADMM and FOPD methods, was developed to solve the pro-

posed model, whose performance has been demonstrated through a series of simulations in

both 2D and 3D cases.

Moreover, we have proposed an adversarial learning-based spatial transformer network,

termed Proj-syn-net, for addressing an issue in sparse image reconstruction without ground

truth, which is common in new device development or in pre-clinical research. Our proposed

network consists of a generator, which includes a 5-layer spatial transformer network and a

bilinear sampler generator, and a discriminator including 3-layer convolution block. The Proj-

syn-net is designed to improve reconstruction image quality by synthesizing extra intermediate

projections, which is an approximation of the state-of-the-art DI method but with much less

time required. In addition, this design enables a mixed training dataset, which combines the

densely sampled phantom projections and sparsely sampled real scans. Such semi-supervised

learning can effectively reduce the impact of device gap. Our experimental results have shown
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that the proposed network can successfully recover the most image structure compared with

other networks that possess sufficient ground truth imagery.

Furthermore, we have explored a DTL based neural network to improve reconstructed

image quality given the lack of corresponding ground truth imagery. Our proposed method

has revealed a possibility of cross-device information utilization and experimental results have

demonstrated that a combination of an iterative algorithm and a DTL network can better re-

store the image contents compared to several baseline methods. Further work will be focused

beyond the post-processing method. We expect to further improve the DTL performance by in-

corporating a pre-processing method, e,g, sinogram interpolation, or some other sparse coding

algorithm which is less sensitve to the noise pattern.
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Chapter 5

Future Work

Chapters of this dissertation span the development of a new imaging system (IVIS with the

MiSpinner), scanning geometry calibration (multi-level thresholding algorithm and ST-TOP

online method), and image quality enhancement (MAP-ST-TDV algorithm for projection data

denoising and Proj-syn-net for projection synthesis). Each of these contributions has helped

our retrofit imaging system acquire better CT-like reconstruction images.

One of the most difficult matters for applying the multi-level thresholding algorithm in

Chapter 2 is the accurate segmentation of the ROI and background region. This process is

especially difficult for the low-dose case, where reconstructed linear attenuation coefficients

are close to the background values. Since the publication of our intensity-based segmentation

algorithm, DL-based NN methods have emerged that could provide accurate segmentation,

which has shown potential application in our study [128, 129].

The ST-TSO calibration method introduced in Chapter 3 has been thoroughly analyzed

under various conditions. For instance, some investigation of the effect of detector saturation

has validated that our proposed algorithm can successfully predict the geometry parameters and

reconstruct the image correctly in the face of saturation. However, a few limits are worth im-

proving. First, ST-TSO can at most estimate five parameters simultaneously due to an intrinsic

property of the projection data. That is, in our small-animal research, edge detection can only

provide one-dimensional boundary distribution information. Lack of vertical prior information

prevents us from estimating the remaining parameters. Further design of the imaging system,

e.g., specimen holder with specific and simple mark, is worth investigating. In addition, our

PM-based part, which realizes 2D-3D transformation, is based on the default hypothesis that
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each projection is imaged on the focal plane without distortion. However, in practice, it will be

often violated. It is worthwhile to perform a study on X-ray focal spots to further improve the

algorithm accuracy [130]. Furthermore, a study on defocusing can provide another perspective

for image depth information estimation, which can be used for SDD prediction.

Chapter 4 mainly focuses on the optimization of the reconstructed image quality. We

have designed a sophisticated MBIR method for projection image denoising and a network for

compensating sparse sampling. Although experiments verify the effectiveness of each method,

the complete framework is complex. At the time of writing this dissertation, efforts have been

made to simplify the complete processing, e.g., comprehensive Neural Network. Moreover,

results have shown that the Proj-syn-method still falls short in SNR estimation with a classic

NN. The error is mainly concentrated in the high-frequency edge area where we believe it is

caused by the bilateral linear interpolation error or some remaining errors in the tensor block.

Further work will be focused beyond the assumption that an interpolated projection is linearly

interpolated by adjacent projections. We expect to further improve the spatial transformer

network performance by incorporating 3D convolution kernels and a self-attention mechanism.
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Appendix A

Multi-level Thresholding Algorithm for 2D Online Calibration

Let us consider the HLCC in the fan-beam case. As Fig. 2.3 shows, following the Beam Re-
binning Strategy, we got gF (β, u) = gP (θ, l). Then projection data can be transferred as

Jk(θ) =

∫
lkgp(θ, l)dl =

∫
lkgF (β, u)dl|l= Ru√

D2+u2
,β=θ−arctan u

D
,

Jk(θ) =

∫ ∞

−∞
gF (θ − arctan

u

D
, u)(

Ru√
D2 + u2

)k
RD2

(D2 + u2)3/2
du.

(A.1)

Considering object movement during measurement, i.e., d(t) = (d1(t), d2(t)) varies with time
variable t, then distance variable l becomes

l̄ =
Ru√

D2 + u2
− d1(t) cos θ − d2(t) sin θ. (A.2)

For simplicity, assuming detector rotation follows constant speed, that is, incident angle λ =
ωt, then we got

t =
1

ω
(θ +

π

2
− arctan

u

D
),

Jk(θ) =

∫ ∞

−∞
gF (θ − arctan

u

D
, u)(

Ru√
D2 + u2

− d1(t) cos θ − d2(t) sin θ)
k

×(
RD2

(D2 + u2)3/2
+

D(d
′
1(t) cos θ + d

′
2(t) sin θ)

ω(D2 + u2)
)du,

(A.3)

where θ can be replaced by fanbeam view angle parameter β without loss of generality, and
β = ωt− π

2
. Thus we got the HLCC in fanbeam case in regard to the parameter t as

Jk(θ) =

∫ ∞

−∞
gF (ωt−

π

2
− arctan

u

D
, u)(

Ru√
D2 + u2

− d1(t̃) sin(ωt) + d2(t̃) cos(ωt))
k

×(
RD2

(D2 + u2)3/2
+

D(d
′
1(t̃) sin(ωt)− d

′
2(t̃) cos(ωt))

ω(D2 + u2)
)du|t̃=t− 1

ω
arctan u

D
.

(A.4)
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In short, its numerical format is close to

Jk(t) =
k∑

r=0

k!

r!(k − r)!
mr,k−r(−1)k−r cosr(ωt) sink−r(ωt). (A.5)

Similar processing procedure can be found in Yu et al. [31].
Recalling that our aim is to estimate movement d(t), we initialize d(0) = 0, and decom-

pose d(t) into N-order polynomial:{
d1(t) = p1,0 + p1,1t+ ...+ p1,N t

N , p1,0 = 0
d2(t) = p2,0 + p2,1t+ ...+ p2,N t

N , p2,0 = 0
, (A.6)

where 1, t, t2, ...tN is an example of N-order basis in Hilbert Space. Let k = 0, then HLCC
becomes

C0(t)−
N∑

n=0

C1,n(t)p1,n −
N∑

n=0

C2,n(t)p2,n = m0,0, (A.7)

where

C0(t) =

∫ ∞

−∞
gF (ωt−

π

2
− arctan

u

D
, u)

RD2

(D2 + u2)3/2
du

C1(t) = − sin(ωt)

∫ ∞

−∞
gF (ωt−

π

2
− arctan

u

D
, u)φ

′

n(t−
1

ω
arctan

u

D
)

D

ω(D2 + u2)
du

C2(t) = cos(ωt)

∫ ∞

−∞
gF (ωt−

π

2
− arctan

u

D
, u)φ

′

n(t−
1

ω
arctan

u

D
)

D

ω(D2 + u2)
du,

(A.8)
and {

d1(0) = p1,0φ0(0) + p1,1φ1(0) + ...+ p1,NφN(0) = 0
d2(0) = p2,0φ0(0) + p2,1φ1(0) + ...+ p2,NφN(0) = 0

. (A.9)

Therefore, Eq. (A.7) can be formulated in matrix format as

Q = MP, (A.10)

where

M =


φ0(0) · · · φN(0) 0 · · · 0 0
0 · · · 0 φ0(0) · · · φN(0) 0

C1,0(t0) · · · C1,N(t0) C2,0(t0) · · · C2,N(t0) 1
... . . . ...

... . . . ...
...

C1,0(tJ) · · · C1,N(tJ) C2,0(tJ) · · · C2,N(tJ) 1

 ,

P =
[
p1,0 · · · p1,N p2,0 · · · p2,N m0,0

]T
,

Q =
[
0 0 c0(t0) c0(t1) · · · c0(tJ)

]T
.

(A.11)

Normally, J is larger than 2N , thus, we solve Eq. (A.10) by pseudoinversing

P = (MTM)−1MTQ. (A.12)
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More complicated, if we consider the rotation effect during the measurement, where incident
angle λ̄ = ωt − ϕ(t) is a function of t, then analytical solution becomes unreachable. Hence,
an iterative scheme with designed cost function is applied to find the solution,

E(k, t) = vk(t)−
k∑

r=0

k!

r!(k − r)!
(−1)k−rmr,k−r sin

r( ¯λ(t)) cosk−r( ¯λ(t)),

P = argmin
K∑
k=0

(ω(k)

∫
E2(k, t)dt),

(A.13)

where ω(k) is a weighting function equals one.
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Appendix B

Structure Tensor based Two-step Online Method for System Geometry Calibration

In this material, we will present analytical solutions to some simplified cases. Fig. B.1 shows an
object-biased cone beam geometry in CT scanning. In our experiment, detector plane (u − v)
and X-ray source (S) are fixed, object-rotated device is movable. Therefore, assuming X-
ray source projected point S ′ as the origin and building upon a world coordinate system as
Fig. B.1 shows. Given measured distance SDD and SOD, we have X-ray source coordinates
S(0, 0, SDD) and object center coordinates O(m,n, SDD − SOD), where m is bias in X-
direction and n is bias in Y-direction, m, n are not equal 0. For object (abcd) in cylinder shape,
assume its length equals 2l and radius equals r.

Figure B.1: Demonstration of scanning geometry

Let z1 = SDD − SOD, z2 = SDD, then in x-z plane, Fig. B.1 right part, object center
O is (m, z1) and four points on tangent boundaries, a, b, c, d, they have such relation:{

(x−m)2 + (z − z1)
2 = r2

x−m
z−z1

x
z−z2

= −1
. (B.1)

Let Z = z − z1, c = z2 − z1, we can infer the solution

z1 = z1 +
r2c+mr

√
m2 + c2 − r2

m2 + c2
, x1 =

c(z1− z1) +m2 − r2

m

z2 = z1 +
r2c−mr

√
m2 + c2 − r2

m2 + c2
, x2 =

c(z2− z1) +m2 − r2

m
.

(B.2)
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where
√
m2 + c2 − r2 is the length of the line segment |Sa(c)| > 0, thus z1 > z2. According

to Fig. B.1, we have a, b, c, d coordinates as

a(x1, b− l, z1), b(x2, b− l, z2), c(x1, b+ l, z1), d(x2, b+ l, z2), (B.3)

where b is center O coordinates in Y-direction. For m > 0 case,

a(x2, b− l, z2), b(x1, b− l, z1), c(x2, b+ l, z2), d(x1, b+ l, z1). (B.4)

Assume in-plane rotation angle error, η, in x-y plane, and it rotates as Fig. B.2 shows, a
clockwise rotation from dotted line to solid line. Then we have[

x
y

]
=

[
cos η sin η
− sin η cos η

] [
x−m
y − n

]
+

[
m
n

]
. (B.5)

Thus points after rotation noted as a′, b′, c′, d′,

a′((x1−m) cos η − l sin η +m,−(x1−m) sin η − l cos η + n, z1),

b′((x2−m) cos η − l sin η +m,−(x2−m) sin η − l cos η + n, z2),

c′((x1−m) cos η + l sin η +m,−(x1−m) sin η + l cos η + n, z1),

d′((x2−m) cos η + l sin η +m,−(x2−m) sin η + l cos η + n, z2).

(B.6)

and their corresponding projection onto detector plane, A, B, C and D as Fig. B.1 left shows,
can be calculated through vector method

Pi = ki
−→
Spi + S, i = a′, b′, c′, d′, (B.7)

where ki is scaling factor and can be solved by

ka′ = kc′ =
z2

z2 − z1
= k1, kb′ = kd′ =

z2
z2 − z2

= k2, k1 > k2. (B.8)

Figure B.2: Sketch of in-plain rotation
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Then each projected point, A, B, C and D, its coordinate could be represented as

A(k1xa′ , k1ya′ , 0), B(k2xb′ , k2yb′ , 0), C(k1xc′ , k1yc′ , 0), D(k2xd′ , k2yd′ , 0). (B.9)

We can observe that

AC = k1 × ac = k1 × (2l sin η, 2l cos η, 0), BD = k2 × bd = k2 × (2l sin η, 2l cos η, 0).
(B.10)

Thus, we can draw the conclusion that if central ray of X-ray source is perpendicular to the
object and the detector plane, then in-plane rotation won’t affect projection boundaries’ parallel
character. Therefore, if we can detect boundary information from the projection image, we can
measure the in-plane rotation degree directly by

η = arctan(
x

y
), (B.11)

where x stands for X-axis component, y stands for Y-axis component.

Case 1: Only Tilt(θ) error, No in-plane rotation(η = 0), no bias(m,n = 0):
Tilt is a rotation in y-z plane around X-axis, as Fig. B.3 shows, denoted as θ. Due to the ex-
istence of the tilt, we can observe that projection image of a cylinder is no longer “rectangle”
shape.

Figure B.3: Sketch of object cone beam scanning with Tilt rotation only

In order to determine the location of four points on the projection image boundaries, we build
a local coordinate system as Fig. B.3 right shows, whose origin is the X-ray source point pro-
jected onto the Line Os, noted as S ′′ and the Length of OS ′′ is

|OS ′′| = |OS| cosα = |OS| sin θ, |OS| = SOD,α =
π

2
− θ. (B.12)
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Then as previous introduced, we can obtain the object points, a, b, c and d, coordinates as

a(−t,− |OS| sin θ − La, z
′), b(t,− |OS| sin θ − La, z

′),

c(−t,− |OS| sin θ + Lb, z
′), d(t,− |OS| sin θ + Lb, z

′),
(B.13)

where (t, s) stands for local coordinate system variables, La and Lb are s-component distance
away from the object origin S ′′, and z′ = r2/ |OS| cos θ. Later we can show that boundary
sloping rate is independent from the La and Lb elements, which meets the principle that any
two given points can determine one line.

Next, transform local coordinates into world coordinate system according toxy
z

 =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 t
s
z′

+

 0
|OS| sin θ cos θ
|OS| sin2 θ + z1

 . (B.14)

We got a, b, c, d coordinates as

a

(
−

√
r2 − r4

|OS|2 cos2 θ
,−La cos θ −

r2

|OS| cos θ
sin θ,−La sin θ +

r2

|OS|
+ z1

)
,

b

(√
r2 − r4

|OS|2 cos2 θ
,−La cos θ −

r2

|OS| cos θ
sin θ,−La sin θ +

r2

|OS|
+ z1

)
,

c

(
−

√
r2 − r4

|OS|2 cos2 θ
, Lb cos θ −

r2

|OS| cos θ
sin θ, Lb sin θ +

r2

|OS|
+ z1

)
,

d

(√
r2 − r4

|OS|2 cos2 θ
, Lb cos θ −

r2

|OS| cos θ
sin θ, Lb sin θ +

r2

|OS|
+ z1

)
.

(B.15)

Then following the Eq. (B.7), we got A,B,C,D coordinates

A =
z2

|OS|+ La sin θ − r2

|OS|

(
−

√
r2 − r4

|OS|2 cos2 θ
,−La cos θ −

r2

|OS| cos θ
sin θ, 0

)
,

B =
z2

|OS|+ La sin θ − r2

|OS|

(√
r2 − r4

|OS|2 cos2 θ
,−La cos θ −

r2

|OS| cos θ
sin θ, 0

)
,

C =
z2

|OS| − Lb sin θ − r2

|OS|

(
−

√
r2 − r4

|OS|2 cos2 θ
, Lb cos θ −

r2

|OS| cos θ
sin θ, 0

)
,

D =
z2

|OS| − Lb sin θ − r2

|OS|

(√
r2 − r4

|OS|2 cos2 θ
, Lb cos θ −

r2

|OS| cos θ
sin θ, 0

)
.

(B.16)
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Thus we can infer that

−→
AC =

(
(ka − kc)

√
r2 − r4

|OS|2 cos2 θ
, kc

(
Lb cos θ −

r2 tan θ

|OS|

)
+ ka

(
La cos θ +

r2 tan θ

|OS|

)
, 0

)
−−→
BD =

(
(kc − ka)

√
r2 − r4

|OS|2 cos2 θ
, kc

(
Lb cos θ −

r2 tan θ

|OS|

)
+ ka

(
La cos θ +

r2 tan θ

|OS|

)
, 0

)
,

(B.17)
where

−→
AC and

−−→
BD are detected boundaries on projection image. It is clear that two boundaries

are symmetric about the Y-axis, which meets our expectation in no bias case. Thus we have
slope

K =
−
−→
ACx
−→
ACy

=
−(ka − kc)

√
r2 − r4

|OS|2 cos2 θ

kc

(
Lb cos θ − r2 tan θ

|OS|

)
+ ka

(
La cos θ +

r2 tan θ
|OS|

)
=

(La + Lb) sin θ
√

r2 − r4

|OS|2 cos2 θ

(La + Lb) cos θ(|OS| − r2

|OS|)−
r2

|OS| tan θ(La + Lb) sin θ

=
r sin θ

√
1− r2

|OS|2 cos2 θ

|OS| cos θ − r2

|OS|

.

(B.18)

Let c = r
|OS| , we can simplify the K as

K =
c sin θ√

cos2 θ − c2
,−π

2
< θ <

π

2
. (B.19)

Hence, we can find the analytical solution to the tilt error when we figure out the detected
boundary slope as follows

θ = ± arccos

√
c2(1 +K2)

c2 +K2
, (B.20)

where θ symbol is the same as sloping rate K.
A phantom simulation was performed by MATLAB, in this case, we defined that SDD =

2000, SOD = 1500 = |OS|, Cylinder Radius r = 150, 2l = 400, Tilt error θ = 30. Phantom
simulation is presented in Fig. B.4. According to Eq. (B.19), we can calculated theoretical
slope K = 0.0581, while actual detected value based on edge detection method is K = 0.0588.
Following Eq. (B.20), our estimated Tilt angle error is θ = 30.2868, which is within error
range.
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Figure B.4: Phantom simulation and edge detection (a) Phantom projection image after 30
degree tilt, up and bottom edges are no longer parallel to each other. (b) Edge detected after
Canny edge detection and Hough Transform selection, certain unwanted edges are included in
automatic selection. (c) A presentation of two detected boundaries, red lines, among Canny
edges, which are estimated by RANSAC algorithm with adding extra boundary points into
dataset pool for iterative selection. (d) Two detected boundaries presented in the binarized
projection image, appearance shows fitting well.

Case 2: Tilt(θ) and slant(η) error exist, no bias(m,n = 0):
In practice, besides the tilt describing the orientation error, slant is another parameter describing
the misalignment of rotation axis orientation which refers to the inaccurate or improper place-
ment of the add-on device, as Fig. B.6 shows. In projection domain, slant error, that rotates
around the Z-axis, is similar to an in-plane rotation and noted as eta.

Refer Eq. (B.1), we have tangent point, a, b, c and d, coordinates as

a(−t,−La, z
′), b(t,−La, z

′), c(−t, Lb, z
′), d(t, Lb, z

′). (B.21)
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Then transform the local coordinates into world coordinates asxy
z

 =

cos η − sin η 0
sin η cos η 0
0 0 1

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 t
s
z′

+

 0
0
z1

 . (B.22)

Figure B.5: Sketch of object cone beam scanning geometry with Tilt and In-plane Rotation

Note counterclockwise rotation around the axis equals the positive sign of the degree η and θ.
Thus, a, b, c, d become

a(− t cos η + cos θ sin ηLa − sin η sin θz′,−t sin η − cos θ cos ηLa + sin θ cos ηz′,

sin θLa + z′ cos θ + z1),

b(t cos η + cos θ sin ηLa − sin η sin θz′, t sin η − cos θ cos ηLa + sin θ cos ηz′,

sin θLa + z′ cos θ + z1),

c(− t cos η − cos θ sin ηLb − sin η sin θz′,−t sin η + cos θ cos ηLb + sin θ cos ηz′,

− sin θLb + z′ cos θ + z1),

d(t cos η − cos θ sin ηLb − sin η sin θz′, t sin η + cos θ cos ηLb + sin θ cos ηz′,

− sin θLb + z′ cos θ + z1).

(B.23)

Then following Eq. (B.17) and Eq. (B.18), let c = |OS| = z2 − z1, we have

KAC =
−
−→
ACx
−→
ACy

=
− sin θ(t cos η + sin η sin θz′) + (c− z′ cos θ) cos θ sin η

sin θ(t sin η − cos η sin θz′) + (c− z′ cos θ) cos θ cos η

KBD =
−
−−→
BDx
−−→
BDy

=
sin θ(t cos η − sin η sin θz′) + (c− z′ cos θ) cos θ sin η

− sin θ(t sin η + cos η sin θz′) + (c− z′ cos θ) cos θ cos η
.

(B.24)
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For simplicity, let m = r
c
, X = m sin θ√

cos2 θ−m2 , then

KAC =
sin η −X cos η

cos η +X sin η

KBD =
sin η +X cos η

cos η −X sin η
.

(B.25)

Note (θ, η) and (−θ, η + π) give rise same slopes given same KAC and KBD. Thus, in this
research, degree η and θ are pre-assumed under constraint condition −pi/2 < θ, η < π/2
based on the fact that their values are pretty small otherwise they will be recognized easily
through human eyes. Then we have unique solution to these equations. For simplicity, denote
K1 = KAC and K2 = KBD, then

X =
(K1K2 + 1)±

√
k2
1 + k2

2 + k2
1k

2
2 + 1

k1 − k2
=

m sin θ√
cos2 θ −m2

. (B.26)

Therefore, we got analytical solution θ = arccos
√

m2(X2+1)
m2+X2 , η = arctan

√
K1+K2

2−(K1−K2)X
, K1 −K2 < 0

θ = − arccos
√

m2(X2+1)
m2+X2 , η = arctan

√
K1+K2

2−(K1−K2)X
, K1 −K2 > 0

(B.27)

Similarly, a phantom simulation was taken by MATLAB, in this case, we defined that
SDD = 2000, SOD = 1500 = |OS|, Cylinder Radius r = 150, 2l = 400, Tilt error θ = −30,
Eta error η = −30. Phantom simulation is presented in Fig. B.6. According to Eq. (B.25), we
can calculated theoretical slope K1 = −0.5024, K2 = −0.6575, while actual detected value
based on edge detection method is K1 = −0.5052, K2 = −0.6561. Following Eq. (B.27), our
estimated Tilt and Slant angle error are θ = −29.2984,η = −30.0359, respectively.
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Figure B.6: Two examples of Tilt and Slant determination. (a) case, tilt = -30 degree, slant = -30
degree, (b) case, tilt = 20 degree, slant = 40 degree, estimated K1 = 0.7866 and K2 = 0.9035,
estimated tilt = 18.7434, slant = 40.1420, detected K1 = 0.7792 and K2 = 0.8974, detected tilt
= 19.0684, slant = 39.9151.
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