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Abstract 

 

 

 Increasing prices for fossil fuels contribute to rising electricity prices. This coupled with 

the drop in the cost of solar photovoltaic (PV) panels has led to a rapid growth in PV adoption. 

Commercial poultry is a growing agricultural sector with substantial energy needs, which has led 

to interest in PV as a means of decreasing input costs. Research questions remain, however, 

about whether PV systems are profitable and what size systems should be built to be the most 

profitable. Also, various utility rates (sell and buy prices) and compensation structures for PV 

(such as net metering, net billing, and buy-all, sell-all) have significant impacts on profitability. 

Because these rates and structures vary across utilities, it is beneficial for poultry growers and 

those providing advice to growers to understand these impacts. We collect original load data 

from a commercial poultry farm located in northern Alabama and use a government-developed 

software platform to simulate the effects of varying billing rates, billing structure, and system 

size. The simulation is run thousands of times to develop a Monte-Carlo distribution of 

profitability over all treatments. We then use descriptive statistics on the variation of profitability 

across trials and a regression to estimate the average effect of each treatment, holding other 

drivers constant. Findings show that net metering provides the highest profitability, ceteris 

paribus; for instance, over the expected life of the system, net metering on average produces 

$14,630 more profitability than net billing and $16,513 more than buy-all, sell-all structures. The 

results also show how various system sizes affect profitability under different billing rates and 

structures, revealing which system is likely to be most profitable in various areas of the U.S. 
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Introduction 
 

Increasing prices for fossil fuels contribute to rising electricity prices and greenhouse gas 

emissions. A rapidly changing society deeply concerned about climate change has no doubt 

made an impact in renewable energy policy. So much so that many world leaders have made 

climate change one of their focal issues, with some committing to achieve carbon neutrality 

before 2050. Achieving neutrality given that a continually increasing population poses a 

challenge.  Many believe this challenge could be addressed by shifting electricity consumption 

from traditional non-renewable energy sources to zero-carbon emission sources, such as nuclear 

power, wind, and solar energy. As evidence, according to the Energy Information Administration 

(EIA, 2020) 12% of the energy production in the US now comes from renewable sources, a 

three-fold increase when compared to the year 2000. The EIA has also projected that this 

increase in renewable energy production and consumption will only continue through the year 

2050. This increase in renewable energy is shored up by less waste and less pollution produced 

compared to traditional nonrenewable resources. 

The rapidly increasing adoption of photovoltaic systems (termed PV herein) in the 

poultry industry arises in part, because of the decrease in PV materials and installation costs. For 

instance, Barbose et al. (2014, 2015, 2016) showed that the median installation cost for PV has 

dropped 50% from an average of $8/watt to $4/watt in less than 6 years; similarly, PV material 

costs 75% less (from $4/watt to $1/watt). PV adoption has also increased because of public 

policies—especially incentive programs. Policymakers have implemented a variety of incentives 

such as tax credits (either personal or corporate), sales tax exemptions, low-interest loan 

programs, grant programs, net energy metering (NEM) laws among others. According to the 

Database of State Incentives for Renewables & Efficiency (DSIRE) there are 234 incentive 
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programs available in the US and its territories, including both regulatory policies and financial 

incentives.  

The agricultural section is especially well positioned for PV use because of high energy 

needs and a desire for “sustainable” food production designations. For instance, the biggest 

poultry production and processing company, Tyson, has announced plans to reach net-zero 

greenhouse gas emissions throughout its entire supply chain by the year 2050. One of the key 

drivers for this initiative is the shift of 50% of Tysons electrical consumption from fossil fuels to 

renewable energy by 2030. Thus Tyson, a company that produces 45 million chickens a week  

through 3,890 chicken supply partners, could potentially be a tipping point for poultry farmers to 

adopt renewable energy sources as their main source of electricity (Tyson Sustainability Report, 

2021). This shift would provide benefits not only for environmentally conscious consumers and 

poultry production companies, but especially for contract poultry growers, who already operate 

on thin margins. For instance, Simpson et al. (2007) found that electricity costs are the second 

highest variable cost in broiler production, similarly Tabler et al. (2004) report that electricity 

costs account for 25% of the annual gross farm income, therefore the implementation of PV 

systems could help offset part of these costs. 

Commercial poultry farms have large electrical loads used primarily for cooling. The 

chickens are in enclosed houses that require growers to carefully control the temperature and air 

quality. According to the Cobb Broiler Management Guide (2018), production losses can occur 

from heat stress depending on the maximum temperature, duration of such exposure, and the 

relative humidity of the air. When not controlled properly, feed intake, growth and fertility drop 

due to the stress. Consequently, mortality, immunosuppression, and cannibalism rise. Because 

most poultry growers are contract producers, the loss of production due to such stress could 
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potentially mean significant income loss for the farmers (Cobb Broiler Management Guide, 

2018). 

Other researchers have studied PV and its applications for poultry, some studies were 

conducted in the distant past when PV systems were more expensive. Cain et al. (1977) was 

amongst the first ones to research the applicability of solar energy for poultry applications in 

Maryland. Though his results seemed promising, he concluded that the high price of the 

technology made it unfeasible when compared to fossil fuel derived energy.  His results also 

showed that though total replacement with PV would be unfeasible, however his results suggest 

the use of solar thermal collectors could provide a portion of the energy while being less 

expensive than propane. Cain and Van Dyne (1977) concluded that at the time the cost of solar 

technology was a limiting factor as it was unprofitable when compared to the use of natural gas 

or diesel for heating in broiler production.  

Later research done in the 1980s focused on optimization of system size through linear 

modeling. Hardy et al. (1983) focused on optimization through linear programming for solar 

collectors, by comparing systems that delivered between 20 – 60% of the annual heating needs. 

The author argued that the high cost of the technology becomes a barrier to adoption as only 

smaller system sizes seemed profitable. Bazen & Brown (2009) examined PV adoption in 

Tennessee, concluding that, when properly incentivized, PV systems would be profitable. Byrne, 

Glover & Van Wicklen (2005) showed that in Delaware a 1.5 kW system size over 25 years is 

only marginally more expensive than grid connected electricity; however, Byrne, Glover & Van 

Wicklen (2005) do argue that this could happen because of “congestion”, referring to those cases 

where the load demands cannot be met by the current grid system, thus creating a cost for the 

utility company. Byrne (2005) then suggests the use of “Time of Use” rate, this allows for 
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variable rates according to the time of day. Byrne, Glover & Van Wicklen (2005) concluded that 

the feasibility of PV for commercial poultry is highly sensitive to changing electricity prices 

meaning that the feasibility depends on the rates. Mohammadi et al. (2020) showed that in the 

long run the cost of electricity production through solar panels when compared to grid 

connection is more cost effective. Bazen & Brown (2009) showed that, though there is a 

potential for feasibility in the applications of PV systems in poultry, the adoption of PV in 

poultry would not be financially beneficial unless incentive programs were applied.  

The study closest to ours is Brothers et al. (2022), where they compared the profitability 

of two PV generation profiles, three different solar deals (composed of both retail and avoided 

costs), and system size. Brothers et al. (2022) found that due to the load profile in broiler 

production and the variation among rate structures, profitability varies greatly depending on the 

utility compensation, system size, and billing structure. They concluded that smaller systems are 

more profitable regardless of the solar availability. However, Brothers et al. (2022) did not 

consider net metering billing structures and had an unfavorable assumed split between buy and 

sell rates. The authors also note the lack of variability on weather data. For these reason, though 

Brothers et al. (2022) represented rates, structures, and weather in three poultry growing 

locations, they did not consider a fuller range of options as we do herein. 

This paper seeks to contribute further guidance about how a grower can select the most 

profitable PV system size given the institutions they cannot change (billing rates and structures). 

This paper investigates how charge rates, fixed costs, month to true up, and different billing 

structures impact the net present value (NPV) of PV. By using original data on loads from an 

actual poultry house, we employ NREL’s System Advisor Model (SAM 2021.12.2) to estimate 

different NPV for each treatment with replication. We also use solar data from Cullman, 
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Alabama, available from 1998-2020 to develop 25 years of random solar irradiance in order to 

evaluate three different system sizes (45 kW, 75 kW, 130 kW), three different compensation 

policies for excess generation: Net Energy Metering (NM), Net Billing (NB), and Buy all Sell all 

(BASA). We use data from Open EI (Utility Rate Database | Open Energy Information, 2015), 

this is a free storehouse of rate structure information from utilities across the US. To measure the 

effect of electricity rates a simulation approach is used to generate fixed monthly costs and 

varying compensation rates for electricity. We also include the addition of 12 months to 

represent different true-up months. True-up is the month that energy generated verses energy 

used from the grid is reconciled. We simulate 5,112 unique NPV calculations and then analyze 

using a multiple regression model to determine the statistical significance and be able to estimate 

regression coefficients that will help us predict the NPV of future PV installations.  

The specific contributions to the research literature include the following. First, this paper 

uses a stochastic modeling approach to the variables, where previous research relied on single 

simulations which limits the ability to do a more detailed analysis. Second, this paper uses 

original solar data from a broiler house, meaning that unlike solar PV estimation for residential 

or industrial manufacturing this adds a variability component in usage profiles generating high 

peaks of consumption, and very low peaks of consumption due to the nature of broiler 

production itself. 

The paper is structured as follows: Section 2 provides background information on the 

current situation of these incentive policies and information on electricity consumption for 

poultry farms. Section 3 provides the theoretical model, where the model is discussed and how 

we have adapted previous models to suit our need by noting the importance of the  chosen 

variables. Section 4 provides our empirical framework where we discuss the estimation 
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equations and the models used for regression. Section 5 describes the data and descriptive 

statistics used for the generation of the values for solar production, and the stochastic values used 

to generate the values for the stochastic variables.  Section 6 provides our results. Finally, 

Section 7 provides our summary and policy implications. 

Modeling of the Experiment 

This section shows how we model our experiment. We begin by introducing a policy literature 

review where we explain the different billing structures that will later determine three of our 

treatments. This is followed by the theoretical model section where we describe our theoretical 

model and the assumptions we make for our research. We then describe our simulation setting, 

shown in Figure 1, then the stochastic variables that compose the rest of our treatments. Finally, 

we describe our econometric approach to our simulated data through regression modelling to be 

able to quantify the effects of our treatment variables and draw analytical conclusions, 

Background on Billing Rates and Mechanisms 

This section provides a background on the composition of grid connected solar systems 

compensation and policies. This enables an understanding of how these statutory and regulatory 

policies and options might address one of the biggest challenges for PV adoption—the 

installation costs. Because the development of  PV systems usually requires significant upfront 

investments, some government agencies and utility companies offer incentives. These incentives 

can come from four sources according to Hay (2016): federal, state and local governments, and 

utility companies. The analysis in this paper does not incorporate tax or federal credits because it 

is known that it would result in a higher NPV of the same magnitude as the present value of the 

credit itself. Currently 41 of 50 US states have adopted some form of NEM legislation (Inskeep, 
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Kennerly, & Proudlove 2015). Idaho and Texas have voluntary NEM policies depending on the 

utility company, and lastly only three states have no NEM programs whatsoever (DSIRE 2016). 

Compensation mechanisms can vary within the same state or zip code. Utility companies 

also vary their offers across consumers, including base rates, capacity limits, and time of use 

structures, energy credit rollover, among others. With all these possible variables, it raises the 

question on how PV adopters can maximize their private benefits when faced with so many 

constraints that are institutional rather than choice. 

Because compensation mechanisms have a direct impact on NPV, or the value of a PV 

investment, it is crucial that consumers understand the differences between these metering and 

billing structures. Zinaman (2017) identified three primary compensation mechanisms 

components. First, there is a metering and billing arrangement, this refers to how consumption 

and generation related energy flows are measured. There are three main types of metering and 

billing arrangements: 

1) Net Energy Metering (NM):  Billing system that allows a PV owner to export excess 

energy to the utility grid and generating a credit in kWh. This credit can later be used to 

offset consumption of electricity in the same billing cycle. 

2) Buy All, Sell All (BASA): Billing system that offers a long-term standard rate to the PV 

owner for all the electricity their system generates. The customer is still billed for all the 

electricity they consume independently of the electricity they produce. 

3) Net Billing (NB): This is a metering and billing arrangement where customers can 

consume the electricity produced by their PV system or export the excess generation at a 

predefined sell rate. 
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The second factor is the sell rate design, this describes the compensation a PV owner receives for 

the electricity exported to the grid. Lastly, there is the retail rate design, which defines the retail 

tariff structure, or time-of-use purchase rates the PV owner must pay to the utility company. This 

paper focuses on how the different metering and billing arrangements combined with varying 

static rates affect the NPV of PV. 

Theoretical Model 

Previous authors have built optimization models to study PV; however, Brothers et al. (2022) is 

the only paper to our knowledge that used the SAM model to generate simulation trials. This 

paper builds on that design and builds a model that can interface with the SAM model to collect 

Monte Carlo data. This section also explains why the selected treatments offer insight. 

 Assuming a poultry grower already has an existing operation, the decision problem is  

reduced to whether to add a PV system and, if so, how large. This decision—assuming risk 

neutrality—can be formulated as whether (1) the NPV of adding a PV system of a given size is 

positive or (2) which system size produces the largest NPV. Let NPV = f(XE, X; YE, Y), where 

vectors X are potential choice variables and Y are exogeneous variables. Some choice variables 

will be controlled as treatments in this paper’s experiment, denoted XE. However, there are many 

other potential choice variables (X), which the researchers will not systematically vary—either 

holding them fixed at reality-informed averages or allowing them to vary within the NREL SAM 

simulation, which is described below. Many exogeneous factors affect NPV, such as weather, 

electric utility policies, etc. Some of these factors will be controlled in our experiment (YE) 

because they are specific to a location (weather, solar availability, etc.) or to poultry operations 

(the electric profile of a representative poultry farm). 
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There are many exogenous drivers that we could vary but we allowed SAM to control as 

fixed for model simplicity. SAM uses 10 main categories of variables: location and resource, 

system design, grid limits, lifetime and degradation, installation costs, operating costs, financial 

parameters, incentives, electricity rates and electricity loads. These variables can be varied 

depending on the research to be done (see Figure 1, boxes II and III). For our analysis we vary 

factors that reflect our treatments. Several location-specific variables (see Figure 1, box II) will 

be controlled as treatments in our experiment. For the first category of location and resource we 

will input a TMY file obtained from the National Radiation Database and hold the weather 

profile constant across all simulations. For system design, we vary system capacity, while 

keeping everything else in that category constant. Grid limits, lifetime and degradation, 

installation and operating costs, financial parameters and incentives are held fixed using the 

default values provided by SAM (see Figure 1, box II fixed). The electricity rates and structures 

are varied using data from the National Utility Rate Database, which we will then use to generate 

new values that will be evaluated as part of our treatments. Lastly, the load data comes directly 

from a grower who provided one year of hourly electricity consumption for their house. This 

component was held fixed for all simulations. 

The representative farmer’s decision problem in a setting would be to maximize the 

discounted stream of profits from a change to a PV system: 

 𝑁𝑃𝑉𝑡 = 𝑓𝑡(𝑿𝑬, 𝑿; 𝒀𝐸 , 𝒀), 𝑡 = 1 … 𝑇,
𝑿𝑬

𝑀𝐴𝑋  

where T is the terminal time of the PV system lifespan and where salvage value is assumed to be 

$0. Typically, this setting would be parameterized as an inter-temporal optimization problem—

with or without some variables drawn from a known probability distribution—which ideally 
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would have a choice variable of t* indicating the optimal time to build the system and possibly a 

system size choice variable. However, we do not use an dynamic framework, assuming the only 

option is to build the system today or not. There are still far too many drivers of profitability to 

collect data and use statistical inference—say in a quasi-experimental setting—to determine how 

real-world poultry growers are making these decisions. As such, the only option to solve this 

problem is to reduce the choice variables as much as possible and then use an expert-informed, 

existing simulation as an experimental setting.  

Simulation Experiment 

The simulations use the National Renewable Energy Laboratory (NREL) software System 

Advisor Model (SAM). There are eight stages in our experiment process (see Figure 1). SAM 

allows the calculation of different financial metrics for renewable energy projects. We use NPV 

as the dependent variable, which combines into a single measure all the costs and benefits of the 

lifespan of the PV system, in this case we assume a lifespan of 25 years, with a 15 year debt. 

SAM uses models from Short et al. (1995). The NPV calculation is a standard discounting 

formula: 

𝑁𝑃𝑉 =  ∑
𝐹𝑛

(1 + 𝑑)𝑛
𝑁
𝑛 = 0   , where 

𝐹𝑛 is the net cash flow in year n, 𝑁 is the expected lifespan of the system, and d is the discount 

rate. This matches our model where we specify the choice and exogenous variables in the 

function as (𝑿𝑬, 𝑿; 𝒀𝐸 , 𝒀). 

Thus, the NPV model stated before is dependent on the net cash flows in every year of 

the system’s lifecycle. SAM utilizes the most common cashflow metric, which according to 

Ruegg et al. (1990) is “end-of-the-period cashflows”, which refers to how the cashflows are 
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grouped, in this case the cashflows are aggregated at the yearly level. The calculation of this 

cashflows relies on the difference between revenues and costs, as stated before. For the purpose 

of this paper, we can identify the source of revenue and the sources of costs. Revenue for solar 

systems consists of the income generated by the selling of excess electricity. Costs associated 

with the system are the actual cost of the system, the insurance cost, cost of operations and 

maintenance and finally the tax costs.  

We formulate our experiment using SAM to isolate the choice variable for system size 

(SS), (see Figure 1, stage III in red) including the three main billing structures (NM, NB, BASA) 

(see Figure 1, stage III in green) and over a reality-informed set of pricing (BUY) (see Figure 1, 

stage V). We access the Utility Rate Database in order to obtain data on pricing rates; with this 

data we can generate random values from the given distributions. We can then assume a time of 

use schedule of only one tier and using SAM parametric simulation, and we can take the random 

values generated from the previous data and substitute them in the parametric inputs. SAM 

allows the inclusion of the three billing mechanisms under the general electricity rates option by 

creating indicator variables for any of the metering options. We run the simulations by size 

separately to capture the effects of the system size choice variable (SS). This process generated 

5,112 observations 576 replications for NB and NM interacted with three system sizes 

(45,75,130) for a total of 3,456 and 5521 replications for BASA interacted with three system sizes 

(45,75,130) for a total of 1,656, which combined is 5,112 observations total. 

  

 
1 552 observations were generated only for BASA as SAM software performed this automatically and 

given computation limitations only 552 simulations where used. 
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Econometric Analysis of Simulation Data 

We use a regression to analyze the simulation data on the effects of billing structures and 

mechanisms across PV installations. All models will have the net present value (NPV) as the 

dependent variable. Because of near and perfect collinearity, models 1-3 will use subsets of the 

following list of variables: fixed monthly cost (FMC), the electricity buy rate (BUY), the 

electricity sell rate (SELL), an interaction term of the buy rate multiplied by the sell rate 

(BUYxSELL),  the inclusion of three indicator variables for the billing structure, Net Metering 

(NM), Net Billing (NB) , Buy-All, Sell-All (BASA), and lastly an interaction term for billing 

structures multiplied by the system size (NMxSS, BASAxSS). This yielded three models where we 

hold each of the possible billing structures and their interactions as a reserve category. 

Model 1: Interaction Effects (IE) model 

𝑁𝑃𝑉𝑖  =  𝛽0  +  𝛽1(𝐹𝑀𝐶)  + 𝛽2(𝐵𝑈𝑌) + 𝛽3(𝑆𝐸𝐿𝐿)  + 𝛽4(𝐵𝐴𝑆𝐴) + 𝛽5(𝑁𝐵) + 𝛽6(𝑆𝑆)  

+ 𝛽7(𝑁𝐵𝑋𝑆𝑆)  +  𝛽8(𝐵𝐴𝑆𝐴𝑋𝑆𝑆) +  𝛽9(𝐵𝑈𝑌𝑋𝑆𝐸𝐿𝐿) +  𝜀    

The appendix presents Sub-IE Model 1a, which is the same as Model 1 except NB is the reserve 

category. In Sub-IE Model 1b, BASA is the reserve category. 

Model 2: Main Effects Model 

𝑁𝑃𝑉𝑖  =  𝛽0  +  𝛽1(𝐹𝑀𝐶) + 𝛽2(𝐵𝑈𝑌) + 𝛽3(𝑆𝐸𝐿𝐿)  + 𝛽4(𝑁𝑀) + 𝛽5(𝑁𝐵)  + 𝛽6(𝑆𝑆)  

+  𝛽7(𝐵𝑈𝑌𝑥𝑆𝐸𝐿𝐿) +  𝜀 

The independent variables are those that we hypothesize to have an impact on NPV. In 

net metering, BUY = SELL. This requires including both interaction terms of buy and sell and 

running the models holding different billing structures as reserve categories to address 
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multicollinearity. The other assumptions based on the billing structures reflect that the buy rate 

will always be higher than the sell rate in the cases of Net Billing and Buy All, Sell All. We 

hypothesize that some variables will have a positive effect on the NPV. We hypothesize that NM, 

because it is arguably the best billing structure, will have a positive effect with the largest 

magnitude. NB will have a positive effect, but to a lower magnitude than NM, and lastly BASA 

we hypothesize will have a negative effect on NPV. Regarding the rates we believe that BUY will 

have a negative impact on NPV (for the cases of NB, and BASA) as its associated with a cost. 

Similarly, we hypothesize the FMC will have a negative impact as it is a cost as well. On the 

other hand, we hypothesize SELL will have a positive impact as it reflects positive cashflows 

from revenue. BUYxSELL allows us to measure the overall magnitudes of BUY and SELL.2 

We hypothesize that increasing the SS variable will increase the NPV of PV as a general 

rule even though previous research by Brothers et al. (2022) suggests that smaller systems would 

be more profitable. We explore the possibility that including additional billing structures in 

addition to NB, and by expanding the possible BUY and SELL rates onto a continuum across a 

large range, we could see optimum system sizes change in response to these additional options. 

For this paper the BUY rates where generated and we eliminated all the negative values, this was 

done because a negative BUY rate would mean that the utility company is paying the PV owner 

for consuming electricity which would never happen in real life. After this the SELL rates where 

generated, the SELL rates for NM where equal to the BUY rates, however for the other two 

billing structures NB and BASA the SELL rates were generated by multiplying the previously 

generated BUY rates with a random number between 0.01 – 0.99. As such we expect that for 

 
2 For this research we did try to use a Buy to Sell ratio and a Sell to Buy ratio, however this created multicollinearity 

and didn’t allow us to capture the magnitude of the Buy and Sell variables and because of that we have included an 

interaction instead. 
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most cases SELL will tend to be approximately 50% of the BUY  rate which is different than 

Brothers et al. (2022) where the best deal they evaluated was only 30%. 

In this paper, we use a continuous system size instead of indicator variables (SS45, SS75, 

SS130), so that we may draw inference over this range 45 – 130 kWh. Using indicator variables 

may be the easiest to interpret but assumes that there is a monotonically increasing or decreasing 

relationship as system size increases; otherwise, the statistical significance of the continuous 

system size coefficient could be incorrect and/or the true relationship be hidden. This would be 

the case, for instance, if SS75 produced the highest NPV. However, the appendix presents the 

models with indicator variables, and this shows the relationship is monotonically increasing. 
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Data 

This section explains data collection processes, summary statistics on the input data, and the data 

cleaning process. Data collection can be separated into three stages. The first stage gathers load 

data (hourly profiles of energy consumption) and weather data for solar irradiance (see Figure 1, 

stage I). The second stage develops the treatment variables used for the simulation process, by 

this we refer to the collection of means and standard deviations of the fixed monthly costs, and 

the buyback rates across the nation (see Figure 1, stages II, III, IV, and V). The final stage is the 

output data from the simulation (see Figure 1, stage VI, and VII)  which will be used in the 

regression (see Figure 1, stage VIII). 

Weather and Poultry Load Data 

For the weather data, the format chosen was a TMY (typical meteorological year), such data 

contain one year of hourly data accessed through the NSRDB (National Solar Radiation 

Database). One key advantage of using this type of data is TMY data files contain a whole year 

(8,760 observations) of hourly data that best represents median weather conditions over a 

multiyear period. This data is produced by analyzing multiyear data sets and 12 months are 

chosen from that time frame that best represent median conditions. For this paper the solar data 

comes from hourly observations from Cullman, Alabama, (34.17379° N, -86.84301° E) from the 

years 1998 – 2020. From this, we generate a totally random meteorological year that represents 

the weather conditions of the area. Cullman, Alabama, was chosen as the location because the 

load data used also contains 8,760 observations of electricity consumption for a poultry house 

near Cullman, Alabama, and as such it coincides with the weather data. Summary statistics for 

both the weather and load data are in Table 1. 
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Data for Simulation 

We rely on simulated data for this paper mainly because the data are unavailable and simulation 

data are relatively inexpensive to collect. In order to be able to generate values for the simulation 

we used data from OpenEI which is a platform that contains The URDB (Utility Rate Database). 

This database provides rate structure information for 3,827 EIA recognized utility companies. 

The original dataset contains 50,066 different rate structures from different utility companies, 

however as part of our data cleaning process, and to represent more closely rates typically 

available to poultry operations, we selected only commercial rates with peak capacity of 500 kw 

for single phase wiring only. This yielded 813 (Figure 2) rate structures across the US from 

which we collected means and standard deviations of the fixed monthly charges and electricity 

rate structures.  It is worth mentioning that for this paper, we only consider static single rates. 

There are two reasons on why we chose to only use single rates, the first one is because of the 

data source, OpenEI through their utility database does not contain many observations with 

multiple rate schedules that would be useful for this research, the second reason has to do with 

the inputs on SAM, if we incorporated such rates the analysis would have been more 

complicated and as such only static single rates are used. Summary statistics for the simulation 

data are provided in Table 2. 
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Results 

This section first presents descriptive statistics on the experimental data from the simulation. 

Then, a regression is used to interpret the experimental data. The final subsection explores the 

implications of the regression results, allowing an estimate of how one might choose an optimal 

system size under different billing arrangements.  

The experiment results have several indicators of validity despite using only 5,112 

iterations. The reason for not running more trials is that each experiment treatment combination 

(see figure 1) had to be inputted in SAM separately. In addition, SAM also requires the data to be 

prepared in very specific formats, and the preparation is not done automatically. As such, 5,112 

observations was the number of iterations the researchers could conduct within the time 

constraints. Nonetheless, the regression results presented below show that the number of 

iterations was sufficient to isolate the impact of the different treatments. 

Descriptive Results 

Summary statistics (Table 3) show an average NPV of $53,936 across all treatments, meaning 

that on average PV systems for this given load profile and solar availability are profitable. 

However, NPV ranges from -$46,577 to $379,623, which means that even with the model 

assumptions some growers may see negative or very high profits from PV. As load data, weather 

data, and costs are the same for all simulations, this substantive variability arises from the 

underlying varying factors in SAM, and the fact that there is an incorporation of simulations 

(outliers) where choices made would not necessarily be options in real life 

When the experimental data are separated into treatments of three billing arrangements 

and three system sizes, descriptive statistics are more readily interpretable because the only 

remaining variability should be from the stochastic choices made in SAM (Table 4). There are 
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positive median NPV for each of the nine treatment combinations. However, the median NPV 

values are considerably higher under NM than NB, both of which are considerably higher than 

BASA—as we hypothesized. The last column of Table 4 lists the percent of iterations under each 

treatment combination where the NPV is negative. The results show that under NM, only 0.34 - 

3.47% of iterations were negative, which in turn suggests that most growers should make money 

from installing PV—as long as the poultry growers situation matches the assumptions in the 

experiment’s model. NB also has a very low number of iterations, where the grower would lose 

money. In contrast, BASA has 43.47 - 45.10% of iterations where the grower would lose money. 

This means that growers in regions with BASA billing structures should be most cautious about 

PV; note that the regression results allow more precise predictions under different billing rates. 

Table 4 also shows that the median NPV increases with larger system sizes. For 45 kWh 

systems, NM increases median NPV by $8,160 more than NB and $39,004 more than BASA. For 

the medium size systems NM increases median NPV by $15,371 more than NB and by $60,706 

when compared to BASA. Finally, on the largest system size NM increase NPV increases median 

by $28,284 more than NB and by $90,953 when compared to BASA. 

 

Regression Results  

The regressions in Table 5 explains a considerable portion of the variation in the dependent 

variable (R2=0.37). Because the data are generated through a simulation in which stochastic 

processes generated observations, it is unsurprising that 63% of the variation is not controlled by 

the independent variables. If there is not a substantively important systematic process in the 

uncontrolled variation that varies with heterogeneous poultry farm characteristics, then our 

controlled regression results should be correct for poultry growers. In other words, there is a lot 
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affecting the profitability of PV, but commercial poultry farming involves many risks, and our 

regression controls the most important institutional and choice variables in decision making 

surrounding PV. 

The results obtained from an OLS regression explaining NPV are described in this 

section. As part of our models, we estimated several additional models to address 

multicollinearity in billing rate variables, to rotate the reserve categories on billing structure 

treatments, to examine different specifications of the system size treatment variables, and to 

conduct robustness checks (see Appendix Table A1, A2, A3). For instance, we estimated a main 

effects model as shown in Table A1 with the use of dummy variables as identifiers for our 

system size treatments (SS45, SS75, SS130); as observed in the appendix we can identify that 

system size is significant at the p < 2e-16, this shows that the coefficients were indistinguishable 

from zero and as such can be rejected at the 1% level or better. By changing the reserve category 

and finding significance on these variables we can more easily conclude that the treatments are 

indeed different from each other —as opposed to a separate statistical difference test. As part of 

our main results, we use a continuous variable for our treatments. We argue that using a 

continuous measure improves the interpretation of the coefficients in our applied analysis. We 

run a different interaction model (Table A2) as a robustness check, we developed one interaction 

effects model with the addition of true-up month as part of our analysis. that model contained 11 

categorical variables for months (FEB – DEC holding JAN as our reserve category) and later we 

evaluate the same model by holding our different billing structure treatments as a reserve 

category. This model allowed us to determine that true-up month has no significant effect in 

explaining the NPV; therefore, we decided not to include these variables as part of our final 

model. Secondly, if such variables would have had statistically significant impact, the 



27 

interpretation of such variables could be wrong, as this significance would only be true if the 

load distribution was exactly the same for other projects, which is not the case in reality. Instead, 

we focus on the Main Effects Model, and the Interaction Effects Model for this analysis. 

 We first interpret the main effects model (MEM) in Table 5 because it offers a baseline 

explanation of the billing structure treatments. We hold the other treatments constant without 

complicating interpretations with interaction effects. Each billing structure treatment (NM, NB, 

BASA) Table 5 shows that the coefficients were indistinguishable from zero and as such can be 

rejected at the 1% level or better. On average, the NPV of PV decreases by $52,200 (p < 2 e-16 ) 

in locations where the billing structure is BASA when compared to the reserve category (NM). 

Similarly, NB decreases NPV by $5,649, relative to NM. We find that the null hypothesis that the 

coefficient was indistinguishable from zero can be rejected at the 1% level or better, and thus we 

can conclude that there are significant differences across the billing structures. 

Observing the pricing structures in the main effects model, we see that both BUY and 

SELL show the null hypothesis that the coefficient was indistinguishable from zero can be 

rejected at the 1% level or better. Explaining the NPV, we determine that NPV will increase on 

average by $52,240 times the buy rate, (though we hypothesized BUY would have a negative 

impact on NPV we observe that this is not the case, we argue that because we included 

BUY*SELL as an interaction captures part of the effect), and $333,000 times the sell rate. The 

interpretation of the variables could be easily misinterpreted. What the results from this model 

show is that an increase of $1 per kWh on the SELL rate will increase the NPV on average 

$333,000; however, electricity rates are measured in cents and thus a better interpretation would 

be an increase in $0.01/kWh on the SELL rate will increase the NPV on average by $33,000. This 

result shows that for most cases, and particularly NB and BASA, the profitability of a PV 
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installation relies more on the rate that the producer is selling, rather than the rate at which the 

producer is buying the electricity. Observing the SS, we observe a positive and significant impact 

on NPV meaning that larger systems will provide higher NPV.  

The main effects model is an incomplete explanation of the drivers of NPV because one 

anticipates treatment interactions. For instance, we expect that increasing SS by one unit will 

have a different effect across different billing structures. The principal interaction effects model 

(IEM) in Table 5 and the models shown in the appendix (Table A3) are the same model, but the 

billing structure reserve category was rotated. Model 1 shows the effect of NB and BASA 

relative to the reserve NM. Model 2’s reserve is NB. Model 3’s reserve is BASA. 

 In the IEM in table 5, we observe similarities across the models. In all models, the results 

suggest that FMC  has no effect on NPV that can be statistically distinguished from zero. This 

could be explained by two underlying reasons, the first one being that for commercial poultry 

installations the average FMC of only $111 has little contribution to system cost and would be 

easily covered by the first excess generation. The second reason is, given that the yearly cost is 

on average $1,332, it is insignificant when compared to the other costs associated with PV 

installations. Overall, given our selected variables, we can conclude that fixed monthly cost has 

no significant and substantive impact on the long-term, overall profitability of PV. 

All models show that BUY, SELL, NB, and SS, increased NPV, where the null hypothesis 

that the coefficient was indistinguishable from zero can be rejected at the 1% level or better. In 

the case of SELL, the coefficient interpretation suggests that an increase on the sell rate by $1 

will increase the NPV on average by $337,500; however, as mentioned previously the correct 

interpretation for this application would be that an increase in sell rate of $0.01/kWh will 

increase the NPV on average by $33,750. Furthermore, the NB coefficient is significant and on 
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average will increase the NPV by $14,630. In addition, BUY increased NPV, where the null 

hypothesis is that the coefficient was indistinguishable from zero can be rejected at the 5% level 

or better. The largest positive expected effect from the billing structure treatments came from 

NM, followed by NB, and lastly BASA. However, in order to conclude that NB and BASA are 

different we chose to calculate the confidence intervals in order to determine whether there is an 

overlap. At a significance level of α = 0.95 we determine that the values for NB lie between 

$6,392 – $22,873 and in case of BASA the confidence interval ranges from -$10,498 – $6,738, 

therefore we find that at a 95% confidence interval there are no significant statistical differences 

between these two variables.  

The model also shows negative drivers to NPV. In this case NB*SS , BASA*SS and 

BUY*SELL decreased NPV, where the null hypothesis that the coefficient was indistinguishable 

from zero can be rejected at the 1% level or better. For NB*SS, an addition of 1 kW in system 

capacity, (in cases where NB is the billing structure) NPV will decrease on average $241 when 

compared to the reserve category (NM) and installations where BASA is the billing structure the 

NPV will decrease by $602 per every increase in system capacity of 1kW when compared to NM. 

This result is consistent with our hypothesis given that we know that NM will always yield a 

higher NPV.  Such decrease can be interpreted as such that in cases where the billing structure is 

NB or BASA increases in system size will generate a negative increase on the NPV, which is not 

surprising given that previous research has shown consistently that smaller system sizes will 

usually be more profitable under such billing structures. 
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Model Application  

The experiment results show how PV profitability varies, relatively, with choices made by the 

grower and billing rates and structures beyond the grower’s control. Both the data from the 

descriptive statistics and the regression show that NM as a billing structure will increase the 

profitability of PV by 25% to 100% when compared to other billing structures, however its worth 

noting that this estimation yielded no negative NPV we argue that because on average the split 

between BUY and SELL of roughly 50% yields deals that are always profitable on average. 

Given that electricity is the biggest variable cost in contract poultry production (Simpson, 2007), 

PV may be a viable option for poultry growers, not only as a cost reduction, but also perhaps 

even as a source of income in cases where electricity consumption is at its lowest. Through our 

research we hope to keep poultry growers from installing overly large systems that will not be 

profitable in the long run, particularly in locations where the billing structure is BASA. 

 Furthermore, we compare how the NPV is affected as we increase the system size under 

different structures, we evaluate the IEM by varying the SS variable continuously and by using 

indicator variables for our billing structure treatments we can compare how the profitability of 

PV is affected. As seen on Figure 4, we observe the different slopes when comparing BASA to 

the other billing structures. As such we can infer that the marginal profit from installing one 

extra unit of system size varies substantively with the billing structure. We can argue that the 

grower’s decision on what system size to build should not be decided exclusively on the load, 

which is the common practice  in the solar industry, but rather on the maximization of NPV on 

the long run which this is even more crucial in the case of poultry production when compared to 

flat load consumption (say a factory). This scenario could be applicable to not only poultry, but 

in all cases where load profiles follows a biological growth curve. It is vital that the billing 



31 

structures are considered in such cases where there will be excess production in the beginning of 

cycles, followed by very high usage peaks.  

 

Conclusion 

Solar adoption has been increasing since the early 2000’s as companies and consumers become 

more environmentally conscious and as solar technology prices continue to decline. As 

agricultural production (particularly poultry) relies on fossil fuels for energy, the increase in the 

cost of such fuels has influenced the adoption of PV in many cases as a cost reduction 

technology. In cases such as contract poultry farming, electricity accounts for the biggest cost to 

the producer. Because of this, poultry farms are now considering shifting from fossil fuels to 

renewable energy sources. However, when producers are faced with the choice of shifting from 

fossil fuels to renewable energy, it is vital that producers understand how to make the right 

choices.  

 In order to determine what system size to install, it is important that producers choose a 

size not based on covering their entire consumption load, but rather build a system that 

throughout a 25 year analysis provides the highest NPV. As mentioned earlier the, NPV is a 

product of multiple factors including billing structures and rates, and because these structures 

and rates vary across locations, it is vital that we are able to provide some guide for decision 

making. As such we collect original load data from a poultry farm and use a NREL developed 

software to calculate how the NPV changes as we change the system size, the billing structure 

and the electricity rates. Finally in order to analyze the effects of these policies we employed a 

multiple linear regression model to determine the effect of these variables on the NPV. We find 



32 

that Net Energy Metering provides the highest profitability, this is $14,633.37 dollars more 

profitable than NB and $16,513.38 more profitable than BASA. 

Though our research provides some reference on how the billing structures, system size 

and rates affect the profitability of PV this model shouldn’t be considered a “recipe” for solar 

installations. Our scope of research is somewhat limited. For instance, we only employ data from 

one poultry house, from one year and from only one location. The lack of load data is one of the 

main limitations we face, second, we do not consider the cost side of the equation. Though our 

costs are held fixed, it is possible that varying costs of materials and installation could potentially 

have a significant effect on the profitability of PV, potentially increasing NPV as equipment 

costs continue to decline. Lastly, with fewer time and resources restrictions, more simulations 

could be done to provide a better dataset that allows for more precise results. 

Nevertheless, though our research presents some limitations, this study does allow for 

policy implications. When considering such, it is vital to understand that changes in billing 

structure policy affects producers, utility companies and governments. For instance, if net energy 

metering policies where to be implemented it would greatly benefit producers to be able to offset 

the cost of their bill and in cases where there is excess electricity (assuming the buyback rate is 

higher than the cost /kWh) it could potentially mean a producer might profit. From the utilities 

perspective there are advantages as well. For instance, at peak hours of sunlight the excess 

electricity can be used to cover demand from nearby areas. However, if there is no regulation on 

system size, it is possible that the utility companies would have to assume the extra cost of an 

overproduction of electricity. Among other benefits for utility companies is the possibility of 

having distant grid locations where poultry farms often are located supported by localized 

distributed energy production from PV, thus improving voltage drops and decreasing potential 
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outages. Lastly, the impact on government institutions is quite interesting. Though we have no 

solid evidence of this in our paper, perhaps the implementation of net energy metering policies 

could potentially act as a substitution effect on tax credits and grants,  thus incentivizing the 

installation of PV at lower cost to government. On the other hand, states where net energy 

metering is not present will require subsidies that allow compensation in response to a lack of net 

energy metering policies.  Ultimately, legislators and public service commissions have the 

opportunity to increase the implementation of renewable energy across the US with promotion of 

positive net metering policies, while at the same time promoting the interests of utility 

companies and environmental concerns. We hope that this research serves as a background for 

further research, as mentioned before future research could potentially compare different varying 

loads across different sectors, consider further variations in locations and weather among others. 
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Tables 

Table 1. Summary statistics of weather and load data. 

Variable 

Name 
Description Unit No. of Observations Mean 

Std. 

Deviation 
Min Max 

DHI Direct Normal Irradiance w/m2 52,559 64.09 99.48 0 499 

DNI Diffused Horizontal Irradiance w/m2 52,559 201.56 325.84 0 1038 

GHI Global Horizontal Irradiance w/m2 52,559 182.69 275.93 0 1053 

Load Electricity consumption per hour kWh 8,760 19.82 20.87 0 84.48 
Note: Source NRDB. 
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Table 2. Summary statistics of random variables. 

Variable Name Description Unit 

No. of 

Observations 

Mea

n 

Std. 

Deviation Min Max 

Fixed Monthly Charge 

Fixed monthly charge 

regardless of electricity 

production or consumption 

$ / 

Month 
813 43.76 64.66 0.34 370 

Buy Rate Electricity buy rate $ / kWh 813 0.09 0.06 
0.002

5 

0.87

3 

Note: Source Utility Rate Database. 
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Table 3. Descriptive Statistics of Simulation Results 

Variable Description Unit Type 
Institutional 

or Choice 
Mean Median Min Max 

NPV Net Present Value $ Continuous N/A 53,936 43,146 -46,577 379,263 

FMC Fixed Monthly Cost $ Continuous Institutional 111.93 84.61 0.03 370 

MONTH Month for true up (Jan-Dec) 0 or 1 Indicator Institutional 5.5 5.5 0 11 

BUY Electricity buy rate $ Continuous Institutional 0.10 0.09 0.0003 0.34 

SELL Electricity sell rate $ Continuous Institutional 0.06 0.05 0.000004 0.34 

SS System size kWh Continuous Choice 83.33 75 45 130 

SS45 System size of 45 kWh 0 or 1 Indicator Choice 0.33 0 0 1 

SS75 System size of 75 kWh 0 or 1 Indicator Choice 0.33 0 0 1 

SS130 System size of 130 kWh 0 or 1 Indicator Choice 0.33 0 0 1 

NM Net Metering 0 or 1 Indicator Institutional 0.33 0 0 1 

NB Net Billing 0 or 1 Indicator Institutional 0.33 0 0 1 

BASA Buy All, Sell All 0 or 1 Indicator Institutional 0.32 0 0 1 

Note: Data output was generated through SAM v 2021.12.2. 
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Table 4. Descriptive Results       

Billing Structure System Size kWh Median NPV Min Max 
% Of installations with NPV 

< $0 

Net Metering (NM) 

45 $46,565.10 -$1,069.00 $154,038.00 0.34% 

75 $71,302.35 -$5,660.00 $273,565.00 2.26% 

130 $113,293.00 -$14,627.00 $379,263.00 3.47% 

Net Billing (NB) 

45 $38,170.50 -$1,160.00 $149,627.00 0.52% 

75 $56,876.65 -$5,267.00 $219,276.00 2.60% 

130 $78,182.95 -$14,606.00 $330,130.00 5.03% 

Buy All, Sell All 

45 $4,267.49 -$16,107.00 $114,802.00 43.47% 

75 $4,759.51 -$26,871.00 $161,596.00 44.38% 

130 $7,446.60 -$46,576.00 $272,322.00 45.10% 

Note: Original work from authors.    
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Table 5. Regression results for Interaction Effects Model and Main Effects Model 

Variable 

IEM 

NPV ($) 

(s.e.) 

p-value 

MEM 

NPV ($) 

(s.e.) 

p-value 

Intercept 
 -16,050***  

0.0000007 
7,029*** 

0.01 
(3,579) (2,898) 

FMC 
53.17 

0.55 
49.7 

0.58 
(89.5) (91.05) 

BUY 
48,690*** 

0.01 
52,240*** 

0.01 
(20,000) (20,340) 

SELL 
337,500*** 

< 2 e-16 
333,000*** 

< 2 e-16 
(38,550) (39,000) 

BASA 
-1,880 

0.66 
-52,200*** 

< 2 e-16 
(4,397) (2,278) 

NB 
14,630*** 

0.0005 
-5,649*** 

0.004 
(4,205) (1,976) 

SS 
797*** 

< 2 e-16 
520*** 

< 2 e-16 
(31.7) (18.7) 

NB*SS 
-241.03*** 

0.000000007 

 
 

(44.8)  

BASA*SS 
-602*** 

< 2 e-16 

 
 

(45.2)  

BUY*SELL 
-705,500*** 

0.0002 
-697,000***  

0.0003 
(190,200) (193,400) 

N 5,112 5,112 

R2 0.37 0.35 

Note:  All continuous predictors are mean-centered and scaled by 1 standard deviation.  *** p < 0.01.  
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Figures 

 

Figure 1. Experiment Modeling Diagram. 
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Figure 2. Histogram of rates ($), obtained from Utility Rate Database.  
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Figure 2. Histogram of BUY rates ($), obtained from data generation process through SAM.  
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Figure 4. NPV under varying system sizes and billing structures. 
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Appendix 

Previous Models 

As mentioned previously, we did several models before the last ones we reported.  As part of the 

data collection, we also included True-Up month as a variable (indicated using 11 indicator 

variables, FEB = February, MAR = March … NOV = November, DEC = December, holding 

January as the reserve category). In addition to that, we also included BTSR (Buy to Sell Ratio) 

and STBR (Sell to Buy Ratio). However, these models showed multicollinearity, higher standard 

errors and lastly including the True-up month could potentially indicate significance in certain 

months, however such significance would only reflect the impact in cases where the loads are 

distributed exactly like the load profile we used for this analysis. The results for these models are 

shown in Table A1. 

 

Figure 1A. Correlation Plot generated through R. 
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 The models that we previously evaluated are: 

Sub-Model 1A Net Metering as a reserve category, with the addition of true up month 

𝑵𝑃𝑉𝒊  =  𝛽0 +   𝛽1𝐹𝑀𝐶 +   𝛽2𝐵𝑈𝑌 +   𝛽3𝑆𝐸𝐿𝐿 +   𝛽4𝐵𝐴𝑆𝐴 +   𝛽5𝑁𝐵 +   𝛽6𝑆𝑆 +   𝛽7𝑁𝐵

∗ 𝑆𝑆 +   𝛽8𝐵𝐴𝑆𝐴 ∗ 𝑆𝑆 +   𝛽9𝐵𝑈𝑌 ∗ 𝑆𝐸𝐿𝐿 +   𝛽10𝐹𝐸𝐵 ⋮  𝛽20𝐷𝐸𝐶 +  𝜀,

𝑖 =  1. . . 5112   

Sub-Model 2A Net Billing as a reserve category, with the addition of true up month 

𝑵𝑃𝑉𝒊  =  𝛽0 +  𝛽1𝐹𝑀𝐶 +   𝛽2𝐵𝑈𝑌 +   𝛽3𝑆𝐸𝐿𝐿 +   𝛽4𝐵𝐴𝑆𝐴 +   𝛽5𝑁𝑀 +   𝛽6𝑆𝑆 +   𝛽7𝑁𝑀 ∗

𝑆𝑆 +   𝛽8𝐵𝐴𝑆𝐴 ∗ 𝑆𝑆 +   𝛽9𝐵𝑈𝑌 ∗ 𝑆𝐸𝐿𝐿 +   𝛽10𝐹𝐸𝐵 ⋮  𝛽20𝐷𝐸𝐶 +  𝜀,  𝑖 =  1. . . 5112 

Sub-Model 3A BASA as a reserve category, with the addition of true up month 

𝑵𝑃𝑉𝒊 =  𝛽0 +   𝛽1𝐹𝑀𝐶 +   𝛽2𝐵𝑈𝑌 +  𝛽3𝑆𝐸𝐿𝐿 +   𝛽4𝑁𝐵 +   𝛽5𝑁𝑀 +   𝛽6𝑆𝑆 +  𝛽7𝑁𝑀 ∗ 𝑆𝑆 

+  𝛽8𝑁𝐵 ∗ 𝑆𝑆 +   𝛽9𝐵𝑈𝑌 ∗ 𝑆𝐸𝐿𝐿 +   𝛽10𝐹𝐸𝐵 ⋮  𝛽20𝐷𝐸𝐶 +  𝜀,

𝑖 =  1. . . 5112 

Table A2 shows the results from these models, as we can observe the true up month shows that 

each coefficient on months are not statistically different from each other at the p < 0.1 level or 

better. As such we can infer that the true up month has no significant impact on the NPV, and 

even if they where it could lead to misinterpretation as this significance would only be true for 

loads distributed exactly like the load data we use. 
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Table A1. Regression results for models with true-up month as indicator variables. 

Variable 

Model 1A 

NPV ($) 

(s.e.)  

Model 2A 

NPV ($) 

(s.e.) 

Model 3A 

NPV ($) 

(s.e.) 

Intercept 
-13,160*** 1,397 -15,110*** 

(4185) (3994) (4376) 

FMC 
52.36 52.36 52.36 

(89.5) (89.5) (89.5) 

BUY 
48,180*** 48,180*** 48,180*** 

(20,002) (20,002) (20,002) 

SELL 
338,000*** 338,000*** 338,000*** 

(38,650) (38,650) (38,650) 

BASA 
-1,949 -16,500***  

(4,397) (4,240)  

NB 
14,550***  16,500*** 

(4,205)  (4,240) 

SS 
797*** 556*** 194.3*** 

(31.38) (31.68) (32.37) 

NB*SS 
-241***  361.4*** 

(44.81)  (45.3) 

BASA*SS 
-603*** -361***  

(45.29) (45.3)  

FEB 
-5,308 -5,308 -5,308 

(3,177) (3,177) (3,177) 

MAR 
-5685 -5685 -5685 

(3,179) (3,179) (3,179) 

APR 
-5977 -5977 -5977 

(3,176) (3,176) (3,176) 

MAY 
-673.46 -673.46 -673.46 

(3,176) (3,176) ((3,176) 

JUN 
-4,253 -4,253 -4,253 

(3,176) (3,176) (3,176) 

JUL 
-3,994 -3,994 -3,994 

(3,176) (3,176) (3,176) 

AUG 
6,57 657.29 657.29 

(3176) (3,176) (3,176) 

SEPT 
-3,239 -3,239 -3,239 

(3,177) (3,176) (3,176) 

OCT 
-784.27 -784.27 -784.27 

(3,176) (3,176) (3,176) 

NOV 
-1,544 -1,544 -1,544 

(3,177) (3,176) (3,176) 

DEC 
-1,377.12 -1,377.12 -1,377.12 

(3,176) (3,176) (3,176) 

BUY*SELL 
-688,800*** -688,800*** -688,800*** 

(190,070) (190,070) (190,070) 

NM 
 -14,550*** 1,949 
 (4,205) (4,397) 

NM*SS 
 241.2*** 602.6*** 

  (44.81) (45.29) 

N 5,112 5,112 5,112 

R2 0.37 0.37 0.37 
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Table A2. Regression results for interaction effects model with different reserve categories. 

Variable 

IEM 1 

NPV ($) 

(s.e.)  

IEM 2 

NPV ($) 

(s.e.) 

IEM 3 

NPV ($) 

(s.e.) 

Intercept 
-16,050*** -1,418 -17,930 *** 

(3,579) (3370) (3,816) 

FMC 
53.17 53.17 53.17 

(89.51) (89.51) (89.51) 

BUY 
48,690*** 48,690 *** 48,690 *** 

(20,000) (20,000) (20,000) 

SELL 
337,500*** 337,500 *** 337,500 *** 

(38,550) (38,550) (38,550) 

BASA 
-1,880 -16,510***  

(4,397) (4,240)  

NB 
14,630***  16,510*** 

(4,205)  (4,240) 

SS 
797*** 555*** 194 *** 

(31.7) (31.69) (32.37) 

NB*SS 
-241.03***  361.4*** 

(44.81)  (45.3) 

BASA*SS 
-602*** -361.4 ***  

(45.2) (45.3)  

BUY*SELL 
-705,500*** -705,500*** -705,500 *** 

(190,200) (190,200) (190,200) 

NM 
 -14,630*** 1,880 
 (4,205) (4,397) 

NM*SS 
 241.3*** 602*** 

  (44.8) (45.29) 

N  5,112 5,112 5,112 

 0.37 0.37 0.37 
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Table A3. Regression results for Main Effects Models with different reserve categories 

Variable MEM1 P-Value MEM2 P-Value MEM3 P-Value 

Intercept 
7,029*** 

0.01 
1,380 

0.6 
-45,210*** 

< 2e-16 
(2,898) (2,672) (3,142) 

FMC 
49.7 

0.585 
49.7 

0.585 
49.7 

0.585 
(91.05) (91.05) (91.05) 

BUY 
52,240*** 

0.01 
52,240*** 

0.01 
52,240*** 

0.01 
(20,340) (20,340) (20,340) 

SELL 
333,000*** 

< 2e-16 
333,000*** 

< 2e-16 
333,000*** 

< 2e-16 
(39,000) (39,000) (39,000) 

BASA 
-52,200*** 

< 2e-16 
-46590*** 

< 2e-16 

 
 

(2,278) (1,966)  

NB 
-5,649*** 

0.004 

 
 

46,590*** 
< 2e-16 

(1,976)  (1,966) 

SS 
520*** 

< 2e-16 
520*** 

< 2e-16 
520*** 

< 2e-16 
(18.74) (18.74) (18.74) 

BUY*SELL 
-697,000*** 

0.0003 

-

697,000*** 0.0003 

-

697,000*** 0.0003 

(193,400) (193,400) (193,400) 

NM 

 
 

56,490*** 
0.004 

52,240*** 
< 2e-16 

  (1,966) (2,278) 

N 5112 5112 5112 

R2 0.35 0.35 0.35 

Note: All continuous predictors are mean-centered and scaled by 1 standard deviation.  *** p < 0.01; ** p < 0.05; 

* p < 0.1. 
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Table A4 . Regression results for models with system size as indicator variables. 

Variable IV-M1 IV-M2  IV-M3 

Intercept 
 79,724***  52,830***   35,121***  

(2,114) (2135) (2119) 

FMC 
4.34 4.34 4.34 

(9.2) (9.2) (9.2) 

BUY 
23,713*** 23,713*** 23,713*** 

(21,779) (21,779) (21,779) 

SELL 
215,123*** 215,123*** 215,123*** 

(21,779) (21,779) (21,779) 

BASA 
-53,477*** -53,477*** -53,477*** 

(2,252) (2,252) (2,252) 

NB 
-6,887*** -6,887*** -6,887*** 

(1,938) (1,938) (1,938) 

SS45 
-44,603***   -17,708***  

(1617)  (1617)    

SS75 
-26,894  17,708*** 

(1617)  (1617) 

SS130 
 26,894*** 44,603*** 
 (1617) (1617) 

NM 
    1,880 
    (4397.11) 

N 5112 5112 5112 

R2 0.35 0.35 0.35 

Note : Original work from authors. 

 


