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Abstract 
 
 

Brain entropy analysis – a measure of the unpredictability of a physiological time series - 

has gained attention as a measure of the complexity of brain activity in functional neuroimaging 

research. Investigations of neuropsychiatric and neurodevelopmental conditions have 

consistently demonstrated significant alterations in brain entropy compared to healthy controls. 

Additional work in healthy participants has found a gradient of brain entropy differences across 

the functional connectome associated with the resting state, as well as brain entropy differences 

in task-based neuroimaging experiments. In this study, I examined whole brain entropy at rest 

and whole brain entropy during a face-name paired association task. Region of interest (ROI) 

analyses were employed to examine hippocampal activity during different phases of the face-

name paired association task (e.g., encoding versus recognition). Results revealed no significant 

differences in whole brain entropy between the resting state and the task state. Further, no 

significant entropy differences were observed between separate phases of the task state, both at 

the whole brain level and within the hippocampal regions. Limitations such as sample size, task 

length, and study design may potentially account for null results; however, these results may also 

suggest that entropy may be a less robust measure when applied to a within-subjects design in 

healthy participants.   
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Introduction 

Functional magnetic resonance imaging (fMRI) analysis has grown in popularity as a 

method for analyzing human brain function in vivo (Poldrack et al., 2011). Consequently, there 

has been a significant increase in analytic techniques probing the resultant functional 

neuroimaging data (Friston, 2009). One such technique, brain entropy (BEN), has gained 

popularity in the last 15 years, with the first paper utilizing this technique on fMRI data 

published in 2003 (De Araujo et al., 2003). A recent PubMed search (see Figure 1) reveals a 

broad increase in papers on the subject of brain entropy; applications of brain entropy analysis to 

functional neuroimaging data continue to rise, especially since publication of a brain entropy 

analysis of participants from the Human Connectome Project (HCP) (Z. Wang et al., 2014). 

Increasingly, this technique has been applied as a method for studying group differences in 

neural functioning and differences in task performance and engagement. 

Figure 1. PubMed results returned for “Brain Entropy”, years 2000-2021. 
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 BEN is typically defined as a measure of complexity, predictability, regularity, and 

stochasticity of neural activity in the brain. Multiple methods exist for calculating BEN, each 

based on a different mathematical formulation of entropy. A variety of mathematical approaches 

to entropy analysis have been used in functional neuroimaging research; the most common 

techniques include Multiscale Entropy, Permutation Entropy, Sample Entropy, and Differential 

Entropy (Keshmiri, 2020). Each of these analytic techniques employs a measure that assesses 

variability in neural activity, but each accomplishes this assessment through different analytic 

procedures. Historically, the term entropy has been widely applied in the context of physics (as a 

means to quantify thermodynamic irreversibility (Landi & Paternostro, 2021); however, it has 

also been used to define information mathematically (Shannon, 1948). The methods of assessing 

entropy that have been applied to brain imaging research have their intellectual roots in Shannon 

entropy, which determines entropy by assessing the degree of uncertainty of the state of a given 

variable with respect to all its possible states (e.g., a variable with only 3 possible states has 

reduced Shannon entropy compared to a variable with 100 possible states). Existing methods for 

analyzing BEN build on this concept, assessing the entropy of neural activity using probability 

statistics.   

For the purpose of this project, I used a measure of entropy called sample entropy, which 

is an algorithm designed to measure the regularity (or conversely, irregularity, or randomness) of 

a series of data based on the existence of patterns (Delgado-Bonal & Marshak, 2019). Sample 

entropy is designed to assess the randomness of a dataset without any assumptions about the 

source the dataset is derived from. Sample entropy is one of several measures to assess BEN, or 

neural complexity, terms which are frequently used interchangeably in the scientific literature. 

However, sample entropy is less dependent on researcher degrees of freedom and the length of 
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the time series being assessed (Richman et al., 2004). Furthermore, sample entropy has been 

widely used to analyze time-series data from a variety of physiological systems in the human 

body (Lake et al., 2002; Nezafati et al., 2020; Yentes et al., 2013) Thus, it represents a robust and 

effective technique to assess the complexity of biological time-series.  

 Sample entropy is mathematically defined as the negative natural logarithm of a 

conditional probability that a pattern length of m points will repeat itself without including self-

matches, for m+1 within a tolerance of r in a time series of length N (Richman & Moorman, 

2000). More specifically, it is a measure of a conditional probability that two similar sequences 

of points will remain similar at the next point (Richman et al., 2004). When calculating sample 

entropy, investigators must choose values for m and r. In the context of the above definition, m 

represents the pattern length of data vectors compared against one another for matches at the 

next timepoint within a tolerance interval, similar to a confidence interval known as r. Research 

identifying optimal values for m and r remains in its infancy but will be discussed in further 

detail in the methods section.  

Specifically, when applied to fMRI data, sample entropy is calculated for each voxel in 

the time series. The entropy of a given voxel is determined mathematically by analyzing the 

probability that the BOLD signal from that voxel will repeat itself for a given pattern length, 

known as an embedding dimension (m) within a given tolerance window I. By comparing 

sequences of data from a time series, this analytic technique can measure the relative 

order/stability based on similarity/dissimilarity of data from the same participant. Entropy can 

thus be understood as a measure of predictability or regularity in the neuroimaging timeseries. 

The more predictable or regular the pattern, the less entropic it is. Importantly, since this measure 
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relies on the timeseries of individual voxels, it is an indirect measure of neural entropy since the 

time series of each voxel only indirectly reflects neuronal activity. 

Brain Entropy in Healthy Subjects 

Brain entropy has been examined in the context of resting state and task paradigms in 

healthy participants. As previously noted, (Z. Wang et al., 2014) researchers published a study 

analyzing healthy functional connectomes from the HCP dataset. Using spectral clustering, they 

found seven major clusters of differing entropy values across the functional connectome at rest ( 

Z. Wang et al., 2014). These results revealed that brain entropy differs meaningfully across 

different brain regions, suggesting a relationship between regional functional specialization and 

brain entropy.  Similarly, researchers  (Nezafati et al., 2020) found important functional 

networks of brain entropy associated with task and resting conditions. Specifically, they 

(Nezafati et al., 2020) found differing entropy values based on task related functional networks 

that differed as task demands changed. During task, the dorsal attention network of the brain had 

increased brain entropy relative to the resting state, while the entropy of the limbic system was 

reduced during task. Additionally, whole brain entropy was higher during the resting state than 

during task conditions. This experimental paradigm is notable because it demonstrates a method 

by which the relationship between task/rest, task performance, and brain entropy can be probed. 

Identifying brain entropy as a marker of neural function is only possible after understanding how 

entropy is related to specific psychological functions.  

 Notably, several studies have examined human intelligence and its relationship to brain 

entropy (Menon & Krishnamurthy, 2019; Omidvarnia et al., 2021; Saxe et al., 2018; Z. Wang, 

2021). Broadly, these studies observed a relationship between increased brain entropy and higher 

fluid intelligence. However, in a larger sample comprised of the human connectome project, 
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researchers (Z. Wang, 2021) observed that reduced entropy of the default mode network actually 

corresponded to higher fluid intelligence and better task performance. Once again, these patterns 

suggest that global brain entropy is related positively to psychological function, but the entropy 

of specific brain regions and functional networks does not necessarily follow those broad 

patterns. Brain entropy varies across the brain and these variations are largely unknown, 

especially in the context of different brain functions. 

Brain Entropy and Brain Function 

The above findings point to general theories of brain function that can be understood 

through the lens of neural complexity. A recent paper (Hager et al., 2017) argues that the existing 

literature comparing brain entropy in diseased patients relative to healthy controls point to neural 

complexity as a potential biomarker for psychosis. Yang and colleagues (2015) observed patterns 

of decreased complexity towards regularity and decreased complexity towards randomness in 

schizophrenia patients; specifically, they found these patterns were related to positive and 

negative symptoms of schizophrenia, respectively (2015). Based on Yang and colleagues (2015) 

results’, Hager and colleagues (2017) argue that altered resting state brain dynamics reflected by 

entropy differences in severe mental illness could be subject to similar dynamics observed in 

cardiovascular disease, such as reduced heart rate variability or irregularity in atrial fibrillation 

(2017). 

Furthermore, some researchers have attempted to use machine learning techniques to 

predict clinical status using entropy analyses of functional imaging data (Bosl et al., 2011; Song 

et al., 2019; Spuhler et al., 2018; Wu et al., 2021); most frequently, these techniques have been 

most successful in differentiating healthy controls and patients in various stages of cognitive 

decline and dementia (Sun et al., 2020). Although these investigations have yielded interesting 
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patterns of results, to fruitfully use BEN as a biosignature of abnormal neural function, additional 

research is needed to understand neural complexity in healthy participants, particularly in task-

related contexts given that the bulk of the literature on BEN has been applied to resting state 

data. Specifically, the existing literature in clinical populations does not inform investigators on 

the mechanisms that cause BEN to differ in pathological states, nor does it indicate the ways in 

which BEN facilitates behavioral function in healthy participants. Even if BEN could reliably 

predict specific symptoms of neuropsychiatric dysfunction, these predictions could not clarify 

the causal relationship between BEN and neuropsychiatric symptoms. Thus, the mechanisms by 

which BEN facilitates brain function must be better understood if brain entropy is to be 

considered a viable biosignature of unhealthy brain dynamics.  

Another theory of global brain function, the entropic brain hypothesis, attempts to 

integrate the existing empirical research on brain entropy (Carhart-Harris, 2014; Carhart-Harris 

et al., 2018; Carhart-Harris & Friston, 2019). Based on findings from neuroimaging experiments 

with healthy participants under the influence of psychedelic drugs, this theory proposes that 

entropy plays a critical role in the dynamics of consciousness. In particular, entropy analyses in 

these experiments show a significant increase in brain entropy once participants have ingested 

psychedelic drugs (Tagliazucchi et al., 2014; Viol et al., 2017; Varley et al., 2020). The entropic 

brain hypothesis suggests that in normal conscious states, brain activity occupies a state of 

‘criticality’- a transition point between order and disord–r - which shifts under the influence of 

psychedelic drugs (Carhart-Harris et al., 2014). The argument points to a spectrum of conscious 

states that can be understood through the ways in which brain entropy changes as conscious 

states change. This theory of criticality, if correct, would suggest brain activity functions at a 

precise balance between complexity and regularity under optimal brain function performance. 
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Thus, entropy is suppressed in waking consciousness to constrain neural activity to task 

demands. One study in healthy participants observed that increased brain entropy under the 

influence of lysergic acid diethylamide (LSD) actually predicted subsequent increases in the 

personality trait openness to experience more than six months after the psychedelic experience 

(Lebedev et al., 2016), suggesting a connection between resting brain entropy and personality 

differences. This research is critical because it may contextualize existing findings that task 

demands constrain global entropy values differentially.  

Investigators have also paid attention to the relationship between information processing, 

brain connectivity, and entropy. A notable study combined findings from 

electroencephalography (EEG) entropy, fMRI entropy, and network connectivity analysis to 

argue that there is a significant relationship between measures of functional connectivity and 

brain entropy (D. J. J. Wang et al., 2018). They observed that increased regional entropy 

predicted higher functional connectivity of a given region with the rest of the brain. They argue 

that the complexity of regional neural signals could be understood as an index of the brain’s 

information processing capacity. In this case, increased complexity might indicate greater 

transition between different states of brain networks, indicating a greater propensity for 

information processing (D. J. J. Wang et al., 2018). However, it is unclear whether increased 

complexity within a given region may aid that region in the performance of a behavioral function 

relative to increased complexity across the whole brain.  

The Hippocampus and Face-Name Paired Association  

Much existing research has examined the functional connectivity of the limbic system 

and its constituent elements, particularly the amygdala and hippocampus (Dalton et al., 2019; De 

Voogd et al., 2016; Fastenrath et al., 2014; Robinson et al., 2015, 2016; C. N. Smith et al., 2006; 
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Zeidman & Maguire, 2016). The hippocampus is involved in stages of memory encoding and 

consolidation (Raynal et al., 2020). Relevant to the present proposal, research on face-name 

paired association has demonstrated the importance of hippocampal function for face encoding 

and association (Sperling et al., 2003a; Sperling, 2003b; Sperling et al., 2001). Functional 

neuroimaging studies of face-name paired association tasks have shown strongly correlated 

activity between the right and left hippocampus during successful encoding (Sperling et al., 

2003b). Other research supports the idea that functional connectivity of the hippocampus may 

subserve successful memory encoding (Grady et al., 2003). Particularly, tasks such as these 

robustly activate the anterior hippocampus, which suggests that this region is especially 

important for associative encoding, a finding supported by meta-analytic techniques (Robinson et 

al., 2015).  

The hippocampal formation primarily consists of cornu ammonis (CA1-4), the dentate 

gyrus, and the subiculum (Wible, 2013). Different subregions of the hippocampi are involved in 

different phases of face-name association tasks (Zeineh, 2003). Further research (Tsukiura & 

Cabeza, 2008) demonstrates that successful recall on face-name paired associate tasks depends 

on the strength of functional connectivity between the hippocampus and other regions of the 

cortex. Given the argument that regional complexity may be related to functional connectivity 

such that increased regional complexity increases the likelihood of greater functional 

connectivity with other brain regions (D. J. J. Wang et al., 2018), the above results may support a 

connection between changes in the entropy of the hippocampal region and increased functional 

connectivity between the hippocampus and other brain regions. However, little is currently 

known about the entropy of the BOLD signal in the hippocampal region due to difficulties in 

image resolution at lower magnetic field strengths. If changes in entropy are observed in between 
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task and rest, this may suggest that the face-name paired association task is increasing functional 

connectivity between the hippocampus and other brain regions.  

Regional Brain Entropy vs Whole Brain Entropy 

Most research on brain entropy tends to either employ whole brain entropy or regional 

brain entropy, with the latter being performed through ROI analyses or through clustering 

techniques (Keshmiri, 2020). Consequently, there are limited empirical observations directly 

comparing whole brain and regional entropy in the same participants engaged in the same task. 

In this study, I propose to compare differences in brain entropy between task and rest conditions, 

both at the whole brain and regional levels. Such analyses may reveal that the entropy of 

different brain regions may vary in unexpected ways; for example, during a task state, it may be 

the case that whole brain entropy decreases compared to rest, but that the entropy of specific 

regions increases during rest. Such evidence might support the notion that the distribution of 

neural complexity may be as significant as the magnitude of neural complexity. Furthermore, 

recent work suggests variables such as stimulus type, task type, and participant state cause 

significant differences in the pattern of functional activation in the hippocampus (Robinson et al., 

2021). Given the direct relationship between entropy and functional connectivity, further work 

will be necessary to elucidate task, state-, and trait-related differences in neural complexity.  

Hypotheses and Pre-Registration 

Despite a surge of published studies, BEN is a relatively under-utilized analytic technique 

in the functional neuroimaging community. The bulk of the existing literature has examined 

group differences between healthy controls and diseased patients. While this work is certainly 

useful for understanding neuropathology associated with disease states, it is equally critical to 

understand the principles by which entropy is modulated in the healthy brain. To this end, I 



 18 

examined the entropy of the left and right hippocampus separately at rest and during a face-name 

paired association task. I posited that the entropy of the hippocampus should change 

meaningfully in response to interrogation via a face-name paired association task, and that 

different phase of the task would demonstrate differential effects on entropy. Methods for 

analyzing neural complexity have grown in abundance, but little is known about the specific 

relationship between neural complexity of individual brain regions and neuropsychological 

function. This research is important for understanding the relationship between entropy and brain 

function and will contribute to our understanding of how the neural complexity of the 

hippocampus subserves memory function. As such, I proposed the following hypotheses:  

H1: Sample entropy of the whole brain will be higher during rest relative to sample 

entropy of the whole brain during the face-name paired association task.  

H2:  Sample entropy of the whole brain will be higher during the encoding phase of the 

face-name paired association task relative to sample entropy of the whole brain during 

the recognition phase of the face-name paired association task.  

H3: Sample entropy across the bilateral hippocampus will be higher during the encoding 

phase of the face-name paired association task relative to the recognition phase of the 

face-name paired association task.   

These hypotheses and the analytic plan described in the methods were pre-registered on the Open 

Science Framework (https://osf.io/4tkp2/).  

 

https://osf.io/4tkp2/
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Methods 
 
Participants 

Participants (between 19 and 25 years old) were volunteers recruited from the Auburn 

University community with no contradictions for magnetic resonance imaging. Contradictions 

for magnetic resonance imaging included the following: the presence of pacemakers, implanted 

cardioverter defibrillators, any metal implanted in the body, some dental work, prior injury to the 

eye involving a metal object or fragment, any implanted medical device or non-removable 

device, breathing problems or disorders, claustrophobia, inner ear disorders, vertigo or dizziness, 

tattoos or permanent makeup that contains metal, and body piercing jewelry that cannot be 

removed. Participants were recruited as part of a research study investigating hippocampal 

function. Recruitment primarily occurred through the Auburn University Department of 

Psychological Sciences online participant recruitment system (https://auburn.sona-systems.com). 

In total, 35 participants were recruited, with useable data from 31 participants (4 participants 

were excluded due to claustrophobia, cramps, inability to follow instructions, and scanner issues, 

respectively; see Table 1). This study employed a within-subjects design: all participants were 

required to complete all tasks. However, not all participants that completed the tasks had 

available data for each imaging condition; therefore, this document only reports on participants 

with usable data for all scans. In total, twenty-four participants had usable data for the scans 

relevant to this project. 

  

https://auburn.sona-systems.com/
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Table 1  
 
Participant Demographics 
Characteristic Sample 
Gender  

n 24 
Male 10 

Female 14 
Age  

M 21.1 
SD 1.5 

Handedness  
Left 2 

Right 22 
 

Prescreening Measures 

Participants in this study filled out several pre-screening measures. Specifically, they 

filled out a demographic and medical history questionnaire in preparation to complete the 

functional neuroimaging portion of the experiment (see Appendix 1), including a handedness 

questionnaire (see Appendix 2). Participants recruited to this study were also pre-screened for 

symptoms of depression and excluded if they met diagnostic criteria for depression via the Beck 

Depression Inventory (BDI) (Beck et al., 1961). The BDI (21 items) is a self-report assessment 

that measures depressive symptoms and asks subjects to consider their thoughts/feelings of the 

previous two weeks. Scores range from low depression (1-16) to moderate depression (17-30) to 

significant depression (> 31) (see Appendix 3). Participants with moderate depression and 

significant depression were not considered beyond pre-recruitment. Participants were also pre-

screened for symptoms of Posttraumatic Stress Disorder (PTSD) using the PTSD Checklist 

(PCL) Civilian Version (Weathers et al., 1993) and excluded if they met diagnostic criteria. This 
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checklist (17 items) is a self-report assessment that measures PTSD symptoms that asks 

participants to consider their thoughts/feelings of the previous month. Items are scored into types 

B, C, and D, and diagnostic criteria are based on a response to at least one B item, three C items, 

and two D items (see Appendix 4). Personal attitudes and traits were also briefly assessed using a 

shortened 10-item version of the Marlow-Crowne social desirability scale, to assess participants’ 

self-reported social desirability bias (Strahan & Gerbasi, 1972) (see Appendix 5). No other 

psychiatric or mental health conditions were screened for in this study.  

Magnetic Resonance Imaging Prescreening Measures 

Following the completion of the above prescreening measures, each participant was 

verbally interviewed either in person or over the phone using the MRI Subject 

Recruitment/Advance Screening Form (see Appendix 6). If a participant answered yes to any of 

questions 4-13 on the MRI Subject Recruitment/Advance Screening Form or had any of the 

implanted devices at the bottom of the form, the participant was informed that they did not meet 

qualifications for the study. Participants that met qualifications were invited to schedule a time to 

participate in the research study.  

Upon arrival to the Auburn University Magnetic Resonance Imaging Center, an 

investigator met participants in the reception area on the first floor. Participants were presented 

an Informed Consent form and asked to fill it out and return it to the investigator. After clarifying 

participant understanding of the informed consent form, participants filled out the MRI Pre-Entry 

Screening from (see Appendix 6). The investigator then asked participants if they were feeling 

well that day. Upon confirming this, both the participant and investigator signed the MRI Pre-

Entry Screening Form.  
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Participants were then asked to change into surgical scrubs provided by the Auburn 

University MRI Research Center. Participants were then weighed facing outwards from the scale 

(no comment was made on participant weight). Participants were then shown the neurocognitive 

tasks they would later complete in the scanner. Participants were able to practice the tasks on the 

computer monitor to increase familiarity with the task procedure. Following a brief practice 

period, participants were then scanned by an operator with Level 3 MRI safety training. Upon 

completion of the study, participants received $25 as compensation for their time. Further, 

participants also received two hours of SONA credit to be applied as extra credit in their 

psychology courses. 

Functional Neuroimaging 

All neuroimaging data were acquired on the Auburn University MRI Research Center 

(AUMRIRC) 7T Siemens MAGNETOM outfitted with a 32-channel head coil by Nova Medical 

(Wilmington, MA). A whole-brain high-resolution 3D image utilizing an MPRAGE sequence 

was collected (256 slices, 0.63mm x 0.63mm x 0.60mm, TR/TE: 2200/2.8, flip angle = 7°, 

base/phase resolution = 384/100%, collected in an ascending fashion, TA = 14:06) for 

registration purposes.  

All functional neuroimaging measures were captured during one experimental session. 

Participants performed a memory task encoding faces/words/scenes (a task unrelated to the 

present document), followed by a face-name paired associate task, a face matching task, a resting 

state fMRI scan, a diffusion tensor imaging scan, and a recognition of faces/words/scenes. The 

relevant imaging scans for completion of this project were the face-name paired associate task, 

the resting state scan, and the MPRAGE structural scan.   

Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) 



 23 

High resolution, submillimeter rs-fMRI was performed. Specifically, participants were 

scanned with an echoplanar imaging (EPI) sequence, optimized in-house for the hippocampus 

(37 slices acquired parallel to the AC-PC line, 100 volumes, interleaved acquisition, voxel size = 

0.85mm x 0.85mm x 1.5mm, TR/TE = 3000/28ms, flip angle = 70°, base/phase resolution = 

234/100%, A>P phase encode direction, iPAT GRAPPA acceleration factor = 3, TA = 5:00). 

Participants were asked to lie in the scanner with their eyes closed and to not think about 

anything in particular for the resting state portion of the scan. The use of the 7T MAGNETOM, 

with its improved spatial resolution and sensitivity, affords a more precise characterization of 

blood oxygen level dependent (BOLD) signals from the hippocampus, a region which is 

especially hard to image precisely and reliably at lower magnetic strengths (Springer et al., 

2016). The same imaging parameters were utilized to perform task-based functional imaging. 

Task-based Functional Magnetic Resonance Imaging 

 High resolution, submillimeter task-based fMRI was also performed as well. Total 

acquisition time for the task-based imaging was 10 minutes and 6 seconds. While in the scanner, 

participants completed a face-name paired associate task, known to reliably elicit hippocampal 

activation (Tsukiura & Cabeza, 2008). Briefly, this task consisted of an encoding phase, in which 

participants were shown faces with names listed underneath, and a recognition phase, in which 

participants were shown the same faces and were required to indicate with a button box which 

letter corresponded to the name associated with that face. The task was programmed using E-

Prime 2.0 (Psychology Software Tools, Pittsburgh, PA). Images of faces were gray scaled with 

the same dimensions for each image.  
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Face/name pairings for this task were presented in blocks (6 encoding blocks and 6 

recognition blocks). Blocks alternated back and forth (one encoding block, one recognition 

block, followed by a rest period, and then the beginning of a new encoding/recognition series of 

blocks). Novel faces were presented in each encoding block, for a total of 30 faces over the task 

period. At the beginning of the task, participants viewed an instruction screen for 6000ms 

informing them of the instructions for the following encoding block. Following a brief rest 

period, they were shown a face with a name underneath. Participants viewed faces for five 

seconds with a one second rest period (where participants viewed a black fixation cross in the 

center of a white background) between faces. Following the presentation of five faces, there was 

a thirty second rest period where participants viewed a black fixation cross in the center of a 

white background. The 30 second rest period was completed between each block.  

Next, an instruction screen appeared for 6000ms prior to the recognition phase. In the 

recognition block, participants viewed the five faces previously displayed in the encoding block 

for five seconds, only with letters under the image of each face. Participants were required to 

indicate (using an in-scanner button box) which initial displayed at the bottom of the screen 

corresponded to the first letter of the name associated with the previously displayed face. 

Images of faces were gray scaled with the same dimensions (see Figure 2 for an example of 

encoding and recognition blocks; see Appendix 7 for a time chart of the task protocol). 

 During data collection, there was a communication issue between the in-scanner button 

box and E-prime 2.0, which prevented participant responses on the button box from being 

properly recorded. As a consequence, I was unable to assess participant accuracy in correctly 

pairing faces to names. Thus, no behavioral data are presented in this study.  
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Figure 2. Task-Protocol for Face-Name Paired Associate Task

 
 

Functional Magnetic Resonance Imaging Preprocessing 

Preprocessing was performed using the sample entropy toolbox on the task and resting 

state fMRI data (Z. Wang et al., 2014). This toolbox runs preprocessing analyses via MATLAB 

scripts utilizing both Statistical Parametric Mapping 12 (SPM12) along with the FMRIB 

software Library (FSL) version 6.0. All preprocessing steps described in this section were 

completed for both RsfMRI data and TfMRI data.  

To begin, the image origin was reset at the anterior commissure in order to ensure proper 

alignment of functional images to structural images in SPM12. Following this, the structural 

images were segmented in SPM12 for each subject; gray matter, white matter, and cerebrospinal 

fluid (CSF) were each segmented, and a deformation field was generated to be used for 
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normalization. Afterwards, slice timing correction was completed in SPM12. Following slice 

timing correction, realignment and motion correction was performed in SPM12. Then, 

calculation of signal to noise ratio was performed in SPM 12, and each functional image was 

then co-registered to its anatomical counterpart. Temporal nuisance filtering was performed 

using a bandpass filter; this script implemented CompCor, a component based method for noise 

reduction in blood oxygenation level dependent (BOLD and perfusion-based (fMRI) (Behzadi et 

al., 2007). The last preprocessing step performed before calculation of BEN was spatial 

smoothing. All functional images were smoothed at a 4 mm Gaussian kernel.  

 BEN maps were then calculated for each subject (more detail on this process is provided 

in the next subsection). After entropy maps were calculated, co-registration was performed; BEN 

maps were co-registered to the preprocessed functional images, and they were each co-registered 

to their respective anatomical images. This ensured that BEN maps were properly aligned with 

both their functional and structural images to afford more precise comparison of entropy maps 

within subjects. Then, spatial normalization was performed on the preprocessed BEN maps, 

aligning the BEN maps into MNI space. Finally, spatial smoothing was performed on the BEN 

maps themselves with a 9mm Gaussian kernel to reduce signal to noise ratio in the entropy 

calculation.  

Measuring Brain Entropy  

 The Brain Entropy Toolbox (BENtbx) was used to calculate the entropy for both task and 

resting state neuroimaging data (Z. Wang et al., 2008 Z. Wang et al., 2014). Brain entropy 

calculations were performed with a binary code that runs a sample entropy calculation on an 

fMRI time-series. This tool treats each voxel as its own time-series, computing the sample 

entropy for every brain voxel. Upon calculating entropy, the file generates a BEN map 
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containing a spatial distribution of entropy values across the whole brain (see Figure 3 for an 

example of a resting-state whole BEN map and Figure 4 for a mosaic of resting state BEN maps 

for all participants).  

Figure 3. Example of a Single Participant Whole Brain Entropy Map for the Resting-state

    
The values on the color bar represent signal intensity at each voxel  

 

 
Note. Darker colors represent lower entropy, brighter colors represent higher entropy values.  
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Figure 4. Resting-state Whole Brain Entropy Maps for all Participants 

 

The values on the color bar represent signal intensity at each voxel  
 

 
Note. Darker colors represent lower entropy, brighter colors represent higher entropy values.  

As described in the introduction, the values for m and r in the formula for sample entropy 

must be chosen by the investigator. Prior literature has compared differing values of m and r for 

fMRI experiments. (Z. Wang et al., 2014). The general consensus for the value m is 3, and the 
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consensus for the value r is 0.6 multiplied by the standard deviation of the time series (Mikoláš 

et al., 2012; Z. Wang et al., 2014; Yang et al., 2018). Sample entropy was chosen over other 

methods for analyzing brain entropy because it is less dependent on the length of the time series, 

and it demonstrates relative consistency compared to other methods such as approximate entropy 

(Menon & Krishnamurthy, 2019). The results obtained from entropy analysis methods are 

sensitive to both the parameters one chooses and the time series length in question, so it is 

important to use methods that are less sensitive to shorter time series given the current data set. 

For a review of the existing algorithms used to analyze brain entropy and relative advantages and 

disadvantages, see (Mikoláš et al., 2012). 

  In brief, sample entropy is defined as the negative natural logarithm of the probability 

that if two simultaneous data points of a given subset have a certain distance from one another, 

then two simultaneous data points of a similar subset with an extra data point will also have a 

similar distance from one another. To simplify the mathematics, take voxel X. Suppose voxel X 

has a time series of 100 timepoints. Take one subset of timepoints from voxel X (say 5 

timepoints) and refer to the length of that subset as m. Now, take a second subset of timepoints of 

the same length m with one extra timepoint (6 timepoints) from voxel X and compare it to the 

first subset. These two subsets are defined as matching if and only if the absolute distance 

between them is less than r, which as previously described is a value chosen by the investigator, 

typically chosen as a multiple of the standard deviation of the time series (in our case, 0.6). In 

other words, sample entropy assesses the negative probability that different subsets of timepoints 

of similar length from a given time series will match each other within a given interval defined 

by r. If a given time series has few matching sets, the entropy of that time series is higher relative 
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to a time series with more matching sets. The formulas used to calculate sample entropy are 

documented in Appendix 8.  

Whole brain entropy was calculated for the resting state scans and the task scans. Four 

whole brain entropy maps were generated for each participant: one for the resting state scan, one 

for the task-based scan, and two for the encoding and recognition phases of the task scan, 

respectively. Further, Dr. Ze Wang built a revision to the BENtbx toolbox, allowing me to use a 

text file to indicate which timepoints in an imaging file will be analyzed together into a single 

entropy map. Using this revised toolbox, I analyzed the entropy of each encoding block as one 

block by collating the time series data into a single entropy map using the BENtbx, despite the 

encoding blocks being separated in time from one another. I performed the same analysis for 

each participant for the recognition block. In total, this yielded 48 whole brain entropy maps: 24 

for the encoding block and 24 for the recognition block.  

While developing this project, an important limitation had to be addressed, namely that 

the task protocol and the resting protocol were not the same length, and sample entropy is 

sensitive to data length, which may possibly bias comparisons between the task and resting state. 

However, this sensitivity can be adjusted by reducing the value of m (the sliding window which 

determines the size of the vectors that are compared in an entropy analysis) for the task scans for 

comparison to the resting state scans. Consequently, we calculated entropy maps using the 

standard in the field of 3 for the m value and 0.6SD for the r value; however, we also calculated 

entropy maps using 2 and 1 for the m value for the task scans. This was done to partially account 

for the additional length of the task scan compared to the resting state scan. Thus, we calculated 

a total of 72 task state brain entropy maps at each m value, which were separately compared 

against the resting state scans during statistical analysis.  
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Statistical Analysis 

 Statistical analyses for this project were performed in SPM12 (SPM12 

http://fil.ion.ucl.ac.uk/spm/). All within-subject comparisons of brain entropy were performed 

using paired t-tests in SPM12. FSL neuroimaging analysis software (Jenkinson et al., 2012) was 

utilized to extract summary statistics from entropy maps.  

Hypothesis 1: Whole Brain Resting-state Entropy vs. Task Entropy 

Differences in the whole brain entropy of the resting state were compared to the whole 

brain task state. Whole brain entropy maps for the resting state and the task state were compared 

using a directional paired t-test in SPM12, hypothesizing that whole brain entropy would be 

greater in the resting state period relative to the task state period. Three separate paired t-tests 

were run, comparing whole brain resting state entropy and task state entropy at each value of m 

(3, 2, and 1, respectively).  

Hypothesis 2: Encoding Entropy vs. Recognition Entropy across the whole brain 

Whole brain entropy maps for the encoding portion of the task scan and the recognition 

portion of the task scan were compared using a directional paired t-test in SPM12, hypothesizing 

that whole brain entropy would be greater in the encoding phase relative to the recognition 

phase. Because the timeseries were equivalent lengths for each condition, the whole brain 

entropy map calculations were performed with the m value set to 3.  

Hypothesis 3: Encoding Entropy vs. Recognition Entropy in the Hippocampus 

ROI analyses were performed comparing the entropy of the bilateral hippocampi between 

the encoding and recognition phases of the task. The Harvard-Oxford Structural Probability 

Atlas distributed with FSL neuroimaging software (Smith et al., 2004; Jenkinson et al., 2012) 

was used to define right and left hippocampal ROI’s for entropy analyses. Each ROI was 
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thresholded at 75% to yield a conservative anatomical representation. ROIs were extracted, 

binarized, and registered to each participant. A directional paired t-test was performed in SPM12, 

to test the hypothesis that the entropy of the left hippocampus during the encoding phase would 

be greater relative to the entropy of the left hippocampus during the recognition phase. Likewise, 

an identical paired t-test was performed comparing the entropy of the right hippocampus 

between the encoding and recognition phases of the task.   

Entropy Statistics  

Entropy values were extracted using FSL 6.0 (Jenkinson et al., 2012). Specifically, the 

fslmeants function in FSL was used to generate summary statistics, which generates a mean 

value for the ‘timeseries’ of a functional image (but in this case the ‘timeseries’ is the actual 

entropy calculation). This step was performed for each whole brain entropy map in each 

condition (task, rest, encoding, and recognition) for all participants in the sample. Additionally, 

entropy statistics were extracted for each ROI (left and right hippocampi) for both conditions 

(encoding and recognition).   
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Results 
 
Hypothesis 1: Whole Brain Task Entropy vs. Rest Entropy 

Whole brain BEN maps were compared within-subjects using a paired t-test in SPM12 

between the task and resting state conditions. Three paired t-tests were performed, comparing 

BEN maps calculated at each value of m (3, 2, and 1, respectively) for the task-based scans.  

A paired t-test with a family-wise error (FWE) corrected value of .05 comparing BEN 

maps with an m value of 3 in the resting state (M = 318.03, SD = 47.16) and task states (M = 

294.59, SD = 85.98 showed no significant differences in entropy between the two conditions. No 

significant voxels were observed at or below a p-value of .05; therefore, no statistical maps are 

reported here.   

Likewise, a paired t-test with a FWE corrected value of .05 comparing the resting state 

BEN maps (M = 318.03, SD = 47.16) at an m value of 3 and the task-based BEN maps at an m 

value of 2 (M = 299.58, SD = 84.79) also failed to yield significant differences between the 

conditions. No significant voxels were observed at or below a p-value of .05; therefore, no 

statistical maps are reported here.   

The third paired t-test with a FWE corrected value of .05 comparing resting state BEN 

maps (M = 318.03, SD = 47.16) at an m value of 3 to task-based scans (M = 310.17, SD = 82.81) 

utilizing an m value of 1 did not yield significant differences. No significant voxels were 

observed at or below a p-value of .05; therefore, no statistical maps are reported here.   

Given the significant difference in acquisition time between the resting state period and 

the task state period, it is possible that the absence of significant results may reflect diminished 

reliability in comparing time series of different lengths. Although adjusting the m value can 
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adjust for this impact, existing research does not offer clear guidelines on how significant this 

effect may be when comparing time series of different lengths.   

 Mean whole brain entropy values for each condition and entropy calculation can be found 

in Table 2. Although there were no statistically significant differences, the mean entropy for the 

resting state scans was qualitatively higher than the mean entropy for the task scans, in line with 

the hypothesized direction of the effects. Interestingly, for each reduction in the m value (3 to 2 

to 1), the mean entropy for the task scans rose to match the resting state mean entropy more 

closely, perhaps further corroborating the lack of a significant difference between task 

conditions.  

Table 2 
 
BEN for the Resting State and Task State 
 M ± SD  M ± SD 

Rest (m = 3) 318.03 ± 47.16 Task (m = 3) 294.59 ± 85.98 

Rest (m = 3) 318.03 ± 47.16 Task (m = 2) 299.58 ± 84.79 

Rest (m = 3) 318.03 ± 47.16 Task (m = 1) 310.17 ± 82.81 

Note. m refers to the embedding dimension in the sample entropy calculation. Mean entropy 
values are multiplied by 1000 to yield whole number estimates 
 
Hypothesis 2: Whole Brain Encoding Entropy vs Whole Brain Recognition Entropy 

BEN maps were calculated for the aggregated BOLD activity of the encoding and 

recognition blocks of the task protocol separately. To address whether there were significant 

entropy differences between the encoding and recognition blocks, a directional paired t-test was 

performed comparing whole brain BEN maps between the encoding (M = 332.38, SD = 64.38) 

and recognition (M = 338.9, SD = 60.39) phases of the task. No significant differences were 

observed at the whole brain level between the encoding and recognition phases of the task. No 

significant voxels were observed at or below a p-value of .05; therefore, no activation maps are 
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reported here. Although there were no statistically significant differences between the conditions, 

the mean entropy for the recognition blocks was higher than the mean entropy for the encoding 

blocks, in line with the direction of the hypothesized effects. Results can be found in Table 3.  

Table 3 
 
BEN for the Whole Brain During Encoding and Recognition 
 M ± SD 

Encoding (m = 3) 332.38 ± 64.38 

Recognition (m = 3) 318.03 ± 60.39 

Note. m refers to the embedding dimension in the sample entropy calculation. Mean entropy 
values are multiplied by 1000 to yield whole number estimates. 
 
Hypothesis 3: Encoding Entropy vs. Recognition Entropy in the Hippocampus 

 An ROI analysis was performed to examine if entropy significantly changed within the 

hippocampus between the encoding phase and the recognition phase of the task period. Two one-

tailed paired samples t-tests were performed in SPM12 with a FWE corrected value of .05 to 

compare entropy differences between the right and left hippocampus entropy in the encoding 

phase against the recognition phase of the task, respectively. No significant differences were 

observed in the left hippocampus between the encoding (M = 918.19, SD = 174.16) and 

recognition (M = 935.32, SD = 158.89) phases, nor were any significant differences observed in 

the right hippocampus between the encoding (M = 911.89, SD = 181.14) and recognition (M = 

930.07, SD = 167.63) phases of the task. No significant voxels were observed at or below a p-

value of .05 between conditions in either ROI; therefore, no activation maps are reported here.   

Although no statistically significant differences emerged, results followed a similar pattern as 

above; mean entropy was slightly higher in both the left and right hippocampi in the recognition 

phase compared to the mean entropy of the left and right hippocampi in the encoding phase. 

Interestingly, mean entropy values for the hippocampal regions were higher (although not to a 
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level of statistical significance) than mean entropy values for the whole brain estimates, both at 

task and rest. The implications of this finding are discussed in further detail in the discussion 

section. Mean entropy values for comparisons between the encoding and recognition phases can 

be found below in Table 4.  

 
Table 4  

 
BEN for the Hippocampus during Encoding and Recognition 
 M ± SD 

Left Hippocampi Encoding (m = 3) 918.19 ± 174.16 

Right Hippocampi Encoding (m = 3) 911.89 ± 181.14 

Left Hippocampi Recognition (m = 3) 935.32 ± 159.89 

Right Hippocampi Recognition (m =3) 930.07 ± 167.63 

Note. M refers to the embedding dimension in the sample entropy calculation. Mean entropy 
values are multiplied by 1000 to yield whole number estimates 
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Discussion 
 
 Brain entropy represents an emerging application of complexity science to our 

understanding of the distribution of BOLD signaling in the human brain. It has been primarily 

used to advance our understanding of healthy and unhealthy brain dynamics, altered states of 

consciousness, and some limited examination of neurocognitive functions. In this document, I 

present evidence that brain entropy may not meaningfully change within-subjects as a 

consequence of condition, both at the whole brain and regional level, within the hippocampus 

specifically. Importantly, the bulk of the literature on brain entropy has used between-subjects 

approaches, typically between patients and healthy controls. Much less evidence has examined 

differences in brain entropy in within-subjects designs; thus, one contribution of this piece is 

evidence that brain entropy may not differ meaningfully within-subjects, particularly healthy 

ones, but only between-subjects.  

Brain Entropy and Brain Function 

In order to contextualize these results in terms of brain function, it is helpful to examine 

existing theoretical frameworks for understanding the role of entropy in brain function. Most 

existing theories are informed by observations about the dynamics of brain entropy in 

pathological states. For example, a well-known theory of complexity in biological function 

suggests that diminished complexity is a biomarker for eventual system dysfunction (Lipsitz & 

Goldberger, 1992). This work has influenced suggestions by other researchers that contend that 

mental illness can be primarily understood as a loss of neural complexity (Yang & Tsai, 2013). 

In particular, they argue that multiscale entropy should be utilized as a measure of neural 

complexity in order to quantify patterns of entropy towards randomness and towards regularity. 

They claim that this provides a more meaningful measure of neural complexity because it 



 38 

indicates a directionality that is more clinically meaningful in schizophrenia particularly, which 

is characterized by wide scale variations in neural complexity that are differentially related to 

positive and negative symptoms of schizophrenia, respectively. Broadly, neural complexity, 

whether measured by multiscale approaches or sample entropy does demonstrate a pattern of 

reductions in numerous pathological states, which are highly variable between diseases, tasks, 

and brain areas.  

Another contending theoretical perspective on brain entropy and brain function is 

referred to as the entropic brain hypothesis (Carhart-Harris, 2018; Carhart-Harris et al., 2014), 

proposed by researchers examining the influence of psychedelic drugs on neural function. In 

brief, this hypothesis proposes that the brain dynamics subserving conscious experience operate 

at a function termed self-organized criticality, a transitory state maximizing the degree of chaos 

in a neural system up to a tipping point before the system falls into entirely chaotic dynamics 

(Beggs, 2008). When participants are under the influence of psychedelic substances, brain 

entropy massively increases, tipping neural dynamics into a state of super-criticality; however, 

when participants are unconscious, depressed, or suffering from neurodegeneration, brain 

dynamics tilt towards sub-criticality, or more ordered and regular states of activity. The entropic 

brain hypothesis proposes that ordinary conscious experience and behavioral function is best 

maintained when neural systems are in a state of self-organized criticality. In other words, the 

appropriate balance of chaotic and orderly brain dynamics is necessary for adaptive behavioral 

function.  

Brain Entropy: Whole Brain Rest vs Whole Brain Task   

 Contrary to my expectations, there were no significant differences in whole brain entropy 

between the task-state and resting-state scans in this study. Prior literature (Nezafati et al., 2020) 
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examined distributions in entropy across the brain corresponding to functional brain networks; 

namely, this work observed that the dorsal attention network had higher entropy during task 

states and the frontoparietal network had higher entropy during the resting state. Furthermore, 

subcortical regions had reduced entropy during a task state compared to a resting state in their 

study; however, the subcortical regions showed the widest distribution of entropy during the task 

state. These results are interesting in light of our observation that the hippocampal entropy 

during task trended higher than whole brain entropy at rest. Further analyses should be done to 

assess if hippocampal entropy during a face-name paired association task is significantly 

different than whole brain entropy during task and during rest 

Furthermore, at rest, in the work by Nezafati and colleagues (2020), the limbic network 

had the lowest brain entropy, which may partly explain the trend towards differences between 

task hippocampal entropy and whole brain resting state entropy; however, our results may 

suggest an opposite effect, entropy in the hippocampus trended higher than mean whole brain 

entropy. Several possible explanations could account for this discrepancy between existing work: 

namely, the sample size in this study was small, especially in comparison to Nezafati & 

colleague’s investigation, which used a large sample from the HCP dataset. Task-related 

differences may also play an important role; my investigation examined a face-name paired 

associate task, while Nezafati and colleagues (2020) analyzed data from an n-back task.  

Additionally, Nezafati and colleagues (2020) were also able to truncate their resting state scans 

for analysis so that they were the same length as the task scans; however, due to design 

limitations, scans of different lengths had to be compared. This may also play a role in 

explaining the discrepancy between my results and those observed in a much larger sample.  
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 This finding might support evidence that local increases in regional neural complexity 

may be necessary to perform functions closely associated with a given set of brain regions. 

Previous work supports the idea that increases in regional entropy are strongly associated with 

stronger functional connectivity between a given region and the rest of the brain (D. J. J. Wang et 

al., 2018).  I hypothesize that the trend towards increased hippocampal entropy during task may 

be related to increased functional connectivity between the hippocampus and other brain regions 

caused by task-related activation. Future work should examine the relationship between entropy 

in the hippocampus during task and entropy in the hippocampus during rest as well as the 

relationship between entropy and functional connectivity. However, that work is beyond the 

scope of this document. 

Brain Entropy and the Hippocampus 

 As described in the introduction, the hippocampus is a brain structure that reliably 

activates during face-name paired associative tasks (Tsukiura & Cabeza, 2008), and its 

connectivity with surrounding brain regions (Grady et al., 2003) with other brain regions during 

memory encoding is predictive of successful recall of encoded memories. In context, the existing 

literature on brain entropy has observed increased regional brain entropy is predictive of 

increased functional connectivity to other brain regions (D. J. J. Wang et al., 2018).  

In this investigation, we failed to observe any significant change in entropy between 

encoding and recognition phases of a task in brain entropy within the hippocampus. However, 

we did observe that the brain entropy of the hippocampus during both task phases trended higher 

compared to the whole brain entropy of either the task or resting state condition. As referenced 

above, existing evidence supports the idea that increased regional entropy may be related to 

greater functional connectivity of that region to other areas of the brain. The observation that 
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mean hippocampal entropy trended higher during the task than mean whole brain resting state 

entropy might suggest indirect evidence that hippocampal functional connectivity with other 

brain regions was also increased, a finding well supported for the hippocampus in memory based 

tasks (Grady et al., 2003; Hahn et al., 2010; L. Wang et al., 2010; Zeineh, 2003). Thus, it may be 

the case that the degree to which neural activity in the hippocampus is functionally correlated 

with activity in other brain regions, the entropy of the hippocampus is increased; further work 

needs to examine how hippocampal entropy at rest changes compared to task states. 

Further, hippocampal entropy in both task phases trended higher than resting state whole 

brain entropy. In other words, it may be that the hippocampus has a higher resting state brain 

entropy than the whole brain, which may corroborate its role in driving brain wide functional 

connectivity patterns at rest (Chan et al., 2017). More specifically, if regional brain entropy is a 

direct index of the functional connectivity between that region and the rest of the brain, this 

investigation provides corroborating evidence of this observation given that the hippocampus 

displays widespread patterns of functional connectivity across the brain, especially between 

cortical areas (Schott et al., 2013). Recent work has identified a set of three distinct functional 

brain networks that interact along the long-axis of the hippocampus and subserve different 

streams of information processing during memory-guided decision making (Barnett et al., 2021).  

Thus, my investigation provides limited support for the observation that the entropy of the 

hippocampus may increase as a consequence of activation related to a face-name paired associate 

task.  

Contrary to my expectations, no significant difference in hippocampal entropy was 

observed between the encoding and recognition blocks of the memory task. Although existing 

work does support the fact that functional connectivity between the hippocampus and other brain 
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regions can predict successful memory recall (Grady et al., 2003), the work by Grady and 

colleagues (2003) did not suggest that the magnitude or degree of functional connectivity is 

predictive; rather, their research suggested that successful recall depends on the brain regions 

involved rather than the strength of the correlations. It is plausible that entropy (and the strength 

of hippocampal connectivity with other brain regions) may not differ significantly between 

memory encoding and memory recognition. However, given that in our sample, the mean 

entropy of the hippocampus trended higher during the task phase relative to mean whole brain 

entropy in the resting state, this would suggest that a fruitful future approach may involve 

performing ROI analyses of entropy at the within-subjects level in multiple states and conditions.  

As described previously (D.J.J Wang, 2018), regional entropy is most directly associated 

with the strength of the functional connectivity between a given brain region and other brain 

regions. Thus, it may not be possible to elucidate what role entropy may play in a given region 

without understanding the functional connectivity of that region with the rest of the brain. This 

may in part explain why many studies of brain entropy comparing patient populations and 

healthy controls see many different patterns of results; the nature of the symptoms of any given 

patient group are likely to be associated with a complex interaction of multiple patterns in the 

fluctuation of neural activity. In other words, entropy calculations alone may be insufficient to 

understand the relationship between entropy and neuropsychological function. Further, some 

other evidence suggests that the ability to recall recently learned information is specific to the 

strength of interhemispheric connectivity between the two hippocampi (L. Wang et al., 2010). 

Future work should more clearly examine entropy and functional connectivity in the same 

participants as they engage in a variety of neurocognitive tasks; this would confirm previous 
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findings discussed above and would help shed light on the relationship between functional 

connectivity and regional brain entropy.  

Limitations 

 There are limitations in this investigation that may influence the generalizability of its 

results. Only twenty-four participants were analyzed in this study, which represents a relatively 

low sample size for neuroimaging studies. Recent research suggests that reproducible association 

studies between brain activation patterns and mental/behavioral phenotypes typically require 

sample sizes well into the thousands (Marek et al., 2022). Existing work examining differences 

in brain entropy as a context of task condition employ much larger sample sizes using the Human 

Connectome Project dataset (Nezafati et al., 2020; Z. Wang, 2021). Within-subjects’ differences 

in brain entropy may not be statistically significant at smaller sample sizes. Thus, future work 

should investigate similar memory-based task paradigms with larger sample sizes.  

 To my knowledge, this is the first investigation to apply brain entropy as an analytic 

technique to neuroimaging data derived from a 7T MRI scanner. The higher spatial resolution 

afforded by 7T imaging has proved useful in multiple neuroimaging contexts. However, more 

precise characterization of BOLD signaling may reveal that estimates of entropy, based on the 

predictability of the time series, may be partly biased; although the  test-retest reliability of 

functional connectivity networks is substantially increased in 7T imaging studies (Nemani & 

Lowe, 2021), sensitivity to physiological and imaging artifacts are increased at 7T (Xue Yang et 

al., 2012), which may influence entropy estimates of the BOLD signal. Future research should 

utilize a within-subjects approach to compare entropy estimates between different magnetic field 

strengths. In particular, the HCP dataset, which has subjects scanned at both 3T and 7T magnetic 

field strength could be a useful resource for making such comparisons. Such research would 
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inform investigators what degree of variability in entropy estimates is a consequence of magnetic 

field strength.  

 Furthermore, entropy estimates were compared between task and resting state protocols 

with significantly different acquisition times, namely the task protocol was much longer than the 

resting state protocol. Sample entropy is an analytic technique that is partially dependent on the 

length of the time series. Although it is less dependent on time series length than other measures 

of entropy (Richman et al., 2004), estimates of entropy at a within subjects level of different data 

lengths may not be statistically reliable. Although changes to the embedding dimension m were 

made to address this issue (which did result in changes to entropy calculations), these changes 

did not significantly alter results. Although this study could not compare scan lengths of equal 

times, future work should employ that method whenever possible.  

Lastly, the relationship between the entropy of the BOLD signal and the hemodynamic 

response function (HRF) is currently understudied. In this study, entropy analyses of the entire 

task blocks (encoding vs recognition) were aggregated together; however each encoding and 

recognition block in this experiment was relatively short (no more than 30 seconds), while 

existing research suggests the hemodynamic response function has a 12 second cycle (Voss, 

2016). Since estimates of entropy were derived from the entire block period; BOLD signal 

response was included that had not yet changed fully in response to the task condition. Future 

work should examine entropy estimates at different time lengths in the HRF cycle. Furthermore, 

the BOLD signal is an indirect index of neural activity, so the entropy of this signal is not a 

direct measure of the entropy of neural activity; it is also unknown to what degree the entropy of 

the time series represented by the BOLD signal is sensitive to physiological artifacts and 

confounds, which should be kept in mind when interpreting the results of this research.  
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Conclusion 

Complexity represents a recent frontier in physics, biology, and neuroscience. 

Neuroscience research utilizing complexity measures is gaining increasing traction for its ability 

to capture nonlinear dynamics of brain function and their relationship to behavior and health 

outcomes. Here, I have presented countervailing evidence that entropy may not change 

meaningfully from task to resting states at the within-subjects level. However, future studies with 

much larger samples would be needed to determine whether these results are robust. 

Nonetheless, understanding how complexity manifests across the brain at different scales and in 

different regions across subjects will help further elucidate the mechanisms by which entropy 

facilitates adaptive neural function. The remarkable order in nature has long fascinated scientists, 

philosophers, and theologians alike; nonetheless, nature’s disorder may yet have much to say 

about the mystery of its inner workings as its order. 
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Appendix 1 
 

Study   ________________________  Date  ___________________ 
Subject ID  ________________________  Researcher ___________________ 

 
Functional Neuroimaging Demographic & Medical History Questionnaire 

 
Gender:  M F Current Medical Diagnoses: ___________________ 
Age:  ________  
Handedness: ________ 
 
”I’m going to read you a list of common health problems.  For each problem, please answer 
YES if you’ve ever had it or NO if you haven’t.” 
 
1.  Arthritis?   No  Yes 

If yes: What are your symptoms?  ___________________________________________ 
  How long have you had these symptoms?  _______________________________ 
 
2.  Chronic pain?  No  Yes 

If yes: What are your symptoms?  ___________________________________________ 
  How long have you had these symptoms?  _______________________________ 
 
3.  Headaches?    No  Yes 
 If yes: How often do you have them?  ________________________________________ 
  How long has this been a problem for you?  _____________________________ 
 
4.  High cholesterol?   No  Yes 
 If yes: Do you take medication for it?  ________________________________________ 
  How long have you had it?  ___________________________________________ 
 
5.  High triglyceride levels?  No  Yes 
 If yes: Do you take medication for it?  ________________________________________ 
  How long have you had it?  ___________________________________________ 
 
6.  Stroke?    No  Yes 

If yes: What were your symptoms?  __________________________________________ 
  Were you hospitalized? How long? _____________________________________ 
 
7.  A heart attack?   No  Yes 

If yes: What were your symptoms?  __________________________________________ 
  Were you hospitalized? How long? _____________________________________ 
 
8.  Heart disease?   No  Yes 

 If yes: What are your symptoms?  ___________________________________________ 
  How long have you had these symptoms?  _______________________________ 
 
9.  High blood pressure?  No  Yes 
 If yes: Do you take medication for it?  ________________________________________ 
  How long have you had it?  ___________________________________________ 
 
10.  Diabetes (high blood sugar)? No  Yes 
 If yes: Do you take medication for it?  ________________________________________ 
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  How long have you had it?  ___________________________________________ 
 
11.  Asthma?    No  Yes 

If yes: What are your symptoms?  ___________________________________________ 
  How long have you had these symptoms?  _______________________________ 
12.  Any lung disease?   No  Yes 

If yes: What are your symptoms?  ___________________________________________ 
  How long have you had these symptoms?  _______________________________ 
 
13.  Thyroid disease?   No  Yes 
 If yes: Do you take medication for it?  ________________________________________ 
  How long have you had it?  ___________________________________________ 
 
14.  Multiple sclerosis?   No  Yes 

If yes: What are your symptoms?  ___________________________________________ 
  How long have you had these symptoms?  _______________________________ 
 
15.  Parkinson’s Disease?  No  Yes 

If yes: What are your symptoms?  ___________________________________________ 
  How long have you had these symptoms?  _______________________________ 
 
16.  Cancer?    No  Yes 

If yes: What type/stage?  __________________________________________________ 
  How long have you had it?  ___________________________________________ 
 
17.  Neurosurgery or brain tumor? No  Yes 

If yes: What were your symptoms?  __________________________________________ 
  Were you hospitalized? How long? _____________________________________ 
 
18.  Stuttering?    No  Yes 

If yes: How long have you had this problem?  ___________________________________ 
 
“Next, I’m going to ask you some other general health questions.  Please answer ‘yes’, or 
‘no’.  
19.  Wear glasses?   Yes No 
20.  Seizure?   Yes No 
21.  Convulsions?  Yes No 
22.  Concussion?  Yes No 
23.  Lost consciousness? Yes No 
24.  Learning disability?  Yes No 
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“Now, I’m going to read you a list of conditions.  Please indicate whether or not they run in 
your family.” 
_____ Alzheimer’s Disease Which family members? ______________________________ 
______ Dementia     ______________________________ 
______ Essential Tremor    ______________________________ 
______ Memory loss     ______________________________ 
______ Parkinson’s Disease    ______________________________ 
______ Stroke      ______________________________ 
______ Epilepsy      ______________________________ 
 
“Please tell me about your consumption of the following substances.” 

Type Quantity Frequency Today?
Caffeine
Nicotine
Alcohol
Exercise
Social Interaction  
“Please tell me the names of all medications, both prescription and over-the-counter, that 
you are currently taking.” 
 

Name of Drug  Purpose  Dosage       # of Times/Day      Time of Last Dose 
______________     ______________   _______      _____________     ________________ 
______________     ______________   _______      _____________     ________________ 
______________     ______________   _______      _____________     ________________ 
______________     ______________   _______      _____________     ________________ 
______________     ______________   _______      _____________     ________________ 
______________     ______________   _______      _____________     ________________ 
______________     ______________   _______      _____________     ________________ 
______________     ______________   _______      _____________     ________________ 
______________     ______________   _______      _____________     ________________ 
______________     ______________   _______      _____________     ________________ 
______________     ______________   _______      _____________     ________________ 
______________     ______________   _______      _____________     ________________ 
______________     ______________   _______      _____________     ________________ 

 
Method of ascertaining medications currently being taken: 

____ Directly from drug bottles 
____ Participant recollection 
____ List brought in by patient 
____ Combination 

 

  



 60 

Appendix 2 
 

Study   ________________________  Date  ___________________ 
Subject ID  ________________________  Researcher ___________________ 

 

Handedness Questionnaire 
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Appendix 3  
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Appendix 4 
 

PTSD Checklist – Civilian Version (PCL-C) 
INSTRUCTIONS:  Below is a list of problems and complaints that veterans sometimes have in 
response to stressful life experiences NOT related to your military service.  Please read each 
one carefully, and then select the answer to the right to indicate how much you have been 
bothered by that problem in the past month. 

  Not at all A little 
bit Moderately Quite 

a bit Extremely 

1. Repeated, disturbing memories, thoughts, or 
images of a stressful experience from the 
past? 

O O O O O 

2. Repeated, disturbing dreams of a stressful 
experience from the past? O O O O O 

3. Suddenly acting or feeling as if a stressful 
experience were happening again (as if you 
were reliving it)? 

O O O O O 

4. Feeling very upset when something reminded 
you of a stressful experience from the past? O O O O O 

5. Having physical reactions (e.g., heart 
pounding, trouble breathing, sweating) when 
something reminded you of a stressful 
experience from the past? 

O O O O O 

6. Avoiding thinking about or talking about a 
stressful experience from the past or 
avoiding having feelings related to it? 

O O O O O 

7. Avoiding activities or situations because they 
reminded you of a stressful experience from 
the past? 

O O O O O 

8. Trouble remembering important parts of a 
stressful experience from the past? O O O O O 

9. Loss of interest in activities that you used to 
enjoy? O O O O O 

10. Feeling distant or cut off from other people? O O O O O 
11. Feeling emotionally numb or being unable to 

have loving feelings for those close to you? O O O O O 

12. Feeling as if your future will somehow be cut 
short? O O O O O 

13. Trouble falling or staying asleep? O O O O O 
14. Feeling irritable or having angry outbursts? O O O O O 
15. Having difficulty concentrating? O O O O O 
16. Being “super alert” or watchful or on guard? O O O O O 
17. Feeling jumpy or easily startled? O O O O O 

 
PCL-C for DSM-IV (11/1/94)      Weathers, Litz, Huska, & Keane       National Center for PTSD – Behavioral Science Division 
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Appendix 5 
 
 

Study   ________________________  Date  ___________________ 
Subject ID  ________________________  Researcher ___________________ 
 
INSTRUCTIONS:  Listed below are a number of statements concerning personal attitudes and 
traits.  Read each item and decide whether the statement is TRUE or FALSE as it pertains to 
you personally. 
  False True 

1. I like to gossip at times. O O 

2. There have been some occasions when I took advantage of 
someone. O O 

3. I’m always willing to admit it when I make a mistake. O O 

4. I always try to practice what I preach. O O 

5. I sometimes try to get even rather than forgive and forget. O O 

6. At times I have really insisted on having things my own way. O O 

7. There have been occasions when I felt like smashing things. O O 

8. I never resent being asked to return a favor. O O 

9. I have never been irked when people expressed ideas very 
different from my own. O O 

10. I have never deliberately said something that hurt someone’s 
feelings. O O 
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Appendix 6 
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Appendix 7 

 
Task Design for Face-Name Paired Associate task (far left column is task time in milliseconds, 
second left column is the time of each task phase indicated by 1).  

  encoding recognition rest instruct 
0 5000 1 0 0 0 

5000 1000 0 0 1 0 
6000 5000 1 0 0 0 

11000 1000 0 0 1 0 
12000 5000 1 0 0 0 
17000 1000 0 0 1 0 
18000 5000 1 0 0 0 
23000 1000 0 0 1 0 
24000 5000 1 0 0 0 
29000 1000 0 0 1 0 
30000 30000 0 0 1 0 
60000 6000 0 0 0 1 
66000 5000 0 1 0 0 
71000 1000 0 0 1 0 
72000 5000 0 1 0 0 
77000 1000 0 0 1 0 
78000 5000 0 1 0 0 
83000 1000 0 0 1 0 
84000 5000 0 1 0 0 
89000 1000 0 0 1 0 
90000 5000 0 1 0 0 
95000 1000 0 0 1 0 
96000 6000 0 0 0 1 

102000 5000 1 0 0 0 
107000 1000 0 0 1 0 
108000 5000 1 0 0 0 
113000 1000 0 0 1 0 
114000 5000 1 0 0 0 
119000 1000 0 0 1 0 
120000 5000 1 0 0 0 
125000 1000 0 0 1 0 
126000 5000 1 0 0 0 
131000 1000 0 0 1 0 
132000 30000 0 0 1 0 
162000 6000 0 0 0 1 
168000 5000 0 1 0 0 
173000 1000 0 0 1 0 
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174000 5000 0 1 0 0 
179000 1000 0 0 1 0 
180000 5000 0 1 0 0 
185000 1000 0 0 1 0 
186000 5000 0 1 0 0 
191000 1000 0 0 1 0 
192000 5000 0 1 0 0 
197000 1000 0 0 1 0 
198000 6000 0 0 0 1 
204000 5000 1 0 0 0 
209000 1000 0 0 1 0 
210000 5000 1 0 0 0 
215000 1000 0 0 1 0 
216000 5000 1 0 0 0 
221000 1000 0 0 1 0 
222000 5000 1 0 0 0 
227000 1000 0 0 1 0 
228000 5000 1 0 0 0 
233000 1000 0 0 1 0 
234000 30000 0 0 1 0 
264000 6000 0 0 0 1 
270000 5000 0 1 0 0 
275000 1000 0 0 1 0 
276000 5000 0 1 0 0 
281000 1000 0 0 1 0 
282000 5000 0 1 0 0 
287000 1000 0 0 1 0 
288000 5000 0 1 0 0 
293000 1000 0 0 1 0 
294000 5000 0 1 0 0 
299000 1000 0 0 1 0 
300000 6000 0 0 0 1 
306000 5000 1 0 0 0 
311000 1000 0 0 1 0 
312000 5000 0 0 0 0 
317000 1000 1 0 1 0 
318000 5000 0 0 0 0 
323000 1000 1 0 1 0 
324000 5000 0 0 0 0 
329000 1000 1 0 1 0 
330000 5000 0 0 0 0 
335000 1000 1 0 1 0 
336000 30000 0 0 1 0 
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366000 6000 0 0 0 1 
372000 5000 0 1 0 0 
377000 1000 0 0 1 0 
378000 5000 0 1 0 0 
383000 1000 0 0 1 0 
384000 5000 0 1 0 0 
389000 1000 0 0 1 0 
390000 5000 0 1 0 0 
395000 1000 0 0 1 0 
396000 5000 0 1 0 0 
401000 1000 0 0 1 0 
402000 6000 0 0 0 1 
408000 5000 1 0 0 0 
413000 1000 0 0 1 0 
414000 5000 1 0 0 0 
419000 1000 0 0 1 0 
420000 5000 1 0 0 0 
425000 1000 0 0 1 0 
426000 5000 1 0 0 0 
431000 1000 0 0 1 0 
432000 5000 1 0 0 0 
437000 1000 0 0 1 0 
438000 30000 0 0 1 0 
468000 6000 0 0 0 1 
474000 5000 0 1 0 0 
479000 1000 0 0 1 0 
480000 5000 0 1 0 0 
485000 1000 0 0 1 0 
486000 5000 0 1 0 0 
491000 1000 0 0 1 0 
492000 5000 0 1 0 0 
497000 1000 0 0 1 0 
498000 5000 0 1 0 0 
503000 1000 0 0 1 0 
504000 6000 0 0 0 1 
510000 5000 1 0 0 0 
515000 1000 0 0 1 0 
516000 5000 1 0 0 0 
521000 1000 0 0 1 0 
522000 5000 0 0 0 0 
527000 1000 1 0 1 0 
528000 5000 0 0 0 0 
533000 1000 1 0 1 0 
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534000 5000 0 0 0 0 
539000 1000 1 0 1 0 
540000 30000 0 0 1 0 
570000 6000 0 0 0 1 
576000 5000 0 1 0 0 
581000 1000 0 0 1 0 
582000 5000 0 1 0 0 
587000 1000 0 0 1 0 
588000 5000 0 1 0 0 
593000 1000 0 0 1 0 
594000 5000 0 1 0 0 
599000 1000 0 0 1 0 
600000 5000 0 1 0 0 
605000 1000 0 0 1 0 
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Appendix 8 
 

Brain Entropy Calculation (Wang et al., 2014)  
 

 
 

Formulas A and B are both distance functions, calculated using the Chebyshev Distance 

formula; both A and B refer to the number of subset pairs less than or equal to the tolerance 

interval r, with the length of subset A being m+1 compared to the length of subset B as simply m. 

Hence, this formula calculates the negative logarithm of the empirical probability that subset A is 

a match for subset B at the next point of A within a tolerance interval r.  

 


	Another theory of global brain function, the entropic brain hypothesis, attempts to integrate the existing empirical research on brain entropy (Carhart-Harris, 2014; Carhart-Harris et al., 2018; Carhart-Harris & Friston, 2019). Based on findings from ...

