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Abstract

Machine learning has recently gained tremendous interest due to its capabilities in pro-

ducing predictive models in a wide variety of applications, such as objective detection and

recommendation services. Meanwhile, the development of the Internet of Things (IoT), which

enables the connection to the Internet and the computation capability to a wide range of de-

vices, makes it possible for machine learning algorithms to gain insight from an aggregation of

physically separated devices. However, due to its distributed nature, one cannot guarantee the

legitimacy of the received data or parameters, which provides a venue for new attacks. There-

fore, it is necessary to better understand the vulnerabilities and identify potential threats, so as

to propose countermeasures to eliminate the impacts of such threats before applications are put

into use.

This dissertation focuses on improving the robustness and privacy of distributed learning

algorithms and covers both traditional distributed learning systems, in which a central server

collects the data and performs the training, and the modern federated learning scheme, in which

the training is performed on individual devices. In the background of the transition from tra-

ditional power grid to smart grid, the first proposed research studies the robustness of the ar-

tificial neural network (ANN) based state estimator by adversarial false data injection attacks.

The state estimation of the grid can be misled by injecting noise-like data into a small portion

of electricity meters. Focusing on the modern federated learning (FL) scheme, the second pro-

posed research overcomes the ineffectiveness of the backdoor attacks on FL due to the dilution

effect from normal users, by utilizing the information leakage from the shared model. The third

proposed research provides a high-accuracy and low-cost solution for privacy preservation in

mobile edge computing (MEC) systems, in which the key challenges come from computation

and power constraints. This dissertation could help people better understand these vulnerabili-

ties and design a safer and more efficient distributed learning system.
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Chapter 1

Introduction

1.1 Background and Motivation

By the end of 2022, there will be 18 billions Internet of Things (IoT) devices connected to

the Internet to provide monitoring and computing services [10]. Meanwhile, machine learn-

ing applications have gained wide-spread prominence, particularly by the deployment of the

powerful neural networks in various application domains, such as object detection, recommen-

dation, natural language processing, and medicine. The explosion of IoT combined with the

recent progress in machine learning makes it possible to learn from data on massive physically

distributed devices. Currently, distributed learning applications thrive in the prediction of next

words and emoji on smartphones [22], environmental monitoring [40], and aiding in medical

diagnosis among hospitals [122].

Since IoT devices are usually physically separated, machine learning models can be trained

in a traditional distributed or modern federated manner. In traditional distributed learning sys-

tems, data are collected by a cloud server or a data center, on which training is performed.

However, with the tremendous growth of data generated/collected by IoT devices, offloading

a huge amount of data to remote servers could be infeasible due to the required network re-

sources and the incurred latency. Furthermore, the direct transmission of the data is at risk of

privacy leakage. Recently, the concept of federated learning (FL) has emerged as a modern

distributed learning scheme. Technically, FL is a distributed learning scheme that allows multi-

ple devices to collaborate to train a high-accuracy model without sharing their actual datasets.

Instead of sending the original data to a remote server and letting the server perform the train-

ing, FL training is performed individually on devices, and the devices only send the trained
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model parameters to the central server, in which the model aggregation is performed. As a

result, communication and latency are reduced, and privacy is preserved since only the model

parameters are sent to the server.

Although more and more models learned from massive IoT devices are expected to be used

in our daily lives, the vulnerabilities of distributed learning systems have not yet been well un-

derstood. Due to the ubiquitous IoT devices and their low costs, an attacker could easily pry

users’ privacy or tamper with the trained model by compromising a number of devices. There-

fore, it is necessary to have a better understanding of their vulnerabilities, to identify threats,

and propose countermeasures to eliminate the impacts of such threats before the models are

put into use. Threats to distributed learning systems can be classified mainly into the following

two classes:

• Model robustness. Robustness means that a model is resilient to small variations, such

as outliers and small perturbations of inputs. Due to the nature of distributed learning

systems and the inherent data non-i.i.d.-ness across all devices, the data or model pa-

rameters uploaded by a client can be different from others. It is difficult for a cloud

server to validate the legitimacy/truthfulness of the received data or model parameters.

As a result, the model parameters trained from extreme non-i.i.d. but normal data could

be falsely rejected by the server, whereas an attacker can deliberately camouflage the

malicious model/data to circumvent the detection mechanism. One of the famous ro-

bustness attacks is the adversarial example [38], in which the attacker injects a vector

of well-coordinate perturbations to a data sample such that the tampered data sample is

mis-predicted by the trained model. Another example is the backdoor attack [9], in which

the adversary injects a pattern into the training data to corrupt the model during the train-

ing process such that the new model is equally accurate on the main training task, while

performing well on a sub-task activated by some triggers.

• Model/data privacy. Contrary to the initial belief that FL is private because only the

trained model updates are transmitted and no users’ data is directly revealed, recent stud-

ies have found that shared FL model updates may unintentionally leak sensitive informa-

tion about the data on which it was trained [28]. As pointed out by previous studies, using
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FL scheme alone is insufficient in protecting the clients’ local data privacy. For example,

from the FL model, an adversary can infer if a given data sample was presented in the

training data or not [79, 86], or recover representative data sample used in the training

[34], or infer property information about the client’s local training data [132].

The overarching goal of this dissertation is to obtain a comprehensive understanding on

the security vulnerabilities of distributed learning systems, especially from the perspectives of

model robustness and model/data privacy, and to develop a solid mathematical framework that

can be used to characterize the vulnerabilities and improve the utility of existing learning al-

gorithms and defense mechanisms. In the first work, it is examined whether the vulnerability

of adversarial examples presented in the image classification problem also exists in the state

estimation problem in the smart grid. In the second work, considering the ineffectiveness of

single-shot backdoor attacks against FL due to the dilution effect from normal model updates

especially in the early training stage, a novel information leakage assisted two-phase FL back-

door attack, which enhances the effectiveness of FL early-injected single-shot backdoor attack

has been proposed. The third work focuses on the privacy-preserving solution for IoT devices,

which is limited by computation capability, power supply, network connectivity, and partic-

ipation flexibility. A low-cost (for both communication and computation overhead) adaptive

noise perturbation privacy preserving scheme is then proposed, which does not sacrifice model

accuracy for privacy, while enjoying differential privacy (DP) comparable privacy protection.

1.2 Overview of Research Contributions

1.2.1 Adversarial False Data Injection Attack against ANN-based State Estimation in Smart

Grid

In this work, a new study of adversarial false data injection attacks against artificial neural

network (ANN)-based state estimation is initiated. By injecting a deliberate attack vector

into the measurements, the attacker can degrade the accuracy of an ANN-based state estimate

while remaining undetected. Two algorithms to generate the attack vectors are proposed, one

population-based algorithm (differential evolution or DE) and one gradient-based algorithm
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(sequential least square quadratic programming or SLSQP). The researcher then evaluates these

algorithms through simulations on IEEE 9-bus, 14-bus, and 30-bus systems. Simulation results

show that DE is more effective than SLSQP on all simulation cases. The attack examples gener-

ated by the DE algorithm successfully degrade the accuracy of the ANN state estimation result

with high probability (more than 80% in all simulation cases), despite having a small number

of compromised meters and low injection strength. The potential defense strategy to mitigate

such attacks is further discussed, which provides insight for robustness improvement in future

research.

1.2.2 Assisting Backdoor FL with Whole Population Knowledge Alignment

In this work, the early-injected single-shot backdoor attack against FL is strengthened by uti-

lizing the information leaked from the shared FL model. Theoretical analysis shows that FL

convergence can be expedited if the client trains on a dataset that mimics the distribution and

gradients of the whole population. On the basis of this observation, a two-phase backdoor

attack is proposed, including a preliminary phase for the subsequent backdoor attack. In the

preliminary phase, the attacker-controlled client first launches a whole population distribution

inference attack and then trains on a locally crafted dataset that is aligned with both the gradient

and the inferred distribution. Benefiting from the preliminary phase, the later injected backdoor

achieves better effectiveness, as the backdoor effect will be less likely to be diluted by the nor-

mal model updates. Extensive experiments are conducted to evaluate the effectiveness of the

proposed backdoor attack. The results show that the proposed backdoor outperforms existing

backdoor attacks in both success rate and longevity, even when defense mechanisms are in

place.

1.2.3 High-Accuracy Low-Cost Privacy-Preserving FL in IoT Systems via Adaptive Pertur-

bation

In this work, the high accuracy of the FL model is retained while protecting user privacy by

taking into account both the magnitude and direction of the additive perturbation. In particular,

the magnitude of the additive noise is set to adaptively change with the magnitude of the local
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mode updates. Then a direction-based filtering scheme is used to expedite the FL model con-

vergence. A maximum tolerable variance of the additive noises is derived to maximize privacy

protection at local clients, while the FL global model enjoys the same model accuracy and con-

vergence rate as a result of the cancel-out effect presented in the aggregation of noises on the

server by the central limit theorem. Theoretically, it is proven that FL with the proposed noise

perturbation scheme retains the same accuracy and convergence rate of O(1/T ) as that of a

non-private FL (FL with no privacy preservation), in both convex and non-convex loss function

scenarios. We also evaluate the performance of the proposed scheme in terms of convergence

behavior, time and computation efficiency, and privacy protection against state-of-the-art pri-

vacy inference attacks on a real-world dataset. Experimental results show that FL with the

proposed perturbation scheme outperforms DP in the accuracy and convergence rate of the FL

model in both client dropout and non-client dropout scenarios. Compared to DP, the proposed

scheme does not incur additional computation and communication overhead. This approach

provides a DP-comparable or better effectiveness in defending against privacy attacks under

the same FL model accuracy.

1.3 Publication Contributions

During my Ph.D. study, I have contributed to the following publications (listed chronologi-

cally).

[1] T. Liu and T. Shu. Adversarial false data injection attack against nonlinear ac state

estimation with ANN in smart grid. In International Conference on Security and Privacy in

Communication Systems (SecureComm), Springer, 2019.

[2] X. Hu, T. Liu, and T. Shu. Fast and high-resolution NLOS beam switching over com-

mercial off-the-shelf mmwave devices. In IEEE Transactions on Mobile Computing (TMC),

IEEE, 2021.

[3] T. Liu and T. Shu. On the security of ANN-based ac state estimation in smart grid.

Computers & Security, Elsevier, 2021.

[4] J. Chen, T. Liu, and T. Shu. A survey on visible light communication standards. In

Get-Mobile: Mobile Computing and Communications, 2021.
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[5] T. Liu, X. Hu, H. Xu, T. Shu, and D. Nguyen. High-accuracy low-cost privacy-

preserving federated learning in IOT systems via adaptive perturbation. In Journal of Infor-

mation and Security Applications. Conditionally accepted.

[6] T. Liu, X. Hu and T. Shu. Assisting backdoor federated learning with whole pop-

ulation knowledge alignment in mobile edge computing. In 18th Annual IEEE International

Conference on Sensing, Communication, and Networking (SECON). IEEE, 2022. Forthcom-

ing.

[7] X. Hu, T. Liu and T. Shu, (k, α)-coverage for RIS-aided mmWave directional commu-

nication. In IEEE Transactions on Mobile Computing (TMC). Conditionally accepted.

1.4 Dissertation Overview

In the rest of this dissertation, three works are detailed with each addressing a set of prob-

lems, deepening the knowledge of the robustness and privacy protection of distributed learning

algorithms against adversaries. Each chapter focuses on presenting one work, along with com-

prehensive evaluations and comparisons between the solutions to the state-of-the-art methods.

In Chapter 2, the robustness of the ANN-based state estimation in smart grids is studied

by designing a false data injection attack, which is capable of misleading the state estimate

by injecting false noise-like data into meter readings. The designed attack on the IEEE test

systems is then evaluated with a defense mechanism to defend against the proposed attacks

coming up.

In Chapter 3, the study is presented to improve the early injection of a single-shot backdoor

attack against FL by utilizing information leaked from the shared FL model. The attacker facil-

itates the convergence of the FL model so as to strengthen the effectiveness of the later injected

single-shot backdoor. Numerical experiments are then conducted to show the effectiveness of

the proposed backdoor attack.

In Chapter 4, a low-cost high-accuracy perturbation-based FL privacy-preserving mecha-

nisms is proposed. The proposed scheme takes both perturbation direction and magnitude into
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consideration, so that the perturbations are canceled out on the server and the direction of de-

scent is preserved. Theoretical proofs and numerical results against state-of-the-art attacks are

provided.

Finally, future work is discussed in Chapter 5.

7



Chapter 2

On the Security of ANN-based AC State Estimation in Smart Grid

2.1 Introduction

With the increase in residential and industrial power demand, nowadays a regional or nation-

wide power outage often leads to catastrophic consequences in the matter of public safety.

After the US Northeast Blackout in 2003, the US and Canada reached a consensus to transi-

tion to a smart grid system, which would be cleaner and more efficient, reliable, resilient, and

responsive than a traditional grid. The smart grid is a complex system that integrates a tradi-

tional power grid and information technologies to enable inter-networking over power grids.

Although transferring from the traditional power grid to the smart grid provides many new at-

tractive features such as remote and automatic grid monitoring, control, and pricing, it has also

raised serious security challenges by opening up the traditional power system to many potential

attacks in cyber space. For example, in the 2015 Ukraine power outage [66, 61], the hacker

successfully compromised the information systems of three energy distribution companies and

caused power failure to more than 225,000 customers lasting 1 to 6 hours. Since then, cyber

attacks on smart grids have caught public attention and have become a realistic and growing

concern for governments, vendors, and customers.

One of the key mechanisms in ensuring normal operation of a smart grid is state esti-

mation, which provides the current status of the grid for the control center operators to take

corrective action in order to prevent an accident from happening. State estimation aims to

compute the states of the system (the complex voltages at all buses [117]) that are not directly

measurable, based on the grid’s topology and the meter’s power usage measurements collected
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from the supervisory control and data acquisition (SCADA) system. Conventionally, state es-

timation is formulated as a non-linear weighted least square (WLS) problem that minimizes the

distance between actual measurements and computed measurements from the estimated state.

Such methods have several limitations. First, solvers to the problem, such as Gauss-Newton,

are computationally heavy, sensitive to initial values, and may encounter convergence issues.

In addition, the state estimation has to be computed periodically for every set of meter measure-

ments collected in each meter reading cycle (typically a 15-minute period) in order to obtain

the current system status. Furthermore, a prior observability analysis is often required to ensure

that the system is overdetermined. This state estimation scheme is further challenged by the

growing grid scale and unprecedented system dynamics caused by the increasing deployment

of new elements in the smart grid, such as renewable generators, electric vehicles, and dynamic

pricing.

In light of the above issues in existing state estimation methods, artificial neural networks

(ANN) have received a lot of interest as a new approach to smart grid state estimation for mainly

two reasons: (1) the computation cost can be ignored once the model is trained. In particular,

once the ANN state estimation model is trained offline based on historical or simulated data,

such a model can provide accurate estimation online at minimal computation cost, eliminating

the need for carrying out observability analysis prior to running the state estimation. (2) ANNs

naturally fit into the non-linear nature of the state estimation problem. So far, several efforts

have been made to adopt ANNs for state estimation. It has been established that ANN-based

state estimation provides results much faster, and the accuracy is comparable to or higher than

that of conventional state estimations.

Although state estimation plays an important role in ensuring the normal operation of the

smart grid, it is well known that conventional state estimation methods are vulnerable to false

data injection (FDI) attacks [74], which is a data integrity cyber-attack and has been proven

to be a real threat to the smart grid system. In particular, an adversary can corrupt the state

variable by injecting carefully coordinated false data to meter measurements while evading the

bad data detection. The injected false data may result in generation re-dispatch [68] or trigger a
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branch outage sequence that involves multiple branches and ultimately leads to a system failure

[21].

Although FDI attacks against conventional state estimation methods have been well un-

derstood in the literature, little is known about FDI attacks against ANN-based state estimation.

As ANN-based state estimation is expected to receive more and more applications for the smart

grid in the near future, and because the smart grid is a critical infrastructure of society, it is nec-

essary to gain a better understanding of the vulnerabilities of this new state estimation method

of FDI attacks, so as to identify possible threats and propose countermeasures to eliminate such

threats before this new method can be applied in practice on a larger scale. Therefore, we can

reduce the potential loss and increase the confidence of the society in the security feature of the

new method.

In contrast to existing FDI attacks that mainly rely on a linear direct current (DC) power

flow model, FDI attacks against an ANN-based state estimation must accommodate a nonlinear

alternating current (AC) power flow model, as the nonlinearity is a fundamental feature of the

ANN state estimation. As ANN becomes a popular technique in the power system, several

works demonstrate the effectiveness of adversarial attacks on power system applications [25,

26, 63]. Unfortunately, little work has been done to analyze the vulnerabilities and robustness

of the ANN-based state estimation model.

Meanwhile, in the area of image classification, researchers noticed that ANNs can easily

be fooled by well-coordinated samples with small perturbations. This discovery has spurred

many efforts to explore the vulnerabilities of ANN by designing adversarial attacks.

In this work, we are interested in examining whether the above vulnerability of ANN

present in the image classification problem also exists in the state estimation problem in the

smart grid. We create an FDI attack customized for the ANN-based state estimation model.

This attack can also be used to construct an upper bound on the robustness of the model. Fur-

thermore, we try to develop algorithms that can systematically generate contaminated measure-

ments that maximize the ANN-based state estimation error while eluding detection by a bad

data detector. By doing so, we aim to establish a new understanding of the security vulner-

abilities of the latest high-accuracy ANN-based state estimator. To our knowledge, our work
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is the first in the literature to study the vulnerabilities and robustness of the ANN-based state

estimator by FDI attacks.

Compared with its image classification counterpart, solving our problem faces new and

significant challenges. In addition to the obvious difference in the application model, our prob-

lem presents the following three novel features in its structure. Firstly, our problem has an

optimization nature in the sense that we seek the optimal attack vector that maximizes the at-

tack outcomes. In contrast, the goal of the image-classification counterpart is simply to find a

feasible attack vector. Secondly, the attack model in our problem considers the attacker’s access

and resource constraints, in which the attacker only has access to and can only manipulate a

certain number of meters. The attacker’s injection is also subject to physical constraints on the

smart grid system. In contrast, the image-classification problem does not have such constraints,

and the attacker can change any pixel of the image. Lastly, the output of state estimator is a

vector of continuous values, whereas that of the image-classification is discrete and covers a

limited number of pre-defined cases. Due to these fundamental structural differences, the ex-

isting results from the image classification ANN are not directly applicable to our problem, and

therefore new solutions need to be developed.

In this work, we study the robustness of ANN-based state estimators by constructing ad-

versarial FDI attacks. We first create ANN-based state estimators as our target models, followed

by evaluating both model accuracy and bad data rate to ensure that the target models are suf-

ficiently strong. We then use the idea of an adversarial example to formulate an optimization-

based FDI attack. In this model, an attacker attempts to maximize the state estimation error

without being reported by the bad data detector, subject to given resource and meter access

constraints. Subsequently, two algorithms are proposed to solve the optimization above to

find the best false data injection vector: differential evolution (DE) and sequential least square

quadratic programming (SLSQP). We extensively evaluate our proposed attacks based on sim-

ulations on IEEE 9-bus, 14-bus, and 30-bus system models under various scenarios to verify

their effectiveness.

The main contribution of our work includes the following fivefold:
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• In creating the target ANN state estimator for large-scale grid systems (e.g., 30-bus and

above), a novel penalty term is proposed for the loss function, which significantly im-

proves the accuracy of the ANN in modeling the voltage phase angle for large-scale

grids.

• An optimization-based FDI attack formulation is proposed for the ANN-based AC state

estimation model, which can accommodate various practical constraints on the attacker,

including their resource and meter accessibility.

• We adapt two algorithms, DE and SLSQP, to solve the above optimization, targeting two

different attack scenarios. DE generates attack vectors for the scenario, in which the

attacker can compromise any k meters, while both DE and SLSQP can accommodate the

scenario, in which the attacker has only access to specific k meters.

• The effectiveness of the proposed attack models is verified by extensive simulations on

IEEE 9-bus, 14-bus, and 30-bus systems under various attack scenarios. Our results show

that the DE attack is successful with high probability (more than 80% in all simulated

cases), despite having a small number of compromised meters and low false injection

level.

• We adopt adversarial training to defend against the above attacks. It turns out that adver-

sarial training could lower the attack success rate, but would slightly impair the model

accuracy.

The proposed algorithms provide a practical way for systematically identifying key meters

whose readings have a higher weight in the state estimation and thus may serve as a guide to the

utility company to reach a more focused/concentrated protection against these key meters under

resource and budget constraints. Furthermore, our defense strategy encourages the building of

more robust ANN-based state estimation models in the future.

The remainder of the chapter is organized as follows. In Section 2.2, we survey the ANN-

based state estimation, false data injection attack, and adversarial example. We then provide a

preliminary for state estimation and bad data detection in Section 2.3. We construct ANN-based
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state estimation models as our attack targets and evaluate their performance in Section 2.4.

Subsequently, we introduce our adversary model and attack formulation in Section 2.6. Our two

attack algorithms, the DE and SLSQP algorithms, are presented in Section 6. The experimental

analysis and the proposed defense are presented in Sections 2.7 and 2.8, respectively.

2.2 Related Work

2.2.1 ANN-based State Estimation

Various neural network architectures are explored for state estimation in the smart grid, such

as the feed-forward neural network [3], radial basis function neural network [105], the counter

propagation network, and the functional link network [58]. In [88], Onwuachumba et al. pro-

posed a reduced ANN-based state estimation model, which uses fewer measurements and no

prior observability analysis is required. To adapt to the new features emerging in smart grid,

such as renewable generators and dynamic pricing, the ANN-based state estimation for real-

time and distributed power systems is studied in [84, 81, 128, 127].

2.2.2 False Data Injection Attack

Existing results on FDI attacks against conventional state estimations are inapplicable to ANN-

based state estimation for the following two reasons. First, most previous work on FDI attacks

is based on the DC power flow model [74, 99, 33, 50], which is a linear approximation of the

real-world AC power flow model and is usually used as a simplified version of the AC power

flow model. FDI attacks against AC models are more complicated and hence require a more

sophisticated attacker than DC models. The FDI attacks derived from DC models may be ill-

suited for AC models [95]. In addition, the works on constructing FDI attacks against AC

models are mainly focused on WLS state estimators [50, 53, 110, 114, 67], thus they cannot be

directly applied to ANN-based state estimators.

A considerable number of works have been proposed to defend against FDI attacks. The

authors in [12] approached the issue by identifying and protecting a set of critical meters to

detect FDI attacks. The authors in [19, 62, 100] approached the issue using a statistical method

combined with physical laws of the power system. Data-driven and machine learning-based
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approaches were proposed in [32, 45, 39, 125, 129]. A Kalman filter-based detector was devel-

oped in [76]. Liu et al. developed a detection by using the sparsity of attacks [71]. The authors

in [65] proposed a sequential detector, and the authors in [49] proposed an adaptive CUSUM

algorithm, in order to accelerate the detection process.

2.2.3 Adversarial Examples

Szegedy et al. were the first to propose an adversarial attack against deep neural networks [109].

After that, various attack algorithms are proposed, such as the Fast Gradient Sign Method

(FGSM) [38], Fast Gradient Value (FGV) [98] and DeepFool [83]. Especially in [107], the

deep learning model can be fooled by adding one pixel perturbation to the image. Furthermore,

perturbations are shown to be transferable among ANN models, even if they are trained on

different data sets, and preserve different architectures [59, 73, 111, 119].

Another branch of research studies defense against adversarial examples. Papernot et al.

used a distillation network to extract knowledge to improve robustness [89]. In adversarial

training, adversarial examples are generated in every training step, then they are injected into

the training data set [38, 48, 75]. And in the classifier robustifying, authors in [14, 2] put

emphasis on how to design a robust architecture of the ANN.

2.3 Preliminaries

In this section, we briefly introduce the state estimation and the detection of bad data. All

notation used is defined in Table 2.1.

2.3.1 State Estimation

In the AC power flow model, measurements are non-linearly dependent on state variables, as

characterized by the following equation:

z = h(x) + e,
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Table 2.1: Notation and definitions.

Notation Definitions
n,m Number of state variables/measurements

x,xa, x̂ Natural/compromised/estimated state variables, including voltage mag-
nitude |Vi| and phase angle θi at all buses, i = 1, .., n

Pi ,Qi Real and reactive power injection at bus i.
Pij , Qij Real and reactive power injection at branch connecting bus i to bus j
z, za Natural/compromised measurements, including real and reactive power

injection of buses Pi and Qi and branches Pij and Qij

h(·) A set of non-linear, deterministic functions that relate states to measure-
ments h : x→ z

f(·) ANN-based state estimator that eliminates errors in measurements and
output

a Attack vector that injects to a given measurement z
Gij + jBij The ij-th element of the complex bus admittance matrix
gij + jbij The admittance of the series branch connecting busses i and j
gsj + jbsj The admittance of the shunt branch connected at bus i

where z and x denote a Nm-dimension measurement vector and a Nn-dimension state vector,

respectively, and e denotes aNm-dimension vector of normally distributed measurement errors.

h(x) denotes a set of non-linear functions, by which the measurements are related to state

variables, according to Kirchhoff’s circuit law:

Pi = Vi

N∑
j=1

|Vj|(Gijcosθij +Bijsinθij), (2.1)

Qi = Vi

N∑
j=1

|Vj|(Gijsinθij −Bijcosθij), (2.2)

Pij = |Vi|2(gsi + gij)− |ViVj|(gijcosθij + bijsinθij, (2.3)

Qij = −|Vi|2(bsi + bij)− |ViVj|(gijsinθij − bijcosθij). (2.4)

In an overdetermined case, where we have more measurements than state variables (Nm >

Nn), the state variables are determined from the WLS optimization over a residual function

J(x) [117]:

x̂ = argmin
x

J(x),where J(x) = (z− h(x))TW(z− h(x)). (2.5)
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Here, the weight matrix W is defined as diag{σ−2
1 , σ−2

2 , ..., σ−2
Nm
}, and σ2

i is the variance of the

i-th measurement (i = 1, ..., Nm). W is introduced to emphasize trusted measurements while

de-emphasizing less trusted ones.

2.3.2 Bad Data Detection

Meter measurements may contain errors due to various reasons, such as transmission error,

wiring failure, or malicious attack. Therefore, for data quality control purposes, a bad data

detection is usually introduced to identify measurements whose error exceeds a pre-defined

threshold. Integration of state estimation and bad data detection can largely suppress the pres-

ence of bad data and ensure that the state estimation is based only on good data. Most bad

data detection schemes rely on the residual J(x̂) as a decision variable. In particular, given the

assumption that e is normally distributed, it is shown that J(x) follows a χ2(K) distribution,

where K = Nm−Nn is the degree of freedom. Any measurements with a residual greater than

the pre-determined threshold τ is recognized as bad data:

z is identified as bad data, if

J(x̂) = (z− h(x̂))TW(z− h(x̂)) > τ. (2.6)

The threshold τ can be determined by a significant level α in hypothesis testing, indicating

that false alarms would occur with probability α.

2.4 ANN-based AC State Estimation

The main difficulty in utilizing Eq.(2.5) directly to estimate the AC state is that it requires

solving a non-linear optimization problem. Instead of making any particular assumption on

the structure of h(·), we adopt an empirical methodology to characterize the non-linear state

estimation function. In particular, based on a sufficient number of empirical state-measurement

readings, we attempt to train an ANN model that can accurately represent the states as a non-

linear function of the measurements. In the operational phase, this ANN is expected to directly

output a state estimate x̂ for each input of the measurements z, without the need to solve the
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nonlinear optimization in Eq.(2.5). In the following, we present our procedure for generating

the training data, defining the loss function, training the ANNs, and testing the accuracy of the

trained ANN state estimators.

2.4.1 Model Training

Although it would be more convincing to use actual data from a real power grid, power com-

panies use their own proprietary data format, in which most of them are not accessible. There-

fore, lacking actual state-measurement data from a real power grid, we follow the convention

to present our results based on computer simulations, as in previous studies (e.g. [74, 21, 23]).

Simulation-based evaluation would give valid results because the simulation data are generated

according to realistic grid typologies and well-established physical laws/mechanics that govern

the operation of the grids. In addition, simulation data provide a wider range of the operational

condition coverage. In particular, real-meter data can only cover a limited set of operational

conditions of the grids under which these actual data are recorded, while the simulation data

have a much wider coverage on the grids’ operation conditions, as these data can be generated

on demand for any operation condition of interest.

The training and testing cases in our study are generated by simulations on IEEE test

systems (9-bus, 14-bus, 30-bus). A Matlab package, MATPOWER [133], is used for data

generation and power flow analysis. Note that the use of simulation data in training does not

affect the validity of the proposed ANN model. One can simply replace the simulation data by

actual data once they become available and then retrain the ANN by the same procedure.

Our state-measurement data are generated as follows. The state variable, consisting of

the magnitude |Vi| and phase angle θi of the bus voltages, is a function of the load of the

power system and changes within a small range. To account for this dynamic behavior, we

consider a series on loads of the power grid ranging from 80% to 120%. For each load instance,

the state is calculated by power flow analysis. According to the American National Standard

for Code for Electricity Metering [6], class 2 accuracy applies for power grid measurements,

which tolerates a ±2% error in a measurement reading. In accordance with this specification,

we add an independent Gaussian noise ϵ to each measurement reading ψ, so that the simulated
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measurement reading becomes (1+ϵ)ψ, where ϵ ∼ N(0, 0.67%2). For each of the test systems,

10,000 and 1,000 state-measurement pairs are generated for training and testing, respectively.

Note that all constant values are excluded from measurements and state variables.

An ANN-based state estimation model is trained for each of the test systems. Following

[3, 84, 52, 80], each ANN state estimation model possesses a multi-layered perceptron (MLP)

architecture, consisting of one input layer, one or more hidden layers, and one output layer. We

use the mean WLS error as the loss function:

loss(z,x) =
1

N

N∑
i=1

(z− h(x))TW(z− h(x)), (2.7)

where N is the number of training samples.

Our experiments show that the accuracies of both voltage magnitude and phase angle are

satisfactory, yet the phase angle accuracy is lower. There are several reasons behind this phe-

nomenon. First, the loss function only narrows the difference between the actual and estimated

measurements. Being different from conventional machine learning problems, the state esti-

mation requires the error to be minimized from both measurement and state sides. Second,

the voltage magnitudes are strictly confined to a small range to provide a stable and consistent

power supply.

These trained models serve as targets for our proposed attacks. The inaccuracy in the state

estimation, i.e., the deviation of the estimated state from the actual state, overlays the goal of

the FDI attack. So any estimation inaccuracy would be counted as an attack success in the

attack evaluation. To eliminate such effect, we revise the loss function in order to achieve high

accuracies on both voltage magnitude and phase angle. A new penalty term of the mean square

error (MSE) between the actual state and the estimated state is added in Eq.(2.7), leading to

a new loss function in Eq.(2.8) specially designed for large-scale systems. In this new loss

function, a small constant c is added to balance both error terms so that the gradient descent

works on both terms simultaneously:

loss(z,x) =
1

N

N∑
i=1

(z− h(x))TW(z− h(x)) + c
1

N

N∑
i=1

(x− x̂)2. (2.8)
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Empirically, we investigate the value of c uniformly spaced (on a logarithmic scale) from

c = 1 × 101 to c = 1 × 105, and choose a c that provides the best estimate precision. Our

experiments show that by adding this new penalty term, the voltage phase angle estimation

accuracy increases to an equivalent level as that of the voltage magnitude. The proposed ANNs

are implemented in Python, using the TensorFlow package with Keras as back-end. The model

architectures and parameters are given in Table 2.2.

Table 2.2: ANN-based state estimator architectures and parameters.

9-bus 14-bus 30-bus
Architecture

Input Size 42 103 204
Fully Connected + ReLU 64 128 256
Output Size 14 22 53

Parameter
Learning Rate 0.001 0.001 0.001
Decay Rate 1× 10−5 1× 10−5 1× 10−5

Batch Size 64 64 64
Epochs 300 500 1000

2.4.2 Model Evaluation

After the models are trained, we use testing data to evaluate their performance. A good state

estimation model should have the following two properties: First, it should be able to provide

accurate state estimation irrespective of the noise in the measurements; second, regular mea-

surement noises should not trigger bad data alarms (i.e., low false alarm rate). Accordingly, we

evaluate the accuracy of the estimation of the ANNs by maximum absolute error (MAE) and

maximum absolute relative error (MARE) between the true and the estimated values, where

MARE is simply MAE normalized w.r.t. the magnitude of the true value. An estimate is con-

sidered accurate if the MARE of the voltage magnitude and the voltage phase angle do not

exceed 1% and 5%, respectively. To evaluate the false alarm rate, we use a significant level of

bad data α = 0.01. Table 3 and Table 4 summarize the performance evaluation of trained ANN

models. It is clear from these tables that the proposed ANN models are able to estimate states

accurately and have a low false alarm rate under regular measurement noise.
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Table 2.3: Evaluation of the voltage magnitude of the model.

Test System MAE (p.u.) MARE Bad Data(%) Accuracy(%)
9-bus 2.2× 10−5 2.4× 10−5 0 100

14-bus 5.8× 10−5 5.6× 10−3 3 100
30-bus 6.3× 10−5 6.5× 10−5 5 100

Table 2.4: Evaluation of the voltage angle of the model.

Test System MAE (rad) MARE Accuracy(%)
9-bus 1.0× 10−4 1.6× 10−2 96

14-bus 6.1× 10−3 2.6× 10−2 99
30-bus 1.2× 10−4 1.3× 10−2 98

2.5 Adversarial Model and Attack Formulation

In this section, we present a detailed adversarial model against the ANN-based state estimator,

following [126]. This model characterizes the adversary by their goal, knowledge of the data

and target system, and resource and meter accessibility constraints. Based on this model, we

formulate an optimization problem that the attacker can use to decide their best attack strategy.

2.5.1 Adversarial Model

It is realistic and practical for an attacker to have the ability to compromise meters, given the

fact that the meters are physically distributed and lack protection. The goal of the attacker is to

launch an FDI attack, in which the attacker aims to inject a manipulated measurement vector,

whose ultimate goal is to maximize the state estimation error while remaining undetected. The

false data are injected to the compromised meters, then collected by the SCADA system, and

eventually sent to the state estimation application.

It is assumed that the attacker has complete knowledge of the topology and configuration

of the power grid, such as the nodal admittance matrix. This information can be accessed or

estimated from a public database or historical records. In addition, it is also assumed that the

attacker knows everything about the ANN-based state estimation model, including the archi-

tecture and parameters. These information could be obtained by an attacker either by breaking
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into the information system of the power grid (similar to the 2015 Ukraine case) or by training

a shadow ANN that mimics the real ANN-based state estimator on a substitute data set. We

assume that the attacker also knows the threshold of the bad data detector.

Although these assumptions render a strong attacker that may not always represent the

practical cases, they enable us to evaluate the robustness and vulnerabilities of the ANN-based

state estimators under the worst-case scenario, which provides an upper bound on the impact

of FDI attacks against the ANN-based state estimation.

In addition to the bad data detection threshold, the adversary also faces other constraints,

including the set of meters to which they have access, the maximum number of meters they can

compromise, and the maximum amount of errors they can inject into the actual measurements

without being detected.

Note that in this work, we only consider the FDI attacks that happen during the operational

phase of the ANN-based state estimator. In other words, the adversary is only able to alter the

measurement inputs after the ANN model is trained. It is not allowed to perturb either the

training data or the trained model. Investigating training data or model poisoning is out of the

scope of this work and will be studied in our future work.

2.5.2 Attack Formulation

Let za be the measurement vector in the presence of FDI attack, then za can be described as

follows:

za = z+ a = h(x) + a, (2.9)

where a is a Nm-dimension non-zero attack vector. Given the input of a manipulated measure-

ment za, the state estimation output of the ANN-based state estimator f is as follows:

x̂a = f(za) = f(z+ a). (2.10)

21



According to Eq.(2.6), an adversary intending to elude bad data detection must satisfy the

following condition:

J(x̂a) = (za − h(x̂a))
TW(za − h(x̂a)) ≤ τ. (2.11)

The error injected into the state estimation hence can be calculated by:

x̂a − x̂ = f(za)− f(z). (2.12)

With the above notation, the problem of finding the best adversarial injection a for a given

measurement z can be formulated as a constrained optimization.

maximize
a

∥x̂a − x̂∥p

subject to (za − h(x̂a))
TW(za − h(x̂a)) < τ,

∥a∥0 ≤ L,

ali ≤ ai ≤ aui , i = 1, ..., Nm,

zmin
i ≤ zai ≤ zmax

i , i = 1, ..., Nm,

(2.13)

where L is the maximum number of meters that the attacker can compromise (so that they

can alter the measurement of the reported meter), and [ali, a
u
i ] provides the lower and upper

limits of modification to the measurement of each compromised meter, and [zmin
i , zmax

i ] de-

notes the valid range for each measurement, ensuring that the manipulated measurement is still

within the permitted range on that particular unit. The strength of the measurement modifica-

tion/manipulation depends on the attacker’s resource and meter accessibility constraints, which

have not been considered in previous work. In our work, by limiting the measurement manipu-

lation to a subset of meters, the attacker can avoid injecting excessive errors, which can easily

be detected by a univariate analysis. In addition, if the adversary knows where the high preci-

sion meters are located, they can avoid injecting too much error into those meters and instead

allocate the resource to other meters to improve the overall attack outcome.
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The objective function in the optimization Eq.(2.13) requires some distance metric ∥ · ∥p

to quantify the impact of the attack. In this work, we evaluate the ANN-based state estimation

by examining whether the state estimation is misled by an injection vector whose values are

limited to a noise level. The injection is tiny itself, and its impact will be further cracked

by the non-linearity of the AC power model. Therefore, this distance metric must be chosen

carefully. In reality, the voltage magnitude is always limited in a tight range in order to ensure

stable electricity supply, whereas the voltage phase angle varies in a relatively large range.

Hence, an erroneous estimation of the latter may seriously affect the consistent operation of the

power grid, but cannot be easily detected. Therefore, instead of targeting the total difference

contributed by both voltage magnitudes and the voltage phase angles, we define the adversary’s

objective function as the maximum change to the voltage phase angles θ:

∥x̂a − x̂∥∞ = max(|θ̂a1 − θ̂1|, ..., |θ̂an − θ̂n|). (2.14)

2.6 Attack Methodology

In this section, we present two algorithms, DE and SLSQP, to solve the proposed optimization

Eq.(2.13).

2.6.1 Solving the Proposed Attack with DE

As a population-based stochastic optimization algorithm, the DE algorithm was first proposed

in 1996 by Rainer et al. [106]. The population is randomly initialized within the variable

bounds. The main optimization process consists of three operations: mutation, crossover, and

selection. In each generation, a mutant vector is produced by adding a target vector (father)

with a weighted difference of the other two randomly chosen vectors. Then a crossover pa-

rameter mixes the father and mutant vectors to form a candidate solution (child). A pair-wise

comparison is drawn between fathers and children, and whichever is better will enter the next

generation.
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We follow [107] to encode our measurement attack vector into an array, which contains

a fixed number of perturbations, and each perturbation contains two values: the compromised

meter index and the amount into inject to that meter.

The use of DE and encoding has the following three advantages for generating attack

vectors.

• Higher probability of finding global optimum - In every generation, the diversity in-

troduced by the mutation and crossover operations ensures that the solution does not get

stuck in a local optimum, leading to a higher probability of finding the global optimum

[107, 106].

• Adaptability for multiple attack scenarios - DE can adapt to different attack scenarios

using our encoding method. On the one hand, by specifying the number of meters to

compromise, DE can search for both meter indices and injection amount. On the other

hand, by fixing the meter indices, DE can only search for injection amount to these

specified meters.

• Parallelizibility to shorten attack time - The function evaluation of an ANN is com-

putationally demanding. As the scale of the smart grid increases, generating an attack

vector may take seconds to minutes. An attacker must complete the generation and in-

jection of the attack vector before the next state estimation takes place. DE algorithm

is parallelization-friendly, as it is based on a vector population. DE operations can be

mounted on a computer cluster to significantly expedite the computation of the attack

vector.

Next, we present how we adapt the DE algorithm to our proposed attack:

• Deal with duplicate meter indices - In our work, instead of outputting the exact meter

value, we select to output the injection vector to shrink the search space. We use two

approaches to ensure the uniqueness of meter indices in the solution. First, we generate

meter indices without replacement in population initialization. Second, we add a filter

in the crossover operation. This filter keeps the meter indices unchanged if the newly

selected meter index is repetitive.
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• Ensure the measurement after injection is within range - A valid measurement read-

ing must satisfy zmin
i ≤ zi + ai ≤ zmax

i , where zmin
i and zmax

i are the lower and upper

limit power permitted on zi. We use an intuitive approach by replacing za = z + a with

za = min(max(za, z
min), zmax), where min and max are element-wise operations.

• Deal with the overall constraint - In addressing the constraints, adding a penalty term

to the original objective function has been one of the popular approaches. However,

they do not always yield satisfactory solutions since the appropriate multiplier for the

penalty term is difficult to choose and the objective function may be distorted by the

penalty term. Therefore, we use a heuristic constraint handling method proposed in [27].

A pair-wise comparison is drawn between fathers and children in order to differentiate

feasible solutions from infeasible ones. The three criteria of the pairwise comparison are

the following:

1. If both vectors are feasible, the one with the best objective function value is pre-

ferred.

2. If one vector is feasible and the other one is not, the feasible one is preferred.

3. If both vectors are infeasible, the one with the smaller constraint violation is pre-

ferred.

Essentially, the above comparison handles constraints in two steps: first, the comparison

among feasible and infeasible solutions provides a search direction towards the feasible

region; then, the crossover and mutation operations keep the search near the global opti-

mum, while maintaining the diversity among feasible solutions. The pseudo code for the

proposed attack using DE is presented in Algorithm 1.

2.6.2 Solving the Proposed Attack with SLSQP

In some gradient-based attack algorithms in image classification([109, 17]), a logistic function

is added to the objective function as a penalty term and the multiplier for the penalty term is

chosen by a line search. These algorithms aim to find a feasible solution, not the optimal one.
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Algorithm 1 DE attack
Input: measurement z, GENMAX {maximum number of generations}, N {population size},

f {objective function}, g {constraint function}, CR {crossover rate}
Output: injection vector a

1: g = 0
2: Population initialization ai,0 for i = 1, ..., N . Meter indices are randomly select without

replacement and injection amounts are randomly select within the univariate bound.
3: Evaluate the f(ai,g) and constraint violation CV (ai,g) = max(g(ai,g), 0), for i = 1, ..., N
4: for g = 1 :MAXGEN do
5: for i = 1 : N do
6: Randomly select r1 and r2
7: jrand = randint(1, Nm)
8: for j = 1 : D do
9: if (randj[0, 1) < CR or j = jrand) and the meter index not repetitive with previous

meter indices then
10: uji,g+1 = xjbest,G + F (xjr1,g − x

j
r2,g

)
11: else
12: uji,g+1 = xji,G
13: end if
14: end for
15: Evaluate f(ui,g+1) and CV (ui,g+1)
16: Update the population if the child ui,g+1 is better than the father xi,g by above three

criteria
17: end for
18: end for

Therefore, we use a conventional optimization algorithm (SLSQP) [56]. SLSQP is a variation

on the SQP algorithm for non-linearly constrained gradient-based optimization. In our SLSQP

attack, we encode the solution to a Nm-dimension vector, in which the i-th element denotes

the injection amount to the i-th meter. This encoding allows the attacker to generate attack

vectors for a set of specified meters by placing upper and lower bounds on the corresponding

elements in the attack vector. To solve the proposed optimization problem, we first construct

the Lagrangian function.

L(a, λ) = f(a) + λ · g(a), (2.15)

where  f(a) = ∥x̂a − x̂∥∞

g(a) = (z− h(x̂a))
TW(za − h(x̂a)) < τ.

(2.16)
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In each iteration k, the above problem can be solved by transferring to a linear least square

sub-problem in the following form:

max
d

∥(Dk)
1/2

(Lk)Td+ ((Dk)−1/2(Lk)−1∇(ak)∥

subject to ∇g(ak)d+ g(ak) ≥ 0,

(2.17)

where LkDk(Lk)T is a stable factorization of the chosen search direction ∇2
zzL(z, λ) and is

updated by BFGS method.

By solving the QP sub-problem for each iteration, we can get the value of dk, i.e., the update

direction for zk:

zk+1 = zk + αdk, (2.18)

where α is the step size, which is determined by solving an additional optimization. The step

size ψ(α) := ϕ(ak + αdk) with xk and dk are fixed, and can be obtained by minimization:

ϕ(ak; r) := f(ak) + max(r · g(a), 0), (2.19)

with r being updated by:

rk+1 := max(
1

2
(rk + |λ|, |λ|)). (2.20)

The limit on the injection amount is achieved by setting a bound to the optimizing variable.

The physical constraint for branch limit is ensured by performing an element-wise min-max

operation as in the DE attack.

2.7 Attack Evaluation

In this section, we evaluate both FDI attacks on three IEEE test systems: 9-bus, 14-bus, and 30-

bus systems. The implementation of our attacks is done in Python, using packages TensorFlow

and SciPy. We run the experiments on a computer equipped with a 3.5 GHz CPU and 16 GB

memory.
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Attack Scenarios: Depending on the attacker’s capabilities and practical constraints, the

attacker can launch an attack in different scenarios. Inspired by [74], we consider the following

two attack scenarios to facilitate evaluation.

• Any k-meter attack - The attacker can access all meters, but the number of compromised

meters is limited by k. In this scenario, the attacker may want to wisely allocate the

resource, by selecting meters and injection amounts that maximize the impact of the

attack.

• Specific k-meter attack - The attacker has the access to k specific meters. For example,

the attacker may access only meters in a confined region. In this case, the attacker needs

to determine the injection amount to each meter to maximize the attack impact.

We perform the experiments as follows. To fairly compare the attack performance on

different test systems, we choose the percentage of compromised meters, R, to be 5%, 10%

and 20%. For each R, we explore the attack performance under different injection levels: 2%,

5% and 10%. The injection level is defined as the maximum injection strength in terms of

proportion to the measurement. Each experiment runs on 1,000 measurement instances and is

repeated for 10 times to reduce randomness.

We consider the following four metrics to evaluate the effectiveness of attacks. We mea-

sure the MAE and MARE that are injected into the voltage phase angle. We also report the

success rate, where success is defined as an attack that produces more than 5% MARE to the

voltage phase angle. Moreover, since the smart grid is assumed to be a quasi-static system

and the state changes slowly over time, we want to investigate if the time between two state

estimations allows an adversary to mount the FDI attack on the smart grid.

2.7.1 Any k Meter Attack

Under this scenario, the attacker can access all meters and has the freedom to choose any k

meters to compromise. The way we encode the attack vector in DE enables the search for

better target meters in every generation. In contrast, SLSQP only allows us to put constraints

on specific meter indices. Therefore, only DE can be used to find the attack vector in any
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k-meter attack. DE/x/y/z denotes a DE variant, in which x specifies that the vector to be

mutated is chosen by “random” or “best”, and y denotes the number of difference vectors

and z denotes the crossover scheme. We implement three DE variants in our experiments:

DE/best/1/bin, DE/current to best/1/bin and DE/current to rand/1/bin, where bin denotes the

binomial. These DE variants differ in the way of how the father vector is selected and how the

differential variation is formed. We find that there are no significant differences among them.

Hence, DE/best/1/bin is used in all experiments:

ui,G+1 = xbest,G + F (xr1,G − xr2,G),

where xr1,G, xr2,G are integers drawn from the current population, and xbest,G denotes the best

individual in terms of the value of the objective function in the current population. F is a real

and constant factor ∈ [0.5, 1], which controls the intensity of the mutant.
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Figure 2.1: An example of a 5-meter attack on the 14-bus system.

Figure 2.1 shows an example of a 5%-meter attack on the 14-bus system. Our DE attack

injects error into one of voltage phase angles, while others remain unchanged. In Figures 2.1

(b) and (c), for injection levels 10% and 20%, the maximum injections are condensed at 5%

and rarely exceed 10%, due to the overall constraint on bad data detection.

Figure 2.2 shows the impact of the attack with the change of R and the injection level.

In general, the success probability and attack impact increase as the attacker controls more
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Figure 2.2: Relative error and success rate of any k-meter attack on 3 test systems with N = 400 and
GMAX = 400.
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resources. The attacker achieves a high success rate (80% of simulation instances) by compro-

mising 10% of meters with injection level 10%. Especially for the 14-bus system, the attack

achieves 100% success for any combination of R and the injection level.

Interestingly, for the 30-bus system, the impact of 10% compromised meters exceeds that

of 20% compromised meters. In addition, the performance of the 20% of compromised meters

drops drastically as the injection level increases. A possible explanation for this is that, with the

expansion of search dimension and space, DE requires more generations to find a satisfactory

solution.
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Figure 2.3: Success rate of the DE attack and the random attack on a log scale. Solid lines refer to the
DE attack, and dashed lines refer to the random attack.

We compare our proposed attack with a random attack, where the injection vectors are

generated from a uniform distribution. The success probability is reported on the same set of

instances with 1, 000 attempts on each instance. The success rate is compared to that of our

DE attack on a logarithmic scale (Figure 2.3). There is no significant difference between the

impact of the DE attack and that of the random attack when the injection level is low, in which

the attack impact is limited. However, if the attacker wants to achieve greater impact, our DE

attack outperforms the random attack by order of magnitude.

Figure 2.4 shows the frequency of the meter indices that present in the attack vectors.

Because most of the meter frequencies are small, only the seven meters with the largest fre-

quencies are presented. The injection into high-frequency meters can introduce large error to

the state variable. Our DE attacks also help to identify vulnerable meters, in which people can
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Figure 2.4: Frequency of meters selected in the attack vectors.

strengthen the physical protection, e.g., replace them with higher precision meters or lock them

in boxes.

2.7.2 Specific k Meter Attack

To explore the effect of the population size and iteration number, we evaluate the average num-

ber of function evaluations (NFEs) before delivering a successful attack or when no significant

change in the solution is observed. In the DE case, NFE is equal to the population size mul-

tiplied by the number of generations. NFEs and the corresponding running time are shown in

Table 2.5. For all combinations of systems and attack settings, the attacker can find a successful

attack vector in 3 seconds or conclude that the attack is infeasible.

In this scenario, the attacker can compromise specific k meters due to restrictions in phys-

ical location. DE and SLSQP are implemented and compared in this attack scenario. To search

for the injection amount in specific k meters, DE specifies the indices of the k meters in popu-

lation initialization and disables the mutation operation of the meter index, while SLSQP only

allows modifications to the k meters in the attack vector. We randomly select 3 sets of meters

such that R is 5%, 10% and 20%, respectively. We perform the same set of experiments using

both the DE and SLSQP algorithms and compare their performance using the same metrics.

In general, the DE algorithm outperforms the SLSQP algorithm in effectiveness (Fig-

ure 2.5). This is not surprising, as the DE brings more diversity in every generation, whereas

SLSQP only explores the neighbors in each iteration.
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Figure 2.5: Relative error and success rate of the specific k-meter attack on 3 test systems.
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Table 2.6 shows the convergence time of the DE attack with 10, 000 NFEs and the SLSQP

attack with 100 iterations. Both attacks converge quickly within 3 seconds, which is feasible

for an attacker to complete before the next state estimation takes place. A simple comparison

of running time between them can be misleading, since the specific k meters involved in our

test are chosen blindly. The convergence time is highly dependent on the meters chosen to

perform the attack. The selection of vulnerable meters would greatly shorten the attack time.

In addition, the execution time can be further shortened by applying an early-stop criteria or

parallel processing to the DE attack, or adjusting the max iterations for the SLSQP. Therefore,

without taking into account the running time, our experiments exhibit a clear pattern that the

DE attack is more effective than the SLSQP attack.

Table 2.5: Average NFEs and execution time (in seconds) of any k-meter attack on 3 test systems.

Test System NFEs Time (s)
9-bus 500-1500 0.25-0.45

14-bus 500-3500 0.5-1.73
30-bus 800-5600 1.5-2.7

Table 2.6: Convergence time (in seconds) comparison of the specific k-meter attack on 3 test systems.

Test System DE (s) SLSQP (s)
9-bus 0.12-0.4 0.036-0.6

14-bus 0.06-0.6 0.14-1.0
30-bus 0.3-3.0 0.26-2.2

2.8 Potential Defenses

In this section, we are interested in how the proposed attacks behave when a defense mecha-

nism is specifically customized / optimized for these attacks. Note that such a specialized de-

fense mechanism is in sharp contrast to the general defense mechanisms considered in previous

works, which do not assume/exploit any knowledge or feature of the proposed attacks. Putting

the proposed attacks in the context of a strong and specialized defense mechanism allows us
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to gain insights on the limit of both the attacker and the defender in a more realistic “sharpest-

sword vs. strongest-shield” setting, as in practice “maximum effort” is commonly executed

not only by attackers but also by defenders, especially when it comes to a mission-critical in-

frastructure such as the power grid. In the following, we first review existing state-of-the-art

defense proposals against adversarial examples in image classification and explain why some

of them are not applicable to our problems. Then, we propose an adversarial training-based

defense mechanism to counter our proposed attacks. Several techniques are also developed to

optimize the proposed defense. The performance of the proposed mechanism is evaluated by

simulations in Section 2.7.

Despite the significant number of works on detection against the FDI attack, most of the

existing detection mechanisms are mainly built on the DC state estimations or traditional WLS

state estimators. These detection methods achieve high detection accuracy with a low false

alarm rate, but they are not applicable to the ANN-based state estimator. The defense strategy

against the FDI attack on the AC ANN-based state estimation has not been intensively studied.

In the image classification area, proactive countermeasures against adversarial examples

aim to make the ANN model more robust before the attacker gets the chance to generate ad-

versarial examples. Mainstream proactive countermeasures fall into three categories [126]: the

defensive distillation, adversarial training, and classifier robustifying.

However, our problem has a different goal compared to image classification. Methods

based on the probability of the target class, such as defensive distillation and classifier robus-

tifying, are not applicable. To propose the defense, we need to address two challenges: (1) in

contrast to an image classification problem, our goal is to minimize the error in the state space

while keeping the residual in the measurement space below a pre-defined threshold; (2) mea-

surements contaminated by a small injection level are well hidden as they are nearly from the

same distribution as clean measurements. The defense should not be sensitive to adversarial

injections, yet measurements with regular noise should not trigger bad data detection alarms.

As stated in [51], there are two main methods to strengthen a regression model: noise-

resilient regression and adversarial training. The idea behind the noise-resilient regression

is to enhance the model’s tolerance to noise and identify and remove the outliers, while not
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triggering bad data alarm or losing accuracy. In the target model training process in Section

2.4, we adopt the idea of noise resilience by adding noises sampled from a certain distribution

to the training data, so that the model learns the distribution and is able to eliminate the effect

of such noises. In addition, we minimize both errors in the state space and measurement space

to improve the accuracy of ANN-based state estimation and narrow the left-over space for

attacks. Although these methods provide a robustness improvement against noise and outliers,

the results in Section 2.7 show that a noise-resilient model is not resistant to our attacks. It is

suggested that an adversary can still generate noise-like injections to mislead the state estimate.

It turns out that introducing noise to the measurements and minimizing the training error in

both spaces does not make the model more robust to adversarial injections.

Among many defenses against adversarial examples, adversarial training [109, 38] has

been one of the most effective methods [75, 59]. The adversarial training attempts to minimize

the impact of injection in the model training phase, rather than trying to identify and mitigate

them in the operational phase of the trained model. This is achieved by a min-max formulation:

θ = argmin
θ

E(x,y)∼D

[
max
δ∈S

L(θ, x+ δ, y)

]
, (2.21)

where D is the set of training data, L is the loss function, θ is the parameter of the network, and

S is a norm-constrained ball centered at 0. In contrast to regular training, adversarial training

uses min-max optimization, where inner maximization produces injection data based on the

current model and injects them into the training data set, while outer minimization minimizes

the state estimation deviation on the enlarged training data set, in which the injection data are

included.

Inspired by [75] and considering the uniqueness of our problem, we propose a defense

through an optimization perspective with the goal of improving robustness while maintaining

the accuracy of the ANN-based state estimation model:

θ = argmin
θ

c · E(x,z)∼D

[
max

δ
∥x̃− x∥

]
+ loss(z,x), (2.22)
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where c > 0 should be well chosen to balance the optimization strength on each term. Com-

pared to Eq. (2.21), a training loss term is added to the optimization to take into account the

accuracy of the model.

In the process of choosing a suitable c, since the value of the first term is very small, a large

c would make optimization emphasize minimizing the risk of the FDI attack, while a small c

would cause a high false alarm rate. Empirically, we find that the best way to choose c is to

balance the accuracy of the model, the bad data rate, and the robustness of the model. We verify

this by running the adversarial training model for values of c spaced uniformly (on a log scale)

from c = 1×102 to c = 1×107, on the 9-bus system customized for the 10%-meter specific DE

and SLSQP attack, respectively. The model accuracy and bad data rate are evaluated on the test

data set, while the effectiveness of adversarial training is evaluated by DE and SLSQP attacks.

We plot the voltage angle accuracy, bad data rate, and attack success rate as a function of c in

Figure 2.6. We find that both attacks show similar patterns. As c increases, attacks become

rarely successful at the cost of the state estimation model being more conservative. The con-

servativeness is mainly reflected by the model recognizing a growing number of measurements

with regular noises as bad data. In practical state estimation applications, bad measurements

are usually discarded and will not be used to estimate the current system status. Therefore, a

high false alarm rate would increase the risk of unobservability of the system. Although the

adversarial trained state estimation model could identify more data as bad data, this is a minor

model degradation, which can be manually resolved, for example, by increasing the sampling

rate.

As claimed in [75], solving optimization alone is not a sufficient condition for the accuracy

and robustness of the model. In addition, it requires both the optimization and the value of the

objective function to be small. This is because, in general, a smaller objective value implies a

better model. However, in our problem, this is not always true. Due to the presence of noise,

a lower objective value does not always indicate a better model. Furthermore, obsessively

pursuing a small objective value may lead to overfitting. Therefore, we stop the training process

when we observe that the loss is consistently smaller than the threshold.
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Figure 2.6: Sensitivity to the constant c.

We then use Adam optimizer to adversarially train state estimation models on the 9-bus,

14-bus and 30-bus systems with the same attack settings and meter indices as in Section 2.7.2.

According to our results, the three systems present similar patterns. To evaluate the effec-

tiveness of adversarial training on all test systems, we present the experiment results of the

adversarial training for the 10%-meter specific attack with the injection level of 10% in Table

2.7, in terms of voltage angle accuracy, bad data rate and attack success rate. While adversarial

training significantly reduces the attack success rate, it achieves this benefit at the cost of an

elevated bad data rate and a slight degradation (several percent) in model accuracy, for defenses

against both the DE and SLSQP attacks.

The reason for the slightly degraded accuracy is that the adversarial training is done on an

enlarged training data set, in which the adversarial data are generated and added to the data set

as the training process goes on. At the individual level, an adversarial example may hide well in

the actual data distribution. However, if the whole population is examined, the adversarial data

distribution may differ slightly from the actual data distribution. Therefore, the model learned

from the adversarial data may shift accordingly, causing a slightly lower accuracy.

It is also noted that adversarial training with examples generated by DE has a higher bad

data rate than training with examples generated by SLSQP. One possible explanation is the high

skewness in the residual distribution. In the process of generating adversarial examples, while

the SLSQP finds adversarial examples in the neighbors, DE, being a stochastic method, always
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probes more possibilities to make use of the resource. Taking a closer look at the residuals

of the adversarial data, we can notice that the residual distribution is highly left skewed and

is highly condensed at the value of the bad data detection threshold. Due to the skewness, it

takes more adversarial training iterations to converge, yet to a value just below the threshold.

Such an unsteady convergence is susceptible to distribution difference, therefore, data from the

true distribution are very likely to violate the bad data threshold, resulting in an elevated bad

data rate. Note that such a drawback is not critical to the state estimation, as it can be easily

overcome by proportionally raising the sampling rate to compensate for those good data lost

due to the false alarm.

In summary, our proposed adversarial training works well in significantly reducing the

attack success rate, but only at the cost of a higher bad data rate and a slight degradation of the

model accuracy.

Table 2.7: Performance of adversarial training against specific attack of 10% meters with injection level
of 10%.

Without Adversarial Training
θ Accuracy(%) Bad Data(%) SLSQP(%) DE(%)

9-bus 96 0 22 35
14-bus 99 3 71 100
30-bus 98 5 13 17

SLSQP With Adversarial Training
θ Accuracy(%) Bad Data(%) Attack Success(%)

9-bus 91.7 9.7 3
14-bus 93.3 13.5 5
30-bus 92.4 14.9 2

DE With Adversarial Training
θ Accuracy(%) Bad Data(%) Attack Success(%)

9-bus 85.2 30.2 3
14-bus 86.8 34.5 7
30-bus 80.3 40.2 1
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2.9 Conclusions

In this work, we performed the first study of the adversarial FDI attack against the ANN-

based AC state estimation. We first created target models that are sufficiently strong. Then

we formulated the adversarial FDI attack into an optimization problem, followed by extensive

evaluations under two attack scenarios on IEEE 9-bus, 14-bus and 30-bus test systems, based

on the adaption of DE and SLSQP algorithms aiming to find attack vectors. In any k-meter

attack, our results showed that the DE attack achieves a high success rate (more than 80% in all

simulated cases), despite having a small number of compromised meters and low false injection

strength. The DE outperforms SLSQP in the specific k-meter attack. Our findings also showed

the potential of adversarial training in defending against these attacks, and such an approach

can be further explored to improve the ANN-based AC state estimation model robustness.

40



Chapter 3

Assisting Backdoor Federated Learning with Whole Population Knowledge Alignment

3.1 Introduction

Federated learning (FL) [55, 77] is a distributed learning system, which allows multiple clients

to collaboratively train a high accuracy model by taking advantage of a wide range of data from

physically separated clients without sharing their locally collected data. Currently, FL applica-

tions thrive in next-word and emoji prediction on smartphones [22, 123, 97, 41], environmental

monitoring [40], and aiding in medical diagnosis among hospitals [122, 15].

Due to the distributed nature and inherent data heterogeneity (i.e., data being non-i.i.d.)

across FL clients, the local model updates uploaded by clients may be different from others. As

a result, it is assumed that the central server cannot validate the legitimacy of received model

updates, which provides a venue for new attacks. Backdoor is one of the data poisoning attacks

[9], in which an adversary corrupts the global model such that the new global model reaches a

high accuracy on the FL main task, as well as on a backdoor subtask activated by some trigger,

and such a high backdoor subtask accuracy remains for multiple training rounds. Backdoor

attacks have been shown to be unavoidable and computationally difficult to detect [113].

Although backdoor FL attacks are powerful, they have stringent requirements on the tim-

ing of attack, which are often difficult to meet in practice. To make our argument more con-

crete, in this work, we will focus on single-shot backdoor attacks [9], due to their benefits of

stealthiness, simplicity in implementation, and the fact that the more general multi-shot back-

door attacks can be built upon them incrementally. Ideally, a single-shot backdoor attack, in

which the adversary injects the designated backdoor trigger only once (so as to keep the attack

stealthy), can achieve its goal with high accuracy by injecting the backdoor subtask when the
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FL model is close to convergence. However, in practice, the attacker cannot always have the

luxury of controlling injection time because clients in each FL training round are randomly

selected. In fact, a backdoor subtask injected in the early stage of the training (before the FL

model converges) can only generate very weak backdoor effects due to the following two rea-

sons. (1) The strength of the injected backdoor model update will be severely diluted by the

local model updates from other clients in the same round after the aggregation at the server,

because the magnitude of the other clients’ local model updates is significant when the global

model is far from convergence. (2) The backdoor effect of the injected subtask vanishes quickly

in subsequent training rounds as the injected backdoor will be overwritten by newcoming nor-

mal model updates in those rounds. As a result, the earlier the backdoor is injected, the faster

the backdoor effect will diminish. In addition, the early injected backdoor is less stealthy as

the main-task accuracy might deteriorate due to the dilution effect and the scaling operation to

ensure the backdoor survives the aggregation at the server.

Realizing the stringent attack timing restriction of existing single-shot backdoor attacks,

in this work, we are interested in studying a new single-shot backdoor attack technique that

allows the backdoor subtask to be injected in the early stage of FL training while still achieving

a strong and sustaining backdoor effect, making the effect of the attack less dependent on

the timing of the attack, and hence making the attack more practical and applicable to general

applications. Our new attack technique is inspired by the latest research findings on FL privacy,

which demonstrate that although private client data is not directly revealed in FL, the shared

FL global model can unintentionally leak sensitive information about the data on which it was

trained [28, 34, 46, 79, 86]. This finding has motivated us to consider the following research

problem: does FL information leakage render a stronger backdoor attack in the early

stage of FL training? Our main insight is that the slow and unstable convergence of the

global model in FL is mainly caused by the weight divergence [122] of the local model updates

of different clients. This weight divergence is mainly decided by the difference in the label

distribution (henceforth referred to as the “distribution") and the difference in gradients between

a single client’s local data and the whole population’s data (i.e., the aggregation of all clients’

data). Therefore, reducing these differences will shrink the weight divergence and henceforth
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expedite FL convergence. This will increase the strength and sustainability of an early-stage

backdoor subtask injection.

In this work, we propose a novel information leakage assisted two-phase FL back-

door attack, which enhances the effectiveness of FL early injected single-shot backdoor

attack. We assume that attacker-controlled clients can interact with FL training multiple times,

but they only have one chance to inject the backdoor. In our design, we do not directly

strengthen the backdoor attack. Instead, we design a preliminary phase for the subsequent

backdoor injection, where the attacker-controlled clients play the role of accomplices and reach

out the FL global model by uploading model updates that are beneficial to FL convergence, to

pave the way for the subsequent backdoor injection. Formally, the proposed backdoor attack

consists of two phases: a preliminary phase, in which the attacker-controlled clients help to

accelerate the convergence of the FL model, and an attack phase, in which the backdoor attack

is launched. In the preliminary phase, attacker-controlled clients first perform a passive infer-

ence attack to get an estimate of the whole population distribution. Then, instead of training

on the original local data, they train on locally crafted datasets whose distributions are aligned

with the inferred whole population distribution, so that the weight divergence is reduced, and

the FL model converges more quickly. Although the operations in the preliminary phase seem

legitimate, they help to improve the effectiveness and persistence of the backdoor by reducing

the dilution effect from other clients (as the magnitude of their local model updates decreases

more quickly).

When the expected FL model accuracy is reached or the client that has the capability to

perform a backdoor attack is selected, the backdoor attack is launched by training on a locally

poisoned dataset and the backdoored local model updates are scaled up before submitting to

the FL server. Benefiting from the preliminary phase, the single-shot backdoor injected into

the resulting FL model will be less likely to be diluted by model updates from other clients.

Therefore, the designed preliminary phase successfully overcomes the deficiencies of early

injected single-shot backdoor and significantly improves the strength and persistence of the

backdoor effect. Note that the proposed preliminary phase benefits the backdoor effectiveness

by improving the FL convergence, and hence reduces the dilution effect from other clients.
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And this preliminary phase is independent of the attack phase, therefore, can be combined with

any kind of backdoor attacks to enhance their backdoor performance.

To the best of our knowledge, we are the first in the literature to enhance the effectiveness

of FL backdoor attacks by utilizing the information leaked from the FL model. Our contribu-

tions in this work are fourfold:

• We prove an upper bound for the intra-aggregation weight divergence between the FL

model and the centralized learning (CL) model and demonstrate that the weight diver-

gence is small. Thus, FL global model updates can be used to approximate CL model

updates.

• We propose a novel optimization-based whole population distribution inference attack

utilizing the above approximation and the linearity of the cross-entropy. Unlike the ex-

isting property inference attack, in which it can only generate binary property inference

results, our proposed inference attack produces precise quantitative property information

about the dataset.

• We propose a preliminary phase for the early injected single-shot backdoor attack, which

improves the attack effectiveness by reducing the dilution effect from local updates of

normal clients. Specifically, attacker-controlled clients use the inferred distribution to

craft auxiliary datasets using augmentation and downsampling techniques so that the

distribution of the auxiliary dataset is aligned with both the gradient and the inferred

global distribution. Training on the auxiliary dataset can facilitate the convergence of

the FL model and reduce the magnitude of local model updates from normal clients, and

further boost the performance of the backdoor attack.

• Extensive experiments are conducted on the MNIST dataset under various data hetero-

geneity settings to evaluate the accuracy of the proposed whole population distribution

inference attack, the improvement of the convergence of the FL global model brought

about by the proposed preliminary phase, and the effectiveness of the proposed backdoor

attack. We also evaluate the proposed attack against two state-of-the-art defense mech-

anisms. The experimental results show that the proposed inference attack achieves high

44



accuracy against FL in scenarios with and without defense mechanisms. The FL model

assisted by the preliminary phase has a faster convergence rate, especially in the early

training stage. The proposed backdoor outperforms existing backdoor attacks both in

success rate and longevity, even when defense mechanisms are in place.

The remainder of this chapter is structured as follows. We start by providing the back-

ground and related work in Section 3.2. We present the threat model and the attack design

philosophy in Section 3.3. Subsequently, the overview and detailed attack steps are presented

in Section 3.4. Finally, the experimental setup and results are presented in Sections 3.5 and 3.6,

respectively. We evaluate the robustness of the proposed backdoor attack against two defense

mechanisms in Section 3.7, and we conclude our work in Section 3.8.

Throughout this work, we use the following notation:

• ∥ · ∥ denotes the ℓ2 norm.

• Dk and D denote the training data on the k-th client and the entire training data popula-

tion, respectively. And we have D = ∪N
k=1Dk.

• nk and n denote the number of training samples in Dk and D, respectively. And we have

n =
∑K

k=1 nk.

• wT
k and wT denote the k-th local model weight and the global model weight in the T -th

aggregation, respectively.

• Fk(wk;Dk) and F (w;D) denote the loss function on the k-th client and the loss function

of a CL model, respectively.

• ∇L(wk;Dk) and∇L(w;D) denote the loss gradients of the client k and the loss gradients

of the CL model, respectively.

• p(y = c) is the proportion of the label c in the training data, and we have
∑C

c=1 p(y =

c) = 1.
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3.2 Background and Related Work

3.2.1 Federated Learning

The whole population D = ∪N
k=1Dk is allocated to N clients and each client maintains Dk.

Each client maintains a local model trained from the local training dataset. And a central server

maintains a global model by aggregating the local model updates from the participating client

in each training round. The objective of FL training is to minimize the loss:

F (w) =
1

|D|
∑

(x,y)∈D

L(w; (x, y)). (3.1)

To achieve this goal, each client k optimizes their local model weights wk to minimize the

loss function Fk(w) =
1

|Dk|
∑

(x,y)∈Dk
L(w; (x, y)). Here, we describe the FedAvg aggregation

method [77], which is perhaps the most widely used averaging scheme. FedAvg iteratively

performs the following three steps:

(1) Global model synchronization. In the T -th aggregation, the central server randomly

selects K (K ≤ N) from N clients and broadcasts the latest global model wT to the selected

clients: wT,0
k ← wT .

(2) Local model training. Each client k updates its own local model wT
k by running an

SGD on the local dataset Dk for t steps. The τ -th step on client k follows:

wT,τ+1
k ← wT,τ

k − η∇Fk(w
T,τ ), (3.2)

where η is the local learning rate.

(3) Global model update. After performing local training for t steps, the client transmits

the model update ∆wT
k = wT,t

k −w
T,0
k back to the central server. The central server then updates

the global model by performing a weighted average on the local model updates sent from K

clients:

wT+1 ← wT +
K∑
k=1

nk

n
∆wT

k , (3.3)
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where nk = |Dk| is the number of training data on the client k and n =
∑K

k=1 nk is the total

number of training data used on the selected clients.

3.2.2 Information Leakage in FL

We mainly discuss the literature related to property inference attack. The property inference

attack was first proposed by Ateniese et al. [7] against Hidden Markov Models and Support

Vector Machines. The authors in [36] designed a property inference attack on fully connected

networks, in which the adversary trains a meta-classifier to classify the target classifier depend-

ing on whether it possesses the property of interest or not. A malicious user can infer attributes

that characterize the entire data class or a subset of data [79].

We also note that our whole population distribution inference attack is similar to that

of [115], where the authors analyzed the relationship between the number of data samples

of a specific label and the magnitude of the corresponding gradients. Our work differs from

their work from the following two perspectives: (1) their work draws a comparison between a

pair of labels and generates a binary output of which label possesses a larger number of data

samples, while our work is able to provide a precise quantitative distribution of all labels; (2)

to get a satisfying inference result of the whole distribution, their work has a high computation

complexity and needs to be performed multiple rounds, while in our work the distribution can

be inferred in one training round and requires less computation.

3.2.3 Backdoor Attacks against FL

The backdoor attack is one of the data poisoning attacks whose goal is to misclassify inputs

with backdoor triggers as the target class, while not affecting the model accuracy on clean

data. The backdoor attack was first introduced in [9]. They also proposed train-and-scale and

constrain-and-scale techniques to maximize the attack impact while evading anomaly detec-

tion. The researchers in [113] introduced an edge-case backdoor that targets data on the tail of

the distribution. They also claimed that the backdoors against FL are unavoidable and compu-

tationally hard to detect. To make the backdoor stealthier, the scholars in [118] decomposed a
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centralized backdoor into parts, and each trigger is injected by a client. The distributed back-

door is more effective and persistent than the centralized backdoor. However, the distributed

backdoor is fully activated upon completion of injection of all distributed triggers. Addition-

ally, to survive the newcoming normal updates, the injection of local triggers must be finished

in a relatively short attack window. Given that the attacker cannot manipulate the timing of

selecting a compromised client to participate in the training, the above conditions are hardly

satisfied in practice.

3.2.4 Defenses against FL Backdoor Attacks

Defense against backdoor attacks falls mainly into two categories, robust aggregation and dif-

ferential privacy.

Robust aggregation. One approach from existing work focuses on building a robust

aggregation algorithm that estimates the most possible aggregation rather than directly taking

a weighted average. These robust aggregation, such as Foolsgold [35], Krum [11], Bulyan

[31], RFA [92] and trimmed mean [124] are designed based on the statistical characteristics of

model updates, and aim to identify and deemphasize possibly malicious model updates in the

aggregation. Most robust aggregations are built on an assumption of the i.i.d. data distribution

across the participating clients. However, this assumption is hardly met in practice. For the

FL with non-i.i.d. data among clients, robust aggregation algorithms could mis-identify the

non-i.i.d. but normal model updates as malicious or vice versa, and then their weight could be

reduced or raised in the aggregation, which degrades the FL model accuracy. These approaches

are capable of minimizing the impact of malicious model updates to a certain level, but cannot

completely eliminate them [64].

Differential Privacy (DP). DP was originally designed to protect individual privacy. The

authors of [108] discovered that by adding noise, the model update could also reduce the effect

of malicious model updates. DP has been shown to be effective in mitigating backdoor attacks,

but at the cost of model accuracy. The authors of [85] evaluated the effectiveness of both local

DP and central DP in defending against backdoor attacks.
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3.3 Threat Model and Attack Design Philosophy

3.3.1 Threat Model

We consider the single-shot attack scenario, in which the attacker-controlled client has only

one chance to inject the backdoor. And we aim to improve the effectiveness and lifespan of the

backdoor injected in the early training stage. First, the attack should be kept stealthy, i.e., the

impact on the main task accuracy should be as small as possible. Second, the backdoor injected

in the early training stage should remain for a long period.

We assume that the attacker can compromise one or more clients and can interact with the

FL model multiple times. In addition to the attacker’s capabilities mentioned in [9], such as

local data poisoning, local training process control, we also assume that the attacker has the

capability of local label distribution adjustment, in which the attacker could use data augmen-

tation and sampling techniques to change the number of samples in each label. The ability to

adjust the label distribution may vary for different attackers. To augment the data, attackers

can obtain extra data samples from public datasets or use trivial techniques, such as random

rotation, random zoom, random crop, etc. For attackers with strong capabilities, they can syn-

thesize data samples from the current local dataset, and reconstruct data samples from the local

dataset and gradient leakage [46]. This assumption is practical, as the attacker can easily in-

tegrate the above operations into data prepossessing. It is also assumed that attackers can set

their own learning rate and local steps to maximize backdoor performance while minimizing

impact on the main learning task.

3.3.2 Attack Design Philosophy

Let wa denote the malicious client’s local model. The single-shot backdoor attack achieves its

malicious goal by trying to substitute the new global model wT with a backdoored local model

wT
a in Eq. 3.3. FL aggregation with a backdoored model update is as follows:

wT+1 ← wT +
∑
k ̸=a

nk

n
∆wT

k +
na

n
∆wa. (3.4)
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The malicious model wa can only fully substitute the global model by scaling to γ = n
na

and when the global model converges, i.e.,
∑

k ̸=a
nk

n
∆wT

k ≈ 0. When the FL global model

converges, the newcoming client model updates are too small to overwrite the backdoor effect.

As a result, the injected backdoor can last a long period.

early in

We consider aC-class classification FL problem with cross-entropy loss. The loss function

of a client k computed on its local dataset Dk is defined as:

F (w;Dk) =
C∑
c=1

pk(y = c)Ex∈Dk|y=c[log fc(x;wk)], (3.5)

where pk(y = c) denotes the proportion of class c in Dk, and fc is the probability that a training

sample x belongs to the c-th class.

The CL on the whole population serves as the upper bound of the FL. Due to the non-i.i.d.

data distribution among participating clients, and multiple SGDs are performed on the same

local dataset, the locally trained model in the FL scheme could introduce weight divergence,

which deteriorates the FL global model. And this contributes to the performance gap between

CL and FL. Thus, the weight divergence between the models in the CL and FL settings can be

used to characterize how good an FL model is.

Consider three models here, the local model wk of the k-th client, the FL global model

w, and the CL model wcen trained on D. Previous work [131, 120] has analyzed the weight

divergence of the FL model w and the CL model wcen throughout the training process and

tried to catch what causes such a weight divergence. They proved that the weight divergence

between w and wcen throughout T global aggregations is bounded by two terms: (1) the sum

of the distribution distance between each client’s local data and the whole population; (2) the

weight divergence inherited from (T−1)-th aggregation. And such a divergence is accumulated

over time and finally leads to a model accuracy degradation.

Inspired by their work, we are more interested in the intra-aggregation weight divergence,

i.e., the weight divergence between two aggregations between wcen and w, and wcen and wk.
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To remove the influence of previous aggregations, we let the CL model and client’s local syn-

chronize with the T -th FL global model, wT,0
cen ← wT and wT,0

k ← wT . And the CL model and

client’s local perform t steps training on the whole population data, and their weights after τ

steps are:

wT,τ
cen = wT,τ−1

cen − η∇F (wT,τ−1
cen ;D)

= wT,τ−1
cen − η

C∑
c=1

p(y = c)∇Ex∈D|y=c[log fc(x;w
T,τ−1
cen )] (3.6)

wT,τ
k = wT,τ−1

k − η∇F (wT,τ−1
k ;Dk)

= wT,τ−1
k − η

C∑
c=1

p(y = c)∇Ex∈Dk|y=c[log fc(x;w
T,τ−1
k )]. (3.7)

The weight divergence relationship among the three models can be visualized in Figure 3.1.

We have the following proposition.

Figure 3.1: Illustration of weight divergence relationship among an FL client’s local model, FL global
model, and CL model.

Proposition 1. At the T -th FL global aggregation, let the local model wk and the CL model

on the entire population wcen synchronize with the FL global model wT , i.e., wT,0
k ← wT , and

wT,0
cen ← wT . And we have p(y = c) =

∑K
k=1 pk(y = c), where p(y = c) and pk(y = c) are

denoted as the proportion of the label c onD andDk. Let each model train for t steps, in which

the global aggregation conducts. The model weight divergence between w and wcen, and wk

and wcen after t training steps are bounded by the following two equations, respectively:
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∥wT,t − wT,t
cen∥

≤η
t∑

τ=1

[∥∥ C∑
c=1

K∑
k=1

nk

n
pk(y = c)

[
∇Ex∈Dk|y=c[log(fc(w

T,τ−1
k )]−∇Ex∈D|y=c[log(fc(w

T,τ−1
cen )]

]∥∥]
(3.8)

∥wT,t
k − wT,t

cen∥

≤η
t∑

τ=1

[∥∥ C∑
c=1

[
(p(y = c)− pk(y = c)

]
∇Ex∈D|y=c[log(fc(w

T,τ−1
k )]

∥∥
+
∥∥ C∑

c=1

pk(y = c)
[
∇Ex∈Dk|y=c[log fc(x;w

T,τ−1
k )]−∇Ex∈D|y=c[log(fc(x;w

T,τ−1
cen )]

]∥∥] (3.9)

The proof can be found in Appendices 5, and we have the following remarks.

Remark 1. The intra-aggregation weight divergence ∥wT−wT
cen∥ is determined by the distance

between the gradient of the local model taken on Dk, k ∈ [1, K] and the gradient of the CL

model taken on D. This gradient distance can be reduced by increasing the local data sample

size. The weight divergence is also an increasing function of the internal training steps t.

Therefore, increasing the number of local data samples or decreasing the internal training

steps could mitigate weight divergence.

Remark 2. The intra-aggregation weight divergence ∥wT
k − wT

cen∥ is mainly due to two parts,

which are the distribution distance between Dk and D, that is,
∑C

c=1

(
pk(y = c)− p(y = c)

)
,

and the gradient distance between the gradient calculated on Dk and the gradient calculated

on D over classes, that is,
[
∇Ex∈Dk|y=c[log fc(x;w

T,t−1
k )]−∇Ex∈D|y=c[log(fc(x;w

T,t−1
cen )]

]
.

According to Remark 2, the weight divergence ∥wT,t − wT,t
cen∥ could be mitigated by re-

ducing the following two terms: (1) the difference between the data distribution of Dk and that

of D, implying the first term in the Eq. 3.9 is reduced; (2) the difference between the gradient

calculated on Dk and that calculated on D, which implies the second term in the Eq. 3.9 is

reduced.

As a result, a client in an FL setting could benefit from mimicking the distribution and

gradients of the whole population to achieve better convergence behavior (faster convergence
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or higher model accuracy). This finding is a double-edged sword. On the one hand, a benign

client can use it to alleviate weight divergence to facilitate FL convergence, as the data sharing

strategy proposed in [131]. On the other hand, the finding could also be taken advantage of by

an adversary. As will be shown in the next section, we propose a two-phase backdoor attack,

in which the above finding is utilized by an adversary to improve the FL global convergence

performance, and further enhance both the strength and persistence for the subsequent single-

shot backdoor injection.

3.4 Our Approach

In this section, leveraging the aforementioned insights, we present an overview of our proposed

two-phase backdoor attack. Then we describe the detailed workflow of the proposed backdoor

attack.

3.4.1 Overview

Figure 3.2: The flow chart of the proposed two-phase backdoor attack.

Our proposed two-phase backdoor attack, illustrated in Figure 3.2, consists of a prelim-

inary phase and an attack phase. The backdoor attack can be any kind of existing backdoor

attack. Our approach is different from existing backdoor attacks in the proposed preliminary
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phase before the attack. The goal of the preliminary phase is to expedite the FL model conver-

gence such that the subsequent backdoor can be more effective and consistent. Specifically, the

attacker-controlled client first launches a passive whole population distribution inference attack

by analyzing their local model updates and the FL global model update. To reduce weight di-

vergence and improve the convergence behavior of the FL model, the attacker-compromised

client then crafts the local training data by augmentation and downsampling such that the dis-

tribution pk(y) aligns with the inferred whole population distribution p̂(y). This step reduces

the first term in Eq. 3.9, i.e., the distribution difference
∑C

c=1(pk(y = c) − p(y = c)). A

dynamic sample size determination method is also utilized in the dataset crafting in order to

reduce the second term in Eq. 3.9, i.e., the gradient distance
[
∇Ex∈Dk|y=c[log fc(x;w

T,t−1
k )]−

∇Ex∈D|y=c[log(fc(x;w
T,t−1
cen )]

]
. Instead of training on the original local dataset, attacker-compromised

clients train on the crafted datasets and submit the model updates to the central server. These

steps seem legitimate, but they benefit the subsequent injected backdoor by reducing the di-

lution effect from other client model updates. When the backdoor client is selected or the

expected accuracy is reached, the adversary injects the backdoor by training on a poisoned lo-

cal dataset and scales the malicious model updates by γ to ensure that the injected backdoor

survives aggregation before being submitted to the central server.

Our proposed two-phase backdoor attack improves the performance of the early injected

backdoor because of the following features:

• We propose a passive whole population distribution inference attack that requires no

access to other clients’ local data samples nor their model updates.

• By crafting the local dataset, utilizing the inferred whole population distribution and sam-

pling techniques, we are able to reduce the FL model weight divergence, which facilitates

the FL model convergence.

• By improving the convergence of the FL model, the backdoor global model is less diluted

by model updates from other clients, leading to a stronger and longer-lasting backdoor

effect.
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3.4.2 Attack Workflow

Preliminary phase: whole population distribution inference

Step 1. Approximation of the CL model updates. The attacker’s goal is to estimate the

whole population distribution p(y) in the following expression of the CL loss function gradient:

∇F (wcen;D) =
C∑
c=1

p(y = c)∇Ex∈D|y=c[log fc(x;wcen)]. (3.10)

Therefore, p(y) can be calculated if the values of∇Ex∈D|y=c[log fc(x;wcen)] and∇F (wcen;D)

are known. Based on the findings in Remark 1, we approximate the CL model update by the

FL model update:

K∑
k=1

nk

n
∆wk ≈ ∆wcen = η

t∑
τ=1

∇F (wτ−1
cen ;D). (3.11)

The reasonability of the approximation is demonstrated by: (1) the bounded and small

intra-aggregation weight divergence between the CL model and the FL model. In Propo-

sition 1, we show that the intra-aggregation weight divergence between a CL model and a FL

model is bounded by the difference in the gradient of the local data and the whole popula-

tion. This gradient difference is usually caused by the difference in the number of samples

between the local data and the whole population. The adversary could refer to a public dataset

or use augmentation techniques to get a good estimate of the gradient of the whole population.

In addition, although the number of internal training epochs increases the bound, the number

of local training epochs in practice is relatively small, usually between 2 to 5, and therefore

their impact should be minor. As a result, the FL model would not deviate much from the CL

model in one aggregation; (2) the accurate global distribution inferred from the approxi-

mation. Extensive experiments are conducted in Section 3.6.1 to verify that the approximation

produces accurate whole distribution inference results. The settings of these experiments are

comprehensive, as they cover both the balanced/imbalanced global distribution and the differ-

ent non-i.i.d.-ness among local data. The results under all settings show that the difference
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of the true distribution and the global distribution that is inferred from the approximation is

condensed and small.

Step 2. Decomposition of the model updates. Combining Eq. 3.10 and Eq. 3.11, we

have the following gradient expression:

K∑
k=1

nk

n
∆wk ≈ ∆wcen = η

t∑
τ=1

C∑
c=1

p(y = c)∇Ex∈D|y=c[log fc(x;w
τ−1
cen )]. (3.12)

The model update of the compromised client a can be expressed as

∆wa = η

t∑
τ=1

∇Fk(w
τ−1
a ;Da) = η

t∑
τ=1

C∑
c=1

pa(y = c)∇Ex∈Da|y=c[log fc(x;w
τ−1
a )]. (3.13)

Normally, the gradient is directly calculated by the partial derivative of the loss, e.g.,

∇Fk(wa;Da) =
∂Fk(wa,Da)

∂wa
. Taking advantage of the linearity of cross-entropy loss, the gradi-

ent ∇Fk(wa, Da) can also be viewed as a weighted average over ∇Ex∈Da|y=c[logfc(x;wa)]. If

the adversary gets a good estimate of ∇Ex∈D|y=c[log fc(x;wcen)], the global distribution p(y)

can be estimated by minimizing the difference between Eq. 3.12 and Eq. 3.13.

Step 3. Estimation of the gradients. The difference between the gradients calculated

on D and Da is mainly caused by the difference in the size of the data sample. Typically, a

larger size of data samples would provide a less biased estimate. The adversary could obtain a

more accurate estimate of ∇Ex∈D|y=c[log fc(x;wcen)] by enlarging Da using public dataset or

data augmentation techniques. However, purely pursuing a large data sample size is not always

practical and effective, as some data augmentation methods are computationally expensive and

time-consuming, while others could generate similar samples, which could harm the estimation

accuracy. Therefore, we adopt a dynamic data size determination algorithm proposed in [16] to

determine when to stop the augmentation. The method evaluates the amount of augmentation

by measuring the directional distance between the gradient of the augmentation and the gradient

estimate. A scaler θ ∈ [0, 1], which indicates the cosine similarity between the gradient of

augmentation and the gradient estimate, is used to determine when to stop the augmentation.

A greater θ indicates a more accurate estimate, meanwhile a greater amount of augmentation.
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Step 4. Optimization-based global distribution estimation. In the previous step, the

attacker gets a good estimate of ∇Ex∈D|y=c[logfc(x; a)] by augmenting Da, the inference of

whole population distribution p(y) can then be formulated as an optimization problem, which

seeks a p̂(y) that minimizes the difference of two losses in Eq. 3.12 and Eq. 3.13:

p̂(y) = argmin
p(y)

∥∥ K∑
k=1

nk

n
∆wT

k − η

t∑
τ=1

C∑
c=1

p(y = c)∇Ex∈Da|y=c[logfc(x;w
T,τ−1
a )]

∥∥
s.t.

C∑
c=1

p(y = c) = 1, (3.14)

where
∑K

k=1
nk

n
∆wT

k is the FL global model update at the T -th aggregation and can be obtained

by taking the difference between the synchronizations of the FL global model (T − 1) -th and

T -th.

Since the distribution p(y) is not differentiable, an evolution algorithm is used to solve

the above optimization. The evolution algorithm begins with a randomly initialized population

of p(y), namely, the “fathers”. Next, the individuals in the fathers go through mutation and

crossover operations with a certain probability to generate more diverse individuals, namely

the “children”. Then, “fathers” and “children” are evaluated by an objective value, in which

the individuals with better objective values will enter the next generation. Algorithm 2 and

Algorithm 3 detail the steps to solve optimization.

Algorithm 2 Whole population distribution inference by the evolution algorithm
Input: Number of classes C, population size S.
Output: An estimate of the whole population distribution p̂(y).

1: g = 0.
2: Initialize the distribution population p0, which consists of S individuals. Each individual
p0,s satisfies

∑C
c=1 p0,s(y = c) = 1.

3: Compute the FL global model update ∆wT .
4: Evaluate individuals in population p0 by Algorithm 3.
5: while the termination criterion is not satisfied do
6: g = g + 1.
7: Create population qg by crossover and mutation of individuals from pg−1.
8: Evaluate each individual in pg−1 in the children by Algorithm 3.
9: Select S best individuals to population pg from the populations pg−1 and qg.

10: end while
11: Return the best individual in population pg.
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Algorithm 3 Evaluation of objective values.
Input: Number of classes C, internal training steps t, learning rate η, the global model update

∆wT , the label composition p(y) .
Output: The objective value defined in Eq. 3.14.

1: The attacker synchronizes with the latest global model wT,0
a ← wT .

2: for τ = 1 : t do
3: for c = 1 : C do
4: The attacker calculates the gradient component on class c:

∇Ex∈Da|y=c[log fc(x;w
T,τ−1
a )].

5: end for
6: The model weight is updated by:
7: wT,τ

a = wT,τ−1
a − η

∑C
c=1 p(y = c)∇Ex∈Da|y=c[log fc(x;w

T,τ−1
a )].

8: end for
9: Return the objective value ∥∆wT −∆wT

a ∥, where ∆wT
a = wT,t

a − wT,0
a .

Preliminary phase: auxiliary dataset construction

After the adversary gets the inference of the whole population distribution, instead of training

on the original local dataset, the compromised client trains on an auxiliary dataset, which is

crafted to align with the inferred global distribution.

The basic idea of auxiliary dataset construction is to augment the data in classes with

inadequate samples and downsample the data in classes with excessive samples based on the

inferred whole population distribution. Algorithm 4 describes the steps of auxiliary dataset

construction. In particular, the attacker first determines the total size of the auxiliary dataset.

The attacker then calculates the amount of data needed for each class by the size of the datset

and the inferred global distribution. As for the augmentation operation, the adversary with a

limited computation budget can use trivial techniques, such as random shift, random rotation,

random shear, and random zoom, while a strong adversary could utilize more advanced meth-

ods, such as data synthesis and data reconstruction. For the downsample operation, it randomly

samples from current data until the desired number of samples is reached. The auxiliary dataset

crafted in this way mitigates both terms in Eq. 3.9.

Attack phase: backdoor injection

The attacker-compromised clients perform training on the crafted auxiliary dataset when se-

lected in FL training until the malicious client capable of launching the backdoor attack is
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Algorithm 4 Auxiliary dataset construction.

Input: Auxiliary dataset size M , the inferred data distribution p̂(y), number of classes C, the
compromised dataset Da

Output: Auxiliary dataset Daux.
1: Calculate the data size of each class c by Mc ←M × p̂(y = c) for c = 1, ..., C.
2: Calculate the data size of each class c ofDa, |Da|c|, whereDa|c := {x|y : x ∈ Da, y = c}.

3: for c = 1 : C do
4: if |Da|c| < Mc then
5: Augment |Da|c| to Mc.
6: else
7: Down-sample from Da|c, such that |Da|c| =Mc.
8: end if
9: Auxiliary dataset Daux ← ∪Cc=1Da|c.

10: end for
11: Shuffle dataset Daux.
12: Return Daux.

selected. The backdoor client first poisons its local data Da by adding backdoor triggers to a

subset of Da, and changes their labels to a target one to form a poison data subset Dpoison. The

rest of the data is kept clean and is denoted as Dclean. The attacker then performs local training

on Dpoison ∪ Dclean aiming to maximize the accuracy on both the main task and the backdoor

task.

w∗
a = argmin

wa

[Fa(wa;Dclean) + Fa(wa;Dpoison)].

After local training, the attacker scales the model updates by a parameter γ = n
na
≈ K to

ensure that the backdoor model survives the aggregation and ideally replaces the global model.

The attacker could also use constrain-and-scale or train-and-scale to improve its persistence

and evade anomaly detection mechanisms.

3.4.3 Coordination of Multiple Attacker-Controlled Clients

The above presentation of the attack process is based on a single attacker-controlled client, but

it can easily be extended to the scenario where the attacker controls multiple clients. The whole

population distribution inference attack can be performed by any of the compromised clients.

The inferred global distribution is then shared with other attacker-controlled clients, and each
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of them constructs and trains on the auxiliary dataset locally. The use of multiple malicious

clients can further improve the accuracy of the FL model.

3.5 Experimental Setup

3.5.1 Dataset

We evaluate our proposed method on the handwritten digit recognition data set, MNIST [60].

The dataset contains 60,000 training data samples and 10,000 testing data samples. Each data

sample is a square 28× 28 pixel image of hand-written single digit between 0 and 9.

3.5.2 Evaluation Metrics

1. Accuracy of whole population distribution inference attack. We measure its accuracy

by the ℓ2 distance of the inferred whole population distribution p̂ and the true whole pop-

ulation distribution pglobal, i.e., ∥p̂ − pglobal∥, referred to as “inferred-to-true”. A smaller

distance indicates a more accurate inference result. And we also evaluate the ℓ2 distance

of the original distribution on k-th client pk and pglobal, i.e., ∥pk − pglobal∥, referred to as

“original-to-true”. The difference between such two distances is positively related to the

amount of weight divergence can be reduced by whole population distribution alignment.

2. Main task FL model accuracy gain by whole population distribution alignment. We

measure the FL global model accuracy as a function of training epochs for regular FL

(clients train on the original datasets) and the FL assisted by whole population knowledge

(clients train in crafted local datasets that align with the gradients and distribution of the

whole population).

3. Main task FL model accuracy in presence of backdoor attack. We also present the

accuracy of the main task when the backdoor attack is in place. As mentioned previously,

the main task might deteriorate due to the scaling operation and the dilution from the

normal model updates, especially when they are large in early training stage. The server

could discard the model updates if an unexpected leap or drop in the main task accuracy

is observed.
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4. Backdoor attack success rate and longevity. Given a classifier f(·), the backdoor attack

accuracy is defined as the portion of samples in the backdoor samples that are predicted

as the target label yt by the classifier:

Accbackdoor =
{|x ∈ Dpoison : f(x) = yt}|

|Dpoison|
.

The test data are constructed by adding the backdoor triggers to the original test data

samples. And to avoid the influence of the original data of the target label, we remove

the data of the target label in the test data. We plot the backdoor success rate of 20 global

epochs since the injection to assess their longevity.

3.5.3 FL System Setting

We implement the FL and the proposed two-phase backdoor attack using the PyTorch frame-

work. We conduct our experiments on Google Colab Pro (CPU: Intel(R) Xeon(R) CPU @

2.20GHz; RAM: 13 GB; GPU: Tesla P100-PCIE-16GB with CUDA 11.2).

The dataset is allocated to 100 clients. In each global model aggregation, 10 clients are

randomly selected to participate in FL training. Each client maintains a local model consisting

of two convolutional layers and two fully connected layers. We build four distributed MNIST

datasets (Table 3.1) to cover both the balanced/imbalanced whole population and different non-

i.i.d.-ness among clients’ local data. The global imbalance is simulated by randomly sampling

50% − 100% for each class from the original dataset. And we use the Dirichlet distribution

[82] with a hyper-parameter α to generate different data distributions among clients, where a

smaller α indicates a greater non-i.i.d.-ness.

Table 3.1: MNIST dataset settings.

Settings Whole population Local distribution
1 balanced non-i.i.d., α = 1
2 balanced non-i.i.d., α = 0.1
3 imbalanced non-i.i.d., α = 1
4 imbalanced non-i.i.d., α = 0.1
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Preliminary phase

The clients are randomly selected to participate in a training round, with a certain fraction of

clients training on Daux, which aligns with the whole population by Algorithm 4. The FL

model is trained with full-batch gradient descent with internal epoch t = 1 and learning rate

η = 0.1.

As specified in Section 3.6, the adversary has the capability of augmenting the local dataset

by augmentation techniques or accessing public datasets. In our experiment, the adversary

is equipped with trivial augmentation methods. We also assume that the attacker holds 1%

of the MNIST dataset, from which the attacker can draw data samples and complement the

auxiliary dataset. In the dynamic data size determination algorithm that determines when to

stop augmentation, we set θ = 0.8, which means that the augmentation operation stops when

the cosine similarity between the gradient of augmentation and the gradient estimate reaches

0.8. To avoid the influence of the size of Daux, we set the size of Daux to be the same as that

of the original dataset. The fractions of clients controlled by the attacker are chosen to be 5%,

10% and 20% of the total number of clients, denoted as “ours_5”, “ours_10” and “ours_20”,

respectively. And they are collectively referred to as “ours”.

Attack phase

We use pixel-pattern backdoors, as the same as those in [118, 9]. We set the 4× 4 pixels in the

upper left corner of the image to white (pixel value 0) and swap the label with the target label

"0". The ratio between the size of the backdoor trigger and the size of the data sample is 2%.

The performance of the proposed backdoor (both the main task accuracy and the backdoor

success rate) is evaluated on an FL with mini-batch gradient descent with a batch size of 128.

The backdoor client poisons 40 of 128 data samples in each mini-batch and locally trains for

poison epochs of 10 with a poison learning rate of 0.05. The global learning rate is the same as

the local learning rate η = 0.1. The scaling factor is γ = K = 10.
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3.6 Experimental Results

3.6.1 Accuracy of the Whole Population Distribution Inference

The global distribution inference attack is launched at every epoch of the first 30 epochs. We

present the box plot of ∥pk − pglobal∥ (referred to as “original-to-true") and ∥p̂ − pglobal∥ (re-

ferred to as “inferred-to-true") in Fig. 3.3. In all four settings, compared to “original-to-true",

“inferred-to-true" is significantly smaller and more condensed, indicating that the proposed

whole population distribution inference attack achieves high accuracy. Furthermore, our pro-

posed inference attack is equally accurate in both balanced and imbalanced whole population

distribution settings (setting 1 vs. setting 2 and setting 3 vs. setting 4).

Figure 3.3: Box plot of ∥pk − pglobal∥ (“original-to-true”) and ∥p̂− pglobal∥ (“inferred-to-true”).

We also plot the “inferred-to-true” as a function of training epochs (shown in Fig. 3.4).

The FL model begins to converge at epoch 20, so our inference attack window covers differ-

ent convergence stages of the training process. The results show that the inference results are

stationary along the training process, which means that inferring at any training stage does not

affect the inference accuracy. The fluctuations presented in Fig. 3.4 are due to the randomness
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of the local distributions in the selected clients in each FL training round. Especially, the fluc-

tuation becomes more noticeable when clients’ local distributions are more non-i.i.d. (Settings

2 and 4). To further reduce such fluctuations and improve the accuracy of the inference, the

adversary could further refine the inference result by performing statistical analysis on multiple

inference results, such as averaging or clustering.

Figure 3.4: ∥p̂− pglobal∥ (“inferred-to-true”) vs. the global training epoch.

3.6.2 Main Task Accuracy under the Non-Attack Scenario

We evaluate the effectiveness of the proposed preliminary phase in improving FL convergence

by the accuracy of the FL main task, shown in Fig. 3.5. In all 4 settings, compared to FedAvg,

the FL with global distribution alignment converges faster, although they eventually reach the

same accuracy. This performance gain is more perceptible before the FL begins to converge

and when a greater fraction of clients perform the proposed alignment. In addition, while the

global distribution alignment has more influence on the very early stage (epoch 0 to epoch 10)

for setting 1 and setting 3 (α = 1), a higher non-i.i.d.-ness (α = 0.1 in setting 2 and setting

4) has more impact on the middle training stage (epoch 5 to epoch 15). The experimental
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results are consistent with the findings of Proposition 1: reducing both the gradient and distri-

bution between the client’s local data and the whole population could reduce the model weight

divergence, leading to a better convergence performance.

Figure 3.5: The accuracy of the main task of 5%, 10%, and 20% of the local data of the clients who
perform alignment in 4 settings, averaged over 10 experiments.

3.6.3 Backdoor Attack Performance

We present the impact of backdoor injection on the main task accuracy as well as the backdoor

success rate. We evaluate the proposed two-phase backdoor attack and compare it with two

existing backdoor attacks: (1) the centralized backdoor attack [9] (referred to as “baseline”),

in which the local dataset is poisoned by a centralized backdoor trigger; (2) the distributed

backdoor attack [118] (referred to as “DBA”), in which the backdoor trigger is divided into

parts and each part is injected separately.

Main task accuracy

Unlike the backdoors injected at the convergence of the FL model, where the injection of the

backdoor barely disturbs the accuracy of the main task, the early injected backdoor usually
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noticeably deteriorates the accuracy of the main task due to not small enough model updates

from normal clients. When the backdoor is injected in the early training stage, the accuracy

of the main task usually experiences a sudden drop and then gradually goes back to normal

status afterward. As introduced in [102], the central server could monitor the FL model main

task accuracy and reject model updates that make the main task accuracy abnormally low. This

approach could fail to be deployed on the FL system, since the central server does not always

have access to the model updates and test data, thus cannot measure their accuracy, or a false

alarm could be triggered due to the extremely low local accuracy caused by the participation of

clients with highly imbalanced local data. However, the main task can still be used to evaluate

the stealthiness of the backdoor attack.

As shown in Fig. 3.6, the accuracy of the main task is affected by the backdoor injection in

varying degrees. The dropped main task is a collective consequence of the scaled backdoored

model updates and not small enough model updates from the rest of participating clients. And

such a main task accuracy drop becomes more critical for a greater non-i.i.d.-ness among clients

(setting 2 and setting 4). Compared to the “baseline”, “ours” introduces less drop in main task

accuracy in most cases. And in some cases, the main task accuracy impacted by our proposed

backdoor attack presents a faster recovery rate. Furthermore, compared to the “baseline” and

“ours”, the “DBA” suffers the greatest drop in the main task accuracy and it takes much longer

for the underlying FL to return to the normal main task accuracy. This phenomenon is even

worsened in the setting of high non-i.i.d.-ness (setting 2 and setting 4). A possible explanation

is that “DBA” requires multiple clients to sequentially perform injection of part of the backdoor

trigger to complete injection of a complete backdoor, which poses a longer and worse impact

on the main task accuracy. Especially in the highly non-i.i.d. and globally unbalanced scenario,

given that the model updates are already far from others, the consecutive injection and scale

operations could make the deviation even worse and prevent the FL model from convergence

(evidenced in setting 4). Thus, we conclude that the proposed backdoor attack is more stealthy

than the “baseline” and “DBA”.
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(a) Setting 1 and setting 2.

(b) Setting 3 and setting 4.

Figure 3.6: The main task accuracy of the FL global model when the backdoors are injected at FL epochs
10, 15, and 20, respectively.
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Backdoor attack accuracy

To explore the effectiveness of a backdoor before the FL model converges, we inject the cen-

tralized backdoors ( “baseline” and “ours”) at FL global epochs 11, 16, and 21, respectively.

To fairly compare with “DBA”, the distributed backdoors are sequentially injected and finished

in the same round as the centralized backdoors. For example, if the centralized backdoor is

injected in round 11, 4 distributed backdoor triggers are injected separately in rounds 8, 9, 10,

and 11.

Fig. 3.7 presents the backdoor success rate for 20 FL global epochs since the comple-

tion of the backdoor injection. For each setting, injections at different epochs are performed

by the same client. The injected backdoor reaches maximum effectiveness immediately after

injection. In the subsequent epochs, as the FL model aggregates new normal updates, the effect

of the backdoor is weakened, which is reflected by the gradually decreasing success rate. In

most cases, after 20 rounds since backdoor injection, the success rates of almost all settings

and injection epochs are greater than that of the “baseline” and “DBA”. “DBA” does not reach

a comparable backdoor effect as in “baseline” and “ours”. The reason for this gap could be that

the partially injected backdoor effect in previous rounds is more likely to be hindered by nor-

mal local updates in the subsequently injected backdoor parts. And in most cases, our proposed

backdoor retains a lower diminishing rate, compared to the “baseline”.

Due to the non-i.i.d.-ness among clients’ local data, some clients’ data may be in favor of

the attack, while others are not. In addition, the backdoor effect does not always steadily de-

crease, and it bounces in some cases. Therefore, we evaluate both attack strength and longevity

by the mean attack success rate of 10 FL epochs since injection (Table 3.2). In general, the

backdoor injected in very early rounds (epoch 5 and epoch 10) achieves a lower mean attack

success rate, compared to the ones injected in epoch 20. This degradation in the effectiveness

of the attack is made even worse when the whole population is imbalanced (setting 1 vs. set-

ting 3) and non-i.i.d.-ness among clients increases (setting 1 vs. setting 2). In most cases, our

proposed backdoor attack outperforms the “baseline” and the “DBA”. And compared to “base-

line”, the attack performance gain is positively related to the fraction of attacker-controlled

clients performing the whole population distribution alignment.
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(a) Settings 1 and setting 2

(b) Settings 3 and setting 4

Figure 3.7: The backdoor success rate in 20 training epochs since backdoor injection.
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Table 3.2: Mean backdoor success rate(%) over 10 FL epochs since backdoor injection (averaged over
10 randomly selected clients).

Attack epoch Baseline DBA Ours_5 Ours_10 Ours_20
Setting 1

11 95.80± 1.84 23.25± 4.19 94.06± 5.97 94.50± 1.49 95.93± 2.46
16 97.40± 2.39 17.23± 5.36 97.40± 1.34 95.59± 3.91 95.34± 1.61
21 95.33± 5.32 14.46± 1.32 95.32± 4.24 96.31± 3.35 95.68± 1.87

Setting 2
11 52.91± 4.66 77.78± 28.42 73.96± 22.98 76.58± 12.17 80.57± 27.21
16 61.25± 27.53 67.78± 10.82 75.01± 22.62 82.25± 14.36 78.44± 17.75
21 68.38± 22.28 11.78± 2.22 79.24± 19.67 79.72± 13.61 77.10± 18.13

Setting 3
11 15.46± 6.35 13.54± 3.24 44.82± 25.61 65.27± 28.11 66.14± 25.11
16 57.71± 16.50 9.7± 1.86 69.29± 18.25 66.11± 28.66 62.15± 20.13
21 64.44± 13.77 6.32± 7.81 73.41± 14.73 69.74± 13.62 72.38± 16.48

Setting 4
11 48.70± 41.45 52.34± 10.33 67.13± 18.19 75.14± 26.52 88.28± 10.11
16 68.98± 4.21 40.67± 9.87 72.33± 15.72 83.26± 23.27 72.22± 17.28
21 70.33± 1.94 11.7± 4.24 73.41± 14.73 88.09± 13.39 85.51± 8.28

3.6.4 Overhead Analysis

Preliminary phase

The computational cost of this phase consists of three parts: (1) calculating the gradients on

the data of each label; (2) solving the optimization in Eq. 3.14; (3) constructing the auxiliary

dataset.

For the first part, the attacker trains the FL global model on the data samples of each label

separately to obtain gradients ∇Ex∈Da|y=c[log fc(x;wa)], and because n =
∑C

c=1 nc, where nc

is the number of samples in label c, the time complexity is the same as that of local training.

Since the batch gradient has a time complexity of O(n2m), in which n is the number of data

samples and m is the number of features, the time complexity of the first part is also O(n2m).

For the second part, we evaluate number of function evaluations (NFEs), which is com-

monly used to evaluate an evolution algorithm. NFE is usually measured when a good solution

is delivered or when no significant change in the solution is observed. We plot “inferred-to-

true” and the real time used against NFE, shown in Fig. 3.8, to demonstrate the effect of NFE

on inference accuracy and inference time. Because there is no significant inference accuracy
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gain after 400 NFEs, we set the NFE to 400 in our experiment. The real time taken to solve the

optimization with 400 NFEs is 4 seconds.

The construction of the auxiliary data set that is aligned with the whole population con-

sists of augmentation and sampling operations. Examples of trivial augmentation methods are

flipping (O(np), where p is the number of pixels in each image), rotation, random crop, and

scale (they have the same complexity of O(n)). The sampling operation has a time complexity

of O(n). Therefore, the total time complexity of the construction of the auxiliary dataset is at

most O(np) and the real time spent is 0.03 seconds.

Backdoor phase

The backdoor client poisons a subset of the local data by injecting the backdoor pattern and

swaps the label to the target ones, then performs local training on the poisoned local dataset.

The total time complexity is O(n2m). The real time spent on the backdoor attack with 10

internal training epochs is around 13 seconds.

The complexity analyses are summarized in Table 3.3. Gradient calculation and solving

optimization are only needed to be performed a few times to get an accurate whole population

distribution inference result. The real time for these two steps is less than 5 seconds, which is

minor compared to the time taken for the backdoor attack. Once the whole population distri-

bution is inferred, attacker-controlled clients only perform the auxiliary dataset construction,

whose time complexity is negligible.

Figure 3.8: The inference accuracy (“inferred-to-true”) and time taken vs. NFE.
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Table 3.3: Time complexity and real time spent on the proposed inference attack.

Operation Time complexity Real time taken (s)
Gradient calculation O(n2m) 0.11
Solving optimization 400 NFEs 4.20

Auxiliary dataset construction O(nk) 0.03
Backdoor attack O(n2m) 13.37

3.7 The Robustness of the Proposed Attack

In this section, we are interested in how the proposed attacks will behave when defense mech-

anisms are in place. In the following, we will analyze the effectiveness of the proposed two-

phase backdoor attack against two main defense strategies.

FoolsGold is a secure aggregation strategy, which calculates the cosine similarity of all

historical gradient records and assigns smaller aggregation weights to clients that repeatedly

contribute similar gradient updates [35].

DP is a noise-based method that limits the efficacy of backdoor attacks by two key steps

[85]: (1) model parameters are clipped to bound the sensitivity of local model updates; (2)

Gaussian noises are added to local model updates. We consider a local DP, in which each client

adds noises before uploading the model updates to the server. We use the (ϵ, δ)-DP proposed

in [1] with a popular choice of σ =
√

2 log 1.25
δ
/ϵ with δ = 10−5 and ϵ = 50. The clipping

bound is set to the median of the norms of the unclipped local model updates during training.

The noises are only applied to normal model updates, while the backdoor client sends the non-

perturbed backdoored model updates.

3.7.1 Whole Population Distribution Inference Accuracy against Defense Strategies.

We first present the whole population distribution inference accuracy against FedAvg, Fools-

Gold, and DP, shown in Fig. 3.9. Since FoolsGold does not interfere with benign FL settings,

the whole population distribution inference against FoolsGold is as accurate as that in FedAvg.

Although DP provides a statistical guarantee for record-level information, DP fails to protect

statistical information, such as the whole population distribution. With DP in place, although

the inference is not as accurate as in the FedAvg case, the “inferred-to-true” is still notably
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lower compared with “original-to-true”. Thus, both FoolsGold and DP fail to defend against

the proposed inference attack.

Figure 3.9: Box plot of “original-to-true” and “inferred-to-true” (∥p̂ − pglobal∥) of FedAvg, FoolsGold
and DP based on 30 instances.

3.7.2 Performance of the Backdoor Attack against Defense Strategies.

We implement the proposed backdoor attack against FoolsGold and DP in setting 1. We plot

the backdoor success rate for 20 epochs after injection to observe its injection strength and

longevity. Fig. 3.10(a) shows that in most cases “ours” reaches a significantly higher attack

rate after injection through the backdoor and maintains such a high success rate in the epochs

after injection. For example, when injected in the early training stage (in epoch 11), the baseline

backdoor fails while “ours_5”, “ours_10”and “ours_20” achieve attack success rates of 14%,

27% and 10%, respectively. As the convergence is expedited by the proposed preliminary

phase, the model updates from normal clients become smaller and more similar, so that the

FoolsGold will reduce their assigned weights, and as a result the backdoored model updates

become more influential. Compared to “ours” and “baseline”, the success rate curve of the
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“DBA” has a different pattern, in which the success rate first increases and then decreases and

is more persistent than both the “baseline” and “ours” in later rounds. However, in practice, the

requirement for clients with distributed backdoor triggers to be selected in consecutive rounds

cannot hardly be met.

Fig. 3.10(b) shows the attack performance against DP. Both the “baseline” and “ours”

achieve high attack success rates, even comparable to those of FedAvg, in which no defense

mechanism is applied. This phenomenon indicates that instead of mitigating the backdoor ef-

fect, the noise added to the normal clients helps the backdoored model corrupt the FL global

model. A possible explanation is that the added noise reduces the utility of normal model

updates, which, in turn, strengthens the backdoored model updates in the FL aggregation. Fur-

thermore, “ours” is markedly better than the “baseline” when the backdoor is injected in later

rounds. For example,“baseline” and “ours” have similar attack performance in the early train-

ing stage, e.g., epoch 11. And “ours” performs distinctly better in the later training stage, that

is, the backdoors injected in epoch 16 and epoch 21. Lastly, both the “baseline” and “ours”

outperform DBA. This is because the effectiveness of the distributed backdoor is mitigated by

both benign model updates and DP noise multiple times before DBA finishes the injection of

the complete backdoor.

3.8 Conclusions

In this work, we proposed a novel information leakage-assisted single shot backdoor attack that

improves the effectiveness of the backdoor injected in the early training stage. We first showed

that clients training on datasets that are aligned with the whole population in both distribution

and gradient can improve the FL model convergence. Based on this observation, we intro-

duced a preliminary phase to the subsequent backdoor attack, in which the attacker-controlled

clients first infer the whole population distribution from the shared FL model updates and then

train on locally crafted datasets that are aligned with both the distribution and gradient of the

whole population. Benefiting from the preliminary phase, the subsequent backdoor injection

suffers less dilution effect from the model updates of other clients and achieves better effective-

ness. We demonstrated the effectiveness of the proposed backdoor attacks in the early training
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(a) FoolsGold

(b) DP

Figure 3.10: Backdoor success rate (%) of 20 training epochs since injection against Foolsgold (a) and
DP (b) defense mechanisms.

stage through extensive experiments on a real-world dataset. The results have shown that the

proposed backdoor can have a longer lifespan than existing backdoor attacks. We hope that

our work brings attention to the vulnerabilities in the early training stage of FL. Our analysis

and findings provide novel insights into the field of strengthening FL attacks by information

leakage, which could help evaluate and improve the robustness of FL.
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Chapter 4

High-Accuracy Low-Cost Privacy-Preserving Federated Learning in IoT Systems via
Adaptive Perturbation

4.1 Introduction

The development of the Internet of Things (IoT) enables the connection of a wide range of de-

vices to the Internet [69] to provide ubiquitous sensing and computation capabilities. The data

collected by these devices can be used to train machine learning models. Although the data

on one device may be insufficient to obtain a satisfactory model, the data on other devices can

be benefited via network communication. Federated learning (FL) [55, 78] allows a machine

learning algorithm to learn from data stored on a wide range of physically separated devices.

Technically, FL is a distributed learning system, which allows multiple local clients to collabo-

ratively train a high-accuracy global model by taking advantage of a wide range of data without

sharing their local collected data. FL has found its applications in most emerging services and

systems, e.g., in mobile applications such as next-word and emoji prediction on smartphones

[22, 123, 97], environmental monitoring [40], smart healthcare [122, 15] and smart city [94].

Although clients do not directly reveal their private data, shared model updates can un-

intentionally leak sensitive information about the data on which they were trained [28]. As

pointed out by previous studies, using FL scheme alone is insufficient in protecting the clients’

local data privacy. For example, from the shared FL model, an adversary can infer whether a

given data sample was presented in the training data or not [79, 86], or recover a representa-

tive data sample used in the training [34], or infer property information about the client’s local

training data [132].
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Ideally, FL with a privacy-preserving mechanism on IoT devices, such as smartphones,

smart watches, and cameras, should take into account the following constraints:(1) computa-

tional capacity is limited, so computationally expensive encryption algorithms are unaffordable;

(2) devices have limited power supply and network connectivity; (3) clients are flexible to join

or leave training, so dropouts are common.

Several studies have focused on how to preserve privacy in FL. But none of them can

fully address the aforementioned constraints. In particular, the main approaches are secure

multiparty computation (MPC) and differential privacy (DP). A branch in MPC is based on

homomorphic encryption. Paillier cryptosystem is an additive homomorphic encryption algo-

rithm [121, 90, 13], which naturally matches the aggregation operation in FL. But the main

drawback is its high computational complexity. Another approach uses secret-sharing [13],

which is relatively computationally efficient and can handle client dropout as well. However,

the requirement of information exchange between each pair of clients makes this approach im-

practical in moderate to large-scale IoT systems. DP is a promising solution that injects random

noise into the data or the model updates, providing a statistical privacy guarantee for individual

records and privacy protection against inference attacks. However, privacy protection comes

at the cost of model accuracy. Additionally, one challenge in training with DP is choosing an

appropriate clipping bound. An inappropriate clipping bound can degrade model accuracy or

even prevent a model from converging due to the bias introduced by the clipping operation [24].

In this work, we propose a novel low cost (for both communication and computation

overhead) adaptive noise-perturbation privacy-preserving scheme, which does not sacri-

fice FL model accuracy for privacy, while enjoying a DP-comparable or in some cases

better privacy protection. More specifically, our scheme protects local privacy by adding

random noises to each local model updates (i.e., perturbing local model updates by adding

random noises). These random noises are deliberately designed so that individually they can

provide sufficient protection for the privacy of each local model. But when combined at the

FL server, the aggregation of these noises will present a cancel-out effect by the central limit

theorem (CLT), so that the aggregated noises at the server are more condensed and help to

preserve the global model accuracy. In real FL applications, the number of clients is much
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larger than 30, which is considered sufficient for CLT to hold. In addition, unlike the random

noise in the DP scheme, our noise masking scheme takes both magnitude and direction into

consideration when adding noise to local model updates to retain high global model accuracy

and expedite global model convergence. Specifically, we introduce an adaptive noise scaling

method that sets the magnitude of the random noise proportional to the magnitude of the local

model updates, i.e., the magnitude of noise changes with that of local model updates at the same

rate, which ensures sufficient privacy protection while preventing the introduction of excessive

noise, especially when the FL model is close to convergence. To maintain the same conver-

gence rate and accuracy as in regular FL, the noise scale is chosen on the basis of the number

of participating clients, so that the magnitude of the aggregation of noise does not exceed the

magnitude of local model updates. Moreover, we monitor the angular distance, calculated from

cosine similarity, between the true local model updates and the noise-perturbed local model

updates. Noise with a large angular distance will be filtered out, making it easier for the global

model to converge. With deliberately chosen noise magnitude and angular distance, the FL

with the proposed noise scheme achieves the same convergence performance as regular FL and

DP-comparable or better privacy protection against state-of-the-art DP frameworks [37, 1].

To the best of our knowledge, we are the first to take both magnitude and direction into

consideration aiming at protecting FL clients’ privacy while preserving the FL model accuracy.

Our contribution in this paper is threefold:

• For a strongly convex loss function, we prove that a noise-perturbed FL is guaranteed

to converge to the same value as the regular FL (i.e., there is no accuracy loss) as long

as the magnitude of the added noise is proportional to the magnitude of the local model

update. Given the number of clients participating in the perturbed FL, we also derive the

maximum tolerable variance of the added noise at individual clients that guarantees that

the magnitude of the aggregated noise at the FL server does not exceed the magnitude of

the aggregation of all local model updates (i.e., the direction of descent is still preserved),

so that the perturbed FL maintains the same convergence rate O(1/T ) as that of SGD

on convex loss functions. These theoretical findings enable us to develop the proposed

adaptive noise perturbation scheme that maximizes privacy protection for clients while
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maintaining the same accuracy as that of regular FL. We also provide a statistical method

to select the angular distance threshold based on the dimension of the model updates to

accelerate the convergence of the perturbed FL.

• For the non-convex loss function scenario, we derive the worst-case convergence bound

for FL under the proposed noise perturbation scheme. This bound shows that the noise-

perturbed learning process converges at a rate of O(1/
√
T ), the same as that of an SGD

on non-convex functions. With the proposed angular distance filtering scheme, our proof

indicates that the actual convergence is faster than the derived worst-case convergence

bound.

• Extensive experiments are conducted on MNIST and CIFAR-10 datasets to validate our

theoretical convergence analyses and evaluate the time and computational efficiency, as

well as the effectiveness of the proposed scheme in defending against state-of-the-art

privacy inference attacks. The numerical results show that the proposed scheme outper-

forms DP in convergence rate and accuracy in both dropout and non-dropout scenarios,

which are consistent with our theoretical convergence analyses. The proposed scheme

does not incur extra computation and communication overhead compared with DP. Our

proposed noise perturbation scheme provides comparable or, in many cases, stronger

privacy protection than DP, under the same global model accuracy.

The rest of this paper is organized as follows. Section 4.2 briefly reviews the FL and

related work. Section 4.3 presents our threat model and security goals. Section 4.4 describes

our proposed additive noise scheme. Theoretical convergence analyses are provided in Section

4.5. The settings and results of the experiments are presented in Section 4.6 and Section 4.7,

respectively. We conclude our work and recommend future research directions in Section 4.8.

And detailed proofs of our key findings are given in the Appendix.

Throughout this paper, we use the following notation:

• ∥ · ∥ denotes the ℓ2 norm.

• <ϵ denotes slightly greater than. a <ϵ b means b = a+ ϵ, where ϵ ∈ N+.
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• D denotes the global data and is distributed to N clients, where D = ∪Nn=1Dn, and

Dn denotes the data on the n-th client. A subset of K clients (K < N ) is selected to

participate in a round of FL training.

• Fk(·) and F (·) denote the loss function on the client k and the global loss function,

respectively.

• ∇Fk(·) and ∇F (·) denote the gradients of the local loss function and the global loss

function, respectively.

• wT,τ
k denotes the local model weight of client k in τ -th local step in T -th global aggrega-

tion, and wT denotes the global model weight in T -th global aggregation.

• w̃T
k and w̃T denote the noise-perturbed local model weight and the noise-perturbed global

model weight at T -th aggregation, respectively.

• rTk denotes the additive noise in the client k in the T -th global aggregation.

4.2 Preliminary and Related Work

4.2.1 Federated Learning

The global data D = ∪Nn=1Dn are distributed to N clients and each client maintains its local

data Dn. Each time, K (K ≤ N ) of N clients are selected to participate in the training. Specif-

ically, each client maintains a local model trained from the local training dataset. A central

server maintains a global model by aggregating the local model updates from the participating

clients in each round. The objective of FL training is to minimize the loss:

F (w) =
K∑
k=1

Fk(w), (4.1)

by optimizing over the model parameter w, where Fk(w) is the loss function on the local data

of the k-th client :

Fk(w) =
1

|Dk|
∑

(x,y)∈Dk

L(w; (x, y)), k ∈ [K], (4.2)
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where L is the empirical loss function. Here, we describe FedAvg, which is probably the most

widely used FL algorithm. FedAvg iteratively performs the following three steps (illustrated in

Figure 4.1):

Figure 4.1: An illustration of the FL process.

Global Model Synchronization

In the T -th global aggregation, the central server randomly selectsK fromN clients and broad-

casts the latest global model wT to the selected clients: wT,0
k ← wT .

Local model training

Each client k updates its own local model wk by running an SGD on the local dataset Dk for t

steps. The τ -th step on the client k follows :

wT,τ+1
k ← wT,τ

k − η∇Fk(w
T,τ
k , ξT,τk ), (4.3)

where ξT,τk is a mini-batch of samples randomly chosen from the local dataset Dk, and η is the

local learning rate.
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Global Model Update

After performing local training for t steps, the client transmits the model updates ∆wT
k =

wT+t
k − wT back to the central server. The central server then updates the global model by

performing a weighted average on the local model updates sent from K clients :

wT+1 ← wT +
K∑
k=1

nk

n
∆wT

k , (4.4)

where nk = |Dk| is the number of training data on the client k and n =
∑K

k=1 nk is the total

number of training data used on the selected clients.

4.2.2 Privacy-Preserving FL

Existing work in privacy-preserving FL can be classified into two categories: secure multi-party

computation and differential privacy.

Secure multi-party computation (MPC) Existing work utilizes homomorphic encryption

[90, 42, 18, 90] and secret sharing [101, 20, 13, 121] to preserve privacy in FL. With additive

homomorphic encryption, for example, the Pallier cryptosystem, the server can perform gradi-

ent aggregation without decrypting them. Before training starts, the HE key pair is distributed

to each client through a secure channel. In each training iteration, each client calculates the

local model update, encrypts it with the public key, and uploads the ciphertext to the server.

The server aggregates the encrypted gradients from all clients and sends the results back to

the clients. Each client decrypts the received ciphertext using the private key to obtain global

model updates due to additive homomorphism. But such algorithms are computationally ex-

pensive. FL systems with homomorphic encryption suffer from extremely high computational

overhead and can hardly be applied on IoT devices. The researchers in [112] used secret shar-

ing for secure aggregation in FL, allowing K parties to obtain the output of a function based

on their K inputs while preventing any leakage of inputs other than the outputs. In [13], a

noninteractive secure aggregation protocol based on secret sharing and key agreement was pro-

posed, but a trusted authority was required. And scholars in [121] proposed a double masking
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scheme that supports verification. The weakness of secret sharing lies in the communication

cost. Each client needs to send a secret share to the majority of participating clients to guar-

antee the model robustness, or each pair of clients needs to communicate and agree on some

random masks. Neither of them is applicable to IoT systems, in which devices have hardly

direct communications.

Despite the high computational and communication overhead, such MPC approaches do

not eliminate FL information leakage. In FL with homomorphic encryption, the server may

collude with clients to decrypt local model updates from the ciphertext. As for secret sharing,

the adversary still has a chance to infer the input information from the output of the function,

since the function usually does not change.

Differential privacy (DP) Differential privacy [18, 29] is a noise perturbation mechanism

that provides a statistical privacy guarantee for individual records. Existing work incorporates

DP into FL from different perspectives. Shokri et al. [103] were the first scholars to integrate

differential privacy in deep learning to protect training data privacy. NbAFL was proposed

in [116] to protect uplink and downlink communication. In [120], 2DP-FL was proposed to

handle non-i.i.d. distributions among clients and could adapt to different privacy needs. It has

been empirically shown in [79] that DP is effective in defending against membership inference

[112, 96], reconstruction [46] and model inversion [34] attacks. However, privacy protection

comes at the cost of model accuracy.

In addition, in DP, bounding the influence of a single client is necessary for both privacy

and the utility of the model. The choice of the bounding threshold, i.e., the clipping bound,

has decisive effects on both privacy and model utility, due to the fact that the clipping bound

could introduce bias to model updates [24]. Existing work quantifies the bias in ℓ∞ [91] and ℓ2

[130]. Nissim et al. [87] used a calibrated noise according to smooth sensitivity, but requires

additional knowledge and communication of the original model updates. Adaptive clipping

bounds that utilize the statistics of model updates to track and predict its change were proposed

in [1, 5], but such clipping bounds do not immediately react to the change in model updates,
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which could still result in excessive noise injection. Moreover, none of the existing work in-

vestigated the impact of the direction of the additive random noise on the convergence of the

model.

4.2.3 Privacy Attacks against FL.

We mainly discuss two privacy attacks in FL: the membership inference attack and the property

inference attack.

Membership inference attack Shokri et al. [104] demonstrated that an adversary can infer

whether or not a given data sample was presented in the training data by the difference in

model responses. Specifically, a binary classifier, called a shadow model, is trained for each

output class using the same machine learning algorithm. Each shadow model identifies the

membership of data samples of the corresponding class by outputting the probabilities over the

membership and nonmembership classes. Studies in [8, 47, 93, 30] demonstrated the leakage

of membership in various areas. Studies in [43, 112, 86, 96] analyzed membership inference

from the perspectives of generative models, transferability, the relationship with overfitting,

and defenses, respectively.

Property inference attack The property inference attack was first proposed by Ateniese et al.

[7] against Hidden Markov Models and Support Vector Machine classifiers. Ganju et al. in [36]

designed a property inference attack on fully connected networks. The adversary trains meta-

classifier to classify target classifier depending on whether or not it has the property. In [72,

115], a training label composition inference attack was proposed. The adversary could infer the

composition of the training label of a client’s private data by finding a label composition such

that the synthesized model updates are close to the true model update as much as possible.
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4.3 Problem Setup

4.3.1 Threat Model

We consider a potential threat of privacy inference attack during the learning process. Specifi-

cally, an adversary could infer information about clients’ private data through the model infor-

mation exchange between clients and the server. Our proposed method is designed to withstand

two potential adversaries: the central server and eavesdroppers.

• Honest-but-curious server. We assume that the central server is honest-but-curious,

meaning that the server follows the FL protocol, but may try to infer some private infor-

mation from the clients’ model updates.

• Eavesdroppers. We also consider a potential attack that an eavesdropper monitors the

communication link between clients and the server. We assume the attacker has no access

to clients’ training data, but they can eavesdrop model updates from the communication

between clients and the server, and infer private information about clients.

4.3.2 Design Goals

We aim to design a noise perturbation scheme that achieves the following goals:

• Utility. The scheme should not sacrifice the accuracy of the global model. In particu-

lar, the FL with the noise perturbation should be able to learn a global model that is as

accurate as that of the non-private FL.

• Dropout-resilience. The method should handle client dropout due to communication or

power failure. When dropout happens, the server should still be able to get a reliable

aggregation of local model updates from the remaining clients. A limited number of

client dropouts should not affect the final global model accuracy.

• Privacy. The FL with the scheme should be able to mitigate the inference of private

information from the communication of model updates between clients and the server.
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• Efficiency. The FL with the scheme should not require additional training rounds to

achieve comparable nonprivate FL accuracy. In addition, the method should not incur

additional computation and communication overhead, since we consider the application

scenario, in which clients are small devices that suffer from limited computation re-

sources and network connectivity.

4.4 Our Approach

Figure 4.2: Geometric illustration of our proposed additive noise perturbation scheme.

4.4.1 Overview

In light of the drawbacks of DP discussed in Section 4.2.2, we introduce an adaptive noise scal-

ing method and a direction-based filtering method in the additive noise perturbation scheme.

In each iteration, our approach follows the three general steps of FL discussed in Section 4.2.1.

Our approach is similar to FL with the DP scheme in [122, 120]. The difference lies in the

second step. Instead of sending the original model updates, clients send the noise-perturbed

local model updates to the central server, in which the noise is generated randomly and locally.

Our approach is different from the DP scheme in generating random noise. Specifically,

a clipping bound is required in DP to limit the influence of a single client. The choice of the

clipping bound could have a decisive impact on the utility and privacy of the model. A low

clipping bound could destroy the direction of the gradients, weakening its strength in descent

of the global model, whereas a high clipping bound might introduce too much noise to the
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FL system, resulting in an accuracy degradation of the global model. Ideally, the clipping

bound should be able to track the change of the norm of the model updates. But practically the

behavior of the norms of model updates varies and is hard to predict. A popular method is to

use the median of the norms of the unclipped local model updates over the course of training.

However, the norm of model updates decreases along the training, whereas the clipping bound

may not react as fast as the norm changes. This may introduce excessive noise to the global

model, and this excessive noise could be the cause of the accuracy loss in the global model.

Furthermore, the direction of the gradients plays a significant role in both privacy and

model utility aspects and is not considered in the DP scheme. On the one hand, there is plenty

of privacy in the direction of the gradients. As indicated in [115], the presence of a given label

class can be inferred by analyzing the signs of gradients. Therefore, the noise vector must

be well chosen to hide the direction of gradients. On the other hand, large-scale noise could

impair the accuracy or even destroy the convergence of the global model. Two noise vectors

with the same magnitude could lead to opposite effects. To be specific, the one in the descent

direction could be beneficial to the model convergence, while the other in the ascent direction

could destroy the global model convergence.

Our approach is able to achieve a better convergence performance than DP due to the

following three features:

• As will be shown in Section 4.5, setting the magnitude of additive noise to be proportional

to the magnitude of local model updates ensures that the additive noise vanishes with

local model updates when the FL model convergence occurs, preventing the FL model

accuracy degradation.

• The scaling factor c chosen based on the number of participating clients ensures that the

FL model enjoys the same convergence performance as a result of the cancelling out

presented in the aggregation of noise on the server by the CLT. c can also be chosen to

enable the ability to handle dropout clients.

• The proposed direction-based filtering scheme filters out noise vectors in bad directions,

accelerating the convergence of the FL model.
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Algorithm 5 Our CTL based FL privacy-preserving scheme

Input: K clients with local training datasets Dk, k ∈ [K]; client learning rate η; number of
local iterations t; number of aggregations T ; angular distance threshold θthres.

Output: Global model w̃T .
1: Initialization global model weight to w0.
2: for T = 0 : Tmax do
3: The server synchronizes the latest global model to clients, wT,0

k ← w̃T .
4: for k = 1 : K do
5: for τ = 0 : t− 1 do
6: The client updates the local weight by wT,τ+1

k ← wT,τ
k − η∇Fk(w

T,τ
k )

7: end for
8: while θ < θthres do
9: Generate new random noise rTk from N (0, I), and scale them by max(1,

c∥∆wT
k ∥

∥rTk ∥ ),

where ∆wT
k =

∑t−1
τ=0 η∇Fk(w

T,τ
k ) and c is a scaler.

10: Calculate the angular distance θ from the cosine similarity cos(∆wT,τ
k , ∆wT,τ

k +rTk ).
11: end while
12: Add the noise to the local model update, ∆w̃T,τ

k ← ∆wT,τ
k + rTk .

13: end for
14: The server aggregates the local model updates from clients, ∆w̃T+1 =

∑K
k=1

nk

n
∆w̃T

k ,
and update the global model w̃T+1 ← wT +∆w̃T+1.

15: end for

4.4.2 Our Additive Noise Scheme

Algorithm 5 details the steps in our proposed noise perturbation scheme, which consists of two

key components: the adaptive noise scaling step and the direction-based noise filtering step.

Adaptive noise scaling

We introduce the steps to generate the proposed noise perturbation rk, and how to determine

the value of c in both dropout and non-dropout scenarios. After the client completes the local

training, the noise rk is randomly generated from N (0, I). ∆wk is denoted as local model up-

dates. Then rk is scaled by c∥∆wk∥
∥rk∥

. The impact of c on model convergence will be theoretically

analyzed and numerically evaluated in Sections 4.5 and 4.7, respectively.

Determine the value of c in a non-dropout scenario. As indicated in Theorem 2 and

Theorem 3 (provided later in Section 4.5), setting the magnitude of additive noise in accor-

dance with the magnitude of local model updates ensures the noise vanishes with the local

updates when convergence occurs, avoiding accuracy degradation of the global model. Fur-

thermore, as indicated in Theorem 1 (provided later in Section 4.5), the standard deviation
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of the aggregated noise on the server is inversely proportional to the number of participating

clients K, indicating that the effect of the scaling factor c will be counteracted by K when

aggregated on the server. For convex optimization algorithms (e.g., gradient descent and prox-

imal quasi-Newton), in which the loss function descends in every iteration, the magnitude of

additive noise aggregation must not exceed the magnitude of model update aggregation, that

is, ∥
∑K

k=1 rk∥ ≤ ∥
∑K

k=1∆wk∥. Therefore, in a non-dropout scenario, K is a conservative

upper bound for c, i.e., c ≤ K. For optimization algorithms without monotonic requirement,

e.g., SGD, the global model still converges as long as the descent of the global loss function

is frequently achieved, indicating that c could be slightly greater than K (c = K + ϵ, where

ϵ ∈ N+), which is denoted by c <ϵ K.

Determine the value of c in a dropout scenario. In a scenario with d client dropouts,

the central server is expected to be able to get a reliable aggregation from the remaining K − d

clients. FL with our approach can tolerate at most d client dropouts by setting c <ϵ (K− d), as

previously indicated. Note that c controls the privacy protection strength on clients. Setting a

large d results in a reduced c, which also reduces the strength of privacy protection for clients.

When there are more than d client dropouts, the distribution of the noise aggregation becomes

wider and there will be more noises falling in the tails of the distribution, which could cause

the loss function to decrease less frequently (shown in Figure 4.3). In particular, when there is

an extra dropout of clients, the standard deviation of noise aggregation increases slightly and

becomes K
K−1

times the standard deviation of noise aggregation of K clients. Therefore, for

a sufficiently large K, the impact of a small number of additional client dropouts is limited.

There is still a great chance that the server can get a reliable aggregation from the remaining

clients.

Direction-based noise filtering

Considering the noise scale alone is insufficient. To limit the negative impact on the accuracy

of the FL model, we use cosine similarity to measure the angular distance between the true

local model updates and the noise-perturbed local model updates. The client only adds a noise

vector whose angular distance is less than the user-defined threshold θthres. A smaller θthres
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Figure 4.3: The distribution of aggregated noise with different dropout probabilities.

leads to a higher chance of global convergence, while a larger θthres provides better privacy

protection.

Note that realistically the dimension of a neural network’s parameter vector is usually ex-

tremely high. As illustrated in Figure 4.4, the angular distance between two arbitrary vectors

is Gaussian distributed and becomes more concentrated as the dimension increases. Especially

in an extremely high-dimensional space, such as the space of model updates, any two ran-

dom vectors are orthogonal. Due to this observation, for a fixed θthres, it could be extremely

computationally expensive or even impossible to find a satisfying noise vector in such a high-

dimensional space. An intuitive way is to partition the model updates into smaller vectors and

apply random noise individually. For convenience, we partition model updates by layers, and

noises are generated and added to each layer separately. However, this could raise another

problem that setting an absolute value of θ for all layers could be inappropriate. To align θthres

in each layer, we use the three-sigma rule of thumb, setting θthres = θ̄ + ρσθ, where θ̄ and σθ

are the mean and standard deviation of θ, respectively, and ρ is the multiple of σθ. θ̄ and σθ

are only related to the dimension of vectors and can be pre-calculated, so this operation does

not increase the computation cost. More importantly, this transforms the choice of an absolute
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value of θthres into a relative value ρ, in which θthres is self-adjusted by the dimension of each

layer.

Figure 4.4: Histogram of the angular distance (in degree) between two arbitrary vectors in 2, 10 and 100
dimensional spaces, respectively (based on 10,000 samples).

The use of a larger c should combine with a small ρ to accelerate FL convergence. How-

ever, a smaller ρ increases the similarity between the noise-perturbed model updates and the

original model updates, resulting in less privacy. Also, it could take more time to find a satisfy-

ing noise vector for a smaller ρ. Therefore, ρ should be chosen combining privacy requirements

according to applications, as well as the choice of c. The numerical results of choosing different

settings for ρ will be presented in Section 4.7.

4.5 Theoretical Analysis of Our Approach

In this section, we study the convergence performance of the proposed perturbation scheme

for both convex and non-convex loss functions. The proofs show that FL with our proposed

perturbation scheme can achieve the same global model convergence rate and accuracy as that

of a regular FL in the convex case, and the same convergence rate as that of a regular FL in the

non-convex case.

4.5.1 Assumptions

Denote the optimal value for F (·) by F ∗, and the optimal value for Fk(·) by F ∗
k . Define Γ as a

measurement of non-i.i.d.-ness across clients: Γ ∆
=

∑K
k=1

nk

n
F ∗
k − F ∗, where Γ ≥ 0 indicates

how non-i.i.d. across the client’s data. Note that given a large enough number of data samples

on clients, we have Γ→ 0 for i.i.d. data distributions.
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Four common assumptions are considered to facilitate the theoretical analyses of our pro-

posed noise perturbation scheme.

Assumption 1. The loss functions Fk(·) for k ∈ [K] are all L-smooth; that is, ∀v, w ∈ Rd,

Fk(v)− Fk(w) ≤ ⟨v − w,∇Fk(w)⟩+
L

2
∥v − w∥2, ∀k ∈ [K]. (4.5)

Assumption 2. The loss functions Fk(·) for k ∈ [K] are all µ-strongly convex; that is, ∀v, w ∈

Rd,

Fk(v)− Fk(w) ≥ ⟨v − w,∇Fk(w)⟩+
µ

2
∥v − w∥2,∀k ∈ [K]. (4.6)

Assumption 3. The expectation of the squared ℓ2 norm of the stochastic gradients is bounded;

that is,

Eξ

[
∥∇Fk(w

T,τ
k , ξT,τk )∥2

]
≤ G2, ∀τ ∈ [t], |∀k ∈ [K]. (4.7)

Assumption 4. For the mini-batch ξT,τk , we have the following.

Eξ[∇Fk(w
T,τ
k , ξT,τk )] = ∇Fk(w

T,τ
k ), (4.8)

where Eξ denotes the expectation against the randomness of the stochastic gradient.

4.5.2 Convergence Analysis

We present the following theorems to show the theoretical convergence analyses of FedAvg

with our proposed noise perturbation scheme. For simplicity of convergence analysis, we as-

sume that there is no transmission error between the clients and the central server.

For ease of presentation, we denote the noise aggregated on the central server by R =∑K
k=1

nk

n
rk, and σk denotes the standard deviation of the local additive noise in each element

of rk. We have σk ∝ c and σk ∝ ∆wk. For simplicity, we also assume that each client has the

same amount of data, e.g., nk

n
≈ 1

K
.
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Theorem 1. For a sufficiently large K, each element in R follows the Gaussian distribution

N (0,
∑K

k=1
(σk)

2

K2 ).

Proof. See Appendix B.

Remark 3. Theorem 1 reveals important properties about the number of participants K and

the variance of noise aggregation. (1) The aggregation of additive noise can be characterized

by a Gaussian distribution. (2) For sufficiently large K, that is, K ≥ 30, the contribution of

the noise on a single client to the variance of aggregation of noise is arbitrarily small. (3) A

larger noise scale on the client will result in a greater variance in the aggregation of noise on

the server.

The Strongly Convex Case. We analyze the convergence property of our proposed noise

perturbation scheme under strong convexity.

Theorem 2. For a smooth and strongly convex objective function Fk, FedAvg satisfies

E
[
∥w̃T+1 − w∗∥2

]
≤ATE

[
∥w̃0 − w∗∥2

]
+

T−1∑
i=0

AiB (4.9a)

A =2− µηt+ µη2t (4.9b)

B =2ηtΓ + (1 + 2t)tη2G2(1 + µ(1− η)) + t(t+ 1)(2t+ 1)η2G2

6
+

9m2

K2

K∑
k=1

(σT
k )

2. (4.9c)

Proof. See Appendix C.

Remark 4. Since σT
k ∝ c, we note that B is an increasing function of the noise scale c, while

decreasing with the number of participantsK. Furthermore, more non-i.i.d. local distributions

between clients, resulting in higher Γ and G, will pose a negative impact on the convergence

bound.

Remark 5. The FL converges iff A < 1, that is, η ∈
[1−√

1− 4
µt

2
,
1+

√
1− 4

µt

2

]
. Let η = 1√

T
for

sufficiently large T and η ∈
[1−√

1− 4
µt

2
,
1+

√
1− 4

µt

2

]
, the FL with our proposed scheme converges
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at a rate of O(1/T ), which matches a typical SGD on strongly convex loss functions. In B, the

noise-related term 9m2

K2

∑K
k=1(σ

T
k )

2 decreases as the FL model converges, since σk ∝ ∥∆wk∥.

When convergence occurs, where limT→∞ ∥∆wT
k ∥ = 0, we have limT→∞

9m2

K2

∑K
k=1(σ

T
k )

2 = 0,

which indicates that the proposed scheme converges to the same value as the regular FL scheme

under strong convexity.

The Non-convex case. For more general cases, in which the objective function is not

necessarily convex, convergence to global optima is not guaranteed, so we will only require

convergence to a point of vanishing gradients. We prove the following theorem.

Theorem 3. For a smooth and non-convex objective function Fk, FedAvg satisfies

min
T∈[Tmax]

E∥∇F (w̃t)∥2 ≤2(F (w0)− F (w̃∗))

(1 + ηt− 2η)T
+
η3L2t(t+ 1)(2t+ 1)G2

6(1 + ηt− 2η)

+
m2L

∑K
k=1(σ

T
k )

2

K2(1 + ηt− 2η)
+

c2η2t2G2

1− ηt− 2η
. (4.10)

Proof. See Appendix D.

Remark 6. Let η = 1√
T

for a sufficiently large T , Eq. 4.10 converges at a rate of O(1/
√
T ),

which matches an SGD on non-convex loss functions. The noise-related term, m2L
∑K

k=1(σ
T
k )2

K2(1+ηt−2η)
,

decreases as the FL converges due to σk ∝ ∥∆wk∥. Especially when convergence occurs,

where limT→∞ ∥∆wk∥ = 0, we have the noise-related term limT→∞
m2L

∑K
k=1(σ

T
k )2

K2(1+ηt−2η)
= 0. More-

over, since σk ∝ c, increasing the number of participating clients K or decreasing c will result

in a faster convergence rate.

4.6 Experiment Setup

4.6.1 Dataset

We evaluate our proposed methods on MNIST, a handwritten digit recognition dataset. The

dataset contains 60,000 training data samples and 10,000 testing data samples. Each data sam-

ple is a square 28× 28 pixel image of a single hand-written digit between 0 and 9.
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4.6.2 Evaluation

We evaluate our proposed scheme from both model utility and privacy protection aspects. And

we compare our approach with two baselines: (1) non-private FL, in which clients and servers

follow standard FL protocol and do not involve any privacy-preserving mechanisms; (2) FL

with local DP, in which clients add DP noise to protect the privacy of their local data. As stated

in Section 4.3.2, our goal is to protect clients’ local privacy against an honest-but-curious server

and eavesdroppers, thus we only consider adding perturbations on the client’s side. We compare

our proposed scheme with the (ϵ, δ)-DP proposed in [1], which is widely used as a noise pattern

on the client’s side [116, 120]. Specifically, we use a popular choice of σ =
√

2 log 1.25
δ
/ϵ with

a fixed δ of 10−5. The clipping bound is set as the median of the norms of the unclipped local

model updates over the course of training.

We evaluate the effectiveness by experimenting with FL with our approach and DP against

two state-of-the-art FL privacy inference attacks that we have introduced in Section 4.2.2: the

membership inference attack and the label composition inference attack. The convergence and

security performance of our proposed perturbation scheme are evaluated using the following

four metrics:

1. Global model accuracy and convergence rate. We measure the global model accuracy

under different choices of parameters c and ρ as a function of the training epoch, and

compare the convergence behavior in both dropout and non-dropout scenarios.

2. Membership inference attack accuracy and F1-score. The attack accuracy is defined

as the percentage of data samples that are correctly predicted to be presented in the train-

ing dataset. And the F1 score combines precision and recall into a single value, which is

defined as

F1-score =
2× precision× recall

precision + recall

A lower accuracy or F1-score indicates a better protection of privacy.
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3. Accuracy of the label composition inference attack. The accuracy is measured by the

ℓ2 difference between the true label composition and the inferred label composition. A

larger difference indicates better privacy protection.

4. Signal-to-noise ratio (SNR). SNR is a popular metric for quantifying the relative amount

of noise added to the data.

SNR =
variance of actual data

variance of noise

A lower SNR indicates that there is a greater amount of noise being introduced into

the system, leading to better privacy protection. Recovery of the original data becomes

erroneous as the SNR drops below 1 [54]. It is also claimed in [70] that privacy can be

achieved without affecting learning performance if a small SNR is consistently achieved.

4.6.3 FL System Settings

We implement FL and privacy inference attacks using the PyTorch framework. We conduct our

experiments on Google Colab Pro (CPU: Intel(R) Xeon(R) CPU @ 2.20GHz; RAM: 13 GB;

GPU: Tesla P100-PCIE-16GB with CUDA 11.2).

The dataset is allocated to 100 clients. The model on each client consists of two convo-

lutional layers and two fully connected layers. In each global training epoch, K clients are

randomly selected for the aggregation of the FL model. We use the Dirichlet distribution [82]

with the hyper-parameter α to generate different data distributions across clients, in which a

smaller α denotes a higher non-i.i.d. level. We set α = 1 in the experiments of convergence

and membership inference attack, and α = 0.1, 1, 10,∞ in the experiments of label composi-

tion inference attack.

For the convergence evaluation, we train the local model with a mini-batch gradient de-

scent with batch size 128, internal epoch t = 5, and learning rate η = 0.1. Ten shadow models

and an auxiliary dataset with 3, 000 samples are used in the membership inference attack. The

training data composition inference attack is launched on local model updates with full-batch

gradient descent. To fairly compare our approach with DP, we choose ϵ in DP so that the

accuracy is comparable with that of our approach.
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4.7 Experimental Results

Our approach achieves the security goals. Recall that we have four security goals (discussed

in Section 4.3.2): utility, dropout-resilience, privacy, and efficiency. Our results show that our

approach achieves the four goals.

4.7.1 Utility

The model utility is evaluated in the scenario where there is no attack. We fix ρ = 0 and choose

the scaling factor of our approach to be c = 1, 3, 5, 10, and ϵ = 15, 20, 30 in DP and compute

the values of the global model accuracy as a function of the global training epochs. We also

include the non-private FL to serve as a baseline. As shown in Figure 4.5, the trend and final

accuracy of our approach is similar to that of the non-private FL. For all chosen c, the global

model converges to same accuracy as the non-private FL. Such results are inline with Remark

5. Even for a large c (e.g., c = 10 means the magnitude of the additive noise is 10 times

the magnitude of original model updates), the accuracy curve suffers from slight fluctuations,

and still achieves the same value as the non-private FL does. As the value of c increases, the

convergence becomes slightly slower, due to a higher variance introduced to the global model.

This is consistent with our finding in Remark 3. We also plot the global model accuracy w.r.t.

ρ, shown in Figure 4.6, where the global model converges to the same value but faster with a

smaller ρ.

Compared with our approach, DP has a different convergence trend, in which the conver-

gence is notably slower, and it takes much more epochs to reach an accuracy comparable to our

approach. FL with our approach converges at epoch 5, whereas DP starts to converge at epoch

10 and the accuracy finally reaches a comparable accuracy at epoch 50 by ϵ = 30.

The final global model accuracy of FL with our approach and DP are presented in Table

4.1. It is suggested that the training accuracy only drops around 1% as we increase c from 5 to

15 in our approach. It is also indicated that ϵ = 30 is a minimum privacy budget in order for the

DP to achieve an accuracy comparable to that of c = 15 in our approach, since ϵ = 20 reported

in the table results in a dropped model accuracy. For fairness, we compare under the setting,
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in which a comparable global model accuracy (96%) is achieved by our approach (c = 15) and

DP (ϵ = 30).
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Figure 4.5: The comparison of global model accuracy among the non-private FL, FL with our approach
and FL with DP.
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Figure 4.6: The global model accuracy w.r.t. ρ.
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Table 4.1: Global model accuracy of FL with our approach , FL with DP and non-private FL.

Non-
private

DP Our approach
ϵ = 15 ϵ = 20 ϵ = 30 c = 5 c = 10 c = 15

Accuracy (%) 98.26 86.15 93.28 96.56 98.08 97.1 96.92

4.7.2 Dropout-resilience

In Section 4.5, we have shown that our approach can handle up to d client dropouts by setting

c ∝ (K − d). So in this scenario, the convergence performance is similar to that in the non-

dropout scenario where we have c ∝ K. We also investigate the convergence performance

when there are additional client dropouts. In particular, each client has a dropout probability

from 0% (non-dropout) to 40%. And we set c = 15 in our approach and ϵ = 30 in DP.

When dropout occurs, the server will experience an increased variance of the aggregated noises,

which might impair the global model’s convergence and accuracy. As shown in Figure 4.7, as

the dropout probability increases from 10% to 40%, the global model convergence rate and

the accuracy of our approach remain similar to that of the non-dropout case. Our theoretical

findings in Remark 4 are consistent with such experimental results. Reducing a limited number

of participating clients does not affect the global model accuracy but only results in slightly

slower convergence. As for DP, both global model convergence rate and accuracy are severely

impacted. Therefore, our approach handles up to d client dropouts by setting c ≤ϵ (K− d) and

the convergence performance of the global model is stable even with additional client dropouts.

4.7.3 Privacy

Defending against Membership Inference Attack

We continue to use the setting of c = 10, 15 in our approach and ϵ = 20, 30 in DP. Figure 4.8

shows the per-class attack accuracy and F1-score of the membership inference attack against

FL with our approach, FL with DP as well as the non-private FL. As expected, the non-private

FL leaks a considerable amount of information about the training dataset, resulting in an attack

success rate as high as 87% on average. Both DP and our approach can reduce the attack accu-

racy and F1-score against the membership inference attack. There is no significant difference

in the attack accuracy. As for the F1-score, authors in [96] set the baseline F1-score to be 0.67
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Figure 4.7: The global model accuracy w.r.t. dropout probability.

0 2 4 6 8

7
0

7
5

8
0

8
5

9
0

A
tt

a
c
k
 a

c
c
u

ra
c
y
 %

Label

non_private

DP ε=20

DP ε=30

Ours c=10

Ours c=15

(a) Attack accuracy.

0 2 4 6 8

0
.2

0
.4

0
.6

0
.8

1
.0

F
1
−

s
c
o

re

Label

non_private

DP ε=20

DP ε=30

Ours c=10

Ours c=15

(b) Attack F1-score.

Figure 4.8: Per-class accuracy and F1-score of the membership inference attack against FL with DP, FL
with our approach, and the non-private FL.

(dotted line in Figure 4.8(b)), since there are equal number of members and non-members in

the attack test dataset. The F1-score of all private models are below the baseline. The F1-score

for DP with ϵ = 30 presents a higher pattern, whereas there is no significant difference among

the rest of privacy-preserving FL models.

In addition, Table 4.2 indicates that our approach with c = 10, 15 is as effective as DP

with ϵ = 20. Referring back to Table 4.1, we see that the global model accuracy of FL with
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ϵ = 20 in DP is 3% lower than FL with c = 10, 15 in our approach. Therefore, given the same

strength to defend against the membership inference attack, FL with our approach achieves a

higher global model accuracy.

Further, Table 4.3 provides the global model accuracy, attack accuracy and F1-score for

a fixed c = 15 and different value of ρ. It is suggested that increasing ρ results in a slightly

dropped global model accuracy, but more privacy protection in terms of the F1-score.

Table 4.2: Membership inference attack accuracy and F1-score for DP and our approach with different
settings of ϵ and c as well as the non-private model.

Non-
private

DP Our approach
ϵ = 20 ϵ = 30 c = 5 c = 10 c = 15

Attack accuracy (%) 87.36 79.9 80.12 80.48 80.03 79.82
F1-score 0.87 0.52 0.57 0.61 0.52 0.53

Table 4.3: Membership inference accuracy and F1-score for DP and our approach with c = 20 and
different value of ρ.

Our approach
ρ = 2 ρ = 1 ρ = 0 ρ = −1 ρ = −2

Main accuracy (%) 94.76 95.26 96.92 97.56 98.10
Attack accuracy (%) 79.12 79.75 79.82 78.84 79.72

F1-score 0.49 0.50 0.53 0.52 0.53

Defending against Label Composition Inference Attack

To compare privacy protection in different local label composition scenarios, we consider four

local distribution settings, including one i.i.d. (α = ∞) and three non-i.i.d. local distribution

settings (α = 10, 1, 0.1). Figure 4.9 visualizes the change in label composition w.r.t. α.

(a) α =∞ (b) α = 10 (c) α = 1 (d) α = 0.1

Figure 4.9: Local label composition w.r.t. α.
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Figure 4.10: Box plot of the ℓ2 distance between the original label composition and the inferred label
composition by our approach and DP.

The results of the label composition inference attack are presented in Figure 4.10, which

shows a box plot of ℓ2 distance between the original label composition and the inferred label

composition of FL with our approach and DP. Our approach is more effective in defending

distribution inference attack compared to DP as the local distribution becomes more i.i.d (α =

∞, 10), whereas our approach and DP reach a comparable protection as local distributions

become more dissimilar (α = 1, 0.1).

Signal-to-Noise Ratio (SNR)

Finally, we present the SNR of FL with our approach and DP as a function of the training epochs

in Figure 4.11. Similarly as in previous experiments, the ϵ for DP and the c in our approach are

chosen such that a similar global model accuracy is achieved. The results show that the SNR

of DP is high at the beginning of the training and decreases as the convergence occurs, while

our approach achieves a consistently low SNR. Referring to [70], such a consistently low SNR

also explains our results in Section 4.7.1 that our approach has a minor impact on the global

model’s convergence and accuracy.
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In addition, results in [54] showed that the original data could be harder to recover from a

lower SNR. As shown in Figure 4.11, FL with DP has a higher chance to be recovered at the

early training stage, due to their greater SNR values.
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Figure 4.11: The SNR of our approach and DP along the training course.

4.7.4 Efficiency

We analyze the efficiency based on both the communication and computation overhead. FL

with our approach converges as fast as the non-private FL, and much faster compared to FL

with DP. Especially, for the MNIST task, both the FL with our approach and non-private FL

converge at epoch 5, but FL with DP requires extra epochs to reach a similar global model

accuracy, indicating that extra communication is needed for DP. Hence, the communication

overhead of our proposed scheme is similar to the non-private FL, and much less than that of

DP.

In addition, compared with the non-private FL, the only extra computation cost of our

approach lies in the random noise generation, specifically in the direction-based filtering. Table

4.4 shows the time complexity analysis of our proposed noise perturbation scheme w.r.t. ρ in

terms of multiples (mρ) of that of DP. The time complexity of our approach is inversely related

to ρ. In DP, generating a noise vector for a vector of model updates with n parameters costs

O(n). Therefore, the time complexity of our approach is mρ × O(n). Since practically mρ
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is much less than n, the time complexity of our proposed method is still O(n). The real time

spent on generating the noise vector for one client’s local updates w.r.t. ρ is presented in Table

4.5. The time shows an increasing pattern with a decreasing value of ρ. Even for a small ρ (e.g.,

ρ = −3), the time spent generating the noise vector is 0.52 seconds, which is minor compared

with the local training time, which is 3 seconds in our experiments. Thus, we claim that our

approach does not introduce extra communication and computation overhead.

Table 4.4: Time complexity of different ρ values in terms of multiples of that of DP.

Value of ρ 3 2 1 0 −1 −2 −3
Multiples of DP cost (mρ) 1.0 1.0 1.1 2.0 6.3 43.9 333.3

Table 4.5: Real time spent on noise vector generation w.r.t ρ.

DP value of ρ
3 2 1 0 -1 -2 -3

Time (s) 0.015 0.018 0.018 0.019 0.021 0.034 0.143 0.520

4.7.5 Generalization to More Complex Datasets

To explore if the above findings still hold for more complex datasets and neural network archi-

tectures, we conduct several experiments using ResNet 18 [44] on the CIFAR-10 [57] datasets.

CIFAR-10 consists of 60,000 32 × 32 color images containing one of ten object classes, with

6000 images per class. ResNet 18 is a convolutional neural network that is 18 layers deep and

contains around 11 million parameters.

Data are distributed to 50 clients with a non-i.i.d. parameter α = 10 and 10 clients are

selected in each training round. We use SGD with a learning rate of 0.1 and 200 training

epochs. We compare FL with the proposed method (c = 10) with non-private FL and FL with

DP (ϵ = 100 and δ = 10−5). We report the training accuracy, the attack accuracy and F1-score

of the membership inference attack, and the accuracy of the label composition inference attack.

These experiments are representative in verifying the impact of our proposed method on FL

convergence and accuracy and the privacy protection against state-of-the-art privacy inference

attacks.
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Figure 4.12: Global model accuracy of non-private FL, FL with DP, FL with our method on CIFAR-10,
respectively.

The FL model accuracies are presented in Figure 4.12. The FL with the proposed method

converges slightly slower than the non-private FL, but still converges to a similar accuracy of

80% around epoch 100. The slower convergence rate is due to higher non-convexity in the

ResNet 18 model, which is consistent with the convergence analysis of the non-convex case

(Remark 5). For FL with DP, even for a large ϵ of 100, the FL model still suffers accuracy loss

and can only reach an accuracy of 74%.

Table 4.6: FL model accuracy, overall attack accuracy and F1-score, and mean ℓ2 distance on CIFAR-10.

Non-private Ours c = 10 DP ϵ = 100
Model accuracy (%) 82.54 81.16 74.3
Attack accuracy (%) 76.77 63.06 62.36

Attack F1-score 0.871 0.527 0.526
Attack ℓ2 distance 0.023 0.101 0.099

We continue to evaluate the effectiveness of privacy protection on CIFAR-10. Table 4.6

summarizes the FL model accuracy and overall attack accuracy and F1-score against the mem-

bership inference attack, as well as the ℓ2 distance against the label composition inference

attack. More specifically, Figure 4.13 provides the per-class attack accuracy and F1-score. Fig-

ure 4.14 presents the results for the label composition inference attack, which shows a box plot

of ℓ2 distance of the true label composition and the inferred ones. Compared to non-private FL,

both DP and our method can significantly lower the strength of two attacks, since the accuracy

105



3
0

4
0

5
0

6
0

7
0

8
0

9
0

A
tt

a
c
k
 a

c
c
u

ra
c
y
 %

Labelai
rp

la
ne

au
to

m
ob

ile bi
rd ca

t

de
er do

g
fro

g

ho
rs

e
sh

ip

tru
ck

non_private

DP ε=100

Ours c=10

(a) Attack accuracy.

0
.2

0
.4

0
.6

0
.8

1
.0

F
1
−

s
c
o

re

Labelai
rp

la
ne

au
to

m
ob

ile bi
rd ca

t

de
er do

g
fro

g

ho
rs

e
sh

ip

tru
ck

non_private

DP ε=100

Ours c=10

(b) Attack F1-score.
Figure 4.13: Per-class attack accuracy and F1-score of the membership inference attack against FL with
DP, FL with our approach, and regular FL on CIFAR-10. The dotted lines are baselines, where there is
no privacy-preserving mechanism.
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Figure 4.14: Box plot of ℓ2 distance between the true and inferred label composition on CIFAR-10 with
non-i.i.d. α = 10.

of the attack, F1 score, and the ℓ2 distance are reduced by 17% percent, 0.3 and 0.078, respec-

tively. There is no significant difference between our method and DP in both per-class attack

accuracy and attack F1-score, as well as the attack ℓ2 norm. However, the gain in privacy pro-

tection by DP comes at the cost of 8% model accuracy loss, while our method enjoys a lossless

accuracy.

4.8 Conclusion

In this work, we have proposed a novel adaptive perturbation-based scheme that protects local

privacy in FL but without sacrificing global model accuracy. The key difference between our
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approach and differential privacy is that we considered both the magnitude and direction when

generating the random noises. In particular, we introduced adaptive noise scaling and direction-

based filtering methods to reduce the negative impact of noises on the global model. We have

provided theoretical convergence analyses of our proposed scheme with both non-convex and

convex FL loss functions. Numerical experiments on the MNIST dataset have shown that our

approach can achieve a convergence performance that is comparable to the non-private FL. And

our proposed noise perturbation scheme can achieve a comparable or, in many cases, stronger

privacy protection than DP in defending against state-of-the-art membership inference attack

and label composition inference attack.
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Chapter 5

Future Work

This dissertation reflects the robustness and privacy issues of distributed learning systems,

which have not been widely investigated in previous work. I hope that this work can draw

more attention to design a safer and more efficient distributed learning system. This disserta-

tion also opens new opportunities for future security analysis of distributed learning schemes.

In particular, three different branches deserve further investigation.

Firstly, the first work demonstrates that noise-like false data injection to a set of electricity

meters is effective in misleading the state estimation result and leaves some future questions:

(1) Further exploration of a wider class of attack models. Our work assumes that the attacker

has full knowledge of the neural network settings (white-box attack), yet there are more real-

istic attack types, e.g., the attacker has partial knowledge (gray-box attack) or no knowledge

(black-box attack) about the state estimator settings. (2) Model robustness to scalability chal-

lenges. The proposed attack has been tested on a 30-bus system. However, realistic power grids

may have more than thousands of lines. A real-world test system is needed to accommodate

complicated attack scenarios. Since power grid data are time sensitive and must be analyzed in

a real-time manner, the state estimation for a large grid will be performed locally or regionally.

On the one hand, a local attack that circumvents detection could lead to cascading failures of

the entire grid. On the other hand, when a false alarm is triggered, the collected data will be

discarded, and the control center will be blind to the status of the grid. Therefore, how to co-

ordinate the state estimation results from subareas and the scalability of defense mechanisms

should be considered in designing a robust state estimator for large-scale power grids.
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Secondly, current FL research communities are aware of the threats of backdoor attacks,

privacy attacks, and are dedicating themselves to robustify the learning algorithms and improv-

ing privacy protection. However, interactions between privacy leakage and backdoor attacks

have not yet been thoroughly investigated. We hope that our work could inspire future en-

hancements to FL against both attacks. (1) Optimization of trigger design. Current triggers are

visible and designed in a heuristic way. How to optimize the trigger pattern, e.g., reduce the

number of pixels, or make the trigger less visible, is still an important open question. Informa-

tion leakage from the shared model could help optimize the trigger pattern to reach the goal of

invisibility and generalization. (2) Effective defenses. Most of existing defense mechanisms

are built upon statistic methods, which may falsely reject or reduce the weight for a model that

is normal but trained from highly non-i.i.d. data, or fail to reject a backdoored model that is

deliberately designed. Furthermore, current backdoor attacks still have the potential to bypass

these defense mechanisms. More efforts should be made to analyze weaknesses and design

more effective defenses to keep up with the fast pace of the development of backdoor attacks.

Lastly, FL combined with other privacy-preserving methods has made great progress in

protecting data privacy. However, in the area of mobile edge computing, in which most devices

are IoT devices, additional key challenges come from computational and power constraints.

Furthermore, due to the heterogeneity of IoT devices, privacy constraints may differ between

devices or even between data samples on a single device. There is still a gap between FL

techniques and real applications. Future research should focus on reducing the computation

and communication overhead, retaining the model accuracy, and enabling the capability to

handle mixed privacy constraints.
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Appendices

A Proof of Proposition 1

Proof.
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k − w
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where the inequality (1) holds due to the Cauchy–Schwarz inequality. By induction, we have:
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Hence, Eq. 3.8 has been proved. And the proof of Eq. 3.9 follows similar steps, and hence

we omit the proof here.

B Proof of Theorem 1

Proof. Recall that in the process of generating random noise, rk is first randomly chosen from

N (0, I) and then scaled by c∥∆wk∥
∥rk∥

. Therefore, the i -th element rki follows a Gaussian dis-

tribution N (0, σ2
k) with σk = c∥∆wk∥

∥rk∥
. For the sequence {rki} for k ∈ [K], if the Lindeberg’s

condition holds, then 1
K

∑K
k=1 rki → N (0, 1

K2

∑K
k=1 σ

2
k). Thus, we must verify that for any

ϵ > 0,

lim
K→+∞

1

K

K∑
k=1

E[r2ki · 1{|rki|2 ≥ ϵ
√
K] = 0, (5.3)

where 1 is the indicator function. Note that rki can be represented by σk · x, where x denotes a

standard Gaussian random variable. Then we have

E
[
r2ki · 1{|rki|2 ≥

K∑
k=1

ϵ
√
K}|

]
≤ σ2

kE
[
x2 · 1{|x|2 ≥

K∑
k=1

ϵ
√
K
]
. (5.4)

And Eq. 5.4 goes to 0 when K is sufficiently large.

C Proof of Theorem 2

This proof is deeply inspired by the proof developed in [4], and we roughly follow the same

proof procedure.
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Proof. The noise-perturbed global model parameter is updated as

w̃T+1 = w̃T −
K∑
k=1

nk

n
∆w̃T

k +RT . (5.5)

Assuming that w∗ is the optimal parameter, we have the following.

E
[
∥w̃T+1 − w∗∥2

]
=E

[
∥w̃T − w∗∥2

]
−2E

[
⟨

K∑
k=1

nk

n
∆w̃T

k , R
T ⟩
]

︸ ︷︷ ︸
B1

+E
[
∥

K∑
k=1

nk

n
∆w̃T

k ∥2
]

︸ ︷︷ ︸
B2

+E
[
∥RT∥2

]︸ ︷︷ ︸
B3

+ 2E
[
⟨w̃T − w∗, RT ⟩

]︸ ︷︷ ︸
B4

−2E
[
⟨w̃T − w∗,

K∑
k=1

nk

n
∆w̃T

k ⟩
]

︸ ︷︷ ︸
B5

(5.6)

Next, we bound the terms on the RHS of (5.6). By the Young’s inequality, we have B1 ≤

B2 +B3. By the Cauchy-Schwarz inequality, we have
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where m is the dimension the model parameter and the inequality holds by Theorem 1 for a

large enough K. Again, by the Cauchy-Schwarz inequality, we have

B4 = 2E
[
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]
≤ E
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]
+B3. (5.11)
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k , ξT,τk ∥

2
]

≤
K∑
k=1

t−1∑
τ=0

nk

n
E
[∥∥η τ∑

i=0

∇Fk(w̃
T,i
k , ξT,ik )

∥∥2
]
+ η2tG2

≤t(t+ 1)(2t+ 1)η2G2

6
+ η2tG2, (5.13)

C2

(e)

≤ 2η
K∑
k=1

t−1∑
τ=0

nk

n
E
[
⟨w∗ − w̃T,τ

k ,∇Fk(w̃
T,τ
k )⟩

]
(5.14)

(f)

≤2η
K∑
k=1

t−1∑
τ=0

nk

n
E
[
Fk(w

∗)− Fk(w̃
T,τ
k )− µ

2
∥w̃T,τ

k − w∗∥2
]

≤2η
K∑
k=1

t−1∑
τ=0

nk

n
E
[
Fk(w

∗)− F ∗
k + F ∗

k − Fk(w̃
T,τ
k )− µ

2
∥w̃T,τ

k − w∗∥2
]

=2ηtΓ + 2η
K∑
k=1

t−1∑
τ=0

nk

n
(F ∗

k − Fk(w̃
T,τ
k )− µη

K∑
k=1

t−1∑
τ=0

nk

n
E
[
∥w̃T,τ

k − w∗∥2︸ ︷︷ ︸
C3

]
, (5.15)

where (e) and (f) are due to Assumptions 4 and 2, respectively.
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C3 = ∥w̃T,τ
k − w̃T∥2 + ∥w̃T − w∗∥2 + 2⟨w̃T,τ

k − w̃T , w̃T − w∗⟩

≤ ∥w̃T,τ
k − w̃T∥2 + ∥w̃T − w∗∥2 − 1

η
∥w̃T,τ

k − w̃T∥2 − η∥w̃T − w∗∥2

= (1− η)∥w̃T
k − w∗∥2 − (

1

η
− 1)∥w̃T,τ

k − w̃T∥2, (5.16)

Substituting C3 into C2, we have

C2 =2ηtΓ + 2η
K∑
k=1

t−1∑
τ=0

nk

n
(F ∗

k − Fk(w̃
T,τ
k ))− µηt(1− η)E

[
∥w̃T − w∗∥2

]
+ µ(1− η)η2G2 t(t+ 1)(2t+ 1)

6
. (5.17)

Substituting C1 and C2 into B5, we have

B5 ≤− µηt(1− η)E
[
∥w̃T − w∗∥22

]
+ (1 + µ(1− η))t(t+ 1)(2t+ 1)η2G2

6
+ η2tG2 + 2ηtΓ

+ 2η
K∑
k=1

t−1∑
τ=0

nk

n
(F ∗

k − Fk(w̃
T,τ
k )). (5.18)

Substituting B1-B5 into Eq. 5.6, we have

E
[
∥w̃T+1 − w∗∥2

] (g)

≤(2− µηt(1− η))E
[
∥w̃T − w∗∥22

]
+ 2ηtΓ + (1 + 2t)tη2G2

+ (1 + µ(1− η))t(t+ 1)(2t+ 1)η2G2

6
+

9m2

K2

K∑
k=1

(σT
k )

2, (5.19)

where (g) follows from F ∗
k − Fk(w̃

T,τ
k ) ≤ 0. Rearranging Eq. 5.19 and summing from 0 to T ,

we have proved Theorem 2.

D Proof of Theorem 3

Proof. We denote the global model parameter at aggregation T by w̃T+1 = w̃T −∆wT + RT ,

where ∆wT = η
∑K

k=1

∑t−1
τ=0

nk

n
∇Fk(w̃

T,τ
k , ξT,τk ). Due to the smoothness of Assumption 1 and
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taking the expectation of Fk(w̃
T+1) over randomness at the T -th aggregation, we have

E[F (w̃T+1] ≤F (w̃T ) + ⟨∇F (w̃T ),E[RT −∆wT ]⟩+ L

2
E[∥RT −∆wT )∥2] (5.20)

≤F (w̃T ) + ⟨∇F (w̃T ),E[RT −∆wT + η∇F (w̃T )− η∇F (w̃T )]⟩

+
L

2
E[∥RT −∆wT∥2] (5.21)

≤Fk(w̃
T ) + ⟨∇F (w̃T ),E[η∇F (w̃T )−∆wT ]⟩︸ ︷︷ ︸

A1

+
L

2
E[∥RT −∆wT∥2︸ ︷︷ ︸

A2

+
1

2
E∥RT∥2︸ ︷︷ ︸

A3

+
1

2
∥∇F (w̃T )∥2 − η∥∇F (w̃T )∥2. (5.22)

A1 =⟨∇F (w̃T ),E
[
η∇F (w̃T )−∆wT

]
⟩ (5.23)

=⟨
√
ηt∇F (w̃T ),

√
η
√
t
E[

K∑
k=1

t−1∑
τ=0

nk

n
(∇Fk(w̃

T )−∇Fk(w̃
T,τ
k , ξT,τk ))]⟩ (5.24)

(b)

≤ηt
2
∥∇F (w̃T )∥2 + η

2t
E
[
∥

K∑
k=1

t−1∑
τ=0

nk

n
(∇Fk(w̃

T )−∇Fk(w̃
T,τ
k , ξT,τk ))∥

]2 (5.25)

(c)

≤ηt
2
∥∇F (w̃T )∥2 + ηL2

2

K∑
k=1

t−1∑
τ=1

nk

n
E
[
∥w̃T,τ

k − w̃T∥2
]

≤ηt
2
∥∇F (w̃T )∥2 + η3L2

2

K∑
k=1

t−1∑
τ=0

nk

n
E∥

τ∑
i=0

∇Fk(w̃
T,i
k , ξT,ik )∥2 (5.26)

(d)

≤ ηt
2
∥∇F (w̃T )∥2 + η3L2t(t+ 1)(2t+ 1)

12
G2, (5.27)

where (b) follows from the Young inequality, and (c) is due to Assumptions 1 and E∥
∑n

i=1 xi∥2 ≤

n
∑n

i=1 E∥xi∥2, and (d) is due to Assumption 3.

Based on the relationship of the noise and the gradient and following the Efron-Stein

inequality, we have

A2 =
L

2
E[∥RT −∆wT∥2≤m

2L

2K2

K∑
k=1

(σT
k )

2, (5.28)

where m is the dimension of rk.
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A3 =
1

2
E
[
∥RT∥2

]
≤ 1

2
c2η2E

[
∥

K∑
k=1

t−1∑
τ=0

nk

n
∇Fk(w̃

T,τ
k , ξT,τk )∥

]
(5.29)

≤ 1

2
c2η2

K∑
k=1

nk

n
E
[
∥

t−1∑
τ=0

Fk(w̃
T,τ
k , ξT,τk )∥

]
(5.30)

≤ 1

2
c2η2t

K∑
k=1

nk

n

t−1∑
τ=0

E
[
∥Fk(w̃

T,τ
k , ξT,τk )∥

]
(5.31)

≤ 1

2
c2η2t2G2 (5.32)

Substituting A1, A2 and A3 into Eq. 5.27, we have

E[F (w̃T+1] ≤F (w̃T ) + (
1 + ηt− 2η

2
)∥∇F (w̃T )∥2 + η3L2t(t+ 1)(2t+ 1)

12
G2

+
m2L

2K2

K∑
k=1

(σT
k )

2 +
1

2
c2η2t2G2. (5.33)

Rearranging Eq. (5.33) and summing from 0− T , we have

Tmax∑
T=1

1 + ηt− 2η

2
∥∇F (w̃T )∥2 ≤F (w0)− F (w̃T ) +

η3L2t(t+ 1)(2t+ 1)

12
TG2

+
m2LT

2K2

K∑
k=1

(σT
k )

2 +
1

2
Tc2η2t2G2, (5.34)

And we get

min
T∈[Tmax]

E∥∇F (w̃T )∥2 ≤2(F (w0)− F (w̃∗))

(1 + ηt− 2η)T
+
η3L2t(t+ 1)(2t+ 1)G2

6(1 + ηt− 2η)

+
m2L

∑K
k=1(σ

T
k )

2

K2(1 + ηt− 2η)
+

c2η2t2G2

1 + ηt− 2η
. (5.35)
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