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Abstract

Machine learning has recently gained tremendous interest due to its capabilities in pro-
ducing predictive models in a wide variety of applications, such as objective detection and
recommendation services. Meanwhile, the development of the Internet of Things (IoT), which
enables the connection to the Internet and the computation capability to a wide range of de-
vices, makes it possible for machine learning algorithms to gain insight from an aggregation of
physically separated devices. However, due to its distributed nature, one cannot guarantee the
legitimacy of the received data or parameters, which provides a venue for new attacks. There-
fore, it is necessary to better understand the vulnerabilities and identify potential threats, so as
to propose countermeasures to eliminate the impacts of such threats before applications are put
into use.

This dissertation focuses on improving the robustness and privacy of distributed learning
algorithms and covers both traditional distributed learning systems, in which a central server
collects the data and performs the training, and the modern federated learning scheme, in which
the training is performed on individual devices. In the background of the transition from tra-
ditional power grid to smart grid, the first proposed research studies the robustness of the ar-
tificial neural network (ANN) based state estimator by adversarial false data injection attacks.
The state estimation of the grid can be misled by injecting noise-like data into a small portion
of electricity meters. Focusing on the modern federated learning (FL) scheme, the second pro-
posed research overcomes the ineffectiveness of the backdoor attacks on FL due to the dilution
effect from normal users, by utilizing the information leakage from the shared model. The third
proposed research provides a high-accuracy and low-cost solution for privacy preservation in
mobile edge computing (MEC) systems, in which the key challenges come from computation
and power constraints. This dissertation could help people better understand these vulnerabili-

ties and design a safer and more efficient distributed learning system.
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Chapter 1

Introduction

1.1 Background and Motivation

By the end of 2022, there will be 18 billions Internet of Things (IoT) devices connected to
the Internet to provide monitoring and computing services [10]. Meanwhile, machine learn-
ing applications have gained wide-spread prominence, particularly by the deployment of the
powerful neural networks in various application domains, such as object detection, recommen-
dation, natural language processing, and medicine. The explosion of 10T combined with the
recent progress in machine learning makes it possible to learn from data on massive physically
distributed devices. Currently, distributed learning applications thrive in the prediction of next
words and emoji on smartphones [22], environmental monitoring [40], and aiding in medical
diagnosis among hospitals [122].

Since [oT devices are usually physically separated, machine learning models can be trained
in a traditional distributed or modern federated manner. In traditional distributed learning sys-
tems, data are collected by a cloud server or a data center, on which training is performed.
However, with the tremendous growth of data generated/collected by IoT devices, offloading
a huge amount of data to remote servers could be infeasible due to the required network re-
sources and the incurred latency. Furthermore, the direct transmission of the data is at risk of
privacy leakage. Recently, the concept of federated learning (FL) has emerged as a modern
distributed learning scheme. Technically, FL is a distributed learning scheme that allows multi-
ple devices to collaborate to train a high-accuracy model without sharing their actual datasets.
Instead of sending the original data to a remote server and letting the server perform the train-

ing, FL training is performed individually on devices, and the devices only send the trained
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model parameters to the central server, in which the model aggregation is performed. As a
result, communication and latency are reduced, and privacy is preserved since only the model
parameters are sent to the server.

Although more and more models learned from massive IoT devices are expected to be used
in our daily lives, the vulnerabilities of distributed learning systems have not yet been well un-
derstood. Due to the ubiquitous IoT devices and their low costs, an attacker could easily pry
users’ privacy or tamper with the trained model by compromising a number of devices. There-
fore, it is necessary to have a better understanding of their vulnerabilities, to identify threats,
and propose countermeasures to eliminate the impacts of such threats before the models are
put into use. Threats to distributed learning systems can be classified mainly into the following

two classes:

¢ Model robustness. Robustness means that a model is resilient to small variations, such
as outliers and small perturbations of inputs. Due to the nature of distributed learning
systems and the inherent data non-i.i.d.-ness across all devices, the data or model pa-
rameters uploaded by a client can be different from others. It is difficult for a cloud
server to validate the legitimacy/truthfulness of the received data or model parameters.
As a result, the model parameters trained from extreme non-i.i.d. but normal data could
be falsely rejected by the server, whereas an attacker can deliberately camouflage the
malicious model/data to circumvent the detection mechanism. One of the famous ro-
bustness attacks is the adversarial example [38], in which the attacker injects a vector
of well-coordinate perturbations to a data sample such that the tampered data sample is
mis-predicted by the trained model. Another example is the backdoor attack [9], in which
the adversary injects a pattern into the training data to corrupt the model during the train-
ing process such that the new model is equally accurate on the main training task, while

performing well on a sub-task activated by some triggers.

* Model/data privacy. Contrary to the initial belief that FL is private because only the
trained model updates are transmitted and no users’ data is directly revealed, recent stud-
ies have found that shared FL. model updates may unintentionally leak sensitive informa-

tion about the data on which it was trained [28]. As pointed out by previous studies, using
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FL scheme alone is insufficient in protecting the clients’ local data privacy. For example,
from the FL model, an adversary can infer if a given data sample was presented in the
training data or not [79, 86], or recover representative data sample used in the training

[34], or infer property information about the client’s local training data [132].

The overarching goal of this dissertation is to obtain a comprehensive understanding on
the security vulnerabilities of distributed learning systems, especially from the perspectives of
model robustness and model/data privacy, and to develop a solid mathematical framework that
can be used to characterize the vulnerabilities and improve the utility of existing learning al-
gorithms and defense mechanisms. In the first work, it is examined whether the vulnerability
of adversarial examples presented in the image classification problem also exists in the state
estimation problem in the smart grid. In the second work, considering the ineffectiveness of
single-shot backdoor attacks against FLL due to the dilution effect from normal model updates
especially in the early training stage, a novel information leakage assisted two-phase FL back-
door attack, which enhances the effectiveness of FL early-injected single-shot backdoor attack
has been proposed. The third work focuses on the privacy-preserving solution for IoT devices,
which is limited by computation capability, power supply, network connectivity, and partic-
ipation flexibility. A low-cost (for both communication and computation overhead) adaptive
noise perturbation privacy preserving scheme is then proposed, which does not sacrifice model

accuracy for privacy, while enjoying differential privacy (DP) comparable privacy protection.

1.2  Overview of Research Contributions

1.2.1 Adversarial False Data Injection Attack against ANN-based State Estimation in Smart

Grid

In this work, a new study of adversarial false data injection attacks against artificial neural
network (ANN)-based state estimation is initiated. By injecting a deliberate attack vector
into the measurements, the attacker can degrade the accuracy of an ANN-based state estimate
while remaining undetected. Two algorithms to generate the attack vectors are proposed, one

population-based algorithm (differential evolution or DE) and one gradient-based algorithm



(sequential least square quadratic programming or SLSQP). The researcher then evaluates these
algorithms through simulations on IEEE 9-bus, 14-bus, and 30-bus systems. Simulation results
show that DE is more effective than SLSQP on all simulation cases. The attack examples gener-
ated by the DE algorithm successfully degrade the accuracy of the ANN state estimation result
with high probability (more than 80% in all simulation cases), despite having a small number
of compromised meters and low injection strength. The potential defense strategy to mitigate
such attacks is further discussed, which provides insight for robustness improvement in future

research.

1.2.2 Assisting Backdoor FL with Whole Population Knowledge Alignment

In this work, the early-injected single-shot backdoor attack against FL is strengthened by uti-
lizing the information leaked from the shared FL model. Theoretical analysis shows that FL.
convergence can be expedited if the client trains on a dataset that mimics the distribution and
gradients of the whole population. On the basis of this observation, a two-phase backdoor
attack is proposed, including a preliminary phase for the subsequent backdoor attack. In the
preliminary phase, the attacker-controlled client first launches a whole population distribution
inference attack and then trains on a locally crafted dataset that is aligned with both the gradient
and the inferred distribution. Benefiting from the preliminary phase, the later injected backdoor
achieves better effectiveness, as the backdoor effect will be less likely to be diluted by the nor-
mal model updates. Extensive experiments are conducted to evaluate the effectiveness of the
proposed backdoor attack. The results show that the proposed backdoor outperforms existing
backdoor attacks in both success rate and longevity, even when defense mechanisms are in

place.

1.2.3 High-Accuracy Low-Cost Privacy-Preserving FL in IoT Systems via Adaptive Pertur-

bation

In this work, the high accuracy of the FLL. model is retained while protecting user privacy by
taking into account both the magnitude and direction of the additive perturbation. In particular,

the magnitude of the additive noise is set to adaptively change with the magnitude of the local



mode updates. Then a direction-based filtering scheme is used to expedite the FLL model con-
vergence. A maximum tolerable variance of the additive noises is derived to maximize privacy
protection at local clients, while the FL. global model enjoys the same model accuracy and con-
vergence rate as a result of the cancel-out effect presented in the aggregation of noises on the
server by the central limit theorem. Theoretically, it is proven that FL. with the proposed noise
perturbation scheme retains the same accuracy and convergence rate of O(1/7) as that of a
non-private FL (FL with no privacy preservation), in both convex and non-convex loss function
scenarios. We also evaluate the performance of the proposed scheme in terms of convergence
behavior, time and computation efficiency, and privacy protection against state-of-the-art pri-
vacy inference attacks on a real-world dataset. Experimental results show that FL. with the
proposed perturbation scheme outperforms DP in the accuracy and convergence rate of the FL
model in both client dropout and non-client dropout scenarios. Compared to DP, the proposed
scheme does not incur additional computation and communication overhead. This approach
provides a DP-comparable or better effectiveness in defending against privacy attacks under

the same FL model accuracy.

1.3 Publication Contributions

During my Ph.D. study, I have contributed to the following publications (listed chronologi-
cally).

[1] T. Liu and T. Shu. Adversarial false data injection attack against nonlinear ac state
estimation with ANN in smart grid. In International Conference on Security and Privacy in
Communication Systems (SecureComm), Springer, 2019.

[2] X. Hu, T. Liu, and T. Shu. Fast and high-resolution NLOS beam switching over com-
mercial off-the-shelf mmwave devices. In IEEE Transactions on Mobile Computing (TMC),
IEEE, 2021.

[3] T. Liu and T. Shu. On the security of ANN-based ac state estimation in smart grid.
Computers & Security, Elsevier, 2021.

[4] J. Chen, T. Liu, and T. Shu. A survey on visible light communication standards. In

Get-Mobile: Mobile Computing and Communications, 2021.



[5] T. Liu, X. Hu, H. Xu, T. Shu, and D. Nguyen. High-accuracy low-cost privacy-
preserving federated learning in IOT systems via adaptive perturbation. In Journal of Infor-
mation and Security Applications. Conditionally accepted.

[6] T. Liu, X. Hu and T. Shu. Assisting backdoor federated learning with whole pop-
ulation knowledge alignment in mobile edge computing. In /8th Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON). IEEE, 2022. Forthcom-
ing.

[7] X. Hu, T. Liu and T. Shu, (k, o)-coverage for RIS-aided mmWave directional commu-

nication. In IEEE Transactions on Mobile Computing (TMC). Conditionally accepted.

1.4 Dissertation Overview

In the rest of this dissertation, three works are detailed with each addressing a set of prob-
lems, deepening the knowledge of the robustness and privacy protection of distributed learning
algorithms against adversaries. Each chapter focuses on presenting one work, along with com-
prehensive evaluations and comparisons between the solutions to the state-of-the-art methods.

In Chapter 2, the robustness of the ANN-based state estimation in smart grids is studied
by designing a false data injection attack, which is capable of misleading the state estimate
by injecting false noise-like data into meter readings. The designed attack on the IEEE test
systems is then evaluated with a defense mechanism to defend against the proposed attacks
coming up.

In Chapter 3, the study is presented to improve the early injection of a single-shot backdoor
attack against FL by utilizing information leaked from the shared FL. model. The attacker facil-
itates the convergence of the FL model so as to strengthen the effectiveness of the later injected
single-shot backdoor. Numerical experiments are then conducted to show the effectiveness of
the proposed backdoor attack.

In Chapter 4, a low-cost high-accuracy perturbation-based FL privacy-preserving mecha-

nisms is proposed. The proposed scheme takes both perturbation direction and magnitude into



consideration, so that the perturbations are canceled out on the server and the direction of de-
scent is preserved. Theoretical proofs and numerical results against state-of-the-art attacks are
provided.

Finally, future work is discussed in Chapter 5.



Chapter 2

On the Security of ANN-based AC State Estimation in Smart Grid

2.1 Introduction

With the increase in residential and industrial power demand, nowadays a regional or nation-
wide power outage often leads to catastrophic consequences in the matter of public safety.
After the US Northeast Blackout in 2003, the US and Canada reached a consensus to transi-
tion to a smart grid system, which would be cleaner and more efficient, reliable, resilient, and
responsive than a traditional grid. The smart grid is a complex system that integrates a tradi-
tional power grid and information technologies to enable inter-networking over power grids.
Although transferring from the traditional power grid to the smart grid provides many new at-
tractive features such as remote and automatic grid monitoring, control, and pricing, it has also
raised serious security challenges by opening up the traditional power system to many potential
attacks in cyber space. For example, in the 2015 Ukraine power outage [66, 61], the hacker
successfully compromised the information systems of three energy distribution companies and
caused power failure to more than 225,000 customers lasting 1 to 6 hours. Since then, cyber
attacks on smart grids have caught public attention and have become a realistic and growing
concern for governments, vendors, and customers.

One of the key mechanisms in ensuring normal operation of a smart grid is state esti-
mation, which provides the current status of the grid for the control center operators to take
corrective action in order to prevent an accident from happening. State estimation aims to
compute the states of the system (the complex voltages at all buses [117]) that are not directly

measurable, based on the grid’s topology and the meter’s power usage measurements collected



from the supervisory control and data acquisition (SCADA) system. Conventionally, state es-
timation is formulated as a non-linear weighted least square (WLS) problem that minimizes the
distance between actual measurements and computed measurements from the estimated state.
Such methods have several limitations. First, solvers to the problem, such as Gauss-Newton,
are computationally heavy, sensitive to initial values, and may encounter convergence issues.
In addition, the state estimation has to be computed periodically for every set of meter measure-
ments collected in each meter reading cycle (typically a 15-minute period) in order to obtain
the current system status. Furthermore, a prior observability analysis is often required to ensure
that the system is overdetermined. This state estimation scheme is further challenged by the
growing grid scale and unprecedented system dynamics caused by the increasing deployment
of new elements in the smart grid, such as renewable generators, electric vehicles, and dynamic
pricing.

In light of the above issues in existing state estimation methods, artificial neural networks
(ANN) have received a lot of interest as a new approach to smart grid state estimation for mainly
two reasons: (1) the computation cost can be ignored once the model is trained. In particular,
once the ANN state estimation model is trained offline based on historical or simulated data,
such a model can provide accurate estimation online at minimal computation cost, eliminating
the need for carrying out observability analysis prior to running the state estimation. (2) ANNs
naturally fit into the non-linear nature of the state estimation problem. So far, several efforts
have been made to adopt ANNs for state estimation. It has been established that ANN-based
state estimation provides results much faster, and the accuracy is comparable to or higher than
that of conventional state estimations.

Although state estimation plays an important role in ensuring the normal operation of the
smart grid, it is well known that conventional state estimation methods are vulnerable to false
data injection (FDI) attacks [74], which is a data integrity cyber-attack and has been proven
to be a real threat to the smart grid system. In particular, an adversary can corrupt the state
variable by injecting carefully coordinated false data to meter measurements while evading the

bad data detection. The injected false data may result in generation re-dispatch [68] or trigger a



branch outage sequence that involves multiple branches and ultimately leads to a system failure
[21].

Although FDI attacks against conventional state estimation methods have been well un-
derstood in the literature, little is known about FDI attacks against ANN-based state estimation.
As ANN-based state estimation is expected to receive more and more applications for the smart
grid in the near future, and because the smart grid is a critical infrastructure of society, it is nec-
essary to gain a better understanding of the vulnerabilities of this new state estimation method
of FDI attacks, so as to identify possible threats and propose countermeasures to eliminate such
threats before this new method can be applied in practice on a larger scale. Therefore, we can
reduce the potential loss and increase the confidence of the society in the security feature of the
new method.

In contrast to existing FDI attacks that mainly rely on a linear direct current (DC) power
flow model, FDI attacks against an ANN-based state estimation must accommodate a nonlinear
alternating current (AC) power flow model, as the nonlinearity is a fundamental feature of the
ANN state estimation. As ANN becomes a popular technique in the power system, several
works demonstrate the effectiveness of adversarial attacks on power system applications [25,
26, 63]. Unfortunately, little work has been done to analyze the vulnerabilities and robustness
of the ANN-based state estimation model.

Meanwhile, in the area of image classification, researchers noticed that ANNs can easily
be fooled by well-coordinated samples with small perturbations. This discovery has spurred
many efforts to explore the vulnerabilities of ANN by designing adversarial attacks.

In this work, we are interested in examining whether the above vulnerability of ANN
present in the image classification problem also exists in the state estimation problem in the
smart grid. We create an FDI attack customized for the ANN-based state estimation model.
This attack can also be used to construct an upper bound on the robustness of the model. Fur-
thermore, we try to develop algorithms that can systematically generate contaminated measure-
ments that maximize the ANN-based state estimation error while eluding detection by a bad
data detector. By doing so, we aim to establish a new understanding of the security vulner-

abilities of the latest high-accuracy ANN-based state estimator. To our knowledge, our work
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is the first in the literature to study the vulnerabilities and robustness of the ANN-based state
estimator by FDI attacks.

Compared with its image classification counterpart, solving our problem faces new and
significant challenges. In addition to the obvious difference in the application model, our prob-
lem presents the following three novel features in its structure. Firstly, our problem has an
optimization nature in the sense that we seek the optimal attack vector that maximizes the at-
tack outcomes. In contrast, the goal of the image-classification counterpart is simply to find a
feasible attack vector. Secondly, the attack model in our problem considers the attacker’s access
and resource constraints, in which the attacker only has access to and can only manipulate a
certain number of meters. The attacker’s injection is also subject to physical constraints on the
smart grid system. In contrast, the image-classification problem does not have such constraints,
and the attacker can change any pixel of the image. Lastly, the output of state estimator is a
vector of continuous values, whereas that of the image-classification is discrete and covers a
limited number of pre-defined cases. Due to these fundamental structural differences, the ex-
isting results from the image classification ANN are not directly applicable to our problem, and
therefore new solutions need to be developed.

In this work, we study the robustness of ANN-based state estimators by constructing ad-
versarial FDI attacks. We first create ANN-based state estimators as our target models, followed
by evaluating both model accuracy and bad data rate to ensure that the target models are suf-
ficiently strong. We then use the idea of an adversarial example to formulate an optimization-
based FDI attack. In this model, an attacker attempts to maximize the state estimation error
without being reported by the bad data detector, subject to given resource and meter access
constraints. Subsequently, two algorithms are proposed to solve the optimization above to
find the best false data injection vector: differential evolution (DE) and sequential least square
quadratic programming (SLSQP). We extensively evaluate our proposed attacks based on sim-
ulations on IEEE 9-bus, 14-bus, and 30-bus system models under various scenarios to verify
their effectiveness.

The main contribution of our work includes the following fivefold:
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In creating the target ANN state estimator for large-scale grid systems (e.g., 30-bus and
above), a novel penalty term is proposed for the loss function, which significantly im-
proves the accuracy of the ANN in modeling the voltage phase angle for large-scale

grids.

An optimization-based FDI attack formulation is proposed for the ANN-based AC state
estimation model, which can accommodate various practical constraints on the attacker,

including their resource and meter accessibility.

We adapt two algorithms, DE and SLSQP, to solve the above optimization, targeting two
different attack scenarios. DE generates attack vectors for the scenario, in which the
attacker can compromise any £ meters, while both DE and SLSQP can accommodate the

scenario, in which the attacker has only access to specific £ meters.

The effectiveness of the proposed attack models is verified by extensive simulations on
IEEE 9-bus, 14-bus, and 30-bus systems under various attack scenarios. Our results show
that the DE attack is successful with high probability (more than 80% in all simulated
cases), despite having a small number of compromised meters and low false injection

level.

We adopt adversarial training to defend against the above attacks. It turns out that adver-
sarial training could lower the attack success rate, but would slightly impair the model

accuracy.

The proposed algorithms provide a practical way for systematically identifying key meters

whose readings have a higher weight in the state estimation and thus may serve as a guide to the

utility company to reach a more focused/concentrated protection against these key meters under

resource and budget constraints. Furthermore, our defense strategy encourages the building of

more robust ANN-based state estimation models in the future.

The remainder of the chapter is organized as follows. In Section 2.2, we survey the ANN-

based state estimation, false data injection attack, and adversarial example. We then provide a

preliminary for state estimation and bad data detection in Section 2.3. We construct ANN-based

12



state estimation models as our attack targets and evaluate their performance in Section 2.4.
Subsequently, we introduce our adversary model and attack formulation in Section 2.6. Our two
attack algorithms, the DE and SLSQP algorithms, are presented in Section 6. The experimental

analysis and the proposed defense are presented in Sections 2.7 and 2.8, respectively.

2.2 Related Work

2.2.1 ANN-based State Estimation

Various neural network architectures are explored for state estimation in the smart grid, such
as the feed-forward neural network [3], radial basis function neural network [105], the counter
propagation network, and the functional link network [58]. In [88], Onwuachumba et al. pro-
posed a reduced ANN-based state estimation model, which uses fewer measurements and no
prior observability analysis is required. To adapt to the new features emerging in smart grid,
such as renewable generators and dynamic pricing, the ANN-based state estimation for real-

time and distributed power systems is studied in [84, 81, 128, 127].

2.2.2 False Data Injection Attack

Existing results on FDI attacks against conventional state estimations are inapplicable to ANN-
based state estimation for the following two reasons. First, most previous work on FDI attacks
is based on the DC power flow model [74, 99, 33, 50], which is a linear approximation of the
real-world AC power flow model and is usually used as a simplified version of the AC power
flow model. FDI attacks against AC models are more complicated and hence require a more
sophisticated attacker than DC models. The FDI attacks derived from DC models may be ill-
suited for AC models [95]. In addition, the works on constructing FDI attacks against AC
models are mainly focused on WLS state estimators [50, 53, 110, 114, 67], thus they cannot be
directly applied to ANN-based state estimators.

A considerable number of works have been proposed to defend against FDI attacks. The
authors in [12] approached the issue by identifying and protecting a set of critical meters to
detect FDI attacks. The authors in [19, 62, 100] approached the issue using a statistical method

combined with physical laws of the power system. Data-driven and machine learning-based
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approaches were proposed in [32, 45, 39, 125, 129]. A Kalman filter-based detector was devel-
oped in [76]. Liu et al. developed a detection by using the sparsity of attacks [71]. The authors
in [65] proposed a sequential detector, and the authors in [49] proposed an adaptive CUSUM

algorithm, in order to accelerate the detection process.

2.2.3 Adversarial Examples

Szegedy et al. were the first to propose an adversarial attack against deep neural networks [109].
After that, various attack algorithms are proposed, such as the Fast Gradient Sign Method
(FGSM) [38], Fast Gradient Value (FGV) [98] and DeepFool [83]. Especially in [107], the
deep learning model can be fooled by adding one pixel perturbation to the image. Furthermore,
perturbations are shown to be transferable among ANN models, even if they are trained on
different data sets, and preserve different architectures [59, 73, 111, 119].

Another branch of research studies defense against adversarial examples. Papernot et al.
used a distillation network to extract knowledge to improve robustness [89]. In adversarial
training, adversarial examples are generated in every training step, then they are injected into
the training data set [38, 48, 75]. And in the classifier robustifying, authors in [14, 2] put

emphasis on how to design a robust architecture of the ANN.

2.3 Preliminaries

In this section, we briefly introduce the state estimation and the detection of bad data. All

notation used is defined in Table 2.1.

2.3.1 State Estimation

In the AC power flow model, measurements are non-linearly dependent on state variables, as

characterized by the following equation:

z = h(x) + e,
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Table 2.1: Notation and definitions.

Notation  Definitions
n,m Number of state variables/measurements

X, Xa, X Natural/compromised/estimated state variables, including voltage mag-
nitude |V;| and phase angle 6; at all buses, i = 1,..,n

P; ,Q; Real and reactive power injection at bus <.
P, Qij Real and reactive power injection at branch connecting bus ¢ to bus j
Z,Zx Natural/compromised measurements, including real and reactive power
injection of buses F; and (; and branches P;; and ();;
h(-) A set of non-linear, deterministic functions that relate states to measure-
ments h : X — Z
() ANN-based state estimator that eliminates errors in measurements and
output
a Attack vector that injects to a given measurement z

G;; +37Bi; The ij-th element of the complex bus admittance matrix
gi; +7bi;  The admittance of the series branch connecting busses 7 and j
gsj +7bs;  The admittance of the shunt branch connected at bus :

where z and x denote a /V,,,-dimension measurement vector and a /NV,,-dimension state vector,
respectively, and e denotes a NV,,,-dimension vector of normally distributed measurement errors.
h(x) denotes a set of non-linear functions, by which the measurements are related to state

variables, according to Kirchhoff’s circuit law:

N
P, = Vi) |Vi|(Gicosty; + Bysinbyy), @D
j=1
N
Qi = Vi) IVi|(Gyysindy; — Bijcosb;), 22)
j=1
Pij = |Vil*(gsi + 9i3) — [ViVi|(gijcos8ij + bijsinb, 2:3)
Qi = —|Vil*(bsi + big) — |ViVjl(gigsindi; — bijcostyy). 24)

In an overdetermined case, where we have more measurements than state variables (/V,, >
N,,), the state variables are determined from the WLS optimization over a residual function

J(x) [117]:

X = argmin J(x), where J(x) = (z — h(x))" W(z — h(x)). (2.5)

xT
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Here, the weight matrix W is defined as diag{o;?, 0, >

eees U;/i }, and o7 is the variance of the
1-th measurement (¢ = 1, ..., N,,,). W is introduced to emphasize trusted measurements while

de-emphasizing less trusted ones.

2.3.2 Bad Data Detection

Meter measurements may contain errors due to various reasons, such as transmission error,
wiring failure, or malicious attack. Therefore, for data quality control purposes, a bad data
detection is usually introduced to identify measurements whose error exceeds a pre-defined
threshold. Integration of state estimation and bad data detection can largely suppress the pres-
ence of bad data and ensure that the state estimation is based only on good data. Most bad
data detection schemes rely on the residual J(Z) as a decision variable. In particular, given the
assumption that e is normally distributed, it is shown that J(z) follows a x*(K) distribution,
where K = N,, — N, is the degree of freedom. Any measurements with a residual greater than
the pre-determined threshold 7 is recognized as bad data:

z 1s identified as bad data, if
J(X) = (z - h(X)"W(z - hZX) > (2.6)

The threshold 7 can be determined by a significant level « in hypothesis testing, indicating

that false alarms would occur with probability a.

2.4 ANN-based AC State Estimation

The main difficulty in utilizing Eq.(2.5) directly to estimate the AC state is that it requires
solving a non-linear optimization problem. Instead of making any particular assumption on
the structure of A(-), we adopt an empirical methodology to characterize the non-linear state
estimation function. In particular, based on a sufficient number of empirical state-measurement
readings, we attempt to train an ANN model that can accurately represent the states as a non-
linear function of the measurements. In the operational phase, this ANN is expected to directly

output a state estimate x for each input of the measurements z, without the need to solve the
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nonlinear optimization in Eq.(2.5). In the following, we present our procedure for generating
the training data, defining the loss function, training the ANNSs, and testing the accuracy of the

trained ANN state estimators.

2.4.1 Model Training

Although it would be more convincing to use actual data from a real power grid, power com-
panies use their own proprietary data format, in which most of them are not accessible. There-
fore, lacking actual state-measurement data from a real power grid, we follow the convention
to present our results based on computer simulations, as in previous studies (e.g. [74, 21, 23]).
Simulation-based evaluation would give valid results because the simulation data are generated
according to realistic grid typologies and well-established physical laws/mechanics that govern
the operation of the grids. In addition, simulation data provide a wider range of the operational
condition coverage. In particular, real-meter data can only cover a limited set of operational
conditions of the grids under which these actual data are recorded, while the simulation data
have a much wider coverage on the grids’ operation conditions, as these data can be generated
on demand for any operation condition of interest.

The training and testing cases in our study are generated by simulations on IEEE test
systems (9-bus, 14-bus, 30-bus). A Matlab package, MATPOWER [133], is used for data
generation and power flow analysis. Note that the use of simulation data in training does not
affect the validity of the proposed ANN model. One can simply replace the simulation data by
actual data once they become available and then retrain the ANN by the same procedure.

Our state-measurement data are generated as follows. The state variable, consisting of
the magnitude |V;| and phase angle 6; of the bus voltages, is a function of the load of the
power system and changes within a small range. To account for this dynamic behavior, we
consider a series on loads of the power grid ranging from 80% to 120%. For each load instance,
the state is calculated by power flow analysis. According to the American National Standard
for Code for Electricity Metering [6], class 2 accuracy applies for power grid measurements,
which tolerates a +2% error in a measurement reading. In accordance with this specification,

we add an independent Gaussian noise € to each measurement reading 1), so that the simulated
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measurement reading becomes (1+€)1, where € ~ N (0, 0.67%?). For each of the test systems,
10,000 and 1,000 state-measurement pairs are generated for training and testing, respectively.
Note that all constant values are excluded from measurements and state variables.

An ANN-based state estimation model is trained for each of the test systems. Following
[3, 84, 52, 80], each ANN state estimation model possesses a multi-layered perceptron (MLP)
architecture, consisting of one input layer, one or more hidden layers, and one output layer. We

use the mean WLS error as the loss function:

loss(z,x) — %Z(z b)) W (z — h(x)), @.7)
where N is the number of training samples.

Our experiments show that the accuracies of both voltage magnitude and phase angle are
satisfactory, yet the phase angle accuracy is lower. There are several reasons behind this phe-
nomenon. First, the loss function only narrows the difference between the actual and estimated
measurements. Being different from conventional machine learning problems, the state esti-
mation requires the error to be minimized from both measurement and state sides. Second,
the voltage magnitudes are strictly confined to a small range to provide a stable and consistent
power supply.

These trained models serve as targets for our proposed attacks. The inaccuracy in the state
estimation, i.e., the deviation of the estimated state from the actual state, overlays the goal of
the FDI attack. So any estimation inaccuracy would be counted as an attack success in the
attack evaluation. To eliminate such effect, we revise the loss function in order to achieve high
accuracies on both voltage magnitude and phase angle. A new penalty term of the mean square
error (MSE) between the actual state and the estimated state is added in Eq.(2.7), leading to
a new loss function in Eq.(2.8) specially designed for large-scale systems. In this new loss
function, a small constant c is added to balance both error terms so that the gradient descent

works on both terms simultaneously:

loss(z,x) = % Z(z — h(x))"W(z — h(x)) + c— Z(x — %)% (2.8)
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Empirically, we investigate the value of ¢ uniformly spaced (on a logarithmic scale) from
c =1x10"toc = 1 x 10°, and choose a c that provides the best estimate precision. Our
experiments show that by adding this new penalty term, the voltage phase angle estimation
accuracy increases to an equivalent level as that of the voltage magnitude. The proposed ANNs
are implemented in Python, using the TensorFlow package with Keras as back-end. The model

architectures and parameters are given in Table 2.2.

Table 2.2: ANN-based state estimator architectures and parameters.

9-bus 14-bus 30-bus

Architecture
Input Size 42 103 204
Fully Connected + ReLU 64 128 256
Output Size 14 22 53
Parameter
Learning Rate 0.001 0.001 0.001
Decay Rate 1x107° 1x10° 1x107°
Batch Size 64 64 64
Epochs 300 500 1000

2.4.2 Model Evaluation

After the models are trained, we use testing data to evaluate their performance. A good state
estimation model should have the following two properties: First, it should be able to provide
accurate state estimation irrespective of the noise in the measurements; second, regular mea-
surement noises should not trigger bad data alarms (i.e., low false alarm rate). Accordingly, we
evaluate the accuracy of the estimation of the ANNs by maximum absolute error (MAE) and
maximum absolute relative error (MARE) between the true and the estimated values, where
MARE is simply MAE normalized w.r.t. the magnitude of the true value. An estimate is con-
sidered accurate if the MARE of the voltage magnitude and the voltage phase angle do not
exceed 1% and 5%, respectively. To evaluate the false alarm rate, we use a significant level of
bad data o = 0.01. Table 3 and Table 4 summarize the performance evaluation of trained ANN
models. It is clear from these tables that the proposed ANN models are able to estimate states

accurately and have a low false alarm rate under regular measurement noise.
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Table 2.3: Evaluation of the voltage magnitude of the model.

Test System MAE (p.u.) MARE Bad Data(%) Accuracy(%)

9-bus 22x107° 24 x107° 0 100
14-bus 58 x 107 5.6 x 1073 3 100
30-bus 6.3x107° 6.5x107° 5 100

Table 2.4: Evaluation of the voltage angle of the model.

Test System MAE (rad) MARE Accuracy(%)

9-bus 1.0x107% 1.6 x 102 96
14-bus 6.1 x1073 2.6 x 1072 99
30-bus 1.2x107* 1.3 x 1072 98

2.5 Adversarial Model and Attack Formulation

In this section, we present a detailed adversarial model against the ANN-based state estimator,
following [126]. This model characterizes the adversary by their goal, knowledge of the data
and target system, and resource and meter accessibility constraints. Based on this model, we

formulate an optimization problem that the attacker can use to decide their best attack strategy.

2.5.1 Adversarial Model

It is realistic and practical for an attacker to have the ability to compromise meters, given the
fact that the meters are physically distributed and lack protection. The goal of the attacker is to
launch an FDI attack, in which the attacker aims to inject a manipulated measurement vector,
whose ultimate goal is to maximize the state estimation error while remaining undetected. The
false data are injected to the compromised meters, then collected by the SCADA system, and
eventually sent to the state estimation application.

It is assumed that the attacker has complete knowledge of the topology and configuration
of the power grid, such as the nodal admittance matrix. This information can be accessed or
estimated from a public database or historical records. In addition, it is also assumed that the
attacker knows everything about the ANN-based state estimation model, including the archi-

tecture and parameters. These information could be obtained by an attacker either by breaking
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into the information system of the power grid (similar to the 2015 Ukraine case) or by training
a shadow ANN that mimics the real ANN-based state estimator on a substitute data set. We
assume that the attacker also knows the threshold of the bad data detector.

Although these assumptions render a strong attacker that may not always represent the
practical cases, they enable us to evaluate the robustness and vulnerabilities of the ANN-based
state estimators under the worst-case scenario, which provides an upper bound on the impact
of FDI attacks against the ANN-based state estimation.

In addition to the bad data detection threshold, the adversary also faces other constraints,
including the set of meters to which they have access, the maximum number of meters they can
compromise, and the maximum amount of errors they can inject into the actual measurements
without being detected.

Note that in this work, we only consider the FDI attacks that happen during the operational
phase of the ANN-based state estimator. In other words, the adversary is only able to alter the
measurement inputs after the ANN model is trained. It is not allowed to perturb either the
training data or the trained model. Investigating training data or model poisoning is out of the

scope of this work and will be studied in our future work.

2.5.2 Attack Formulation

Let z, be the measurement vector in the presence of FDI attack, then z, can be described as
follows:

Za =7z +a=h(x)+a, (2.9)

where a is a V,,-dimension non-zero attack vector. Given the input of a manipulated measure-

ment z,, the state estimation output of the ANN-based state estimator f is as follows:

Xa = f(2za) = f(z+a). (2.10)
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According to Eq.(2.6), an adversary intending to elude bad data detection must satisfy the

following condition:
J(%a) = (2a — h(Xa)) W (2a — h(%a)) < . (2.11)
The error injected into the state estimation hence can be calculated by:
%o — % = f(2a) — [(2). (2.12)

With the above notation, the problem of finding the best adversarial injection a for a given

measurement z can be formulated as a constrained optimization.

maxiamize |%a — X]|,

subject to  (za — h(%Xa))" W(za — h(Xa)) < T,
lallo < L, (2.13)
al <a; <a'yi=1,..,Npy,

min maxr . __
20 <z, <z =1,

where L is the maximum number of meters that the attacker can compromise (so that they
can alter the measurement of the reported meter), and [al, a¥] provides the lower and upper

, 21m97] de-

limits of modification to the measurement of each compromised meter, and [z 2!

i
notes the valid range for each measurement, ensuring that the manipulated measurement is still
within the permitted range on that particular unit. The strength of the measurement modifica-
tion/manipulation depends on the attacker’s resource and meter accessibility constraints, which
have not been considered in previous work. In our work, by limiting the measurement manipu-
lation to a subset of meters, the attacker can avoid injecting excessive errors, which can easily
be detected by a univariate analysis. In addition, if the adversary knows where the high preci-

sion meters are located, they can avoid injecting too much error into those meters and instead

allocate the resource to other meters to improve the overall attack outcome.
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The objective function in the optimization Eq.(2.13) requires some distance metric || - ||,
to quantify the impact of the attack. In this work, we evaluate the ANN-based state estimation
by examining whether the state estimation is misled by an injection vector whose values are
limited to a noise level. The injection is tiny itself, and its impact will be further cracked
by the non-linearity of the AC power model. Therefore, this distance metric must be chosen
carefully. In reality, the voltage magnitude is always limited in a tight range in order to ensure
stable electricity supply, whereas the voltage phase angle varies in a relatively large range.
Hence, an erroneous estimation of the latter may seriously affect the consistent operation of the
power grid, but cannot be easily detected. Therefore, instead of targeting the total difference
contributed by both voltage magnitudes and the voltage phase angles, we define the adversary’s

objective function as the maximum change to the voltage phase angles 6:

~

|Ra — %||oo = max(|6a, — 01], ..., 0a, — 6n)). (2.14)

2.6 Attack Methodology

In this section, we present two algorithms, DE and SLSQP, to solve the proposed optimization

Eq.(2.13).

2.6.1 Solving the Proposed Attack with DE

As a population-based stochastic optimization algorithm, the DE algorithm was first proposed
in 1996 by Rainer ef al. [106]. The population is randomly initialized within the variable
bounds. The main optimization process consists of three operations: mutation, crossover, and
selection. In each generation, a mutant vector is produced by adding a target vector (father)
with a weighted difference of the other two randomly chosen vectors. Then a crossover pa-
rameter mixes the father and mutant vectors to form a candidate solution (child). A pair-wise
comparison is drawn between fathers and children, and whichever is better will enter the next

generation.
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We follow [107] to encode our measurement attack vector into an array, which contains
a fixed number of perturbations, and each perturbation contains two values: the compromised
meter index and the amount into inject to that meter.

The use of DE and encoding has the following three advantages for generating attack

vectors.

* Higher probability of finding global optimum - In every generation, the diversity in-
troduced by the mutation and crossover operations ensures that the solution does not get
stuck in a local optimum, leading to a higher probability of finding the global optimum

[107, 106].

* Adaptability for multiple attack scenarios - DE can adapt to different attack scenarios
using our encoding method. On the one hand, by specifying the number of meters to
compromise, DE can search for both meter indices and injection amount. On the other
hand, by fixing the meter indices, DE can only search for injection amount to these

specified meters.

* Parallelizibility to shorten attack time - The function evaluation of an ANN is com-
putationally demanding. As the scale of the smart grid increases, generating an attack
vector may take seconds to minutes. An attacker must complete the generation and in-
jection of the attack vector before the next state estimation takes place. DE algorithm
is parallelization-friendly, as it is based on a vector population. DE operations can be
mounted on a computer cluster to significantly expedite the computation of the attack

vector.
Next, we present how we adapt the DE algorithm to our proposed attack:

* Deal with duplicate meter indices - In our work, instead of outputting the exact meter
value, we select to output the injection vector to shrink the search space. We use two
approaches to ensure the uniqueness of meter indices in the solution. First, we generate
meter indices without replacement in population initialization. Second, we add a filter
in the crossover operation. This filter keeps the meter indices unchanged if the newly

selected meter index is repetitive.
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* Ensure the measurement after injection is within range - A valid measurement read-
ing must satisfy z;“in < zi +a; < ", where z;ni“ and z*** are the lower and upper
limit power permitted on 2z;. We use an intuitive approach by replacing z, = z + a with

min) 7 Zmax)

Za = min(max(z,, z , where min and max are element-wise operations.

* Deal with the overall constraint - In addressing the constraints, adding a penalty term
to the original objective function has been one of the popular approaches. However,
they do not always yield satisfactory solutions since the appropriate multiplier for the
penalty term is difficult to choose and the objective function may be distorted by the
penalty term. Therefore, we use a heuristic constraint handling method proposed in [27].
A pair-wise comparison is drawn between fathers and children in order to differentiate
feasible solutions from infeasible ones. The three criteria of the pairwise comparison are

the following:

1. If both vectors are feasible, the one with the best objective function value is pre-

ferred.
2. If one vector is feasible and the other one is not, the feasible one is preferred.

3. If both vectors are infeasible, the one with the smaller constraint violation is pre-

ferred.

Essentially, the above comparison handles constraints in two steps: first, the comparison
among feasible and infeasible solutions provides a search direction towards the feasible
region; then, the crossover and mutation operations keep the search near the global opti-
mum, while maintaining the diversity among feasible solutions. The pseudo code for the

proposed attack using DE is presented in Algorithm 1.

2.6.2 Solving the Proposed Attack with SLSQP

In some gradient-based attack algorithms in image classification([109, 17]), a logistic function
is added to the objective function as a penalty term and the multiplier for the penalty term is

chosen by a line search. These algorithms aim to find a feasible solution, not the optimal one.
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Algorithm 1 DE attack

Input: measurement z, GE Ny 4x {maximum number of generations}, N {population size},
f {objective function}, g {constraint function}, C'R {crossover rate}
Output: injection vector a
1. g=0
2: Population initialization a;, for 7 = 1, ..., N. Meter indices are randomly select without
replacement and injection amounts are randomly select within the univariate bound.

3: Evaluate the f(a;,) and constraint violation C'V'(a; ,) = max(g(a;),0), fori =1,..., N

4. fOl’g =1: MAXGEN do

5: fort=1:Ndo

6: Randomly select r; and 75

7 Jrana = Tandint(1, N,,)

8: forj=1:Ddo

9: if (rand;[0,1) < CRor j = j,qanq) and the meter index not repetitive with previous

meter indices then

10: uz,g-l-l = xi)est,G + F(xg“hg - 'I{”Q,g)

11: else

12: w1 = TG

13: end if

14: end for

15: Evaluate f(u;441) and CV (0 441)

16: Update the population if the child u; 4, is better than the father x; , by above three
criteria

17:  end for

18: end for

Therefore, we use a conventional optimization algorithm (SLSQP) [56]. SLSQP is a variation
on the SQP algorithm for non-linearly constrained gradient-based optimization. In our SLSQP
attack, we encode the solution to a /NV,,-dimension vector, in which the 2-th element denotes
the injection amount to the i-th meter. This encoding allows the attacker to generate attack
vectors for a set of specified meters by placing upper and lower bounds on the corresponding
elements in the attack vector. To solve the proposed optimization problem, we first construct
the Lagrangian function.

L(a,\) = f(a)+ X g(a), (2.15)

where
f(@) = [[%a — X[l

9(a) = (2 — h(%))"W(za — h(%)) < .

(2.16)
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In each iteration k, the above problem can be solved by transferring to a linear least square

sub-problem in the following form:

max  [[(D9)7(@9Td + (DX VAL V(@)
d (2.17)
subjectto  Vg(a*)d + g(a*) > 0,

where L*DF(L*)T is a stable factorization of the chosen search direction V2 L(z, \) and is
updated by BFGS method.

By solving the QP sub-problem for each iteration, we can get the value of d¥, i.e., the update
direction for z*:

2" =78 4+ ad”, (2.18)

where « is the step size, which is determined by solving an additional optimization. The step

size ¢ (a) := ¢(a* + ad") with x* and d* are fixed, and can be obtained by minimization:
¢(a%;r) = f(a) + max(r - g(a), 0), (2.19)

with r being updated by:
1
rEtl = max(§(7“k + Al [A]))- (2.20)

The limit on the injection amount is achieved by setting a bound to the optimizing variable.
The physical constraint for branch limit is ensured by performing an element-wise min-max

operation as in the DE attack.

2.7 Attack Evaluation

In this section, we evaluate both FDI attacks on three IEEE test systems: 9-bus, 14-bus, and 30-
bus systems. The implementation of our attacks is done in Python, using packages TensorFlow
and SciPy. We run the experiments on a computer equipped with a 3.5 GHz CPU and 16 GB

memory.
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Attack Scenarios: Depending on the attacker’s capabilities and practical constraints, the
attacker can launch an attack in different scenarios. Inspired by [74], we consider the following

two attack scenarios to facilitate evaluation.

* Any k-meter attack - The attacker can access all meters, but the number of compromised
meters is limited by k. In this scenario, the attacker may want to wisely allocate the
resource, by selecting meters and injection amounts that maximize the impact of the

attack.

» Specific £-meter attack - The attacker has the access to k specific meters. For example,
the attacker may access only meters in a confined region. In this case, the attacker needs

to determine the injection amount to each meter to maximize the attack impact.

We perform the experiments as follows. To fairly compare the attack performance on
different test systems, we choose the percentage of compromised meters, R, to be 5%, 10%
and 20%. For each R, we explore the attack performance under different injection levels: 2%,
5% and 10%. The injection level is defined as the maximum injection strength in terms of
proportion to the measurement. Each experiment runs on 1,000 measurement instances and is
repeated for 10 times to reduce randomness.

We consider the following four metrics to evaluate the effectiveness of attacks. We mea-
sure the MAE and MARE that are injected into the voltage phase angle. We also report the
success rate, where success is defined as an attack that produces more than 5% MARE to the
voltage phase angle. Moreover, since the smart grid is assumed to be a quasi-static system
and the state changes slowly over time, we want to investigate if the time between two state

estimations allows an adversary to mount the FDI attack on the smart grid.

2.7.1 Any k Meter Attack

Under this scenario, the attacker can access all meters and has the freedom to choose any &
meters to compromise. The way we encode the attack vector in DE enables the search for
better target meters in every generation. In contrast, SLSQP only allows us to put constraints

on specific meter indices. Therefore, only DE can be used to find the attack vector in any
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k-meter attack. DE/xz/y/z denotes a DE variant, in which x specifies that the vector to be
mutated is chosen by “random” or “best”, and y denotes the number of difference vectors
and z denotes the crossover scheme. We implement three DE variants in our experiments:
DE/best/1/bin, DE/current to best/1/bin and DE/current to rand/1/bin, where bin denotes the
binomial. These DE variants differ in the way of how the father vector is selected and how the
differential variation is formed. We find that there are no significant differences among them.

Hence, DE /best/1/bin is used in all experiments:

Ui, G41 = Thest,¢ T F(l’m,G - l‘rz,G),

where ., ¢, T, ¢ are integers drawn from the current population, and ;. ¢ denotes the best
individual in terms of the value of the objective function in the current population. F'is a real

and constant factor € [0.5, 1], which controls the intensity of the mutant.
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Figure 2.1: An example of a 5-meter attack on the 14-bus system.

Figure 2.1 shows an example of a 5%-meter attack on the 14-bus system. Our DE attack
injects error into one of voltage phase angles, while others remain unchanged. In Figures 2.1
(b) and (c), for injection levels 10% and 20%, the maximum injections are condensed at 5%
and rarely exceed 10%, due to the overall constraint on bad data detection.

Figure 2.2 shows the impact of the attack with the change of R and the injection level.

In general, the success probability and attack impact increase as the attacker controls more
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Figure 2.2: Relative error and success rate of any k-meter attack on 3 test systems with N = 400 and
Gaax = 400.
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resources. The attacker achieves a high success rate (80% of simulation instances) by compro-
mising 10% of meters with injection level 10%. Especially for the 14-bus system, the attack
achieves 100% success for any combination of R and the injection level.

Interestingly, for the 30-bus system, the impact of 10% compromised meters exceeds that
of 20% compromised meters. In addition, the performance of the 20% of compromised meters
drops drastically as the injection level increases. A possible explanation for this is that, with the
expansion of search dimension and space, DE requires more generations to find a satisfactory

solution.
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Figure 2.3: Success rate of the DE attack and the random attack on a log scale. Solid lines refer to the
DE attack, and dashed lines refer to the random attack.

We compare our proposed attack with a random attack, where the injection vectors are
generated from a uniform distribution. The success probability is reported on the same set of
instances with 1,000 attempts on each instance. The success rate is compared to that of our
DE attack on a logarithmic scale (Figure 2.3). There is no significant difference between the
impact of the DE attack and that of the random attack when the injection level is low, in which
the attack impact is limited. However, if the attacker wants to achieve greater impact, our DE
attack outperforms the random attack by order of magnitude.

Figure 2.4 shows the frequency of the meter indices that present in the attack vectors.
Because most of the meter frequencies are small, only the seven meters with the largest fre-
quencies are presented. The injection into high-frequency meters can introduce large error to

the state variable. Our DE attacks also help to identify vulnerable meters, in which people can
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Figure 2.4: Frequency of meters selected in the attack vectors.

strengthen the physical protection, e.g., replace them with higher precision meters or lock them

in boxes.

2.7.2 Specific kK Meter Attack

To explore the effect of the population size and iteration number, we evaluate the average num-
ber of function evaluations (NFEs) before delivering a successful attack or when no significant
change in the solution is observed. In the DE case, NFE is equal to the population size mul-
tiplied by the number of generations. NFEs and the corresponding running time are shown in
Table 2.5. For all combinations of systems and attack settings, the attacker can find a successful
attack vector in 3 seconds or conclude that the attack is infeasible.

In this scenario, the attacker can compromise specific £ meters due to restrictions in phys-
ical location. DE and SLSQP are implemented and compared in this attack scenario. To search
for the injection amount in specific k£ meters, DE specifies the indices of the k£ meters in popu-
lation initialization and disables the mutation operation of the meter index, while SLSQP only
allows modifications to the k£ meters in the attack vector. We randomly select 3 sets of meters
such that R is 5%, 10% and 20%, respectively. We perform the same set of experiments using
both the DE and SLSQP algorithms and compare their performance using the same metrics.

In general, the DE algorithm outperforms the SLSQP algorithm in effectiveness (Fig-
ure 2.5). This is not surprising, as the DE brings more diversity in every generation, whereas

SLSQP only explores the neighbors in each iteration.
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Figure 2.5: Relative error and success rate of the specific k-meter attack on 3 test systems.
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Table 2.6 shows the convergence time of the DE attack with 10, 000 NFEs and the SLSQP
attack with 100 iterations. Both attacks converge quickly within 3 seconds, which is feasible
for an attacker to complete before the next state estimation takes place. A simple comparison
of running time between them can be misleading, since the specific £ meters involved in our
test are chosen blindly. The convergence time is highly dependent on the meters chosen to
perform the attack. The selection of vulnerable meters would greatly shorten the attack time.
In addition, the execution time can be further shortened by applying an early-stop criteria or
parallel processing to the DE attack, or adjusting the max iterations for the SLSQP. Therefore,
without taking into account the running time, our experiments exhibit a clear pattern that the

DE attack is more effective than the SLSQP attack.

Table 2.5: Average NFEs and execution time (in seconds) of any k-meter attack on 3 test systems.

Test System NFEs Time ()
9-bus 500-1500 0.25-0.45
14-bus 500-3500 0.5-1.73
30-bus 800-5600 1.5-2.7

Table 2.6: Convergence time (in seconds) comparison of the specific k-meter attack on 3 test systems.

Test System DE (s) SLSQP (s)
9-bus 0.12-0.4 0.036-0.6
14-bus 0.06-0.6  0.14-1.0
30-bus 0.3-3.0 0.26-2.2

2.8 Potential Defenses

In this section, we are interested in how the proposed attacks behave when a defense mecha-
nism is specifically customized / optimized for these attacks. Note that such a specialized de-
fense mechanism is in sharp contrast to the general defense mechanisms considered in previous
works, which do not assume/exploit any knowledge or feature of the proposed attacks. Putting

the proposed attacks in the context of a strong and specialized defense mechanism allows us
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to gain insights on the limit of both the attacker and the defender in a more realistic “sharpest-
sword vs. strongest-shield” setting, as in practice “maximum effort” is commonly executed
not only by attackers but also by defenders, especially when it comes to a mission-critical in-
frastructure such as the power grid. In the following, we first review existing state-of-the-art
defense proposals against adversarial examples in image classification and explain why some
of them are not applicable to our problems. Then, we propose an adversarial training-based
defense mechanism to counter our proposed attacks. Several techniques are also developed to
optimize the proposed defense. The performance of the proposed mechanism is evaluated by
simulations in Section 2.7.

Despite the significant number of works on detection against the FDI attack, most of the
existing detection mechanisms are mainly built on the DC state estimations or traditional WLS
state estimators. These detection methods achieve high detection accuracy with a low false
alarm rate, but they are not applicable to the ANN-based state estimator. The defense strategy
against the FDI attack on the AC ANN-based state estimation has not been intensively studied.

In the image classification area, proactive countermeasures against adversarial examples
aim to make the ANN model more robust before the attacker gets the chance to generate ad-
versarial examples. Mainstream proactive countermeasures fall into three categories [126]: the
defensive distillation, adversarial training, and classifier robustifying.

However, our problem has a different goal compared to image classification. Methods
based on the probability of the target class, such as defensive distillation and classifier robus-
tifying, are not applicable. To propose the defense, we need to address two challenges: (1) in
contrast to an image classification problem, our goal is to minimize the error in the state space
while keeping the residual in the measurement space below a pre-defined threshold; (2) mea-
surements contaminated by a small injection level are well hidden as they are nearly from the
same distribution as clean measurements. The defense should not be sensitive to adversarial
injections, yet measurements with regular noise should not trigger bad data detection alarms.

As stated in [51], there are two main methods to strengthen a regression model: noise-
resilient regression and adversarial training. The idea behind the noise-resilient regression

is to enhance the model’s tolerance to noise and identify and remove the outliers, while not
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triggering bad data alarm or losing accuracy. In the target model training process in Section
2.4, we adopt the idea of noise resilience by adding noises sampled from a certain distribution
to the training data, so that the model learns the distribution and is able to eliminate the effect
of such noises. In addition, we minimize both errors in the state space and measurement space
to improve the accuracy of ANN-based state estimation and narrow the left-over space for
attacks. Although these methods provide a robustness improvement against noise and outliers,
the results in Section 2.7 show that a noise-resilient model is not resistant to our attacks. It is
suggested that an adversary can still generate noise-like injections to mislead the state estimate.
It turns out that introducing noise to the measurements and minimizing the training error in
both spaces does not make the model more robust to adversarial injections.

Among many defenses against adversarial examples, adversarial training [109, 38] has
been one of the most effective methods [75, 59]. The adversarial training attempts to minimize
the impact of injection in the model training phase, rather than trying to identify and mitigate

them in the operational phase of the trained model. This is achieved by a min-max formulation:

6 = argmin K, )p max L6,z +9,9)|, (2.21)
0 S

where D is the set of training data, L is the loss function, # is the parameter of the network, and
S is a norm-constrained ball centered at 0. In contrast to regular training, adversarial training
uses min-max optimization, where inner maximization produces injection data based on the
current model and injects them into the training data set, while outer minimization minimizes
the state estimation deviation on the enlarged training data set, in which the injection data are
included.

Inspired by [75] and considering the uniqueness of our problem, we propose a defense
through an optimization perspective with the goal of improving robustness while maintaining

the accuracy of the ANN-based state estimation model:

6 = argminc - Exp [mgix |x — XH:| + loss(z,x), (2.22)
0

36



where ¢ > 0 should be well chosen to balance the optimization strength on each term. Com-
pared to Eq. (2.21), a training loss term is added to the optimization to take into account the
accuracy of the model.

In the process of choosing a suitable ¢, since the value of the first term is very small, a large
¢ would make optimization emphasize minimizing the risk of the FDI attack, while a small ¢
would cause a high false alarm rate. Empirically, we find that the best way to choose c is to
balance the accuracy of the model, the bad data rate, and the robustness of the model. We verify
this by running the adversarial training model for values of ¢ spaced uniformly (on a log scale)
from ¢ = 1x 10 to ¢ = 1 x 107, on the 9-bus system customized for the 10%-meter specific DE
and SLSQP attack, respectively. The model accuracy and bad data rate are evaluated on the test
data set, while the effectiveness of adversarial training is evaluated by DE and SLSQP attacks.
We plot the voltage angle accuracy, bad data rate, and attack success rate as a function of c in
Figure 2.6. We find that both attacks show similar patterns. As c increases, attacks become
rarely successful at the cost of the state estimation model being more conservative. The con-
servativeness is mainly reflected by the model recognizing a growing number of measurements
with regular noises as bad data. In practical state estimation applications, bad measurements
are usually discarded and will not be used to estimate the current system status. Therefore, a
high false alarm rate would increase the risk of unobservability of the system. Although the
adversarial trained state estimation model could identify more data as bad data, this is a minor
model degradation, which can be manually resolved, for example, by increasing the sampling
rate.

As claimed in [75], solving optimization alone is not a sufficient condition for the accuracy
and robustness of the model. In addition, it requires both the optimization and the value of the
objective function to be small. This is because, in general, a smaller objective value implies a
better model. However, in our problem, this is not always true. Due to the presence of noise,
a lower objective value does not always indicate a better model. Furthermore, obsessively
pursuing a small objective value may lead to overfitting. Therefore, we stop the training process

when we observe that the loss is consistently smaller than the threshold.
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Figure 2.6: Sensitivity to the constant c.

We then use Adam optimizer to adversarially train state estimation models on the 9-bus,
14-bus and 30-bus systems with the same attack settings and meter indices as in Section 2.7.2.
According to our results, the three systems present similar patterns. To evaluate the effec-
tiveness of adversarial training on all test systems, we present the experiment results of the
adversarial training for the 10%-meter specific attack with the injection level of 10% in Table
2.7, in terms of voltage angle accuracy, bad data rate and attack success rate. While adversarial
training significantly reduces the attack success rate, it achieves this benefit at the cost of an
elevated bad data rate and a slight degradation (several percent) in model accuracy, for defenses
against both the DE and SLSQP attacks.

The reason for the slightly degraded accuracy is that the adversarial training is done on an
enlarged training data set, in which the adversarial data are generated and added to the data set
as the training process goes on. At the individual level, an adversarial example may hide well in
the actual data distribution. However, if the whole population is examined, the adversarial data
distribution may differ slightly from the actual data distribution. Therefore, the model learned
from the adversarial data may shift accordingly, causing a slightly lower accuracy.

It is also noted that adversarial training with examples generated by DE has a higher bad
data rate than training with examples generated by SLSQP. One possible explanation is the high
skewness in the residual distribution. In the process of generating adversarial examples, while

the SLSQP finds adversarial examples in the neighbors, DE, being a stochastic method, always
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probes more possibilities to make use of the resource. Taking a closer look at the residuals
of the adversarial data, we can notice that the residual distribution is highly left skewed and
is highly condensed at the value of the bad data detection threshold. Due to the skewness, it
takes more adversarial training iterations to converge, yet to a value just below the threshold.
Such an unsteady convergence is susceptible to distribution difference, therefore, data from the
true distribution are very likely to violate the bad data threshold, resulting in an elevated bad
data rate. Note that such a drawback is not critical to the state estimation, as it can be easily
overcome by proportionally raising the sampling rate to compensate for those good data lost
due to the false alarm.

In summary, our proposed adversarial training works well in significantly reducing the
attack success rate, but only at the cost of a higher bad data rate and a slight degradation of the

model accuracy.

Table 2.7: Performance of adversarial training against specific attack of 10% meters with injection level
of 10%.

Without Adversarial Training
0 Accuracy(%) Bad Data(%) SLSQP(%) DE(%)

9-bus 96 0 22 35
14-bus 99 3 71 100
30-bus 98 5 13 17

SLSQP With Adversarial Training
0 Accuracy(%) Bad Data(%) Attack Success(%)
9-bus 91.7 9.7 3
14-bus 93.3 13.5 5
30-bus 92.4 14.9 2
DE With Adversarial Training
0 Accuracy(%) Bad Data(%) Attack Success(%)
9-bus 85.2 30.2 3
14-bus 86.8 34.5 7
30-bus 80.3 40.2 1
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2.9 Conclusions

In this work, we performed the first study of the adversarial FDI attack against the ANN-
based AC state estimation. We first created target models that are sufficiently strong. Then
we formulated the adversarial FDI attack into an optimization problem, followed by extensive
evaluations under two attack scenarios on IEEE 9-bus, 14-bus and 30-bus test systems, based
on the adaption of DE and SLSQP algorithms aiming to find attack vectors. In any k-meter
attack, our results showed that the DE attack achieves a high success rate (more than 80% in all
simulated cases), despite having a small number of compromised meters and low false injection
strength. The DE outperforms SLSQP in the specific k-meter attack. Our findings also showed
the potential of adversarial training in defending against these attacks, and such an approach

can be further explored to improve the ANN-based AC state estimation model robustness.
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Chapter 3

Assisting Backdoor Federated Learning with Whole Population Knowledge Alignment

3.1 Introduction

Federated learning (FL) [55, 77] is a distributed learning system, which allows multiple clients
to collaboratively train a high accuracy model by taking advantage of a wide range of data from
physically separated clients without sharing their locally collected data. Currently, FL applica-
tions thrive in next-word and emoji prediction on smartphones [22, 123, 97, 41], environmental
monitoring [40], and aiding in medical diagnosis among hospitals [122, 15].

Due to the distributed nature and inherent data heterogeneity (i.e., data being non-i.i.d.)
across FL clients, the local model updates uploaded by clients may be different from others. As
a result, it is assumed that the central server cannot validate the legitimacy of received model
updates, which provides a venue for new attacks. Backdoor is one of the data poisoning attacks
[9], in which an adversary corrupts the global model such that the new global model reaches a
high accuracy on the FLL main task, as well as on a backdoor subtask activated by some trigger,
and such a high backdoor subtask accuracy remains for multiple training rounds. Backdoor
attacks have been shown to be unavoidable and computationally difficult to detect [113].

Although backdoor FL attacks are powerful, they have stringent requirements on the tim-
ing of attack, which are often difficult to meet in practice. To make our argument more con-
crete, in this work, we will focus on single-shot backdoor attacks [9], due to their benefits of
stealthiness, simplicity in implementation, and the fact that the more general multi-shot back-
door attacks can be built upon them incrementally. Ideally, a single-shot backdoor attack, in
which the adversary injects the designated backdoor trigger only once (so as to keep the attack

stealthy), can achieve its goal with high accuracy by injecting the backdoor subtask when the

41



FL model is close to convergence. However, in practice, the attacker cannot always have the
luxury of controlling injection time because clients in each FL training round are randomly
selected. In fact, a backdoor subtask injected in the early stage of the training (before the FL
model converges) can only generate very weak backdoor effects due to the following two rea-
sons. (1) The strength of the injected backdoor model update will be severely diluted by the
local model updates from other clients in the same round after the aggregation at the server,
because the magnitude of the other clients’ local model updates is significant when the global
model is far from convergence. (2) The backdoor effect of the injected subtask vanishes quickly
in subsequent training rounds as the injected backdoor will be overwritten by newcoming nor-
mal model updates in those rounds. As a result, the earlier the backdoor is injected, the faster
the backdoor effect will diminish. In addition, the early injected backdoor is less stealthy as
the main-task accuracy might deteriorate due to the dilution effect and the scaling operation to
ensure the backdoor survives the aggregation at the server.

Realizing the stringent attack timing restriction of existing single-shot backdoor attacks,
in this work, we are interested in studying a new single-shot backdoor attack technique that
allows the backdoor subtask to be injected in the early stage of FL training while still achieving
a strong and sustaining backdoor effect, making the effect of the attack less dependent on
the timing of the attack, and hence making the attack more practical and applicable to general
applications. Our new attack technique is inspired by the latest research findings on FL privacy,
which demonstrate that although private client data is not directly revealed in FL, the shared
FL global model can unintentionally leak sensitive information about the data on which it was
trained [28, 34, 46, 79, 86]. This finding has motivated us to consider the following research
problem: does FL information leakage render a stronger backdoor attack in the early
stage of FL training? Our main insight is that the slow and unstable convergence of the
global model in FL is mainly caused by the weight divergence [122] of the local model updates
of different clients. This weight divergence is mainly decided by the difference in the label
distribution (henceforth referred to as the “distribution") and the difference in gradients between
a single client’s local data and the whole population’s data (i.e., the aggregation of all clients’

data). Therefore, reducing these differences will shrink the weight divergence and henceforth
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expedite FLL convergence. This will increase the strength and sustainability of an early-stage
backdoor subtask injection.

In this work, we propose a novel information leakage assisted two-phase FL back-
door attack, which enhances the effectiveness of FL early injected single-shot backdoor
attack. We assume that attacker-controlled clients can interact with FL training multiple times,
but they only have one chance to inject the backdoor. In our design, we do not directly
strengthen the backdoor attack. Instead, we design a preliminary phase for the subsequent
backdoor injection, where the attacker-controlled clients play the role of accomplices and reach
out the FL global model by uploading model updates that are beneficial to FL convergence, to
pave the way for the subsequent backdoor injection. Formally, the proposed backdoor attack
consists of two phases: a preliminary phase, in which the attacker-controlled clients help to
accelerate the convergence of the FL. model, and an attack phase, in which the backdoor attack
is launched. In the preliminary phase, attacker-controlled clients first perform a passive infer-
ence attack to get an estimate of the whole population distribution. Then, instead of training
on the original local data, they train on locally crafted datasets whose distributions are aligned
with the inferred whole population distribution, so that the weight divergence is reduced, and
the FL. model converges more quickly. Although the operations in the preliminary phase seem
legitimate, they help to improve the effectiveness and persistence of the backdoor by reducing
the dilution effect from other clients (as the magnitude of their local model updates decreases
more quickly).

When the expected FL. model accuracy is reached or the client that has the capability to
perform a backdoor attack is selected, the backdoor attack is launched by training on a locally
poisoned dataset and the backdoored local model updates are scaled up before submitting to
the FL server. Benefiting from the preliminary phase, the single-shot backdoor injected into
the resulting FLL model will be less likely to be diluted by model updates from other clients.
Therefore, the designed preliminary phase successfully overcomes the deficiencies of early
injected single-shot backdoor and significantly improves the strength and persistence of the
backdoor effect. Note that the proposed preliminary phase benefits the backdoor effectiveness

by improving the FL convergence, and hence reduces the dilution effect from other clients.
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And this preliminary phase is independent of the attack phase, therefore, can be combined with
any kind of backdoor attacks to enhance their backdoor performance.

To the best of our knowledge, we are the first in the literature to enhance the effectiveness
of FL backdoor attacks by utilizing the information leaked from the FL. model. Our contribu-

tions in this work are fourfold:

* We prove an upper bound for the intra-aggregation weight divergence between the FL
model and the centralized learning (CL) model and demonstrate that the weight diver-
gence is small. Thus, FL global model updates can be used to approximate CL model

updates.

* We propose a novel optimization-based whole population distribution inference attack
utilizing the above approximation and the linearity of the cross-entropy. Unlike the ex-
isting property inference attack, in which it can only generate binary property inference
results, our proposed inference attack produces precise quantitative property information

about the dataset.

* We propose a preliminary phase for the early injected single-shot backdoor attack, which
improves the attack effectiveness by reducing the dilution effect from local updates of
normal clients. Specifically, attacker-controlled clients use the inferred distribution to
craft auxiliary datasets using augmentation and downsampling techniques so that the
distribution of the auxiliary dataset is aligned with both the gradient and the inferred
global distribution. Training on the auxiliary dataset can facilitate the convergence of
the FL. model and reduce the magnitude of local model updates from normal clients, and

further boost the performance of the backdoor attack.

» Extensive experiments are conducted on the MNIST dataset under various data hetero-
geneity settings to evaluate the accuracy of the proposed whole population distribution
inference attack, the improvement of the convergence of the FL global model brought
about by the proposed preliminary phase, and the effectiveness of the proposed backdoor
attack. We also evaluate the proposed attack against two state-of-the-art defense mech-

anisms. The experimental results show that the proposed inference attack achieves high
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accuracy against FL in scenarios with and without defense mechanisms. The FL model
assisted by the preliminary phase has a faster convergence rate, especially in the early
training stage. The proposed backdoor outperforms existing backdoor attacks both in

success rate and longevity, even when defense mechanisms are in place.

The remainder of this chapter is structured as follows. We start by providing the back-
ground and related work in Section 3.2. We present the threat model and the attack design
philosophy in Section 3.3. Subsequently, the overview and detailed attack steps are presented
in Section 3.4. Finally, the experimental setup and results are presented in Sections 3.5 and 3.6,
respectively. We evaluate the robustness of the proposed backdoor attack against two defense
mechanisms in Section 3.7, and we conclude our work in Section 3.8.

Throughout this work, we use the following notation:

|| - || denotes the ¢5 norm.

* Dy and D denote the training data on the k-th client and the entire training data popula-

tion, respectively. And we have D = Uy, Dy,.

* ng and n denote the number of training samples in D, and D, respectively. And we have

n= Zf:l -

 w} and w’ denote the k-th local model weight and the global model weight in the 7-th

aggregation, respectively.

* Fi(wy; Dy) and F'(w; D) denote the loss function on the k-th client and the loss function

of a CL model, respectively.

* VL(wy; Dy) and V L(w; D) denote the loss gradients of the client k& and the loss gradients

of the CL model, respectively.

* p(y = c) is the proportion of the label ¢ in the training data, and we have 200:1 ply =

c)=1.
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3.2 Background and Related Work

3.2.1 Federated Learning

The whole population D = UN_ Dy, is allocated to N clients and each client maintains Dj.
Each client maintains a local model trained from the local training dataset. And a central server
maintains a global model by aggregating the local model updates from the participating client

in each training round. The objective of FL training is to minimize the loss:

F(w) == Y L(w;(z,y). (3.1)

| D
(z,y)eD

To achieve this goal, each client & optimizes their local model weights w; to minimize the
loss function F,(w) = ﬁ > (ewen, L(w; (z,y)). Here, we describe the FedAvg aggregation
method [77], which is perhaps the most widely used averaging scheme. FedAvg iteratively
performs the following three steps:

(1) Global model synchronization. In the 7-th aggregation, the central server randomly
selects K (K < N) from N clients and broadcasts the latest global model w” to the selected
clients: wg,o « wT.

(2) Local model training. Each client k£ updates its own local model w! by running an

SGD on the local dataset Dy, for ¢ steps. The 7-th step on client £ follows:
wy ™ = wl T =V FL (w7, (3.2)

where 7 is the local learning rate.
(3) Global model update. After performing local training for ¢ steps, the client transmits
the model update Aw?! = w,{’t — wZ’O back to the central server. The central server then updates

the global model by performing a weighted average on the local model updates sent from K

clients:
K

w' ™ w4 Z %Aw%, (3.3)

k=1

46



where ny, = |Dy| is the number of training data on the client k and n = 3", ny, is the total

number of training data used on the selected clients.

3.2.2 Information Leakage in FL

We mainly discuss the literature related to property inference attack. The property inference
attack was first proposed by Ateniese et al. [7] against Hidden Markov Models and Support
Vector Machines. The authors in [36] designed a property inference attack on fully connected
networks, in which the adversary trains a meta-classifier to classify the target classifier depend-
ing on whether it possesses the property of interest or not. A malicious user can infer attributes
that characterize the entire data class or a subset of data [79].

We also note that our whole population distribution inference attack is similar to that
of [115], where the authors analyzed the relationship between the number of data samples
of a specific label and the magnitude of the corresponding gradients. Our work differs from
their work from the following two perspectives: (1) their work draws a comparison between a
pair of labels and generates a binary output of which label possesses a larger number of data
samples, while our work is able to provide a precise quantitative distribution of all labels; (2)
to get a satisfying inference result of the whole distribution, their work has a high computation
complexity and needs to be performed multiple rounds, while in our work the distribution can

be inferred in one training round and requires less computation.

3.2.3 Backdoor Attacks against FL.

The backdoor attack is one of the data poisoning attacks whose goal is to misclassify inputs
with backdoor triggers as the target class, while not affecting the model accuracy on clean
data. The backdoor attack was first introduced in [9]. They also proposed train-and-scale and
constrain-and-scale techniques to maximize the attack impact while evading anomaly detec-
tion. The researchers in [113] introduced an edge-case backdoor that targets data on the tail of
the distribution. They also claimed that the backdoors against FL are unavoidable and compu-

tationally hard to detect. To make the backdoor stealthier, the scholars in [118] decomposed a
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centralized backdoor into parts, and each trigger is injected by a client. The distributed back-
door is more effective and persistent than the centralized backdoor. However, the distributed
backdoor is fully activated upon completion of injection of all distributed triggers. Addition-
ally, to survive the newcoming normal updates, the injection of local triggers must be finished
in a relatively short attack window. Given that the attacker cannot manipulate the timing of
selecting a compromised client to participate in the training, the above conditions are hardly

satisfied in practice.

3.2.4 Defenses against FL Backdoor Attacks

Defense against backdoor attacks falls mainly into two categories, robust aggregation and dif-
ferential privacy.

Robust aggregation. One approach from existing work focuses on building a robust
aggregation algorithm that estimates the most possible aggregation rather than directly taking
a weighted average. These robust aggregation, such as Foolsgold [35], Krum [11], Bulyan
[31], RFA [92] and trimmed mean [124] are designed based on the statistical characteristics of
model updates, and aim to identify and deemphasize possibly malicious model updates in the
aggregation. Most robust aggregations are built on an assumption of the i.i.d. data distribution
across the participating clients. However, this assumption is hardly met in practice. For the
FL with non-i.i.d. data among clients, robust aggregation algorithms could mis-identify the
non-i.i.d. but normal model updates as malicious or vice versa, and then their weight could be
reduced or raised in the aggregation, which degrades the FL. model accuracy. These approaches
are capable of minimizing the impact of malicious model updates to a certain level, but cannot
completely eliminate them [64].

Differential Privacy (DP). DP was originally designed to protect individual privacy. The
authors of [108] discovered that by adding noise, the model update could also reduce the effect
of malicious model updates. DP has been shown to be effective in mitigating backdoor attacks,
but at the cost of model accuracy. The authors of [85] evaluated the effectiveness of both local

DP and central DP in defending against backdoor attacks.
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3.3 Threat Model and Attack Design Philosophy

3.3.1 Threat Model

We consider the single-shot attack scenario, in which the attacker-controlled client has only
one chance to inject the backdoor. And we aim to improve the effectiveness and lifespan of the
backdoor injected in the early training stage. First, the attack should be kept stealthy, i.e., the
impact on the main task accuracy should be as small as possible. Second, the backdoor injected
in the early training stage should remain for a long period.

We assume that the attacker can compromise one or more clients and can interact with the
FL model multiple times. In addition to the attacker’s capabilities mentioned in [9], such as
local data poisoning, local training process control, we also assume that the attacker has the
capability of local label distribution adjustment, in which the attacker could use data augmen-
tation and sampling techniques to change the number of samples in each label. The ability to
adjust the label distribution may vary for different attackers. To augment the data, attackers
can obtain extra data samples from public datasets or use trivial techniques, such as random
rotation, random zoom, random crop, etc. For attackers with strong capabilities, they can syn-
thesize data samples from the current local dataset, and reconstruct data samples from the local
dataset and gradient leakage [46]. This assumption is practical, as the attacker can easily in-
tegrate the above operations into data prepossessing. It is also assumed that attackers can set
their own learning rate and local steps to maximize backdoor performance while minimizing

impact on the main learning task.

3.3.2  Attack Design Philosophy

Let w, denote the malicious client’s local model. The single-shot backdoor attack achieves its
malicious goal by trying to substitute the new global model w” with a backdoored local model

w! in Bq. 3.3. FL aggregation with a backdoored model update is as follows:

wi ™t — wt + Z %Awg + EAwa. (3.4)
o n
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The malicious model w, can only fully substitute the global model by scaling to v = =

and when the global model converges, i.e., Zk 4a %Aw,{ ~ 0. When the FL global model
converges, the newcoming client model updates are too small to overwrite the backdoor effect.
As a result, the injected backdoor can last a long period.

early in

We consider a C'-class classification FL problem with cross-entropy loss. The loss function

of a client k¥ computed on its local dataset Dy, is defined as:

c
F(w; D) = Y p(y = )Baep,py=cllog fe(a; wy))], (3.5

c=1

where pi(y = ¢) denotes the proportion of class ¢ in Dy, and f, is the probability that a training
sample = belongs to the c-th class.

The CL on the whole population serves as the upper bound of the FL. Due to the non-i.i.d.
data distribution among participating clients, and multiple SGDs are performed on the same
local dataset, the locally trained model in the FL scheme could introduce weight divergence,
which deteriorates the FL global model. And this contributes to the performance gap between
CL and FL. Thus, the weight divergence between the models in the CL and FL settings can be
used to characterize how good an FL model is.

Consider three models here, the local model wy, of the k-th client, the FL. global model
w, and the CL model w,.,, trained on D. Previous work [131, 120] has analyzed the weight
divergence of the FL. model w and the CL model w,., throughout the training process and
tried to catch what causes such a weight divergence. They proved that the weight divergence
between w and w,.,, throughout 7" global aggregations is bounded by two terms: (1) the sum
of the distribution distance between each client’s local data and the whole population; (2) the
weight divergence inherited from (7'—1)-th aggregation. And such a divergence is accumulated
over time and finally leads to a model accuracy degradation.

Inspired by their work, we are more interested in the intra-aggregation weight divergence,

i.e., the weight divergence between two aggregations between w,., and w, and w.., and wy.
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To remove the influence of previous aggregations, we let the CL model and client’s local syn-
chronize with the 7-th FL global model, w%? < w” and w,® + w”. And the CL model and
client’s local perform ¢ steps training on the whole population data, and their weights after 7
steps are:

Tr . T,r—1 Tr—1,
Ween = Weep - nvF(wcen ) )

C
= wli ™ =) p(y = ) VEseppy=cllog fe(z; wli )] (3.6)

c=1

Tr To—1 T7m—1,
Wy, = Wy —nVE(w, ™ Dy)

C
=wi ™ =0 Y ply = ) VEaep,jy—cllog folw;wy ). 3.7)

c=1

The weight divergence relationship among the three models can be visualized in Figure 3.1.

We have the following proposition.

Client k
T,0 T FL
WU W Tl oL
T,0 T k T2
WCEH - W Wk WkT’S
L ] . . WTst
T,1 k
wcen ® e, Tl
T2 ‘., wit
WCEH T’3
Ween WT’t

cen

Figure 3.1: Illustration of weight divergence relationship among an FL client’s local model, FL global
model, and CL model.

Proposition 1. Ar the T-th FL global aggregation, let the local model wy, and the CL model
on the entire population w.., synchronize with the FL global model w7, i.e., wz,o — w?, and
w0 < w”. And we have p(y = ¢) = Y1 pr(y = ¢), where p(y = ¢) and py(y = ¢) are
denoted as the proportion of the label c on D and Dy. Let each model train for t steps, in which
the global aggregation conducts. The model weight divergence between w and W.e,, and wy,

and We.,, after t training steps are bounded by the following two equations, respectively:
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™ = wegy |l

t

<n2 [HZZ—pk (v = O [VEsen, y=cllog(fe(wy ™ )] = VEsepyy—cllog(fe(wliz )] |

= c=1 k=1
3.8)

Tt
Hw T wcenH

<n2[uz p(y = &) = pily = )] VEseppy=llog(fe(wl ™ ]|

+ Hzpk<y=c> [VEqcpyjy=cllog fo(; wf ™)) = VE,epy—cllog(folas vz D[] 39)

c=1

The proof can be found in Appendices 5, and we have the following remarks.

Remark 1. The intra-aggregation weight divergence ||w? —w?, || is determined by the distance

cenl
between the gradient of the local model taken on Dy, k € [1, K| and the gradient of the CL
model taken on D. This gradient distance can be reduced by increasing the local data sample
size. The weight divergence is also an increasing function of the internal training steps t.

Therefore, increasing the number of local data samples or decreasing the internal training

steps could mitigate weight divergence.

Remark 2. The intra-aggregation weight divergence |[wl — wZ || is mainly due to two parts,
which are the distribution distance between Dy, and D, that is, >, (pu(y = ¢) — py = 0)),
and the gradient distance between the gradient calculated on D), and the gradient calculated

on D over classes, that is, [VE,cp,|y=c[log f(z; wi' ™) = VE,eppy—cllog(fe(; wZH]].

cen

According to Remark 2, the weight divergence ||w’' — wZ|| could be mitigated by re-
ducing the following two terms: (1) the difference between the data distribution of D;, and that
of D, implying the first term in the Eq. 3.9 is reduced; (2) the difference between the gradient
calculated on Dj and that calculated on D, which implies the second term in the Eq. 3.9 is
reduced.

As a result, a client in an FL setting could benefit from mimicking the distribution and

gradients of the whole population to achieve better convergence behavior (faster convergence
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or higher model accuracy). This finding is a double-edged sword. On the one hand, a benign
client can use it to alleviate weight divergence to facilitate FL convergence, as the data sharing
strategy proposed in [131]. On the other hand, the finding could also be taken advantage of by
an adversary. As will be shown in the next section, we propose a two-phase backdoor attack,
in which the above finding is utilized by an adversary to improve the FL global convergence
performance, and further enhance both the strength and persistence for the subsequent single-

shot backdoor injection.

3.4  Our Approach

In this section, leveraging the aforementioned insights, we present an overview of our proposed
two-phase backdoor attack. Then we describe the detailed workflow of the proposed backdoor

attack.

3.4.1 Overview

C Selection of the backdoor client. )

v

Two-Phase Backdoor Injection

Preliminary Phase Attack Phase

CCreate poisoned data Dpoimn. )
Infer the global data distribution p(y).

| |
I I
I |
| |
I I
I |
| |
| |
l l
| |
: Construct auxiliary dataset D, that is :
! aligned with p(y). |
| I
I |
| |
| I
I |
| |
| |
| |
| |

|

v ( Train on D, ;.- )
7 CScale the model updates by y.)
y

Train on D, and submit model updates to . o
Submit the malicious model
the server.
updates to the server.

Figure 3.2: The flow chart of the proposed two-phase backdoor attack.

| v

Our proposed two-phase backdoor attack, illustrated in Figure 3.2, consists of a prelim-
inary phase and an attack phase. The backdoor attack can be any kind of existing backdoor

attack. Our approach is different from existing backdoor attacks in the proposed preliminary
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phase before the attack. The goal of the preliminary phase is to expedite the FL. model conver-
gence such that the subsequent backdoor can be more effective and consistent. Specifically, the
attacker-controlled client first launches a passive whole population distribution inference attack
by analyzing their local model updates and the FL. global model update. To reduce weight di-
vergence and improve the convergence behavior of the FL model, the attacker-compromised
client then crafts the local training data by augmentation and downsampling such that the dis-
tribution py(y) aligns with the inferred whole population distribution p(y). This step reduces
the first term in Eq. 3.9, i.e., the distribution difference chzl(pk(y =c)—ply =0). A
dynamic sample size determination method is also utilized in the dataset crafting in order to
reduce the second term in Eq. 3.9, i.e., the gradient distance [VE,ep, |y—c[log f.(; wit™h] -

VE, epjy—clog(fe(x; whi™ )H . Instead of training on the original local dataset, attacker-compromised
clients train on the crafted datasets and submit the model updates to the central server. These

steps seem legitimate, but they benefit the subsequent injected backdoor by reducing the di-
lution effect from other client model updates. When the backdoor client is selected or the
expected accuracy is reached, the adversary injects the backdoor by training on a poisoned lo-

cal dataset and scales the malicious model updates by 7 to ensure that the injected backdoor
survives aggregation before being submitted to the central server.

Our proposed two-phase backdoor attack improves the performance of the early injected

backdoor because of the following features:

* We propose a passive whole population distribution inference attack that requires no

access to other clients’ local data samples nor their model updates.

* By crafting the local dataset, utilizing the inferred whole population distribution and sam-
pling techniques, we are able to reduce the FL. model weight divergence, which facilitates

the FLL. model convergence.

* By improving the convergence of the FL model, the backdoor global model is less diluted
by model updates from other clients, leading to a stronger and longer-lasting backdoor

effect.
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3.4.2 Attack Workflow
Preliminary phase: whole population distribution inference

Step 1. Approximation of the CL model updates. The attacker’s goal is to estimate the

whole population distribution p(y) in the following expression of the CL loss function gradient:

C
VF (Ween; D) = > p(y = )V Eacply=c[l0g fo(; ween)]. (3.10)

c=1

Therefore, p(y) can be calculated if the values of V E, ¢ pjy—c[log fo(2; Ween )] and V F (ween; D)
are known. Based on the findings in Remark 1, we approximate the CL model update by the

FL model update:

K t

Nk T—1

—Awg X AWeep, = VF ;D). 3.11
; n Wk w T]Z (wcen ) ( )

=1

The reasonability of the approximation is demonstrated by: (1) the bounded and small
intra-aggregation weight divergence between the CL model and the FL model. In Propo-
sition 1, we show that the intra-aggregation weight divergence between a CL model and a FL
model is bounded by the difference in the gradient of the local data and the whole popula-
tion. This gradient difference is usually caused by the difference in the number of samples
between the local data and the whole population. The adversary could refer to a public dataset
or use augmentation techniques to get a good estimate of the gradient of the whole population.
In addition, although the number of internal training epochs increases the bound, the number
of local training epochs in practice is relatively small, usually between 2 to 5, and therefore
their impact should be minor. As a result, the FL. model would not deviate much from the CL
model in one aggregation; (2) the accurate global distribution inferred from the approxi-
mation. Extensive experiments are conducted in Section 3.6.1 to verify that the approximation
produces accurate whole distribution inference results. The settings of these experiments are
comprehensive, as they cover both the balanced/imbalanced global distribution and the differ-

ent non-i.i.d.-ness among local data. The results under all settings show that the difference
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of the true distribution and the global distribution that is inferred from the approximation is
condensed and small.
Step 2. Decomposition of the model updates. Combining Eq. 3.10 and Eq. 3.11, we

have the following gradient expression:

K t C
Nng —
E ;Awk R AWeen =1 E E p(y = )V E,eppy=cllog fo(z;wl, ). (3.12)

k=1 =1 c=1

The model update of the compromised client a can be expressed as

t t C
Awe =1 VF(w] D) =1 Y paly = ¢)VEsep,py=cllog fo(z;w] )] (3.13)
T=1

T7=1 c=1

Normally, the gradient is directly calculated by the partial derivative of the loss, e.g.,
V Fi(wa; Dy) = %@’D“). Taking advantage of the linearity of cross-entropy loss, the gradi-
ent VI (w,, D,) can also be viewed as a weighted average over VE,cp,|yc[log fe(x;w,)]. If
the adversary gets a good estimate of V E,cpjy=c[log fe(%; Ween)], the global distribution p(y)
can be estimated by minimizing the difference between Eq. 3.12 and Eq. 3.13.

Step 3. Estimation of the gradients. The difference between the gradients calculated
on D and D, is mainly caused by the difference in the size of the data sample. Typically, a
larger size of data samples would provide a less biased estimate. The adversary could obtain a
more accurate estimate of V E,¢pjy=c[log fe(x; ween)| by enlarging D, using public dataset or
data augmentation techniques. However, purely pursuing a large data sample size is not always
practical and effective, as some data augmentation methods are computationally expensive and
time-consuming, while others could generate similar samples, which could harm the estimation
accuracy. Therefore, we adopt a dynamic data size determination algorithm proposed in [16] to
determine when to stop the augmentation. The method evaluates the amount of augmentation
by measuring the directional distance between the gradient of the augmentation and the gradient
estimate. A scaler § € [0, 1], which indicates the cosine similarity between the gradient of
augmentation and the gradient estimate, is used to determine when to stop the augmentation.

A greater # indicates a more accurate estimate, meanwhile a greater amount of augmentation.
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Step 4. Optimization-based global distribution estimation. In the previous step, the
attacker gets a good estimate of V E,cpjy=c[logf.(x;a)] by augmenting D,, the inference of
whole population distribution p(y) can then be formulated as an optimization problem, which

seeks a p(y) that minimizes the difference of two losses in Eq. 3.12 and Eq. 3.13:

K t C
ply) = arg(rr)lin 1> %Awf =) 0y = )V E,ep,y—cllogfe(z; wl™ ]|
ply k=1

7=1c=1

C
s.t. Zp(y =c) =1, (3.14)
c=1

where Zle %Aw,{ is the FL global model update at the 7'-th aggregation and can be obtained
by taking the difference between the synchronizations of the FL global model (7" — 1) -th and
T -th.

Since the distribution p(y) is not differentiable, an evolution algorithm is used to solve
the above optimization. The evolution algorithm begins with a randomly initialized population
of p(y), namely, the “fathers”. Next, the individuals in the fathers go through mutation and
crossover operations with a certain probability to generate more diverse individuals, namely
the “children”. Then, “fathers” and “children” are evaluated by an objective value, in which
the individuals with better objective values will enter the next generation. Algorithm 2 and

Algorithm 3 detail the steps to solve optimization.

Algorithm 2 Whole population distribution inference by the evolution algorithm

Input: Number of classes C', population size S.
Output: An estimate of the whole population distribution p(y).
1. g=0.
2: Initialize the distribution population py, which consists of .S individuals. Each individual
Po.s satisfies Zle pos(y =c) = 1.
Compute the FL global model update Aw? .
Evaluate individuals in population pg by Algorithm 3.
while the termination criterion is not satisfied do
g=g+1
Create population q, by crossover and mutation of individuals from p,_;.
Evaluate each individual in p,_; in the children by Algorithm 3.
Select S best individuals to population p, from the populations p,_; and q,.
10: end while
11: Return the best individual in population p,,.

R N
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Algorithm 3 Evaluation of objective values.

Input: Number of classes C, internal training steps ¢, learning rate 7, the global model update
AwT, the label composition p(y) .
Output: The objective value defined in Eq. 3.14.
. The attacker synchronizes with the latest global model w!** + w?.
:forT=1:tdo
forc=1:Cdo
The attacker calculates the gradient component on class c:
V Esep,jy—cllog ful; wl ™))
end for
The model weight is updated by:

5
6

T T— C T—
7w, T =wy T = (Y = OV Erep,jy=cllog fe(w; wy ™).
8
9

bl A

. end for

. Return the objective value ||Aw? — Aw?l||, where Aw! = wlt — w10,

a a

Preliminary phase: auxiliary dataset construction

After the adversary gets the inference of the whole population distribution, instead of training
on the original local dataset, the compromised client trains on an auxiliary dataset, which is
crafted to align with the inferred global distribution.

The basic idea of auxiliary dataset construction is to augment the data in classes with
inadequate samples and downsample the data in classes with excessive samples based on the
inferred whole population distribution. Algorithm 4 describes the steps of auxiliary dataset
construction. In particular, the attacker first determines the total size of the auxiliary dataset.
The attacker then calculates the amount of data needed for each class by the size of the datset
and the inferred global distribution. As for the augmentation operation, the adversary with a
limited computation budget can use trivial techniques, such as random shift, random rotation,
random shear, and random zoom, while a strong adversary could utilize more advanced meth-
ods, such as data synthesis and data reconstruction. For the downsample operation, it randomly
samples from current data until the desired number of samples is reached. The auxiliary dataset

crafted in this way mitigates both terms in Eq. 3.9.

Attack phase: backdoor injection

The attacker-compromised clients perform training on the crafted auxiliary dataset when se-

lected in FL training until the malicious client capable of launching the backdoor attack is
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Algorithm 4 Auxiliary dataset construction.

Input: Auxiliary dataset size M, the inferred data distribution ]5( ), number of classes C, the
compromised dataset D,
Output: Auxiliary dataset D ;.
1: Calculate the data size of each class cby M. < M x p(y =¢) forc=1,...,C.
2: Calculate the data size of each class c of D, | D,|c|, where D,|c := {z|y : € D,,y = c}.

3: forc=1:Cdo

4: if |D,|c| < M. then

5: Augment |D,|c| to M..

6: else

7: Down-sample from D, |c, such that | D,|c| = M..
8: endif

9:  Auxiliary dataset Dy, < U, D,|c.

10: end for

11: Shuffle dataset D,,,,.
12: Return D,,;.

selected. The backdoor client first poisons its local data D, by adding backdoor triggers to a
subset of D,, and changes their labels to a target one to form a poison data subset Dp,;s.,. The
rest of the data is kept clean and is denoted as D..,. The attacker then performs local training
on Dpoison U Dejeqn aiming to maximize the accuracy on both the main task and the backdoor

task.

U)Z = arg min[Fa(wa; Dclean) + Fa<wa; Dpoison)]-

Wq

After local training, the attacker scales the model updates by a parameter v = -~ ~ K to
ensure that the backdoor model survives the aggregation and ideally replaces the global model.
The attacker could also use constrain-and-scale or train-and-scale to improve its persistence

and evade anomaly detection mechanisms.

3.4.3 Coordination of Multiple Attacker-Controlled Clients

The above presentation of the attack process is based on a single attacker-controlled client, but
it can easily be extended to the scenario where the attacker controls multiple clients. The whole
population distribution inference attack can be performed by any of the compromised clients.

The inferred global distribution is then shared with other attacker-controlled clients, and each
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of them constructs and trains on the auxiliary dataset locally. The use of multiple malicious

clients can further improve the accuracy of the FL. model.

3.5 Experimental Setup

3.5.1 Dataset

We evaluate our proposed method on the handwritten digit recognition data set, MNIST [60].
The dataset contains 60,000 training data samples and 10,000 testing data samples. Each data

sample is a square 28 x 28 pixel image of hand-written single digit between 0 and 9.

3.5.2 Evaluation Metrics

1. Accuracy of whole population distribution inference attack. We measure its accuracy
by the /5 distance of the inferred whole population distribution p and the true whole pop-
ulation distribution pgopar, 1-€., ||P — Pgiovat||» referred to as “inferred-to-true”. A smaller

distance indicates a more accurate inference result. And we also evaluate the ¢ distance

of the original distribution on &-th client p;, and pgopa, 1.€., , referred to as

Pk — Pglobal
“original-to-true”. The difference between such two distances is positively related to the

amount of weight divergence can be reduced by whole population distribution alignment.

2. Main task FL model accuracy gain by whole population distribution alignment. We
measure the FLL global model accuracy as a function of training epochs for regular FL
(clients train on the original datasets) and the FL assisted by whole population knowledge
(clients train in crafted local datasets that align with the gradients and distribution of the

whole population).

3. Main task FL model accuracy in presence of backdoor attack. We also present the
accuracy of the main task when the backdoor attack is in place. As mentioned previously,
the main task might deteriorate due to the scaling operation and the dilution from the
normal model updates, especially when they are large in early training stage. The server
could discard the model updates if an unexpected leap or drop in the main task accuracy

is observed.
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4. Backdoor attack success rate and longevity. Given a classifier f(-), the backdoor attack
accuracy is defined as the portion of samples in the backdoor samples that are predicted
as the target label y; by the classifier:

eD oison - =
Ay = {|z € D, fl@) = yd|

‘ Dpoison ‘

The test data are constructed by adding the backdoor triggers to the original test data
samples. And to avoid the influence of the original data of the target label, we remove
the data of the target label in the test data. We plot the backdoor success rate of 20 global

epochs since the injection to assess their longevity.

3.5.3 FL System Setting

We implement the FL and the proposed two-phase backdoor attack using the PyTorch frame-
work. We conduct our experiments on Google Colab Pro (CPU: Intel(R) Xeon(R) CPU @
2.20GHz; RAM: 13 GB; GPU: Tesla P100-PCIE-16GB with CUDA 11.2).

The dataset is allocated to 100 clients. In each global model aggregation, 10 clients are
randomly selected to participate in FL training. Each client maintains a local model consisting
of two convolutional layers and two fully connected layers. We build four distributed MNIST
datasets (Table 3.1) to cover both the balanced/imbalanced whole population and different non-
i.i.d.-ness among clients’ local data. The global imbalance is simulated by randomly sampling
50% — 100% for each class from the original dataset. And we use the Dirichlet distribution
[82] with a hyper-parameter « to generate different data distributions among clients, where a

smaller «v indicates a greater non-i.i.d.-ness.

Table 3.1: MNIST dataset settings.

Settings Whole population Local distribution

1 balanced non-i.i.d., o =1
2 balanced non-i.id., o« = 0.1
3 imbalanced non-i.id., o« =1
4 imbalanced non-i.i.d., o = 0.1
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Preliminary phase

The clients are randomly selected to participate in a training round, with a certain fraction of
clients training on D,,,, which aligns with the whole population by Algorithm 4. The FL
model is trained with full-batch gradient descent with internal epoch ¢ = 1 and learning rate
n=0.1.

As specified in Section 3.6, the adversary has the capability of augmenting the local dataset
by augmentation techniques or accessing public datasets. In our experiment, the adversary
is equipped with trivial augmentation methods. We also assume that the attacker holds 1%
of the MNIST dataset, from which the attacker can draw data samples and complement the
auxiliary dataset. In the dynamic data size determination algorithm that determines when to
stop augmentation, we set # = 0.8, which means that the augmentation operation stops when
the cosine similarity between the gradient of augmentation and the gradient estimate reaches
0.8. To avoid the influence of the size of D,,,., we set the size of D, to be the same as that
of the original dataset. The fractions of clients controlled by the attacker are chosen to be 5%,
10% and 20% of the total number of clients, denoted as “ours_5", “ours_10" and “ours_20",

respectively. And they are collectively referred to as “ours”.

Attack phase

We use pixel-pattern backdoors, as the same as those in [118, 9]. We set the 4 x 4 pixels in the
upper left corner of the image to white (pixel value 0) and swap the label with the target label
"0". The ratio between the size of the backdoor trigger and the size of the data sample is 2%.
The performance of the proposed backdoor (both the main task accuracy and the backdoor
success rate) is evaluated on an FL with mini-batch gradient descent with a batch size of 128.
The backdoor client poisons 40 of 128 data samples in each mini-batch and locally trains for
poison epochs of 10 with a poison learning rate of 0.05. The global learning rate is the same as

the local learning rate 7 = 0.1. The scaling factor is v = K = 10.
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3.6 Experimental Results

3.6.1 Accuracy of the Whole Population Distribution Inference

The global distribution inference attack is launched at every epoch of the first 30 epochs. We
present the box plot of ||pr — Pyiobar|| (referred to as “original-to-true") and ||p — pgiopat|| (re-
ferred to as “inferred-to-true") in Fig. 3.3. In all four settings, compared to “original-to-true",
“inferred-to-true" is significantly smaller and more condensed, indicating that the proposed
whole population distribution inference attack achieves high accuracy. Furthermore, our pro-
posed inference attack is equally accurate in both balanced and imbalanced whole population

distribution settings (setting 1 vs. setting 2 and setting 3 vs. setting 4).
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Figure 3.3: Box plot of ||pr, — pgiopat|| (‘original-to-true”) and ||p — pgiopai|| (“inferred-to-true”).

We also plot the “inferred-to-true” as a function of training epochs (shown in Fig. 3.4).
The FL model begins to converge at epoch 20, so our inference attack window covers differ-
ent convergence stages of the training process. The results show that the inference results are
stationary along the training process, which means that inferring at any training stage does not

affect the inference accuracy. The fluctuations presented in Fig. 3.4 are due to the randomness
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of the local distributions in the selected clients in each FL training round. Especially, the fluc-
tuation becomes more noticeable when clients’ local distributions are more non-i.i.d. (Settings
2 and 4). To further reduce such fluctuations and improve the accuracy of the inference, the
adversary could further refine the inference result by performing statistical analysis on multiple

inference results, such as averaging or clustering.
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