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Abstract

The rapid development of various emerging applications, such as machine learning,

virtual reality, and internet-of-things (IoT) brought massive data traffic. Next generation

(6G) wireless networks are expected to support extremely high data rates and a wide variety

of applications. To fulfill the requirement of 6G, enabling technologies such as intelligent

reflecting surface (IRS) and machine learning have been proposed. In this dissertation,

we explore the critical resource allocation problems in 6G wireless networks with the two

enabling technologies.

The first part of the dissertation focuses on wireless resource allocation in IRS-assisted

networks. Two examples are explored. In the first example, we studied a fairness-aware

resource allocation in a rate splitting (RS) network assisted by IRS. Joint active beamforming

at the BS and passive beamforming at the IRS design is proposed so that the minimum user

rate can be maximized. In the second example, an IRS-assisted federated learning system was

studied. An efficient resource allocation algorithm based on optimization theory is proposed

to jointly configure the communication and computing parameters to minimize the system

energy consumption.

The second part of this dissertation investigates resource allocation problems for wireless

networks with machine learning via two examples. In the first example, the energy efficiency

of a device-to-device (D2D) network is investigated. A deep learning approach is proposed to

allocate the power resources to maximize the sum rate of all devices. In the second example,

we studied a downlink resource block allocation problem in a radio access network (RAN)

via deep reinforcement learning (DRL).

Our results suggest that IRS has great potential in improving the system network perfor-

mance. Optimization methods still play vital roles in resource allocation for next-generation

ii



wireless networks. Meanwhile, machine learning approaches would be indispensable tools

to address some challenges that the optimization methods could not handle. At the end of

this dissertation, we present a workflow to address the general wireless resource allocation

problems. Future research directions are also given.
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Chapter 1

Introduction

1.1 Evolving Towards 6G Communication

Wireless communication originates from Marconi’s pioneering demonstration of teleg-

raphy in the 19th century and was theoretically supported by Information theory proposed

by Shannon in the year 1948 [1]. Since the 1980s, the continuous development of informa-

tion and communication technology has played important roles in improving the wireless

communication performance. As shown in Figure 1.1, in 1979, the voice communication was

supported by 1G analog wireless network, which was then replaced by digital communication

in 2G in the year 1991. In 1998, 3G technology (CDMA) provides a way to support mobile

data services. In 4G long term evolution (LTE) network in 2008, multiple input multiple

output (MIMO) architecture together with orthogonal frequency multiple access (OFDM)

were applied to achieve a higher spectrum efficiency. We are now at the stage where 5G

technology is being deployed commercially.

Compared with 4G wireless communication, 5G technology get a 1000 times data rate

increase, a round trip delay less than 1ms and a 5∼15 times increase in terms of spec-

trum efficiency [2]. The 5G system include three major communication scenarios: en-

hanced mobile broadband (eMBB), massive machine type communication (mMTC), and

ultra-reliable and low latency communications (uRLLC). Various technologies such as mil-

limeter wave (mmWave), massive multiple-input multiple-output (MIMO) and ultra-dense

network (UDN) have been proposed to achieve the requirement of 5G communication [3].

However, 5G will not meet all the requirements of future communication in 2030s.

Upcoming technologies such as artificial intelligence (AI), virtual reality (VR) and internet of

everything (IoE) may require ultra-high data rates and reliability, and low latency. Existing
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Figure 1.1: The development trend of wireless communication
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Figure 1.2: Applications of next-generation wireless networks

5G’s eMBB, mMTC and uRLLC may not satisfy the future various applications as shown

in Fig 1.2. Some fundamental issues such as higher system capacity (100Gbps), higher

spectrum efficiency, lower latency (less than 0.1ms), full coverage (100%) and improved

quality of service (QoS) need to be addressed. For example, a user who wears a VR glass

to play immersive games will demand an ultra-high data rates (at least 25Mbit/s) with low

latency (less than 20ms). Autonomous driving in future would require extensive connectivity,

high throughput, high reliability, and low latency.

6G communication, with the full support of machine learning and enabling communi-

cation technologies such as intelligent reflecting surface (IRS), multiple access technology,

unmanned aerial vehicles, cell-free communication, integrated sensing and communication,

wireless optical technology and terahertz communication have been proposed to fulfill the

future communication demands of a fully connected and intelligent digital world.

A vision of 6G communication is shown in Figure 1.3 [4]. First, it can be seen that 6G

wireless communication will be a space-air-ground-sea integrated network which consists of
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Figure 1.3: A vision of 6G communication

satellite, unmanned arial vehicle (UAV), ground communication and maritime communica-

tion. These technologies will provide a full global coverage. Second, past generation wireless

networks utilize micro-wave communication, whose resources are fully used. 6G wireless

communication will explore all spectra, including sub-6GHz, mmwave, Terahertz (THz) and

optical (visible light) frequency bands. Furthermore, it is envisioned that machine learning

will provide intelligence for wireless networks. The explosive increase of wireless devices

brings about huge dataset resources. Leveraging machine learning and big data, 6G will

enable more applications such as smart city/home/healthcare. Finally, 6G communication

will promise strong security for both physical layer and network layer.

Discussions for 6G communication is still ongoing within the wireless community. Sev-

eral research papers have investigated the vision of 6G wireless communication. For exam-

ple, [5, 6] focuses on the role of machine learning plays in 6G wireless communication. [7]

described the challenges and potentials of terahertz (THz) communication in the develop-

ment of 6G communication. [8] identifies future research directions for intelligent reflecting

surface (IRS) assisted communication, with an envision that IRS will play critical roles in

6G like that of massive MIMO plays in 5G. [9] suggested that 6G will be human centric. The

security, secrecy and privacy would become key features. [4, 10] provides a comprehensive

survey of recent advances and future trends in 6G communication. The vision, enabling

technologies and new paradigm shifts in 6G are presented in [11].
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5G is being deployed commercially now while countries have already started its research

in 6G [12]. China started its research into 6G in 2018 and plan to launch it around 2029.

China launched a satellite to test THz transmission in 2020. The US also started 6G research

in 2018 to open the higher frequency spectrum for experiment use. Companies like Apple,

AT&T and Google are on board in the Next G Alliance. The European Union launched a

three-year research project on the basic 6G technologies in 2017. Finland started 6Genesis

project for 6G networks, aiming to develop and implement key enabling technologies in 2018.

Meanwhile, German’s Next Generation Mobile Networks Alliance launched a 6G research

project in 2020. South Korea is investing 11.7 billion dollars into developing a digital economy

that includes 6G with companies such as LG, Samsung, and SK Telecom.

1.2 Key 6G Communication Technologies

To achieve the target 6G performance, enabling technologies including visible light

communication, THZ communication, cell-free massive MIMO, space-air-ground-sea inte-

grated network, holographic radio communication, intelligent reflecting surface (IRS), ma-

chine learning, etc., will be used in 6G communication networks. In this section, we will

mainly introduce IRS and machine learning, which have been regarded as the two of the

paradigm-shifting and revolutionary candidate technologies in 6G.

1.2.1 Intelligent Reflecting Surface

Ultra-dense network (UDN) and massive MIMO have been regarded as key technologies

in 5G networks to improve the system spectrum efficiency. However, they also bring the

huge hardware cost and energy consumption. To improve the performance, the concept of

an intelligent information network with controllable channel is proposed in 6G. IRS has been

regarded as an enabling technology to reconfigure the radio signal propagation in wireless

links [13–15]. It is a promising enabler for smart wireless communication for B5G/6G wireless

systems.
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Generally, IRS is a planar antennas array that consists of a large number of passive

reflecting elements. Each element can intelligently reconfigure the amplitude and phase of

the incident signals. As a result, the signal propagation channel can be smartly coordinated

to achieve a desired distribution. An IRS structure is shown in Figure [?]. As can be seen,

the IRS consists of three layers and a controller chip. The first (outer) layer is composed of

a large number of tunable elements, which is printed on a dielectric substrate to manipulate

the incident signals. The second layer, a copper plate is deployed in the middle to reduce the

signal energy leakage. The third layer is a control circuit board, which can excite and modify

the amplitudes/phase of the reflecting elements. The control circuit board is controlled by a

controller chip, which is implemented by a field-programmable gate array (FPGA). The base

station (BS) can communicate with the IRS controller chip through wired/wireless links.

There are three ways to control the IRS reflection, namely, 1) mechanical actuation, 2)

functional materials, and 3) electronic devices. The first approach uses mechanical rotation

and translation to control the reflecting elements. The second approach uses liquid crystal

and graphene. In practice, the third approach which uses positive-intrinsic-negative (PIN)

diodes and field-effect transistors (FETs) is the most widely used method due to its fast

response time and relatively low hardware cost and energy consumption. The PIN diode

can switch to on and off state with different biasing voltages. Moreover, a typical channel

coherence time is on the orders of millisecond (ms). As a comparison, the diode switching

time is on the order of microsecond (µs), hence, the IRS can be well deployed for varying

channels. Besides the phase control, it is even more cost-effective for amplitude adjustment,

which can be achieved by load resistance adjustment.

Due to its flexibility in deployment, low implementation cost and low power consump-

tion, IRS is expected to play vital roles in performance optimization in 6G wireless networks.

There are reveral research on this topic. IRS reflection modeling and hardware design was

studied [16]. Later, this research area has been explored in terms of theoretical IRS signal
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Figure 1.4: The structure of IRS

and channel modeling [14], practical IRS beamforming design [17], and prototype deploy-

ment [18]. The beamforming design includes both passive beamforming at the IRS and active

beamforming at the transmitter, which is optimized based on different objectives, such as

power minimization [17], rate maximization [19], energy efficiency maximization [20], etc.

Recently, IRS has been investigated for physical layer security [21], simultaneous power and

energy transfer (SWIFT) [22], mobile edge computing [23], etc. The tutorial [14] covers an

overview of IRS technology, including its applications in next generation wireless communi-

cation, hardware architecture as well as the future challenges.

1.2.2 Machine Learning

Intelligence will be the fundamental characteristics in 6G wireless networks. From 1G

to 4G communication, there was no use of AI for communication. 5G involves very limited

AI. Moving forward, 6G communication will be fully supported by AI for communication.

The adoption of machine learning and AI makes it possible to create an intelligent wireless

network. Machine learning has made breakthrough in sensing, mining, and prediction, which

can all contribute to enhancing the performance of 6G wireless networks [24].
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Current wireless communication technology heavily relies on mathematical models that

define the system structure. Such models are based on some assumptions, which may not

be accurate enough. Moreover, in some cases, there may be no mathematical models for the

communication system. Conventional methods may not be able to meet the requirement of

6G wireless communications. On the other hand, the explosive increase of wireless devices

brings about huge dataset resources, which is considered as an enabler for machine learning.

Advancement in computing capacity, e.g., GPU, also makes it possible to execute training

algorithms at a fast speed. Motivated by this, machine learning has been regarded as another

a key technology in 6G.

Generally, machine learning can be categorized into deep learning and reinforcement

learning (RL) based on how the model is trained. In terms of deep learning, it is essentially

an autonomous system where data is used to find a pattern or make predictions about the

data. For example, Apple’s Face ID trains an algorithm by scanning our face. Each time we

log in with Face ID, the neural engine performs analysis to predict whether it is us or not

with the captured face data points. Based on whether deep learning requires labeled data in

the training process, deep learning can be further categorized into supervised deep learning

and unsupervised deep learning, as shown in table 1.1:

• Supervised deep learning: supervised learning uses a set of labeled samples to learn

a mapping between the input and output spaces. Depending on whether the output

is continuous or not, supervised learning can be categorized as regression and classi-

fication. Deep neural network (DNN), convolutional neural network (CNN), recurrent

neural network (RNN), naive Bayesian (NB), decision tree (DT), and support vector

regression are typical techniques in supervised deep learning.

• Unsupervised deep learning: Unsupervised learning focuses on classifying unlabeled

samples into different clusters. It is mainly used for data dimension reduction in the

continuous cases or clustering in the discrete cases. Restricted Boltzmann machine
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Table 1.1: Supervised vs. Unsupervised Learning

Supervised learning Unsupervised learning

Training data labeled unlabeled
Discrete case classification clustering
Continuous case regression dimensionality reduction
Accuracy of results high less accurate
Number of classes known not known

(RBM), auto-encoder (AE), Gaussian mixture model (GMM), principal component

analysis (PCA), and k-means clustering are usually used in unsupervised deep learning.

Reinforcement learning is an autonomous system that learns decision making via trial

and error. An agent is trained to learn to make decisions from the interactions with the

environment. It is like learning to ride a bike where people fall off or make too heavy moves,

but the feedback of what worked and what didn’t work overtime makes people learn to ride

eventually. In RL, the agent learns from the feedback whether the performed action would

result a better performance. Then the action that worked is reinforced and the algorithm is

modified to deliver the best results.

Both deep learning and RL are autonomous learning system. The difference is deep

learning learns a patten from a training set and the learned result is applied to a new

set, while RL learns to make decisions in a dynamic way based on the feedback from the

interactions with the environment. Note that deep learning and RL may work together. In

RL, a deep neural network can be used to learn the Q-table mapping, which results in deep

reinforcement learning (DRL).

The role of machine learning plays in 6G has been introduced in [24]. It was shown

that current wireless systems rely heavily on mathematical models of the communication

system. Such models may be inaccurate, and it may challenging to model some complex

wireless systems. Moreover, the optimization of wireless networks may be inefficient and fail
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in meeting the 6G requirement. Machine learning is expected to model the system and be a

promising tool to provide network intelligence.

Machine learning can be trained and deployed in different layers of wireless networks.

In physical layer, machine learning achieved great success in channel coding [25], positioning

[26], channel estimations [27] and beamforming [28]. In transport layer, machine learning

has shown satisfactory performances in congestion control [29] and network traffic prediction.

In application layer, machine learning has been shown to be able to enhance the network

performance management, UAV control [30] and virtual reality video transmission [31].

1.2.3 Other potential technologies

• Terahertz communication: Terahertz (THz) frequency band, which ranges from 0.1

to 10 THz, belongs to an unexplored radio spectrum. By increasing the transmission

frequency to a high band, the bandwidth can be increased. However, it would also

suffer from high path loss.

• Optical wireless technology: Optical wireless technology such as visible light commu-

nication (VLC) would be extensively used in 6G applications such as vehicle to vehicle

communication, indoor positioning, and VR transmission.

• Unmanned aerial vehicles: In unmanned aerial vehicles (UAVs) or drones assisted

communication, the BS can be installed in UAVs to extend the wireless connectivity.

Due to its flexibility in deployment, this technology has been recognized as one of

essential technologies for 6G communication.

• Cell-free massive MIMO: In 6G, the conventional cellular communication will shift to

cell-free communication. Cell-free massive MIMO, which combines the advantages of

distributed systems and massive MIMO, could solve the handover problem when users

move from one cell to another cell. The massive, distributed antennas could further

improve the energy-efficiency.
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• Space-air-ground-sea Integrated Networks: Space-air-ground-sea integrated networks

integrates satellite communication networks, aerial networks, marine communication

networks and terrestrial networks to provide a global coverage.

• Proactive caching and mobile edge computing: Storing the video content at the edge,

proactive caching could reduce the access delay and traffic offloading. Leveraging the

computing capability of the edge, mobile edge computing (MEC) makes it possible to

support computation-intensive applications with stringent delay requirement in 6G.

1.3 Resource Allocation for Next Generation Wireless Networks

1.3.1 Wireless Resource Allocation

Due to the wireless technology, we are embracing a rising popularity of mobile applica-

tions and services, such as 4K video streaming, virtual reality, UAV trajectory and indoor

localization. These applications usually have diverse requirements on the networks. For

example, to support the automatic vehicle driving, the communication latency should be

made as low as possible to ensure the safety of the passenger. Virtual reality video transmis-

sion put stringent requirements on both the network bandwidth and transmission latency

to ensure a smooth experience for the VR users. Wireless sensor networks powered with

battery requires a high system energy efficiency. As a result, Allocating the limited wireless

resources will be crucial in supporting these applications.

In practical communication system, resource allocation is a general concept, which in-

cludes channel access management, power allocation, bandwidth allocation, user association,

energy management, beamforming design, etc. The taxonomy of resource allocation is shown

in Figure 1.5. It can be categorized based on the following principles.

• The purposes: Depending on the type of resources, resource allocation can be catego-

rized based on the optimization parameters. For example, power allocation, beamform-

ing design, bandwidth allocation, user selection, resource block allocation, subcarrier
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allocation and so on. In some cases, the optimization problem may involve more than

one resources, for example, the joint power and bandwidth allocation.

• The network types: Resource allocation can be performed in diverse network types.

Different network types face different resource allocation challenges. For example, in

massive MIMO system, a proper beamforming design is needed to exploit the mul-

tiplexing gain provided by the antennas. In ultra-dense networks, it is important to

mitigate the interferences when allocating resources.

• The performance criteria: Based on different performance criteria, resource allocation

problems can be formulated differently. For example, in a battery-powered wireless

sensor network, the criteria can be chosen as maximizing the energy-efficiency (EE).

In a vehicle communication system, the communication latency should be minimized

for the sake of safety.

• The solving approaches: Resource allocation can be viewed as an optimization prob-

lem. The solving approach can be categorized. Conventional methods that relies on

mathematical models achieved great success in the design and optimization from 1G

to 5G. These methods include optimization method, game theory, graph theory, etc.

Machine learning method is another approach emerged recently to enhance the perfor-

mance of 6G [32–34]. It does not need the accurate modeling of the problem and does

not require complex iterations.

1.3.2 Optimization Methods

In this subsection, we will mainly introduce some of the basics of the most widely used

model-based approaches, convex optimization and non-convex optimization.
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Figure 1.5: Taxonomy for resource allocation problems

Convex Optimization

Convex optimization refers to the minimization of a convex objective function subject

to convex constraints. It is widely used in the design and optimization of wireless networks.

In convex optimization, if we can find a local optimal solution, then the solution would also

be global optimum. Before proceeding, we introduce some basic optimization concept.

• Convex sets: a set S ⊆ RN is said to be convex if for any two points x, y ∈ S, the line

segment joining the two points x and y also lies in S, i.e.,

λx+ (1− λ)y ∈ S, ∀λ ∈ [0, 1]. (1.1)

For example, the unit ball S = {x||x|2 ≤ 1} is a convex set since any line segment

joining any two points in the ball also lies in the ball. However, the surface of the ball

S = {x||x| = 1} is a non-convex set since any line segment joining the two points on

the surface of the ball will not be in the surface of the ball.
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• Convex function: let f : RN → R be a differentiable function with a continuous

gradient. A function f(x) is convex if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ [0, 1], (1.2)

Typical convex functions include |x|, x2, ||Hx||2,Hx where x,H,X are scalar/matrix/vector,

respectively. We say that f is concave if −f is convex. If f is convex, we can construct

a global under-estimator of f via the first-order Taylor series expansion

f(y) ≥ f(x) +∇f(x)T (y − x). (1.3)

Moreover, if a function is twice differentiable, then the Hessian matrix ∇2f(x) � 0.

• Convex optimization problems: a generic optimization problem has the following forms.

min f0(x) (1.4)

s.t. fi(x) ≤ 0, i = 1, 2, ...,m,

hj(x) = 0, j = 1, 2, ..., r,

x ∈ X .

where f0(x) is the objective function, fi is the inequality constraint and hj is the equal-

ity constraint. The optimization problem is said to be convex if 1) fi(i = 0, 1, 2, ...,m)

are convex functions; 2) hj are affine functions; and 3) X is convex. If a problem is

convex, efficient interior-point optimization algorithms can be used to find the global

optimal solution.

• Lagrangian duality and Karush-Kuhn-Tucker (KKT) condition: Consider the opti-

mization problem in (1.4) and introduce the dual variables λi, µj, then we get the
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Lagrangian function

L(x, λ, µ) = f0(x) +
m∑

i=1

λifi(x) +
r∑

j=1

µjhj(x). (1.5)

A necessary condition for x∗ to be a local optimal solution is that there exists some

(λ∗, µ∗) such that

fi(x
∗) ≤ 0,∀i = 1, 2, ...,m (1.6)

hj(x
∗) = 0,∀j = 1, 2, ..., r (1.7)

λ∗i ≥ 0,∀i = 1, 2, ...,m (1.8)

λ∗i fi(x
∗) = 0,∀i = 1, 2, ...,m (1.9)

∇f0(x∗) +
m∑

i=1

λ∗i∇fi(x∗) +
r∑

j=1

µj∇hj(x∗) = 0 (1.10)

Collectively, the condition (1.6)-(1.10) are called the KKT condition for optimality.

KKT conditions are necessary conditions for optimality, regardless of the convexity of

the problem. If the problem is convex, then the KKT conditions will be both necessary

and sufficient conditions.

• Semidefinite matrix and semidefinite programming (SDP): X ∈ CN×N is a positive

semidefinite if vHXv ≥ 0 for any v ∈ CN . If X is also a symmetric matrix, then we

denote X as X � 0. An semidefinite programming (SDP) problem has the form

min CX (1.11)

s.t. tr(AkX) = bk, k = 1, 2, ..., K. (1.12)

X � 0. (1.13)

where C,Xk and X are all symmetric matrices and bk is a scalar. SDP is convex

optimization which optimizes a linear objective function over the intersection of the
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cone of positive semidefinite matrices with an affine space. The interior point method

can be used to find the optimal solution.

Non-convex Optimization

An optimization problem is said to be nonconvex if the problem violates any one of the

conditions for a problem to be convex. Different from convex optimization which we have a

variety of tools to handle, non-convex optimization problems bring about more challenges.

Most of the non-convex optimization problems are NP-hard. In this subsection, we briefly

introduce a few approaches that are used in non-convex optimization.

• Convex relaxation approach: non-convexity usually comes along with NP-hardness,

which cannot be dealt with efficiently with existing mathematic tools. An efficient way

is to relax the non-convex problem to a convex one, and then apply familiar algorithmic

techniques. In general, these relaxations would bring a performance loss compared to

the optimal solution. However, if the problem possesses some structure, the relaxation

gap can be made quite small. In other words, solutions to the relaxed problem can

be optimal for the original non-convex optimization problem. A widely used convex

relaxation approach is successive convex approximate (SCA) method. Consider the

following non-convex optimization problem

min f0(x) (1.14)

s.t. fi(x) ≤ 0, i = 1, 2, ...,m,

x ∈ X .

where f0 is convex, however, fi(x) are nonvex. Since directly solving this problem

might be NP-hard, we want to solve it with a series of approximations f̃i(x) ≈ fi(x).

Specifically, if the approximations satisfy the following properties: 1) fi(x) ≤ f̃i(x) for

all x, 2) ∇fi(xt) = ∇f̃i(xt), and 3)fi(x
t) = f̃i(x

t). Here xt is the optimal solution
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of the approximated problem in the t-th iteration, then the solutions generated by

the series of the relaxed problem converge to the stationary solution of the original

problem. In other words, the solution will satisfy the KKT condition of the original

problem.

• Alternative optimization (AO): Alternative optimization is often used in settings where

the optimization problem has two or more optimization variables. The problem is not

jointly convex in terms of all the variables; however, it is convex in terms of each

variable when other variables are fixed. This marginal convexity makes it possible to

optimize the variables in an iterative way and find a stationary solution. The block

coordinate descent (BCD) algorithm is an alternative optimization method widely used

for the non-convex optimization problem with several block variables. In each iteration,

a single block of variables is optimized, while the remaining blocks are fixed. If the

problem is convex in terms of each block of variables, then each subproblem in each

iteration can be optimally solved.

1.3.3 Machine Learning Approaches

Deep Learning

The goal of resource allocation is to manage the available network resources to maximize

one or more network metrics. Formally speaking, denote the objective function as f and the

available resources as x ∈ X , then the resource management problem can be formulated as

maxx∈X f(x). (1.15)

The conventional model-based approaches only work for the scenario where the problem has

a tractable mathematical model. Moreover, even the model is accurate enough, it is still

inevitable to solve the optimization problem based on a given set of system parameters, such

as the realization of the channel, the users’ locations and the users’ demand. Once the system
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parameters changed, the optimization problem needs to be solved again. Such problems are

usually NP-hard; hence it is quite challenging to find efficient algorithms at all times in

highly dynamic channels when the users’ behavior and channel conditions are unpredictable.

This motivates us to endow the network with artificial intelligence (AI) capability and to

employ a machine learning approach where the system can dynamically determine the best

resource management policy in the changing environment [35,36].

The idea is that the resource allocation (1.15) can be regarded as a function mapping

problem where the network state s ∈ S is mapped to the resource management decision

policy x. The universal approximate theorem [37] shows that the mapping function f(x) can

be approximated arbitrarily well by a single fully connected layer with enough neurons and

sigmoidal activation functions. In some cases, it may be hard to obtain the labeled data,

unsupervised learning, on the other hand, which optimizes the objective function directly

can be used to achieve a satisfactory performance. Namely we can define the negative value

of the objective function f(x) as the loss function. A neural network is trained to minimize

the loss function, which is equivalent to maximize the objective function. Hence, an optimal

resource allocation scheme can be obtained.

Reinforcement Learning

In some scenarios, it may be hard to express the objective value function with a closed-

form expression. It this case, reinforcement learning (RL) shows great advantages in ad-

dressing this challenging task.

As shown in Figure1.6, an RL includes three part: the reward, the action and the state.

In terms of resource allocation, the Action can be defined as the resource allocation scheme

and the reward can be the objective function f(x). When a system state is observed, an

action is performed so that the agent can obtain a reward. The agent learns an optimal

resource allocation policy via the interaction with the environment.
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Figure 1.6: Reinforcement learning for resource allocation

Typical RL algorithms include the actor-critic algorithm, and the deep deterministic

policy gradient (DDPG) algorithm and the Q-learning algorithm. Let’s take Q-learning as

an example. In Q-learning, the set of possible states is denoted as S, and the set of discrete

actions is denoted as A. At each time instant t, the agent takes action at ∈ A when observing

the state st ∈ S and receives a reward rt. Then the system enters the next state st+1. The

Q-learning algorithm aims to learn an optimal policy π which maps state st to action at, so

that the reward over time can be maximized. A cumulative reward can be defined as

Rt =
∞∑

τ=0

γτ · rt+τ , (1.16)

where γ ∈ (0, 1] is a tradeoff scalar between the immediate and future rewards.

Under a policy π, the Q-function of the agent is defined as Qπ(s, a) = Eπ[Rt|st = s, at =

a]. Q-learning aims to maximize the Q-function by maintaining a Q-table. However, when the

state and action spaces become continuous and large, the problem becomes intractable. To

address this problem, DRL uses a deep neural network (DNN) to approximate the mapping

table. In time-varying and unpredictable networks, (D)RL has proved to be effective in

dealing with real-time decision-making problems.
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1.4 Overview of the Dissertation

In this dissertation, we aim to investigate resource allocation problems for next gener-

ation wireless networks. Specifically, two enabling technologies, IRS and machine learning

will be considered. In Chapter 2 and Chapter 3, we study resource allocation problems in

IRS-assisted networks. In Chapter 4 and Chapter 5, we investigated machine learning for

wireless resource allocation.

In Chapter 2, we considered the resource allocation problem in an IRS-assisted rate

splitting (RS) multiple access network. Attaining accurate channel state information (CSI)

for the IRS cascaded channel is particularly challenging. Imperfect CSI is a major bottleneck

to realize the substantial spectral efficiency benefit of IRS assisted networks. RS, a promising

multiple access technology, has been shown to be able to achieve an improved spectrum

efficiency and be robust to channel uncertainties. This chapter investigates the interplay

between IRS and RS by considering the resource allocation in an IRS-assisted RS system.

Joint active beamforming at the base station (BS) and the passive beamforming at the IRS

is considered to maximize the minimum user rate. Both theoretical results and numerical

results are provided to explain the interplay between RS and IRS.

In Chapter 3, we investigate the resource allocation problem in an IRS-assisted federated

learning system. An energy consumption minimization problem is formulated. An iterative

resource allocation algorithm is proposed to jointly configure the parameters with proven fast

convergence. Simulation results validate that the proposed resource allocation algorithm can

achieve significant energy savings, especially when the number of reflecting elements on the

IRS is large and when the IRS is properly configured.

In Chapter 4, we studied the power allocation problem in a large wireless network

with interfering links. A deep learning approach is proposed to manage the power control

so that the sum rate of all links can be maximized. Specifically, we developed a deep

learning based power control scheme, termed PowerNet, that uses the devices’ geographical

location information (GLI). Moreover, with a proper training, PowerNet transforms the
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on-line complexity to off-line training, and is amenable for real-time services. Different

from conventional deep neural network (DNN) that adopts fully connected structure, the

proposed PowerNet leverages convolutional layers to better capture the interference pattern

across different links in large wireless networks and utilizes deep residual learning to further

enhance its robustness. Simulation results demonstrate that PowerNet can achieve a near-

optimal performance at a remarkably high speed.

In Chapter 5, the channel resource block allocation problem in a downlink radio access

network (RAN) was investigated with machine learning approaches. In RAN, packet sched-

uler plays an important role in satisfying the stringent delay requirements of a variety of

applications. In this chapter, we show that optimal scheduling is a challenging combinato-

rial optimization problem, which is hard to solve within the channel coherence time with

conventional optimization methods. We incorporate deep reinforcement learning (DRL) into

the design of cellular packet scheduling. A delay-aware cellular traffic scheduling algorithm

is developed to map the observed system state to scheduling decision. Due to the huge state

space, a recurrent neural network (RNN) is utilized to approximate the optimal action-

policy function. Simulation results show that the DRL-based packet scheduling can achieve

the lowest average delay compared with conventional benchmarks.

The examples presented in this dissertation show the role of resource allocation plays in

the optimization of next generation wireless networks. The two represented 6G technologies,

IRS and machine learning are explored. We presented a workflow to deal with general

resource allocation problems based on these examples. We conclude the dissertation and

present future directions in chapter 6, .

Notation: The notation used in this paper is summarized as follows. Bold lower/upper

case letters denote vectors and matrices, respectively. CN (µ, σ2) denotes the circularly

symmetric complex Gaussian distribution with mean µ and variance σ2. For any scalar

a, |a| denotes its absolute value. For any vector a, ai is the i-th element. A∗, AT and

AH represent the conjugate, transpose, and conjugate transpose of matrix A, respectively.
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Diag(A) stands for a vector whose elements are extracted from the diagonal of matrix A.

A � 0 means that A is a positive semidefinite (PSD) matrix. Rank(A) denotes the rank

of matrix A. arg(·) returns the angle of a complex variable. Variables with star indicate

optimal solutions. We use x, x and X to denote scalar, vector and matrix, respectively.

xi,j denotes the (i, j)th element of X; xi is the ith element of x while x = (xi)
N
i=1, and

x−j = (xi)
N
i=1,i 6=j denotes all elements of x except xi.
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Chapter 2

Resource Allocation For IRS-assisted Rate Splitting networks

2.1 Introduction

Intelligent reflecting surface (IRS) has recently emerged as a promising technology for

6G wireless communications due to its ability of reconfiguring the propagation environ-

ment [14, 20, 38]. IRS is a programmable meta-surface equipped with multiple low-cost

programmable reflecting elements, whose amplitude and phase can be reconfigured. As

a result, reflection of incoming signals can be programmed to enhance the wireless chan-

nel. Compared with conventional technologies such as amplify-and-forward (AF), massive

multiple-input multiple-output (MIMO), and millimeter wave (mmWave) [39], IRS does not

require an increased number of active radio frequency (RF) chains. Both the energy con-

sumption and hardware cost are low. IRS has been regarded as a promising technology for

6G to make high spectrum efficient, yet cost-effective systems.

Meanwhile, rate splitting (RS) has been envisioned as a promising multiple access tech-

nology for beyond 5G wireless communication [40–42]. In RS, the message at the transmitter

is split into private part and common part. The common part shared a common codebook

known to all users, hence can be decoded by each user. The private part can be decoded

by removing the interference from the common part and treating interfering signals from

other users as noise. The flexibility to partially decode interference and partially treat the

remaining interference as noise makes RS a promising PHY-layer transmission paradigm

for non-orthogonal transmission, interference management and multiple access strategies in

6G [43]. RS has been shown in [44] to outperform and unify space division multiple ac-

cess (SDMA) and non-orthogonal multiple access (NOMA) under wide range of network

loads and user deployment. Recent research progress has shown that RS can achieve a
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spectrum efficiency improvement [44], robust to imperfect channel state information (CSI)

conditions [40,45] and outperforms NOMA and SDMA in secure downlink transmissions [46].

Inspired by the appealing advantages of IRS and RS, researchers have begun to study the

interplay of integrating the two infrastructure level techniques. The benefits of integrating

IRS and RS have been shown in terms of energy efficiency improvement [47, 48], max-min

fairness [46], spectrum efficiency improvement [49] and outage probabilities performance

improvement [50]. Apart from these benefits, [51] tries to answer the question “Why we

should consider the integration of RS and IRS” by showing that RS and IRS share similarities

and they complements each other. To be specific, both techniques perform beamforming.

IRS plays passive beamforming to assist the signal transmission while the RS plays active

beamforming at the BS to achieve better performance. A joint design should be considered

when integrating the two techniques together. Moreover, IRS comprises only nearly passive

elements. Accurate channel state information (CSI) for the IRS related channel is hard to

obtain [52] while RS has been shown to be robust to CSI uncertainties [53]. Therefore, RS

is a good fit to IRS systems with imperfect CSI [54].

Before the integration of RS and IRS, the joint design of IRS with other multiple access

technologies has already been studied. In SDMA, the base station (BS) employs different

linear precoding to serve different users simultaneously in the same frequency band for the

downlink/uplink transmissions. [13] shows that conventional zero-forcing (ZF) beamforming

is insufficient to null/suppress the interference from other users while an IRS can provide

spatial interference nulling/cancellation capability to solve this problem. Compared with

SDMA where interfering signals from other users are treated as noise, (power domain) NOMA

allows users to be at the same time-frequency resource block and distinguishes them in the

power domain. By doing so, NOMA has been regarded as a multiple access candidate

technology to improve the system spectrum efficiency for future wireless networks [55]. The

integration of IRS and NOMA has been shown to provide a cost-effective solution to achieve

high energy efficiency [56], spectrum efficiency [19,57] and increased coverage [58]. Another
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multiple access technology, RS, has been shown in [44] to outperform and unify SDMA

and NOMA under wide range of network loads and user deployment. Despite its appealing

advantages and good fit with IRS technology, few technical contributions have been presented

and the full possibilities of the integration of IRS and RS remain to be explored.

The RS beamforming design has been extensively studied. In [45], a sum rate maximiza-

tion beamforming was studied with the weighted minimum mean squared error (WMMSE)

method. In [59], a difference of convex functions (DC) programming was proposed to opti-

mize the precoder covariance matrix. Secure and robust RS beamforming design was studied

in [60] and [61] under imperfect CSI, respectively. Most of the previous works find a sub-

optimal solution with optimization techniques. Recently, a global optimal beamforming was

proposed in [62] to optimize the energy efficiency in an RS system with branch and bound

algorithm.

In terms of the joint beamforming design between IRS and RS, the authors in [63]

explored the joint optimization in an IRS-assisted RS system. The successive convex ap-

proximation and semidefinite programming (SDP) is used to maximize the minimum rate

of all users. This technique can return a rank-one solution for the IRS-assisted NOMA

system [64]. However, the rank-one condition may not be satisfied in an IRS-assisted RS

system [65]. [50] explores the on-off control for passive beamforming at the IRS. A closed-

form expression for the outage probability for the cell-edge users is derived. [48] performs

beamforming design to maximize the energy efficiency in an IRS-assisted RS system. [49]

performs beamforming and IRS scatter matrix design to maximize the system spectral ef-

ficiency [49]. However, the above works all assume perfect CSI setting, which is unrealistic

in practice. The mechanism and advantages of RS in combating the IRS related channel

uncertainties have not yet studied so far.

This chapter tries to develop novel and efficient beamforming algorithms for IRS-assisted

RS systems and explore the interplay between IRS and RS in the imperfect CSI case. The

main contribution of this chapter is summarized as follows:
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Figure 2.1: Three multiple access technologies assisted by IRS: (a) SDMA, (b) NOMA, and
(c) Rate splitting.

1. We formulate a max-min rate optimization problem to explore the interplay between

IRS and RS techniques. The joint beamforming design is considered under different

IRS configurations.

2. We employed the weighted mean squared error minimization (WMMSE) algorithm to

transform the non-convex max-min rate problem into a more tractable form. A block

coordination descent (BCD) algorithm is proposed to optimize the variables in an

alternative manner. The algorithm was extended to the imperfect CSI case to explore

the robustness of RS in combating the IRS-related channel uncertainties.

3. We provided analysis on the impact of the system parameters and explain the interplay

between RS and IRS. Numerical results shows that IRS-assisted RS is robust towards

channel uncertainties and outperforms the conventional multiple access technology

with/without IRS with respect to the max-min rate.

The remainder of this chapter is organized as follows. Section 2.2 presents the system

model and formulates the max-min rate maximization problem. Section 2.3 introduces a

rate-WMMSE relationship, based on which a BCD algorithm is developed for different IRS

setups. The algorithm is extended to the imperfect CSI case in Section 2.4. Section 2.5

presents an asymptotic analysis on the impact of system parameters and interprets the role

of IRS plays. Numerical results are provided in Section 2.6 to evaluate the effectiveness of

the proposed algorithms. Finally, Section 2.7 concludes this chapter.
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2.2 System Model and Problem Formulation

2.2.1 System Model

The differences between IRS-assisted RS, NOMA, and SDMA are illustrated in Fig. 2.1.

The figure shows a two-user system where the BS aims to deliver message s1 to User 1

and message s2 to User 2. In the SDMA system, each user treats the signal from other

users as interference, as shown in Fig. 2.1(a). In the NOMA system, User 1 completely

decodes the message from User 2 using successive interference cancellation (SIC), hence an

improved spectrum efficiency can be achieved. Unlike NOMA and SDMA, the RS system

shown in Fig. 2.1(c) generates messages using a public codebook known to all users. Each

user partially decodes the messages for other users and partially treats the messages from

other users as interference.

Specifically, we consider a downlink multi-user multiple-input-single-output (MISO)

communication system, which consists of a BS with M antennas, and K user equipments

(UEs) each with a single antenna, denoted by K = {1, 2, ..., K}. In RS, the message

Xk intended for UE k is split into a private part Xp,k and a common part Xc,k. The

private parts are encoded independently into Gaussian data symbol streams, denoted as

[s1, s2, ..., sk]
T ∈ CK×1. Meanwhile, the common parts of all UEs {Xc,1, Xc,2, ..., Xc,K} are

combined into a common message Xc, which is encoded into a common stream sc with a

public codebook known to all UEs. As a result, the combined symbols are grouped into a

vector s = [sc, s1, s2, ..., sK ]T ∈ C(K+1)×1. Each signal is assumed to have zero mean and

unit variance, i.e., E[ssH ] = IK+1. At the transmitter, the precoding matrix for all UEs is

w = [wc,w1,w2, ....,wK ], where wk ∈ CM×1 is the precoding matrix for UE k ∈ K for its

private data sk, and wc is the precoding matrix for the common message sc.

To assist signal transmission, an IRS with N reflecting elements is placed between the

UEs and the BS. The equivalent channels from the BS to UE k, from the IRS to UE k,

and from the BS to the IRS are denoted as hd,k ∈ CM×1, hr,k ∈ CN×1, and G ∈ CN×M ,
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respectively. The combined channel between the BS and UE k, hk ∈ CM×1, can be regarded

as a combination of the direct and the reflected channels, i.e.,

hk , hd,k + GHΘhr,k, (2.1)

where Θ ∈ CN×N is the IRS phase shift matrix. Note that the IRS reflection phase-shift

matrix Θ is a diagonal matrix with diagonal elements vi = βie
jθi , where θi ∈ [0, 2π] and

βi ∈ [0, 1], 1 ≤ i ≤ N . We extract the diagonal elements of Θ and let v = diag{Θ} ∈ CN×1.

Then we have hk = hd,k+HH
k v, where Hk = diag{hHr,k}G ∈ CN×M . The reflection matrix Θ

captures the effective phase shifts of all the reflecting elements on the IRS. The phase shift

unit can be adjusted by the IRS controller based on measured channel dynamics. Depending

on the amplitude and phase shift of the reflecting elements, we consider two types of IRS in

this chapter [64].

• IRS Φ1 : the reflecting elements can be adjusted with arbitrary continuous amplitudes

and phase, i.e., Φ1 = {βiejθi |θi ∈ [0, 2π], βi ∈ [0, 1]}.

• IRS Φ2: The reflection amplitude is fixed and only the phase can be adjusted. If the

phase can be adjusted continuously, the feasible set is expressed as Φ2 = {ejθi|θi ∈

[0, 2π]}. This setting can be extended to quantized phase shift.

The signal received for UE k can be expressed as

yk = hHk
∑

i∈M

wisi + nk, ∀k ∈ K, (2.2)

where M = K ∪ {c} denotes the combined set and nk ∼ CN (0, σ2
0) is the additive white

Gaussian noise at UE k.

At the receiver, each UE first decodes the common stream by treating all the private

streams as noise. Then its private message is decoded by removing the decoded common

stream with SIC. After the decoding process, the receiver recombines messages into original
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messages. The decoding SINR for the common message and the private message for UE k

at the receiver is given by

γc,k =
|hHk wc|2∑

i∈K |hHk wi|2 + σ2
0

, ∀k ∈ K, (2.3)

γp,k =
|hHk wk|2∑

i∈K,i 6=k |hHk wi|2 + σ2
0

, ∀k ∈ K. (2.4)

Under Gaussian signaling, the achievable rate of UE k in decoding the common rate and the

private rate are given by

rc,k = log2(1 + γc,k), Rp,k = log2(1 + γp,k). (2.5)

To ensure that all UEs can decode the common message stream, the actual rate of the

common message stream, denote as rc, is constrained by each rc,k, i.e.,

rc = min
k∈K

rc,k. (2.6)

According to the RS decoding principle, the actual data stream rc is shared by all UEs. By

denoting Rc,k as the general common rate allocated to UE k, we have

∑

k∈K

Rc,k ≤ rc, Rc,k ≥ 0. (2.7)

After removing the common data stream, each UE decodes its own private message. Finally,

the overall achievable data rate for UE k is given by

Rk = Rc,k +Rp,k, ∀k ∈ K. (2.8)
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2.2.2 Problem Formulation

In this chapter, we aim to maximize the minimum achievable rate of all UEs by jointly

performing active beamforming at the BS as well as passive beamforming at the IRS. Specif-

ically, the problem can be mathematically formulated as

max
w,Rc,Rp,v,s

s (2.9a)

s.t.
∑

k∈M

||wk||2 ≤ P (2.9b)

vi ∈ Φ, ∀i (2.9c)

Rp,k +Rc,k ≥ s (2.9d)

Rp,k ≤ log2(1 + γp,k), ∀k (2.9e)

∑

k∈K

Rc,k ≤ log2(1 + γc,k), ∀k, (2.9f)

where w = {wi|i ∈ M}, Rp = {Rp,k|k ∈ K}, Rc = {Rc,k|k ∈ K}, P is the total transmit

power at the BS, and Φ denotes one of the set in Φ1 or Φ2.

The formulated problem is non-convex optimization where the non-convexity is due to

Rp,k and Rc,k. As can be seen from (2.5), the expression of Rp,k involves the logarithmic

operation of γp,k, which is concave. The inner function γp,k, as shown in (2.3), involves a

quadratic-over-linear operation of w, which is convex. As a results, the combined expression

of Rp,k is neither concave nor convex. Moreover, the beamforming vector w is coupled with

the the IRS phase shift matrix Θ, which makes the problem more challenging.

2.3 Joint Beamforming Design with Perfect CSI

Problem (2.9) is a joint beamforming design problem, which is to find the active beam-

forming w at the BS as well as the passive beamforming Θ at the IRS. To deal with the

coupling between the passive beamforming and the active beamforming, we propose to use
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the alternative optimization (AO) framework, which optimizes the active beamforming and

the passive beamforming iteratively.

2.3.1 The SDR Approach

In [63–65], the SDR approach was proposed to address the RS beamforming design

problem. The idea is to use the successive convex approximate (SCA) technique, which

approximates the non-convex constraints with their convex surrogate function. Then the

SDR method is used to solve the problem with convex-relaxed constraints. For the simplicity

of analysis, we only introduce the active beamforming design at the BS when the IRS setting

is fixed. The optimization of the IRS phase elements can be conducted similarly.

We rewrite the left-hand-side of (2.9e) and (2.9f) as

Rp,k − log2

(
1 +

|hHk wk|2∑
i∈K,i 6=k |hHk wi|2 + σ2

0

)

= Rp,k − log2

(∑

i∈K

Tr
(
hkh

H
k Wi

)
+ σ2

0

)

︸ ︷︷ ︸
gCp,k(W)

+ log2

( ∑

i∈K,i 6=k

Tr
(
hkh

H
k Wi

)
+ σ2

0

)

︸ ︷︷ ︸
gC̄p,k(W)

, gp,k(W),

(2.10)

∑

k∈K

Rc,k − log2

(
1 +

|hHk wc|2∑
i∈K |hHk wi|2 + σ2

0

)

=
∑

k∈K

Rc,k − log2

(∑

i∈M

Tr
(
hkh

H
k Wi

)
+ σ2

0

)

︸ ︷︷ ︸
gCc,k(W)

+ log2

(∑

i∈K

Tr
(
hkh

H
k Wi

)
+ σ2

0

)

︸ ︷︷ ︸
gC̄c,k(W)

, gc,k(W),

(2.11)

where W = {Wi}i∈K is the set of covariance matrices and Wi = wiw
H
i . By mapping the

beamforming vector to a high dimensional matrix, the inner part of the logarithm function

becomes a linear function in terms of W. Moreover, it can be easily verified that gCp,k(W) and

30



gCc,k(W) are convex functions in terms of W, and gC̄p,k(W) and gC̄c,k(W) are concave functions

of W. As a result, gp,k(W) and gc,k(W) are neither concave nor convex. To facilitate

the SCA approach, we need to convexify the nonconvex part of gp,k(W) and gc,k(W). A

straightforward way is to convexify the concave functions gC̄p,k(W) and gC̄c,k(W) using the

following inequality log2(a) ≤ − log2(b) + ab−1
log(2)

[66, Proposition 1].

The SCA approach optimizes the beamforming vector successively. Suppose Wt is the

obtained solution in iteration t. Then in iteration (t + 1), gC̄p,k(W) and gC̄c,k(W) can be

convexified as

gC̄p,k(W) ≤ − log2

(
Γp,k(W

t)
)

+
Γp,k(W

t)
(∑

i∈K,i 6=k Tr
(
hkh

H
k Wi

)
+ σ2

0

)
− 1

log(2)
, ĝC̄p,k(W; Wt),

(2.12)

gC̄c,k(W) ≤ − log2

(
Γc,k(W

t)
)

+
Γc,k(W

t)
(∑

i∈K Tr
(
hkh

H
k Wi

)
+ σ2

0

)
− 1

log(2)
, ĝC̄c,k(W; Wt),

(2.13)

where Γp,k(W
t) =

(∑
i∈K,i 6=k Tr

(
hkh

H
k Wt

i

)
+ σ2

0

)−1

and Γc,k(W
t) =

(∑
i∈K Tr

(
hkh

H
k Wt

i

)
+ σ2

0

)−1
.

In iteration (t+ 1), we solve the following SDP problem.

max
W,s,Rc,Rp

s (2.14a)

s.t. Rp,k +Rc,k ≥ s (2.14b)

∑

k∈M

Tr(Wi) ≤ P (2.14c)

ĝp,k(W; Wt) ≤ 0,∀k ∈ K (2.14d)

ĝc,k(W; Wt) ≤ 0,∀k ∈ K (2.14e)

rank(Wi) = 1, ∀i ∈M (2.14f)

Wi � 0, ∀i ∈M, (2.14g)
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where ĝp,k(W; Wt) = ĝC̄p,k(W; Wt) + gCp,k(W) and ĝc,k(W; Wt) = ĝC̄c,k(W; Wt) + gCc,k(W).

Note that the last two constraints (2.14f) and (2.14g) ensure that Wi = wiw
H
i holds

true. Despite we construct the convex surrogate function, Problem (2.14) is still non-convex.

The non-convexity comes from the rank-one constraint (2.14f). SDR deals with this problem

by dropping the rank-one constraint and obtaining the solution to the SDP problem with

standard optimization tools. However, SDR may not provide the optimal rank-one solution

for the considered RS system.

Theorem 1. If W∗ is the optimal solution to Problem (2.14) without constraint (2.14f),

then Rank(Wk) ≤ 1, k ∈ K. However, the rank of Wc may be larger than one, which is

bounded as Rank(Wc) ≤ min{M,K}.

Proof. The proof is provided in Appendix A.1.

The rank of the private covariance matrix Wk always satisfy the rank-one constraint,

which means the beamforming vector wk can always be recovered uniquely from the co-

variance matrix with eigen-value decomposition [64]. However, the rank of the common

covariance matrix may not be one. In the worst case, the rank may be min{M,K}. When

recovering wc from Wc, there may be an energy loss. As a result, the performance could be

affected.

2.3.2 The BCD-based Approach for IRS: Φ1

Refs. [40, 42, 45] have proposed a weighted minimum mean square error (WMMSE)

approach to solve RS beamforming design problem. In this subsection, we adapt it into

the IRS-assisted system. The WMMSE method utilizes the relationship between mutual

information and MMSE to find a stationary solution. Let the estimated common message

of UE k be denoted as ŝc,k = gc,kyk with gc,k being a scalar equalizer. Then an estimate of

sk can be expressed as ŝk = gp,k(yk − hHk wcsc,k), since the interference from the common

message can be removed at each UE. Then, the mean-squared errors (MSE) of the common
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message and the private message can be expressed respectively as

εc,k = E[|ŝc,k − sc,k|2] = |gc,k|2Tc,k − 2Re(gc,kh
H
k wc) + 1, (2.15)

εp,k = E[|ŝk − sk|2] = |gp,k|2Tp,k − 2Re(gp,kh
H
k wk) + 1, (2.16)

where

Tc,k = E[|yk|2] =
∑

i∈M

|hHk wi|2 + σ2
0,

Tp,k = E[|yk|2]− |hHk wc|2 =
∑

i∈K

|hHk wi|2 + σ2
0.

To minimize the MSE of both the common and the private messages, we take the deriva-

tive of the MSE in (2.15) w.r.t. the scalar equalizer, i.e., ∂εc,k/∂gc,k = 0 and ∂εp,k/∂gp,k = 0.

Then we obtain the optimal MMSE equalizer as

gMMSE
c,k = hHk wc/Tc,k, gMMSE

p,k = hHk wk/Tp,k. (2.18)

Substituting the optimal equalizer (2.18) into the MSE (2.15), we obtain the minimum MSE

as

εMMSE
c,k = 1− |h

H
k wc|2
Tc,k

, εMMSE
p,k = 1− |h

H
k wk|2
Tp,k

. (2.19)

By comparing (2.19) with (2.3) and (2.5), we obtain the rate-MMSE relationship as

rc,k = − log2(εMMSE
c,k ), Rp,k = − log2(εMMSE

k ). (2.20)
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Meanwhile, the augmented weighted MSE (WMSE) can be defined as

ξc,k = uc,kε
MMSE
c,k − ln(uc,k), (2.21a)

ξp,k = up,kε
MMSE
p,k − ln(up,k), (2.21b)

where uc,k > 0 and up,k > 0 are the associated weights with UE k’s MSE. The weighted

MMSE (WMMSE) is defined as the minimum augmented WMSE over all possible weights,

i.e., ξMMSE
c,k = minuc,k

ξc,k and ξMMSE
p,k = minup,k

ξp,k. Now we take derivative w.r.t. the weights

in (2.21), i.e., ∂ξc,k/∂uc,k = 0 and ∂ξp,k/∂up,k = 0. Then we obtain the optimal weight as

uMMSE
c,k =

1

εMMSE
c,k

, uMMSE
p,k =

1

εMMSE
p,k

. (2.22)

Combining (2.20), (2.21) and (2.22)), we obtain the rate-WMMSE relationship as

ξMMSE
c,k = 1 + ln

(
εMMSE

c,k

)
= 1− rc,k ln 2, (2.23a)

ξMMSE
p,k = 1 + ln

(
εMMSE

p,k

)
= 1−Rp,k ln 2. (2.23b)

This will be the core relationship in the WMMSE algorithm.
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With the rate-WMMSE relationship (2.23), the max-min rate problem in (2.9) can be

equivalently rewritten as

max
w,G,U,s,Rc,Rp,v

s (2.24a)

s.t.
1− ξc,k

ln 2
≥
∑

k∈K

Rc,k (2.24b)

1− ξp,k

ln 2
≥ Rp,k (2.24c)

Rc,k +Rp,k ≥ s (2.24d)

vi ∈ Φ1, ∀i (2.24e)

(2.9b), (2.7),

where G = {gc,k, gp,k|k ∈ K} are the sets of scalar equalizers, U = {uc,k, up,k|k ∈ K} is the

set of associated weights of UEs’ MSE, and ξc,k and ξp,k are given in (2.21).

Theorem 2. The stationary solution to Problem (2.24) that satisfies conditions (2.18)

and (2.22) is also a stationary solution to Problem (2.9).

Proof. We refer readers to [42] for a detailed proof.

Substituting hk = hd,k + HH
k v into (2.17), we have

Tc,k = vHQc,kv + 2Re
(
vHqc,k

)
+ αc,k + σ2

0,

Tp,k = vHQp,kv + 2Re
(
vHqp,k

)
+ αp,k + σ2

0,

where Qc,k =
∑

i∈MHkwiw
H
i HH

k , qc,k =
∑

i∈MHkwiw
H
i hd,k, αc,k =

∑
i∈M |hHd,kwi|2, Qp,k =

∑
i∈KHkwiw

H
i HH

k , qp,k =
∑

i∈KHkwiw
H
i hd,k, and αp,k =

∑
i∈K |hHd,kwi|2.

Although Problem (2.24) is till non-convex, it has a block-wise convex property w.r.t.

w, (G,U), and v. When w and v are fixed, the problem is convex w.r.t. (G,U). When v

and (G,U) are fixed, we will obtain ξc,k and ξp,k as shown in (2.27), which is a second-order

cone in terms of w. When w and (G,U) are fixed, we obtain ξc,k and ξp,k as shown in (2.28),
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which is also a second-order cone in terms of v. Hence the block coordinate descent (BCD)

method, which successively optimizes each of the variables, can be used. The details of the

BCD algorithm are as follows.

1. The optimization of (G,U): The scaling factor G and the optimal weight U have

closed-form expressions, which are given in (2.18) and (2.22), respectively.

2. The optimization of w: The optimal w can be obtained by solving the following

problem.

max
w,s,Rc,Rp

s (2.25)

s.t. (2.24b), (2.24c), (2.24d), (2.9b), (2.7),

where ξc,k and ξp,k are given in (2.27).

3. The optimization of v: The optimal v can be obtained by solving the following problem.

max
v,s,Rc,Ru

s (2.26)

s.t. (2.24b), (2.24c), (2.24d), (2.7),

|vi|2 ≤ 1,∀i.

where ξc,k and ξp,k are given in (2.28).

To summarize, the proposed algorithm successively optimizes the variables. Its complex-

ity mainly comes from Step 2 and Step 3, which are two quadratically constrained convex

optimization problems (QCCP). The QCCP problem in Step 2 consists of d1 = 4K + 2

constraints and d2 = 1 + 2K + MK variables. Hence, the worst case computational

complexity of solving this problem is O(d1d
2
2 + d3

2)
√
d1 log(1/ε) [67] for a given stopping

criterion ε. Similarly, the problem in Step 3 is also a QCCP, which has d3 = 4K + 1

constraints and d4 = 1 + 2K + N2 variables. The computational complexity in Step
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ξc,k(w) = uc,k

[
|gc,k|2

(∑

i∈M

wH
i hkh

H
k wi + σ2

0

)
− 2Re(gc,kh

H
k wc) + 1

]
− ln(uc,k), (2.27a)

ξp,k(w) = up,k

[
|gp,k|2

(∑

i∈K

wH
i hkh

H
k wi + σ2

0

)
− 2Re(gp,kh

H
k wk) + 1

]
− ln(up,k). (2.27b)

ξc,k(v) =uc,k

[
|gc,k|2

(
vHQc,kv + 2Re

(
vHqc,k

)
+ αc,k + σ2

0

)
− 2Re(gc,kh

H
d,kwc + gc,kv

HHkwc) + 1
]

− ln(uc,k), (2.28a)

ξp,k(v) =up,k

[
|gp,k|2

(
vHQp,kv + 2Re

(
vHqp,k

)
+ αp,k + σ2

0

)
− 2Re(gp,kh

H
d,kwk + gp,kv

HHkwk) + 1
]

− ln(up,k). (2.28b)

3 is O(d3d
2
4 + d3

4)
√
d3 log(1/ε). Hence, the overall complexity of the BCD algorithm is

O(Iin(M3K3.5 + (K + N2)3K0.5) log(1/ε)), where Iin is the total number of outer iterations

of the BCD algorithm.

Theorem 3. The proposed BCD algorithm will converge after a finite number of steps.

Proof. Denote the objective function in (2.24) as F (G,U,w,v). Then we have

F (Gt−1,Ut−1,wt,vt) ≤ F (Gt,Ut,wt,vt) ≤ F (Gt,Ut,wt+1,vt) ≤ F (Gt,Ut,wt+1,vt+1),

where the first inequality holds since Ut is the optimal weight and G is the optimal MMSE

equalizer to minimize the MSE. The second inequality holds since wt+1 is the optimal solu-

tion to Problem (2.25) and the third inequality holds since vt+1 is the optimal solution to

Problem (2.42).
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2.3.3 The Penalty-based BCD Approach for IRS:Φ2

In the IRS:Φ2 case, we need to deal with the non-convex constraints with Φ2. The

problem becomes

max
w,G,U,s,Rc,Rp,v

s, (2.29a)

s.t. (2.24b), (2.24c), (2.24d), (2.9b), (2.7)

vi ∈ Φ2, ∀i. (2.29b)

To simplify the optimization of v and facilitate parallel updating, we propose to use the

penalty dual decomposition (PDD) framework. This method introduces an auxiliary variable

u. Hence Problem (2.29) is equivalently transformed to

max
w,G,U,s,Rc,Rp,v

s (2.30a)

s.t. (2.24b), (2.24c), (2.24d), (2.9b), (2.7)

v = u, (2.30b)

ui ∈ Φ2, ∀i. (2.30c)

To deal with the constraint v = u, Problem (2.29) is further transformed to

max
w,G,U,s,Rc,Rp,v

z = s− 1

2ρ
||v − u + ρµ||2 (2.31a)

s.t. (2.24b), (2.24c), (2.24d), (2.9b), (2.7)

ui ∈ Φ2, ∀i, (2.31b)
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where ρ is a penalty coefficient and µ is the dual variable vector associated with constraint

v = u. To optimize the variable vector u, we solve the following sub-problem.

min
u

||v − u + ρµ||2 (2.32)

s.t. ui ∈ Φ2, ∀i. (2.33)

For this problem, we notice that ui is decoupled in both the objective function and the

constraint. Hence we can obtain the optimal solution in parallel. Note that

||v − u + ρµ||2

= (v + ρµ)H(v + ρµ) + uHu− 2Re(uH(v + ρµ)). (2.34)

When ui ∈ Φ2, we have |ui| = 1. Hence uHu = N . To minimize the term ||v − u + ρµ||2,

the phase of u and the phase of v + ρµ should be the same, i.e.,

ui = exp {j∠v̄i} , (2.35)

where v̄i is the element of v̄ and v̄ = v + ρµ.

We design an iterative algorithm where the inner loop optimizes variables (G,U,w,v,u)

successively. In the outer loop, the dual variables are decreased by a factor of α. Finally,

the dual variables are updated by

µ = µ +
1

ρ
(v − u). (2.36)

As can be seen, algorithm 1 consists of an outer loop which decreases the penalty factor,

and an inner loop which optimizes the variables successively. With the decrease of the penalty

coefficient, the penalty term becomes larger and will eventually guarantee that u = v. For

the inner loop, the complexity is the same as that of the BCD algorithm. Steps 11 and 12 in
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the outer loop also have closed-form expressions. We conclude that the overall complexity

of Algorithm 1 is O(IoutIin(M3K3.5 + (K +N2)3K0.5) log(1/ε)).

Algorithm 1 Penalty-based BCD Algorithm

Require: P ;
Ensure: w∗, v∗;

1: Initialize outer loop iteration index Iout = 0; Initialize the beamforming vector with
equal power allocation P

M(K+1)
; Generate vector v and u with reflection amplitude 1 and

random phases; Initialize µ = 0 and ρ = 200.
2: repeat
3: Initialize inner loop iteration index Iin = 0;
4: repeat
5: Update Gt and Ut based on (2.18) and (2.22);
6: Obtain wt+1 by solving convex optimization Problem (2.25);
7: Obtain vt+1 by solving Problem (2.31a);
8: Obtain ut+1 from (2.35) when Φ = Φ2;
9: Iin + +;

10: until |z
t−zt−1|
|zt−1| ≥ ε or Iin > Imax

in

11: Update µ based on (2.36);
12: Update ρ by ρ = cρ;
13: Iout + +;
14: until ||u− v||2 ≤ ε

2.4 Joint beamforming design with imperfect CSI

In practice, joint beamforming design requires precise CSI, which is quite challenging to

obtain. In this section, we consider the scenario where the users know the perfect CSI while

the BS only has the imperfect CSI estimation due to the feedback errors and mismatches.

We assume that the CSI error model is given by

Hk = Ĥk + ∆Hk,

hd,k = ĥd,k + ∆hd,k

where Ĥk and ĥd,k denotes the estimated cascaded channel and the estimated direct chan-

nel, respectively. ∆Hk and ∆hd,k denote the CSI error of the cascaded channel and the
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direct channel, respectively. It is shown in [68] that when the number of the reflecting

elements on the IRS is large, the distribution of vec(∆Hk) is approximated by Gaussian

distribution. In the rest of this chapter, we assume that vec(∆Hk) ∼ CN (0, σ2
∆H,kI) and

∆hd,k ∼ CN (0, σ2
∆d,kI). Moreover, the CSI error variances decay at a speed proportional

to the channel variances, i.e., σ2
∆d,k = δ

M
||hd,k||2 and σ2

∆H,k = δ
MN
||Hk||2F where δ ∈ [0, 1]

measures the relative CSIT uncertainties [69,70].

The BS is assumed to know the the estimated channel ĥk = ĥd,k + ĤH
k v and the

conditional probability phk|ĥk
(hk|ĥk). According to [45], we can formulate the average rate

(AR) optimization problem

max
w,Rc,Rp,v,s

s (2.37a)

s.t. (2.9b), (2.9c) (2.37b)

Rp,k +Rc,k ≥ s (2.37c)

Rp,k ≤ Ehk|ĥk
[log2(1 + γp,k)|ĥk], ∀k (2.37d)

∑

k∈K

Rc,k ≤ Ehk|ĥk
[log2(1 + γc,k)|ĥk], ∀k, (2.37e)

To deal with the challenging stochastic optimization problem, we resort to the sample

average approximation (SAA) method, which approximate the stochastic problem with a

deterministic one. To be specific, for a given channel estimate ĥk, we use set HL to denote

L i.i.d. channel realizations drawn from the conditional distribution fhk|ĥk
(hk|ĥk).

HL = {hlk = ĥk + ∆hlk|ĥk, 1 ≤ l ≤ L, k ∈ K} (2.38)

It was proven in [45] that when the sample size L is large enough, the stochastic rate

can be approximated by the sample average. Hence if we define the sample average as

R̄p,k =
1

L

L∑

l=1

Rl
p,k, R̄c,k =

1

L

L∑

l=1

Rl
c,k
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where Rl
p,k and Rl

c,k are the private rate and common rate associated with the channel

realization {hlk}k. This leads to the SAA problem

max
w,R̄c,R̄p,v,s

s (2.39a)

s.t. (2.9b), (2.9c) (2.39b)

R̄p,k + R̄c,k ≥ s (2.39c)

R̄p,k ≤
1

L

L∑

l=1

log2(1 + γlp,k), ∀k (2.39d)

∑

k∈K

R̄c,k ≤
1

L

L∑

l=1

log2(1 + γlc,k), ∀k, (2.39e)

where R̄p = {R̄p,k|k ∈ K}, R̄c = {R̄c,k|k ∈ K}, and γlp,k and γlc,k are the associated SNR

with the channel realization hlk. In the optimization process, the same beamforming vector

w is fixed for all the channel realizations.

Although this problem is deterministic, it is still non-convex. Following a similar step

in section 2.3, we approximate

Ehk|ĥk
[min
uc,k

ξc,k|ĥk] ≈ min
uc,k

ξ̄c,k = ξ̄MMSE
c,k = 1− r̄c,k ln 2

Ehk|ĥk
[min
up,k

ξp,k|ĥk] ≈ min
up,k

ξ̄p,k = ξ̄MMSE
p,k = 1− R̄p,k ln 2
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where r̄c,k = 1
L

∑L
l=1 log2(1 + γlc,k). With this relationship, the SAA max-min rate problem

(2.39) can be equivalently transformed into

max
w,Ḡ,Ū,s,R̄c,R̄p,v

s (2.40a)

s.t.
1− ξ̄c,k

ln 2
≥
∑

k∈K

R̄c,k (2.40b)

1− ξ̄p,k

ln 2
≥ R̄p,k (2.40c)

(2.39c), (2.24d), (2.24e), (2.9b), (2.7),

where Ḡ =
{
glc,k, g

l
p,k|k ∈ K, 1 ≤ l ≤ L

}
and Ū =

{
ulc,k, u

l
p,k|k ∈ K, 1 ≤ l ≤ L

}
are the scal-

ing equalizer sets. The optimal glc,k, g
l
p,k can be obtained from (2.18) based on a specific hlk.

The optimal ulc,k, u
l
p,k can be obtained from (2.22) based on hlk.

The block-wise convex property still holds. As a result, we have the SAA-BCD algorithm

as follows.

1. The optimization of (Ḡ, Ū).

2. The optimization of w: The optimal w can be obtained by solving the following

problem.

max
w,s,R̄c,R̄p

s (2.41)

s.t. (2.40b), (2.40c), (2.24d), (2.9b), (2.7),

where ξ̄c,k and ξ̄p,k are given in (2.43).
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ξ̄c,k(w) =
1

L

L∑

l=1

ulc,k

[
|glc,k|2

(∑

i∈M

wH
i hlkh

l,H
k wi + σ2

0

)
− 2Re(glc,kh

l,H
k wc) + 1

]
− 1

L

L∑

l=1

ln(ulc,k),

(2.43a)

ξ̄p,k(w) =
1

L

L∑

l=1

ulp,k

[
|glp,k|2

(∑

i∈K

wH
i hlkh

l,H
k wi + σ2

0

)
− 2Re(glp,kh

l,H
k wk) + 1

]
− 1

L

L∑

l=1

ln(ulp,k).

(2.43b)

ξ̄c,k(v) =
1

L

L∑

l=1

ulc,k

[
|glc,k|2

(
vHQl

c,kv + 2Re
(
vHqlc,k

)
+ αlc,k + σ2

0

)
− 2Re(glc,kh

l,H
d,kwc + glc,kv

HHl
kwc) + 1

]

− 1

L

L∑

l=1

ln(ulc,k), (2.44a)

ξ̄p,k(v) =
1

L

L∑

l=1

ulp,k

[
|glp,k|2

(
vHQl

p,kv + 2Re
(
vHqlp,k

)
+ αlp,k + σ2

0

)
− 2Re(glp,kh

l,H
d,kwk + glp,kv

HHl
kwk) + 1

]

− 1

L

L∑

l=1

ln(ulp,k). (2.44b)

3. The optimization of v: The optimal v can be obtained by solving the following problem.

max
v,s,R̄c,R̄u

s (2.42)

s.t. (2.40b), (2.40c), (2.24d), (2.7),

|vi|2 ≤ 1,∀i.

where ξ̄c,k and ξ̄p,k are given in (2.44).

The penalty-based BCD algorithm for the imperfect CSI case can be similarly derived.

We leave this out due to space limitation.
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2.5 Analysis of the interplay between IRS and RS

First, we fixed the channel related parameters and investigate the impact of several

system parameters, including the number of BS antennas M , the number of UEs K, and the

total BS transmit power P , on the MMF performance with respect to the degree of freedom

(DoF) metric. DoF is a metric to quantify how well a communication scheme can exploit

the spatial dimensions. The DoF of UE k is defined as

dk = lim
P→∞

Rk(P )

log2(P )
. (2.45)

Accordingly, the MMF multiplexing gain is given by

dMMF = min
k∈K

dk. (2.46)

The multiplexing gain dk is the pre-log factor of the rate of UE k in the high SNR regime,

which indicates the speed that the rate of UE k increases with the SNR. The MMF mul-

tiplexing gain dMMF denotes the maximum multiplexing gain that can be simultaneously

achieved by all UEs by exploiting the multiple antennas at the BS as well as the reflecting

elements at the IRS. Despite that the multiplexing gain is defined in the high SNR regime,

it is still helpful to gain insights on the performance limit in the finite SNR regime [53].

In an SDMA system, the common beamforming vector wc in (2.3) becomes zero. We now

analyze the SINR of each private message. When M ≥ K, zero-forcing (ZF) beamforming

can be used to fully eliminate the interference in an M×K MIMO channel [71]. In this case,

γp,k scales at a speed O(P ), and hence dMMF = 1. When M < K, the interference from other

UEs cannot be eliminated; hence the rate will saturate at high SNR and dMMF = 0. Since

SDMA is a special case of rate-splitting, when M ≥ K, RS can also achieve a DoF of 1. For

RS, when M < K, we assume that the common part is allocated with a power pc = O(P )

and the private part is allocated with a power pk = O(Pα). It follows that the received SINR
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of the common stream at the UE scales as O(P (1−α)), which brings a multiplexing gain of

(1− α) to the common stream. The private part performs ZF beamforming to transmit K

interference-free private streams. The received SINR of each private stream scales as O(Pα),

resulting in a multiplexing gain of α. Note that the common part multiplexing gain (1− α)

is divided equally among the (K−M) UEs. To maximize dMMF, we need to have 1−α
K−M = α.

As a result, the RS scheme achieves a max-min multiplexing gain α = 1
1+K−M (see [72] for a

detailed proof). That is, the MMF rate of RS scales as 1
1+K−M log2(P ) when M < K, which

characterizes the speed that the MMF rate increases with the SNR.

When considering the impact of the IRS, the coupling between the optimization variables

makes the analysis quite complex. For SDMA, the reconfiguration of the channels does not

affect the speed that γp,k scales at, hence dMMF = 1 for M ≥ K and dMMF = 0 for M < K.

For RS, when M ≥ K, dMMF = 1. When M < K, the received SINR of each private

stream scales as O(Pα), resulting a multiplexing gain of α. However, the received SINR of

the common stream at the UE still scale at a speed larger than O(P 1−α). This is because

the use of IRS makes it possible to deliver strong common signal beams to the users, which

brings a multiplexing gain larger than (1− α) to the common stream. We multiply a factor

β ≥ 1 to denote the improvement of the optimization of the IRS on the common stream

multiplexing gain. This multiplexing gain is shared among the rest of the K −M users. To

maximize dMMF, we have β(1−α)
K−M = α, hence RS with IRS can achieve a max-min multiplexing

gain α = β
K−M+β

(β ≥ 1). It is practically challenging to get a closed form expression of β.

However, we can still gain some insights by considering an extreme case where M = 1 and

K > 1. In this case, the achievable SNR for the common data can be expressed as

γc,k =
|wc|2∑

k |wk|2 + σ2
0/|hk|2

,

where hk = hd,k + HH
k v. When the beamforming vector wc and wk are fixed, by adjusting

the reflecting elements on the IRS, it is possible to increase the value of |hk|2 and increase
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the value of min(γc,k) for all k. Hence, an improved common data stream beamforming gain

can be achieved. This beamforming gain is shared between the K −M UEs, as a result, the

dMMF can be increased.

As IRS only consists of passive elements, accurately obtain the CSI is quite challenging.

Beamforming design based on imperfect CSI would generally results in a degraded perfor-

mance for IRS assisted networks. Fortunately, proposition 12 in [53] suggests that when

M < K and the CSI uncertainty is small, RS can achieve the same max min multiplex-

ing gain as the perfect CSI case. In other words, RS has the advantage of being robust

with the imperfect CSI. Therefore, it is a perfect fit for RS to integrate with IRS-assisted

communication, even under the imperfect CSI setting. We will illustrate it via simulations.

2.6 Simulation Study

We consider an IRS assisted communication scenario as depicted in Fig. 2.2. The

parameters and channels are set the same as [64]. In this x-y plane, the IRS is located

at location (50, 0)m. The UEs are located randomly in a circle around center (50, 5)m with

a radius of 3m. The BS is located at the origin (0, 5)m. The channel coefficients are a

combination of distance-dependent large-scale fading and small-scale fading. The large scale

path loss model follows PL(d) = Ad−α, where A = −30dB is the path loss at a reference

distance 1m, d is the distance between the transmitter and receiver, and α is the path loss

component. The path loss components for channels hr,k, hd,k, and G are set to 2.2, 3.5,

and 2.2, respectively. For small-scale fading, the Rayleigh fading is assumed for the direct
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Figure 2.2: Illustration of the IRS-assisted network architecture.

channel hd,k and the Rician fading is assumed for the IRS reflected channels, i.e.,

hd,k =
√

PL(d)hNLOS
d,k

G =

√
PL(d)

KG + 1

(√
KGGLOS + GNLOS

)

hr,k =

√
PL(d)

KR + 1

(√
KRhLOS

r,k + hNLOS
r,k

)

where KG = KR = 3 is the Rician factors, GLOS and hLOS
r,k are line-of-sight (LoS) components,

hNLOS
d,k , GNLOS and hNLOS

r,k are the non-line-of-sight (NLOS) components.

The noise power σ2 is set to −90dBm. The SNR metric is defined as P/σ2
0. For the

proposed BCD algorithm and Algorithm 1, the stopping criteria is ε = 0.01. For Algorithm

1, the value of dual variables is ρ = 200 and the scaling constant is c = 0.1. Every simulated

curve is obtained by averaging over 100 channel realizations.

We compare the performance of the proposed algorithm with three benchmark algo-

rithms. The first is RS without IRS (termed RS: w/o IRS), where there is only a direct

channel between the UE and BS. The second is IRS with random IRS (termed RS: random

phase) where the phase shift at the IRS is randomly set. The active beamforming at the BS

is optimized with the simplified BCD algorithm for the first two cases. The third benchmark

is the conventional SDMA with IRS Φ1 (termed SDMA:Φ1). Note that SDMA is a special

case of the proposed RS system, where the common rate for all UEs is set to zero. The
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proposed BCD algorithm and Algorithm 1 can be easily adapted for the SDMA case. For

our proposed algorithm, we consider RS with IRS:Φ1 setting and RS with IRS:Φ2 setting.

2.6.1 Perfect CSI Case

Convergence of the Proposed Algorithm

In Fig. 2.3, we present the convergence performance of the BCD algorithm and Algo-

rithm 1 for M = 2, K = 4, N = 20, and P = 20dBm. For the BCD algorithm, the objective

value is the max-min rate defined in (2.24). As can be seen, the max-min rates are mono-

tonically increasing, and converges very quickly (i.e., 4-5 iterations for SDMA:Φ1 and 10-15

iterations for RS:Φ1). For Algorithm 1, the objective value is the max-min rate minus the

penalty term (see (2.31a)). Both the outer loop iteration and the inner loop iteration of

Algorithm 1 are counted. Due to the penalty factor, the objective function value fluctuates

over iterations. This is because the inner loop is indeed the BCD algorithm, hence the ob-

jective value function keeps increasing in each inner loop. The convergence of the inner loop

is guaranteed. However, the outer loop refines the penalty term, which may cause a decrease

in the objective value. Such refinement brings fluctuations over iterations. Eventually, the

penalty term will go to zero to ensure that u = v and Algorithm 1 will converge after finite

steps.

Impact of the Number of IRS Reflecting Elements

The max-min rate versus the number of reflecting elements on the IRS is plotted in

Fig. 2.4. first, the performance of RS with IRS improves with the increase of N , while the

SDMA scheme with IRS and the RS without IRS scheme remain nearly unchanged. This is

expected since more reflecting elements on IRS for RS brings a performance gain, regardless

of the setting of M and K. However, for SDMA:Φ1, the MMF is 0 when M < K as analyzed

in Section V-A. This shows that the introduction of IRS does not bring any performance

gain when M < K. It is quite straightforward that the performance of RS without IRS
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Figure 2.4: Max-min rate versus the number of IRS elements N for M = 2, K = 4, and
P = 20dBm.
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stays on a horizontal line. The performance of RS with randomly selected IRS phase shift

improves slightly with the increases of N . From the perspective of IRS assumptions, it can

be seen that the performance gap between the IRS:Φ1 case and IRS Φ2 is very small. This

indicates that in practice we do not need an accurate IRS amplitude controller. Instead, an

IRS where the phase shift can be adjusted works well.

Impact of the Transmit Power

Fig. 2.5 presents the max-min rate versus transmit power. As illustrated, it is observed

that the max-min rate of RS increases with the increase of P . However, the performance

improvement of the SDMA scheme is very small. This is because the MMF gain for SDMA

is 0 under the setting M < K. In contrast, the RS scheme has a performance gain of

1
1+K−M log2(P ), which increases with P at a logarithm speed in the high SNR regime. Second,

when considering the impact of the IRS, we find that the performance of RS with ideal IRS

is quite close to that with non-ideal IRS. Compared with RS without IRS and with random

phase, RS:Φ1 achieves a significant performance gain.

Impact of the Number of BS Antennas

The impact of the number of BS antennas on the max-min rate is shown in Fig. 3.9. The

max-min rate for all schemes increases withM due to the MIMO multiplexing gain. Note that

in the simulation, we have K = 4. As analyzed before, when M < K, the RS schemes with

Φ1 or Φ2 both outperform SDMA. When M ≥ K, the MIMO system can fully eliminate the

interference; hence SDMA and RS achieve a very similar performance. Moreover, compared

with RS without IRS and random IRS, RS with φ1 achieves the highest performance gain.

Therefore, in a MIMO system where M = K, RS does not bring significant gains compared

with the conventional SDMA. However, in an overloaded system where M < K, RS offers

significant benefits. Compared with RS without IRS and random IRS, when M is close to

K, the performance gain brought by IRS can be maximized.
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Figure 2.5: Max-min rate versus the transmit power P at the BS for M = 2, K = 4, and
N = 20.
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Figure 2.7: Max-min rate versus the number of users K for M = 2, N = 20, and P = 20dBm.

Impact of the Number of UEs

Fig. 3.8 illustrates the impact of the number of UEs on the max-min rate performance.

The max-min rate decreases with the increase of the number of UEs due to inter-UE inter-

ference. In this experiment, we set M = 2. As can be seen, when K > 2, the performance of

SDMA decreases significantly since dMMF = 0. In contrast, the performance of RS with IRS

decreases slowly. Compared with RS without IRS and random IRS, the performance gain is

maximized when M = K = 2. When K increased to a quite large number, the IRS cannot

effectively adjust the channel gain across different UEs. As a result, the performance gap

between RS with Φ1(or Φ2) and RS without IRS becomes negligible.

Comparison with NOMA

Finally, we compare the performance of the proposed scheme with IRS-NOMA. IRS-

NOMA is implemented with the SDR method in [64] by changing the objective function to

max-min rate. In this experiment, we assume M = 2, K = 3, and P = 20dBm. Compared

with RS, NOMA requires ordering the channels based on channel gains so that the UE with
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Figure 2.8: Max-min rate versus the number of reflecting elements N for M = 2, K = 3,
and P = 20dBm.

a stronger channel gain can decode the UE’s signal with a weaker channel gain. However,

in IRS-assisted NOMA, the channels can be modified by the IRS. As a result, IRS-assisted

NOMA needs to consider K! different decoding orders, solve the beamforming separately

for each decoding order, and select the best beamforming scheme. The complexity would

be quite high especially when the number of UEs is large. Although some user ordering

schemes are designed to reduce the complexity, they inevitably suffer certain performance

loss [19]. Unlike NOMA, RS does not require channel ordering, and hence the complexity

can be greatly reduced. When M < K, the introduction of IRS almost bring no MMF gain.

We provide the max-min rate performance comparison in Fig. 2.8. With increased number

of reflecting elements on the IRS, the max-min rates of SDMA, NOMA, and RS all increases.

Compared with SDMA and NOMA, the RS rate increases at a higher speed and achieves

the best performance. To be specific, when the number of reflecting elements on the IRS

increases from 10 to 50, the max-min rate improvement for RS, NOMA and SDMA is given

by about 0.9, 0.6 and 0.1 bits/s/Hz.
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2.6.2 Imperfect CSI case

For each channel generation hk, we can have a channel estimation as ĥk = hk − ∆hk.

Based on the conditional probability fhk|ĥk
(hk|ĥk), we set L = 100 channel realizations. Note

that hk represents the actual channel experienced by user k but is unknown to the BS while

ĥlk(1 ≤ l ≤ L) can be used to calculate the sample average rate, which can approximate the

ergodic max min rate performance.

Impact of the transmit power

We compare the ergodic max-min performance of RS:φ1 with that of SDMA:φ1 by

changing the transmit power. In Fig. 2.9, Fig. 2.10 and Fig. ??, we show their performance

by fixing the number of transmit antennas on the IRS to be 20 and changing the relative

channel estimation errors.

Fig. 2.9 shows the performance of a system where M < K. In this experiment, we

have M = 2 and K = 4. As can be seen, with the increase of the transmit power, the

performance of SDMA with IRS slowly increases while the performance of RS with IRS

increases significantly, regardless of the value of the relative channel estimation error. The

proposed scheme is quite robust towards channel estimation error. For example, when the

transmit power is 20dBm and the relative CSI error is 0.1, the max-min rate of RS is around

2.2 bits/s/Hz, which is 88% of the rate achieved at perfect CSI case (2.5 bits/s/Hz). Even

when the relative CSI error is quite large (δ = 0.5, the proposed RS scheme still achieves

1.75 bits/s/Hz, which is around 70% of the perfect CSI case.)

Fig. 2.10 presents the performance of a system where M = K. In this plot, we set both

M and K to be 3. As analyzed before, when M ≥ K, RS and SDMA achieve the same

multiplexing gain. This is confirmed when we observe that the curve for RS and SDMA

almost overlapped under the perfect CSI case. However, when the relative CSI error gets

larger, the performance of SDMA decreases significantly, the RS scheme is much more robust.

To be specific, when the transmit power is 20dBm, the max-min rate of the perfect CSI case
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Figure 2.9: Max-min rate versus transmit power for M = 2, K = 4, and N = 20 under
imperfect CSI case.

for RS and SDMA is around 6.4 bits/s/Hz and 6.0 bits/s/Hz, respectively. When the CSI

error is large, i.e., δ = 0.5, RS still achieves 2.84 bits/s/Hz, which is 44% the performance in

the perfect CSI case. SDMA only achieves 1.57 bits/s/Hz, which is only 26% the performance

of the perfect CSI case. This experiment suggests that in an IRS assisted communication

scenario, RS is more robust to the CSI errors compared with SDMA, even when M ≥ K.

Fig. ?? shows the performance of a system where M > K. SDMA and RS shows very

similar performance in the low SNR regime under perfect CSI. However, as the relative CSI

error grows, the performance of SDMA decreases significantly. When the transmit power is

20dBm, the max min rate for RS is around 5.0 bits/s/Hz (or 75% of the performance in the

perfect CSI case) while the max min rate for SDMA is only 3.27 bits/s/Hz (or 50% of the

performance on the perfect CSI case). This is due to the reason that when M ≥ K, the

transmit antennas at the BS and the reflecting elements on the IRS provide more multiplexing

gains, which makes RS more robust in combating CSI errors.
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Figure 2.10: Max-min rate versus transmit power for M = 3, K = 3, and N = 20 under
imperfect CSI case.
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Impact of the number of IRS reflecting elements

We plot the max-min performance versus the number of reflecting elements on the IRS

in Fig. 2.12. When the relative CSI error is large, i.e., δ = 0.5, the performance of both

SDMA and RS improves with the increase of N . To be specific, for RS, the performance

gap from the perfect CSI case decreased from 7.2 − 4.5 = 2.7 bits/s/Hz when N = 10 to

7.7− 5.9 = 1.8 bits/s/Hz when N = 50. For SDMA, the performance gap from the perfect

CSI case decreased from 6.5− 3 = 3.5 bits/s/Hz when N = 10 to 6.4− 3.8 = 2.6 bits/s/Hz

when N = 50. When the relative CSI error is small, i.e., δ = 0.01, with the increase of

N , for RS the performance gap from the perfect CSI case almost vanished. However, for

SDMA, the performance gap always exists. This experiment suggest that it is more efficient

to increase N for RS compared with SDMA.

The impact of IRS configuration

In this experiment, we investigate the impact of IRS configuration. We compared the

performance of RS:φ1 with two benchmark algorithms: RS with random phase and RS

without IRS. When the transmit power is high, i.e. P = 20dBm, as shown in Fig. 2.13, the

max-min rate decreases with the increase of the relative CSI error. Increasing the number

of reflecting elements on the IRS can improve the performance of RS:φ1. However, the

performance of RS with random phase does not improve significantly when N increases. In

the perfect CSI case, i.e., δ = 0, RS:φ1 (N=50) achieves considerable performance gain (7.2-

4.7=2.5 bits/s/Hz) compared with RS without IRS. Even when the CSI error is δ = 0.01,

the performance gain is still 6.6-4.1=2.5 bits/s/Hz. When CSI error is large, i.e., δ = 0.5,

the performance gain becomes 3.6-2.3=1.3 bits/s/Hz. This shows that RS with properly

configured IRS is quite robust toward a relatively small CSI error.

When the transmit power is low, i.e., P = 0dBM, the max-min rate performance of RS

with different IRS configuration is shown in Fig. 2.14. RS with random phase achieves a

small amount of performance gain compared with RS without IRS, no matter the relative

58



10 15 20 25 30 35 40 45 50

N

0

1

2

3

4

5

6

7

8

m
a
x
 m

in
 r

a
te

 (
b
it
s
/s

/H
z
)

RS: 
1
, perfect

RS: 
1
, =0.01

RS: 
1
, =0.1

RS: 
1
, =0.5

SDMA: 
1
, perfect

SDMA: 
1
, =0.01

SDMA: 
1
, =0.1

SDMA: 
1
, =0.5

Figure 2.12: Max-min rate versus transmit power for M = 4, K = 2, and P = 20dbm under
imperfect CSI case.

CSI error is small or large. RS:φ1 achieves a max min rate at around 2 bits/s/Hz when

N = 50 and δ = 0.01, which is almost three times of the max min rate achieved by RS

without IRS. This further demonstrate the benefits of integrating IRS and RS. Moreover,

comparing Fig. 2.13 and Fig. 2.14, we notice that the benefit of increasing the reflecting

elements on the IRS is more significant at low SNR regime or when the transmit power is

small. To be specific, when P = 0dBm and δ = 0.01, the performance gain of increasing N

from 20 to 50 is (2.0-1.2)/1.2=66.7% for RS:φ1 while this number is (6.6-5.7)/5.7 =15.8%

when P = 20dBm and δ = 0.01.

2.7 Conclusions

This chapter has investigated the resource allocation problem in an IRS-assisted RS

system. A BCD algorithm is developed to maximize the minimum rate of all users under both

perfect CSI and imperfect CSI setting. Our results show that RS has the advantage of being

robust with imperfect CSI, which makes it a good fit for IRS assisted communication. With
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the proposed method, IRS-assisted RS could achieve a satisfactory performance compared

with conventional multiple access technologies, such as SDMA and NOMA with/without

IRS.
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Chapter 3

Energy-efficient Resource Allocation in IRS-assisted Federated Learning

3.1 Introduction

The emerging intelligent applications such as face recognition, autonomous driving,

unmanned aerial vehicle (UAV), and indoor localization have imposed great challenges for

Internet of Things (IoT) devices due to the computation-intensive and latency-sensitive

features. The devices are generating a vast amount of data via their local sensors, e.g.,

GPS, accelerometer, and camera. It is envisioned that future networks should be able to

utilize the local data at the mobile edge to perform intelligent inference and machine learning

tasks. However, the paradigm changes from “connected things” to “connected intelligence”

in the era of 6G brought about two main challenges [5]. First, the bandwidth is limited,

aggregating the large volumes of data would cause network congestion. Second, data-privacy

is becoming a critical issue in today’s IoT and the Internet. As a result, it becomes more

and more desirable to perform learning tasks at the end-IoT devices instead of sending raw

data to the central cloud.

A new machine learning method, termed federated learning, has emerged as a promising

solution for privacy-sensitive and low-latency solutions [73–75]. In federated learning, user

data is stored locally. In each communication round, users perform local training based on

their local data and then upload their trained model to the central server. After aggregating

the local updates from all users, the central server distributes the new global model to the

users. This process proceeds in an iterative way until convergence is reached. In this way, a

global model, which is trained from the data stored on each device, can be obtained without

data leakage or data being inferred from other users. This property makes federated learning

one of the most promising technologies of future intelligent networks.
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Nevertheless, so far, the potential of federated learning has not been fully exploited yet

due to the stochastic nature of wireless channels. For example, cell edge users often suffer

from communication links of poor quality or unfavorable wireless propagation conditions.

Fortunately, the recent advances in reconfigurable wireless technology provide a new cost-

effective means to enhance the performance of intelligent learning systems [17, 76]. To be

specific, the intelligent reflecting surface (IRS) is composed of a large number of reflect-

ing elements, whose amplitude and phase can be adjusted to create a favorable propagation

environment [13–15]. The direct channel gain in combination with the reflection-aided beam-

forming gain can boost the local model uploading performance.

In this chapter, we investigate resource allocation for energy efficient communication in

federated learning with IRS. There are several challenges. First, the IoT devices for federated

learning are powered by batteries, which need to support both local training and model

upload. How to save the battery power of each device becomes a critical issue. Second, the

global model training accuracy depends on the number of training iterations. The wireless

resources need to be properly allocated to meet the training accuracy requirement while also

conserve energy. Third, with the involvement of IRS, the parameters become highly coupled.

A joint design of the IRS parameters as well as the computing/communication parameters

is of critical importance. The main contributions of this chapter include:

1. We investigate an IRS-assisted federated learning system, where the IRS reconfigures

the communication channel so that the IoT devices can upload their model with a

reduced power. As a result, the total energy consumption can be effectively reduced.

2. We formulate a joint local training and model uploading problem, which aims to mini-

mize the energy consumption subject to the task completion time requirement. A low

complexity iterative algorithm with proven fast convergence is proposed to optimize

each variable iteratively. Most of the variables can be obtained numerically with the

simple one-dimensional search algorithm, which makes it useful in practical systems.
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We show that the main complexity of the algorithm comes from the optimization of

IRS elements, which involves solving an SDP problem.

3. The convergence of the proposed algorithm is proved theoretically and verified numer-

ically. Extensive simulations are performed to demonstrate the benefits brought by

using IRS. Our results suggest that with the use of IRS, the energy consumption in

federated learning of a battery powered IoT device network can be greatly reduced,

especially, when the number of reflecting elements is large and the IRS is properly

configured.

The remainder of this chapter is organized as follows. Section 3.2 introduces the relevant

work and Section 3.3 presents the system model and problem statement. We start the design

of the algorithm from the simplest case where there is only one device in Section 3.4. Then

the algorithm is extended to a multi-device federated learning scenario in Section 3.5 and

a low complex algorithm is proposed in Section 3.6. Numerical results are discussed in

Section 3.7. Finally, Section 3.8 concludes this paper.

3.2 Related Works

Federated learning, first proposed in [73], is a distributed learning method that enables

IoT devices to train a global model without sharing their own data with other users. Due

to its advantages in protecting privacy, it has been successfully adopted in a wide range of

application scenarios, such as semantic location, health prediction, or learning sentiment [75].

There are a few works focused on federated learning over wireless links. A communi-

cation and computation co-design approach for fast model aggregation is proposed in [77],

which leverages the property of signal superimposition on wireless multiple access channels.

This over-the-air computation (AirComp) framework is achieved by jointly considering the

beamforming design and the device selection problem. A collaborative learning that consid-

ers limited wireless resources is first investigated in [78]. The impact of MAC layer bandwidth
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and power limit on the performance of federated learning is investigated under the framework

of AirComp. A general model that investigates the computation and communication latency

trade-off in federated learning is proposed in [79]. The authors show that federated learning

over wireless networks captures a trade-off between communication and computation. The

previous research all focused on stochastic wireless channels. The benefits of configurable

technology such as IRS on the performance of federated learning has not been fully investi-

gated. Recent results in mobile edge computing show that the overall uplink transmission

latency can be reduced [80] and the system throughput can be improved [23] with the IRS

technology.

There are several works that investigate federated learning with IRS. In [77], the authors

show that when federated learning meets IRS, the model aggregation error can be reduced

via the enhanced signal provided by the IRS. AirComp and IRS have the potential to tackle

the challenge of the communication bottleneck problem. The authors in [81] investigate

the model aggregation performance in a federated learning system with IRS. A joint model

device selection, beamforming, and IRS phase shift optimization algorithm is proposed. The

proposed algorithm can schedule more devices in each communication round under certain

accuracy requirement.

3.3 System Model and Problem Formulation

As shown in Fig. 3.1, we consider a single-cell federated learning communication system,

where K single antenna IoT devices offload their locally trained models to an edge server

hosted at a BS with M antennas through radio access links. The federated learning model

is the same as that in [48,82], where a global ML problem is solved at a central server with

the training dataset partitioned over IoT devices.

We assume that each device k has a local training dataset with Dk data samples. The

federated learning model is locally trained by each device’s own dataset. Then the local model

parameter is uploaded to the BS. After aggregation, the BS then broadcasts the global model
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Figure 3.1: Illustration of the federated learning system with IRS.

to each participating device. This is called one round of training. Such communication round

will be performed several times until the model achieves a required level of accuracy. We

aim to determine the resource allocation strategy to achieve an energy efficient design.

3.3.1 Wireless Communication Model

We consider uplink frequency-division multiple access (FDMA) transmissions where the

BS serves the users with orthogonal frequency bands. To assist the model uploading of

mobile devices, an IRS with N reflecting elements is placed between the IoT devices and the

BS. The equivalent channels from device k to the BS, from device k to the IRS, and from

the IRS to the BS are denoted as hd,k ∈ CM×1, hr,k ∈ CN×1 and G ∈ CM×N , respectively.

The IRS has a reflection phase-shift matrix Θ ∈ CN×N , which is a diagonal matrix with ejθn

being its diagonal elements, θn ∈ [0, 2π], for all 1 ≤ n ≤ N . Θ captures the effective phase

shifts of all the reflecting elements of the IRS. The phase shift unit can be adjusted by the

IRS controller based on measured channel dynamics. The composite channel is therefore

modeled as a combination of the direct channel and the reflected channel. The training

update transmission between the IoT device and the cloud server happens in orthogonal

frequency bands. Hence there is no interference between users. Then the uplink transmission

66



rate of the kth IoT device is given by

Rk = bk log2

(
1 +

pk|wH
k hk|2

N0|wH
k |2bk

)
, (3.1)

where bk is the bandwidth allocated to device k, n is the additive white Gaussian noise

(AWGN) with zero mean and noise power spectrum density N0, wk ∈ CM×1 is the beam-

forming vector for device k, hk , hd,k + GΘhr,k ∈ CM×1 is the combined channel between

device k and the BS.

3.3.2 Federated Learning Model

A federated learning process consists of three stages: local training, model aggregation,

and model distribution. The entire training process differs from the conventional mobile edge

computing system in three aspects. First, in mobile edge computing systems, a device can

offload part of its work to the cloud while computing its own tasks asynchronously. However,

for federated learning, each device must finish its local model training first, and then performs

model uploading. Second, in federated learning, the cloud cannot aggregate the global model

until each device offloads its local model to the cloud. This requires stringent synchronous

processing and poses the latency requirement. This training process usually lasts for several

rounds. Third, in federated learning, the uploaded model sizes should be the same for all

the IoT devices, while the uploaded data sizes are usually different across different devices

in general mobile edge computing. The models for the three stages of federate learning are

provided in the following.

1) Local Training: When an application is executed on the IoT device, the energy

consumption depends on the CPU workload of the device, which is characterized by the

number of CPU cycles to complete this application. Assume ck is the the number of CPU

cycles required to process one bit and fk is the number of CPU cycles per second for device k.

Then the time required for carrying out the local model training can be expressed as Dkck/fk
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in each local training round. We assume that each device uses the stochastic average gradient

(SAG) algorithm to train the local model to achieve a local level relative accuracy η ∈ [0, 1].

The number of local iterations is then given by [83]

L(η) = `1 ln (1/η) , (3.2)

where `1 > 0 is a parameter depends on the data size and structure of the local problem.

In [84], it is shown that the local level accuracy η = 0 describes an exact solution of the

subproblem and η = 1 means that the local training has not been improved at all. In this

case, the local training latency will be

tLk = L(η)Dkck/fk. (3.3)

Assume the IoT device uses a dynamic voltage scaling (DVS) scheme, so it can adjust its

computational speed to save energy [85]. According to [85], the energy consumption per CPU

cycle can be expressed as κf 2
k , where κ is a coefficient depending on the chip architecture.

Then the energy consumption for local training can be expressed as

EL
k = κDkckf

2
kL(η). (3.4)

2) Model Aggregation: After local model training, each IoT device then sends its local

updates to the BS. Suppose S is the size of the offloading training model of a fixed dimension,

which should be the same for all the IoT devices. The upload latency can be expressed as

tUk = S/Rk, (3.5)
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where Rk is given in (3.1). The energy consumption of model uploading for device k is

expressed as

EU
k = tUk (pc,k + pk), (3.6)

where pc,k is a constant circuit power of the IoT device during the computational uploading

process.

3) Model Distribution: The parameters related to the global model are updated via a

simple linear processing at the cloud server hosted at the BS. The BS has a strong processing

capability, and hence the processing time can be negligible. After the global model param-

eters are updated at the BS, the BS distributes the global model parameters to all the IoT

devices. The broadcast time can also be negligible since the BS has high transmit power

and large bandwidth.

To achieve a global accuracy ε, the number of global iterations is given by [84]

G(η) =
O(ln(1

ε
))

1− η . (3.7)

In this work, we consider a fixed, target global accuracy ε, so we can normalize O(ln(1
ε
)) to

1 without changing the nature of this problem.

To this end, the overall latency of IoT device k is composed of the local computation

time and model uploading latency as

Tk =
1

1− η (tLk + tUk ). (3.8)

Let T be the maximum training time for the entire federated learning algorithm. Then we

have

Tk ≤ T, ∀k. (3.9)
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The overall energy consumption for IoT device k over the entire federated learning

process is

Ek =
1

1− η (EL
k + EU

k ). (3.10)

3.3.3 Problem Formulation

To allow the IoT devices to save energy while also guaranteeing the training time/accuracy

requirements of federated learning, we need to develop effective resource allocation algo-

rithms. The energy minimization problem is thus formulated as follows.

(P1) min
η,fk,bk,pk,wk,Θ

∑

k

Ek (3.11)

s.t. C1 : Tk ≤ T, ∀k

C2 : η ≥ 0

C3 : 0 ≤ θn ≤ 2π, ∀n

C4 : 0 ≤ pk ≤ Pmax, ∀k

C5 :
∑

k

bk ≤ B,

where constraint (C1) is the task completion time constraint; (C2), (C3), and (C4) specify

the domain of η, θn, and pk, respectively; constraint (C5) indicates that the combined oc-

cupied bandwidth should not exceed the total available bandwidth. This is a joint power,

bandwidth, phase shift, accuracy control, and beamforming design problem. Problem (P1)

has a non-convex and mixed structure where some variables are coupled. Obtaining a global

optimal solution will be quite challenging.

3.4 Analysis of the Single Device System

First, we consider the simplest case where there is only one IoT device. Although such

assumption is not practical in terms of federated learning, the results can still provide useful
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insights on parameter optimization for a practical multiuser federated learning system. In

the rest of this section, we set k = 1. The total energy consumption for device k is

Ek =
1

1− η

(
S

Rk

(pc,k + pk) + κDkckf
2
kL(η)

)
. (3.12)

3.4.1 Design of the Device CPU Frequency

Theorem 4. The optimal operating frequency for device k is given by

f ∗k =
L(η)Dkck

T/G(η)− S/Rk

. (3.13)

Proof. The proof is shown in appendix B.1.

3.4.2 Design of Power Allocation

Next, we substitute the optimal solution f ∗k (3.13) into the original Problem (P1). We

jointly optimize the power allocation when the local accuracy parameter η, the bandwidth

bk, the IRS parameters Θ and wk are known. The objective function becomes

Ek = G(η)

(
S

Rk

(pc,k + pk)κDkckL(η)

(
L(η)Dkck

T/G(η)− S/Rk

)2
)
,

where Rk is a function of pk, bk, and Θ. A direct optimization is quite hard. To solve this

problem, we optimize each variable in an iterative manner. Specifically, we write

f 2
k =

f t,3k
f ∗k

=
f t,3k

L(η)Dkck

(
T

G(η)
− S

Rk

)
, (3.14)

where f tk is the result in the tth iteration. The objective function (3.12) then assumes

a simpler form as Ek = G(η)
(
S
Rk

(pc,k + pk) + κf t,3k

(
T

G(η)
− S

Rk

))
. When fk is fixed, the
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problem becomes

(P2a) min
pk

pk + pc,k − Ak
Rk

(3.15)

s.t. (C4),

where Ak = κf t,3k is a constant in each iteration step.

Theorem 5. The optimal solution to (P2a) when pc,k − Ak > 0 is given by

p∗k = min{p′k, Pmax}, (3.16)

where p′k is the solution to h(pk) = ak
bk+akpk

(pc,k + pk − Ak)− ln(1 + akpk/bk) = 0.

Proof. The proof is shown in appendix B.2.

If pc,k − Ak ≤ 0, then the objective function in the subproblem is negative when pk +

pc,k−Ak < 0 and positive when pk + pc,k−Ak > 0. By investigating the monotonicity of the

objective function, we find that Rk

Ak−pc,k−pk
is strictly increasing on the interval [pk,min, Pmax].

Hence the objective function is minimized when pk = pk,min. In this paper, we only consider

the case where pc,k−Ak > 0 for simplicity. The case pc,k−Ak < 0 can be similarly analyzed.

3.4.3 Design of Bandwidth Allocation and IRS Parameters

When the power and frequency parameters are fixed, we can see that minimizing energy

consumption is equivalent to maximizing the achievable rate Rk. The subproblem becomes

(P2b) max
bk,wk,Θ

Rk (3.17)

s.t. (C3), (C5).

First of all, we can prove that Rk is a concave function w.r.t. bk on the interval [0, B].

The optimal bandwidth allocation bk for the singe device case can also be obtained with a
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bisection method by setting the first derivative of Rk to zero. To save space, we leave out

this part of content.

Now, we optimize the IRS related parameters Θ and wk. Maximizing the achievable

rate Rk is equivalent to maximizing the corresponding SNR ak. The problem becomes

max
θn,wk

pk|wH
k hk|2

N0|wH
k |2bk

(3.18a)

s.t. 0 ≤ θn ≤ 2π, (3.18b)

where hk , hd,k + GΘhr,k.

This problem can be solved by alternative optimization. Specifically, we first fix the

IRS phase shift matrix Θ and find the optimal detection vector wk. Without changing the

nature of the problem, one can set |wH
k |2 = 1 for simplicity. This problem becomes the

well-known maximum ratio combing (MRC) detection problem. The SNR is maximized at

w∗k =
hk
|hk|

. (3.19)

Next, for a fixed wH
k , we optimize the IRS phase vector. This problem is equivalent to

the following problem.

max |wH
k (hd,k + GΘhr,k)| (3.20a)

s.t. 0 ≤ θn ≤ 2π, (3.20b)

We follow a similar procedure as in [17] by rewriting

|wH
k (hd,k + GΘhr,k)| ≤ |wH

k hd,k|+ |wH
k GΘhr,k| ≤ |wH

k hd,k|+ |wH
k Gdiag(hr,k)| (3.21)

where the first inequality is due to the triangle inequality and the equality holds if and only if

arg(wH
k hd,k) = arg(wH

k GΘhr,k) , φ0. Note that diag(Θ) is a diagonal matrix and we extract
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its diagonal as a vector v = diag(Θ), then wH
k GΘhr,k = wH

k Gdiag(hr,k)v. Considering the

constraint that |vn| = |ejθn| = 1, the optimal solution to this problem is given by

v∗ = exp
{
j(φ0 − arg(wH

k Gdiag(hr,k)))
}
, (3.22)

where φ0 = arg(wH
k hd,k).

Remark 1. IRS can strengthen the received signal power by aligning the cascaded channel

with the direct channel compared with that without IRS.

This alternating optimization method is appealing since it has a closed-form expression

for both the IRS phase shift vector and the signal detection vector. Its convergence is

guaranteed since each subproblem ensures that the objective function is non-decreasing over

iterations and is bounded above as the second inequality in (3.21) suggests.

3.4.4 Design of the Accuracy Parameter

Finally, we optimize the accuracy parameter η. For simplicity of notation, the objective

function can be rewritten as

f(η) =
1

1− η

(
u+ v log

(
1

η

))
, η ∈ (0, 1), (3.23)

where u = (pc,k + pk)S/Rk and v = κDkckf
2
k `1 are both positive numbers.

Theorem 6. The optimal accuracy parameter η∗ is the solution to h(η) = 0, where

h(η) = −v(1− η) + uη − vη ln(η). (3.24)

Proof. The proof is shown in appendix B.3.

The algorithm for single user training is presented in Algorithm 2. The mainly com-

plexity comes from the alternative updates of Θ and wk, whose complexity are on the order
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Algorithm 2 Energy-efficient Optimization for Single Device

1: Initialize IRS phase shift matrix Θ and the iteration number t = 1, s = 1;
2: repeat
3: Obtain ws

k according to (3.19);
4: Obtain vs according to (3.22);
5: s = s+ 1;
6: until convergence
7: repeat
8: Obtain f tk according to (3.13);
9: Obtain ptk according to (3.16);

10: Obtain btk ;
11: Obtain ηt according Theorem 6;
12: Calculate Ek based on (3.12);
13: t = t+ 1;

14: until
|Et+1

k −Et
k|

|Et
k|

≤ ε1 and (C1) is satisfied

of O(MN,N2) and of O(MN2), respectively. We can therefore claim that the overall com-

plexity is O(I1MN2), where I1 is the iteration involved in Lines 2-6 in Algorithm 2.

3.5 Analysis of the Multiuser Federated Learning System

In this section, we consider the more practical multiuser federated learning system. The

objective function becomes

E =
∑

k

Ek =
∑

k

G(η)

(
S

Rk

(pc,k + pk) + κDkckf
2
kL(η)

)
. (3.25)

3.5.1 Design of the Device CPU Frequency

First, we optimize the frequency when the training accuracy η is known. Minimizing

the sum energy consumption of each device is equivalent to minimizing the individual energy

consumption of each device. Again, for each device, Ek is an increasing function in terms

of fk. As a result, the frequency should be set as (3.13) to satisfy the latency constraint of

each device.
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3.5.2 Design of Power Allocation

From the objective function (3.25), we find that minimizing the energy consumption for

all users is equivalent to

(P3a) min
pk

∑

k

pk + pc,k − Ak
Rk

(3.26)

s.t. (C3),

where Rk = bk log2

(
1 +

pk|wH
k hk|2

N0|wH
k |2bk

)
. Similarly, minimizing the sum of energy consumption is

equivalent to minimizing the energy consumption of each device. Hence the optimal power

allocation can be similarly obtained as (3.16), which is a one-dimensional search problem for

each user.

3.5.3 Joint Design of Bandwidth Allocation and IRS Parameters

When the power and frequency are fixed in the last iteration, it is easy to verify that

the optimal detection vector should be the same as the single device case as in (3.19), which

maximizes the SNR for each device. Hence, the problem becomes

(P3b) min
Θ,bk

∑

k

pc,k + pk − Ak
bk log2(1 + pk|hHk hk|/(N0bk))

(3.27)

s.t. (C3), (C5),

where hk = hd,k + GΘhr,k.

The problem is difficult since the variables bk and Θ are coupled in the numerator and the

problem is non-convex. Moreover, the objective function in (P3b) is still not straightforward

with the phase shift vector Θ. Now we extract the diagonal elements of Θ to have v̄ =
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diag{Θ} ∈ CN×1. Supposing Hk = Gdiag{hr,k} ∈ CM×N , we have

hk = hd,k + Hkv̄ (3.28)

|hHk hk| = hHd,khd,k + v̄HHH
k Hkv̄ + hHd,kHkv̄ + v̄HHH

k hd,k. (3.29)

By introducing an auxiliary matrix Rk ∈ C(N+1)×(N+1) and an auxiliary vector v ∈

C(N+1)×1, we further obtain

Rk =




HH
k Hk HH

k hd,k

hHd,kHk 0


 , v =




v̄

1


 . (3.30)

Eqn. (3.29) can be further simplified as

|hHk hk| = vHRkv + hHd,khd,k = Tr(RkV) + hHd,khd,k , fk(V),∀k ∈ K, (3.31)

where V = vvH ∈ C(N+1)×(N+1). Then Problem (P3b) is equivalently transformed to (P3c),

given by

(P3c) min
V,bk

∑

k

pc,k + pk − Ak
bk log2(1 + pkfk(V)/(N0bk))

(3.32a)

s.t. Vn,n = 1 (3.32b)

rank(V) = 1 (3.32c)

V � 0 (3.32d)

(C5).

Note that constraints (3.32b) and (3.32d) ensure that V = vvH holds true after optimization.

Constraint (3.32c) is introduced to guarantee the unit modulus constraint when recovering

v from V. Due to the rank one constraint, this problem is non-convex in terms of the

optimization variable V. However, we have the following theorem.
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Theorem 7. After dropping the rank one constraint (3.32c), Problem (P3c) is convex in

terms of bk and V, respectively.

Proof. The proof is shown in B.4.

Note that simply dropping the rank one constraint (3.32c) does not necessarily result in

an optimal v∗ due to the additional constraint (3.32b). In other words, the optimal solution

to Problem (P3c) after dropping the rank one constraint might not be feasible. One way is to

use the Gaussian randomization method as shown in [17] to find an approximated solution. A

common way to recover v from V is to denote V as V = UΣUH , where U ∈ C(N+1)×(N+1) is

an unitary matrix and Σ is an eigenvalue diagonal matrix. A feasible solution is constructed

as v̂ = VΣ1/2ζ, where ζ ∈ C(N+1)×1 is a randomly generated complex circularly symmetric

Gaussian random variable with zero mean and unit variance. The solution can be recovered

by v∗ = exp
{
j arg

(
v

vN+1

)}
where vN+1 is the last element of vector v. The optimal V∗ can

be further obtained from v∗.

We denote the problem of (P3c) after dropping the rank one constraint (3.32c) as prob-

lem (P3c2’). Since this problem is in the form of sum-of-ratios, conventional fractional

programming techniques such as the Dinkelbach’s method cannot be used. To solve this

problem, we first transform Problem (P3c2’) into its equivalent form (P3d) by introducing

auxiliary variable βk.

(P3d) min
V,βk,bk

∑

k

βk (3.33)

s.t.
pc,k + pk − Ak

bk log2(1 + pkfk(V)/(N0bk))
≤ βk (3.34)

(3.32b), (3.32d), (C5).
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Theorem 8. If V∗, {b∗k}, and {β∗k} are the optimal solution to (P3d), then there exists {λ∗k}

such that V∗ and {b∗k} are a solution to the following problem for λk = λ∗k and βk = β∗k.

(P3d′) min
V,bk

∑

k

λk

(
pc,k + pk − Ak − βkbk log2

(
1 +

pkfk(V)

N0bk

))
(3.35)

s.t. (3.32b), (3.32d), (C5),

and V∗, {b∗k} also satisfy the following system equation for λk = λ∗k and βk = β∗k:

λk =
1

b∗k log2(1 + pkfk(V∗)
N0b∗k

)
(3.36a)

βk =
pc,k + pk − Ak

b∗k log2(1 + pkfk(V∗)
N0b∗k

)
. (3.36b)

Proof. The proof is shown in appendix B.5

Theorem 8 shows that the solution to Problem (P3d) can be obtained by finding the

solutions that satisfy the KKT conditions in (B.7) among the solutions to Problem (P3d’).

More important, if the solution is unique, it will be the global optimal solution.

1) Finding (V∗, b∗k) When λk and βk are given: Note that for a fixed λk and βk, Prob-

lem (P3) belongs to convex optimization. Hence effective algorithms can be designed to

find the optimal solution (V∗, b∗k). Since V and bk are coupled, we propose to use the al-

ternative optimization which optimizes each variable alternatively. First of all, when bk is

known, Problem (P3d’) becomes a semidefinite programming (SDP), which can be solved

with existing optimization tools such as CVX [86].

max
V

∑

k

λkβkbk log2

(
1 +

pkfk(V)

N0bk

)
(3.37)

s.t. (3.32b), (3.32d).
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Algorithm 3 Joint Optimization of V and bk for Given λk and βk

1: Initialization btk and set t = 1;
2: repeat
3: Obtain Vt by solving problem (3.37) with SDP;
4: Recover vt from Vt with Gaussian randomization algorithm;
5: Update the new variable Vt;
6: Obtain btk from (3.38);
7: t = t+ 1;
8: until the objective function in (P3d’) does not decrease

Theorem 9. The optimal solution of bk to (P3d’) is given by

bk =
pkfk(V)

N0xk
, (3.38)

where

xk = − 1

WL(−e−Ck)
− 1, (3.39)

and WL(·) is the Lambert W function. Note that the µ in the expression of Ck is the Lagrange

multiplier for Problem (P3d’) satisfying
∑

k bk = B.

Proof. The proof is shown in appendix B.6

The complete algorithm of finding the V and bk when λk and βk are given is presented

in Algorithm 3.

2) Update Lagrange Multipliers λk and βk: Now we update the Lagrange multipliers

λk and βk so that (3.36) will be satisfied. We follow a similar step as in [80,87,88] with the

simple gradient method. Specifically, we choose initial values of the Lagrange variables and

then a standard Newton-like method is used to update the Lagrange multipliers, as

λt+1
k = λtk + ξi

(n)∇1 (3.40a)

βt+1
k = βtk + ξi

(n)∇2. (3.40b)

80



Algorithm 4 Joint Optimization of V and bk

1: Initialize λtk and βtk according to (3.36);
2: Set t = 1;
3: repeat
4: When λtk and βtk is given, obtain Vt and btk with Algorithm 3;
5: Update λt+1

k and βt+1
k according to (3.40);

6: t = t+ 1;
7: until φk(λ

t+1
k ) and ψk(β

t+1
k ) approaches zero;

Here t is the iteration index, ξi
(n)

is the step size, and ∇1 and ∇2 are the gradient directions

for λtk and βtk, respectively, given by

∇1 = −φk(λk)
φ′(λk)

, ∇2 = −ψk(βk)
ψ′(βk)

.

We also have

φk(λk) = λkb
∗
k log2

(
1 +

pkfk(V
∗)

N0b∗k

)
− 1

ψk(λk) = βkb
∗
k log2

(
1 +

pkfk(V
∗)

N0b∗k

)
− (pc,k + pk − Ak),

and n is the smallest integer among {1, 2, ..., } satisfying

∑

k

|φk(λt+1
k )|2 +

∑

k

|ψk(βt+1
k )|2 ≤ (1− εξi(n)

)2

(∑

k

|φk(λtk)|2 + ψk(λ
t
k)|2
)
, (3.41)

where ε ∈ (0, 1).

Since
(

1− εξi(n)
)2

will be a random number between [0, 1], inequality (3.41) will ensure

that φk(λ
t+1
k ) and ψk(β

t+1
k ) both go to zero, which is exactly what the optimal solution

in (3.36) suggests. The joint optimization algorithm is summarized in Algorithm 4.

Theorem 10. Algorithm 4 will converge after a finite number of iteration steps.

Proof. The proof is shown in appendix B.7
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3.5.4 Design of the Accuracy Parameter

Finally, we optimize the accuracy parameter η. The objective function can be written

as

f(η) =
1

1− η

(
u+ v log

(
1

η

))
, η ∈ (0, 1), (3.42)

where u =
∑

k(pc,k + pk)
S
R

and v =
∑

k κDkckf
2
k `1. The optimal η can be similarly obtained

as in the single user case with the bisection algorithm.

The complete algorithm for energy-efficient federated learning is presented in Algo-

rithm 5. Note that the variables involved generally has a closed-form expression or can be

obtained via simple one-dimensional search with neglect-able complexity except for variable

bk and v, which requires solving an SDP problem. Generally, solving an SDP problem with

the interior method or with general CVX solvers such as MOSEK [89] incurs high complexity.

According to [90, Thm. 3.12], the complexity of solving an SDP problem with m constraints

and an n× n variable matrix is O(
√
n log(1/ε)(mn3 +m2n2 +m3)), where ε is the solution

accuracy. In this problem, we have n = N + 1 and m = N + 1, hence the approximate com-

plexity for solving one SDP problem would be O(
√
N + 1 log(1/ε)(N + 1)4). Suppose the

iterations for Algorithm 3, Algorithm 4 and Algorithm 5 are I2, I3, and I4, respectively. Then

the proposed Algorithm 5 needs to solve a standard SDP problem (3.37) for I2I3I4 times.

Hence the total complexity of Algorithm 5 would be O(
√
N + 1 log(1/ε)I2I3I4(N + 1)4).

When the number of the reflecting elements in the IRS becomes large, the total complexity

would become considerably high.

3.6 Low Complexity Algorithm

As analyzed before, the complexity of the proposed Algorithm 5 mainly comes from

solving the SDP problem (3.37). To reduce the complexity, or more specifically, to reduce
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Algorithm 5 Energy-efficient Federated Learning

1: Initialize IRS phase shift matrix Θ and the iteration number t = 1;
2: repeat
3: Obtain f tk according to (3.13);
4: Obtain ptk according to (3.16);
5: Obtain btk, vt with Algorithm 4;
6: Obtain ηt according to Theorem 3;
7: Calculate the total energy consumption Et;
8: t = t+ 1;

9: until |E
t+1−Et|
|Et| ≤ ε1 and (C1) is satisfied

the complexity of getting v and bk in Algorithm 3, we propose to leverage the majorization-

minimization (MM) algorithm [91]. The idea is to find an easy-to-solve surrogate problem

with a surrogate objective function to problem (3.37), and then solve this problem induced

from the surrogate objective function instead of the original one. This approach can generate

a sequence of sub-optimal solutions vt at each iteration to approach the global optimal

solution.

To proceed, we rewrite problem (3.37) as

max
v

∑

k

λkβkbkgk(v) (3.43)

s.t. vN+1 = 1; |vn| = 1, ∀1 ≤ n ≤ N,

where gk(v) = log2

(
1 +

pk(vHRkv+hH
d,khd,k)

N0bk

)
. To show the hidden convexity of gk(v), we

have

gk(v) = − log2

(
1−

pk
(
vHRkv + hHd,khd,k

)

Mk

)
, (3.44)
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where Mk = N0bk + pk
(
vHRkv + hHd,khd,k

)
. Then gk(v,Mk) is jointly convex in terms of

{v,Mk} [92]. Its lower bound surrogate function is given by

gk(v,Mk) ≥ gk(v
t,M t

k) +
∂gk
∂Mk

∣∣
Mk=Mt

k

(Mk −M t
k) + (v − vt)H

∂gk
∂v

∣∣∣∣
v=vt

= consttk + τ tkv
HRkv + 2vHrtk , g̃k(v|vt), (3.45)

where τ tk = −p2
k(vt,HRkvt+hH

d,khd,k)
Mt

kN0bk ln 2
, rtk = pkRk

N0bk ln 2
vt and

∂gk
∂Mk

∣∣
Mk=Mt

k

= −
pk
(
vt,HRkv

t + hHd,khd,k

)

M t
kN0bk ln 2

∂gk
∂v

∣∣
v=vt =

2pkRk

N0bk ln 2
vt.

g̃k(v|vt) is twice differentiable and concave. Moreover, we can verify that (i) g̃k(v
t|vt) =

gk(v
t); (ii)g̃k(v|vt) ≤ gk(v); and (iii) ∇g̃k(v|vt) = ∇g̃k(vt). Hence g̃k(v) is minorized at any

vn with a function g̃k(v|vt) [91, 92]. The MM method can be used to find a sequence of

solutions to approach the global optimal solution with low complexity.

We can rewrite the objective function in (3.43) as
∑

k λkβkbkg̃k(v|vt). Put the expression

of g̃k(v|vt) into the objective function and remove the constant. Accordingly, we need to

solve the following problem at each iteration t.

min
v

vHRtv − 2Re(vHrt) (3.46)

s.t. vN+1 = 1; |vn| = 1, ∀1 ≤ n ≤ N,

where Rt = −∑k λkβkbkτ
t
kRk and rt =

∑
k λkβkbkr

t
k.

Proposition 1. The objective function in (3.46) can be approximated by [91]:

vHRtv − 2Re(vHrt) ≤ vHΓtv−2Re
(
vH
[
rn+(Γt−Rt)vt

])
+vt,H(Γt−Rt)vt

= ρmax(Rt)vHv − 2Re
(
vH r̃t

)
+ const′, (3.47)

84



where λmax{Rt} is the maximum eigenvalue of matrix Rt, Γt = λmax{Rt}IN+1 and r̃t =

rt + (λmax{Rt}IN+1 −Rt)vt.

To minimize the objective function in (3.46), we can optimize its upper bound (3.47).

Note that vHv = N + 1 since |vn| = 1, ∀n. Hence, we only need to maximize the term

2Re
(
vH r̃t

)
. This term is maximized when the phase of v and the phase of r̃t are the same,

i.e.,

vi = exp
{
j arg(r̃ti)

}
, ∀1 ≤ i ≤ N. (3.48)

The phase vector has a closed-form expression (3.48). The complexity of the proposed

algorithm mainly comes from computing the eigenvalues of matrix Rt ∈ C(N+1)×(N+1), which

has a complexity of O((N + 1)3). Hence the complexity would be O(I2I3I4(N + 1)3).

3.7 Simulation Study

In this section, simulation results are presented to validate the performance of the

proposed IRS-assisted federated learning system. The federated learning parameters follow

a similar setting as in [79,93]. The IRS related parameters are set based on the setting in [23].

Specifically, we consider an IRS assisted communication scenario as depicted in Fig. 3.2. In

this x-y plane, the IRS is located at location (20, x)m. The default value of x is 20m in this

paper. The IoT devices are located randomly in a disk area around center (30, 0)m with

a radius of 2m. The BS is located at the origin (0,0)m. In this section, we will change

the location of the IRS and investigate the impact of such changes on the overall system

performance. The channel gains are a combination of distance-dependent large-scale fading

and small-scale fading. The small-scale fading is assumed to be Rayleigh fading CN (0, 1).

The large scale path loss model follows Ad−α, where A = −30dB is the path loss at a

reference distance 1m, d is the distance between the transmitter and receiver, and α is the

path loss component. The path loss components for channels hr,k, hd,k, and H are set to

2.2, 3.5, and 2.2, respectively. The noise power N0 is set to 10−10W/Hz. The global training
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Figure 3.2: Illustrate the deployment of the IRS-assisted federated learning system.

Table 3.1: Federated Learning Parameter Setting

Parameter Notation Value

Local sample data size Dk [8,12] MB
Number of CPU cycles to process one bit ck 30 cycles/bit
Chip energy coefficient κ 2× 10−28

Training completion deadline Tk 40s
Upload model size S 7850 bit
IoT device static power pc,k 0.5 W
Maximum operating frequency fmax 1 GHz
Maximum transmit power Pmax 20 W
Bandwidth B 1 MHz
Noise power N0 10−10 W/Hz

completion deadline is set as T = 40 s. For the bisection algorithm, the target accuracy is

set to 10−5. For Algorithm 2 and Algorithm 5, the stopping criteria is set to ε1 = 0.01. Each

simulation result is the average of over 300 realizations.

The following two benchmark algorithms are also simulated for comparison purpose.

1. IRS with Random Phase: The IRS uses random phases. The detection vector wt
k,

frequency fk, power pk, bandwidth bk, and the local accuracy parameter η are optimally

designed as in the proposed scheme.

2. Without IRS: There is only the direct channel between IoT devices and the BS. The

other parameters are set as the same as in the IRS with Random Phase case.
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3.7.1 Impact of the Number of Reflecting Elements N

First of all, we verify the performance of the proposed low-complexity algorithm by

changing the number of reflecting elements on the IRS. In Fig. 3.3, we set K = 5, M = 4,

and T = 40s and compare the energy consumption performance of different schemes. The

SDP algorithm denotes Algorithm 5 where problem (3.37) is solved using SDP. It can be

seen that with the increase of the number of reflecting elements on the IRS, the energy

consumptions of the proposed low-complexity algorithm and the SDP algorithm both de-

crease. This is because the IRS can reconfigure the environment and help the devices to

save model uploading power. A larger number of reflecting elements on the IRS generally

brings a better performance. However, the processing complexity in optimizing the elements

would also become quite high. Moreover, we find that the energy consumption curves for

the case without IRS and IRS with random phase shift look like horizontal lines. This is

straightforward as anticipated. For the case without IRS, changing the number of reflecting

elements on the IRS will have no impact on the energy consumption performance. For the

case IRS with random phase shift, the performance does not improve significantly since the

channels are not properly configured.

In Fig. 3.4, we perform similar experiments with K = 10, M = 5, and T = 40s. When

the number of reflecting elements on the IRS is increased to 50, the proposed algorithm

can save up to about 55 Joule compared with no IRS deployment and IRS with random

phase shift. These results again demonstrate the importance of jointly optimizing resource

allocation and IRS beamforming. From both Fig. 3.3 and Fig. 3.4, the performance of the

proposed algorithm and the SDP algorithm achieves very similar performance, but the former

has a significantly lower complexity and runs much faster. Hence, for the rest simulations,

we will only consider the proposed low-complexity algorithm.
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Figure 3.3: Total energy consumption versus N when K = 5, M = 4, and T = 40.
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Figure 3.4: Total energy consumption versus N when K = 10, M = 5, and T = 40.

3.7.2 Convergence Behavior

In this section, we investigate the convergence of the proposed low-complexity algo-

rithm. The convergence behavior of the general federated learning scheme is plotted in
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Figure 3.5: Convergence of the first device in a multiuser federated learning system with
K = 20, M = 4, and T = 40.

Fig. 3.5. It can be seen that after 2-3 iterations, the energy consumption decreases to a low

value. However, the completion time might violate the training deadline constraint. After

several fine-tuning iterations, we can obtain a feasible solution that minimizes the energy

consumption while also satisfying the completion time constraint.

We also change the number of the reflecting elements on the IRS. We find that when

N = 50, the device saves more energy than the case when N = 30. Despite that, convergence

of the training process does not change much when N is varied.

3.7.3 Energy and Time Consumption of Each Device

The power, bandwidth, and frequency allocation parameters for different devices are

presented in Fig. 3.6. In this simulation, the devices are located very close to each other.

Their operating frequency, power, and bandwidth seem not differ too much. The total energy

consumption and time consumption over the entire training process is shown in Fig. 3.7. It

can be seen that all the devices share the same latency, which is exactly T = 40s, while
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Figure 3.6: Power, bandwidth, and frequency allocation for different devices with K = 20,
M = 4, N = 20, and T = 40.

the consumed energy differs. With our parameter setting, we also find that local training

nearly does not consume much energy, but it accounts for almost 99% of latency. On the

contrary, model uploading takes a lot of energy while it nearly takes no time. This setting is

reasonable since in practice the model is trained locally by each device. The training usually

takes several rounds which take time. Moreover, the device works on the lowest possible

frequency, which further slows down the completion time. On the other hand, the devices

are battery powered, the model update process consumes most of the energy. In this case,

the deployed IRS can work as a passive, enhanced channel, which helps the devices to save

their battery power.

3.7.4 Impact of the Number of Devices K

We investigate the impact of the number of devices in Fig. 3.8. We find that the energy

consumption generally increases linearly with the number of devices involved. This is because

in the multiuser system, only the bandwidth and the IRS reflecting elements are optimized
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Figure 3.7: Total energy consumption and latency of local model training and model up-
loading for different devices with K = 20, M = 4, and T = 40.

jointly. Each device selects its own operating frequency and power. With increased number

of devices, the proposed algorithm saves more energy than the two baseline algorithms.

Moreover, the performance gap becomes larger as K is increased. This result demonstrates

the advantages of the proposed algorithm in a communication system where the number of

IoT devices is large.

3.7.5 Impact of the Number of Antennas M on the BS

Fig. 3.9 shows the impact of the number of BS antennas on energy saving of the federated

learning system. As can be seen, with more receiving antennas on the BS, the system

energy consumption can be greatly reduced. This is because the antennas on the BS provide

additional multiplexing gain at the receiver so that each IoT device can reduce their transmit

power for model uploading. Moreover, the performance gap between the proposed algorithm

and the two benchmark algorithms will gradually vanish with increased M . This motivates
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Figure 3.8: Total energy consumption versus K with M = 4, N = 40, and T = 40.
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Figure 3.9: Total energy consumption versus M with K = 5, N = 20, and T = 40.

us to deploy an IRS with a larger number of reflecting elements, i.e., N > M , to harvest the

reconfigured channel gain provided by the IRS.
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Figure 3.10: Total energy consumption versus T with K = 5, N = 20, and M = 4.

3.7.6 Impact of the Task Completion Time T

Fig. 3.10 shows the impact of task completion time T on energy saving of the federated

learning system. It can be seen that the energy consumption slightly decreases with the

increase of the completion time. This is because the devices always work on the lowest

frequency to save energy and satisfy the task completion time. Moreover, in our setting

the local computing takes a lot of time but only accounts for a small portion of energy

consumption, while model uploading takes little time but consumes a lot of energy. In other

words, the total energy consumption of the proposed federated learning system is insensitive

to the task completion time.

3.7.7 Impact of the Bandwidth Constraint B

Fig. 3.11 shows the impact of the communication bandwidth on the system energy

consumption. With the increase of the available bandwidth, each IoT device can reduce

their transmit power or their uploading time to upload the same model. Hence the total
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Figure 3.11: Total energy consumption versus bandwidth B with K = 5, N = 20, and
M = 4.

energy consumption can be saved. As can be seen, the absolute value of the slope of these

curves gradually goes to zero, which suggests that the impact of bandwidth is diminishing in

the high bandwidth region. In other words, when the available bandwidth is large enough,

the other communication/computing factors will become the major factor(s) that prevent

the reduction of energy consumption.

3.7.8 Impact of the IRS Location and Path Loss on the Reflecting Channel

The impact of the IRS location on the system energy consumption is presented in

Fig. 3.12, where x measures the distance between the IRS and BS. When the IRS is close to

the IoT devices, the energy saving will be significant. The impact of the location of the IRS

depends on the IRS reflected channel fading. In practice, the location of the IRS should be

properly selected to reap the maximum benefit of the IRS technology. Similarly, the energy

consumption versus the path loss of the reflecting channel is shown in Fig. 3.13. The default

setting on the reflected channel is α = 2.2 for hr,k and H. Now we change the value of the
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Figure 3.12: Energy consumption versus the location of the IRS when N = 20, K = 20,
M = 4, and T = 40.

path loss from 2 to 2.5. We find that when the path loss on the reflected channel becomes

larger, the energy saving becomes less. This is easy to explain. When the path loss on the

reflected channel becomes larger, the channel enhancement effect of the IRS will become

weaker. In the extreme case when the path loss on the reflected channel is infinitely large,

i.e., the reflected channel is blocked, the deployment of IRS will make on difference.

Our simulation assumes that the repeated model uploading accounts for the major

energy consumption of the federated learning system. In some systems, the local computing

may take up the major energy consumption compared with the communication process.

Different system factors such as local data size, model accuracy level, environment noise

power level, and the CPU processing capability may have various effects on the system

trade-offs: (i) between task completion time and the energy consumption, and (ii) energy

consumption caused by communication and computation. The proposed algorithm provides

a low complexity solution to explore these trade-offs.
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Figure 3.13: Energy consumption versus the path loss of the reflecting channel.

3.8 Conclusions

In this paper, we considered an energy-efficient federated learning framework where de-

vices upload their locally trained models when assisted by an IRS. In this framework, an

energy minimization problem was considered. We proposed an efficient parameter optimiza-

tion algorithm to jointly optimize system parameters, such as the operating frequency of each

device, transmit power, bandwidth, the IRS phases, and the local accuracy parameter. The

proposed low-complexity algorithm can reasonably manage the energy resources by balanc-

ing the communication and local training costs. We have conducted extensive experiments

to shed insight on the benefits on the use of IRS in federated learning systems.
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Chapter 4

Energy-Efficient Resource Allocation In D2D Networks With Deep Learning

4.1 Introduction

Energy efficient power control is one of the most important issues for the sustainable

development of future wireless networks [94, 95]. It is estimated that the energy-efficiency

(EE) will increase 2000 times compared to the present networks [96] and the number of

connected devices will reach 50 billion by 2020 [97]. The corresponding greenhouse gas

emissions will bring a severe impact on global warming. On the other hand, restricting the

connection of devices is unrealistic. In viewing of this, there has been continued interests in

improving the EE of wireless network systems, i.e., maximizing the number of transmitted

bits per joule consumption. This topic is of fundamental importance to a variety of practical

communication scenarios, such as massive MIMO systems [98], wide-band systems [99], D2D

networks [100], relay assisted MIMO networks [101], multi-cell and/or small-cell orthogonal

frequency division multiple access (OFDMA) networks [102].

The EE of a wireless link is defined as a ratio, as

EE[bit/Joule] =
Rate[bit/s]

Power consumption[W ]
. (4.1)

Due to the fractional nature of energy-efficient performance metrics, conventional convex

optimization theory cannot be applied directly. Instead, duality theory and fractional pro-

gramming [103] provides a set of suboptimal solutions. Unfortunately, due to the existence

of link interference, the numerator of EE is usually non-concave. The EE maximization

problem is thus NP-hard in general [104, 105]. It is shown in [104] that a global optimal

solution incurs an exponentially growing complexity. Due to limited computation capacity
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and stringent delay requirements, especially in a large network, it is almost impossible to

perform real-time optimal power control.

In viewing of this, several sub-optimal methods are proposed for EE maximization

problems. One common approach is the interference cancellation technique. In [106], the

multiuser interference is mitigated with the presence of a larger number of base station an-

tennas. In [107], an iterative algorithm is developed to maximize the EE with orthogonal or

semi-orthogonal subcarrier allocation schemes. However, these works require a large number

of wireless resources (orthogonal channels) and often lead to a poor performance. Another

line of approach is alternating optimization, which is not optimal but enjoys limited (typi-

cally polynomial) complexity. In [108], EE is optimized by solving a series of concave-convex

fractional relaxations. This way, the difficult problem is tackled by solving a series of easier

approximating problems. Following this idea, in [104], a sequential fractional programming

algorithm is integrated into fractional programming to compute a suboptimal power con-

trol with an affordable complexity. Contributions in this sense also include [101, 109, 110],

which consider multiple antenna system, millimeter-wave system, and full duplex systems,

respectively.

However, most of the existing approaches use iterative algorithms. They do not lead to

a simple online implementation and do not provide a closed-form solution. The computation

demanding nature would make real-time deployment a challenging task, especially in the

rapidly changing large-scale wireless environment. For example, in vehicle-to-vehicle (V2V)

communication where the road safety and traffic efficiency directly depend on the network

delay, simply relying on conventional methods that perform channel estimation first and then

computing the optimal power control with iterative algorithms would waste a lot of time and

channel resources. The state-of-art approach would not be able to meet the stringent delay

requirement of the V2V communication system.

Nowadays, deep learning has achieved great success in computer vision, natural language

processing, and many other applications. Recent results have already demonstrated that
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deep learning can be viewed as an efficient tool in solving communication problems, such

as channel estimation [111, 112], signal detection [113–115], channel modeling [116–118],

beam selection [119,120], resource allocations [121–123], indoor fingerprinting [124,125], and

smart congestion control [126]. Of all the existing works, we are particularly interested in

making real-time resource allocation practical with the aid of deep learning. In [121], a small

deep neural network (DNN) is adopted to approximate a popular interference management

algorithm to maximize the sum-rate of a network with high-accuracy. The computation time

is significantly reduced. Ref. [122] proposed a framework where a deep Q-network (DQN) is

adopted to estimate a suitable schedule and then a DNN helps to allocate power based on

this schedule to maximize the sum rate of a cellular network. [127] proposed an unsupervised

learning method to tackle the problem of lack of ground truth. [123] develop a DNN based

optimal power control to maximize the EE of a wireless network. The developed DNN based

solution is shown to be virtually optimal with extremely low online complexity.

However, the current DNN based resource control algorithm is centralized. In order to

perform the optimal power control, the BS needs to know the instant channel state infor-

mation (CSI) on all the links in the network. This is sometimes unrealistic and would cause

considerable delay, especially in large networks. Motivated by the fact that in some networks,

the second order channel statistic varies slowly, and the CSI can be viewed as a function of

the distance dependent path-loss, we investigate the possibility of training a spatial neural

network (NN) with transmitter-receiver geography location information (GLI), which can

be easily obtained by current global positioning systems (GPS) or indoor localization tech-

niques [124, 125]. This way, we no longer need a complex channel estimation process, and

the response time can be greatly reduced. Moreover, the learning ability of current DNNs

degrades significantly with the increase of the problem size. Although increasing the size of

the DNN can help to alleviate this problem, the learning power is till limited and sometimes

the training loss does not decrease. To tackle this problem, we introduced convolutional
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layers to better capture the interference pattern across different links. This kind of struc-

ture shows great learning ability in large size problems. Besides, motivated by the success

of residual learning, a feedback connection is introduced to enhance the robustness of the

developed NN. With the adoption of NN, the computational burden is transformed from

on-line to off-line. The developed method is thus amenable for real-time applications.

Simulation results show that our proposed NN, which we call PowerNet, can achieve a

better performance in terms of EE than the several benchmark schemes. Also, PowerNet

shows great generalization ability and robustness in terms of both problem sizes and channel

fading types. Our simulation results demonstrate that using only GLI to perform optimal

power control is possible when channel fading is mainly characterized by distance based path-

loss. The performance may decrease slightly when channel shadowing and fast fading effect is

added. However, the complex channel estimation process can be avoided, and the time delay

can be greatly reduced. Due to the parallel computation in NN, the deep learning-based

method is almost 1000 times faster than the conventional iterative optimization algorithms.

This chapter is organized as follows. in Section 4.2, we introduce the system model and

formulate our problems. In Section 4.3, a successive pseudo-convex approximation (SPCA)

algorithm is proposed to find a sub-optimal solution. With the SPCA algorithm, we generate

the geographical-distance and power-allocation pairs as training data. In Section 4.4, we

present the proposed PowerNet to learn the mapping between the geographical-distance

and the resulting power control schedule. In Section 4.5, the system simulation setup is

introduced. In Section 4.6, our simulation study is presented. Section 4.7 concludes the

chapter.

4.2 System Model and Problem Statement

Consider a cell area with N independent D2D links, denoted by D, randomly located

in the two-dimensional region. The transmitter and receiver pairs are indexed by i ∈ D.

Suppose the transmit power of the ith link is denoted as pi and hij is the channel power gain
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from the transmitter of the jth link to the receiver of the ith link, which can be modeled as

hij = gijαij, (4.2)

where gij is the small-scale fast fading power component and αij is the large-scale fading

power component consisting of path-loss and shadowing.

Suppose p = [p1, p2, ..., pN ] is the power vector, then the weighted sum rate R(p) and

the total power consumption P (p) can be expressed as

R(p) =
∑

i∈D

wiRi(p) (4.3)

P (p) =
∑

i∈D

(βpi + Pc,i), (4.4)

respectively, where

Ri(p) = log

(
1 +

hiipi∑
j∈D,j 6=i hijpj + σ2

n

)
, (4.5)

is the data rate on link i, wi is the weight of link i, β is the inefficiency of the link’s power

amplifier, Pc,i is the fixed circuit power consumption of link i (including baseband, RF

chain, phase shifters, and power amplifiers), and σ2
n is the background noise. Hence the EE

maximization problem for the entire system can be formulated as

(P1) max
pi

ηEE(p) =
R(p)

P (p)
(4.6)

s.t. pi ∈ [0, pmax], (4.7)

where (4.7) denotes the peak power constraint at each link.

The goal of this chapter is to develop an energy-efficient power control algorithm, while

the challenges include
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1. In large networks, it is time consuming and resource demanding to obtain the exact

CSI for each link. Even if the CSI is obtained, it may change rapidly. The CSI updates

process will consume a significant amount of resources.

2. The objective of (P1) is in the form of a sum of fractions. Such problems are in general

NP-hard [128], and thus cannot be solved with a polynomial complexity using existing

optimization methods.

3. Considering the fact that the current wireless transceiver design is typically executed

at a timescale of milliseconds, the computationally demanding nature makes real-time

implementation highly challenging. Indeed, any change in channel realizations or num-

ber of users will lead to a quite different power allocation. Therefore, it would be of

great importance to develop an algorithm to solve (P1) within the channel coherence

time.

To address the problem of lacking CSI, we model channel fading as a distance-dependent

variable. This is generally reasonable since in most cases, the devices’ relative positions

already capture the main features of the channel. Hence, we can simply perform optimal

power control based on geographical location information (GLI). In practice, the GLI can

be obtained via current GPS or other positioning approaches with reduced cost. To enable

real-time power control, we will introduce a spatial learning method to approximate the

mapping from GLI to optimal power control. This way, the online computational cost will

be transferred to off-line training. A much faster response can thus be achieved.

4.3 A Successive Pseudo-convex Approximation Approach

The global optimal solution to (P1) can be found with the branch and bound algo-

rithm [129], which has an exponential complexity in terms of the number of variables [104].

The authors in [104] exploit the hidden monotonicity in the objective function to reduce the

searching region from the entire feasible set to the problem boundary, but the complexity to
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find the global optimal is still exponential. When the number of links is large, this algorithm

may not be suitable for real-time operation. Therefore, we resort to a more practical yet also

sub-optimal algorithm, which we call the successive pseudo-convex approximation (SPCA)

approach [130] in this paper.

The main idea of SPCA is to approximate the objective function of (P1) with functions

that have specific properties (e.g., convexity) and then to obtain the solution to the original

problem by solving the approximation problem. Specifically, we expand the nonconvex sum

rate function in the numerator of (4.6) with a first order Taylor series. Then the expanded

function is positive concave. Since the denominator of (4.6) is a linear function, we retain

it and do not make any changes. The objective function (P1) is thus approximated by a

pseudo concave function (as the ratio of positive concave and linear functions), which can be

solved by some iterative algorithms (see Definition 1). Also, this approximation ensures that

the original problem (P1) and the approximated problem shares the same sets of stationary

points (see Definition 2). Instead of searching for the stationary points of (P1) directly, we

search the stationary points of the approximation problem. Pseudo concavity ensures that

the resulted stationary points are global optimal for the approximated problems.

4.3.1 A Successive Pseudo Convex Approximation Approach

Definition 1. A function f(x) is pseudo convex if

∇f(x)T (y − x) ≥ 0⇒ f(y) ≥ f(x), ∀x,y ∈ X . (4.8)

Definition 2. A point y ∈ X is a stationary point of f(y) if

∇f(y)T (x− y) ≥ 0, ∀x ∈ X . (4.9)
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Remark 2. For convex (concave) optimization, stationary points are global optimal. For

nonconvex optimization, stationary points are local optimal. Any stationary point of the

pseudo convex optimization is also global optimal [131, Th. 9.3.3].

The Main Idea

To begin with, we expand the sum rate function (4.3) at a reference point p = pt with

a first order Taylor series as:

R(p) ≈ R̃(p; pt) =
∑

i∈D

wiR̃i(pi; p
t), (4.10)

where

R̃i(pi; p
t) , Ri(pi; p

t
−i) + (pi − pti)

∑

j∈D,j 6=i

∇piRj(p
t)

︸ ︷︷ ︸
Pricei

, (4.11)

where Ri(pi; p
t
−i) denotes the rate function of the ith user with its transmitting power to be

pi while all the other powers are fixed to pt−i = {ptj}j 6=i, i.e.,

Ri(pi; p
t
−i) = log

(
1 +

hiipi∑
j∈D,j 6=i hijp

t
j + σ2

n

)
. (4.12)

It can be seen that ∇pj R̃i(pi; p
t) = 0,∀i 6= j. Before proceeding, we show first how good the

approximated function (4.10) will be.

Proposition 2. R̃(p; pt) is differentiable, both its value and its gradient is the same as that

of R(p) at p = pt.
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Proof. It is obvious that R̃(p; pt)|p=pt = R(p)|p=pt . Due to the log function, the resulting

first order expansion will also be differentiable. Now let us look at the derivative, which is

∇piR̃i(pi; p
t)|pi=pti = ∇piRi(pi; p

t
−i)|pi=pti + Pricei = ∇pi

[∑

j∈D

Rj(p
t)

]
= ∇piR(p)|p=pt .

(4.13)

On the other hand, we have

∇piR̃(p; pt)|p=pt = ∇pi

[∑

j∈D

R̃j(pi; p
t)

] ∣∣∣∣
p=pt

= ∇piR̃i(pi; p
t)|pi=pti . (4.14)

Comparing (4.13) and (4.14), we conclude that the approximating first order function shares

the same gradient at the reference point p = pt.

Proposition 3. R̃(p; pt) is concave.

Proof. Due to the log nature, each Ri(pi; p
t
−i) is concave in pi since

∂Ri(pi; p
t
−i)

∂pi
=

c2

c1 + c2pi
∂2Ri(pi; p

t
−i)

∂2pi
= − c2

2

(c1 + c2pi)2
< 0,

where c1 =
∑

j∈D,j 6=i hijp
t
j + σ2

n and c2 = hii. The second part in (4.11) is a linear function

in terms of pi. Hence each R̃i(pi; p
t
−i) is a concave function. R̃(p; pt) is the sum of finite

concave functions, hence it is also concave.

For the original function Ri(p), it is concave in terms of pi but non-concave (actually

convex) in terms of pj, for all j 6= i. By linearizing the non-concave part {Rj(p)}j∈D,j 6=i
w.r.t. pi at pt, we obtain a strictly concave function in terms of pi. Apart from concavity,

the approximating function also approximates (P1) well, in terms of both gradient and value.
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This way, the EE defined in (4.6) can be approximated by

(P2) η̃EE(p; pt) =
R̃(p; pt)

P (p)
. (4.15)

Remark 3. Since the denominator in (4.15) is linear w.r.t. p, the approximating function

η̃EE(p; pt) will approximate the original function ηEE(p; pt) well in terms of both value and

gradient. Moreover, since the numerator now becomes concave, ηEE(p; pt) will be pseudo-

concave.

After all the preparation, now we introduce the idea of the SPCA approach here. Our

goal is to find an optimal point of (P1) with reduced cost. Due to the non-convexity of (P1),

we can only find a sub-optimal solution by searching for the stationary point of (P1) (see

remark 2). However, directly searching for the stationary point of (P1) is hard. Instead, we

search for the stationary point of the approximating problem (P2). Although our function

approximation in (4.15) does not guarantee that (P1) and (P2) shares the same stationary

points, we can still use some nice properties of (P2) (see Remark 3) to find the stationary

point of (P1). Specifically, (P2) is pseudo-concave, hence its stationary point can be easily

found by searching for its maximal point. With the stationary point of (P2) together with

the property that (P1) and (P2) have the same gradient and value at this point, we can

search for the stationary point of (P1) at a reduced cost. The obtained stationary point will

be a possible optimal (may still be sub-optimal) point of (P1).

Algorithm Design

Now we introduce an iterative algorithm to find the stationary point of (P1). As shown

in Algorithm 6, we first choose an initial point p = p0 and expand the rate function at this

point. In Line 3, we search for the point p∗ so that p∗ maximizes the approximated function

(P2). Due to pseudo concavity, p∗ is a stationary point of (P2). If p∗ happened to be the

stationary point of (P1), the iteration stops. Otherwise, since (P1) and (P2) have the same
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Algorithm 6 The Successive Pseudo Convex Optimization Algorithm

1: Initialize t = 0 and p0 ∈ P ;
2: repeat
3: Compute the optimal powel control of the approximating pseudo problem

p∗ = arg max
p∈P

η̃EE(p; pt); (4.18)

4: Compute the stepsize γt ;

γt = arg max
0≤γ≤1

ηEE(pt + γ(p∗ − pt)); (4.19)

5: Update pt+1 by

pt+1 = pt + γt(p∗ − pt); (4.20)

6: t = t+ 1;
7: until ||pt+1 − pt||2 <= ε

gradient and value at p = p0,

(p∗ − p) · ∇η̃EE(p)|p=p0 > 0, (4.16)

implies that

(p∗ − p) · ∇ηEE(p)|p=p0 > 0. (4.17)

There must exist a point of (P1) between p∗ and p0 that maximizes (P1) as shown in Fig. 4.1.

Hence in Line 4, we use a step-size to linearize the points between p∗ and p0 to reduce the

searching space. Suppose we find a point p1 that maximizes (P1). Then we expand (P1) at

point p1 again and continue the process. The sequence pt generated by Algorithm 6 keeps

on increasing the objective function of (P1). Since problem (P1) is nonempty and bounded,

the monotone convergence theorem (MCT) ensures that pt converges to a limit point. Due

to Line 4, each limit point is a stationary point to (P1). This way, we find an optimal point

of (P1), although it may not be the global optimal.
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Figure 4.1: Illustration of (4.17).

Algorithm Implementation

The proposed algorithm can find a stationary point of (P1) very quickly and efficiently.

To implement Algorithm 6, the main difficulty comes from solving problems (4.18) and (4.19).

Problem (4.18) is in the form of fractional programming. Hence, we can use Dinkelbach’s

algorithm [132] to find the optimal solution in an iterative way. The objective function of

problem (4.19) is nonconvex and hence it is non-trivial to solve. One promising solution is

to reduce the step-size iteratively and search successively.

The Dinkelbach’s algorithm is presented in Algorithm 7, where the function F (λ,p; pt)

is defined as

F (λ,p; pt) = R̃(p; pt)− λP (p). (4.21)

In each iteration, the algorithm first finds the optimal p∗ that maximizes function F (λj,p; pt).

Then parameter λj is updated. It should be pointed out that the Dinkelbach’s algorithm is

guaranteed to find the optimal solution of problem (4.18) and converges at a super-linear

speed. Moreover, problem (4.18) can be solved in parallel as we decompose F to multiple
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Algorithm 7 Dinkelbach’s Algorithm to Solve (4.18)

1: Initialize λ0 with F (λ0) > 0 and j = 0 ;
2: repeat
3: p∗ = arg max

p∈P
F (λj,p; pt) ;

4: λj+1 = η̃EE(p∗; pt) ;
5: j = j + 1 ;
6: until |λj − λj+1| <= ε

parallel Fi as follows.

p∗i = arg max
pi∈[0,pmax]

Fi(λ, pi; p
t), ∀i ∈ D, (4.22)

where

Fi(λ, pi; p
t) = wiR̃i(pi; p

t)− λ(βpi + Pc,i),∀i ∈ D. (4.23)

Note that each Fi is a concave function. Therefore, its maximum value can be obtained

by setting its derivative to 0 or simply by solving a standard convex optimization problem

very efficiently. Here we simply set the derivative to 0 to have

pi =
wi

λβ − wiPricei
−
∑

j∈D,j 6=i hijp
t
j + σ2

n

hii
. (4.24)

To satisfy the power constraints, we choose pi = max{0,min{pi, pmax}} so that pi falls

into the interval [0, pmax]. Note that this algorithm can be extended to an arbitrary power

constraint interval [pmin, pmax] simply by setting pi = max{pmin,min{pi, pmax}}.

For problem (4.19), an exhaustive search for the optimal value of λ is computationally

prohibitive. To reduce complexity, we set the stepsize as γt = τm, where m is the smallest

nonnegative integer m satisfying the inequality in (4.25).

ηEE(pt + τm(p∗ − pt)) ≤ ηEE(pt) + µτm∇ηEE(pt)T (p∗ − pt), (4.25)
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where µ ∈ (0, 1) and τ ∈ (0, 1) are two scalars. Note that we do not choose a constant

stepsize because if the stepsize is too large, divergence may occur; if the stepsize is too small,

the convergence rate may be very slow. In our simulation study, we choose µ = 0.01 and

τ = 0.5. This successive searching algorithm helps to balance the tension between complexity

and accuracy.

4.4 Deep learning-based Power Control

As can be seen, Algorithm 6 requires iterative loops with complex operations. Specifi-

cally, the outer loop refines pt iteratively. In each loop, the iterative Dinkelbach’s algorithm

is applied to solve the sub-problem (4.18) and successive search is used to solve the sub-

problem (4.19). These iterations significantly slow down the computational speed, which

make it hard for real-time operations.

We aim to develop a real-time system that enables optimized power control with low

complexity. Thanks to various advanced machine learning techniques, we can produce a

model based on which the target values can be predicted. The essence is to learn a function

offline and with the learned function the algorithm can be deployed online. Since the instant

precise CSI is generally hard to obtain, we will use the GLI for computing the optimal power

controls. Suppose dij is the distance between the transmitter of the jth link to the receiver

of the ith link, we can first model the channel state hij as a function of dij and then get the

corresponding power control with Algorithm 6 in the off-line stage. Note that Algorithm 6 is

quite general. If precise CSI hij is provided, it computes the optimal power control solution.

If only statistical or noise corrupted hij is available, the corresponding power would be sub-

optimal, but still feasible. To enable real-time response in the on-line stage, we aim to find

a function that maps {dij} to {pi}, given a training set of instance-label pairs ({dij}, {pi})

(i ∈ D).
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4.4.1 Deep Neural Network Model

DNN has the ability to learn complex input-output relationships due to the universal

approximations [133]. As shown in Fig. 4.2, it is composed of several layers. An input layer

forwards the input data to the rest of the network, hidden layers process the input data and

finally an output layer applies the final processing. DNN usually has more than one hidden

layers. In this paper, we adopt a feedforward NN with fully-connected layers. An input

vector x0 of dimension N0 is feed to the network through the input layer, which also has N0

neurons. Then it passes through L hidden layers, where layer l has Nl neurons. Finally, the

output layer processes the information that comes from the last hidden layer. The neuron n

(n = 1, 2, ..., Nl) in layer l is modeled as

xl(n) = fn,l(W
T
n,lxl−1 + bn,l), (4.26)

where Wn,l ∈ RNl−1 is the weight vector of the link between all the neurons in layer l − 1

and the nth neuron in layer l, bn,l is the bias term of neuron n in layer l, and fn,l is the

activation function which provides nonlinearity. The problem reduces to train the weights

Wn,l and bias terms bn,l of the NN so that the input-output map of the NN emulates the

desired input-output map. In this paper, the Rectified Linear Units (ReLU) function is used

in the hidden layers. Additionally, to force the output satisfy constraints (4.7), we adopt

the sigmoid function as the output activation function to map the generated power control

to the interval [0, pmax]. In this paper, we choose a DNN with three hidden layers with 200,

100, and 50 neurons in each layer, respectively.

4.4.2 Proposed PowerNet

Despite that DNN shows a promising performance in function approximation, it has

several drawbacks. First of all, the interference pattern of neighboring links depends on the

GLI, which is two-dimensional. While the input to a DNN should be one-dimensional. In
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Figure 4.2: The structure of the DNN.

order to process the data, DNN vectorizes the GLI matrix as shown in Fig. 4.2 and then

feedforward the data to the following neuron units. For small-sized problems, this operation

may work well. However, for a large-sized problem, the vectorization process will inevitably

lose some important features, leading to performance degradation. Moreover, when the

problem size becomes large, a larger and deeper DNN is needed for sufficient learning power.

A fully connected structure may not be efficient and optimal. In some cases, the training

process may not converge if the parameters are not set properly. As a result, we will fail to

get a proper trained NN.

In this paper, we exploit the popular convolutional neural networks (CNNs) to capture

the spatial local correlation by enforcing a local connectivity pattern among the neurons of

adjacent layers. The proposed DL architecture, named PowerNet, is presented in Fig. 4.3.

As can be seen, the first part of PowerNet is a convolutional layer with two-dimensional GLI

as input. The dimension of the convolutional layer is N×N×2, where the values S1×S2×S3

denotes the length, width, and the number of feature maps, respectively. We use kernels with

dimension 3×3 to generate a feature map. Following the first convolutional layer, the features

are fed into two residual learning blocks. Each residual learning block unit consists of three
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Figure 4.3: The structure of the proposed PowerNet.

layers. In each residual learning block unit, the first layer is the input layer and generates 8

feature maps. The second and the third layer generate 16 and 2 feature maps, respectively.

Note that we introduced a shortcut connection between the input layer and the output layer

of each residual block. This is inspired by the deep residual network to solve the the vanishing

gradient problem caused by multiple stacked non-linear transformations [134,135]. After two

such residual learning blocks, we use a flatten layer to connect the output of the residual

learning block with the final dense layer. The power control output is generated after the

nonlinear mapping in the final dense layer, which adopts the sigmoid activation function. In

PowerNet, all kernels used are of dimension 3 × 3. LeakyRelu and batch normalization are

used to provide nonlinearities.

4.5 System Setup

4.5.1 System Parameters

We simulate a square area of 1km×1km. The distance between the transmitter and

receiver in a D2D link is uniformly distributed between [5,65] meters as shown in Fig. 4.4.

The antenna height of each device is 1.5m. Antenna gain Ga is −2.5dB per device. The

noise power spectral density is −174dBm/Hz and the noise figure is 7dB.
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We adopt a short-range outdoor channel model ITU-1411 with 5MHz bandwidth at

carrier frequency of 2.4GHz. In particular, if the BS antenna height is hb, the mobile station

antenna height is hm, and the transmission wavelength is λ, then the transmission path-loss

from the transmitter of the jth link to the receiver of the ith link (in dB) at distance dij is

Lij[dB] = Lbp + 6 +





20 log10

(
dij
Rbp

)
if d ≤ Rbp

40 log10

(
dij
Rbp

)
if d > Rbp,

(4.27)

where Rbp = 4hbhm/λ denotes the breakpoint distance and Lbp = |20 log10

(
λ2

8πhbhm

)
| denotes

the basic transmission loss at the break point. Based on the choice of large-scale fading and

small-scale fast fading, we consider three types of channel models:

1. Path Loss channel model: only the distance related path-loss is considered. The large

scale power fading αij depends on the distance between the Tx and Rx in a D2D link.

2. Shadowing channel model: both the distance related path-loss and the shadowing effect

are considered. αij consists of path-loss and shadowing.

3. Fast Fading channel model: path-loss, shadowing and small-scale fast fading power

component are jointly considered. It is more approximated to the real-world fading

channel.

The comparison of the three types of channel models are listed in Table 4.2 where

ξ ∼ N (0, σ2) denotes the log-normal shadowing with σ being the standard deviation. In

Path Loss channel model and Shadowing channel model, the fast fading component gij is

not considered, hence its value is set as 1 while in Fast Fading channel model, gij is assumed

to be exponentially distributed with unit mean. Based on these channel models, the total

path-loss versus distance graph is presented in Fig. 4.5. It can be seen that the Path Loss

channel model already captures the main trend of the total path-loss. Hence it is possible to

perform power allocation simply based on the GLI metric. Comparing Fig. 4.5 with Fig. 4.6,
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(c) N = 20 (d) N = 30

Figure 4.4: The layout of D2D links

we note that a larger standard deviation of the log-normal shadowing results in a larger

fluctuation in the total path-loss. Moreover, both fast fading and shadowing cause certain

randomness in the practical channel realizations. In this paper, we will generate Path Loss

channel model based on the GLI provided and then calculate the optimal power control

under the Path Loss channel model. A NN will be trained to learn a mapping from GLI

to the optimal power control. The shadowing effect and fast fading effect will be added to

investigate the generalization ability of the trained NN.

The static circuit power consumption is set to Pc,i = 10dBm and the amplifier ineffi-

ciency is set as β = 1. All devices have the same maximum transmit power pmax = 20dBm

and the weight wi = 1, for all i ∈ D. The parameters are listed in Table 5.1. The NN is

implemented in Keras 2.2.4 with TensorFlow 1.8.0 as backend on a computer with a 3.7GHz
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Figure 4.5: The D2D link channel fading model (σ = 8dB)
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Figure 4.6: The D2D link channel fading model (σ = 12dB)
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Table 4.1: Network Parameter Settings

Cell range 1km×1km

Cell frequency 2.4GHz
Bandwidth 5MHz
Distance [5,65]m
Maximum transmit power 20 dBm
Noise power spectral density -174 dBm/Hz
Antenna height 1.5m
Antenna gain per device -2.5dB
Noise figure 7dB
Circuit static power 10dBm
Amplifier inefficiency 1

Table 4.2: Channel Models for D2D Links

Channel type Fading component Channel gain

Path Loss channel model αij = 10−(Lij−2Ga)/10, gij = 1

hij = gijαijShadowing channel model αij = 10−(Lij+ξ−2Ga)/10, gij = 1

Fast Fading channel model αij = 10−(Lij+ξ−2Ga)/10, gij ∼ Exp(1)

i7 Intel Core, one GeForce GTX 1080Ti graphic card, and 32GB memory. The number of

training samples and testing samples are set as 250000 and 5000, respectively.

4.5.2 Data Generation

The data is generated in the following manner. First, the channel power gain {hij}

are generated following the Path Loss channel model, which only accounts for the impact

of distance related path-loss. The corresponding optimized power vector pi is generated

by running the SPCA algorithm. To ensure the scalability of the NN, we normalize the

corresponding device distance information dij as d̄ij = dij/(
√

2R), where R is the square side

length of the area. We also normalize the output power control as p̄i = pi/pmax. Then the

normalized d̄ij together with p̄i form one entry of the training dataset. We repeat the process
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Table 4.3: Averaged EE (kbps/Joule) for different types of fading channels

N Methods
Path Loss channel model Shadowing channel model Fast Fading channel model

EE
Percentage

EE
Percentage

EE
Percentage

(kbps/Joule) (kbps/Joule) (kbps/Joule)

5
DNN 0.6683 99.10% 0.6340 96.16% 0.5872 95.38%
PowerNet 0.6636 98.40% 0.6306 95.63% 0.5849 95.01%
SPCA 0.6744 100% 0.6594 100% 0.6157 100%

10
DNN 0.5577 95.69% 0.5136 91.10% 0.4796 90.12%
PowerNet 0.5518 94.69% 0.5087 90.24% 0.4757 89.39%
SPCA 0.5828 100% 0.5637 100% 0.5322 100%

20
DNN 0.4203 88.90% 0.3775 82.50% 0.3556 81.26%
PowerNet 0.4346 91.93% 0.3862 84.40% 0.3630 82.96%
SPCA 0.4728 100% 0.4576 100% 0.4356 100%

30
DNN 0.3378 83.46% 0.2984 75.76% 0.2822 74.27%
PowerNet 0.3603 89.09% 0.3158 80.18% 0.2973 78.22%
SPCA 0.4048 100% 0.3939 100% 0.3800 100%

for multiple times to generate the entire training data set. 10% of the training dataset is

used for validation in the training process.

4.5.3 Training Process

Suppose for a training input d̄ij and the desired training output {pi}, {p̂i} is the cor-

responding NN output. Then the learning process consists of minimizing the loss function

L = E[(pi − p̂i)
2] We choose a batch size of 100 and the training epoch to be 300. The

optimization problem is solved by the ADAM optimizer.

4.5.4 Testing Stage

We generate the channels following the same distribution as in the training stage. Then

we compute the resulted EE with the solution obtained by SPCA. We will test the robustness

and generalization capabilities of the trained NN by generating channels that consider the

impact of both shadowing and fast-fading.
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4.6 Simulation Results

4.6.1 Training Loss and Validation Loss

The training and validation loss for the DNN is presented in Fig. 4.7(a). We change the

number of D2D links while fix the number of neurons and network structure of the DNN.

It can be seen that for a large-sized problem (e.g., N = 30), the training loss decreases at

the first few epochs and after approximately 50 epochs, the training loss almost stays at a

fixed level. Also, the training loss and validation loss match well, which suggests there is

no overfitting problems or under fitting problems. While for a small-sized problem (e.g.,

N = 5), the training loss decreases gradually and it still keeps decreasing after even more

than 200 epochs. As training goes on, there is a slight mismatch between the training loss

and the validation loss. Hence there exists an under-fitting problem. Moreover, the training

loss for a large-sized problem is generally greater than that for a small-sized problem. This

is because we use the same DNN structure for problems of all sizes. DNN shows a greater

learning ability for small-sized problems hence the corresponding training loss is much lower.

We also plot the corresponding training and validation loss for the proposed Power-

Net in Fig. 4.7(b). Training and validation loss decreases rapidly at the beginning of the

training. After approximately 200 epochs, the training loss and validation loss almost keeps

at a fixed level. Hence, in our simulation, choosing the number of training epochs to be

300 is reasonable for this problem. Different from DNN, for both large-sized problems (e.g.,

N = 30) and small-sized problems (e.g., N = 5), the validation loss and the training loss

matches very well. There is no overfitting problem here. Moreover, comparing Fig. 4.7(a)

with Fig. 4.7(b), we find that for small-sized problems, DNN has a smaller training loss while

for large-sized problems, PowerNet has a smaller training loss. This is because kernel maps

of dimension 3 × 3 only works well for a moderate size of problems. If the problem size is

too small, either max pooling or average pooling would incur some kinds of distortion. We
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(a) DNN (see Fig. 4.2).

N = 5

N = 10

N = 30

(b) PowerNet (see Fig. 4.3).

Figure 4.7: Training and validation loss.

can infer that DNN may perform better in small-sized problems, while the proposed Pow-

erNet may be more suitable for medium-sized or large-sized problems. We will validate our

conjecture in Section VI. Finally, we find that neither DNN nor PowerNet has an overfitting
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problem. This is because the channel pattern comes from the location of devices (i.e., GLI).

There is no unpredictable randomness. If we adopt practical channels as training data, the

unpredictable randomness resulted from shadowing and fast fading may incur an overfitting

problem.

4.6.2 Generalization Performance

In this subsection, we investigate the EE performance of the DNN and PowerNet and

test their generalization ability by changing the size of the problem and the type of fading

channels.

Averaged EE of the Testing Samples

The averaged EE performance over all testing samples for different types of fading

channels is presented in Table 4.3. The baseline method is the SPCA algorithm given in

Algorithm 6. First of all, it can be seen that for small-sized problems where N = 5, under

the Path Loss channel fading model, both the trained DNN and the PowerNet achieve a

satisfactory performance. Specifically, DNN achieves 99.10% of the baseline performance and

PowerNet achieves 98.40% of the baseline performance. DNN performs slightly better than

PowerNet in this case, but their performance gap is almost negligible. As with the increase

of the problem size, when N = 30, the performance of DNN degrades significantly and

only 83.46% of the baseline performance can be achieved. On the other hand, the proposed

PowerNet still achieves 89.09% of the baseline performance. Hence, the proposed PowerNet

has a stronger generalization ability than the conventional DNN in terms of problem sizes.

This is because PowerNet leverages the convolutional layer to better capture the interference

patterns and the residual block makes the model more robust.

We also compare the achieved EE performance under different channel settings. The

adopted NNs are trained with the GLI based on the Path Loss channel model. It can be

seen that the performance of both the trained DNN and PowerNet does not degrade too
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Figure 4.8: Empirical cumulative distribution function (cdf) for different types of fading
channels

much when we apply the trained model on a different channel setting. Specifically, when

N = 5, the trained DNN achieves a 96.16% performance for the Shadowing channel model

and a 95.38% performance for the Fast Fading channel model. The proposed PowerNet also

achieves a similar performance. Even when the problem size grows larger to N = 30, the

proposed PowerNet still achieves an 80.18% performance under the Shadowing channel and

a 78.22% performance under the Fast Fading channel model. This demonstrates that the

distance based Path Loss channel model already captures the main channel characteristics.

It is feasible to train the NN with the GLI. This way, the time-consuming channel estima-

tion process can be avoided, which further reduces the response time. This is extremely

important for delay sensitive D2D applications, e.g., high-speed vehicle-to-everything (V2X)

communication scenarios [136]. When N = 30, due to the structure of convolutional lay-

ers, the proposed PowerNet outperforms DNN by 5.63% under Path Loss channel model,

4.42% under shadowing channel, and 3.95% under Fast Fading channel model in terms of the

achieved averaged EE. Hence it is more suitable for large-sized problems to adopt PowerNet

than DNN. In conclusion, the proposed PowerNet exhibits great generalization ability in

terms of both problem sizes and channel fading types.

122



−20 −10 0 10 20
pmax (dB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
E
(k
bp
s/
Jo
ul
e)

SPCA

Max Power

Random Power

DNN

PowerNet

(a) Path loss channel model

−20 −10 0 10 20
pmax (dB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
E
(k
bp
s/
Jo
ul
e)

SPCA

Max Power

Random Power

DNN

PowerNet

(b) Shadowing channel model

−20 −10 0 10 20
pmax (dB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
E
(k
bp
s/
Jo
ul
e)

SPCA

Max Power

Random Power

DNN

PowerNet

(c) Fast Fading channel model

Figure 4.9: EE performance comparison for different types of fading channels (N = 5)
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Figure 4.10: EE performance comparison for different types of fading channels (N = 30)

Cumulative Distribution Function (CDF) of the Testing EE Samples

The empirical cumulative distribution functions (CDF) for different channel fading mod-

els are presented in Figs. 4.8. In all the cases, the CDFs of both PowerNet and DNN are

obtained by feeding the GLI to a trained NN. For SPCA, the CDF for different types of

fading channels comes by running Algorithm 6 with the corresponding channel realization

as input.

Fig. 4.8(a) shows the CDF performance under the Path Loss channel model. It can be

seen that for both the DNN and PowerNet, the performance gap from the optimal SPCA

algorithm is almost negligible when N = 5. This shows that both PowerNet and DNN have

great learning ability for small-sized problems. When N = 30, the performance gap from

the optimal increases. However, the proposed PowerNet outperforms the DNN, which again

validates that the proposed PowerNet is more suitable for large-sized problems.
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When shadowing and fast fading effect are added, the performance gap from SPCA for

both the DNN and PowerNet starts to increase, as shown in Fig. 4.8(b) and Fig. 4.8(c). This

is because the DNN and PowerNet are trained with GLI, which only captures the distance-

based path-loss, while the SPCA utilizes the real-time CSI to perform optimal channel

control. Although SPCA achieves a better performance, the complex channel estimation

process will waste a lot resources and the iterative nature causes real-time deployment issues.

On the other hand, PowerNet and DNN do not rely on real-time CSI, but they still achieve

a promising performance. For example, in Fig. 4.8(c), when N = 5, the performance gap is

less than 0.03 kbps/Joule. Even for large-sized problems (N = 30), PowerNet still achieves

nearly an average EE that is 80% that of the SPCA and outperforms DNN.

4.6.3 Impact of the Transmit Power Budget

To investigate the impact of the transmit power budget pmax, we provide two benchmark

algorithms here:

1. Random Power: each device randomly choose a transmitting power that is uniformly

distributed between [0, pmax]

2. Max Power: each device chooses its maximum power to transmit.

For a small-sized network (N = 5), The EE performance comparison for different algo-

rithms is given in Fig. 4.9. It can be seen that when pmax is small, to achieve a high EE, each

device is encouraged to transmit data with its maximum power. Hence Max Power trans-

mission is near optimal. DNN, PowerNet and Max Power all share a similar performance

as the optimal benchmark algorithm, SPCA. When pmax is large enough, the resulted power

control will always satisfy the power budget constraints. Hence the optimal power control

does not change any more. The EE will stay at a fixed level. However, in this case, Max

Power transmission will cause severe interference to other links and the EE will decrease

dramatically. As a comparison, Random Power transmission performs slightly better than
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Max Power transmission, but the performance is still not satisfactory. On the contrary, the

deep learning-based method can achieve a near optimal performance. In Fig. 4.9(a), the

performance gap from optimal in the Path Loss channel model is almost zero. Even when

shadowing and fast fading are added, the performance gap from SPCA is also small, as shown

in Fig. 4.9(b) and Fig. 4.9(c). This experiment shows that deep learning-based method is

quite suitable for small-sized problems. Compared with SPCA, the deep learning-based

method does not require any instant CSI. The response time is greatly saved.

We also give a similar plot for a large-sized network (N = 30) in Fig. 4.10. Comparing

Fig. 4.9 with Fig. 4.10, we find that with the increase of network sizes, the deep learning-

based method shows a performance degradation. This is because we fix the number of

neurons and the number of training samples to be the same. The same NN structure is

used for all problem sizes. When N = 5, the input dimension is 25. When N = 30, the

input dimension increases to 900. DNN exhibits great capability in learning such small-scale

input-output relationship. Sometimes increasing the number of hidden layers or increasing

the number of neurons in each hidden layer may help to improve the learning ability to a

certain extent. However, this is not always true. In our experiment, when we adopt a DNN

with 3 hidden layers and 200 neurons in each layer, the training loss failed to decrease when

applied the training data with N = 30. In other words, if the parameters are not set properly,

we may fail to train a DNN. On the contrary, due to the adoption of the convolutional layer

and deep residual learning, the proposed PowerNet do not have such training problems. We

also note that, for a large-sized problem, PowerNet always outperforms DNN regardless of

the value of the power budget pmax and the channel fading types. This experiment again

demonstrates the superiority of the proposed PowerNet.

4.6.4 Complexity Comparison

• Computational Analysis. Since both the DNN and PowerNet is trained based on the

SPCA, their performance will not exceed that of the SPCA. The reason why we want to
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adopt PowerNet is that the deep learning-based method has a lower online complexity

and it is more suitable for real-time deployment.

The complexity of the NN based methods comes from two parts: the off-line training

stage and the on-line computation stage. The off-line training stage complexity mainly

comes from the training dataset generation. It does not have any impact on the

algorithm’s real-time on-line operations. In this paper, we generate the training dataset

with the measurement of distance based large-scale fading. They can be obtained by

existing channel modeling methods as well as ray-tracing approaches. Compared with

other works that collect training data from the instant CSI, our methods significantly

simplifies the training data preparation process. The on-line complexity comes from the

linear combination of layer input and activation function operations, which is almost

negligible.

As a comparison, the existing SPCA algorithms require one outer iterations and two

inner iterations. Suppose the outer loop has a1 iterations. Two inner loops which are

used to solve (4.18) and (4.19) has b1 and b2 iterations, respectively. Then the total

iterations will be a1(b1 + b2). Although the Dinkelbach’s algorithm converges quickly,

in each iteration a gradient has to be computed. In the successive step-size search loop,

the step-size is narrowed down until a satisfactory result is found. In large networks,

such computations will significantly slow down the real-time response.

• Experiment Verification. For a fair comparison, we write the algorithms in python

and run them under the parameter setting introduced in Section 4.5.1. We present

the computation time comparison in Table 4.4. First of all, look at the CPU time.

For DNN, the average running time is almost 1000 times faster than SPCA under

different problem sizes. PowerNet is 150 times faster than SPCA when N = 5 and

16 times faster when N = 30. Deep learning-based approach works fast due to the

simple neuron network computations. In contrast, the iterations in SPCA significantly
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slow down the algorithm. The reason why PowerNet performs a bit slower than DNN

is that PowerNet performs convolutional operations and it is deeper than the DNN.

However, the speed difference is not significant in small-sized problems.

Actually, for a large-sized problem, the running time of the NN can be further reduced

if a GPU is enabled. This is because the implementation of NN is highly amenable

for parallel processing. The benefit of the parallel computation power of GPU can

be fully exploited. By running all the algorithms on GPU, the gap between DNN

and PowerNet narrows down significantly in large-sized problems. For example, when

N = 30, DNN is only 4.56 times faster than the proposed PowerNet with GPU (as

a comparison, the DNN is 55 times faster than PowerNet when the CPU is used).

PowerNet is almost 88 times faster than SPCA (as a comparison, it is 16 times faster

than SPCA when the CPU is used). Hence, with the deployment of GPU, PowerNet

achieves a significant saving in running time compared to SPCA and DNN. Moreover,

SPCA requires considerable extra time to perform channel estimation, while PowerNet

and DNN only use GLI which is much easier to obtain.

• NN Size Comparison When it comes to algorithm deployment, the NN size is also an

important issue. when N = 30, the total trainable parameters for PowerNet is 57,378,

while the total number of parameters for DNN is 206,880, which is about 3.6 times of

that of PowerNet. Hence, the size of the proposed PowerNet is much smaller than that

of the conventional DNN. PowerNet is more suitable to be deployed on devices with

memory constraints. Considering that in many cases, the number of D2D links may

change with time. Hence, pre-trained PowerNet models with different configuration

N should be stored in the memory. Each time, when the configuration N is changed,

the corresponding trained PowerNet must be restored. Hence NN size should also be

taken good care of to ensure a promising generalization ability in terms of the number

of D2D links.
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Table 4.4: Computational Time Comparison

N Methods
CPU

percentage
GPU

percentage
time (ms) time (ms)

5
DNN 0.022 0.17% 0.025 0.33%
PowerNet 0.091 0.69% 0.109 1.44%
SPCA 13.268 100% 7.546 100%

10
DNN 0.008 0.07% 0.026 0.32%
PowerNet 0.160 1.43% 0.107 1.33%
SPCA 11.159 100% 8.066 100%

20
DNN 0.012 0.09% 0.026 0.27%
PowerNet 0.483 3.75% 0.115 1.20%
SPCA 12.887 100% 9.549 100%

30
DNN 0.019 0.11% 0.029 0.25%
PowerNet 1.107 6.10% 0.131 1.14%
SPCA 18.161 100% 11.541 100%

4.7 Conclusions

In this chapter, we explored the possibility of using deep learning method to accelerate

the resource allocation decision process. The idea is to use a DNN to mimic the function-

ality of conventional optimization methods. In this way, the online computational cost is

transferred to off-line training. Simulation results demonstrated that the proposed Power-

Net could achieve a near-optimal EE performance at a much faster speed compared with

the conventional optimization method. Moreover, different from conventional optimization

algorithms, which require the knowledge of precise CSI, the proposed PowerNet could per-

form power control based on GLI which can be obtained by current positioning system. This

way, the channel estimation process could be saved and the developed approach would be

extremely suitable for the scenarios where devices change their location rapidly.
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Chapter 5

Channel Block Resource Allocation In Downlink RAN With Deep Reinforcement Learning

5.1 Introduction

The envisioned applications of the 5G communication technologies, such as video stream-

ing, virtual reality, and 360 degree videos, are all imposing stringent delay requirements [137].

Radio access network (RAN) has become a key enabling technology to address this issue.

In RAN, radio resource management (RRM) [138, 139] plays a vital role in allocating the

resources to user equipments (UEs) by jointly exploiting the advanced MAC layer functions,

such as resource sharing, link adaptation, hybrid automatic retransmission request (HARQ),

and channel quality indicator (CQI) reporting.

In conventional RAN, a packet scheduler is deployed at the base station (BS) and it is

responsible for allocating the wireless spectrum resources to UEs based on their quality of

service (QoS) requirements as well as their reported channel conditions. In each Transmission

Time Interval (TTI), the packet scheduler needs to solve a decision-making problem to

decide how the resources are allocated to the UEs. Due to the large number of UEs and

the dynamic wireless environment, it is difficult to obtain an optimal solution with the

existing optimization methods within the channel coherence time. As a result, most of

the existing approaches rely on some predefined rules. For example, conventional packet

scheduling strategies, such as the max-CQI scheduling approach and proportional fairness

(PF) scheduling, are all rule-based scheduling policies which simply assign the resource block

(RB) to the UEs’ that have the best channel condition or the best relative channel condition.

The problem is these methods are designed based on human’s understanding of a network.

Although simple and useful, it is hard to guarantee they are optimal and accurate.
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In todays’ highly complex wireless environment, variety of applications have emerged,

for which rule-based scheduling methods have their limitations. For example, from a spec-

trum efficiency point view, max-CQI scheduling, which allocate radio resources to the UEs

that is expected to have the best achieved rate, would be optimal. However, this is at a

cost of sacrificing other important performance metrics, such as fairness, energy-saving, and

complexity. In some delay-sensitive scenarios such as vehicle-to-vehicle (V2V) communica-

tions [136], ensuring timely delivery of packets is more important than bringing an additional

increase to the system throughput. As UEs’ QoS requirements may change, developing an

intelligent scheduling method that can adaptively select the best scheduling policy is of vital

importance.

Recently, deep reinforcement learning has made breakthroughs the field of networking

and communications [32, 126, 140–143]. In time-varying and unpredictable networks, DRL

has proved to be effective in tackling real-time decision-making problems. For example, the

authors in [144] developed a decentralized resource allocation mechanism for V2V commu-

nications based on DRL. The vehicles can make decisions to find the optimal sub-channel

allocation as well as the power level for transmission without global information. Vehi-

cles can learn to satisfy their QoS requirement while also minimizing the interference to

other vehicles. In [145], an online DRL-based algorithm is developed to optimally adapt

task offloading decisions and wireless resource allocations to the channel conditions. Instead

of solving the large combinatorial problem directly, the proposed agent learns the binary

decisions from past experience. This method can achieve near optimal performance while

significantly decreasing the computational time. In [140], the joint beam forming, power

control, and interference coordination problem in a downlink multiple access OFDM cellular

network is formulated as a combinatorial problem. The authors show that closed-form ex-

pression does not exist and finding the optimal solution requires an exhaustive search. The

developed method leverages the power of DRL to avoid the exhaustive search and achieves a

near-optimal performance. In our recent works, we have applied DRL to solve the resource
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allocation problem at a wireless backhaul [143] and to develop a smart congestion control

scheme [126].

In the field of cellular traffic scheduling, Ref. [146] investigates how DRL can help solve

scheduling problems in cellular networks. It shows that by exploiting the expert knowledge

of existing rule-based scheduling method in the training process of the DRL agent, the DRL’s

learning ability can get improved. In [147], a DRL-packet scheduler is developed to adapt

to the dynamic scheduling conditions. Instead of using a single scheduling rule across the

entire transmission, Ref. [147] proposes a framework to dynamically select the best scheduling

rule at each TTI based on UEs’ QoS requirements. Simulations show that the developed

method outperforms a conventional scheduling method in terms of delay and package drop

rate requirements.

It is envisioned that the application of AI/ML techniques to the design of 6G systems

will be fundamental to improve the system performance [148]. In this chapter, we incorporate

DRL to address the problem of delay-aware packet scheduling in the downlink of a cellular

network. We show that delay-aware packet scheduling is a complex combinatorial problem,

which is challenging to solve. By modeling the packet scheduling problem as a Markov

decision process (MDP) problem, a deep Q-learning agent that is based on a recurrent

neural network (RNN) is designed to learn a delay optimized scheduling solution through

the interactions with the environment. Simulation results show that the DRL-based packet

scheduler, designed to minimize the queueing delay of all UEs, outperforms several existing

scheduling schemes. Meanwhile, the framework in this chapter can be easily generalized to

other scenarios with various QoS requirements.

The chapter is organized as follows. In Section 5.2, the system model is introduced

and the delay-aware scheduling problem is formulated. In Section 5.3, a DRL-based packet

scheduling algorithm is proposed. Simulation results are presented in Section 5.4 to validate

the superiority of the proposed method. Finally, Section 5.5 concludes this chapter.
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Figure 5.1: Delay-aware cellular downlink traffic scheduling system model.

5.2 System Model and Problem Statement

5.2.1 System Model

We consider the downlink transmissions of a cellular network, where UEs are served

by a base station (BS). As shown in Fig. 5.1, multiple UEs request packets from the BS

and the BS performs traffic scheduling with UE-specific queues. We consider an orthogonal

frequency division multiplexing (OFDM) system, where the available wireless resources in

time and frequency are divided into resource blocks (RBs). The RB scheduling is performed

at each time slot (i.e., TTI).

Let U = {1, 2, ..., U} denote the set of active UEs and B = {1, 2, ..., B} the set of RBs,

where U and B are the total number of UEs and RBs, respectively. We aim to develop a

packet scheduler to allocate the set of RBs to the UEs so that the average delay of the UEs

can be minimized. At a time slot t, we denote the maximum number of bits that could

be sent for an RB b ∈ B to a UE u ∈ U as Cub[t]. According to [149], the value of Cub[t]

depends on the channel quality indicator (CQI) reported by UE u. Based on the CQI, a
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proper modulation and coding scheme (MCS) is assigned to the allocated RB. In practice,

there exists a mapping table between Cub[t] and the MCS.

5.2.2 Traffic Model

We consider the case where the UEs are characterized by data request pattern. Suppose

that at time slot T , the requested data size of UE u is Au[t]. The BS will assign RBs

to UEs and transmit the requested data to the corresponding UEs. However, the wireless

resources are limited. Not all the UEs can get allocated RBs immediately. The BS maintains

a separate queue for each UE. The requested packets of the UE will be queued in the buffer.

At time slot t, the queue length of UE u is denoted as Qu[t]. The buffer state of a UE can

be written as

Qu[t] = max(min(Qu[t− 1] + Au[t], Qmax)−Du[t], 0), (5.1)

where Qmax is the maximum buffer size of all UEs, Du[t] is the scheduled, transmitted data

for UE u in time slot t, which can be computed as

Du[t] =
B∑

b=1

xub[t] · Cub[t], (5.2)

where xub[t] is the RB allocation indicator: xub[t] = 1 if UE u is assigned with RB b at time

slot t; and xub[t] = 0 otherwise.

5.2.3 Traffic Delay

Packets of UEs are time stamped and queued in the buffers for transmission based on

the first-in-first-out principle. For each packet, the difference between the current time and

the arrival time, which we call the head of line (HoL) time, is used to measure the packet

delay. At time slot t, the HoL packet delay of UE u is denoted by du[t]. During a time period

133



· · ·· · · · · ·
Qu[t]

Du[t]Au[t]

t = t1 t = t2

Figure 5.2: The traffic model considered in this chapter.

T , the average delay of UE u can be computed as

Wu =
1

T

T∑

t=1

du[t] (5.3)

As shown in Fig. 5.2, at a time t, the HoL time du[t] can be computed by definition

du[t] = t2− t1, where t1 is the time when the packet first enters the queue and t2 is the time

when the packet leaves the queue.

5.2.4 Problem Formulation

Our objective is to jointly optimize the RB allocation in the wireless links so that UE’s

average delay can be minimized. We formulate the problem as follows.

min
xub[t]

ΓDelay =
1

U

U∑

u=1

Wu (5.4)

s.t. xub[t] = {0, 1}, ∀u, b, t (5.5)

U∑

u

xub[t] ≤ 1, ∀b, (5.6)

where constraint (5.5) means that the RB assignment variables are binary, and constraint (5.6)

ensures that each RB can only be assigned to one UE. To solve Problem (5.4) is to find the

best RB scheduling policy at each time slot for all UEs and RBs. This problem is difficult for

the following reasons: (i) Constraints (5.5) and (5.6) makes the problem combinatorial; (ii)

The objective function does not have a closed-form expression in terms of the scheduling pol-

icy xub[t]. A direct optimization may become hard; (iii) the number of RBs and the number
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of UEs may be very large, which makes the optimization problem more challenging. In some

delay-sensitive applications such as vehicle communications, a fast and efficient algorithm is

needed [136,144].

5.3 Resource Block Allocation with Deep Reinforcement learning

A direct optimization of problem (5.4) is hard. In this section, we show that prob-

lem (5.4) exhibits Markov decision process (MDP) property, based on which, a deep rein-

forcement learning (DRL) based packet scheduling policy is proposed.

5.3.1 MDP Problem

As in (5.1), the queue length of UE u at time slot t depends on the queue length at

time slot t − 1, the requested data Au[t], and the scheduled traffic Du[t]. The BS observes

the queue length of each UE. Based on the requested packet size of different UEs and their

corresponding channel conditions, the BS allocates RBs to the UEs so that their averaged

delay can be minimized. Mathematically, at time slot t, the decision of computing the current

scheduled traffic for UE u is a function of the current channel condition (i.e., the maximum

amount of traffic carried in an RB), the previous queue status, the current HoL delay, and

the current request data size of all UEs, i.e.,

Du[t] = f(Cub[t], Qu[t− 1], du[t], Au[t]). (5.7)

In addition, as analyzed in Section 5.2, the current HoL packet delay depends on the

queue status as well as the history data request rates Au[t] and data traffic Du[t], t = 1, 2, .....

Therefore, the buffer state (5.1) can be modeled as an MDP. MDP is a discrete time stochastic

control process. It provides a mathematical framework for modeling the decision making

where the outcomes are partly random and partly depending on the policy that is made by

the controller. As shown in Fig. 5.3, the packet scheduler, which we call agent, observes the
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Figure 5.3: A Markov decision process (MDP) problem.

current state {Cub[t], Qu[t − 1], du[t], Au[t]}, and then makes decision on how each RBs are

assigned to UEs. Then the traffic is scheduled, which in turn updates the queue length as

well as the HoL packet delay for each UE. At the next time slot, the agent makes decision

again, and so forth. The ultimate goal is to find a stable “policy” so that the averaged HoL

delay can be minimized.

5.3.2 DRL-based Delay-aware Packet Scheduler

We next present the DRL-based RB scheduling algorithm. At each time step t, the

agent performs a certain action at based on the current state st. The agent receives a reward

and moves to the next state.

The action is defined as the choice of xub[t]. Note that we have U UEs and B RBs in

total; so the dimension of the action space at each time slot would be O(2U×B). We map the

choice of xub[t] to a real integer number that is between [0, UB − 1]. Each integer number

in the interval corresponds to a unique RB allocation to the UEs. We use the interval to

denote the action space A, i.e.,

A = [0, UB − 1]. (5.8)

In practical systems, the number of RBs is huge. A direct use of RB would bring an ex-

tremely large action space. In OFDM, frequency selective wireless channels are transferred

into multiple flat channels over different sub-bands. consecutive sub-bands can be grouped
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together, which is called resource block group (RBG) in LTE [139]. This way, the action

space can be greatly reduced and the algorithm can converge faster.

The state space include UE’s packet arrival rate, buffer state, the transmission rate of

different RBs, which is denoted by

S[t] = {S1[t], S2[t], ..., SU [t]}, (5.9)

where Su[t] is the observed state of UE u, given by

Su[t] = {Au[t], Qu[t− 1], du[t− 1], Cub[t]}. (5.10)

As a result, the dimension of the state space is UB + 3U .

What makes DRL appealing is we can customize the reward function for a specific

problem. In this chapter, we directly use the negative value of the objective function (5.4)

as the reward function. Maximizing the reward function will be equivalent to minimizing

the average delay of all UEs. Our developed method can be quite general and flexible,

as the reward function can be extended by jointly consider the effect of throughput, QoS

requirements, latency, and priority. We leave this topic for our future investigation.

We propose Algorithm 8 to solve Problem (5.4), which is a DRL-based approach. The

algorithm perform RB scheduling so that the UEs’ average delay can be minimized. An RNN

is incorporated, which takes state as input and outputs a Q-value for each of the candidate

actions. The main steps include

• Select an action at time slot t

• Reward the action based on the computed time delay

• Train the RNN based on the outcome

We call the period of time in which an interaction between the agent and the environment

takes place as an episode. In the beginning of each episode, the environment initializes the
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Algorithm 8 Delay-optimal cellular traffic scheduling algorithm with DRL

1: if training then
2: Start environment simulator, generating arrival traffic and the status of the RBs ;
3: Initialize the time, states, action and replay buffer D ;
4: for each episode do
5: for each time slot t do
6: Observe state S[t] as in (5.9) ;
7: ε = max(ε · d, εmin) ;
8: Sample r ∼ N (0, 1) ;
9: if r ≤ ε then

10: Select an action A[t] ∈ A randomly ;
11: else
12: Select an action such that A[t] = arg maxa′ Qπ(S[t], a′; θ[t]) ;
13: end if
14: Compute reward as r[t] = − 1

U

∑U
u=1Wu ;

15: Observe the next state S′ ;
16: Store the experience (S[t], A[t], S′, r[t]) in D ;
17: Minibatch sample from D, ej , (Sj , Aj , rj , S

′
j) ;

18: Set yj := rj + γ ·maxa′ Qπ(sj+1, a
′; θ[t]) ;

19: Perform gradient optimization method on (yj−Qπ(sj+1, a
′; θ[t])) and obtain the optimal

θ∗ ;
20: θt = θ∗ ;
21: t = t+ 1 ;
22: S[t] = S′ ;
23: end for
24: end for
25: Save θt and the agent ;
26: else
27: Load the agent ;
28: Based on the observed state, output the action ;
29: end if

state and then the agent interacts with the environment for several several training steps

(or TTIs) during this episode. We perform several episodes until the accumulated reward

converges.
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5.4 Simulation Results and Discussions

5.4.1 Parameter Setting

We consider the case where two UEs request data from the BS. The data request pattern

of UE 1 follows the Poisson process with parameter λ = 8, i.e.,

P (A1[t] = k) =
e−λλk

k!
, k = 0, 1, 2, ... (5.11)

The data request pattern of UE 2 follows the uniform distribution, where

P (A2[t] = k) =
1

5
, ∀k ∈ {6, 7, 8, 9, 10}. (5.12)

The maximum queue length Qmax is set as 100. We assume that the quality of each RB

can be measured at each TTI, based on which the maximum number of bits that can be

transmitted on the RB can be computed. In this simulation, we assume that the maximum

number of bits that can be transmitted on the RB for a specific UE can only take discrete

values from a set {2, 3, 4, 5} uniformly. Although we use discrete values here, it is worth

noting that the proposed algorithm also applies to continuous value settings and various

distributions of the UE data requests.

We create a DQN agent with RNN. The structure of the critic network is shown in

Fig. 5.4. There are three layers between the input and the output: two dense layers and one

long-short-term memory (LSTM) layer. Each layer has 50 neurons. The training parameters

are listed in Table 5.1. The number of episodes is 200. In each episode, the number of steps is

300. In the offline training phase, the value of the requested data size Au[t] and the channel

capacity Cub[t] are generated according to a known distribution in each step. In the testing

phase, we generate 1000 simulations and average the results.
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Figure 5.4: The recurrent neural network used in the agent.

5.4.2 Benchmark Algorithms

Round-robin

The round robin allocation strategy simply allocates all RBs to each user in turn. It is

one of the simplest algorithms. Regardless of the channel condition and the traffic require-

ment, Round robin assumes all the UEs have equal priority, while different UEs may have

different channel quality on the same radio resource. No optimization is performed. It is

evident that round-robin scheduling will incur a poor performance.

Max-CQI

The Max-CQI scheduler only considers the channel condition while allocating RBs to

the UEs. The Max CQI aims to maximize the system’s capacity by allocating RBs to the

UEs that have the best channel condition, i.e., at each time slot t, xu∗,b[t] = 1 where

u∗ = arg max
u
{Cub[t]} . (5.13)

The max-CQI packet scheduler can maximize the transmitted traffic since the RBs are

allocated greedily to the UEs that can achieve the highest transmission rate. However, the
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Table 5.1: The DRL Hyperparameters

Parameter Value

Number of episodes 200
Number of steps per episode 300
Discount factor 0.99
Experience replay length 1000,000
ε decay d 0.9999
Initial exploration rate ε 1
Maximum batch-training trajectory (RNN) 20

UEs with low channel quality would have little chance to get the transmission resources. As

a result, the average delay would be bad. Extremely, a UE may never get RB allocated.

Proportional Fairness (PF)

Proportional fairness aims to maximize network capacity while also ensure fairness. The

idea is to balance the average past throughput and the expected rate. In our simulations,

we choose xu∗,b[t] = 1 where

u∗ = arg max
u

{
Cub[t]

Yu
[t− 1]

}
, (5.14)

where Yu[t] is the average scheduled traffic of UE u in period [0, t−1] and Yu[t] = 1
t

∑t
i=1Du[i].

It is easy that if a UE does not get RBs for a long time, the value of Yu[t] will be low.

Therefore, there will be a high chance that the UE gets RB allocated in the next time slot.

Some prior works use a time window to average the allocated traffic.

5.4.3 Performance Metrics

The aim of this chapter is to minimize the packet delay for all UEs. Therefore, the

performance metric will be the averaged delay, which is calculated as in (5.4). Meanwhile,
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Figure 5.5: Training reward vs. episode for the proposed algorithm.

we also compare the scheduled traffic (i.e., throughput) of the UEs, which is computed as

Γthroughput =
1

UT

U∑

u=1

T∑

t=1

Du[t], (5.15)

and the average queue length, which is defined as

ΓQueueLength =
1

UT

U∑

u=1

T∑

t=1

Qu[t]. (5.16)

5.4.4 Results and Discussions

Convergence

The convergence plot of the training process is presented in Fig. 5.5. Both the average

result of all the episode as well as the instant per episode reward are plotted. It can be seen

that after around 100-episode training, the reward value begins to converge. Furthermore,

the maximum reward is attained at around the training episode 150. The optimal number

of training episodes can be set to be around 150 to achieve the best performance.
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Figure 5.6: Performance comparison of four scheduling algorithms.

Delay

The delay performance comparison is shown in Fig. 5.6(a). The proposed DRL-based

scheduling algorithm achieves the lowest delay, which is 0.4049s. Max-CQI, which aims

to maximize the traffic throughput, has the largest delay, which is nearly 3.5 times larger

than that of the proposed algorithm. By taking fairness into consideration, PF avoids the

situation where UEs with bad channel condition do not get RB allocated. Therefore, the

average queue delay can be reduced. Despite that, the proposed DRL scheduling algorithm

achieves the best performance in terms of packet delay.
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Throughput

The achieved throughput comparison is shown in Fig. 5.6(b). This performance metric

is defined as the sum of the transmitted packets over a time period and reflects the system

throughput. As analyzed before, max-CQI achieves the highest system throughput. The

performance of PF is quite close to that of max-CQI. The proposed method also achieves a

quite high throughput. Round-robin has the poorest throughput performance.

Queue Length

The average queue length is also an essential metric when we compare the delay perfor-

mance. In addition, when the queue length is large, there is a high chance that the packet

may be dropped, which will bring a high packet drop rate (PDR). As a result, the UE will

request the packet again and the delay performance would be even worse. The average queue

length is depicted in Fig. 5.6(c). Our proposed method has the lowest average queue length.

As a comparison, the max-CQI method has the longest queue length, which is almost 9 times

longer than our proposed method. Round-robin, which serves the UEs in turn at different

time slots, can ensure that each UE get served “equally.” However, it does not consider the

channel condition diversity for different UEs and does not fully exploit the resources. As a

result, the queue length performance of round-robin is also poor.

5.5 Conclusions

In this chapter, we aimed to minimize the average packet delay of a downlink multi-

access OFDM cellular network, where the UEs have different packet request patterns and

channel conditions. We developed a DRL-based packet scheduling method. We showed

that our proposed method can achieve the lowest delay and the shortest average queue

length. The proposed method has a great potential for delay-sensitive applications, such as

vehicle-to-vehicle (V2V) communication in the 5G era. Moreover, the reward function can be
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customized by jointly considering the dynamic traffic load, QoS parameters, and application

requirements.
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Chapter 6

Summary and Future directions

6.1 Summary

In this dissertation, we have studied resource allocation in next generation wireless net-

works. Specifically, we focus on two representative technologies in 6G: 1) IRS technology and

2) machine learning. This dissertation can be broadly organized into two parts under the

theme of resource allocation. The first part (chapter 2 and chapter 3) studied resource allo-

cation in IRS-assisted wireless networks with optimization methods. The convergence and

effectiveness of the proposed approach are demonstrated via both simulations and analysis.

The second part (chapter 4 and chapter 5) investigated resource allocation problems with

machine learning approaches. It can be seen that conventional optimization methods still

show advantages in the optimization of emerging network types, such as IRS. However, they

generally require complex iterations and may be sub-optimal. Meanwhile, machine learning

shows great potential in shifting the time-consuming computation to the off-line training,

and tackling problems which is hard to model.

Based on the examples presented in the previous chapters, we proposed a workflow to

deal with general resource allocation problems in figure 6.1. As can be seen, depending on the

specific purpose, network type and performance criteria, a resource allocation problem can

be formulated first. Based on the property of the problem, optimization method and machine

learning approach can be used. In the following, we summarize the main contributions and

discuss possible directions for our future work.

In Chapter 1, we presented a big picture of the evolvement of wireless networks over

decades. The key technologies in 6G including IRS and machine learning are introduced.

We then presented the basics of resource allocation, challenges and approaches.
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Figure 6.1: A workflow to address general wireless resource allocation problems

In Chapter 2, we studied the beamforming design problem in an IRS-assisted rate split-

ting system. We developed a BCD algorithm to jointly optimize the active beamforming at

the BS as well as the passive beamforming at the IRS. For the first time, we considered the

impact of imperfect CSI in the IRS-assisted RS system, which is well handled by our devel-

oped algorithm. We first analyzed and explained the performance gain when RS meets IRS.

The robustness of RS in combating channel uncertainties in IRS-assisted wireless network

has been demonstrated via simulations.

In Chapter 3, we studied the resource allocation problem in an IRS-assisted federated

learning system. The IRS phase shift is optimized under both the single user case and the

multiple user case. Our results show that the properly configured IRS can significantly save

the total energy consumption, especially when the number of reflecting elements on the IRS

is large. For future work, we consider incorporating the AirComp framework into our design

and develop more efficient schemes for IRS-assisted federated learning.

In Chapter 4, we studied the power allocation problem in wireless networks with in-

terfering links. Classic optimization methods have been developed to solve this problem.

Motivated by the strong learning power of residual networks and the fast operating speed of

deep learning, we developed a deep learning based power control. Moreover, we incorporate
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the GLI information into our design and use convolutional neural network to capture the in-

terference pattern of the interfering links. Our developed deep learning approach shows great

generalizability and can achieve a near-optimal performance at a remarkably high speed.

In Chapter 5, we studied the channel resource block allocation problem with DRL

approach. Different from the previous examples, in this example the formulated problem

does not exhibit closed-form expressions in terms of the optimization variables, hence only

heuristic algorithms can be used. We incorporate DRL into the design of packet scheduling.

Moreover, we deployed our developed algorithm in a mmwave testbed. The performance of

machine learning approach is verified via both simulations and real-world test.

6.2 Future Directions

The research on IRS and machine learning has just emerged. Both would be key can-

didate 6G communication technologies. There are still a lot of open problems in this area.

Here we briefly list some future directions.

6.2.1 IRS Optimization with Machine Learning

In our dissertation, the design and optimization of IRS-assisted networks still relies on

conventional optimization methods, which requires complex iterations. A good direction is

to use machine learning in the design of IRS-assisted networks. In IRS-assisted network,

it is challenging to obtain precise CSI. Deep learning approach, has the potential to map

the received pilots to the direct and cascaded channels. As a result, the channel estimation

performance can be improved. In terms of the optimization of the reflecting elements on

the IRS, we can view it as a decision making process. The IRS learns how to reflect the

incident signals in the best possible way with DRL. Compared with optimization method,

this approach would no longer need precise system model and could be more adaptive in the

dynamic wireless environment.
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6.2.2 Training Data Acquisition and Real-world Deployment

The machine learning approaches faced many challenges in the training process since

they require collecting a large number of high quality data along with the network profiles.

For example, the supervised learning approaches require the accurate labeled data, which

may be hard to obtain in the rapidly changing environment. Other approaches rely on

simulated dataset, which is generated based on a specific type of network. Hence there may

be an inconsistency between the developed method and the ideal method that works on

a practical system. In practice, most of the data is obtained via the measurement of the

wireless state or the local states reported by the devices. As future network becomes more

and more dense, the communication cost and measurement cost will be a big challenge.

6.2.3 New Applications

Virtual reality (VR) and augmented reality (AR) have been regarded as one of the key

applications in 6G. They are expected to revolutionize the interactions between humans and

the perceived world by providing a highly immersive virtual world experience. As a transfor-

mative service, VR/AR has been used in a wide range of applications, ranging from personal

entertainment, social interactions, automotive video streaming, to remote control and tactile

internet. The stringent delay requirement (less than 20 ms) and large bandwidth consump-

tion (350 Mbits/s) makes it challenging in optimizing the communication, computation and

storage resources. We believe that the potential of IRS and machine learning in supporting

these applications has not been fully unleashed. Efficient frameworks with edge intelligence

are needed to support future new applications, such as wireless VR/AR.

6.2.4 Secure Communication

In the era of internet of things (IoT), machine and devices are connected for real-world

sensing and interaction. Users expect that their devices are secure from attack. Many pri-

vate information such as health-care data, bank account information should be protected
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well from network security threats such as eavesdropping and jamming. The secure commu-

nications bring about new challenges for the resource allocation in next generation wireless

networks. For example, current resource allocation may be invalid when the network faces

potential threats from the eavesdroppers and pseudo base stations. A security-oriented re-

source allocation is needed to ensure the safe communication for next generation wireless

networks.
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Appendix A

Proof for chapter 2

A.1 Proof of Theorem 1

Note that Problem (2.14) without constraint (2.14f) is convex. Therefore the Lagrangian

function in terms of the active beamforming Wi(i ∈M) can be expressed as

L = T + α

(
Pmax −

∑

k∈M

Tr (Wk)

)
+
∑

k∈K

βk

(
log2

(∑

i∈K

Tr
(
hkh

H
k Wi

)
+ σ2

0

)

−Γp,k(W
t)

log(2)

∑

i∈K,i 6=k

Tr
(
hkh

H
k Wi

)
)

+
∑

k∈K

γk

(
log2

(∑

i∈M

Tr
(
hkh

H
k Wi

)
+ σ2

0

)

−Γc,k(W
t)

log(2)

∑

i∈K

Tr
(
hkh

H
k Wi

)
)

+
∑

i∈M

Tr(WiYi),

where α, βk, γk, and Yi are the Lagrange multipliers associated with the corresponding

constraint (2.14c), (2.14d), (2.14e) and (2.14g), respectively, and T is the term irrelevant to

Wi. The KKT conditions for the optimal W∗
i (i ∈M) can be expressed as

α∗, β∗k , λ
∗
k ≥ 0, k ∈ K

Y∗i � 0, i ∈M

Y∗iW
∗
i = 0, i ∈M

∇W∗
i
L = 0, i ∈M,
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where α∗, β∗k , γ
∗
k, and Y∗i are the optimal Lagrange multipliers and ∇W∗

i
L is the gradient of

L with respect to W∗
i . In this case, for the private message, we have

∇W∗
k
L = −α∗I + Y∗k + βk

Γp,k(W
∗)

log(2)
hkh

H
k +

∑

k∈K

γk
Γc,k(W

∗)

log(2)
hkh

H
k −

∑

k∈K

γk
Γc,k(W

t)

log(2)
hkh

H
k , k ∈ K.

Note that when the algorithm converges, the value of W in the tth iteration will be

close to the optimal value W∗, and hence Γc,k(W
∗) = Γc,k(W

t). In this case, we have

∇W∗
k
L = −α∗I + Y∗k + βk

Γp,k(W
∗)

log(2)
hkh

H
k , k ∈ K. (A.1)

For the common part, we have

∇W∗
c
L = −α∗I + Y∗c +

∑

k∈K

γk
Γc,k(W

∗)

log(2)
hkh

H
k I. (A.2)

Multiplying both sides of (A.1) by W∗
k and multiplying both sides of (A.2) by W∗

c , we have

− α∗W∗
k + Y∗kW

∗
k + βk

Γp,k(W)

log(2)
hkh

H
k W∗

k = 0

− α∗W∗
c + Y∗cW

∗
c +

∑

k∈K

γk
Γc,k(W)

log(2)
hkh

H
k W∗

c = 0.

Note that Y∗iW
∗
i = 0, i ∈M. Hjjence we have

α∗W∗
k = βk

Γp,k(W)

log(2)
hkh

H
k W∗

k

α∗W∗
c =

∑

k∈K

γk
Γc,k(W)

log(2)
hkh

H
k W∗

c .

With the basic rank inequalities, for the private covariance matrix W∗
k, k ∈ K, we have

rank(W∗
k) = rank(α∗W∗

k) = rank

(
βk

Γp,k(W)

log(2)
hkh

H
k W∗

k

)
≤ rank(hkh

H
k ) = 1. (A.3)
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However, for the common covariance matrix W∗
c , we have

rank(W∗
c) = rank(α∗W∗

c) = rank

(∑

k∈K

γk
Γc,k(W)

log(2)
hkh

H
k W∗

c

)

≤ rank

(∑

k∈K

γk
Γc,k(W)

log(2)
hkh

H
k

)
≤ min{M,K}.

A.2 Proof of Theorem 2

Suppose (w∗,G∗,U∗, s∗,R∗c,R
∗
p,v

∗) are the stationary solutions of problem (2.24), then

(w∗,G∗,U∗, s∗,R∗c,R
∗
p,v

∗) satisfy the KKT condition of problem (2.24). As a result, we have

1

ln 2

K∑

k=1

λgp,k∇Gξp,k +
1

ln 2

K∑

k=1

λgc,k∇Gξc,k = 0 (A.4)

1

ln 2

K∑

k=1

λup,k∇Uξp,k +
1

ln 2

K∑

k=1

λuc,k∇Uξc,k = 0 (A.5)

1

ln 2

K∑

k=1

λwp,k∇wξp,k +
1

ln 2

K∑

k=1

λwc,k∇wξc,k + 2
K∑

k=1

λwk wk = 0 (A.6)

1

ln 2

K∑

k=1

λvp,k∇vξp,k +
1

ln 2

K∑

k=1

λvc,k∇vξc,k + 2λvv = 0 (A.7)

where λgp,k, λ
u
p,k, λ

w
p,k, λ

v
p,k are nonnegative Lagrange multipliers associated with constraint

(2.24c) and λgc,k, λ
u
c,k, λ

w
c,k, λ

v
c,k are nonnegative Lagrange multipliers associated with con-

straint (2.24b). Note suppose (G∗,U∗) satisfy condition (2.18) and (2.22), then gp,k =

gMMSE
p,k , gc,k = gMMSE

c,k , up,k = uMMSE
p,k and uc,k = uMMSE

c,k . In this case, we always have

∂ξp,k

∂gp,k

= up,k
∂εp,k
∂gp,k

= 0

∂ξc,k

∂gc,k

= uc,k
∂εc,k
∂gc,k

= 0 (A.8)

Hence, (A.8) is in line with (A.4)., which means gMMSE
p,k and gMMSE

c,k satisfy the KKT condi-

tion (A.4). Similarly, uMMSE
p,k and uMMSE

c,k satisfy the KKT condition (A.5), hence they are
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stationary solutions of problem (2.24). When gp,k = gMMSE
p,k , gc,k = gMMSE

c,k , up,k = uMMSE
p,k and

uc,k = uMMSE
c,k , we got the relationship (2.23). In this case, (A.6) and (A.7) is transformed to

−
K∑

k=1

λwp,k∇wRp,k −
K∑

k=1

λwc,k∇wrc,k + 2
K∑

k=1

λwk wk = 0 (A.9)

−
K∑

k=1

λvp,k∇vRp,k −
K∑

k=1

λvc,k∇vrc,k + 2λvv = 0 (A.10)

which are the KKT condition for problem (2.9). Also, the KKT condition is the same for

problem (2.9) and problem (2.24) in terms of variable s, Rp, Rc. Hence, (w∗, s∗,R∗c,R
∗
p,v

∗)

are stationary solutions for problem (2.9).

A.3 Proof of Theorem 3

Denote the objective function in (2.24) as F (G,U,w,v). Then we have

F (Gt−1,Ut−1,wt,vt) ≤ F (Gt,Ut,wt,vt) ≤ F (Gt,Ut,wt+1,vt) ≤ F (Gt,Ut,wt+1,vt+1),

where the first inequality holds since Ut is the optimal weight and G is the optimal MMSE

equalizer to minimize the MSE. The second inequality holds since wt+1 is the optimal solu-

tion to Problem (2.25) and the third inequality holds since vt+1 is the optimal solution to

Problem (2.42).
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Appendix B

Proof for chapter 3

B.1 Proof of Theorem 4

The objective function Ek in (3.12) is an increasing function in terms of fk. The time

constraint (C1) of Problem (P1) suggests that the IoT device should work on the lowest

frequency f ∗k that is allowed by the delay constraint.

B.2 Proof of Theorem 5

If pc,k − Ak > 0, then pk + pc,k − Ak > 0. Minimizing the energy consumption Ek is

equivalent to maximizing the function g(pk) = Rk

pc,k+pk−Ak
. For simplicity of notation, we

rewrite g(pk) as

g(pk) =
bk

ln(2)

ln(1 + akpk/bk)

pc,k + pk − Ak
, (B.1)

where ak =
|wH

k hk|2

N0|wH
k |2

> 0. Then we have

g′(pk) =
bk

ln(2)

ak
bk+akpk

(pc,k + pk − Ak)− ln(1 + akpk/bk)

(pc,k + pk − Ak)2
. (B.2)

Let the numerator be denote by h(pk) and we have

h′(pk) =
−a2

k

(bk + akpk)2
(pc,k + pk − Ak) < 0, (B.3)

which means h(pk) is a decreasing function on [0, Pmax]. Also note that h(0) = ak(pc,k −

Ak)/bk > 0 and limpk→∞ h(pk) = −∞. Hence there exists a p′k ∈ [0,∞] such that h(p′k) = 0.
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As a result, h(pk) > 0 on the interval [0, p′k] and h(pk) < 0 on the interval [p′k,+∞]. Hence

g′(pk) > 0 on the interval [0, p′k] and g′(pk) < 0 on the interval [p′k,+∞]. We then claim that

g(pk) achieves its maximum value when pk = p′k.

It is not straightforward to obtain a closed-form expression of p∗k by solving h(pk) = 0.

However, this is a one-dimensional search problem and function h(pk) has the monotone

property. Hence, some simple algorithms (e.g., bisection search) can be used to obtain the

solution [150].

B.3 Proof of Theorem ??

Let’s examine the property of f(η). Its first order derivative is

f ′(η) =
−v(1− η) + uη − vη ln(η)

η(1− η)2
. (B.4)

Letting h(η) = −v(1 − η) + uη − vη ln(η), we have limη→0+ h(η) = −v < 0 and limη→1−

h(η) = u > 0. Moreover,

h′(η) = u− v ln(η) > 0, η ∈ (0, 1). (B.5)

Hence, h(η) is an increasing function in terms of η on (0, 1) and there exists only one point

η′ such that h(η′) = 0. Then h(η) < 0 (f ′(η) < 0) on the interval (0, η′], and h(η) > 0

(f ′(η) > 0) on the interval [η′, 1). As a result, f(η) will be decreasing on (0, η′] and increasing

on [η′, 1). The optimal solution that minimizes the energy consumption Ek should be η = η′.

B.4 Proof of Theorem 7

The objective function in Problem (P3c) is in the form of sum-of-ratios. To prove the

sum function is convex, we only need to show that each sub ratio function is convex.
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First of all, we consider the phase shift matrix V. It can be seen that the denominator

is actually a logarithm function of fk(V), which is concave, and fk(V) is a linear function

of V. Hence, each individual ratio function is convex in terms of V. Hence, their sum will

also be convex in terms of V.

Next, note that the denominator of each sub ratio function is the achievable rate Rk(bk)

of each device. Since

∂2Rk

∂b2
k

= − p2
kfk(V)2

ln(2)(N0bk + pkfk(V))2bk
< 0, (B.6)

Rk(bk) is concave in terms of bk and (pc,k + pk)/Rk(bk) is convex in terms of bk.

B.5 Proof of Theorem 8

Theorem 7 also suggests that Problem (P3d’) is a convex optimization problem. In-

troduce the Lagrange multipliers associated with the objective function in (P3d’) and the

bandwidth constraint. Thus the Lagrange function of the problem can be written as L =
∑

k βk +
∑

k λk

(
pc,k + pk − Ak − βkbk log2(1 + pkfk(V)

N0bk
)
)

+µ(
∑

k bk −B). Then the optimal

solution V∗, {b∗k}, and {β∗k} and the Lagrange multipliers λ∗k and µ∗ should satisfy the
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following KKT conditions.

∂L
∂V

= − 1

ln 2

∑

k

λkβkbk
1

1 + pkfk(V)
N0bk

f ′k(V) = 0 (B.7a)

∂L
∂bk

= µ+
λkβk

ln(2)(N0bk + pkfk(V))
(B.7b)

[
pkfk(V)− (pkfk(V) +N0bk) ln

(
1 +

pkfk(V)

N0bk

)]
= 0

∂L
∂βk

= 1− λkbk log2

(
1 +

pkfk(V)

N0bk

)
= 0 (B.7c)

λk
∂L
∂λk

= λk

(
pc,k + pk − Ak − βkbk log2

(
1 +

pkfk(V)

N0bk

))
= 0 (B.7d)

µ
∂L
∂µ

= µ

(∑

k

bk −B
)

= 0 (B.7e)

λk ≥ 0, µ ≥ 0. (B.7f)

pc,k + pk − Ak − βkbk log2(1 +
pkfk(V)

N0bk
) ≤ 0 (B.7g)

∑

k

bk −B ≤ 0. (B.7h)

From (B.7c), we can infer that λ∗k > 0 and conclude that the equality in (3.36a) holds.

Similarly, from (B.7d), we have (3.36b). Moreover, note that given λ = λ∗k and βk = β∗k ,

(B.7a), (B.7b), (B.7e), and (B.7f) are just the KKT conditions for Problem (P3). Since

(P3) is convex programming for parameter λk > 0 and βk ≥ 0, the KKT conditions are also

sufficient optimality conditions. This completes the proof of the theorem.

B.6 Proof of Theorem 9

Following Theorem (8), the optimal solution to (P3d’) should satisfy the KKT conditions

(B.7). We have from (B.7b)

µ =
λkβk

(
−pkfk(V) + (N0bk + pkfk(V)) ln(1 + pkfk(V)

N0bk
)
)

(N0bk + pkfk(V)) ln(2)
,

159



which can be written as

λkβk
ln(2)

(
ln(1 + x)− x

1 + x

)
= µ, (B.8)

where x = pkfk(V)
N0bk

. The solution is found to be

ln(1 + x) +
1

1 + x
= 1 +

µ ln(2)

λkβk
, Ck. (B.9)

Hence, we obtain (3.38) and (3.39). Note that the optimal solution of bandwidth b∗k can

be obtained numerically by substituting µ∗ into (3.39) and (3.38). Again, the bisection

algorithm can be applied to find the numerical solution of µ when solving
∑

k bk = B, by

leveraging the monotonicity of the Lambert W function.

B.7 Proof of Theorem 10

Algorithm 4 is a two-layer alternating optimization algorithm. In the outer layer, the

auxiliary variable λk and βk are updated with a Newton-like method, the convergence of

which has been proved in [151]. We only need to show that the inner layer iteration (Algo-

rithm 3) converges, where the variables V and bk are optimized.

Denote the objective function of (P3d’) as f(bk,V). In the sth iteration, we have

f(bsk,V
s)

(a)

≤ f(bsk,V
s+1)

(b)

≤ f(bs+1
k ,Vs+1).

Note that the above inequalities (a)-(b) hold true because Problems Vs and bsk are both

optimally solved in each iteration s. However, we have to mention that inequality (a) will

not hold strictly since we deal with the non-convex rank one constraint with the Gaussian

randomization method, which may violate the monotonic improvement property of the above

equation. To tackle this issue, our solution is to perform a significant number of randomiza-

tion processes and select the best solution that maximizes the objective function in (P3d’).

In simulations, we perform 100 Gaussian randomization and select the best v that achieves
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the maximum objective function. As a result, the inequality (a) will be guaranteed. Due to

limited BS power and the finite number of IRS reflecting elements, the objective function

in (P3d’) is lower bounded and will converge after a finite number of steps.
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