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Abstract 

 

         Conservation and management of wild populations requires management professionals to 

devise methods for collecting data that are efficient and accurate. For example, understanding 

population sizes and stability is important to predicting extinction risk but the lack of 

comparisons of costs and effectiveness of different methods limits efficient assessment of wild 

populations. Similarly, monitoring and tracking the spread of wildlife diseases is important for 

conservation and management, however disease samples and other data have to be collected 

efficiently and in ways that maximize our understanding of the disease-wildlife systems. In my 

thesis, we addressed these research gaps in three studies. First, we conducted a meta-analysis of 

peer-reviewed studies that compared two or more monitoring. This provided an insight into the 

quantitative differences that are expected among methods. Next, we developed a forward-time, 

agent-based model to compare different approaches for collecting wildlife data, including data 

needed to quantify population size or density or understand disease presence. We found that the 

stationary approaches have more detections or sampling events compared to the mobile 

approaches, but both approaches have equal number of unique detections (i.e. unique individuals 

detected or sampled). Our model also suggested that some sampling approaches may be better 

suited for very large populations compared to other sampling schemes. Finally, we reviewed our 

current understanding of avian malaria with particular focus on recent advances in understanding 

this disease and its effects on wildlife and future efforts to control further spread. The results of 

this thesis will allow conservation practitioners and managers to identify the most effective 

monitoring techniques for their species of interest, and consideration of more efficient sampling 

approaches for wildlife diseases.  
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Chapter 1: Comparison of minimally invasive monitoring methods and live trapping in 

mammals 

Miranda Paez A, Sundaram M, Willoughby JR. 2021. Comparison of minimally invasive 

monitoring methods and live trapping in mammals. Genes 12:1949. doi:10.3390/genes12121949. 

Abstract 

The conservation and management of wildlife requires the accurate assessment of wildlife 

population sizes. However, there is a lack of synthesis of research that compares methods used to 

estimate population size in the wild. Using a meta-analysis approach, we compared the number 

of detected individuals in a study made using live trapping and less invasive approaches, such as 

camera trapping and genetic identification. We scanned 668 papers related to these methods and 

identified data for 44 populations (all focused on mammals) wherein at least two methods (live 

trapping, camera trapping, genetic identification) were used. We used these data to quantify the 

difference in number of individuals detected using trapping and less invasive methods using a 

regression and used the residuals from each regression to evaluate potential drivers of these 

trends. We found that both trapping and less invasive methods (camera traps and genetic 

analyses) produced similar estimates overall, but less invasive methods tended to detect more 

individuals compared to trapping efforts (mean = 3.17 more individuals). We also found that the 

method by which camera data are analyzed can significantly alter estimates of population size, 

such that the inclusion of spatial information was related to larger population size estimates. 

Finally, we compared counts of individuals made using camera traps and genetic data and found 

that estimates were similar but that genetic approaches identified more individuals on average 

(mean = 9.07 individuals). Overall, our data suggest that all of the methods used in the studies 
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we reviewed detected similar numbers of individuals. As live trapping can be more costly than 

less invasive methods and can pose more risk to animal well-fare, we suggest minimally invasive 

methods are preferable for population monitoring when less-invasive methods can be deployed 

efficiently.  

Keywords: camera trap; census; density; genetic; hair; live traps; population; scat  

Introduction 

Methods of monitoring wildlife populations focus on measures of density or abundance of 

populations, which allow for the evaluation of the dynamics of populations over time and in 

response to management strategies [1]. Population estimates can also support the evaluation of 

the viability of a population, population size, hunting limits, and examining impacts of changes 

in the environment and system [1]. However, when it comes to rare or difficult-to-catch species, 

especially species from small populations or those that occur at low densities, trapping or 

otherwise capturing individuals can be extremely time consuming. Although there are many 

methods for monitoring wildlife such as camera trapping or minimally invasive DNA analysis, 

all methods have their limitations [2]. Identifying methods that provide accurate estimates 

efficiently is essential for monitoring species and managing ecosystems.  

One traditional method for obtaining data to assess population size or density is live trapping [3]. 

With live trapping, individuals of the target species in a study are trapped and released between 

each sampling session, creating capture histories of individuals and providing information about 

the individuals captured, such as overall health, sex, and even reproductive status [4,5]. 

However, this method can be extremely labor intensive and, as a result, cost restrictive and time 

consuming. Traps are often checked in 12-h intervals but, depending on the species of study, 



 11 

traps may be checked more often. For example, insectivore traps need to be checked much more 

frequently as their diet does not provide the energy to withstand long hours in a trap [5]. In 

addition, the potential to stress an animal and interfere with their daily activity is high, thereby 

limiting the quality of the data [3]. Although these effects can be limited by methodological 

choices cleared by animal ethics authorities [5], less stressful and more efficient monitoring 

methods are often desirable.  

Since their development in the early 1980s, camera traps have been used to study population 

sizes especially for large carnivores with distinctive natural marks (e.g., Panthera tigris, 

Panthera onca, and Lynx rufus) [6]. Camera traps are noninvasive methods useful for species 

inventories, estimating population density, calculating home range, and monitoring population 

dynamics [7]. The advantages of using camera traps, compared to other methods, is that they 

have a relatively low cost and do not require physical or chemical animal restraint, avoiding 

capture stress [6,7]. Natural marks and fur patterns help identify individuals and establish capture 

history [8]. However, using camera traps is often restricted by the ability to identify individuals 

or species that do not have distinctive fur or marking patterns [9] but understanding where to 

place camera traps can be challenging when movement patterns are unknown [10].  

One alternative to camera traps that is often less invasive than trapping is the use of genetic-

based methods for individual identification [11]. With genetic sampling, capture histories can be 

constructed through the captured genotypes from samples of tissue, scat, or hair [4]. Genetic data 

captured can also reveal other patterns important to long-term population stability such as 

inbreeding rates, genetic diversity, population structure, and patterns of gene flow [12]. While 

scat samples can be collected opportunistically, hair snagging devices can also be deployed with 
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lures or bait [13]. As samples like scat and hair are often easier to obtain compared to the efforts 

related to trapping, reduced field costs can help to make this method more cost-efficient, 

enabling additional collection and larger sample sizes [4]. However, there are drawbacks to 

DNA-based techniques. When samples remain uncollected immediately after being deposited, 

the DNA will degrade. This can lead to genotyping errors such as false alleles and allelic 

dropout, inflating the number of unique individuals identified. Through repeated amplification of 

the genetic samples, these genotyping errors can be reduced, although the repeated genetic work 

comes with additional sample processing cost [4].  

Minimally invasive sampling techniques are often preferred for endangered species because 

these methods generally pose less risk of injury or death compared to trapping or other 

approaches. Monitoring population densities using cameras or genetic analyses, especially in 

tandem, may provide insight into the trade-offs of capture methodologies. However, the overall 

pattern of detections that are made when using live trapping compared to those made using less 

invasive methods (i.e., those using camera traps or genetic data) across species is unknown. The 

primary objective of this study was to compile literature that compared individual detections 

using at least two common methods: live trapping, camera trapping, and genetic analysis. Using 

these data, we answered three questions: (1) “Does the number of individuals detected change 

when using live trapping methods compared to when less invasive methods (i.e., camera trapping 

and genetic analyses) are used?”; (2) “Do estimates from minimally invasive data collection 

methodologies have a similar sensitivity in identifying unique individuals?”; and (3) “What 

species and study-specific criteria are associated with differences in effectiveness of live traps, 

camera, and genetic data?” Our study focuses on the number of individuals detected because 

these are the data that were reported in the literature. However, detectability is an important part 
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of estimating population size and density. Despite this, our analyses are still useful because 

incorporating more detections can reduce error in population size estimates for most systems. 

Understanding how these methods differ in their ability to identify unique individuals will be 

important for targeting the correct methodologies for estimating population sizes in on-going 

management work. 

Materials and Methods  

We used a systematic literature search to identify existing data using the Web of Science. We 

conducted three searches using the following sets of keywords: (1) (hair OR scat OR gene*) 

AND (census OR density) AND (live trap*); (2) (camera trap* OR camera-trap* OR game 

camera* OR trail camera*) AND (census OR density) AND (live trap*); (3) (camera trap* OR 

camera-trap* OR game camera* OR trail camera*) AND (hair OR scat OR gene*) AND (census 

OR density). We included articles from 1900–present and our final list of papers included one 

non-peer-reviewed, preprint manuscript. From this set of papers, we identified studies that 

reported the number of individuals they detected in the focal species using at least two of the 

following methods to identify individuals: live traps, camera traps, or genotyping. These studies 

must have collected both of these sets of data over the same time period and for the same target 

population. A graphical representation of the filtering process is described using the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses chart (Figure 1) [14]. From each 

paper that passed our filtering criteria, we extracted the focal species, location of study, size of 

study site, camera data analysis method, and type of genetic sample that was collected (Table 2). 

We also extracted study outcomes including the total number of individuals identified. When 

necessary, we used the study area size and density estimate to calculate the number of 
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individuals identified. Data depicted only in figures (this happened only once) was extracted 

using ImageJ (version 1.53i) [15]. 

 

Figure 1. PRISMA diagram of our search protocol and results. Hundreds of papers were 
identified through database search using keywords mentioned previously. Title and abstracts 
were then reviewed as the first screening process. Papers that contained method comparison 
between invasive and non-invasive, and camera and genetic methods were retained. After 
screening, 32 full-text articles were reviewed for eligibility. 4 full texts were excluded from the 
comparison. Finally, 28 full-text meta-analyses were included in this meta-analysis. 

 

We initially compared the number of focal-species individuals identified using live trapping to 

those made using less invasive methods (camera traps and genetic analyses) using a linear 
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regression. As we were interested in evaluating a 1:1 relationship between the two estimates, we 

predicted population size using less invasive methods to estimates made using live trapping data, 

setting the intercept to zero. To meet assumptions of normality, we log-transformed both 

estimates of population size. We then extracted the residuals for each population from the 

resulting regression line. We repeated these analyses to compare population size estimates 

generated from less invasive to each other, where camera trap estimates and genetic data 

estimates were the predictor and response variables, respectively. We subsequently used both 

sets of standardized residuals to understand which factors (see below) might be related to the 

discrepancies between the population size estimates. These and all subsequent statistical analyses 

were performed in R [16].  

We calculated the mean number of individuals identified using trapping compared to less 

invasive approaches and the mean number of individuals identified using camera traps compared 

to genetic data analyses using a bootstrapping approach. Specifically, we estimated the mean 

difference between each group 1000 times, resampling 80% of the values with replacement. We 

then estimated the 95% confidence interval around the mean difference estimated from the data 

and compared this interval to zero.  

We evaluated the extent to which the differences in number of individuals detected between 

methods were related to the phylogenetic relatedness of the species in the studies included in our 

analyses. We used the taxonomic categories of order, family, genus, and species to create a 

phylogenetic tree of species included in the studies from which we collected population size 

data, where all branch lengths were set to 1. We then used a phylogenetic least squares 
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regression to quantify the relationship between our phylogeny and the regression residuals 

described above using a linear model and assuming Brownian evolution [17].  

Next, we tested the extent to which properties of each study were related to the differences 

between the number of detected individuals using a series of regressions where standardized 

residuals from our original regressions were predicted from study characteristics. First, we 

estimated the effect of camera analysis methods (spatial and random) on the differences between 

estimates. In the studies we examined, we categorized spatial methods as those that incorporated 

spatial locations into their analyses of camera data as “spatial” studies and “random” studies as 

those that did not incorporate this information into the analysis. Next, we quantified the effect of 

DNA source tissue (hair and scat) used on differences between number of detected individuals in 

the studies we analyzed. Finally, we considered how study site size contributed to the residual 

values using a regression where the log of study size, in kilometers, was used to predict the 

residuals from our initial regressions. For any of the identified comparisons that were significant 

predictors of the residuals, we calculated the mean number of individuals identified using the 

two different approaches, again using a bootstrapping approach. As before, we estimated the 

mean difference between each group 1000 times, resampling 80% of the values with 

replacement. We then estimated the 95% confidence interval around the mean difference 

estimated from the data and compared this interval to zero. 

In addition to technical study properties, we were also interested in how biological variables of 

body size and dominant habitat may have contributed to the differences in detected individuals. 

To test this, we collected mean body size estimates from the list of Mammalian Species Account 

in the Journal of Mammalogy (by chance, all identified studies in our analysis focused on 



 17 

mammals) and used the log of these values as predictors of the differences between number of 

detected individuals (i.e., standardized residuals from original regressions). To quantify the 

effect of habitat, we extracted the dominant habitat ecozone for each population from the 

Morrone biogeographic realms [18]. We then used these categories as predictors for the 

standardized residuals. All data used in our analyses are available and in Table 2. All analysis 

code available online via GitHub: https://github.com/andreamiranda26/Monitoring-Methods-

Analysis. 

Results 

We screened a total of 668 studies that were returned from our Web of Science searches and 

ultimately identified 28 studies that used at least two methods for identifying individuals in a 

wild landscape. This included comparisons for 27 populations that compared live trapping to less 

invasive methods and 17 populations where camera and genetic data were compared. These 

studies focused on mammals and were conducted in North America, Europe, Asia, and Oceania 

(Table 1; all data included in Table 2). 

  



 18 

Table 1. Regression coefficients and standard error (SE) estimates. The first two results describe 
the comparison of population size estimates generated using two different data collection 
methods. The remaining results analyzed the ability of several study and species-related 
predictors to describe the residuals from the initial two regressions. In the table header, F is F 
statistic, DF is degrees of freedom, and p is the p-value for the model. 

 

We were interested in understanding how well minimally invasive approaches matched 

individual detection data generated from more traditional trapping efforts. Our initial regression, 

which forced the intercept through zero, suggests that these measures are well correlated with the 

95% CIs of slopes overlapping 1 indicating a 1:1 relationship (Table 1; Figure 2). We also 

quantified the mean difference between these methods and found that minimally invasive 

methods were similar to population size estimates generated from live trapping efforts (mean 

difference = 3.19 individuals; 95% CI −8.150 to 15.602).  
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Figure 2. Comparison of the number of individuals identified using live trapping compared to 
less invasive methods (blue dots denote comparisons where the less invasive method used were 
camera traps whereas red dots used genetic data). Regression output is depicted by the black line 
slope = 0.976 ± 0.057, p < 0.001, R2 = 0.919, F = 296.1, degrees of freedom = 26). Less invasive 
methods were on average larger than the population size estimates generated from live trapping 
efforts (mean = 3.19 individuals). 

 
We also compared identification estimates generated using two minimally invasive methods, 

camera traps and genetic identification of individuals. Using a regression that forced the intercept 

through zero, we found that these estimates were reasonably well correlated with the 95% CIs of 

slopes overlapping 1 (Table 1; Figure 3), even though the explanatory power in this regression 

was less than the regression comparing trapping to less invasive methods (i.e., R2 = 0.919 

compared to R2 = 0.686, respectively; Table 1). We also found that these methods identified a 

similar number of individuals (genetic methods identified an additional 9.07 individuals 

compared to camera traps on average; 95% CI −3.323 to 24.212). 
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Figure 3. Regression results comparing population estimates generated using two non-invasive 
methods, camera traps and genetic identification of individuals. On average, genetic methods 
estimated an additional 9.07 individuals compared to camera traps (slope = 0.920+0.145, 
p<0.001, R2 = 0.686, F = 40.29, degrees of freedom = 18 

 

As the species in the studies we reviewed were distributed non-randomly across the phylogenetic 

tree (i.e., all mammals and many species in Carnivora), we considered how the potential 

confounding variable of shared evolutionary history influenced detection using a phylogenetic 

least squares regression. We found that phylogeny did not predict the difference in individuals 

detected using trapping compared to less invasive techniques. Similarly, phylogeny did not 

predict the difference in detection compared between the two less invasive techniques (Table 1). 

We examined our data for evidence of the technical aspects of the study design that may have 

explained the differences in the number of individuals detected. Although our data were 

somewhat limited in power, we found that the camera data analysis methodology was a 

significant predictor of the differences in detection when using the live trapping and camera 

methods. However, the camera data analysis method did not predict the difference in detection 
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when compared between the less invasive methods (camera vs genetic data analysis). The type of 

tissue collected for genetic analyses (hair or scat) had no predictive power for detection 

differences that occurred when using live trapping and genetic methods or when compared 

between less invasive methods. Finally, we found that study site size did not predict the 

differences in number of individuals detected in either of our comparisons (Table 1).  

Following on the significant relationship between camera data analysis method and regression 

residuals, we quantified the difference in number of individuals identified using trapping 

approach and camera data analyzed assuming random movement of individuals or using spatial 

data information, using bootstrap analysis. We found that when spatial data related to detections 

was not used in the analysis, trapping approaches identified similar number of individuals 

compared to camera data (mean = 16 individuals, 95% CI −37.667 to 4.667). When spatial 

information was incorporated, camera-based approaches identified an average of 35 more 

individuals compared with trapping-based approaches (95% CI 3.750 to 66.000). However, we 

note that the number of studies that made these comparisons was small (four and five, 

respectively) and so these ranges should be interpreted with this limitation in mind.  

Finally, we also considered how biological variables influenced the number of individuals 

detected using the various methods. We found that body size had no predictive power for 

detection differences compared between live trapping and less invasive methods or when 

compared between the minimally invasive camera and genetic data methods. We also found no 

significant difference in predictive power between the biogeographic realms in which these 

studies were conducted (Table 1).  
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Discussion 

Overall, the number of individuals detected using trapping and less invasive methods were well 

correlated. However, on average, 3.19 more individuals were identified using minimally invasive 

methods than using live trapping and 9.07 more individuals were found with genetic-based 

estimates compared to camera data-based estimates. Although the boot-strapped confidence 

intervals around these estimates included zero, these differences may be important in 

management, particularly in the conservation of endangered species. For example, the California 

condor is a species of high conservation need that has undergone intensive management [19]. In 

1990, less than 50 birds existed in the wild, meaning that an underestimation of close to 9 

individuals would represent missing ~18% of the total individuals existing in the wild. These 

results support the use of minimally invasive methods of trapping, and in particular use of 

genetic identification-based methods, for quantifying population size particularly when missing a 

few individuals would substantially undermine conservation or management goals.  

In addition to applications to species of extreme conservation concern, minimally invasive 

approaches may be preferable due to risk mitigation benefits as well as cost and time benefits 

associated with these methods. Compared to live trapping, less invasive methods offer 

protections to the focal populations because they are inherently less risky, as animals do not have 

to be handled. This provides a distinct advantage over live trapping for both animal well-fare and 

researcher injury risk. In addition, the total cost and effort for less invasive methodologies tends 

to be less than for invasive or lethal approaches, providing quantitative monetary and time 

advantages for these methods [20]. Combined with the relative similarity in detection of 

individuals that occurs with live trapping compared to less invasive methods, the advantages of 
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minimally invasive approaches suggests that these methods should be considered at least as often 

as live trapping when population monitoring is the goal.  

One important limitation of our study was our comparison of the number of individuals detected. 

Although we would have preferred to compare estimates of population density or other metric 

that takes into account detection probability, these were not uniformly reported in the studies we 

identified. However, we suggest that the core ability to identify different numbers of individuals 

for the same population at the same time provides support for increased sensitivity of minimally 

invasive methods compared to trapping. Even without incorporating detectability (i.e. probability 

of detection), basing population size estimates on data from more individuals can increase the 

accuracy of population size estimates. In our data, we expect this to be true because all of the 

comparisons were made when two different approaches to monitoring populations and collecting 

information about individuals were made for the same population over the same time period. 

While, some of the differences between estimates within studies could have been accounted for 

by incorporating detectability, we suggest that, across species and study sites, using methods that 

detecting more individuals is likely to be beneficial to population size estimates, in most cases 

[21,22]. 

We interpreted the variance around the regression line comparing trapping to less invasive 

method counts of individuals not corrected for detectability, as well as the variance around the 

comparison between minimally invasive methods as a representation of the between-study 

differences influencing the overall trends. Most of the study parameters we analyzed had no 

significant relationship on the residuals, however, camera analysis was a significant predictor of 

the difference in individual counts estimated using live trapping and camera trapping methods. 
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Our analysis supports the idea that including camera trap location yields better individual counts, 

as evidenced by studies that used these data having identified 35 more individuals (95% CI 3.750 

to 66.000) compared with counts from trapping data, whereas studies that assumed random 

movement when analyzing camera data identified 16 fewer individuals (95% CI −37.667 to 

4.667) compared with trapping-based estimates. However, use of these kinds of models requires 

consideration of study-specific variables prior to collecting data, as analyzing data not intended 

for spatial models leads to biased count of individuals [23].  

Although we advocate for the use of some of the less invasive methods available, consideration 

of species and habitat-specific variables are critical and may require in-field comparisons. For 

example, method comparisons could be beneficial for species that have low densities and low 

capture success, such as the southeastern fox squirrel (Sciurus niger), whose scarcity and 

difficulty in being detected requires a reliable method to survey and monitor their populations 

[24]. Likewise, for species sensitive to habitat loss and fragmentation such as the American 

marten (Martes americana), their density estimates are essential for deciding conservation 

strategies. American martens positively respond to baited camera traps, suggesting camera traps 

or baited hair snare traps for genetic analysis may be viable options [25]. However, the decline of 

marten populations may mean that, at least in some localized areas, genetic diversity is low, 

meaning that genetic analyses will require additional lab effort to produce individual 

identification information. Similarly, with Iberian lynx (Lynx pardinus) in Spain, where camera 

trapping is not financially or logistically possible [11], genetic analyses may represent a useful 

alternative. However, exclusion of wildcats (Felis sylvestris) scat, which is similar to Iberian 

lynx scats, would require extra investments [11]. Therefore, the decision to employ a particular 

data collection method requires species and ecosystem specific information.  
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Population estimates of wildlife populations are essential for proper research, conservation, and 

management. It is integral for the application of conservation and management strategies, such as 

establishing protections for threatened species, outlining sustainable harvest efforts, and 

mitigating human-wildlife conflict [26]. The effectiveness of wildlife conservation is heavily 

dependent on estimates that are accurate and precise to ensure proper decision making, since an 

inaccurate measurement can lead to a false signal of population stability [26]. Here, we show that 

minimally invasive methods, including cameras and many genetic-based identification methods, 

detect a similar number of individuals compared to trapping-based efforts. Because these 

methods offer advantages in animal welfare and cost, we suggest increased reliance on 

minimally invasive methods to generate reliable estimates of population size and density to 

support on-going management efforts. 
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Table 2. Data extracted after screening each study. Species are separated alphabetically by the study comparisons made, camera 
trapping vs. genetic analyses, genetic analyses vs live trapping, and camera trapping vs. live trapping, respectively. The * highlights 
data that was extracted from figures using ImageJ (https://imagej.nih.gov/ij/). 

Species Body 
Mass (kg) 

Study Area 
(km2) 

Camera 
Method 

Camera 
Num. Indv.  

Genetic 
Method 

Genetic 
Num. Indv. 

Live trap 
Num. Indv. 

Citation 

Canis lupus 115.5 85 spatial 46 scat 13  Galaverni et al. 2012 

Felis silvestris 6.5 10.1 spatial 14 scat 10  Anile et al. 2014 

Felis silvestris 6.5 10.1 spatial 3.93 scat 10  Anile et al. 2014 

Leopardus pardalis 11.25 15.43 spatial 24 scat 12  Rodgers et al. 2015 

Leopardus pardalis 11.25 1.54 random 25 scat 12  Rodgers et al. 2014 

Lynx canadensis 12.65 300 spatial 22 hair 41  Doran-Myers 2018 

Lynx pardinus 11.45 250 random 45 scat 135  Garrote et al. 2014 

Martes americana 0.9 220.5 spatial 15 hair 8  Clare et al. 2017 

Martes martes 0.89 12 random 5.76 hair 15  Balestrieri et al. 2016 
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Panthera onca 79 205 spatial 13 scat 16  Sollmann et al. 2013 

Panthera uncia 32 108 spatial 7 scat 5  Janecka et al. 2011 

Panthera uncia 32 655 spatial 1 scat 3  McCarthy et al. 2008 

Panthera uncia 32 808 spatial 7 scat 5  McCarthy et al. 2008 

Panthera uncia 32 813 spatial 6 scat 9  McCarthy et al. 2008 

Puma concolor 64.5 10 spatial 0.09 scat 32  Loonam et al. 2021 

Sus scrofa 175 11.2 spatial 24 scat 31  Davis et al. 2020* 

Sus scrofa 175 8.1 spatial 13 scat 59  Davis et al. 2020* 

Sus scrofa 175 5.43 spatial 14 scat 33   Davis et al. 2020* 

Dasyurus maculatus 2.25 70   hair 16 21 Ruibal et al. 2010 

Lepus americanus 1.49 1.8   scat 32 30 Cheng et al. 2017 

Lepus americanus 1.49 1.8   scat 5 7 Cheng et al. 2017 
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Lepus americanus 1.49 1.8   scat 8 8 Cheng et al. 2017 

Lepus americanus 1.49 1.8   scat 11 19 Cheng et al. 2017 

Lepus americanus 1.49 1.8   scat 13 8 Cheng et al. 2017 

Lynx canadensis 12.65 300   hair 41 25 Doran-Myers 2018 

Martes caurina 1.8 40   hair 17 51 Slauson et al. 2017 

Martes caurina 1.8 40   hair 23 49 Slauson et al. 2017 

Martes martes 1.6 100   hair 15 24 Croose et al. 2019 

Martes martes 1.6 100   scat 16 24 Croose et al. 2019 

Martes martes 0.89 3.5   hair 5 5 Mullins et al. 2010 

Meles meles 6.98 11   scat 20 14 Wilson et al. 2003 

Microtus cabrerae 0.05 0.78   scat 65 31 Sabino-Marques et al. 2018 

Microtus cabrerae 0.05 0.79   scat 45 14 Ferreira et al. 2018 
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Vulpes velox 2.2    scat 2 18 Schwalm et al. 2012 

Vulpes velox 2.2       scat 6 21 Schwalm et al. 2012 

Felis catus 3.6 6.4 spatial 10   4 Hansen et al. 2018 

Lepus americanus 1.5 5 random 21   64 Villette et al. 2017 

Lynx canadensis 12.65 300 spatial 22   25 Doran-Myers 2018 

Pekania pennanti 4.53 317 spatial 90   13 Jordan et al. 2011 

Pekania pennanti 4.53 317 spatial 75   20 Jordan et al. 2011 

Pekania pennanti 4.53 317 spatial 62   21 Jordan et al. 2011 

Sciurus niger 0.75 1.5 random 50   42 Greene et al. 2016 

Tamiasciurus sciurus  0.34 5 random 334   361 Villette et al. 2017 

Xeromys myoides 0.05 6 random 3   5 Kaluza et al. 2016 
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Chapter 2: Comparing two wildlife sampling approaches using an agent-based model and 

implications for their use in monitoring and management 

Miranda Paez A, Willoughby JR. Comparing two wildlife sampling approaches using an agent-

based model and implications for their use in monitoring and management. Target journal: 

Journal of Mammalogy.  

Abstract 

To efficiently conserve and manage wildlife species, proper and efficient sampling methods 

should be used. However, it can be challenging to establish an efficient sampling approach that 

may be suitable for a particular project because different project goals and focal species have 

different priorities. Using a forward-time, agent-based model, we compared two different 

approaches for collecting wildlife data: stationary sampling, where sampling locations were held 

constant over the simulated study period and mobile, where sampling locations were moved each 

simulated day. Samples or detections were broadly interpretable as individual detections, disease 

presence or absence, or other trait of interest that can be measured. We found that the stationary 

approach had significantly more detections than mobile sampling approaches above a small 

effort threshold, but stationary and mobile approaches had the same number of unique detections 

across all effort levels. This is important because repeatedly sampling the same individuals may 

not be needed for some study designs and repeatedly processing images or samples is costly in 

both time and resources. This pattern held when considering how these sampling methods 

compared when study duration was increased. However, we observed an important difference in 

the total number of detections and unique detections captured when using stationary compared to 

mobile sampling approaches: stationary sampling had disproportionally more detections (scaled 
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for population size) than mobile sampling. We interpret this as suggesting that stationary 

approaches may be more efficient for sampling very large populations although our model did 

not reach these population sizes. Overall, when repeatedly sampling individuals is needed or 

when population sizes are very large, we suggest a stationary sampling approach but when 

repeated samples are not needed, this approach would cause a drain on efficiency and resources, 

and a moving sampling location approach may be warranted. 

Keywords: disease, agent-based model, mobile sampling, monitoring, stationary sampling  

Introduction 

Efficient and accurate sample collection is critical to the conservation of a species because 

management actions are often data driven. For example, understanding where individuals are 

found and how individuals move within a landscape can be used to inform wildlife corridor 

construction locations or translocation activities (Hromada et al. 2020). However, wildlife 

monitoring and sampling can be conducted in myriad ways that may or may not provide the 

desired data in the most efficient manner because it is difficult to predict efficiency before the 

system is already understood (Nusser et al. 2008). One example of this happens when we want to 

quantify population size or density: deciding where to place camera traps to set in order to 

capture sufficient data for estimating population density is predicated on our understanding of 

where the species will be found (i.e. unbiased camera placement;(Rowcliffe et al. 2008). This is 

further complicated for study questions that relate to characteristics of a population over time, 

such as the presence or prevalence of disease, because data needs to be collected from a 

representative sample of the population repeatedly and consistently to make accurate estimates 

and conclusions about the population trends (Nusser et al. 2008).  
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One common approach used for sampling and detecting wildlife is camera trapping. Camera 

traps are typically set up at a predetermined number of trap sites and remain in the same location 

for the duration of the study (i.e. the sampling locations are stationary). These cameras collect 

data by recording photographs or videos when movement is detected (Galaverni et al. 2012, 

Villette et al. 2016). These images can then be used to identify the focal species and sometimes 

to uniquely identify individuals in a study site (Anile et al. 2014, Davis et al. 2020). However, 

factors such as observer bias when interpreting images and camera angles can contribute to 

detection errors (Galaverni et al. 2012, Sirén et al. 2016). Furthermore, where a camera is placed 

in the landscape may also contribute to detection probability because a poor location, meaning 

one where individuals are not found or where the location is biased to a select few individuals, 

may also negatively affect the conclusions drawn from data that are collected using stationary 

sample locations. 

Another common approach for understanding wild populations involves analyzing DNA to 

determine individual identification, disease status, or other characteristic of interest. Often, 

genetic analyses involve collection of tissues (e.g. scat or hair) noninvasively across the 

landscape and extraction of DNA from these tissues (Davis et al. 2020). While these tissues can 

sometimes be collected at pre-determined locations using tools like rub-posts or hair snares, 

collection of scat or tissue at kill sites is more likely to be done haphazardly across a study site 

(Ruibal et al. 2010, Cheng et al. 2017, Doran-Myers 2021), making collection efforts sometimes 

inefficient. This is problematic for quantifying population size or density and for tracking the 

spread of wildlife diseases, both of which are critical component conservation (Miranda Paez et 

al. 2022). Understanding how this haphazard and spatially mobile sampling approach influences 

our understanding of these population parameters is important to on-going management efforts. 
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For any kind of monitoring or sampling where it is impossible to collect data from every 

individual, the effects of errors in combination with other aspects of sampling design are 

important to quantify. For example, wildlife management requires accurately assessing 

population density, but there can be differences in number of individuals detected when varied 

wildlife detection methods are used (Miranda Paez et al. 2021). The spatial extent of sampling 

areas can differ when both a stationary camera trapping and spatially mobile DNA collections 

are used in the same landscape (Rodgers et al. 2014).  As these samples are often obtained in 

ways that are not random, it can make it difficult to capture suitable standard errors and leading 

to a questionable sampling approach (Nusser et al. 2008).   

Here, we used modeling to compare detections- broadly interpretable as individuals, disease, or 

other trait of interest- efficiency using two different approaches to collecting samples: 1. 

Stationary samples where individuals who move through a set sampling location are sampled; 2. 

Mobile sampling where sampling location moves for each sampling event and individuals that 

overlap these locations during the sampling event are sampled. In these models we also 

considered the effect of varied error rates, study duration, and the number of individuals in a 

landscape to understand how this may suggest different utility in wildlife conservation and 

management.  

Based on our earlier meta-analysis (Miranda Paez et al. 2021), we expected to find that 

stationary sampling approach, which mimics camera trapping methods, would have fewer 

detections compared to the mobile sampling approaches that mimic common DNA analyses used 

for estimating population size and density. Furthermore, we hypothesized that error rates should 

result in similar estimates between these two sampling approaches, but that the simulated 
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species’ population size and study duration would reduce any observed differences between the 

methodologies by increasing the number of detections in the stationary sampling approach.   

Methods 

We designed a forward-time, agent-based model to compare the number of detections or samples 

that could be collected as well as the number of unique detections and samples across two 

different sampling approaches: stationary and mobile. We defined the stationary approach as one 

that operates similarly to camera trapping, where all samples across the study duration are 

collected at a set of locations. As an alternative to this, we also simulated a mobile sampling 

location method, similar to the approach that is often used to collect eDNA or scat samples. 

Under the mobile sampling pattern, samples sites move to new locations each day and samples 

are collected from individuals who intersect with that location on that day. Below, we have 

outlined our model goals, parameters, and expected functions using the ODD protocol (Grimm et 

al. 2020). All modeling and analysis scripts as well as output data are available via GitHub: 

https://github.com/andreamiranda26/noninvasive_modeling. 

Overview: Compare the effectiveness of stationary sampling methods, where sample location 

does not change, to mobile methods where sampling location moves around the landscape. We 

define effectiveness as collecting the maximum number of samples, collecting the maximum 

number of samples from unique individuals, or both. In addition to the two different sampling 

approaches, we also quantify the effects of error rate, study duration, and the number of target 

individuals existing on the study landscape.  

Entities, state variables, and scale: Our models have two entities: individuals that move around 

the landscape and the landscape itself. The individuals are characterized by a unique ID and are 
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permitted to move a varied number of landscape grid cells (20, 50, 100, 500 cells/steps) in any 

direction.  The landscape is comprised of a grid of 50 x 50 squares where the distance across 

each square is equal to the distance individual moves in a day. The landscape also includes 

stationary and mobile sample locations. 

Process: Sampling locations were decided following two patterns: stationary and mobile 

sampling approaches. For the stationary sampling locations, a set number of sampling sites (5, 

10, 25, 100 or 200) were randomly placed on the landscape at the first timestep of the model, and 

these locations remained constant through the end of each run. For mobile sampling locations, a 

set number of sampling sites that were equal to the number of stationary sites (5, 10, 25, 100 or 

200) were randomly placed on the landscape at every time step. In both cases, no duplicate 

sampling sites were permitted within each sampling approach. When testing the effects of error 

rates, rates of 0.1, 0.01, and 0.001 were incorporated to both sampling approaches. Across this 

sampling landscape, we simulated individuals (20, 50, or 100 individuals) that traveled a 

specified number of steps (grid cells; 20, 50, or 100) each run in a randomly selected direction 

that could change between steps. Individuals could also remain in the same cell for two 

consecutive time points, where the probability of individuals moving to a new cell was 95%. At 

the end of each simulated time period, individuals that ended in or passed through sample 

locations were marked as ‘sampled’ for the sampling method corresponding to that sampling site. 

At the end of each simulated study, the total number of individuals and total number of unique 

individuals that were ‘sampled’ were stored for later analyses. Each unique set of model 

parameter values were repeated 100 times. 
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Functions/subroutines: Our model included functions that initialized the landscape, controlled 

movement of individuals, set sampling site locations (stationary and mobile), tracked individual 

movement, and recorded when individual movement routes intersected with sampling site 

locations.  

Model output analysis: We compared the total number of samples collected and the number of 

samples collected from unique individuals across parameter values. Across all 100 replicates for 

unique set of parameter value combinations, we calculated the mean total number of samples and 

number of unique samples as well as the 95% confidence interval around these means. We then 

compared these values between the stationary and mobile sampling model outputs. 

https://github.com/andreamiranda26/noninvasive_modeling. 

Results 

We used modeling to compare the efficiency of stationary and mobile sampling approaches. We 

found that the total number of detections (e.g. samples collected, individuals detected) and total 

number of unique detections varied across the number of sampling events in the model (Figure 

4). Although the total number of detections scaled linearly with sampling events irrespective of 

stationary or mobile sampling scheme, the number of unique detections increased quickly over 

small event increases and leveled off as the number of unique detections approached the number 

of simulated individuals. Additionally, the stationary approach had significantly more detections 

than mobile sampling approaches above a small effort threshold, but stationary and mobile 

approaches had the same number of unique detections across all effort levels (Figure 4).  
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Figure 4. Stationary sampling methods (left) have more detections than mobile sampling 
methods, above an effort minimum threshold. Stationary and mobile sampling methods collect 
data from the same number of unique individuals when effort (right; number of sampling events) 
is the same. In both plots, stationary data is depicted by purple points, lines, and error bars while 
mobile data is depicted by red points, lines, and error bars. Dots depict means across 100 
replicates and the error bars are the 95% confidence intervals around those means.  

 

We also compared the effect of varied error rates on the total number of detections and the 

number of unique detections when using stationary and mobile sampling site approaches (Figure 

5). Because of the generality of this model, these errors can be interpreted as errors in individual 

identification, ability to detect disease, or any other outcome of interest for a particular study. As 

we observed with a single error rate (Figure 4), the total number of detections scaled linearly 

with sampling events irrespective of stationary or mobile sampling scheme across all error rates 

whereas the number of unique detections increased quickly over small event increases and 

leveled off as the number of unique detections approached the number of simulated individuals 

again across all tested error rates. Overall, error rates of 0.001, 0.01, and 0.1 did not alter the 

effectiveness of stationary and mobile sampling approaches (Figure 5).  
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Figure 5. Error rate does not alter total detection (left) or unique detection (right) using either 
stationary and mobile sampling approaches. In both plots, stationary data is depicted by purple 
points, lines, and error bars while mobile data is depicted by red points, lines, and error bars. 
Dots depict means across 100 replicates and the error bars are the 95% confidence intervals 
around those means. Solid, dashed, and dotted lines depict 0.001, 0.01, and 0.1 individual 
identification error rates, respectively. 

 
We assessed how population size influenced suitability of stationary and mobile techniques by 

varying the number of simulated individuals on the landscape. As we observed with varied 

efforts (Figure 4) and error rates (Figure 5), we found that the stationary sampling approach had 

more detections compared to the mobile approach but that there was no difference between the 

number of unique samples or detections within each population size level comparison (Figure 6). 

Here, we note two interesting trends detected in these data. First, the difference between the 

number of unique individuals detected and simulated population size increased as simulated 

population size increased (upper stationary estimates: 18, 45, 90; upper mobile estimates: 15, 38, 

77). Second, even when these estimates were scaled by population size (upper stationary 

estimates: 7%, 9%, 10% unsampled individuals; upper mobile estimates: 5%, 14%, 15%), larger 

population sizes seem to be better sampled by the stationary sampling approach compared to the 
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mobile approach. Combined, these may mean that at even larger population sizes, stationary 

approaches may capture a larger proportion of the population compared to mobile sampling 

approaches (Figure 6). 

 

Figure 6. Population size does not alter effectiveness of total detection (left) or unique detection 
(right) using either stationary and mobile sampling approaches in the parameter space we 
examined. In both plots, stationary data is depicted by purple points, lines, and error bars while 
mobile data is depicted by red points, lines, and error bars. Dots depict means across 100 
replicates and the error bars are the 95% confidence intervals around those means. 

 
Finally, we considered how study duration can change the relationship between detections in 

stationary and mobile sampling approaches. Considering the breadth of estimates across different 

study durations, we found that more days collecting data lead to increased detections and that the 

rate of increase lessened as days increased (Figure 7). We found that when study duration was 

equal, the stationary method always had more detections than mobile method even when studies 

were relatively short. However, both stationary and mobile sampling approaches had the same 

number of unique detections (Figure 7). 
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Figure 7. Study duration does not alter effectiveness of total detection (left) or unique detection 
(right) using either stationary and mobile sampling approaches in the parameter space we 
examined. In both plots, stationary data is depicted by purple points, lines, and error bars while 
mobile data is depicted by red points, lines, and error bars. Dots depict means across 100 
replicates and the error bars are the 95% confidence intervals around those means. 

 

Discussion 

In our model, we considered how spatial structure of sampling individuals from wild populations 

(stationary or mobile approaches) influenced the number of detections and the number of unique 

detections. As expected, when the number of sampling events per day increased, this increased 

the total number of detections as well as the number of unique detections in both stationary and 

mobile sampling schemes. Interestingly, there were more total detections when using stationary 

sampling approaches than mobile approaches but both approaches detected the same number of 

unique individuals (or took samples from the same number of unique individuals; Figure 4). This 

distinction is important because repeated sampling of individuals can be a burden on analyses 

because it is time consuming to processes these data and storing large amounts of repeated data 

can also be costly (Adams et al. 2017). For example, combing through repeated images from 
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camera traps or processing extra DNA samples for genetic analyses can result in increased labor 

costs, data storage, and reagent use. However, repeat sightings and samplings can be useful; 

estimating probability of detection for particular areas requires repeat sampling as does tracking 

parasite burden and clearing rates (Steenweg et al. 2019, Shearer and Ezenwa 2020). Because of 

this, planning for sample collection requires consideration of the number and type of repeats 

necessary and, when the number of replicates needed is low, it may be worthwhile considering 

more efficient mobile sampling schemes over station efforts.  

We assessed how population size influenced suitability of stationary and mobile techniques and 

found that the stationary sampling approach had more detections compared to the mobile 

approach but that there was no difference between the number of unique samples or detections 

within each population size level comparison (Figure 6). However, two interesting trends were 

present in our data: increasing difference between the number of unique individuals detected and 

simulated population size increased as simulated population size increased and that larger 

population sizes seem to be better sampled by the stationary sampling approach compared to the 

mobile approach. Although the 95% confidence intervals overlapped at each population size we 

used, we speculate that as population size increases the number of unique detections will 

continue diverge. This suggests that at very large population sizes, stationary approaches may 

capture a larger proportion of the population compared to mobile sampling approaches. 

However, balancing this potential benefit with the costs of increased data collection, storage, and 

analyses (Figure 4) will require careful consideration of species and habitat specific variables.  

A limitation of our study was the movement rules for the agents on the landscape. The difference 

in the total number of detections from both sampling approaches could have been impacted by 



 46 

the agent’s movement as the ability to move in any direction would allow the possibility for the 

agent to return to the same stationary sampling location. This could have resulted in multiple 

detections counted when the agent would return to that stationary sampling station, or when the 

agent decided not to move from that particular cell for one or two consecutive runs (caused by 

the 5% chance of the agent staying in the same cell). This could potentially be incorporated into 

the model by using variable distance values that an agent can move throughout a landscape. 

Alternatively, future models could incorporate spatial clustering of agents (e.g., home ranges) or 

preference in landscape use to see if this affects the differences in detections between sampling 

methods.  

As research and knowledge of wildlife diseases grows so does the opportunity to control and 

prevent diseases, and monitoring of wildlife populations and disease is an important part of 

disease ecology (Wagnon and Serfass 2016). Improving disease surveillance and sampling of 

wildlife populations could lead to better detection, understanding, and preparedness to protect 

wildlife species across a wide range of zoonotic disease (Nusser et al. 2008). Importantly, our 

ability to detect disease early depends on our ability to efficiently collect and analyze samples to 

inform our understanding of the potential spread of the disease in a given space and time 

(Wagnon and Serfass 2016). Therefore, adequate sampling effort and sampling groups is needed 

to properly monitor disease (Wagnon and Serfass 2016). Based on our simulations, we suggest a 

stationary approach to collecting samples for disease analyses. For many situations and species, 

sampling in set locations, is more likely to generate the time series data needed to understand 

infection and clearing rates because it will provide the more data on single individuals compared 

to sampling locations that move across the landscape. However, this may only be true for species 

that move over somewhat small geographic areas, as wide-ranging or migratory species were not 
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considered in our models. Despite these unknowns, monitoring for these diseases is important as 

understanding disease can lead to better knowledge and have a positive effect on animal health, 

public health, and conservation (Wagnon and Serfass 2016). 

Conclusions 

We developed an agent-based model to simulate the differences in detection when using 

stationary sampling approaches compared to sampling locations that are moved throughout the 

landscape. These models have applications to understanding wild population demographics such 

as population size and density as well as understanding population characteristics such as disease 

prevalence. We found that the stationary approaches have more detections or sampling events 

compared to the mobile approaches, but both approaches have equal number of unique detections 

(i.e. unique individuals detected or sampled). Therefore, when repeatedly sampling individuals is 

needed, we suggest a stationary approach but when repeated samples are a drain on efficiency 

and resources a moving sampling location approach is warranted.  
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Abstract 

Avian malaria is a vector-borne disease that is caused by Plasmodium parasites. These parasites 

are transmitted via mosquito bites and can cause sickness or death in a wide variety of birds, 

including many threatened and endangered species. This Primer first provides contextual 

background for the avian malaria system including the life cycle, geographic distribution and 

spread. Then, we focus on recent advances in understanding avian malaria ecology, including 

how avian malaria can lead to large ecosystem changes and variation in host immune responses 

to Plasmodium infection. Finally, we review advances in avian malaria management in 

vulnerable bird populations including genetic modification methods suitable for limiting the 

effects of this disease in wild populations and the use of sterile insect techniques to reduce vector 

abundance.  

Keywords: Avian, Malaria, Mosquito, Plasmodium 

Transmission cycle of avian malaria 

Avian malaria is a disease that infects various tissues and blood cells of birds and is caused by 

>50 parasite species within the genus Plasmodium [1]. Malaria parasites require an invertebrate 

vector and a vertebrate host species to complete the life cycle. Vectors for Plasmodium include 

mosquitoes from the genera Culex, Aedes and Culiseta, and Plasmodium species are capable of 

infecting and completing their life cycle in > 400 species of birds, covering 11 orders [2]. The > 
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50 parasite species that cause avian malaria differ in characteristics such as host range, 

geographic distribution, competent vectors and pathogenicity [3]. Because the parasite’s vectors 

and host species are so numerous and varied, the potential for avian malaria to negatively impact 

species as it spreads to new areas is high, resulting in the decline and even extinction of avian 

species in these newly invaded ecosystems. 

The avian malaria life cycle (Figure 8) starts when a feeding mosquito infects an avian host with 

Plasmodium sporozoites, and sporozoites develop into exo-erythrocytic meronts (i.e. 

cryptozoites) in reticuloendothelial cells [4, 5]. This is followed by the development of 

merozoites into the second pre-erythrocytic exo-erythrytic stage, producing metacryptozoites. 

Further generations of metacryptozoites can be formed from previous generations, or 

alternatively merozoites from metacryptozoites can enter the bloodstream, infect erythrocytes 

and become meronts to continue into the erythritic cycle [5]. Merozoites can also develop into 

the next exo-erythrocytic form, the post-erythritic phanerozoites, which can develop into further 

generations of phanerozoites or develop into merozoites. From merozoites, the erythrocytic cycle 

continues with the development of male and female micro/macrogametocytes. These 

gametocytes are then capable of infecting another mosquito to begin the process of sporogony in 

this next host [5]. Once inside the mosquito, the gametocytes develop into gametes in the midgut. 

These gametes then come together to form a zygote, which develops into ookinetes that travel to 

the epithelium and develop into oocysts. Within the oocysts, infective haploid sporozoites form 

and, once mature, burst through the oocyst wall. These haploid sporozoites then invade mosquito 

salivary glands, where they can be transferred to another bird host when the mosquito feeds 

(Figure 8). 
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Figure 8. The avian malaria life cycle starts when (a) a feeding mosquito infects an avian host 
with Plasmodium sporozoites; (b) sporozoites then develop into exo-erythrocytic meronts (i.e. 
cryptozoites) in reticuloendothelial cells (e.g. spleen, liver, bone) throughout the body (c) 
followed by the development of merozoites into the second pre-erythrocytic exo-erythrytic stage 
and producing metacryptozoites. d Following development into metacryptozoites, further 
generations of this stage can be formed from previous generations. e Alternatively, merozoites 
from metacrytpzoites can enter the bloodstream, infect erythrocytes and (f) become meronts to 
continue into the erythritic cycle. g Merozoites can also develop into the next exo-erythrocytic 
form, the post-erythritic phanerozoites, which can (h) also develop further generations of 
phanerozoites or (i) develop into merozoites. Merozoites can be formed from either 
phanerozoites or erythrocytic meronts. From (j) merozoites, the erythrocytic cycle continues 
with the development of (k) male and female micro/macrogametocytes. These gametocytes are 
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then (l) capable of infecting another mosquito to begin the process of sporogony in this next host. 
Once inside the mosquito, the gametocytes develop into (m) gametes in the midgut. These 
gametes come together to form (n) a zygote, which then develops into ookinetes that travel from 
the midgut to the epithelium, (o) followed by development into oocysts. Within the oocysts, (p) 
infective haploid sporozoites form and burst through the oocyst wall once reaching maturity. 
These haploid sporozoites then invade mosquito salivary glands, where they can be transferred to 
another bird host when the mosquito feeds. 

 

Distribution and spread of avian malaria  

The native ranges of Plasmodium parasites are distributed worldwide, in diverse habitats (e.g. 

Nearctic, Palearctic, Oriental, Neotropical and Australian ecozones) [2], and co-vary with 

similarly wide-ranging ornithophilic mosquito vectors such as Culex quinquefasciatus [6]. In 

addition to this wide historic distribution, Plasmodium parasites have been introduced to new 

regions where highly virulent species have led to substantial population declines and extirpations 

of endemic birds [7]. For example, native avian populations in the Hawaiian Islands and New 

Zealand have undergone widespread population declines associated with the introduction and 

spread of avian malaria. Understanding how these introductions have occurred is important to 

predict how new diseases and vectors of conservation concern will spread and alter other 

ecosystems and species. 

Introduced parasites require all components of their life cycle to thrive in the new ecosystem [8]. 

For Plasmodium to invade a new ecosystem, susceptible bird hosts and a competent mosquito 

vector are required. There are at least two possible ways avian malaria may have invaded 

ecosystems: (i) introduction from infected migrating birds and (ii) the release of infected, non-

native passerines into the ecosystems. For example, the Bobolink (Dolichonyx oryzivorus) in the 

Galapagos Islands is a Plasmodium-carrying passerine that breeds across North America and 

migrates to central South America, and it is the only passerine with migratory stopovers in the 
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Galapagos [9]. Bobolinks harbor a high diversity of haemosporidian parasites, and analysis of 

avian malaria parasite lineages across the Galapagos suggests that Bobolinks may have 

contributed to the spread of avian malaria to these islands because of their migratory behavior 

[10]. Similarly, in the Hawaiian Islands, shorebirds and other waterfowl are known avian malaria 

carriers and may have brought these parasites to these islands [11]. Alternatively, avian 

Plasmodium may have arrived in Hawai’i via introduced bird species that carried these parasites 

and were released into the wild [11]. In the early nineteenth century, several species of nonnative 

passerine birds were introduced into the Hawaiian ecosystem, many of which were competent 

carriers of avian malaria parasites. As these introduced species spread, these birds may have also 

spread the parasites they carried into the wild avian populations [11]. 

In addition to the introduction of the parasite, the establishment of Plasmodium species in new 

areas requires a competent mosquito vector to sustain the transmission cycle. In Hawai’i 

specifically, lack of a competent vector likely limited the spread of the Plasmodium parasite; 

although migrating shorebirds and waterfowl likely brought Plasmodium species to the islands 

for thousands of generations, the parasite populations could not have sustained themselves 

because there were no competent mosquito vectors. However, this was no longer a limiting 

factor after 1826 when the mosquito Cx. quinquefasciatus was unintentionally introduced to the 

Hawaiian islands along with marine cargo, providing the necessary vector to establish avian 

malaria Plasmodium transmission in the Hawaiian Islands [11].  
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Recent advances in understanding avian malaria evolutionary ecology  

Interaction of avian malaria and ecosystem features  

Understanding the mechanisms and rates of Plasmodium and vector introduction and spread into 

new ecosystems is critical to prevent population declines and extinctions in immunologically 

naive bird populations. For example, Plasmodium has restricted the range of Hawaiian 

Honeycreepers. This shrinking distribution is due to Plasmodium transmission being limited at 

higher altitudes where lower temperatures reduce mosquito reproduction and Plasmodium 

development, effectively pushing surviving Honeycreeper populations to higher and higher 

altitudes [12]. Because of this relationship between mosquito and Plasmodium development with 

temperature, global climate change is likely to further restrict the range of Plasmodium-free 

habitats for many bird species, putting further pressure on these ecosystems. For example, 

Loiseau et  al. [13] demonstrated that Plasmodium is transmitted in northern Alaska and also 

predicted continued range expansion for Plasmodium as the area continues to warm. Through 

these changes, additional populations are expected to become infected with avian malaria and 

spread Plasmodium parasites. Similarly, mechanistic models focused on Hawaiian populations 

predicted that climate-driven environment and disease patterns will continue to substantially 

reduce available habitat for native bird populations [14]. Because many Hawaiian passerines are 

already at high extinction risks due to habitat loss and the introduction of non-native predators, 

the additional pressure of avian malaria in this and similar systems (e.g. New Zealand and 

Galápagos Islands) is of high conservation concern [6]. Understanding how to predict the effects 

of avian malaria and how to limit new vector pathways into additional ecosystems is critical to 

ongoing conservation action to prevent extinction in these high-risk avian species [14]. 
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Immune response to avian malaria infection  

The survival of avian hosts infected with Plasmodium parasites is dependent on the host immune 

response and its efficiency in detecting and removing Plasmodium. One important aspect of 

adaptive avian immunity is the major histocompatibility complex (MHC). The MHC is essential 

for survival as it governs the host’s ability to detect pathogens, affecting its susceptibility to 

infections and diseases [15]. The occurrence of specific MHC variants correlates with parasite 

burden in many Aves species [16], suggesting host genes can influence host fitness by conferring 

tolerance. In Great Tits (Parus major), tolerance to malaria is conferred by two MHC supertypes; 

individuals with these supertype MHC variants have greater tolerance to malaria compared to 

individuals without these variants. Importantly, each MHC variant confers tolerance to malaria 

from a different parasite source (P. circumfexum and P. relictum) and does so by limiting the 

physiological effects of infection, not by preventing infection outright [16]. This suggests that 

susceptibility to avian malaria by the host is dependent on both the virulence of the parasite 

species and the host’s immunity to the parasite. Immune responses are also influenced by 

previous exposures to parasites and diseases. In Canaries (Serinus canaria), for example, 

mortality decreases after reinfection with Plasmodium compared to the proportion of individuals 

that succumb to the first Plasmodium infection [17]. Importantly, these effects are not limited to 

recovery from infection of malaria: Plasmodium-infected canaries subjected to a secondary 

immune challenge are not as effective at eliminating Plasmodium compared to those that did not 

have a secondary challenge. This suggests that there is a tradeoff between control of chronic 

malaria infection and reaction to new host infections and that this tradeoff may manifest in 

substantial lifelong effects. 
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Some immunologically naive populations can evolve resistance and tolerance to avian malaria 

through natural selection. However, remote island species with reduced genetic variation, such as 

the Hawaiian species ‘I’iwi (Drepanis coccinea) and other species of conservation concern, may 

lack the genetic diversity or variation in disease response to support adaptation (i.e. no 

individuals survive infection) [18]. To overcome this, some researchers suggest turning to new 

gene-editing technologies to bolster the immune system against avian malaria, ultimately helping 

at-risk populations to recover demographically [18]. For ʻI’iwi, simulated release scenarios 

suggested that releasing gene-edited ʻI’iwi at midelevation forests would substantially reduce 

extinction risk in the long term [18]. Although this approach has the potential to be feasible and 

successful, the cultural and ecological implications surrounding modifications of this nature 

require careful considerations prior to the release of any gene-edited individuals [18]; more 

research is needed to understand these gene-controlling mechanisms, how introduction of genes 

can affect wild populations and how these genes will be introduced to wild populations 

efficiently. 

Incompatible insect technique  

Mosquitoes are an essential part of the transmission cycle of avian malaria, as they are the link 

between infected and uninfected birds. Therefore, one potential way to reduce transmission of 

avian malaria is to control mosquito populations via chemical means. For example, in New 

Zealand, the use of insecticides targeting two invasive mosquito species (Ae. camptorhynchus 

and Cx. sitiens) led to eradication of these species on the treated island [6]. In contrast, some 

African populations of Cx. quinquefasciatus have evolved resistance to commonly used 

insecticides, substantially hindering the ability to control mosquito populations [12–21]. The 

observed concern over the effectiveness of an insecticide-based vector control program has led to 
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an interest in shifting to control by sterile insect techniques (SITs) [22]. Such methods have been 

successfully used in many insect pest species (e.g. New World screwworm fly, Cochliomyia 

hominivorax; tsetse, Glossina spp.) [22]. Males of the target species that are sterilized by 

radiation or chemicals, genetically modified with lethal genes or harbor incompatible 

endosymbionts are released into the wild to mate with females, resulting in infertile eggs [23]. 

Future research to manage and mitigate avian malaria can focus on these and related mechanisms 

as they provide potential revolutionary mosquito control. 

Future management and mitigation of avian malaria through genetic modifications  

Limiting vector populations can occur via several genetic manipulations, including 

chemosterilization, engineered transgenes, and application of endosymbionts like Wolbachia 

[23–25]. When successful, these modifications are expected to substantially reduce population 

sizes. However, modifications can also be quickly selected against and removed from the 

population when the mutations or other genetic changes have large and negative effects on 

survival [26]. 

Using a chemosterilization approach  

The use and effectiveness of chemosterilization via a sterile insect technique (SIT) in mosquito 

control has been extensively tested on Plasmodium vectors such as Cx. quinquefasciatus. One 

effective example of SIT deployment in this species has occurred on the island of Seahorse Key; 

when sterilized male mosquitoes were released onto the island, the island’s larval Cx. 

quinquefasciatus populations were eliminated [27]. However, other attempts to emulate this 

approach have been less successful because of immigration of mated females from other 

populations that bypass the sterile male issue [28]. As a result of this spotty effectiveness, new 
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techniques for generating sterile insects may be required, including radiation-based efforts that 

have been trialed in the apple moth (Teia anartoides) in New Zealand [29]. In addition, 

environmental concerns, mating competitiveness and political climate that has limited the 

widespread use of sterile insect approaches will have to be overcome before these methods can 

be deployed widely [6]. 

Using genetic engineering systems  

The CRISPR-Cas genetic engineering system, which targets specific sequences and results in 

functional genetic change, has shown great potential in limiting mosquito vector population 

sizes. In mosquitos, several genes have been identified that would be a suitable gene target for 

the CRISPR system. These systems work by identifying a homing region where a cargo gene that 

reduces carrier fitness can ultimately be inserted [30]. As these engineered genes spread through 

a population, the population declines because of reduced fitness [6]. Importantly, these genetic 

changes can be engineered to be self-limiting; in the Oxitech™ system, female offspring 

resulting from mating between a male with the cargo gene and a wild female do not survive, 

providing important safeguards to the modified mosquito system [31]. While this genetic 

engineering system has merit, use of these technologies requires additional development of 

safety and regulatory measures. For example, the use of genetic control systems can have 

negative impacts on the endemic New Zealand Culex species, limiting the ways the system could 

be applied in New Zealand [6]. Using this strategy will require advances for limiting unwanted 

consequences and conducting in situ tests to determine modification efficiency [32]. 
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Using endosymbionts  

Endosymbionts like Wolbachia can also be used to control certain mosquito populations and 

reduce the occurrence of avian malaria. In some species, when Wolbachia-carrying male 

mosquitoes were released and mated with wild females, the resulting eggs did not hatch and 

population size was reduced [6]. This approach to limiting mosquito population size has been 

successful in Ae. aegypti in several locations, including the west coast of North America [33]. 

Wolbachia infections have also been deployed as a pathogen-blocking mechanism when 

infection was not used to prevent egg hatching but instead to block vector parasite infection, 

diminishing vector competence and disease transmission [34]. However, this approach has its 

limitations. For example, Cx. pipens mosquitos are naturally infected with Wolbachia [35], and 

having a Wolbachia infection can increase a mosquito’s susceptibility to Plasmodium. This 

suggests that Cx. pipens infected with Wolbachia can be better vectors of avian malaria [36]. 

Thus, the decision to use endosymbiont control methods for mosquito populations requires 

species-specific information and careful monitoring of mosquito populations. In addition, future 

work is needed to develop methods for moving and releasing millions of modified mosquitoes to 

remote locations. Finally, understanding the distribution and diversity of Wolbachia and their 

dynamics with mosquito hosts is important for planning future Wolbachia-based control 

programs [22]. 

Conclusions  

Avian malaria has caused the decline and extinction of many bird species globally [6]. Since 

birds are intercontinental migrants, and avian malaria-causing parasites are found worldwide, 

addressing transmission in the avian malaria system is exceedingly complicated [37]. However, 

many individuals and species exhibit some resistance or tolerance, suggesting persistence of 
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these species is possible. Targeting the mosquito vector populations may improve health 

outcomes for many species with mosquito-borne diseases, including humans. However, these 

vector managing strategies are not without their own risks as each species of mosquito and 

parasite differs in their relationship to control molecules and their effects on disease spread. 

Future work is needed in this innovative space on vector control approaches that consider 

parasite-host eco-evolutionary processes, and research that could help control mosquito vectors 

of disease relevant to conservation and public health.  
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