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Auburn University has entered into collaboration with the US Department of 

Defense for academic study and development of hardware-in-the-loop simulation 

laboratory.  One aspect of this collaboration has been research into new concepts for the 

control of flight motion tables, a critical component in HWIL simulations. 

Commonly used Proportional-Integral-Derivative (PID) controllers can suffer 

limitations in applications with nonlinear and multi-input/multi-output systems.  To 

overcome these limitations, a nonlinear dynamic-inversion controller was developed.  

Applying Lagrange’s equations to determine equations of motion, a Lyapunov function 

was used to develop a globally asymptotically stable controller. 
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After comparing PID and dynamic-inversion controllers through multiple 

commanded motions and adjustments to gain, the dynamic-inversion was more stable and 

produces less error.  Both controllers are capable of performing real-time applications. 
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I.   INTRODUCTION 

 

Prior to Hardware-in-the-Loop (HWIL) simulations, analyses of missile seeker head 

performance were conducted by live-fire tested at firing ranges.  Missiles, with the seeker 

heads already installed, were sold in batches.  To demonstrate acceptable performance, a 

certain percentage from each batch was field tested.  Not only was this risky with the 

entire sale depending on a small, random potion of the batch, but it was also expensive 

with guaranteed losses of the tested missiles. 

 

HWIL systems simplify this process of testing seeker heads.  Rather than needing an 

entire range to fire a missile, HWIL systems use a flight motion table and scene 

generation to simulate the flight of a seeker head on a missile.  The seeker head is placed 

in the gimbaled flight motion table while the simulated target is located at a stationary 

point in front of the flight table.  Using the scene generator and synthetic lines of sight, 

the seeker simulates the tracking of a target. 

 

Figure 1a (reproduced from Reference [High Performance]) and Figure 1b (reproduced 

from Reference [Hardware]) demonstrate the basic layout of a HWIL laboratory.  Figure 

1a displays the components and connections for an HWIL simulation, while Figure 1b is 
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a photograph of the Electronic Combat Simulation and Evaluation Laboratory (ECSEL) 

located in Point Mugu, CA. 

 

 

Figure 1a:   Layout of HWIL Laboratory 

 

 

Figure 1b:   ECSEL Laboratory in Point Mugu, CA 
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In the summer of 2006, Auburn University, in collaboration with Simulation 

Technologies, Inc. and the US Department of Defense, began a program to receive, 

install and test a flight table for a HWIL system.  One of the goals of Auburn University 

is to study the design and implementation of controllers to guide the gimbaled system.  

The following paper presents the design and testing of a nonlinear dynamic-inversion 

controller with comparison to a Proportional-Integral-Derivative (PID) controller. 
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II.   FLIGHT MOTION TABLES 

 

Flight motion tables consist of multiple gimbaled joints whose motion is generated by 

hydraulic or electric actuators.  The goal of using a flight table in a HWIL simulation is to 

reproduce some aspect of the rotational motion of the flight hardware.  They are designed 

to accurately and precisely direct the motion of a missile seeker head towards a simulated 

target in order to replicate an engagement of that target in an actual flight.  However, 

these tables are not limited in use to missile simulations.  Three main functions this table 

can serve are: 

1) simulating missile seeker head motions for HWIL systems 

2) development and testing of guidance and navigational apparatuses 

3) testing the stability and motion of satellite systems (Carter 425) 

 

The development of more highly maneuverable missiles, tables and seeker heads adjust 

to meet the demands of HWIL simulations.  This has led to tables capable of higher 

angular accelerations and angular velocities for dictating faster responding (Carter 426).  

The actuators being incorporated into these flight tables are required to generate enough 

torque to accelerate 50-100 lb. gimbals at rates of 50,000 deg/s2.  These requirements can 

dictate choices in the materials used to reduce vibration and deformation and also the 

types of actuators used to generate the needed torques (Carter 427). 
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Unfortunately, no matter how well the flight table and gimbaled arrangements are 

constructed, there will still remain some space between all bearings and connections.  

Seeing as how the control in each mode creates an oscillatory damping function until the 

error is nearly eliminated, the control will constantly be demanding reversal of torques.  

This reversing may lead to problems with pieces impacting each other, vibrations, and 

noise (Collins 579).  Granted these are not short term catastrophic problems, but it may 

lead to wear and tear on the flight table. 

 

Along with the physical design of gimbaled joints and actuators, it is up to the engineer to 

determine a controller that will allow motion tracking with as little error as possible.  

Errors in the table motion refer to orientation errors: when the system's gimbaled angles 

do not exactly match the commanded values. 

 

Major manufacturers of flight motion tables for HWIL laboratories include Acutronic 

USA, Inc. and Ideal Aerosmith.  They produce tables that can be used in a pitch-yaw-roll 

simulation which greatly reduces the cost of developing seeker heads.  The basic model 

of the table studied in this work is shown in Figures 2a and 2b below and is similar to the 

Carco Series S-450R-3 Simulator produced by Acutronic (Three).  Some representative 

specifications of the flight table are shown in Table 1. 
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Figures 2a-b:  Three Axis Flight Motion Table 

 

  

          (a)              (b) 

 

Table 1:  Performance Specifications 

 

Component and Axis Rotation Performance 
Spec. 

Type of Motion 
Component 
#1: Pitch 

Component 
#2: Yaw 

Component 
#3: Roll 

Angular 
Freedom 

- +/- 50 deg +/- 50 deg +/- 50 deg 

Positioning 
Accuracy 

- 0.002 deg 0.002 deg 0.002 deg 

Continuous 
+/- 200 
deg/sec 

+/- 200 
deg/sec 

+/- 1800 
deg/sec 

Rate Range 
Non-

Continuous 
+/- 200 
deg/sec 

+/- 200 
deg/sec 

+/- 200 
deg/sec 

Continuous 
20,000 

deg/sec2 
20,000 

deg/sec2 
18,000 

deg/sec2 Acceleration, 
w/ load Non-

Continuous 
20,000 

deg/sec2 
20,000 

deg/sec2 
20,000 

deg/sec2 
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III.   PID CONTROLLERS 

 

In nearly all mechanically operated systems in the industrial world, controllers are used.  

These controller algorithms need to be designed in order meet performance requirements 

while also maintaining a reasonable amount of simplicity (Gutirrez).  Proportional-

integral-derivative (PID) controllers are widely used to satisfy these conditions.  PID or 

some forms of the algorithm are currently being used in approximately 95% of control 

loops found in modern industries (Astrom 216).  The versatility of the PID-control 

approach is one reason PID controllers are so prevalent in modern industries. 

 

The three terms of a PID controller (proportional, integral and derivative) all serve a 

specific purpose in the control algorithm.  As shown in the paragraphs to come, each part 

determines how the system will behave.  A quick overview will show that the 

proportional term allows the controller motion to converge to the desired response but 

does not eliminate the steady state error.  The integral term will eliminate the steady error 

but can degrade the transient response.  The derivative term will increase the stability of 

the system (PID-Tutorial).  Figure 3 below is a block diagram demonstrating the basic 

outline of a PID algorithm.  The controller signal, u, for a single-input, single-output 

(SISO) is: 
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t

KtKK DIP d

d
d

e
eeu ++= ∫      (1) 

 

where KP, KI and KD are the corresponding gains for each term and e is the system error 

(the difference between the input and the output) at each time step (PID-Tutorial).  Table 

2 (reproduced from Reference [PID-Tutorial]) shows the effects of each of the three 

terms on a closed loop system.  Each cell in the table represents a general system where 

there is a small increase or decrease in the gains KP, KI or KD. 

 

 

Table 2: Sensitivity due to Changes in Gains  

 

CL RESPONSE RISE TIME OVERSHOOT SETTLING TIME S-S ERROR 

KP Decrease Increase Small Change Decrease 

KI Decrease Increase Increase Eliminate 

KD Small Change Decrease Decrease Small Change 
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Figure 3: Block Diagram of a PID Program 

 

Integral

Proportional

Derivative

Plant
Input Output

+ -

Error

+

+
+

 

 

 

Proportional Term 

 

As mentioned before, the purpose of the proportional term is to force the system to 

respond in the direction of the input.  The response is based purely on the error in the 

system.  If the system is far from convergence, the error is large.  Because of the direct 

relationship between the proportional control and the error, if the error is large then the 

control due to the proportional term is also large and vice versa. 

 

The convergence rate of the system can be greatly affected by the magnitude of KP.  By 

increasing the value of the proportional gain, the rise time (time it takes to approach the 

commanded value) decreased.  However, one detail to note is the overshoot (the amount 

the gimbaled motion exceeds the commanded motion).  Although it will take the system 
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longer to reach the ideal state, the overshoot is smaller, which can help lead to faster 

convergence. 

 

The proportional term allows for a brisk adjustment in the controlled variable.  However, 

it does not provide “zero offset” even though it significantly reduces the error in the 

system.  The term’s primary purpose is to quicken the response (Marlin 270). 

 

 

Integral Term 

 

The primary purpose of the integral term is to eliminate or reduce the steady state error, 

the error between the input and output of the system as the time approaches infinity.  As 

shown in Equation 1, the integral term is the area under the curve in an error vs. time 

graph.  An increase in the transient error is one flaw to the integral term.  With an 

increase in the integral gain, KI, the rise time decreases.  However, increases in overshoot 

and settling time (time taken for the system to converge to the commanded value) will 

occur.  The integral term can help achieve zero offset in the system response to a step 

input; unfortunately, it may sometimes cause instability due to its poor dynamic 

performance (Marlin 271). 
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Derivative Term 

 

The derivative term is the final piece in the PID controller for creating a stable system.  

The derivative term is proportional to the time rate of change in the error.  The derivative 

term requires “lead”, that is, information about future values of the error, allowing the 

controller to react faster to any changes (Gutirrez).  This prediction allows the controller 

to converge quickly, while increasing stability without the transient error. 

 

By increasing the derivative gain, KD, the damping in the system can be increased.  

Greater damping will result in a more rigid system that is slower in convergence.  A 

negative aspect of this term is that it may require numeric differentiation that can amplify 

high frequency noise in the system (Marlin 274). 
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IV.   DYNAMIC-INVERSION CONTROLLERS 

  

As discussed in the previous section, PID controllers are not only simple in structure, but 

solve a wide range of control cases with suitable results.  In order to achieve good 

performance with the PID, the tuning of the parameters and the employment of a 

functional such as anti-windup and derivative filtering are vital (Visioli).  There are also a 

few limitations to a PID controller.  With a PID, it can be difficult to prove stability for 

nonlinear systems (such as a multi-gimbaled system on a flight table).  Also, the 

implementation of a PID is less clear for multi-input, multi-output (MIMO) systems.  An 

alternative control structure that may overcome these limitations is dynamic-inversion 

control. 

 

According to Looye and Joos, “dynamic-inversion is a straight forward methodology for 

designing multi-variable control laws for nonlinear systems (1).”  Dynamic-inversion 

methods are commonly used in aerospace applications.  One such example is the 

development of a controller to operate in nonlinear flight schemes such as post-stall 

applications (Looye 1).  In terms of a flight table, a dynamic-inversion controller is 

motivated by the multiple gimbals whose motions affect neighboring gimbals (this is 

shown explicitly in the derivation of the equations of motion found in Appendix A). 
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The defining trait of a dynamic-inversion controller is the use of a dynamic model (i.e. 

equations of motion) to compute the inputs necessary to generate the desired output.  

Hence, the name refers to the inversion of the dynamic model from the form typically 

used in solving for system motion.  It is noteworthy that a model of the system is built 

into the controller, which is not the case in PID control.   

 

A dynamic-inversion controller consists of both feedback and feed-forward sections, as 

shown in Figure 4.  An inner-loop, structured as a closed loop, applies an inverse in 

dynamics in order to negate the nonlinearities in the system (Plett 360).  This closed-loop 

system is simplified into a set of integrators to be used in the feed-forward section (Looye 

1).  The feedback section is the outer portion in this arrangement.  The feedback loop 

contains a standard linear controller, such as a PID controller, in order to minimize 

“mismatches” and disturbances in the model created by the nonlinearities (Plett 360). 

 

 

Figure 4:   Block Diagram of a Dynamic-inversion Program 

Desired 
Trajectory

Inverse 
Model

PD 
Controller

Plant+

Torque

Output
++

-

 

 



   14 

One key to the dynamic-inversion controller is the dynamic model located in the 

nonlinear feedback block.  The dynamic model is a model of the input-output relationship 

for the system to be controlled.  Plett suggests allowing the dynamic reference model is a 

delayed version of the actual model of the system (364).  This would allow the controller 

to adjust a priori to a delayed inverse of the system dynamics (Plett 360). 

 

There are some problems to consider when introducing a dynamic-inversion controller 

into a system.  Looye and Joos state that dynamic-inversion tends to lead to poor 

robustness (1).  Because the system model is built into the controllers, it is sensitive to 

errors in this model.  The authors believe the uncertainties can be counteracted by 

attempting to increase the robustness of the system within the linear loop (Looye 1).  

Other problems created by the dynamic-inversion include the requirement that an inverse 

exists (non-singular) and the system typically needs a priori information that may need to 

be more precise than that available.  Dynamic-inversion techniques, such as adaptive 

inverse control, can be applied to the arrangement (Plett 360).
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V.   MODEL AND CONTROLLER DEVELOPMENT 

 

Development of Equations of Motion 

 

To develop controller designs through numerical simulation, a model of the flight-table 

motion is required.  A specific model is developed in this section in the form of equations 

of motion for a flight motion table.  Key terms in these equations of motion include the 

mass matrix and the Coriolis vector. 

 

The equations of motion for the flight table derived here are based on several 

assumptions: 

(1) All rotations of coordinate axes are about a single, inertial point. 

(2) Piece #1 and #3 are balanced and symmetric, therefore, the moments of 

inertia are centered about each component’s symmetrical center of 

geometry. 

(3) Each component of the system analyzed is a rigid, non-flexible body. 

(4) Friction and other applied forces in joints are negligible. 

 

Describing the system kinematics begins with establishing an inertial coordinate system 

(CS) ( )ZYX ,,  and a separate, body-fixed coordinate system for each individual 
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component studied( )3,2,1for  ,,, =izyx iii .  All inertial coordinates originate about the 

point of all rotations.  The coordinate systems are shown in Figures 5 through 8.  The 

figures of all the components and their set up were designed in Solid Edge.  The pieces 

are also to scale with the flight table currently located at Auburn University.  The 

coordinate systems in Figures 6 through 8 are all body-fixed; therefore they are attached 

to and rotate with the specific component. 

 

 

Figure 5:  Inertial CS aligned with Component #1 CS with the +Y-axis into the surface 

 

 

  

X, x1 

Z, z1 
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Figures 6a and 6b:  Component #1 CS aligned with the Inertial CS  

 

    

 A positive rotation occurs in the +y1 direction 

 

 

Figures 7a and 7b:  Component #2 CS aligned with the Component #1 CS  

 

    

 A positive rotation occurs in the +z2 direction 

Y, y1 

Z, z1 

Z, z1 

X, x1 

z1 
z2 

y1, y2 y1, y2 

x1 
x2 
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Figures 8a and 8b:  Component #3 CS aligned with the Component #2 CS 

 

    

 A positive rotation occurs in the +x3 direction 

 

 

The entire apparatus with all angles in the { } 3,2,1,, zyx  axes set to zero radians is shown in 

Figure 9.  Note that in the actual experiment, this may not be the starting position of the 

components.  This is only the reference position used in the equations of motion. 

 

 

 

 

 

 

 

z2, z3 z2, z3 

y2 
y3 

x2 
x3 
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Figure 9:  Gimbaled System set to Zero Deflections 

 

 

 

 

 

To specify the orientations of the four coordinate systems, the rotation matrices were 

developed.  A rotation matrix, in the case of a 3-dimensional system, is a 3x3 matrix that 

transforms the unit vector of one coordinate system into a corresponding vector in 

another coordinate system.  In this case, the rotations are about one of the three axes.  

Equation 2a demonstrates the transformation from the coordinate system of component 

Y 

X 

Z 



   20 

#1 to the inertial coordinate system.  Note that the rotation occurs about the J  (also 1̂j ) 

axis, which is why a “1” is the multiplying factor in the J  row. 
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Equations 2b and 2c are the transformation matrices for converting the coordinate system 

of component #2 to component #1 and the coordinate system of component #3 to 

component #2, respectively.  In the #2 to #1 transformation, the rotation occurs about the 

1̂k  (also 2k̂ ) axis.  The rotation in the #3 to #2 transformation is about the 2̂i  (also 3̂i ) axis. 
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Angular velocities of the coordinate systems can be obtained by inspection.  A listing of 

the transformed angular velocities can be found in Appendix A. 
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The next step in deriving the equations of motion is to determine the energy in the 

rotational system.  In his treatise the Mécanique analytique, Lagrange demonstrated laws 

of virtual work, which could be applied to the mechanics of both solids and fluids 

(Joseph).  Rather than follow the work of D’Alembert and Euler by tracking the complete 

motion of a particle, he showed that “if we determine its configuration by a sufficient 

number of variables whose number is the same as that of the degrees of freedom 

possessed by the system, then the kinetic and potential energies of the system can be 

expressed in terms of those variables, and the differential equations of motion thence 

deduced by simple differentiation (Joseph).”  The form of this equation is: 

 

f
qqq

=
∂
∂+

∂
∂−









∂
∂ VTT

t &d

d
      (3) 

 

where [ ]T321 θθθ=q and [ ]T321 θθθ &&&& =q are the generalized coordinates and 

generalized velocities, T is the kinetic energy of the system defined as the addition of the 

rotational kinetic energy of each component, V is the total potential energy, and f is the 

generalized external forces on the system.  The energies are shown in Equation 4a-b as: 
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For component #2, estimations were made for the distance of the center of gravity offset.   

 

In Equation 4b, I indicates the inertia of each body relative to the fixed center of rotation 

for the system.  By substituting Equation 4 into Equation 3, one can obtain equations of 

motion that allow for the development of the mass matrix and the nonlinear Coriolis 

vector terms.  The complete organization of these matrices and vectors can be found in 

Appendix A. 

 

A unique, assumed characteristic of the flight motion table system considered here is that 

all parts of the system rotate about a single point.  Also, it should be noted that 

component #3 is merely a hollowed out cylinder that can be rotated about its longitudinal 

axis.  Therefore, it can be assumed that I3y and I3z are equivalent.  (The actual code used 

in numerical simulation is written for the possible case of zy II 33 ≠  for future 

experiments).  Equations 5 and 6 are the resultant mass matrix and nonlinear Coriolis 
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vector for the assumption of zy II 33 = .  The moments of inertia and mass elements were 

calculated based on the geometry of the modeled part.  The pieces were modeled as 

prisms, assumed to be solid casts.  Table 3 is a representation of the moments of inertia 

for each component. 

 

 

Table 3:   Moments of Inertia for 3-Gimbaled System 

 

Component and Axis Rotation 
Body 

Axis of 

Rotation 

Component #1: 

Pitch (234.9 kg) 

Component #2: 

Yaw (202.2 kg) 

Component #3: 

Roll (152.8 kg) 

x 57.6 kg-m2 11.9 kg-m2 2.8 kg-m2 

y 20.4 kg-m2 10.7 kg-m2 6.8 kg-m2 

z 37.8 kg-m2 9.9 kg-m2 6.8 kg-m2 

 

 

The resulting equations of motion have the form .fhqM =+&&   The terms qM &&  and h have 

the following form when zy II 33 = . 
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The generalized forces of the system are the three control torques exerted by the 

hydraulic/electric actuators of the flight table. 
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3

2
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f         (7) 

 

In operation, the torques are the control variables used to force the system motion to track 

the commanded motion. 

 

 

 

PID Program Structure 

 

The block diagram shown in Figure 10 demonstrates the structure of the Proportional-

Integral-Derivative program.  The following is an explanation of each block in the figure.  

The explanation includes the parameters involved, the objective of the structure and the 

output from the block. 
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Figure 10:  PID Program Structure 
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1. Initialize Variables 

 

Besides variables based on common knowledge, such as
2

81.9
s

m
g = , the 

section takes into account the initialization of the angles of each 

component on the fight table and the angular velocity of each.  The 

physical geometry of each rotating piece, such as moments of inertia, 

distance of offset from the rotation point (used for potential energy) and 

the mass of the offset components are defined.  The three basic variables 

involved with time are defined.  The total time is the duration the 

simulation is allowed to run, the time step for each integration step, and 

the number of iterations allowed before a control adjustment are defined.  

For instance, if the system runs for 10 seconds, and each time step is 0.01 

seconds, 1000 steps are analyzed.  If a control is adjusted every 2 time 

steps, the system is running at 500 Hz.  Finally, the initialization contains 

as experimental variables the gains for the proportional, integral and 

derivative terms. 

 

 

2. Choose Desired Controller 

 

This part of the program allows the user to select which type of controller 

they would like to examine; a PID or dynamic-inversion controller.  Once 
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the user selects a controller, all the characteristics of that controller are 

applied for the remainder of the program.  The controller not chosen is 

negated for the remainder of the runtime.  In this chapter, the PID 

controller was selected. 

 

 

3. Create State Vector 

 

The state vector groups together all the components of the simulation that 

will be integrated across time.  In the case of the PID controller, the state 

vector is a (9 x 1) vector consisting of angular positions for the 3 rotating 

components, the three angular rates associated with those components and 

the three errors associated with the integral gain in the controller itself.  

Grouping all nine components together assures that each cell is updated 

simultaneously with the other eight cells. 

 

 

4. Update the System Time 

 

The arrangement in question is a discrete time system.  Therefore, the 

values at a specific time step are determined and then evaluated at a small 

forward step in the system time,.t∆   When the words “updating the system 

time” are used, the program is not automatically changing all the times 
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associated with calculated variables to some new time, ,tt ∆+  but it’s 

storing the old and new variables which can then be used for comparison 

and error calculations. 

 

 

5. Call Proportional Integral Derivative RK-44 Function (derive_con) 

 

The PID program was written to take small time steps, integrate them 

across those time steps and update the state vector consisting of angles, 

angular rates, and integral error, all using a fourth-order Runge-Kutta 

integration method.  The RK-44 uses the beginning, middle, and end point 

of each time step in order to calculate an average time rate of change of 

each parameter over that discrete time.  The following equations represent 

the RK-44 for a second-order system: 
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The k-terms sent back into the “deriv_con” function, which represents the 

RK-44, are (9 x 1) vectors as well.  Each cell in the vector corresponds to 
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its respective angle, angular rate or integral error which will be used to 

update the state vector, as shown in section 7. 

 

 

6. Calculate Angle, Angular Rate Derivatives, and Error Integral 

 

The function, “deriv_con”, serves as the integration section of the RK-44.  

With the inputs of each portion of the time step, as shown in part 5, the 

function calculates the k and z (integral) terms.  The k terms are also 

referred to as the θ&  and θ&&  terms.  The equations of motion (derived in the 

upcoming sections and Appendix A): 

 

 ( ) ( ) fqqhqqM =+ &&& ,      (8) 

 

Provide the second time derivatives of the Euler angles. 

 

 ( ) ( )( )qqhfqMq
q

&&&
&

,
d

d 1 −== −

t
    (9) 

 

Although the mass matrix, M, is diagonally dominant and invertible, the 

“\” function was used in Matlab.  This applies a Gaussian Elimination 

method for finding a matrix equation of the form bAx = , where A is (nxn) 

and x and b are (nx1).  The integral for each portion of the time step is also 
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calculated by taking difference between the commanded angles and the 

actual angles.  The returned vector is a (9 x 1) vector in the form: 

 

 ( ) ( ) ( )[ ]Txxx 31313141 zqqk &&&&=−  

 

Note that all the components are the derivatives, or slope, of its integrated 

part.  This vector is returned to the main program in order to update the 

state vector. 

 

 

7. Update State Vector 

 

Once all the derivatives of the angles, angular rates and integral errors are 

sent back to the main program, the last piece of the 4th Order Runge-Kutta 

is applied.  This part of the RK-44 updates the angles, angular rates and 

error integral across the discrete time step using the equation: 

 

 ( )( )43211 2
6

1
kkkkxx ++++=+ ii    (10) 

 

The updated state matrix will be used for calculating the errors present and 

the required controls for the next iteration of the main program. 
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8. Call the Commanded Angles and Rates Function (commanded_values) 

 

This section of the program loop is one of the key factors for designing the 

experiment.  The commanded angles, angular rates and angular 

accelerations are very similar to the simulated path of a target that the 

seeker is trying to follow.  This portion of the program relays the position, 

speed, and the rate of change in speed the gimbals should be achieving.  

These commanded angles and rates are calculated in the 

“commanded_values” function.  The variables sent to this function are the 

time step iteration number and the updated time of the system. 

 

 

9. Determine Control Angle and Rate Types 

 

The simulated motion can take many shapes and forms.  The three types of 

simulations that are going to be examined are the constant direction and 

angular velocity, a constant position and angular velocity followed up with 

an impulsive change in position at a given time step, and a constantly 

changing (in this case sinusoidal) position and velocity.  The constant 

position and angular velocity scenario takes a random gimbaled placement 

and tracks the motion of the positions of the interceptor and target as they 

maneuver to another position over the course of the simulation.  The 

position and angular velocity with an impulsive change tracks the position 
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as it settles, instantaneously changes to another commanded position, and 

tracks the gimbals’ motion for the duration of the simulation time.  The 

sinusoidal position and velocity applies a commanded sine form of 

position, velocity and acceleration that the gimbals must track. 

 

The main program will receive a (9 x 1) vector, represented as: 

 

 [ ]Tcomcomcomcommand qqqy &&&=  

 

The three scenarios are further described and demonstrated in the 

Commanded Variables and Description of Functions section. 

 

 

10. Call the Control Function (control_develop) 

 

Now stored in the program is the updated system time, a corresponding 

state vector and a commanded position and rate vector.  However, as 

mentioned before, the values of these two vectors may not agree, creating 

some error in the results.  To minimize this error, a control is applied to 

the necessary gimbals where it is required.  This control is determined in 

the function “control_develop”.  The required inputs for this function are 

both the state vector and commanded angles and rates vector.  The 
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function will calculate the control required for the next iteration of the 

main program. 

 

 

11. Determine the Three PID Errors and Controls 

 

As discussed in previous chapters, there are three types of errors to 

analyze in a PID controller system; the proportional, integral and 

derivative.  Having a commanded angle and an angular rate relayed to the 

function, the position and speed each component should calculated.  Also, 

after completion of the RK-44 and an update of the variables, an actual set 

of angles and angular rates are determined.  Unless everything in the 

system was 100% perfect, there is bound to be some error in the nonlinear 

arrangement.  Therefore, it is necessary to find the errors for each section 

of the PID controllers.  The error used in the proportional controller is 

simply the difference between the commanded and actual position of each 

component.  The integral controller error is represented by the “z” term 

found from integrating the difference between the commanded and actual 

angle of each component from the beginning to the current time of the 

simulation.  The error used in the derivative portion of the controller is 

difference between the commanded and actual angular velocities of each 

component. 
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As discussed before, the basic equation used in the majority of PID 

controllers is represented by Equation 1: 

 

 
t

KtKK DIP d

d
d

e
eeu ++= ∫  

 

Note that in the previous section, the three errors defined correspond, 

respectively, to the errors in the equation.  The values of the gains have 

already been defined in the initialization of all parameters section.  These 

gains can be adjusted in order permit the system to more precisely 

converge to the commanded angles and angular velocities.  The value of 

the control, u, a (3 x 1) vector in this case, is then updated and applied 

back into Equation 9, until further updated.  The control, u, is then relayed 

back to the main program. 

 

 

12. Is Runtime Complete? 

 

No matter how long the system runs, there is always going to be some 

oscillation error due to fact that a small time segment is used, rather than a 

continuous signal.  However, after a certain time, the error in the system is 

considered negligible.  The runtime value, defined in the initialization 

section, is used by the programmer to ensure the program will terminate 
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after a specific simulation time.  Once a discrete value of t∆ is added to the 

system time, the program checks to see if the termination time has been 

achieved.  If so, the program terminates.  If the time has not been reached, 

the program loops back to Section 2, and repeats all the steps leading up to 

Section 12. 

 

 

 

Derivation of Dynamic-inversion Controller 

 

When deriving the dynamic-inversion controller for a motion flight table, the problem is 

classified in the category of tracking controllers for nonlinear natural mechanical 

systems.  Remember that a natural mechanical system is one where all the terms in the 

kinetic energy are quadratic in the generalized velocities, .q&  

 

Because of this property of natural mechanical systems, the kinetic energy of the system 

can be written as: 

 

( ) ( ) jiij
T qqMT &&&&&

2

1

2

1
, == qqMqqq      (11) 

 

where T is the kinetic energy and M is the mass matrix.  In order to determine the 

equations of motion, as required for the dynamics of the flight table, Lagrange’s equation 
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(Eq. 3) needs to be applied.  This is done most conveniently in index notation.  Expansion 

of Equation 8 leads to the equations of motion, represented as: 
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In vector notation, Equation 12 can be represented as: 

 

( ) ( ) fqqhqqM =+ &&& ,        (14) 

 

Based on this form of the equations of motion, a general form of a dynamic-inversion 

controller will be developed.  The control law for the generalized forces, f, in design is 

desired to track the motion of the commanded inputs, dq and dq& .  For this, a Lyapunov 

function will be selected. 

 

( ) ( ) ( ) ( )d
T

dd
T

dQ qqqqqqqq &&&& −−+−−=
2

1

2

1
    (15) 

 

A check point is to be sure 0=Q , when the actual motion identical to the commanded 

motion.  Otherwise, .0>Q   Taking the derivative of Q, one gets: 
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( ) ( )dd
T

dQ qqqqqq −+−−= &&&&&&&       (16) 

 

Here, dq&& are the accelerations associated with the commanded motion.  The condition of a 

global asymptotically stable system can be achieved by choosing: 

 

 ( )ddd qqqqqq &&&&&& −−=−+−       (17) 

 

The commanded motion can be substituted into the equations of motion to definedf , the 

generalized forces necessary to produce this motion. 

 

 ( ) ( )( )ddddd qqhfqMq &&& ,1 −= −       (18) 

 

A globally asymptotically stable controller used to track a desired motion for the natural 

mechanical system may be found by solving Equation 14 for q&&  and substituting along 

with Equation 18 back into Equation 17. 
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( ) ( ) ( )[ ]dd
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qqqqqM
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,1

   (19) 

 

The performance of this nonlinear controller will be compared with a typical linear PID 

controller.  A more detailed derivation can be found in Appendix B.  From Equation 19, 

it can be seen that the feedback terms in this controller are a form of proportional-
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derivative (PD) control.  The PD controller can alleviate unmodeled dynamics and 

disturbances (Yan 199).  Therefore, in comparison with the PID controller laid out in the 

previous section, the dynamic-inversion controller does not require error integral 

information.  This is, however, a result of the choice of the Lyapunov function.  The 

dynamic-inversion controller does require knowledge of commanded accelerations (in 

order to computedf ), which were not required by the PID controller.  In implementation 

some means of computing dq&&  is necessary. 

 

 

 

Dynamic-inversion Program Structure 

 

The block diagram shown in Figure 11 demonstrates the structure of the dynamic-

inversion program.  The following is an explanation of each block in the figure.  The 

explanation includes the parameters involved, the objective of the structure and the 

output from the block.  Many of these sections are very similar to those in the PID 

description, mainly because the dynamic-inversion controller is the only difference in the 

system.  A positive attribute to this program is the flexibility of examining whichever 

controller the user prefers.  Therefore, the majority of the steps and processes are 

mirrored for each controller.
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Figure 11:  Dynamic-inversion Program Structure 
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1. Initialize Variables 

 

To compare the PID arrangement to that of the dynamic-inversion in a fair 

manner, the same initial variables must be used.  Therefore, the moments 

of inertia, mass of each component, distance of component offset, initial 

positions and angular velocities, and time step variables (including the 

frequency of control adjustments) must remain equal to those in the PID 

experiment.  The only difference lies in the gains used in the dynamic-

inversion.  Only proportional and derivative gains are used and their 

values will be different following proper tuning to compliment the 

arrangement. 

 

 

2. Choose Desired Controller 

 

As mentioned before, the user has the ability to select which type of 

controller they chose to examine; a PID or dynamic-inversion controller.  

Once the user selects a controller, all the characteristics of that controller 

are applied for the remainder of the program.  In this chapter, the 

dynamic-inversion controller was selected.  Therefore, the PID controller 

characteristics and processes are negated for the remainder of the runtime. 
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3. Create the State Vector 

 

The state vector combines all the components that will be integrated 

across the simulation time.  In the case of the dynamic-inversion 

controller, the state vector is a (6 x 1) vector consisting of angular 

positions for the three rotating components and the three angular rates 

associated with those components: [ ]Tqqx &= .  Unlike the PID state 

vector, there is no integral error present due to the form of the controller.  

The error across this controller is not integrated; therefore, the gain is not 

necessary.  This set-up assures that all six variables will be updated and 

applied simultaneously throughout the simulation. 

 

 

4. Update the System Time 

 

The process of updating the system time by a discrete time step, ,t∆  serves 

the same purpose as the PID controller.  This update is merely a process of 

storing and comparing the values of the state vector, command vector, and 

control vector for any given time step throughout the simulation.  It allows 

the user to specify which value at a specific instant they would prefer to 

examine. 
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5. Call Dynamic-inversion RK-44 Function (deriv_con) 

 

Similar to the PID program, the dynamic-inversion is analyzed over 

constant time steps of ,t∆ therefore integration across those discrete times 

is necessary.  Once again, a fourth-order Runge-Kutta numerical 

integration is going to be applied to the system.  All equations are going to 

be the same, with the exception of the k terms.  Before, in the PID 

program, each returned value of k contained three angular derivatives, 

three angular velocity derivatives, and three error integrations.  The error 

integrations are not necessary; therefore, the k values are a (6 x 1) vector, 

rather than a (9 x 1).  The called function, “deriv_con”, is the same 

function used for PID controller, only modified to cater to both 

controllers. 

 

 

6. Calculate Angle and Angular Rate Derivatives 

 

The function, “deriv_con”, is the exact same function used for the PID 

controller, except in this situation, the calculation of the integral error over 

the specific time step is not applied.  Both functions serve the purpose of 

determining the rate change in the angular velocity, as previously shown 

in Equation 9: 
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The resulting q&  and q&&  terms are returned to the main program as a (6 x 1) 

vector in the form of: 

 

 ( ) ( )[ ]Txx 313141 qqk &&&=−  

 

This vector is returned to the main program in order to update the state 

vector by completing the RK-44 integration. 

 

 

7. Update the State Vector 

 

Once all of the angular rates and angular accelerations are returned to the 

main program, the last function of the fourth-order Runge-Kutta is 

performed.  This part of the RK-44 updates the angles and angular 

velocities across the discrete time step, ,t∆ using the same equation as that 

of the PID controller: 

 

 ( )( )43211 2
6

1
kkkkxx ++++=+ ii  
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The updated state matrix will be used for calculating the errors in the 

commanded and actual angles and the required controls for the next 

iteration of the main program. 

 

 

8. Call the Commanded Angles and Rates Function (commanded_values) 

 

The commanded angles, angular rates, and angular accelerations are the 

motion that the controller is trying to track.  This portion of the program 

relays the position, the speed, and the rate of change in speed the gimbals 

should be achieving.  For comparison, the commanded values calculated 

in this section will be the same as those used in the PID experiments.  

These commanded angles and rates are calculated in the 

“commanded_values” function.  The variables sent to this function are the 

time step iteration number and the updated time of the system. 

 

 

9. Determine Control Angle and Rate Types 

 

Three basic types of simulations were chosen to study the performance of 

the dynamic-inversion controller:  (1) constant direction and angular 

velocity, (2) constant position and angular velocity followed up with an 

impulsive change in position at a given time step, and (3) constantly 
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changing (in this case sinusoidal) position and velocity.  The same 

commanded angles and angular velocities will be used in the PID program 

to ensure an accurate comparison in the results of both controllers.  The 

returned variable is a (9 x 1) vector, represented as: 

 

 [ ]Tcomcomcomcommand qqqy &&&=  

 

The three scenarios are further described and demonstrated in the 

Commanded Variables and Description of Functions section. 

 

 

10. Call the Control Function (control_develop) 

 

The variables required to calculate the updated errors and control for the 

1+it  conditions are now saved into the state vector and command vector.  

Assuming the vectors do not agree, whether machine error or an error 

caused by a change in the commanded angles and velocity, the 

“control_develop” function allows for a correction control to be produced.  

The required inputs for this function are both the state vector and 

commanded angles and rates vector.  The function will calculate the 

control required for the next iteration of the main program. 

 

 



   46 

11. Call Commanded and Actual Components Function (model_components) 

 

One of the unique characteristics of a dynamic-inversion controller is the 

comparison between the actual components of the equations of motion and 

some reference components based off commanded values in order to 

determine the control applied to the next time interval.  The reference 

value components consist of the angles, angular rates, mass matrix, 

Coriolis terms and control.  These terms are calculated in the function, 

“model_components” and returned to “control_develop” function for 

analysis.  Once the terms are returned, they are applied in the control 

equation for this particular dynamic-inversion controller which will be 

derived in the following section: 

 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )[ ]dd

dddd

qqqqqM

qqhqMqMqq,hfqMqMf -1
d
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−+= −
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 (19) 

 

The first part of the Equation [19] represents the feedback portion of the 

controller.  The second condition of the equation is a nonlinear feedback 

term comparing the difference between the Coriolis terms of the reference 

and actual motions.  The last term is a PD form of a controller that is a 

nonlinear feedback as well. 

 



   47 

All the terms in Equation 19 are generated in “model_components”, with 

the exception of the commanded and actual angles and angular rates.  The 

inputs for this function are the actual and commanded angles and angular 

velocities.  Once the new control is calculated, it is returned to the main 

program in order to be applied to the next iteration, starting at Section 4. 

 

 

12. Determine Commanded and Actual Value Components 

 

The function, “model_components”, for the reference portion uses 

Equation 5 to determine the mass matrix, Equation 6 to determine the 

Coriolis terms, and Equation 8 to determine the reference control.  All 

these values are in correspondence with the simulated motion of the 

system. 

 

The actual value components consist of the angles, angular rates, mass 

matrix, and Coriolis terms.  These values are determined in a similar 

fashion to the reference components, using the same order and equations, 

with the exception that the returned variables represent the actual 

characteristics of the system.  The applied control is not calculated until 

the five characteristics of the motion at that particular time step are 

returned to the “control_develop” function. 
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13. Is Runtime Complete? 

 

Just like in the PID controller, there is always going to be some sort of 

small error in the simulation, where after a certain time, the error in the 

system is negligible (if properly designed).  Once a discrete value oft∆ is 

added to the system time, the program checks to see if the termination 

time has been achieved, ceasing to program if it has.  If the time has not 

been reached, the program loops back to Section 2, and repeats all the 

steps leading up to Section 13, only to be tested again. 

 



   49 

 

 

 

VI.   MODEL SIMULATIONS AND ANALYSIS 

 

General Experimental Set-up 

 

The tri-gimbaled system has three basic parameters which need to be considered when 

designing an accurate and precise response to a given command.  The factors which will 

be examined are the type of controller, the type of commanded angles, angular velocities 

and angular accelerations, and the gain levels used in the simulation.  As discussed in 

previous chapters, the controllers analyzed are of type PID and dynamic-inversion, and 

the commanded positions and rates are constant, steps and sinusoidal.  The experiments 

will also examine how the system changes with increases in both the proportional and 

derivative gains. 

 

 

 

Commanded Variables and Description of Functions 

 

The commanded variables consist of constant variables, alternating variables (a step 

function), and a constantly adjusting sinusoidal command. 
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Prior to every simulation, some factors of the gimbals are set.  All three gimbals are 

initially set to +0.4 radians from their “home” position.  This offset will require an initial 

maneuver to be performed in order to approach the commanded position.  The gimbals 

will all start from rest. 

 

The controller must now track one of the following commanded parameters: 

 

1. Constant Commanded Angles and Rates 

 

With all three gimbaled positions set to +0.4, an alternate set of gimbaled 

positions is commanded to force the controller to adjust all three controls 

simultaneously.  The values for these gimbals after the commanded 

controls begin are: 
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2. Constant Commanded Angles and Rates with a Step Function 

 

This commanded function is very similar to the constant commanded 

positioning function described in the previous section with one basic 
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difference.  The commanded function travels along a constant angle for all 

components then impulsively maneuvers to a different angular position.  

For the experiments, the positions are: 

 

 
[ ]
[ ]Tcom

T
com

t

t

5.02.02.0:sec105

2.01.01.0:sec50

=→=

=→=

q

q
 

 

Because this is a discrete time system and the time step is small, the 

angular velocity and angular acceleration expressions remain the same. 

 

 

3. Consistent Sinusoidal Commanded Path 

 

For this commanded motion, the angles of all three components are all 

going to be based off a sinusoidal wave with amplitude of 0.5 radians and 

frequency of π2
1  Hz.  Because these angular positions are based on time, 

the angular velocities and accelerations can be represented as the first and 

second derivative of the position vector. 
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This method of determining the rates is valid as long as the commanded 

position of each component is a function of time. 

 

 

 

Gain Selections 

 

It is typically assumed that the larger the gain in a system, the less robust (more sensitive 

to errors in the dynamic model) the system becomes.   However, the experiments 

performed are not to find the optimal gains in the simulation; only to deduce the effect 

that a change in gains has on each controller. 

 

After numerous trials of various gains, two sets of gains were selected as appropriate for 

the experiments.  The first set was KP = 200 and KD = 50.  This set of gains allows the 

motion and response to be more flexible.  The second set is a more aggressive set with 

the gains set to KP = 400 and KD = 100.  For each experiment run with the PID controller, 

the KI gain was set equal to the KP gain.  The dynamic-inversion controller does not 

utilize the integral gain. 

 

These two sets of gains were compared alongside the three commanded motion and the 

two different types of controllers, producing twelve sets of results. 

 

 



   53 

Model Simulations 

 

Three commanded motion, two sets of controller gains, and two different controllers are 

to be examined.  Adjusting every parameter to perform a single study in order to find out 

the characteristics and effects of that parameter leads to twelve different situations to 

consider.  This section will break those twelve simulations into three groups of four tests.  

Those three groups will be run with the types of commanded motion.  Within each group, 

the changes in both the gains and controller will be observed through the angular motions 

of the gimbals.  An analysis of the applied controls, errors, and run times will be 

addressed in later sections. 

 

 

Input 1:  Constant Commanded Angles and Rates 

 

The first simulation tested will compare the PID and dynamic-inversion 

controllers with a change in gains.  These will be conducted with the commanded 

angles, angular velocities and angular accelerations held constant throughout a 10 

second test period.  Figures 12a and 12b represent a PID and dynamic-inversion 

controller under the influence of a proportional gain equal to 200 and a derivative 

gain equal to 50. 

 

After the initial jump from the +0.4 radian position, all components controlled 

through the PID show difficulties in convergence.  The pitch component (piece 
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#1) shows the greatest error in convergence.  However, the dynamic-inversion 

controller seems to converge in nearly every piece before one second has elapsed. 

 

Figures 12c and 12d are for the same situation, except the gains have increased 

significantly.  Note that the PID system still has convergence problems, but seems 

more in control due to the gain increase.  The dynamic-inversion does not seem to 

have difficulties with the larger gains.  The convergence time in the dynamic-

inversion controllers remained about the same.  With the larger gains applied, the 

PID controller began to respond similarly to the dynamic-inversion controller. 
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Figure 12:  a)   PID Model for Constant Control and KP = 200, KD = 50 
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Figure 12:  b)   DI Model for Constant Control and KP = 200, KD = 50 
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Figure 12:  c)   PID Model for Constant Control and KP = 400, KD = 100 
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Figure 12:  d)   DI Model for Constant Control and KP = 400, KD = 100 
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Input 2:  Constant Commanded Angles and Rates with a Step Function 

 

The procedure of testing for this mode is nearly identical to that of Input 1 with 

the exception that a step function was applied at the 5 second mark.  However, 

from 0 to 5 seconds and 5 to 10 seconds, the commanded angles and rates remain 

constant. 

 

Figures 13a and 13b represent a PID and dynamic-inversion controller with a 

proportional gain equal to 200 and a derivative gain equal to 50.  Figures 13c and 

13d represent the same except that more aggressive KP and KD gains of 400 and 

100 respectively were applied. 

 

Similar to the previous mode, the dynamic-inversion has quicker reaction and 

convergence times than the PID controller.  In fact, the PID controller only seems 

to be efficient when the gains are high.  However, even after the gains are 

increased, there is still a significant amount of overshoot in the PID.  The 

dynamic-inversion controller contains little to no overshoot and dampens out 

quickly in both cases. 
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Figure 13:  a)   PID Model for Step Control and KP = 200, KD = 50 
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Figure 13:  b)   DI Model for Step Control and KP = 200, KD = 50 
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Figure 13:  c)   PID Model for KP = 400, KD = 100 
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Figure 13:  d)   DI Model for KP = 400, KD = 100 
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Input 3:  Sinusoidal Commanded Motion 

 

The following mode is most similar to that of a guided missile simulation in an 

HWIL system.  The relative motion between the seeker and target is more likely 

to be in the form of smooth curves getting sharper as the missile approaches the 

target rather than instantaneous steps in position.  Therefore, the results from this 

mode are probably more relevant to flight motion table simulations.  The motion 

is a simple sinusoidal wave function which oscillates for a total duration of 10 

seconds. 

 

Figures 14a and 14b represent a PID and dynamic-inversion controller with a 

proportional gain equal to 200 and a derivative gain equal to 50.  Figures 14c and 

14d represent the same except that more aggressive KP and KD gains of 400 and 

100 respectively were applied. 

 

In this mode, the dynamic-inversion has little to no overshoot in both cases while 

still managing to converge to the curve within first second of the simulation.  

Contrary to the dynamic-inversion results, the PID controller seemed to struggle 

in its convergence on the constantly changing curve, most likely due to the 

integral term.  Figure 14a shows difficulty in the pitch and yaw, while Figure 14c 

shows difficulty converging at the peaks of the sine wave. 
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Figure 14:  a)   PID Model for Sinusoidal Command and KP = 200, KD = 50 
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Figure 14:  b)   DI Model for Sinusoidal Command and KP = 200, KD = 50 
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Figure 14:  c)   PID Model for Sinusoidal Command and KP = 400, KD = 100 
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Figure 14:  d)   DI Model for Sinusoidal Command and KP = 400, KD = 100 
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VII.   COMPARISON OF PID AND DYNAMIC-INVERSION CONTROLLERS 

 

In addition to studying the gimbaled-angle histories, other methods can be used to 

compare the performance of the PID and dynamic-inversion controllers.  As shown in the 

previous chapter, the PID controller consistently showed more fluctuation between the 

actual and commanded motion.  This section describes an investigation of the control 

torques and processor time required by both the PID and dynamic-inversion controllers. 

 

 

Comparison of Controls for each Input 

 

Two factors being considered while looking at the control for each of the twelve systems 

are the settling time (how long is the controller required to operate before convergence) 

and the maximum control required.  These two factors can play a role not only in the 

system performance, but also the life span of the flight table. 

 

The controls for all three components, both controllers and all three commanded inputs 

are shown in Figures 15-17.  A common trend is present in all results shown.  Concerning 

the PID controller, the reaction is slower and the control is more oscillatory.  However, 

the controls are very low.  The maximum control applied to the system is around a 
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magnitude of 200 N-m.  With the dynamic-inversion controller, the reaction is nearly 

instantaneous in all cases with little overshoot and a short damping time.  However, the 

control approaches levels around a magnitude of 1200 N-m.
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Figure 15:  a)   Control for Constant Command and KP = 200, KD = 50 
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Figure 15:  b)   Control for Constant Function and KP = 400, KD = 100 
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Figure 16:  a)   Control for Step Command and KP = 200, KD = 50 
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Figure 16:  b)   Control for Step Command and KP = 400, KD = 100 
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Figure 17:  a)   Control for Sinusoidal Command and KP = 200, KD = 50 
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Figure 17:  b)   Control for Sinusoidal Function at KP = 400, KD = 100 
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In comparing the controllers, the PID controller causes oscillatory reversing torques, 

while the dynamic-inversion controller requires greater peak torques.  Depending on the 

application, it is not clear which is more desirable.  However, other factors, such as the 

results of the error analysis and processing time also factor into the comparison decision. 

 

 

 

Error Analysis for Each Input 

 

Like in any system, one of the most effective ways to compare the performance of two 

controllers is to analyze the error produced between systems.  Because there are three 

angles examined, all having some sort of error, the error analyzed in Figures 18a-c and 

19a-c are the norm of each error vector, giving a scalar quantity to plot. 

 

The first set of errors examined compares the angle errors throughout the entire 

simulation.  Figures 18a-c compare the errors throughout the simulation for the lower 

gain settings (KP = 200, KD = 50).  These gains are easy to compare due to the lack of 

convergence of the PID function after the initial angle jump.  In every case, there is an 

oscillatory motion associated with the PID controllers.  Every time the system oscillates, 

more error is added into the system.  In all cases, the dynamic-inversion controller 

converges to zero error and remains relatively constant. 
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Figure 18:  a)   Error for Constant Command and KP = 200, KD = 50  
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Figure 18:  b)   Error for Step Command and KP = 200, KD = 50  
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Figure 18:  c)   Error for Sinusoidal Command and KP = 200, KD = 50  
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After examining Figures 19a-c, one can compare the errors throughout the simulation for 

the higher gain settings (KP = 400, KD = 100).  With the more aggressive gains used, the 

errors for both controllers converge with less overshoot, thereby reducing the error after 

the initial jump from the starting parameters to the commanded parameters. 
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Figure 19:  a)   Error for Constant Command and KP = 400, KD = 100  
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Figure 19:  b)   Error for Step Command and KP = 400, KD = 100  
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Figure 19:  c)   Error for Sinusoidal Command and KP = 400, KD = 100  
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In this case, the more aggressive gain settings resulted in less overshoot.  Therefore, the 

majority of angle error is dependent upon the area under the curve from the initial 

maneuver to the commanded values.  Also, as mentioned in previous chapters, more 

aggressive gains tend to lessen the oscillation in the PID controller, while increasing the 

rise time in the dynamic-inversion controller.  In certain situations, mostly for short 

periods of time, it may be difficult to determine which controller produces less error.  

Therefore, Table 4 takes into account all twelve experiments and sums up the total error 

history over the course of each simulation.  As shown, in every case the amount of error 

in the dynamic-inversion system is significantly less than that in the PID controller. 

 

 

Table 4:  Total Error Comparison of PID and DI controllers 

 

Commanded Input Type 
Gains 
Used 

Controller 
Type Constant 

Input 
Step (Impulse) 

Input 
Sinusoidal 

Input 
PID 0.11450 0.12880 0.30250 KP = 200    

KD = 50 Dyn. Inv. 0.01170 0.02000 0.01740 

PID 0.04790 0.06200 0.09890 KP = 400    
KD = 100 Dyn. Inv. 0.01170 0.02000 0.01730 

 

 

 

The difference in the error from Table 4 can further be demonstrated in Figures 20a-b.  

One concept to note is the difference in the PID and dynamic controller errors for the 

simulation.  As discussed earlier, as the gains increase, the amount of discrepancies 
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between the error in the PID and dynamic-inversion controller is lessened.  In Figure 20a, 

the total error in the PID is approximately 1600-1700% greater than that in the dynamic-

inversion controller for sinusoidal motion.  However, when the gains are increased, such 

as in Figure 20b, the differences between the total errors in the simulation decrease 

significantly.  The PID controller error is approximately 400-500% greater than the 

dynamic-inversion for sinusoidal motion.  There is an obvious gap change between the 

two controller gain adjustments. 

 

 

Figure 20:  a)   Error Comparison in PID and DI with KP = 200, KD = 50 
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Figure 20:  b)   Error Comparison in PID and DI with KP = 400, KD = 100 
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Runtime Analysis for Each Input 

 

A third characteristic of each controller to contemplate when deciding which to use in a 

flight table is the required processor time.  A dynamic-inversion controller could 

converge faster than PID controller, but if it is hugely more computationally expensive, 

then the PID would be the obvious choice, and vice versa. 
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In order to analyze the amount of time it takes to complete a simulation of each 

controller, a “tic-toc” Matlab function was applied.  The “tic”, where Matlab starts 

recording the time, was placed right before the for-loop in the main program.  The “toc”, 

where Matlab stops timing the system, was placed directly after the for-loop was closed.  

Note that this sums the entire time required to simulate the system, not just the 

computational expense of evaluating the control.  The other computations involved in 

each simulation should be similar, with the main difference being the controller 

evaluation.  The placement ensured that the plotting of the variables is not taken into 

effect. 

 

Table 5 demonstrates the results of the controller runtimes, while Figures 21a-b graph the 

data for each set of gains.  Note that in all cases the dynamic-inversion controller runs 

around 30% longer than the PID controller. 

 

It is the author’s belief that the structure of the dynamic-inversion controller program that 

causes the increase in runtime.  When the PID controller calls the function 

“control_develop”, the control is directly calculated through linear equations and returned 

to the main program for future processing.  However, when the dynamic-inversion 

controller calls “control_develop”, the function then must call the function 

“model_components”, compute relatively large nonlinear system components (mass 

matrix, Coriolis terms, etc.) for both the commanded and actual system, return those 

values to “control_develop” where another large equation is used to calculate the control 
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before it is sent back to the maim program for processing.  These extra steps and large 

calculations attributed to the increase in runtime. 

 

 

Table 5:   Analysis of Runtimes 

 

Commanded Input Type 

Constant Input Step (Impulse) Input 
Sinusoidal 

Input 
Gains 
Used 

Controller 
Type 

10 sec 10 sec 10 sec 
PID 1.20552 1.20392 1.22571 Kp = 200    

Kd = 50 Dyn. Inv. 1.57709 1.57208 1.56319 
PID 1.22680 1.20592 1.20208 Kp = 400    

Kd = 100 Dyn. Inv. 1.56431 1.60439 1.59235 
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Figure 21:  a)   Runtime Comparison for PID and DI with KP = 200, KD = 50 
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Figure 21:  b)   Runtime Comparison for PID and DI with KP = 400, KD = 100 
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On average, the time it takes to run the PID simulation is approximately 12% of real-time 

(it takes approximately 7.20 seconds to run a 60 second simulation).  The time it takes the 

dynamic-inversion simulation to run is approximately 16% of real-time (approximately 

9.60 seconds to run a 60 second simulation).  HWIL systems work in real-time, as 

opposed to simulation time.  For every minute long simulation, 2.40 seconds are lost due 

to the dynamic inversion program.  This indicates that the dynamic-inversion controller 

could likely be implemented on a digital controller without great increase in cost.  

However, studies will have to be made to reduce the difference between the controller 

runtimes.
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VIII.   CONCLUSIONS 

 

Because of their ability to function well enough and its user-friendly simplicity, PID 

controllers are employed in the majority of industrial design.  However, when the 

industrial environment does not require simplicity in a system, is there a nonlinear 

controller that can be rendered more effective. 

 

The dynamic-inversion controller developed in this thesis represents a controller capable 

of manipulating the movements of a three gimbaled, nonlinear system. 

 

Derived from Lagrange’s equations for kinetic and potential energies and Lyapunov 

global stability theory, the dynamic-inversion controller was tested.  Results from these 

tests were compared with results obtained using a PID controller.  The dynamic-inversion 

method consistently showed a higher quality of response for not only a wide range of 

gains, but also numerous types of commanded functions.  The dynamic-inversion method 

showed less error through the simulation with faster convergence and larger damping in 

terms of the gimbaled motion and gain.  The PID controller did execute faster than the 

dynamic-inversion, but the lag in the dynamic-inversion controller should not be enough 

to warrant a change in controllers. 
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Recommendations for future work would include applying and testing both PID and 

dynamic-inversion controllers to an actual flight table to analyze how the system results 

vary in the physical world.  Also note that the experiments performed do not include a 

seeker head during the test.  How would the extra mass and adjustment of the moments of 

inertial handle in a simulation and actual test site?  One may also analyze the stresses 

present during a reverse torsion.  The PID controller was consistently oscillating.  For an 

active table, this would cause vibrations and noise.  However, because the control in the 

dynamic-inversion was so large, would deceleration in the gimbals cause any 

unwarranted stress and strain on the system?  Finally, the runtime of the dynamic-

inversion was slightly higher than the run time of the PID controller.  An examination on 

how that would affect performance may lead to a structure of the program that causes it 

to execute faster. 
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APPENDIX A:  Complete Derivation of Equations of Motion 

 

Moments of inertia defined as:  I  Pc. #   Axis therefore, I3z would be z-axis of pc. 3. 
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Calculate Angular Velocities: 
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Determine Kinetic Energy: 
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Determine Potential Energy: 
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For 2θ : 
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For 3θ : 
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Combine the q&&  terms to find the mass matrix, M, the ji qq &&  terms and the potential terms 

to find the Coriolis vector, h, to give the equation form: 

 

( ) ( ) fqqhqqM =+ &&& ,  

  

 



   102 

( )

( ) ( )

( )

0       

sin       

sincoscos       

       

cossin       

sincoscossin       

23

3213

3333212

333

33
2

33
2

222

33
2

33
2

22
2

322
2

111

332313

232212

131211

=
=

−=
=

++=

+++++=

















=

M

IM

IIM

IM

IIIM

IIIIIIM

MMM

MMM

MMM

qM

x

zy

x

zyz

zyyxxy

θ
θθθ

θθ

θθθθ
 

( )

( )
( )( )

( )
( ) ( )( )

( )( ) ( )( ) ( )( )

( )
( ) ( )( )

( )

( ) ( )
( ) ( )( )zyyzx

yzzy

zy

yzzyx

zyxyx

yzzyx

yz

zyxyx

yz

IIIII

IIIIh

mgL

II

IIIII

IIIIIh

mgL

IIIII

II

IIIII

IIh

h

h

h

qqh

333
2

333
2

3221

3333
2

233332
22

13

2

333332

333
2

333
2

3231

33
2

33
2

32222
2

2

2
2/12/1

333
2

333
2

3232

33332
2

31

33
2

33
2

3222221

33332
2

21

3

2

1

sincoscos

sincossincoscos

cossin

sincos2

cossincos

sincossincos

sincos1coscos122sinsincos122

sincoscos

sincoscos2

sincossincos2

sincossin

,

−+−+

+−+−=

+−

+−+−+

−−−+−−=

−+−−−−

+−+−+

+−

++−+−

+−=

















=

−

θθθθθ

θθθθθθθ

δθ
θθθθ

θθθθθ

θθθθθ

δθβδβδδ

θθθθθ

θθθθθ

θθθθθθ

θθθθ

&&

&&

&&

&&

&

&&

&&

&&

&

&

 

 

 



   103 

APPENDIX B: Complete Derivation of Dynamic-inversion Controller 

 

Kinetic Energy in Generalized Velocities 

( ) ( ) jiij
T qqMT &&&&&

2

1

2

1
, == qqMqqq  

Apply Lagrange’s Equations to Determine Mass Matrix and Coriolis Terms 

( ) ( ) ( )qqqqq VTL −= && ,,  
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Equations of Motion in Index and Vector Notation 

kkiki fhqM =+&&   where  
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( ) ( ) fqqhqqM =+ &&& ,  

 

Selected Lyapunov Function 

( ) ( ) ( ) ( )d
T

dd
T

dQ qqqqqqqq &&&& −−+−−=
2

1

2

1
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Find Derivative to Determine if Global Asymptotically Stable ( )0≤Q&  

( ) ( ) ( ) ( )d
T

dd
T

dQ qqqqqqqq &&&&&&&&& −−+−−=  

( ) ( )dd
T

dQ qqqqqq −+−−= &&&&&&&  

( )ddd qqqqqq &&&&&& −−=−+−      (Eq. B1) 

( ) ( )( )ddddd qqhfqMq &&& ,1 −= −      (Eq. B2) 

 

Substitute Desired Motion into the Equations of Motion 

( ) ( ) dddddddd hqMqqhqqMf +=+= &&&&& ,  

( )dddd hfMq −= −1
&&       (Eq. B3) 

 

Substituting Eq. B2 and Eq B3 into Eq. B1 

( ) ( ) ( )ddddd qqqqhfMhfM && −−=−+−−− −− 11  

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )[ ]dddddd qqqqqMqqhqMqMqq,hfqMqMf -1
d &&&& −+−−−+= − ,1



   105 

APPENDIX C:  PID and Dynamic-inversion Controller Program 

 

global  g d I1 I2 I3 m dt time_intervals ang_com angrate_c om 
angaccel_com Kp Ki Kd ang_com_temp angrate_com_temp  
  
% Variables for the surrounding system  
g = 9.81;     %m/sec^2  
  
% Variables for the Flight Table Geometry  
d = 0.20;      %m - distance of component offset from point of rot ation  
I1x = 57.6257;                   %kg-m^2 
I1y = 20.4346;                   %kg-m^2 
I1z = 37.8028;                   %kg-m^2 
I2x = 6.6928;                    %kg-m^2 
I2y = 3.7280;                    %kg-m^2 
I2z = 3.0442;                    %kg-m^2 
I3x = 2.8279;                    %kg-m^2 
I3y = 6.7884;                    %kg-m^2 
I3z = 6.7884;                    %kg-m^2 
I1 = [I1x 0 0;0 I1y 0;0 0 I1z];  
I2 = [I2x 0 0;0 I2y 0;0 0 I2z];  
I3 = [I3x 0 0;0 I3y 0;0 0 I3z];  
m = 91.8523;        %kg - mass of component 2 (yaw)  
f = [0;0;0];   %set the initial control = 0 for all components  
  
% Time Characteristics for Simulation  
i = 1;                  %Counter for the "for-loop"  
iter = 1;  
ti(i)=0.0;              %sec - initial start time of the system  
tf = 5.0;               %sec - final time of the system  
dt = 0.01;               %sec - time steps for RK44 integration  
time_intervals = 1;     %number of steps till control is adjusted  
tsteps=(tf-ti)/dt;      %total number of iterations  
  
% Initial Position and Angular Rates of Gimbals (Co mmanded and Actual)  
ang_com_temp = [0.1;0.1;0.2];  
angrate_com_temp = [0;0;0];  
[commands] = commanded_values(i,0);  
ang_com  = commands(1:3);  
angrate_com = commands(4:6);  
angaccel_com = commands(7:9);  
Ang_Com(:,i) = ang_com;  
AngRate_Com(:,i) = angrate_com;  
the1_0 = 0.4;          %radians - Initial Position, Component 1  
the2_0 = 0.4;          %radians - Initial Position, Component 2  
the3_0 = 0.4;          %radians - Initial Position, Component 3  
u_0 = angrate_com(1);  %radians/sec - Initial Velocity, Component 1  
v_0 = angrate_com(2);  %radians/sec - Initial Velocity, Component 2  
w_0 = angrate_com(3);  %radians/sec - Initial Velocity, Component 3  
the1(i) = the1_0;      %Angle of Component 1, for graphing  
the2(i) = the2_0;      %Angle of Component 2, for graphing  
the3(i) = the3_0;      %Angle of Component 3, for graphing  
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u(i) = u_0;            %Angular Velocity of Component 1, for graphing  
v(i) = v_0;            %Angular Velocity of Component 2, for graphing  
w(i) = w_0;            %Angular Velocity of Component 3, for graphing  
 
% PID Augmented Integration Term  
z = [0;0;0];  
  
% Defining State Vector for Various Controllers  
controller = input( 'Enter "1" for PID, "2" for DI:  ' );  
if  controller == 1  
    x = [the1(i);the2(i);the3(i);u(i);v(i);w(i);z];  
elseif  controller == 2  
    x = [the1(i);the2(i);the3(i);u(i);v(i);w(i)];  
end ;  
  
% Gains  
if  controller == 1  
    Kp = 400;  
    Ki = 400;  
    Kd = 100;  
elseif  controller == 2  
    Kp = 400;  
    Ki = 0;  
    Kd = 100;  
end ;  
  
%Graphing Parameters  
time(i) = 0.0;  
ang_1(i) = x(1);  
ang_2(i) = x(2);  
ang_3(i) = x(3);  
control_1(i) = f(1);  
control_2(i) = f(2);  
control_3(i) = f(3);  
error_mag(i) = 0;  
error_norm_total = 0;  
  
% Integration Process for the RK44  
for  i = 1:tsteps  
    ti(i+1) = ti(i) + dt;  
     
    k1 = dt*deriv_con(controller,x,f);  
    k2 = dt*deriv_con(controller,x+k1/2,f);  
    k3 = dt*deriv_con(controller,x+k2/2,f);  
    k4 = dt*deriv_con(controller,x+k3,f);  
     
    x = x + (1/6)*(k1+2*(k2+k3)+k4);  
     
    [commands] = commanded_values(i,ti(i+1));  
    ang_com = commands(1:3);  
    angrate_com = commands(4:6);  
    angaccel_com = commands(7:9);  
    Ang_Com(:,i+1) = ang_com;  
    AngRate_Com(:,i+1) = angrate_com;  



   107 

    [f,error_norm] = control_develop(controller,i,x );  
     
    error_mag(i+1) = error_norm;  
    error_norm_total = error_norm_total + error_nor m; 
    ang_1(i+1) = x(1);  
    ang_2(i+1) = x(2);  
    ang_3(i+1) = x(3);  
    control_1(i+1) = f(1);  
    control_2(i+1) = f(2);  
    control_3(i+1) = f(3);  
    time(i+1) = ti(i+1);  
end ;  
 
error_norm_avg = error_norm_total/tsteps  
 

*************************************************** ********** 

function  [k]=Controller_Main(controller,x,f)  
  
global  g d I1 I2 I3 m dt ang_com angrate_com  
  
I1x = I1(1,1);  
I1y = I1(2,2);  
I1z = I1(3,3);  
I2x = I2(1,1);  
I2y = I2(2,2);  
I2z = I2(3,3);  
I3x = I3(1,1);  
I3y = I3(2,2);  
I3z = I3(3,3);  
  
the1 = x(1);  
the2 = x(2);  
the3 = x(3);  
t1d = x(4);  
t2d = x(5);  
t3d = x(6);  
  
M11 = I1y + (I2x+I3x)*(sin(the2))^2 + (I2y + I3y*(c os(the3))^2 + 
I3z*(sin(the3))^2)*(cos(the2))^2;  
M12 = (I3y-I3z)*cos(the2)*cos(the3)*sin(the3);  
M21 = M12;  
M13 = I3x*sin(the2);  
M22 = I3y*(sin(the3))^2 + I3z*(cos(the3))^2 + I2z;  
M23 = 0;  
M31 = M13;  
M32 = M23;  
M33 = I3x;  
M = [M11 M12 M13;  
     M21 M22 M23;  
     M31 M32 M33];  
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h1 = (t2d^2)*sin(the2)*cos(the3)*sin(the3)*(I3z-I3y ) ...  
     + t1d*t2d*2*cos(the2)*sin(the2)*(I2x-I2y+I3x 
     -(I3y*(cos(the3))^2+I3z*(sin(the3))^2)) ...  
     + t1d*t3d*(-2*(I3y-I3z)*cos(the3)*sin(the3)*(c os(the2))^2) ...  
     + t2d*t3d*cos(the2)*(I3x+I3y*((cos(the3))^2 
     -(sin(the3))^2)+I3z*((sin(the3))^2-(cos(the3)) ^2)) ...  
     + m*g*(-(sqrt(2)/2)*d*(((1-cos((pi/2)-the1))^( -1/2))*sin((pi/2) 
     -the1)*sin((pi/4)-0.5*the1)+sqrt(1-cos((pi/2)- the1))*cos((pi/4) 
     -0.5*the1))+d*(1-cos(the2))*sin((pi/2)-the1));  
h2 = (t1d^2)*cos(the2)*sin(the2)*(I2y-I2x 
     -I3x+I3y*(cos(the3))^2+I3z*(sin(the3))^2) ...  
     + t1d*t3d*cos(the2)*(I3y*((cos(the3))^2 
     -(sin(the3))^2)+I3z*((sin(the3))^2-(cos(the3)) ^2)-I3x) ...  
     + t2d*t3d*2*(I3y-I3z)*cos(the3)*sin(the3) ...  
     + m*g*d*sin(the2)*cos((pi/2)-the1);  
h3 = (t1d^2)*(I3y-I3z)*(cos(the2))^2*cos(the3)*sin( the3) ...  
     + (t2d^2)*(I3z-I3y)*cos(the3)*sin(the3) ...  
     + t1d*t2d*cos(the2)*(I3x+I3y*((sin(the3))^2 
     -(cos(the3))^2)+I3z*((cos(the3))^2-(sin(the3)) ^2));  
  
h = [h1;h2;h3];  
  
ang_rate_dot = M\(f - h);  
  
if  controller == 1  
    ang = [the1;the2;the3];  
    error = ang_com - ang;  
    int_error = error;  
    k = [t1d;t2d;t3d;ang_rate_dot;int_error];  
elseif  controller == 2  
    k = [t1d;t2d;t3d;ang_rate_dot];  
end ;  
 

*************************************************** ********** 

function  [commands]=Controller_Main(i,t)  
  
global  dt ang_com_temp angrate_com_temp  
 
% Commanded Angles and Rates for Sinusoidal Motion  
% ang_com = [0.5*sin(t);0.5*sin(t);0.5*sin(t)];  
% angrate_com = [0.5*cos(t);0.5*cos(t);0.5*cos(t)];  
% angaccel_com = [-0.5*sin(t);-0.5*sin(t);-0.5*sin( t)];  
  
% Commanded Angles and Rates for Constant Motion  
ang_com = [0.1;0.1;0.2];  
angrate_com = (ang_com - ang_com_temp)/dt;  
angaccel_com = (angrate_com - angrate_com_temp)/dt;  
 
ang_com_temp = ang_com;  
angrate_com_temp = angrate_com;  
% Step Function after a Given Time Period  
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% if i>=500  
%     ang_com = [0.2;0.2;0.5];  
% end;  
  
commands = [ang_com;angrate_com;angaccel_com];  
 

*************************************************** ********** 

function  [ftemp,error_norm]=Controller_Main(controller,i,x)  
  
global  ang_com angrate_com Kp Ki Kd  
  
ang = [x(1);x(2);x(3)];  
vel = [x(4);x(5);x(6)];  
angle_error = ang_com - ang;  
if  i >= 0  
    error_norm = norm(angle_error);  
else  error_norm = 0;  
end ;  
  
if  controller == 1  
    e = ang_com - ang;  
    de = angrate_com - vel;  
    z_vec = [x(7);x(8);x(9)];  
    ftemp = Kp*e + Ki*z_vec + Kd*de;  
         
elseif  controller == 2  
    [qr,qdr,Mr,hr,fr,q,qd,M,h]=model_components(ang ,vel);  
    ftemp = M*(Mr\fr) + (h - M*(Mr\hr)) - M*(Kp*(q- qr)+Kd*(qd-qdr));  
end ;  
 

*************************************************** ********** 

function  [qr,qdr,Mr,hr,fr,q,qd,M,h]=control_develop(the,vel )  
  
global  g d I1 I2 I3 m dt ang_com angrate_com angaccel_com  
  
I1x = I1(1,1);  
I1y = I1(2,2);  
I1z = I1(3,3);  
I2x = I2(1,1);  
I2y = I2(2,2);  
I2z = I2(3,3);  
I3x = I3(1,1);  
I3y = I3(2,2);  
I3z = I3(3,3);  
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%%%%%%%%%%%%%%%%%%%%%  Reference Values  %%%%%%%%%%%%%%%%%%%%%%%%%%%     
  
% Positional Variables  
the1r = ang_com(1);  
the2r = ang_com(2);  
the3r = ang_com(3);  
qr = [the1r;the2r;the3r];  
  
% Velocity Variables  
t1dr = angrate_com(1);  
t2dr = angrate_com(2);  
t3dr = angrate_com(3);  
qdr = [t1dr;t2dr;t3dr];  
  
% Acceleration Variables  
t1ddr = angaccel_com(1);  
t2ddr = angaccel_com(2);  
t3ddr = angaccel_com(3);  
tddr = [t1ddr;t2ddr;t3ddr];  
  
% Returned Variables  
M11 = I1y + (I2x+I3x)*(sin(the2r))^2 + (I2y + I3y*( cos(the3r))^2 + 
      I3z*(sin(the3r))^2)*(cos(the2r))^2;  
M12 = (I3y-I3z)*cos(the2r)*cos(the3r)*sin(the3r);  
M21 = M12;  
M13 = I3x*sin(the2r);  
M22 = I3y*(sin(the3r))^2 + I3z*(cos(the3r))^2 + I2z ;  
M23 = 0;  
M31 = M13;  
M32 = M23;  
M33 = I3x;  
Mr = [M11 M12 M13;  
      M21 M22 M23;  
      M31 M32 M33];  
  
h1 = (t2dr^2)*sin(the2r)*cos(the3r)*sin(the3r)*(I3z -I3y) ...  

+ t1dr*t2dr*2*cos(the2r)*sin(the2r)*(I2x-I2y+I3x- 
  (I3y*(cos(the3r))^2+I3z*(sin(the3r))^2)) ...  

     + t1dr*t3dr*(-2*(I3y-I3z)*cos(the3r)*sin(the3r )*(cos(the2r))^2) ...  
     + t2dr*t3dr*cos(the2r)*(I3x+I3y*((cos(the3r))^ 2- 
       (sin(the3r))^2)+I3z*((sin(the3r))^2-(cos(the 3r))^2)) ...  
     + m*g*(-(sqrt(2)/2)*d*(((1-cos((pi/2)-the1r))^ (-1/2))*sin((pi/2) 
     -the1r)*sin((pi/4)-0.5*the1r)+sqrt(1-cos((pi/2 ) 
     -the1r))*cos((pi/4)-0.5*the1r))+d*(1-cos(the2r ))*sin((pi/2) 
     -the1r));  
h2 = (t1dr^2)*cos(the2r)*sin(the2r)*(I2y-I2x 
     -I3x+I3y*(cos(the3r))^2+I3z*(sin(the3r))^2) ...  
     + t1dr*t3dr*cos(the2r)*(I3y*((cos(the3r))^2 
     -(sin(the3r))^2)+I3z*((sin(the3r))^2-(cos(the3 r))^2)-I3x) ...  
     + t2dr*t3dr*2*(I3y-I3z)*cos(the3r)*sin(the3r) ...  
     + m*g*d*sin(the2r)*cos((pi/2)-the1r);  
h3 = (t1dr^2)*(I3y-I3z)*(cos(the2r))^2*cos(the3r)*s in(the3r) ...  
     + (t2dr^2)*(I3z-I3y)*cos(the3r)*sin(the3r) ...  
     + t1dr*t2dr*cos(the2r)*(I3x+I3y*((sin(the3r))^ 2 
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     -(cos(the3r))^2)+I3z*((cos(the3r))^2-(sin(the3 r))^2));  
  
hr = [h1;h2;h3];  
fr = Mr*tddr + hr;  
      
%%%%%%%%%%%%%%%%%%  Actual Values  %%%%%%%%%%%%%%%%%%%% 
% Positional Variables  
the1 = the(1);  
the2 = the(2);  
the3 = the(3);  
q = [the1;the2;the3];  
  
% Velocity Variables  
t1d = vel(1);  
t2d = vel(2);  
t3d = vel(3);  
qd = [t1d;t2d;t3d];  
  
% Returned Variables  
M11 = I1y + (I2x+I3x)*(sin(the2))^2 + (I2y + I3y*(c os(the3))^2 + 
      I3z*(sin(the3))^2)*(cos(the2))^2;  
M12 = (I3y-I3z)*cos(the2)*cos(the3)*sin(the3);  
M21 = M12;  
M13 = I3x*sin(the2);  
M22 = I3y*(sin(the3))^2 + I3z*(cos(the3))^2 + I2z;  
M23 = 0;  
M31 = M13;  
M32 = M23;  
M33 = I3x;  
M = [M11 M12 M13;  
     M21 M22 M23;  
     M31 M32 M33];  
  
h1 = (t2d^2)*sin(the2)*cos(the3)*sin(the3)*(I3z-I3y ) ...  
     + t1d*t2d*2*cos(the2)*sin(the2)*(I2x-I2y+I3x 
     -(I3y*(cos(the3))^2+I3z*(sin(the3))^2)) ...  
     + t1d*t3d*(-2*(I3y-I3z)*cos(the3)*sin(the3)*(c os(the2))^2) ...  
     + t2d*t3d*cos(the2)*(I3x+I3y*((cos(the3))^2 
     -(sin(the3))^2)+I3z*((sin(the3))^2-(cos(the3)) ^2)) ...  
     + m*g*(-(sqrt(2)/2)*d*(((1-cos((pi/2)-the1))^( -1/2))*sin((pi/2) 
     -the1)*sin((pi/4)-0.5*the1)+sqrt(1-cos((pi/2)- the1))*cos((pi/4) 
     -0.5*the1))+d*(1-cos(the2))*sin((pi/2)-the1));  
h2 = (t1d^2)*cos(the2)*sin(the2)*(I2y-I2x 
     -I3x+I3y*(cos(the3))^2+I3z*(sin(the3))^2) ...  
     + t1d*t3d*cos(the2)*(I3y*((cos(the3))^2 
     -(sin(the3))^2)+I3z*((sin(the3))^2-(cos(the3)) ^2)-I3x) ...  
     + t2d*t3d*2*(I3y-I3z)*cos(the3)*sin(the3) ...  
     + m*g*d*sin(the2)*cos((pi/2)-the1);  
h3 = (t1d^2)*(I3y-I3z)*(cos(the2))^2*cos(the3)*sin( the3) ...  
     + (t2d^2)*(I3z-I3y)*cos(the3)*sin(the3) ...  
     + t1d*t2d*cos(the2)*(I3x+I3y*((sin(the3))^2 
     -(cos(the3))^2)+I3z*((cos(the3))^2-(sin(the3)) ^2));  
h = [h1;h2;h3];  


