NONLINEAR TRACKING OF NATURAL MECHANICAL

SYSTEMS FOR HWIL SIMULATION

Except where reference is made to the work of ethibe work described in this thesis is
my own or was done in collaboration with my adwsocommittee. This thesis does not
include proprietary or classified information.

Justin N. Martin

Certificate of Approval:

John E. Cochran, Jr. Andrew J. Sinclair, Chair
Professor Assistant Professor
Aerospace Engineering Aerospace Engineering
David A. Cicci Joe F. Pittman

Professor Interim Dean

Aerospace Engineering Graduate School

NONLINEAR TRACKING OF NATURAL MECHANICAL

SYSTEMS FOR HWIL SIMULATION

Justin N. Martin

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of

Master of Science

Auburn, Alabama
August 4, 2007

NONLINEAR TRACKING OF NATURAL MECHANICAL

SYSTEMS FOR HWIL SIMULATION

Justin N. Martin

Permission is granted to Auburn University to me&pies of this thesis at its discretion,
upon request of individuals or institutions andh&ir expense. The author reserves all
publication rights.

Signature of Author

Date of Graduation

THESIS ABSTRACT
NONLINEAR TRACKING OF NATURAL MECHANICAL

SYSTEMS FOR HWIL SIMULATION

Justin N. Martin
Master of Science, August 4, 2007
(B.S. Aero. Eng., West Virginia University, 2003)
(B.S., Mech. Eng., West Virginia University, 2003)
123 Typed Pages

Directed by Andrew Sinclair

Auburn University has entered into collaboratiothvihe US Department of
Defense for academic study and development of henehm-the-loop simulation
laboratory. One aspect of this collaboration hesnlresearch into new concepts for the
control of flight motion tables, a critical comparen HWIL simulations.

Commonly used Proportional-Integral-Derivative (Pti@ntrollers can suffer
limitations in applications with nonlinear and niattput/multi-output systems. To
overcome these limitations, a nonlinear dynamiersion controller was developed.
Applying Lagrange’s equations to determine equati@motion, a Lyapunov function

was used to develop a globally asymptotically gtaointroller.

After comparing PID and dynamic-inversion contridléhrough multiple
commanded motions and adjustments to gain, thendigai@aversion was more stable and

produces less error. Both controllers are capafoperforming real-time applications.

ACKNOWLEDGMENTS

The author would like to thank Scottie Mobley oé thviation and Missile
Research Development and Engineering Center and Biyadley and Jeffrey Gareri of

Simulation Technologies, Inc. for their continuessiatance with HWIL systems.

Vi

Style manual or journal used:

Computer software used:

Modern Language éission Style Manual

Microsoft Office Word 2003
Microsoft Office Excel 2003
Matlab 7.3.0 (R2006b)

UGS Solid Edge V19

vii

TABLE OF CONTENTS

LIST OF TABLES ..o o ettt e e et e et e e e et e e e e s e e eeeaa e e e ennnaaaes X
LIST OF FIGURES ..ottt e e e e e e e e aaans Xi
[. INTRODUGCTION ...uuiiiiie et e e e e e et e e e e eaan e e e aanneeeanas 1
[I. FLIGHT MOTION TABLES. ... e e 4
. PID CONTROLLERS ..ot e e e e e ees 7
ProportioNal TEIMNcooi ittt ettt e e e e e e e e e e e e eeeeesesbnnnnnsesennnnes 9
INTEGIAl TEIMN ..o e e e e e e e e e e e e e e 10
(DT Ao AVl I =T o ISP 11
V. DYNAMIC-INVERSION CONTROLLERS. ..ot 12
V. MODEL AND CONTROLLER DEVELOPMENT ...t e, 15
Development of Equations of MOtION..........amiiiiiiie e 15.
PID Program StIUCIUIE..........ooiiiii e eeeeee et e e e e aemn s 24
Derivation of Dynamic-inversion Controller.......oooooiiiiiiiiiiiiiiee e 35
Dynamic-inversion Program StrUCTUIE e eeerrrennanaeeeeeeeeaeeeeeeeeeeennnnns 8.3
VI. MODEL SIMULATIONS AND ANALYSIS.....coi e 49
General Experimental Set-UpPuuueiiooeeeee e 49
Commanded Variables and Descriptions of FUNCtions.................uvvvciiinnnnnn. 49
GaAIN SEIECLIONS ...ttt e e e e e e e e ee e e e e eees 52
Model SIMUIALIONScooiiiieee e e e e e ee e e e 53

VIl. COMPARISON OF PID AND DYNAMIC-INVERSION CONROLLERS........ 69
Comparison of Controls for Each INput.........ceeeiiiiiiiiic e 69.
Error Analysis for @ach INPUL...........coooiiim 77
Runtime Analysis for each INPULoooi i 87
VI, CONCLUSIONS ...t e et e e e e e enma e e e e eeenen 92
BIBLIOGRAPHY ..ottt ettt e e e ettt e e e e e e e enmsan e e e aeeene 94
APPENDICES ...ttt ettt e e e e et et e e e e e e e bb e e e e e e e e neaa e e e 96
Appendix A: Complete Derivation of Equations of fibm.................cccccceeeeennnn. 97
Appendix B: Complete Derivation of Dynamic-invensiController................ 103
Appendix C: PID and Dynamic-inversion Controllep&am...............cccccc..... 105

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

LIST OF TABLES

Performance SPecifiCatioNsuumccmeiieeeeeceiee e 6
Trends due to Change iN GaiNS............. oo oo e e e e 8
Moments of Inertia for 3-Gimbaled System ..., 23
Total Error Comparison of PID and DI controllerS.............ccevvunnn..n. 85
ANAlySiS Of RUNTIMEScooiiiiiiiiiiii s s e e e e e e e eeeeeeeeeeanene 9.8

Figure la.
Figure 1b
Figure 2a,b
Figure 3
Figure 4
Figure 5
Figure 6a,b
Figure 7a,b
Figure 8a,b
Figure 9
Figure 10
Figure 11
Figure 12a
Figure 12b
Figure 12c
Figure 12d
Figure 13a
Figure 13b

Figure 13c

LIST OF FIGURES

Layout of HWIL Laboratoryeeeeeiimnn e 2
ECSEL Laboratory in Point Mugu, CAeceeceiiieeeeeeeeeeeeeeeeeiiiiees 2
Three Axis Flight Motion Tableoooiceeeeiiiii e, 6
Block Diagram of a PID Program..............euceeereeeeiiiiiiiiiiinneeee e eeeeee 9
Block Diagram of a Dynamic-inversion Programcccccceeeeeeees 13
Inertial CS aligned wit Component #1 CS......eeieivieveeiiiiinnnnnnnn. 16
Component #1 CS aligned with the Inertial CS................inis 17
Component #2 CS aligned with the Component #1 CS.................. 17
Component #3 CS aligned with the Component #2 CS.................. 18
Gimbaled System set to Zero Deflectionsccccceecevviiiieiiciiiiiinnn, 19
PID Program StUCIUIE..........oooiiiiii e eeeeeeee et 25
Dynamic-inversion Program StrUCTUIeeeeeeeereeeeeiianieeeeeeeeeeeeen 39
PID Model for Constant Control ah = 200,Kp =50eevvvevvveeeennnn. 55
DI Model for Constant Control arth = 200,Kp = 50.......ccvvvvvviiiiennnn. 56
PID Model for Constant Control arkh = 400,Kp = 100ceuvveeneeee. 57
DI Model for Constant Control artk = 400,Kp = 100.......cccvvvvveeennnn. 58
PID Model for Step Control anglr = 200,Kp =50civiiiiiiiiiiiieinen, 60
DI Model for Step Control anllp = 200,Kp = 50.....ccccvviviiiiiiiiiiiieeenen, 61
PID Model for Step Control angle = 400,Kp =100cooeevviiiiiiieeenns 62

Xi

Figure 13d
Figure 14a
Figure 14b
Figure 14c
Figure 14d
Figure 15a
Figure 15b
Figure 16a
Figure 16b
Figure 17a
Figure 17b
Figure 18a
Figure 18b
Figure 18c
Figure 19a
Figure 19b
Figure 19c
Figure 20a
Figure 20b
Figure 21a

Figure 21b

DI Model for Step Control anllp = 400,Kp = 100........ccoeevvviviiiieeeenens 63
PID Model for Sinusoidal Control ar¢k = 200,Kp = 50............euveeee. 65
DI Model for Sinusoidal Control anglp = 200,Kp = 50.......cccvvvveeeennn. 66
PID Model for Sinusoidal Control ari¢k = 400,Kp = 100................... 67
DI Model for Sinusoidal Control anglp = 400,Kp = 100..........cceeeeen... 68
Control for Constant Command aKg = 200,Kp = 50........ccccvvveeeeeennn. 71
Control for Constant Command aKg = 400,Kp = 100..........cccceeeennnn. 72
Control for Step Command akgh = 200,Kp =50......ccceiiiiiiiiiiiiieenennns 73
Control for Step Command akgh = 400,Kp = 100......ccceeeiiiiiiiieeenennnns 74
Control for Sinusoidal Command aKlg = 200,Kp = 50.........ccevvvreeen. 75
Control for Sinusoidal Command aKlg = 400,Kp = 100...........ccce..... 76
Error for Constant Command aK@ = 200,Kp =50coeevvvviivneinnnnes 78
Error for Step Command at = 200,Kp =50 ..ccvviiiiiiiiiiiiiiiieceeiien, 79
Error for Sinusoidal Command aig = 200,Kp = 50......ccevvvvviveerennnn. 80
Error for Constant Command aK@ = 400,Kp = 100ccccevvivnneennnnns 82
Error for Step Command at = 400,Kp = 100eoeeeeviiiiiiiiieeeeeiien. 83
Error for Sinusoidal Command akg = 400,Kp = 100.......ccccvvvvereeennn. 84
Error Comparison in PID and DI witke = 200,Kp =50evvvunennnn. 86
Error Comparison in PID and DI witke = 400,Kp = 100eevunnnnnn.. 87
Runtime Comparison in PID and DI wikp = 200,Kp =50................. 90
Runtime Comparison in PID and DI wikp = 400,Kp = 100.............. 90

Xii

I. INTRODUCTION

Prior to Hardware-in-the-Loop (HWIL) simulations)adyses of missile seeker head
performance were conducted by live-fire testedratg ranges. Missiles, with the seeker
heads already installed, were sold in batchesdefoonstrate acceptable performance, a
certain percentage from each batch was field tedtd only was this risky with the
entire sale depending on a small, random potighebatch, but it was also expensive

with guaranteed losses of the tested missiles.

HWIL systems simplify this process of testing sedieads. Rather than needing an
entire range to fire a missile, HWIL systems u$kgat motion table and scene
generation to simulate the flight of a seeker hmad missile. The seeker head is placed
in the gimbaled flight motion table while the siratdd target is located at a stationary
point in front of the flight table. Using the seegenerator and synthetic lines of sight,

the seeker simulates the tracking of a target.

Figure 1a (reproduced from Reference [High Perfoxwed and Figure 1b (reproduced
from Reference [Hardware]) demonstrate the bagmuiaof a HWIL laboratory. Figure

la displays the components and connections fonai_tsimulation, while Figure 1b is

a photograph of the Electronic Combat Simulatioth Bmaluation Laboratory (ECSEL)

located in Point Mugu, CA.

Figure 1a: Layout of HWIL Laboratory

Simulation Cormuter Elecironic Safe Avm Fuse Dhramic Fin Loader

Figure 1b: ECSEL Laboratory in Point Mugu, CA

In the summer of 2006, Auburn University, in cobiadtion with Simulation
Technologies, Inc. and the US Department of Defelmsgan a program to receive,
install and test a flight table for a HWIL systei®@ne of the goals of Auburn University
is to study the design and implementation of cdl@r®to guide the gimbaled system.
The following paper presents the design and testiregnonlinear dynamic-inversion

controller with comparison to a Proportional-Int@gbDerivative (PID) controller.

[I. FLIGHT MOTION TABLES

Flight motion tables consist of multiple gimbal@ihts whose motion is generated by
hydraulic or electric actuators. The goal of usanftjght table in a HWIL simulation is to
reproduce some aspect of the rotational motioh@flight hardware. They are designed
to accurately and precisely direct the motion ofissile seeker head towards a simulated
target in order to replicate an engagement oftdrget in an actual flight. However,
these tables are not limited in use to missile fatians. Three main functions this table
can serve are:

1) simulating missile seeker head motions for HWILteyss

2) development and testing of guidance and navigdteyp@aratuses

3) testing the stability and motion of satellite sysse(Carter 425)

The development of more highly maneuverable missibbles and seeker heads adjust
to meet the demands of HWIL simulations. This ledsto tables capable of higher
angular accelerations and angular velocities fotating faster responding (Carter 426).
The actuators being incorporated into these flightes are required to generate enough
torque to accelerate 50-100 Ib. gimbals at rate&s0d#00 degf/s These requirements can
dictate choices in the materials used to reducetrdn and deformation and also the
types of actuators used to generate the needegew(Garter 427).

4

Unfortunately, no matter how well the flight tatsled gimbaled arrangements are
constructed, there will still remain some spacevieeh all bearings and connections.
Seeing as how the control in each mode createsaltatory damping function until the
error is nearly eliminated, the control will conglg be demanding reversal of torques.
This reversing may lead to problems with piecesaatipg each other, vibrations, and
noise (Collins 579). Granted these are not skeom tatastrophic problems, but it may

lead to wear and tear on the flight table.

Along with the physical design of gimbaled jointglaactuators, it is up to the engineer to
determine a controller that will allow motion trawng with as little error as possible.
Errors in the table motion refer to orientatioroest when the system's gimbaled angles

do not exactly match the commanded values.

Major manufacturers of flight motion tables for HM&boratories include Acutronic
USA, Inc. and Ideal Aerosmith. They produce talbheg can be used in a pitch-yaw-roll
simulation which greatly reduces the cost of depwlg seeker heads. The basic model
of the table studied in this work is shown in Figgia and 2b below and is similar to the
Carco Series S-450R-3 Simulator produced by Acigrorhree). Some representative

specifications of the flight table are shown in TEab.

Figures 2a-b: Three Axis Flight Motion Table

() (b)

Table 1: Performance Specifications

Performance Type of Motion Component and Axis Rotation
Spec. Component | Component | Component
#1: Pitch #2: Yaw #3: Roll
ég%‘é'g‘rrn i +-50deg | +-50deg| +- 50 de
Posttioning : 0.002deg | 0.002deg| 0.002 de
ccuracy
Conti +/- 200 +/- 200 +/- 1800
ontinuous
Rate Range deg/sec deg/sec deg/sec
Non- +/- 200 +/- 200 +/- 200
Continuous deg/sec deg/sec deg/sec
Continuous 20,000 20,000 18,000
Acceleration, deg/set deg/set deg/set
w/ load Non- 20,000 20,000 20,000
Continuous deg/set deg/set deg/set

lll. PID CONTROLLERS

In nearly all mechanically operated systems initlokistrial world, controllers are used.
These controller algorithms need to be designextder meet performance requirements
while also maintaining a reasonable amount of getipl(Gutirrez). Proportional-
integral-derivative (PID) controllers are widelyeasto satisfy these conditions. PID or
some forms of the algorithm are currently beingduseapproximately 95% of control
loops found in modern industries (Astrom 216). Vhesatility of the PID-control

approach is one reason PID controllers are so [@etvim modern industries.

The three terms of a PID controller (proportiomategral and derivative) all serve a
specific purpose in the control algorithm. As shawthe paragraphs to come, each part
determines how the system will behave. A quickraresv will show that the

proportional term allows the controller motion tineerge to the desired response but
does not eliminate the steady state error. Thegmat term will eliminate the steady error
but can degrade the transient response. The tleavarm will increase the stability of
the system (PID-Tutorial). Figure 3 below is adiaiagram demonstrating the basic
outline of a PID algorithm. The controller signalfor a single-input, single-output

(SISO) is:

u:KPe+K|J-edt+KD$ (1)

whereKp, K, andKp are the corresponding gains for each termesisdhe system error
(the difference between the input and the outputhah time step (PID-Tutorial). Table
2 (reproduced from Reference [PID-Tutorial]) shdtwes effects of each of the three
terms on a closed loop system. Each cell in thie teepresents a general system where

there is a small increase or decrease in the ¢faints; or Kp.

Table 2: Sensitivity due to Changes in Gains

CL RESPONSE |RISE TIME | OVERSHOOT |[SETTLING TIME |SSERROR
Kp Decrease Increase Small Change Decrease
K Decrease Increase Increase Eliminate
Kb Small Changf Decrease Decrease Small Change

Figure 3: Block Diagram of a PID Program

Error
Proportional

Input

N\t

() Integral
ny g

{ Derivative

Plant

Output

Proportional Term

As mentioned before, the purpose of the proportiteren is to force the system to

respond in the direction of the input. The respasdased purely on the error in the

system. If the system is far from convergencegther is large. Because of the direct

relationship between the proportional control dmelerror, if the error is large then the

control due to the proportional term is also laagd vice versa.

The convergence rate of the system can be greédistad by the magnitude &&. By

increasing the value of the proportional gain,ribe time (time it takes to approach the

commanded value) decreased. However, one detadteois the overshoot (the amount

the gimbaled motion exceeds the commanded motidhihough it will take the system

longer to reach the ideal state, the overshoataler, which can help lead to faster

convergence.

The proportional term allows for a brisk adjustmienthe controlled variable. However,
it does not provide “zero offset” even though grsficantly reduces the error in the

system. The term’s primary purpose is to quickenresponse (Marlin 270).

Integral Term

The primary purpose of the integral term is to é@liawe or reduce the steady state error,
the error between the input and output of the syste the time approaches infinity. As
shown in Equation 1, the integral term is the aneder the curve in an error vs. time
graph. An increase in the transient error is dae fo the integral term. With an
increase in the integral gail,, the rise time decreases. However, increasegarsboot
and settling time (time taken for the system tovesge to the commanded value) will
occur. The integral term can help achieve zersedfin the system response to a step
input; unfortunately, it may sometimes cause instglolue to its poor dynamic

performance (Marlin 271).

10

Derivative Term

The derivative term is the final piece in the Plihtroller for creating a stable system.
The derivative term is proportional to the timeeraf change in the error. The derivative
term requires “lead”, that is, information aboutuie values of the error, allowing the
controller to react faster to any changes (Gutjrr@is prediction allows the controller

to converge quickly, while increasing stability mout the transient error.

By increasing the derivative gaidp, the damping in the system can be increased.
Greater damping will result in a more rigid systérat is slower in convergence. A
negative aspect of this term is that it may reqoumeric differentiation that can amplify

high frequency noise in the system (Marlin 274).

11

IV. DYNAMIC-INVERSION CONTROLLERS

As discussed in the previous section, PID contreldege not only simple in structure, but
solve a wide range of control cases with suitaéseiits. In order to achieve good
performance with the PID, the tuning of the pararseeaind the employment of a
functional such as anti-windup and derivative filig are vital (Visioli). There are also a
few limitations to a PID controller. With a PID,dan be difficult to prove stability for
nonlinear systems (such as a multi-gimbaled system flight table). Also, the
implementation of a PID is less clear for multi-pmulti-output (MIMO) systems. An
alternative control structure that may overcomaehanitations is dynamic-inversion

control.

According to Looye and Joos, “dynamic-inversiom istraight forward methodology for
designing multi-variable control laws for nonlineasstems (1).” Dynamic-inversion
methods are commonly used in aerospace applicatiOne such example is the
development of a controller to operate in nonlirfkght schemes such as post-stall
applications (Looye 1). In terms of a flight talbdedynamic-inversion controller is
motivated by the multiple gimbals whose motiongetfineighboring gimbals (this is

shown explicitly in the derivation of the equatiayfanotion found in Appendix A).

12

The defining trait of a dynamic-inversion controlie the use of a dynamic model (i.e.

equations of motion) to compute the inputs necgssagenerate the desired output.

Hence, the name refers to the inversion of the siynaodel from the form typically

used in solving for system motion. It is notewgrthat a model of the system is built

into the controller, which is not the case in Ptihtol.

A dynamic-inversion controller consists of bothdback and feed-forward sections, as

shown in Figure 4. An inner-loop, structured atosed loop, applies an inverse in

dynamics in order to negate the nonlinearitiehedystem (Plett 360). This closed-loop

system is simplified into a set of integrators ¢éoused in the feed-forward section (Looye

1). The feedback section is the outer portiorhia &rrangement. The feedback loop

contains a standard linear controller, such aDadehtroller, in order to minimize

“mismatches” and disturbances in the model crelyetthe nonlinearities (Plett 360).

Figure 4: Block Diagram of a Dynamic-inversiorogram

Inverse

Model
Desired 4
Trajectory NGV

PD
Controller

Plant

Output

13

One key to the dynamic-inversion controller is tlypamic model located in the
nonlinear feedback block. The dynamic model isoa@h of the input-output relationship
for the system to be controlled. Plett suggestsvarhg the dynamic reference model is a
delayed version of the actual model of the systé®d). This would allow the controller

to adjusta priori to a delayed inverse of the system dynamics (B&j.

There are some problems to consider when introdugidynamic-inversion controller
into a system. Looye and Joos state that dynamrersion tends to lead to poor
robustness (1). Because the system model isibtalthe controllers, it is sensitive to
errors in this model. The authors believe the tag#ies can be counteracted by
attempting to increase the robustness of the syatiémm the linear loop (Looye 1).

Other problems created by the dynamic-inversiotuge the requirement that an inverse
exists (non-singular) and the system typically seedriori information that may need to
be more precise than that available. Dynamic-isie@rtechniques, such as adaptive

inverse control, can be applied to the arrangeriiett 360).

14

V. MODEL AND CONTROLLER DEVELOPMENT

Development of Equations of M otion

To develop controller designs through numericaludation, a model of the flight-table
motion is required. A specific model is developethis section in the form of equations
of motion for a flight motion table. Key termstimese equations of motion include the

mass matrix and the Coriolis vector.

The equations of motion for the flight table dedveere are based on several
assumptions:

(1) Allrotations of coordinate axes are about a siniglertial point.

(2) Piece #1 and #3 are balanced and symmetric, thierefee moments of
inertia are centered about each component’s synuaketenter of
geometry.

3) Each component of the system analyzed is a rigid;flexible body.

4) Friction and other applied forces in joints areliggigle.

Describing the system kinematics begins with eihiolg an inertial coordinate system

(CS) (X,Y,Z) and a separate, body-fixed coordinate systemaicin endividual
15

component studie , y;, z , fori = 1,23). All inertial coordinates originate about the

point of all rotations. The coordinate systemssir@wn in Figures 5 through 8. The
figures of all the components and their set up wieiggned in Solid Edge. The pieces
are also to scale with the flight table currentlgdted at Auburn University. The
coordinate systems in Figures 6 through 8 areaall/dixed; therefore they are attached

to and rotate with the specific component.

Figure 5: Inertial CS aligned with Component #1 Wi the +Y-axis into the surface

X, X1

Z, 1 _1

16

Figures 6a and 6b: Component #1 CS aligned wéHrhrtial CS

1

A positive rotation occurs in the tgirection

Figures 7a and 7b: Component #2 CS aligned wélCtbmponent #1 CS

T Y1, ¥2 Y1, Y2

NN

A positive rotation occurs in the #direction

17

Figures 8a and 8b: Component #3 CS aligned wélCitbmponent #2 CS

Y2
Y3

22, Z3 v 45,4

A positive rotation occurs in the #®irection

The entire apparatus with all angles in {tey, z} 1,3 AXes set to zero radians is shown in

Figure 9. Note that in the actual experiment, thég/ not be the starting position of the

components. This is only the reference positi@dus the equations of motion.

18

Figure 9: Gimbaled System set to Zero Deflections

To specify the orientations of the four coordinsystems, the rotation matrices were
developed. A rotation matrix, in the case of ar@ahsional system, is a 3x3 matrix that
transforms the unit vector of one coordinate systegma corresponding vector in
another coordinate system. In this case, theioottre about one of the three axes.

Equation 2a demonstrates the transformation franctordinate system of component

19

#1 to the inertial coordinate system. Note thatrthtation occurs about the (alsoil)

axis, which is why a “1” is the multiplying factor the J row.

I cosd, 0 sing, (i
Ji=| 0o 1 0 [, (2a)
K| |-sing, 0 cosd, ||k,

Equations 2b and 2c are the transformation matfaresonverting the coordinate system
of component #2 to component #1 and the coordsydtm of component #3 to

component #2, respectively. Inthe #2 to #1 tramsétion, the rotation occurs about the

I21 (alsolzz) axis. The rotation in the #3 to #2 transformaii®about thd, (alsa,) axis.

I cosd, -sing, O

I\J_->

j,+=|sing, cosd, Of]j, (2b)
K, 0 0 1|k,
L] [1 o0 o][,
j,+=|0 cosd, -sinég, (2¢)

Js
I22 0 sing, coso, I23

Angular velocities of the coordinate systems capliitained by inspection. A listing of

the transformed angular velocities can be foundippendix A.

20

The next step in deriving the equations of mot®toidetermine the energy in the
rotational system. In his treatise técanique analytiqud.agrange demonstrated laws
of virtual work, which could be applied to the meaaits of both solids and fluids
(Joseph). Rather than follow the work of D’Alemis@nd Euler by tracking the complete
motion of a particle, he showed that “if we deterenits configuration by a sufficient
number of variables whose number is the same asfttiae degrees of freedom
possessed by the system, then the kinetic and fdtenergies of the system can be
expressed in terms of those variables, and therdiftial equations of motion thence

deduced by simple differentiation (Joseph).” TowenT of this equation is:

dfor)_oT ov _, .
dt{ dq
whereq=[g, 6, 6] andg= [91 o, QS]T are the generalized coordinates and

generalized velocitieq; is the kinetic energy of the system defined asatidition of the
rotational kinetic energy of each componahnis the total potential energy, ahd the

generalized external forces on the system. Thegeseare shown in Equation 4a-b as:

21

V =mg(asin B + L cosd(1-cosb,))

m = mas:of componen#?2
L =distanceof CG offsetin component2

where a = L/2(1-cosd) (4a)

:]_T—lel
4 2
5="_g
2
3
T :%waliwi (4b)
i=1

For component #2, estimations were made for thtamiie of the center of gravity offset.

In Equation 4bl| indicates the inertia of each body relative toftked center of rotation
for the system. By substituting Equation 4 inta&iipn 3, one can obtain equations of
motion that allow for the development of the masdrim and the nonlinear Coriolis
vector terms. The complete organization of thea&rioes and vectors can be found in

Appendix A.

A unique, assumed characteristic of the flight motiable system considered here is that
all parts of the system rotate about a single pofso, it should be noted that
component #3 is merely a hollowed out cylinder taat be rotated about its longitudinal

axis. Therefore, it can be assumed thagahd k, are equivalent. (The actual code used

in numerical simulation is written for the possibkese ofl ;, # I, for future
experiments). Equations 5 and 6 are the resuttaiss matrix and nonlinear Coriolis

22

vector for the assumption bf, =1,,. The moments of inertia and mass elements were

calculated based on the geometry of the modeldd pae pieces were modeled as
prisms, assumed to be solid casts. Table 3 iprasentation of the moments of inertia

for each component.

Table 3: Moments of Inertia for 3-Gimbaled System

Body Component and Axis Rotation

Axis of Component #1: Component #2: Component #3:
Rotation Pitch (234.9 kg) Yaw (202.2 kg) Roll (152.8 kg)

X 57.6 kg-ni 11.9 kg-m 2.8 kg-nf
y 20.4 kg-ni 10.7 kg-m 6.8 kg-nf
37.8 kg-m 9.9 kg-nf 6.8 kg-nf

The resulting equations of motion have the fdvitj+ h= f. The termsM{ andh have

the following form when,, =1,,.

Iy + (1, +15)si026, +(1,, +1,,)cog 8, 0 1,.sing,](4,
M(q)q: 0 |22+|3y 0 02 ,
;. SinG, 0 l 5 o,
(5)

23

92 COSQZ{Zgl(I ax Tlay T g~ |3y)Sin92 + 93|3x}+2_;/
1

n(0.0)= | ~G,0088{6,(1, =1, +15, =15, Jsing, + 1, }+22- ®)
2

élézl 3x COSE,

The generalized forces of the system are the toetol torques exerted by the

hydraulic/electric actuators of the flight table.

f=1r, (7)

In operation, the torques are the control variabked to force the system motion to track

the commanded motion.

PID Program Structure

The block diagram shown in Figure 10 demonstrdtestructure of the Proportional-
Integral-Derivative program. The following is axpéanation of each block in the figure.

The explanation includes the parameters involvegl pbjective of the structure and the

output from the block.

24

Figure 10: PID Program Structure

1. Initialize
Variables

i

2. Choose DI

Controller

PID

3. Create State
Matrix

See Block Diagram on
Dynamic Inversion
Controllers

'

4. Update Time
Step

'
5. Call RK44

Function

(deriv_con)
k (1-4)

'

7. Update (9x1)
State Vector

'
8. Call Com. Angles

i, t(i+1)

6. Calculate
Angle, Angular
Rate Derivs
and Integrals

and Rates Func.

(commanded_values)
Commands

10. Call Control x

9. Choose
Commanded
Angle Types

Function

(control_develop)

Is Runtime

11. Determine
Errors and
Control

Complete?

Yes

25

Initialize Variables

Besides variables based on common knowledge, sk @.8122, the
S

section takes into account the initialization af #ingles of each
component on the fight table and the angular veladieach. The
physical geometry of each rotating piece, such asemts of inertia,
distance of offset from the rotation point (useddotential energy) and
the mass of the offset components are defined.tiree basic variables
involved with time are defined. The total timehg duration the
simulation is allowed to run, the time step forleategration step, and
the number of iterations allowed before a contdpistment are defined.
For instance, if the system runs for 10 secondseach time step is 0.01
seconds, 1000 steps are analyzed. If a contealjissted every 2 time
steps, the system is running at 500 Hz. Findtlg,initialization contains
as experimental variables the gains for the progaat, integral and

derivative terms.

Choose Desired Controller

This part of the program allows the user to seMtth type of controller

they would like to examine; a PID or dynamic-invenscontroller. Once

26

the user selects a controller, all the charactesisif that controller are
applied for the remainder of the program. The i@ not chosen is
negated for the remainder of the runtime. In thiapter, the PID

controller was selected.

Create State Vector

The state vector groups together all the comporaritee simulation that
will be integrated across time. In the case ofRH2 controller, the state
vector is a (9 x 1) vector consisting of angulasipons for the 3 rotating
components, the three angular rates associatedivase components and
the three errors associated with the integral gathe controller itself.
Grouping all nine components together assuresetict cell is updated

simultaneously with the other eight cells.

Update the System Time

The arrangement in question is a discrete timeesystTherefore, the
values at a specific time step are determined lagwl ¢valuated at a small
forward step in the system timl&, When the words “updating the system

time” are used, the program is not automaticallgnging all the times

27

associated with calculated variables to some n@ ti+ At , but it's

storing the old and new variables which can thendsa for comparison

and error calculations.

Call Proportional Integral Derivative RK-44 Functi(derive_con)

The PID program was written to take small time steptegrate them
across those time steps and update the state \eectsisting of angles,
angular rates, and integral error, all using atfowwrder Runge-Kutta
integration method. The RK-44 uses the beginmmgdgdle, and end point
of each time step in order to calculate an avetiage rate of change of
each parameter over that discrete time. The fatigwequations represent

the RK-44 for a second-order system:

The k-terms sent back into the “deriv_con” functiaich represents the

RK-44, are (9 x 1) vectors as well. Each cellha vector corresponds to
28

its respective angle, angular rate or integralremuich will be used to

update the state vector, as shown in section 7.

Calculate Angle, Angular Rate Derivatives, and Emtegral

The function, “deriv_con”, serves as the integmasection of the RK-44.
With the inputs of each portion of the time stepshown in part 5, the
function calculates the k and z (integral) termfe k terms are also
referred to as thé@ and & terms. The equations of motion (derived in the

upcoming sections and Appendix A):

M (a)g+h(g.q) = f (8)

Provide the second time derivatives of the Eulglemn

%= o) ~hia) ©

Although the mass matri¥, is diagonally dominant and invertible, the
“\” function was used in Matlab. This applies auSsian Elimination
method for finding a matrix equation of the forx =b, whereA is (nxn)

andx andb are (nx1). The integral for each portion of timeet step is also

29

calculated by taking difference between the comradrahgles and the

actual angles. The returned vector is a (9 x tjoran the form:

1. .. . T

k1—4 - [q(1x3) q(le) Z(le)]
Note that all the components are the derivatives|ape, of its integrated
part. This vector is returned to the main prograrorder to update the
state vector.
Update State Vector
Once all the derivatives of the angles, angulasand integral errors are
sent back to the main program, the last piece®#frOrder Runge-Kutta

is applied. This part of the RK-44 updates theesygangular rates and

error integral across the discrete time step ugiagquation:
1
Xivg = X +€(k1+2(k2+k3)+k4) (10)

The updated state matrix will be used for calcoathe errors present and

the required controls for the next iteration of thain program.

30

Call the Commanded Angles and Rates Function (cardeth values)

This section of the program loop is one of the teeyors for designing the
experiment. The commanded angles, angular ratearagular
accelerations are very similar to the simulatedh jpdta target that the
seeker is trying to follow. This portion of theogram relays the position,
speed, and the rate of change in speed the girabaldd be achieving.
These commanded angles and rates are calculatied in
“commanded_values” function. The variables senhi®function are the

time step iteration number and the updated timbh®tystem.

Determine Control Angle and Rate Types

The simulated motion can take many shapes and foiiths three types of
simulations that are going to be examined are ¢imstant direction and
angular velocity, a constant position and anguéogity followed up with
an impulsive change in position at a given tim@ séad a constantly
changing (in this case sinusoidal) position andciy. The constant
position and angular velocity scenario takes asandimbaled placement
and tracks the motion of the positions of the icéptor and target as they
maneuver to another position over the course ositinelation. The
position and angular velocity with an impulsive e tracks the position

31

10.

as it settles, instantaneously changes to anottlemanded position, and
tracks the gimbals’ motion for the duration of Swmulation time. The
sinusoidal position and velocity applies a commansiae form of

position, velocity and acceleration that the gimrslbaust track.

The main program will receive a (9 x 1) vector,resented as:

ycommand = [qcom qcom qCOm]T

The three scenarios are further described and demaded in the

Commanded Variables and Description of Functisestion.

Call the Control Function (control_develop)

Now stored in the program is the updated system,tantorresponding
state vector and a commanded position and ratewetkowever, as
mentioned before, the values of these two vectarg mot agree, creating
some error in the results. To minimize this ereocontrol is applied to
the necessary gimbals where it is required. Toigrol is determined in
the function “control_develop”. The required inptdior this function are

both the state vector and commanded angles arslvat¢or. The

32

11.

function will calculate the control required foretinext iteration of the

main program.

Determine the Three PID Errors and Controls

As discussed in previous chapters, there are thipss of errors to
analyze in a PID controller system; the proportipimaegral and
derivative. Having a commanded angle and an angat@ relayed to the
function, the position and speed each componenilglualculated. Also,
after completion of the RK-44 and an update ofvtagables, an actual set
of angles and angular rates are determined. Upkesything in the
system was 100% perfect, there is bound to be svroein the nonlinear
arrangement. Therefore, it is necessary to fiedetinors for each section
of the PID controllers. The error used in the pmpnal controller is
simply the difference between the commanded andhbpbsition of each
component. The integral controller error is repreged by the “z” term
found from integrating the difference between tbmmmanded and actual
angle of each component from the beginning to theeat time of the
simulation. The error used in the derivative portof the controller is
difference between the commanded and actual angellacities of each

component.

33

12.

As discussed before, the basic equation used im#erity of PID

controllers is represented by Equation 1:

u=Kpe+ K,J'edt+KD$

Note that in the previous section, the three emefshned correspond,
respectively, to the errors in the equation. Takees of the gains have
already been defined in the initialization of arameters section. These
gains can be adjusted in order permit the systemai@ precisely
converge to the commanded angles and angular tiekciThe value of
the controlu, a (3 x 1) vector in this case, is then updatetiapplied
back into Equation 9, until further updated. Tlatcol, u, is then relayed

back to the main program.

Is Runtime Complete?

No matter how long the system runs, there is alvgaysg to be some
oscillation error due to fact that a small timersegt is used, rather than a
continuous signal. However, after a certain tithe,error in the system is
considered negligible. The runtime value, defirethe initialization

section, is used by the programmer to ensure thgram will terminate

34

after a specific simulation time. Once a discxetieie ofAt is added to the
system time, the program checks to see if the tetitn time has been
achieved. If so, the program terminates. If threethas not been reached,
the program loops back to Section 2, and repehbtiseasteps leading up to

Section 12.

Derivation of Dynamic-inversion Controller

When deriving the dynamic-inversion controller éomotion flight table, the problem is
classified in the category of tracking controlless nonlinear natural mechanical
systems. Remember that a natural mechanical systene where all the terms in the

kinetic energy are quadratic in the generalizedaigks g .

Because of this property of natural mechanicalesyst the kinetic energy of the system

can be written as:
a_ 1. 1
T(a.g)=Za"M(@)a=5M,a4, (11)
whereT is the kinetic energy and is the mass matrix. In order to determine the

equations of motion, as required for the dynamfabe flight table, Lagrange’s equation

35

(EQ. 3) needs to be applied. This is done most@wiently in index notation. Expansion

of Equation 8 leads to the equations of motiontgsgnted as:

oM, 1 0M;)Y
M-"-+ ki T ij '...+—:f 12a
k|q| aq] q]q| 2 aqk q|q] aqk k ()
or
M6 +h = f, (12b)
_ oM,
whereh, = oM, 1M, 1.4, + v (13)
dq; 2 dq, a4,
In vector notation, Equation 12 can be represeased
M (a)d+h(a,q) = f (14)

Based on this form of the equations of motion, megal form of a dynamic-inversion
controller will be developed. The control law tbe generalized forcef,in design is

desired to track the motion of the commanded inpytandd,. For this, a Lyapunov

function will be selected.
1 T 1 . . T [. .
QZE(q_qd) (q_qd)+§(q_qd) (q_qd) (15)

A check point is to be su€@= ,@vhen the actual motion identical to the commanded
motion. Otherwis€) > 0.Taking the derivative dD, one gets:

36

Q=(9-¢,) (@G-8, +a-qa,) (16)

Here, ¢, are the accelerations associated with the commamadé&dn. The condition of a

global asymptotically stable system can be achiéyechoosing:
G-d, +a-d, =-(d-4,) (17)

The commanded motion can be substituted into thatens of motion to defing,, the

generalized forces necessary to produce this motion

by =M (g)" (f, ~h(ay,¢)) (18)

A globally asymptotically stable controller usedtack a desired motion for the natural

mechanical system may be found by solving Equdtibfor § and substituting along

with Equation 18 back into Equation 17.

f=M (q)M (qd)_1 fq+ (h(q,C])— M (q)M (qd)_1h(qd’qd)) (19)
~M(a)l(a-a,)+(a-a,)]

The performance of this nonlinear controller w#i tompared with a typical linear PID
controller. A more detailed derivation can be fdum Appendix B. From Equation 19,

it can be seen that the feedback terms in thigclbeit are a form of proportional-

37

derivative (PD) control. The PD controller carealate unmodeled dynamics and
disturbances (Yan 199). Therefore, in comparisih the PID controller laid out in the
previous section, the dynamic-inversion contrallees not require error integral
information. This is, however, a result of the ickecof the Lyapunov function. The
dynamic-inversion controller does require knowledgeommanded accelerations (in

order to computé,), which were not required by the PID controllén.implementation

some means of computirdy is necessary.

Dynamic-inversion Program Structure

The block diagram shown in Figure 11 demonstrdtestructure of the dynamic-
inversion program. The following is an explanatadreach block in the figure. The
explanation includes the parameters involved, theative of the structure and the
output from the block. Many of these sectionsvemgy similar to those in the PID
description, mainly because the dynamic-inversmmtroller is the only difference in the
system. A positive attribute to this program i tlexibility of examining whichever
controller the user prefers. Therefore, the majari the steps and processes are

mirrored for each controller.

38

Figure 11: Dynamic-inversion Program Structure

1. Initialize

Variables
PID See Block Diagram on
2(':0([:1:%(;2? Prop-Int-Deriv
Controllers

DI

3. Create State
Matrix

|

4. Update Time
Step

!

5. Call RK44
Function
(deriv_con)

x, f 6. Calculate
Angle, Angular
Rate Derivs

K (1-4) and Integrals
!
7. Update (6x1)
State Vector
J i, t(i+1
i, t(i+

8. Call Com. Angles (+1) 9. Choose
and Rates Func. Commanded
(commanded_values) Angle Types

Commands
/

10. Call Control X 11. Determine
Function Errors and
(control_develop) Control

f
|
Angle
vVelocity Components
12. Components of
Actual and
Reference Controls

Is Runtime No

Complete?

39

Initialize Variables

To compare the PID arrangement to that of the dycxamaersion in a fair
manner, the same initial variables must be usdeerefore, the moments
of inertia, mass of each component, distance ofpcomant offset, initial
positions and angular velocities, and time stepabées (including the
frequency of control adjustments) must remain etp#tose in the PID
experiment. The only difference lies in the gaised in the dynamic-
inversion. Only proportional and derivative gaame used and their
values will be different following proper tuning tompliment the

arrangement.

Choose Desired Controller

As mentioned before, the user has the ability kecsevhich type of
controller they chose to examine; a PID or dynamversion controller.
Once the user selects a controller, all the charatics of that controller
are applied for the remainder of the program.hls thapter, the
dynamic-inversion controller was selected. Thewsfthe PID controller

characteristics and processes are negated foetm&mder of the runtime.

40

Create the State Vector

The state vector combines all the components thab&integrated
across the simulation time. In the case of theadyn-inversion
controller, the state vector is a (6 x 1) vectansisting of angular
positions for the three rotating components andhhee angular rates
associated with those componentsz[q ¢ . Unlike the PID state
vector, there is no integral error present dudéoform of the controller.
The error across this controller is not integratbdrefore, the gain is not

necessary. This set-up assures that all six \aegafill be updated and

applied simultaneously throughout the simulation.

Update the System Time

The process of updating the system time by a distiree stepit serves
the same purpose as the PID controller. This @pdanerely a process of
storing and comparing the values of the state vectonmand vector, and
control vector for any given time step throughdng simulation. It allows
the user to specify which value at a specific instaey would prefer to

examine.

41

Call Dynamic-inversion RK-44 Function (deriv_con)

Similar to the PID program, the dynamic-inversisranalyzed over
constant time steps Af therefore integration across those discrete times

is necessary. Once again, a fourth-order RungéaKwimerical
integration is going to be applied to the systekii.equations are going to
be the same, with the exception of the k termsfoigein the PID
program, each returned value of k contained thngelar derivatives,
three angular velocity derivatives, and three emtaggrations. The error
integrations are not necessary; therefore, thduegaare a (6 x 1) vector,
rather than a (9 x 1). The called function, “degen”, is the same
function used for PID controller, only modified ¢ater to both

controllers.

Calculate Angle and Angular Rate Derivatives

The function, “deriv_con”, is the exact same fuostused for the PID
controller, except in this situation, the calciudatof the integral error over
the specific time step is not applied. Both fuoies serve the purpose of
determining the rate change in the angular velpagypreviously shown

in Equation 9:

42

The resultingq and § terms are returned to the main program as a (6 x 1

vector in the form of:

Kig = [Q(1x3) q(le)]T
This vector is returned to the main program in otdaupdate the state
vector by completing the RK-44 integration.
Update the State Vector
Once all of the angular rates and angular acceasaaire returned to the
main program, the last function of the fourth-or&emge-Kutta is
performed. This part of the RK-44 updates the emghd angular

velocities across the discrete time stepysing the same equation as that

of the PID controller:

Xivg = X +%(k1 +2(k2 + k3)+ k4)

43

The updated state matrix will be used for calcatathe errors in the
commanded and actual angles and the required t®fdrdhe next

iteration of the main program.

Call the Commanded Angles and Rates Function (cardeth values)

The commanded angles, angular rates, and anguleleaations are the
motion that the controller is trying to track. $hoortion of the program
relays the position, the speed, and the rate afgdan speed the gimbals
should be achieving. For comparison, the commanedggks calculated
in this section will be the same as those usederPiD experiments.
These commanded angles and rates are calculatied in
“‘commanded_values” function. The variables senhi®function are the

time step iteration number and the updated tinth@tystem.

Determine Control Angle and Rate Types

Three basic types of simulations were chosen tyshe performance of
the dynamic-inversion controller: (1) constanedtion and angular
velocity, (2) constant position and angular velpétllowed up with an
impulsive change in position at a given time steq (3) constantly

44

10.

changing (in this case sinusoidal) position andei&f. The same
commanded angles and angular velocities will bel us¢he PID program
to ensure an accurate comparison in the resulistbfcontrollers. The

returned variable is a (9 x 1) vector, represeated

ycommand = [qcom qcom qCOm]T

The three scenarios are further described and demabed in the

Commanded Variables and Description of Functisestion.

Call the Control Function (control_develop)

The variables required to calculate the updatesr®and control for the

t,,, conditions are now saved into the state vectorcamtmand vector.

Assuming the vectors do not agree, whether maahmoe or an error
caused by a change in the commanded angles andtyethe
“control_develop” function allows for a correcticontrol to be produced.
The required inputs for this function are both skete vector and
commanded angles and rates vector. The functibrcalculate the

control required for the next iteration of the mphogram.

45

11.

Call Commanded and Actual Components Function (inedenponents)

One of the unique characteristics of a dynamic+isiea controller is the
comparison between the actual components of thatemqs of motion and
some reference components based off commandedsvialoeder to
determine the control applied to the next timerwde The reference
value components consist of the angles, angules ratass matrix,
Coriolis terms and control. These terms are catedlin the function,
“model_components” and returned to “control_devéfopction for
analysis. Once the terms are returned, they gokedpn the control
equation for this particular dynamic-inversion aofier which will be

derived in the following section:

2 +(n(a.a)- M (@M (g,) *h(ge. 6,)) (19)
q—qd)+(q_qd)]

|
<
—_
o]
——
— —h

The first part of the Equation [19] representsféeback portion of the
controller. The second condition of the equat®a nonlinear feedback
term comparing the difference between the Corielimis of the reference
and actual motions. The last term is a PD forra obntroller that is a

nonlinear feedback as well.

46

12.

All the terms in Equation 19 are generated in “modemponents”, with
the exception of the commanded and actual angaiagular rates. The
inputs for this function are the actual and comneahangles and angular
velocities. Once the new control is calculateds eturned to the main

program in order to be applied to the next itergtgiarting at Section 4.

Determine Commanded and Actual Value Components

The function, “model_components”, for the referepoetion uses
Equation 5 to determine the mass matrix, Equatiomdetermine the
Coriolis terms, and Equation 8 to determine thenaxice control. All
these values are in correspondence with the sisdilabtion of the

system.

The actual value components consist of the angtegylar rates, mass
matrix, and Coriolis terms. These values are datexd in a similar
fashion to the reference components, using the sades and equations,
with the exception that the returned variablesesent the actual
characteristics of the system. The applied comsrabt calculated until
the five characteristics of the motion at that isatar time step are

returned to the “control_develop” function.

a7

13.

Is Runtime Complete?

Just like in the PID controller, there is alwaysngpto be some sort of
small error in the simulation, where after a certaine, the error in the
system is negligible (if properly designed). Oncddiscrete value dft is
added to the system time, the program checks td ge=termination
time has been achieved, ceasing to program ifsit liathe time has not
been reached, the program loops back to Sectiandrepeats all the

steps leading up to Section 13, only to be tesgadha

48

VI. MODEL SIMULATIONS AND ANALYSIS

General Experimental Set-up

The tri-gimbaled system has three basic paramefieich need to be considered when
designing an accurate and precise response tea gommand. The factors which will
be examined are the type of controller, the typeomhimanded angles, angular velocities
and angular accelerations, and the gain levels insébe simulation. As discussed in
previous chapters, the controllers analyzed atgpaf PID and dynamic-inversion, and
the commanded positions and rates are constaps, atel sinusoidal. The experiments
will also examine how the system changes with a®es in both the proportional and

derivative gains.

Commanded Variables and Description of Functions

The commanded variables consist of constant vasallternating variables (a step

function), and a constantly adjusting sinusoidahntand.

49

Prior to every simulation, some factors of the gatskare set. All three gimbals are
initially set to +0.4 radians from their “home” pidsn. This offset will require an initial
maneuver to be performed in order to approachahentanded position. The gimbals

will all start from rest.

The controller must now track one of the followtgmmanded parameters:

1. Constant Commanded Angles and Rates

With all three gimbaled positions set to +0.4, liaraate set of gimbaled
positions is commanded to force the controllerdpst all three controls
simultaneously. The values for these gimbals dftercommanded

controls begin are:

6.,=[01 01 02f
écom = [O O O]T
écom = [O O O]T

2. Constant Commanded Angles and Rates with a StegtiBan

This commanded function is very similar to the ¢ganscommanded

positioning function described in the previous gegctvith one basic

50

difference. The commanded function travels alocgrastant angle for all
components then impulsively maneuvers to a diffieaagular position.

For the experiments, the positions are:

t=0 - 5secq,,=[01 01 02
t=5 - 10secq,,=[02 02 05|

Because this is a discrete time system and thediepeis small, the

angular velocity and angular acceleration expressiemain the same.

Consistent Sinusoidal Commanded Path

For this commanded motion, the angles of all tlmeaponents are all

going to be based off a sinusoidal wave with amggtof 0.5 radians and

frequency of}é” Hz. Because these angular positions are bastaohen

the angular velocities and accelerations can besepted as the first and

second derivative of the position vector.

Ouom =[05sint 05sint 05sint]'

Oeom = % =[05cost 05cost O5cost]

- — dzqcom — i i int|"
Oeom = prea [— 05sint -05sint - O.55|nt]

51

This method of determining the rates is valid amgjlas the commanded

position of each component is a function of time.

Gain Sdlections

It is typically assumed that the larger the gaia system, the less robust (more sensitive
to errors in the dynamic model) the system becomdewever, the experiments
performed are not to find the optimal gains in $iraulation; only to deduce the effect

that a change in gains has on each controller.

After numerous trials of various gains, two setg@hs were selected as appropriate for
the experiments. The first set w&s= 200 andp = 50. This set of gains allows the
motion and response to be more flexible. The sgsehis a more aggressive set with
the gains set tip = 400 anKp = 100. For each experiment run with the PID caltdr,
theK, gain was set equal to the gain. The dynamic-inversion controller does not

utilize the integral gain.

These two sets of gains were compared alongsidiatee commanded motion and the

two different types of controllers, producing twelsets of results.

52

Modd Simulations

Three commanded motion, two sets of controller ggaand two different controllers are
to be examined. Adjusting every parameter to perfa single study in order to find out
the characteristics and effects of that parametatd to twelve different situations to
consider. This section will break those twelvedations into three groups of four tests.
Those three groups will be run with the types ohomanded motion. Within each group,
the changes in both the gains and controller velbbserved through the angular motions
of the gimbals. An analysis of the applied corgyelrrors, and run times will be

addressed in later sections.

Input 1: Constant Commanded Angles and Rates

The first simulation tested will compare the PIRiatynamic-inversion
controllers with a change in gains. These wilcbaducted with the commanded
angles, angular velocities and angular accelersti@td constant throughout a 10
second test period. Figures 12a and 12b repradet and dynamic-inversion
controller under the influence of a proportionaingaqual to 200 and a derivative

gain equal to 50.

After the initial jump from the +0.4 radian positicall components controlled
through the PID show difficulties in convergendeéhe pitch component (piece

53

#1) shows the greatest error in convergence. Hewdve dynamic-inversion

controller seems to converge in nearly every pfere one second has elapsed.

Figures 12c and 12d are for the same situatiore@xbe gains have increased
significantly. Note that the PID system still lkamvergence problems, but seems
more in control due to the gain increase. The dyocanversion does not seem to
have difficulties with the larger gains. The corgance time in the dynamic-
inversion controllers remained about the same.h\tti¢ larger gains applied, the

PID controller began to respond similarly to thaayic-inversion controller.

54

Position Angle (rad)

Position Angle (rad)

Position Angle (rad)

Figure 12: a) PID Model for Constant Control d&gd= 200,Kp = 50

0.8

0.6

Tracking Motion of Component #1: Constant Function

Actual
—— — Reference

Time (sec)
Tracking Motion of Component #2: Constant Function

Actual
—— — Reference

Time (sec)

Tracking Motion of Component #3: Constant Function

0.5
Actual
0.4 — — Reference
0.3
0.2
01 | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

55

Figure 12: b) DI Model for Constant Control afgl= 200,Kp = 50

Position Angle (rad)

Position Angle (rad)

Position Angle (rad)

0.5-

0.4

0.31

0.2

01—

Tracking Motion of Component #1: Constant Function

Actual
—— — Reference

0.5-

0.4

0.31

0.2+

01—

2 3 4 5 6 7 8 9 10
Time (sec)

Tracking Motion of Component #2: Constant Function

Actual
—— — Reference

0.5-

0.4

0.3-

0.2+—

Time (sec)

Tracking Motion of Component #3: Constant Function

Actual
—— — Reference

2 3 4 5 6 7 8 9 10
Time (sec)

56

Figure 12: c) PID Model for Constant Control ad= 400,Kp = 100

Tracking Motion of Component #1: Constant Function

0.5-
Actual
e) 0.4 —— — Reference
[}
5 0.3F
C
<
_5 0.2+
3
(o]
a 01— — — — ——————
O L L L L L L L L L |
0 1 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #2: Constant Function
0.5-
Actual
= —— — Reference
8
Q2
(o))
C
<
o
ie)
‘Q
(o]
o
L L L L L L L |
3 4 5 6 7 8 9 10

Time (sec)

Tracking Motion of Component #3: Constant Function

0.5
Actual
= —— — Reference
8
Q
()]
[
<
c
K]
‘@
o]
a 0.1r
O | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

57

Figure 12: d) DI Model for Constant Control afel= 400,Kp = 100

Position Angle (rad)

Position Angle (rad)

Position Angle (rad)

Tracking Motion of Component #1: Constant Function

0.5
Actual
0.4 —— — Reference
0.3
0.2
0.1
0 L L L L L L L L |
2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #2: Constant Function
0.5
Actual
0.4 —— — Reference
0.3
0.2
0.1
0 L L L L L L L L |
0 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #3: Constant Function
0.5
Actual
0.4 —— — Reference
0.3
0.2
0.1
O | L | L L | L L |
0 2 3 4 5 6 7 8 9 10

Time (sec)

58

Input 2: Constant Commanded Angles and Ratesavitep Function

The procedure of testing for this mode is neargnittal to that of Input 1 with
the exception that a step function was applieti@btsecond mark. However,
from 0 to 5 seconds and 5 to 10 seconds, the couhedaangles and rates remain

constant.

Figures 13a and 13b represent a PID and dynamersion controller with a
proportional gain equal to 200 and a derivativengajual to 50. Figures 13c and
13d represent the same except that more aggrdssiaedKp gains of 400 and

100 respectively were applied.

Similar to the previous mode, the dynamic-inverdias quicker reaction and
convergence times than the PID controller. In,fdet PID controller only seems
to be efficient when the gains are high. Howeweggn after the gains are
increased, there is still a significant amountwérshoot in the PID. The
dynamic-inversion controller contains little to aeershoot and dampens out

quickly in both cases.

59

Position Angle (rad)

Position Angle (rad)

Position Angle (rad)

Figure 13:

0.6

a) PID Model for Step Control atsl= 200,Kp = 50

Tracking Motion of Component #1: Step Function

Actual
—— — Reference

0.6

Time (sec)

Tracking Motion of Component #2: Step Function

Actual
—— — Reference

Time (sec)

Tracking Motion of Component #3: Step Function

Actual

—— — Reference

Time (sec)

60

Figure 13: b) DI Model for Step Control akd = 200,Kp = 50

Position Angle (rad)

Position Angle (rad)

Position Angle (rad)

Tracking Motion of Component #1: Step Function

0.5 Actual
' —— — Reference
0.4
0.3F
0.2+ ‘7
01—
O | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #2: Step Function
05| Actual
—— — Reference
0.4
0.3H
0.2- ’/
01—
0 L
_01 | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #3: Step Function
0.6 -
0.5+
|
0.3l ‘ Actual
' ‘ —— — Reference
0.2 —
Ol L | L | L L | L L |
0 1 2 3 4 5 6 7 8 9 10
Time (sec)

61

Figure 13: c¢) PID Model fdkp = 400,Kp = 100

Position Angle (rad)

Position Angle (rad)

Position Angle (rad)

0.5

Tracking Motion of Component #1: Step Function

Actual

—— — Reference

0 | 1 | 1 1 | 1 1 |
0] 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #2: Step Function
05 Actual
—— — Reference
_01 | 1 | 1 1 | 1 1 |
0 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #3: Step Function
0.6
0.5+

0.1

‘ Actual
‘ — — Reference
| [| [[| [[|
0 2 3 4 5 6 7 8 9 10

Time (sec)

62

Figure 13: d) DI Model foKp = 400,Kp = 100

Tracking Motion of Component #1: Step Function

__05¢ Actual
E/ 0.4l —— — Reference
2
jo2]
£ 0.3
S
= 0.2- —
3 T
0.1} — =——
O [| [| [[| [[|
0 1 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #2: Step Function
- 0.5r Actual
°
g 04F —— — Reference
o
© 0.3
C
<
c 0.2- o
S -
g 01—
o
O L
_Ol 1 | 1 | 1 1 | 1 1 |
1 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #3: Step Function
0.6
P 0.5 I~
g N
o L
= 0.4 ‘
c
< ‘ Actual
.5 0.3 —— — Reference
o
o 02— ——
Ol | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

63

Input 3: Sinusoidal Commanded Motion

The following mode is most similar to that of aded missile simulation in an
HWIL system. The relative motion between the seekel target is more likely
to be in the form of smooth curves getting shagsethe missile approaches the
target rather than instantaneous steps in posifidrerefore, the results from this
mode are probably more relevant to flight motidsléasimulations. The motion
is a simple sinusoidal wave function which osadtafor a total duration of 10

seconds.

Figures 14a and 14b represent a PID and dynamersion controller with a
proportional gain equal to 200 and a derivativengajual to 50. Figures 14c and
14d represent the same except that more aggrd§siaedKp gains of 400 and

100 respectively were applied.

In this mode, the dynamic-inversion has little tbavershoot in both cases while
still managing to converge to the curve withintfsecond of the simulation.
Contrary to the dynamic-inversion results, the eddtroller seemed to struggle
in its convergence on the constantly changing cunast likely due to the
integral term. Figure 14a shows difficulty in thiéch and yaw, while Figure 14c

shows difficulty converging at the peaks of theesivave.

64

Figure 14: a) PID Model for Sinusoidal Command Kp = 200,Kp = 50

Position Angle (rad)

Position Angle (rad)

Position Angle (rad)

Tracking Motion of Component #1: Sinusoidal Function

1
0.5
0
Actual
-0.5 —— — Reference
_1 l 1 l l 1 l l |
1 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #2: Sinusoidal Function
1
0.5
0
Actual
-0.5 —— — Reference
_1 1 | 1 | 1 1 | 1 1 |
1 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #3: Sinusoidal Function
1
0.5
0
Actual
-0.5 —— — Reference
_l 1 l 1 l l 1 l l |
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

65

Figure 14: b) DI Model for Sinusoidal Commandi &» = 200,Kp = 50

Position Angle (rad)

Position Angle (rad)

Position Angle (rad)

Tracking Motion of Component #1: Sinusoidal Function

0.6
0.4
0.2
0
-0.2 Actual
0.4+ —— — Reference
-0.6 -
| | | | | | | | |
0 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #2: Sinusoidal Function
0.6
0.4
0.2
0
-0.2 Actual
-0.4+ —— — Reference
-0.6 -
| 1 | 1 1 | 1 1 |
0 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #3: Sinusoidal Function
0.6 -
0.4
0.2
0
-0.2 Actual
0.4L- —— — Reference
-0.6 -
| 1 | 1 1 | 1 1 |

Time (sec)

66

Figure 14: c) PID Model for Sinusoidal Commamd Kp = 400,Kp = 100

Position Angle (rad)

Position Angle (rad)

Position Angle (rad)

Tracking Motion of Component #1: Sinusoidal Function

0.6
0.4
0.2) \
0
-0.2 Actual
045 —— — Reference
-0.6 -
1 l 1 l l 1 l l |
0 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #2: Sinusoidal Function
0.6
S o
0.4
0.2 7 N\
O v
-0.2 Actual
045 —— — Reference
-0.6 -
| 1 | 1 1 | 1 1 |
0 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #3: Sinusoidal Function
0.6 -
0.4
0.2
0
-0.2 Actual
0.4 —— — Reference
-0.6 -
| 1 | 1 1 | 1 1 |

Time (sec)

67

Figure 14: d) DI Model for Sinusoidal Commandi &» = 400,Kp = 100

Position Angle (rad)

Position Angle (rad)

Position Angle (rad)

Tracking Motion of Component #1: Sinusoidal Function

0.6 -
0.4
0.2
0
0.2 Actual
0.4+ —— — Reference
-0.6 +
L L L L L L L L |
0 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #2: Sinusoidal Function
0.6 -
0.4
0.2
0
-0.2 Actual
-0.4 - —— — Reference
-0.6 -
L L L L L L L L |
0 2 3 4 5 6 7 8 9 10
Time (sec)
Tracking Motion of Component #3: Sinusoidal Function
0.6 -
0.4
0.2
0
-0.2 Actual
04l —— — Reference
-0.6 -
| L | L L | L L |

Time (sec)

68

VIl. COMPARISON OF PID AND DYNAMIC-INVERSION CONROLLERS

In addition to studying the gimbaled-angle histsriether methods can be used to
compare the performance of the PID and dynamicrgioe controllers. As shown in the
previous chapter, the PID controller consistentigvged more fluctuation between the
actual and commanded motion. This section descahanvestigation of the control

torques and processor time required by both theadliDdynamic-inversion controllers.

Comparison of Controlsfor each Input

Two factors being considered while looking at tbateol for each of the twelve systems
are the settling time (how long is the controllequired to operate before convergence)
and the maximum control required. These two factan play a role not only in the

system performance, but also the life span ofligbtftable.

The controls for all three components, both cotdrsland all three commanded inputs
are shown in Figures 15-17. A common trend isgares all results shown. Concerning
the PID controller, the reaction is slower anddbatrol is more oscillatory. However,
the controls are very low. The maximum controlleggpto the system is around a

69

magnitude of 200 N-m. With the dynamic-inversiamtoller, the reaction is nearly
instantaneous in all cases with little overshoat arshort damping time. However, the

control approaches levels around a magnitude od Netn.

70

Figure 15: a) Control for Constant Command pd 200,Kp = 50

PID Control for Three Components: Constant Function
50

-100

Control (N-m)

-150

-200

Time (sec)

DI Control for Three Components: Constant Function

Comp. #1

T —— — Comp. #2
£ Comp. #3
°
§

-250

_300 L | L | L L | L L |

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

71

Figure 15: b) Control for Constant Function &= 400,Kp = 100

Control (N-m)

Control (N-m)

PID Control for Three Components: Constant Function

50
A
L\
0 T T T T T T T T e e
T
|
[
I
50
!
“‘ Comp. #1
‘ —— — Comp. #2
-100 L Comp. #3
-150
_200 [| [| [[[|
0] 1 2 3 4 5 8 9 10
Time (sec)
DI Control for Three Components: Constant Function
100 -
50l
\
AN
OL e~
l
|
-50
Comp. #1
100L —— — Comp. #2
e Comp. #3
|
-150 -
l
-200 -
l
-250 -
l
_300 ‘ 1 1 1 1 1 1 1 |
0] 1 2 3 4 5 8 9 10
Time (sec)

72

Figure 16: a) Control for Step Command &pd= 200,Kp = 50

Control (N-m)

Control (N-m)

PID Control for Three Components: Step Function

50 -
I
07! \/Miiﬁx¥771\\/K;fii
I
|/
i
S0 - Comp. #1
-100
-150
-200
L L L L L L L L L |
0] 1 2 3 4 5 6 7 8 9 10
Time (sec)
DI Control for Three Components: Step Function
500
400 Comp. #1
—— — Comp. #2
300 Comp. #3
200
[
[
I
|
i
I
777777‘\7/_,I77777,
1 1 1 1 1 1 1 1 |
2 3 4 5 6 7 8 9 10

Time (sec)

73

Figure 16: b) Control for Step Command &@d= 400,Kp = 100

PID Control for Three Components: Step Function

150 -
Comp. #1
100+ —— — Comp. #2
Comp. #3
50 -
f t
/ \ :\
£ oo
= /|
o 1
g 50,
|
-100 |-
-150
-200 | | | | | | | I I |
0 1 2 3 4 5 6 7 8 9 10
Time (sec)
DI Control for Three Components: Step Function
1200
1000 -
Comp. #1
— — Comp. #2
800 - Comp. #3
E« 600 -
=
8 400}
c
8 |
200 - l
11
B 1
N -
-200 -
| 1 1 1 1 1 1 1 1 1 |
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

74

Figure 17: a) Control for Sinusoidal Command Kad 200,Kp = 50

PID Control for Three Components: Sinusoidal Function

150
/ \ Comp. #1
100 - / . —— — Comp. #2
/ ‘\ Comp. #3
50 + /
/ \ " S~ ’ \\ / \ // \
, T~ J
0 4 - / \ ! e N
€
z -50 l,i
°
€ -100
3
-150
-200
-250
_300 [| [| [[| [[|
0 1 2 3 4 5 6 7 8 9 10
Time (sec)

DI Control for Three Components: Sinusoidal Function

£
€
o
§
l
-300 - Comp. #1
—— — Comp. #2
Comp. #3
-400 -
_500 1 1 1 1 1 1 1 1 1 |
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

75

Figure 17: b) Control for Sinusoidal Functiorkat= 400,Kp = 100

PID Control for Three Components: Sinusoidal Function
100

50 f\/dﬁ // \

| ~ \ o ™~ L
O“ ~—_- \¥7// —— =
I'
il
’E\ _ |
= 50 ﬂt Comp. #1
° i‘ —— — Comp. #2
g -100 - Comp. #3

-200

-250

Time (sec)

DI Control for Three Components: Sinusoidal Function

£
€
o
§
-300 Comp. #1
—— — Comp. #2
-400 - Comp. #3
_500‘ 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

76

In comparing the controllers, the PID controllenses oscillatory reversing torques,
while the dynamic-inversion controller requiresajex peak torques. Depending on the
application, it is not clear which is more desimbHowever, other factors, such as the

results of the error analysis and processing tils@ factor into the comparison decision.

Error Analysisfor Each Input

Like in any system, one of the most effective wmysompare the performance of two
controllers is to analyze the error produced betwsystems. Because there are three
angles examined, all having some sort of errorether analyzed in Figures 18a-c and

19a-c are the norm of each error vector, givingadas quantity to plot.

The first set of errors examined compares the amgte's throughout the entire
simulation. Figures 18a-c compare the errors tinout the simulation for the lower
gain settingsKp = 200,Kp = 50). These gains are easy to compare due latkhef
convergence of the PID function after the initiagke jump. In every case, there is an
oscillatory motion associated with the PID coneddl Every time the system oscillates,
more error is added into the system. In all cabesgdynamic-inversion controller

converges to zero error and remains relatively taonis

77

Figure 18: a) Error for Constant Command Kad- 200,Kp = 50

Angle Error for PID: Constant Function

Norm of Angle Error Vector (rad)

Time (sec)

Angle Error for DI: Constant Function

0.45
0.4
0.35
0.3
0.25
0.2

0.15

Norm of Angle Error Vector (rad)

0.1

0.05

Time (sec)

78

Figure 18: b) Error for Step Command &qd= 200,Kp = 50

Norm of Angle Error Vector (rad)

Norm of Angle Error Vector (rad)

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Angle Error for PID: Step Function

Time (sec)

Angle Error for DI: Step Function

2 3 4 5 6 7 8 9 10

Time (sec)

79

Figure 18: c) Error for Sinusoidal Command &rd= 200,Kp = 50

Angle Error for PID: Sinusoidal Function

0.8

Norm of Angle Error Vector (rad)

Time (sec)

Angle Error for DI: Sinusoidal Function
0.8

Norm of Angle Error Vector (rad)

2 3 4 5 6 7 8 9 10
Time (sec)

80

After examining Figures 19a-c, one can comparesth@s throughout the simulation for
the higher gain setting&§ = 400,Kp = 100). With the more aggressive gains used, the
errors for both controllers converge with less sheot, thereby reducing the error after

the initial jump from the starting parameters te tommanded parameters.

81

Figure 19: a) Error for Constant Command Kad- 400,Kp = 100

Angle Error for PID: Constant Function
0.5

0.45
0.4
0.35
0.3
0.25
0.2

0.15

Norm of Angle Error Vector (rad)

0.1

0.05

Time (sec)

Angle Error for DI: Constant Function

0.5
0.45 -
0.4
0.35
0.3
0.25
0.2

0.15

Norm of Angle Error Vector (rad)

0.1

0.05

2 3 4 5 6 7 8
Time (sec)

82

Figure 19: b) Error for Step Command &qd= 400,Kp = 100

Norm of Angle Error Vector (rad)

Norm of Angle Error Vector (rad)

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Angle Error for PID: Step Function

Time (sec)

Angle Error for DI: Step Function

2 3 4 5 6 7 8 9 10

Time (sec)

83

Figure 19: c) Error for Sinusoidal Command &pd= 400,Kp = 100

Norm of Angle Error Vector (rad)

Norm of Angle Error Vector (rad)

0.8

0.8

Angle Error for PID: Sinusoidal Function

Time (sec)

Angle Error for DI: Sinusoidal Function

2 3 4 5 6 7 8 9 10

Time (sec)

84

In this case, the more aggressive gain settingstegisin less overshoot. Therefore, the
majority of angle error is dependent upon the areder the curve from the initial
maneuver to the commanded values. Also, as madionprevious chapters, more
aggressive gains tend to lessen the oscillatiaharP1D controller, while increasing the
rise time in the dynamic-inversion controller. dertain situations, mostly for short
periods of time, it may be difficult to determindh controller produces less error.
Therefore, Table 4 takes into account all twelvpegiments and sums up the total error
history over the course of each simulation. Asmshan every case the amount of error

in the dynamic-inversion system is significantlgdehan that in the PID controller.

Table 4: Total Error Comparison of PID and DI cohérs

Gains | Controller Commanded Input Type . |
Used Type Constant Step (Impulse) Sinusoidal
Input Input Input
Kp =200 PID 0.11450 0.12880 0.30250
Ko =50 | Dyn. Inv. 0.01170 0.02000 0.01740
Kp = 400 PID 0.04790 0.06200 0.09890
Ko =100 | Dyn. Inv. 0.01170 0.02000 0.01730

The difference in the error from Table 4 can furtbe demonstrated in Figures 20a-b.
One concept to note is the difference in the PI® dmnamic controller errors for the

simulation. As discussed earlier, as the gainease, the amount of discrepancies
85

between the error in the PID and dynamic-inversomtroller is lessened. In Figure 20a,
the total error in the PID is approximately 160@Q% greater than that in the dynamic-
inversion controller for sinusoidal motion. Howewwhen the gains are increased, such
as in Figure 20D, the differences between the #taks in the simulation decrease
significantly. The PID controller error is apprmately 400-500% greater than the
dynamic-inversion for sinusoidal motion. Theramsobvious gap change between the

two controller gain adjustments.

Figure 20: a) Error Comparison in PID and DIhW = 200,Kp = 50

0.35000

0.30000

B PID: Kp = 200, Kd = 50
EDI: Kp = 200, Kd = 50

0.25000

0.20000

Total Error

0.15000

0.10000

0.05000

0.00000-

Constant Input Step (Impulse) Input Sinusoidal Input

86

Total Error

Ru

At

flig

converge faster than PID controller, but if it isglely more computationally expensive,

Figure 20: b) Error Comparison in PID and DIwK = 400,Kp = 100

0.12000

0.10000

B PID: Kp =400, Kd = 100
@ DI: Kp = 400, Kd = 100

0.08000

0.06000

0.04000-

0.02000-

0.00000-

Constant Input Step (Impulse) Input Sinusoidal Input

ntime Analysisfor Each I nput

hird characteristic of each controller to conpdate when deciding which to use in a

ht table is the required processor time. A ayrc-inversion controller could

then the PID would be the obvious choice, and versa.

87

In order to analyze the amount of time it takesdmplete a simulation of each
controller, a “tic-toc” Matlab function was applied he “tic”, where Matlab starts
recording the time, was placed right before theldop in the main program. The “toc”,
where Matlab stops timing the system, was placegtty after the for-loop was closed.
Note that this sums the entire time required tautate the system, not just the
computational expense of evaluating the contrdle ther computations involved in
each simulation should be similar, with the maiffiedence being the controller
evaluation. The placement ensured that the piptifrthe variables is not taken into

effect.

Table 5 demonstrates the results of the controliletimes, while Figures 21a-b graph the
data for each set of gains. Note that in all cseslynamic-inversion controller runs

around 30% longer than the PID controller.

It is the author’s belief that the structure of thy@amic-inversion controller program that
causes the increase in runtime. When the PID albaticalls the function
“control_develop”, the control is directly calcwatthrough linear equations and returned
to the main program for future processing. Howewdren the dynamic-inversion
controller calls “control_develop”, the functiorethmust call the function
“model_components”, compute relatively large nogdinsystem components (mass
matrix, Coriolis terms, etc.) for both the commashd@d actual system, return those

values to “control_develop” where another largeatigm is used to calculate the control

88

before it is sent back to the maim program for pesing. These extra steps and large

calculations attributed to the increase in runtime.

Table 5: Analysis of Runtimes

Commanded Input Type
%2'25 Cop;lrooéler Constant Input Step (Impulse) Inpuf S'T#;St'dal
10 sec 10 sec 10 sec
Kp = 200 PID 1.20552 1.20392 1.22571
Kd =50 | Dyn. Inv. 1.57709 1.57208 1.56319
Kp = 400 PID 1.22680 1.20592 1.20208
Kd =100 | Dyn. Inv. 1.56431 1.60439 1.59235

89

Figure 21: a) Runtime Comparison for PID andaith Kp = 200,Kp = 50

1.80000

B PID: Kp = 200, Kd = 5(
mDI: Kp = 200, Kd = 50

1.60000

1.40000+

1.20000+

1.00000+

0.80000-

Total Runtime (sec)

0.60000-

0.40000-

0.20000-

0.00000-

Constant Input Step (Impulse) Input Sinusoidal Input

Figure 21: b) Runtime Comparison for PID andnith Kp = 400,Kp = 100

1.80000

EPID: Kp =400, Kd = 100
@ DI: Kp = 400, Kd = 100

1.60000

1.40000+

1.20000+

1.00000+

0.80000-

Total Runtime (sec)

0.60000-

0.40000-

0.20000-

0.00000-f

Constant Input Step (Impulse) Input Sinusoidal Input

90

On average, the time it takes to run the PID sitrarlas approximately 12% of real-time
(it takes approximately 7.20 seconds to run a 60rs@ simulation). The time it takes the
dynamic-inversion simulation to run is approximat&6% of real-time (approximately
9.60 seconds to run a 60 second simulation). H®yHtems work in real-time, as
opposed to simulation time. For every minute lsimgulation, 2.40 seconds are lost due
to the dynamic inversion program. This indicatest the dynamic-inversion controller
could likely be implemented on a digital controNethout great increase in cost.
However, studies will have to be made to reducelitierence between the controller

runtimes.

91

VIIl. CONCLUSIONS

Because of their ability to function well enoughdats user-friendly simplicity, PID
controllers are employed in the majority of indiagdtdesign. However, when the
industrial environment does not require simplidgitya system, is there a nonlinear

controller that can be rendered more effective.

The dynamic-inversion controller developed in thissis represents a controller capable

of manipulating the movements of a three gimbabed)inear system.

Derived from Lagrange’s equations for kinetic amteptial energies and Lyapunov
global stability theory, the dynamic-inversion aatier was tested. Results from these
tests were compared with results obtained usindpacentroller. The dynamic-inversion
method consistently showed a higher quality of oese for not only a wide range of
gains, but also numerous types of commanded fumtid he dynamic-inversion method
showed less error through the simulation with fastevergence and larger damping in
terms of the gimbaled motion and gain. The PIDtaier did execute faster than the
dynamic-inversion, but the lag in the dynamic-irsten controller should not be enough

to warrant a change in controllers.

92

Recommendations for future work would include apmyand testing both PID and
dynamic-inversion controllers to an actual flighblie to analyze how the system results
vary in the physical world. Also note that the esiments performed do not include a
seeker head during the test. How would the exatasnand adjustment of the moments of
inertial handle in a simulation and actual tesaitOne may also analyze the stresses
present during a reverse torsion. The PID comrallas consistently oscillating. For an
active table, this would cause vibrations and noldewever, because the control in the
dynamic-inversion was so large, would deceleraiticime gimbals cause any
unwarranted stress and strain on the system? l\itta runtime of the dynamic-
inversion was slightly higher than the run timetw# PID controller. An examination on
how that would affect performance may lead to acstire of the program that causes it

to execute faster.

93

BIBLIOGRAPHY

Astrom, Karl JohanControl System Design: PID ControR002.
</www.cds.caltech.edu/~murray/courses/cds101/fad@fh/astrom-ch6.pdf>

Carter, J. and K. Willis. “A History of Flight Man Simulators used for Hardware-in-
the-Loop Testing of Missiles.” IBPIE Conference on Technologies for Synthetic
Environments: Hardware-in-the-Loop Testing Il 19€8lando, FL

Collins, Jack A.Mechanical Design of Machine Elements and Machiriésw York:
John Wiley & Sons, Inc., 2003.

Gutirrez, J. “Proportional-integral-derivative Baimed: Tuning PID Controls.EDA
Design Line 13 Apr. 2007.

“Hardware in the Loop Laboratories (HWIL)EWSSA Integrated Products Team
15 Sep. 2003. NavAir Weapons Division. 20 June 2007
<www.nawcwd.navy.mil/ewssa/prod_srv/hwil_fac.htm>

“High Performance Computing WorkshopDevelopmental Test Commari® Aug.
2002. United States Army. 20 June 2007.
<www.dtc.army.mil/hpcw/1999/burrough/index.html>

“Joseph Louis Lagrange (1736-1813Mathematicians of the Seventeenth and
Eighteenth CenturiesTrinity College, Dublin. 22 May 2007
<www.maths.tcd.ie/pub/HistMath/People/Lagrange/R&adl/RB_Lagrange.html>

Looye, G. and H.-D. Joos. “Design of Robust Dymamversion Control Laws using
Multi-Objective Optimization.” INAIAA Guidance, Navigation, and Control Conference
and Exhibit 2001, Montreal CA(AIAA-2001-4285).

Marlin, Thomas E.Process Control: Designing Processes and Contretesys for
Dynamic PerformanceNew York: McGraw-Hill, Inc., 1995.

“PID-Tutorial.” Control Tutorials for Matlab 26 Aug. 1997. Carnegie Mellon and the

University of Michigan. 15 May 2007.
<www.engin.umich.edu/group/ctm/PID/PID.html>

94

Plett, G. “Adaptive Inverse Control of Linear aNdnlinear Systems Using Dynamic
Neutral Networks.” IHEEE Transactions on Neural Networisl. 14, No. 2 (Mar.
2003): 360-76.

“Three Axis Flight Motion Simulator Series S-450R-3Hardware-in-the-Loop Flight
Motion Simulator Acutronic. 30 May 2007.
<www.acutronic.com/upload/pdf/Data_Sheet S-450RHS.p

Visioli, A. and A. Piazzi. “On the Use of Dynamiaversion for the Improvement of
PID Control.” In16" IFAC World Congress on Automatic Control 2005, dre. CZ

Yan, L. and C. James Li. “Robot Learning ContrasBd on Recurrent Neural Network
Inverse Model.” InJournal of Robotic Systerivel. 14, No. 3 (1997): 199-212.

95

APPENDICES

96

APPENDIX A: Complete Derivation of Equations of Motion

Moments of inertia defined as: pk_# axis therefore, 4, would be z-axis of pc. 3.

; = X X
t
Pe. | b te. b view A-A
] cosd, 0 sing, (i, i,| [cosd, -sing, 0O][i,
Ji=l 0 1 0 Qi j,+=|sing, cosd, O],
K| |[-sing, 0 cosd, ||k, Kk, 0 0 1|lk,

L] 1 0 o 11,
j,+=|0 cosd, -sind, |{j,
K, 0 sing, cos, 123

97

Calculate Angular Velocities:
w =6,

Z)z = 91]\1 +92Q2
W = 6'?1(sim92iA2 + 034, f2)+ .k,

w> = 6,sin6,i, +6,cosb, |, + 6K,

2)3 = 91 il + H‘ZRZ + 6‘3i'\3
ws = 6,sinG,i, + 6,088,], + 6.k, + O,
ws = 6, sing,i, + 6, cos, (00583 js — sin93R3)+ o, (siné?3 js + cos@slzs)+ 0.,

A

ws = (93 +6,siné,)As + (91 cosf, cosf, + 6, Sin93)13 + (92 cosf, — 6, cosh, sind,)123

Determine Kinetic Energy:

123: w w
T=2% 71|
2=
) I, 0 070
T= b & oo 1, ofg
0o 0 1,00
1.
T1:§912|1y

. l,, 0 07 ésiné,
T, = 5 [91 sing, 6cosd, 6, 0 1, 0O |86 cosh,
0 0 1L,| 86,

2 :%{912 sin? Hzlzx +912 cos 92|2y +922|22}

T3 = %{ (93 + 5’15in92)2 I 3x + (01 COS@Z C0593 + 92 Sings)z ! 3y *
(60058, -4 cos.sma 1,

98

Determine Potential Energy:

5=g—@
a:5+191
4 2
m 1
=—-=6
B=,-30

i,| [cosd 0 =-sind] i,

|=| 0 1 0 |
K, sind 0 coso |k

99

h=h,+h

a’=1*+L*-2L°cosd
a=~/2L(1-cosd)"?
h, =asing

rs=rs+rs0ra=rs—rs

ra= L(— cosb,i, —sinHzfz)—(—sz)

ra= L(— cosé?z(coséf1 —sindlzl)—sinﬁ2 i1)+ L(coséiA1 —sinélzl)
h, =-Lcos#, coso + L coso

h =asing+ Lcosd(1-cosb,)

h = \/EL(l— 00{7—27 - Hljjm sin[g—%elj +L co{g - Hlj(l— cosb,)

Lagrange’s Equations: d (OT]— oT + ov

R -+ =f
dtldg) o0g 09

For 6,:

d(aT) aT , oV
e ERA LAY
dt\ 08,) 06, 06,

I, :{i[éll1y +0, SN 0,1 ,, +0,c08 0, ,, +(0'3 +0'1sin02)sin02I3X +

(91 cos, cod, +6, sin¢93)c0992 COS,l 4, — (92 cosd, — 0, cosd, sin¢93)c0992 sind,l,,]} -

{mg{(‘ \/E%)(l— coss) V?singsing —(\/E%j(l— coss)'?cosp +L(1- coésiné}

100

For 6, :

d{aTj oT oV
— + :rz

dt\eg,) 96, a6,
r, :{dﬂt[ézl . ¥ (91 cosf, cod, + 6, siné?g)siné?sl ot (6?2 cosh, — 6, codb, sin93)cos93l =

{8 cod, sind,l ,, — 6 cosh, sinb, | ,, + (6?3 +6, sin92)6?1 cod, |, —
(01 cosb, cos, + 6, sin63)6"1 sing, cosg,l 5, + (92 cod, — 6, cod, sin63)49l sind, sing,l .} +
{mglsing, cosd}

For 6,:

:r3

d(aT)_aT v
dt\ 08,) ae, o6,

r, :{%[(93 +6,in6,)1, 1} ~{~(6, cosd, cosd, +6,sind,)4, cosd, sing,1, +

(6?1 cosé, cosh, + 6, siné?g)é?2 cosf,l,, ~ (92 cosd, - 6,cosb, sin93)6"2 sing,l,, -
(6?2 cosé, - 6,cosb, sin93)6?1 cosf, cos,l .}

Combine theg terms to find the mass matrid, the ¢;g; terms and the potential terms

to find the Coriolis vectom, to give the equation form:

M (a)g+h(q.q) = f

101

My, =1y, +5in* 6,(1,, + 15,)+ cOS 6,1 2y +COS Gyl 5, +sin’ 6,,,)
My, = 1,, +sin® 6,1, +cos G,1;,

M33 = |3X

M,, =cosb, cos@ssines(l 3y~ ISz)

M,; =sing,l,,

M,;=0

hy
h(q’ q) =h
h,

h, =, sind, cost, sinb, 1, - I3y)+
26,6, cosb, siné?z(l ax = Loy + g —(cos2 G,1;, +sin’ g, 3Z))+
26,6, cos 6, cosd, sind, I ,, - | 3y)+
0,0, cos&’z(l 5 €O 6?3(I . I32)+ sin 6’3(I . Isy))+
mgL((— \/5/2)(1— cosd)? sindsin B - (\/5/2)(1— cosd)"’? cosf3 + (1- cosé?z)siné)

h, = -6 cosb, sinHz(I o = oy + 15 —COS Gyl —sin’ Hglsz)—
6,0, cos@z(l 5, +sin? 03(I ay "~ I32)+cos2 03(I = Isy))+
26,6, cosf, sing, (l oy = | 32)+

mgLsiné, coso

h, = 8% cog 6, cosd, sind, I sy~ I,)+ 6,2 cosd, sing; 1, - Isy)+
6,0, cosb, (I ., +Co 6’3(I = I3y)+ sin 6?3(I sy~ s))

102

APPENDIX B: Complete Derivation of Dynamic-inversion Controller

Kinetic Energy in Generalized Velocities
a1, 1o
T(a.g)=2a"M(a)a=5M,aq,
Apply Lagrange’s Equations to Determine Mass Madirixl Coriolis Terms

L(a.g)=T(a.0)-V(a)

d 10M; oV

—(M.q)-= 1 +—=f
dt(qul) 2 aqk qlq] aqk k
oM, 1 0M; oV
MG +—8qg¢-——-—2@gg +—=f
qul aq] q]q| 2 aqk qlq] aqk k

Equations of Motion in Index and Vector Notation

oM, 10M; | o9V
-5 id; T
dq, 2 dq, aq,

J

M, +h = f, where h, :(

M (a)g+h(g.q) = f

Selected Lyapunov Function

Q=3(a-a,) (a-a)+3 (-4, (a-a)

103

Find Derivative to Determine if Global Asymptotit;aBtabIe(Q < O)
Q=(a-a,)(a-a.)+(a-a,) (4-dy)
Q=(q-4.)"(6-d,+a-q,)

4-d, +a-a, =—(q-9,) (Eq. B1)

Gy = M (a,) " (f4 —hlay.44)) (Eq. B2)

Substitute Desired Motion into the Equations of idiot

fq = M(qd)qd +h(qd’qd): MGy +hy

by =M (fy —hy) (Eq. B3)

Substituting Eq. B2 and Eq B3 into Eq. B1

M_l(f _h)_MJl(fd _hd)+q_qd =_(q_Qd)

f =M (a)M(q,)* f, +(h(a,a)- M ()M (a,) *h(aq. 6))- M (@)@ -a,)+ (- a,)]

104

APPENDIX C: PID and Dynamic-inversion Controller Program

global gdI11213 m dttime_intervals ang_com angrate_c om
angaccel_com Kp Ki Kd ang_com_temp angrate_com_temp

% Variables for the surrounding system

g =9.81,; %m/sec’2

% Variables for the Flight Table Geometry

d =0.20; %m - distance of component offset from point of rot ation
I1x = 57.6257; %kg-m~"2

1y = 20.4346; %kg-m~"2

11z = 37.8028; %kg-m~"2

I2x = 6.6928; %kg-m~"2

12y = 3.7280; %kg-m~"2

12z = 3.0442; %kg-m~"2

I3x = 2.8279; %kg-m~"2

I3y = 6.7884, %kg-m~2

13z = 6.7884; %kg-mn"2

1 =[11x 0 0;0 11y 0;0 0 11Z];

12 =[I2x 0 0;0 12y 0;0 0 12z];

I3 =[I3x 0 0;0 13y 0;0 0 13z];

m = 91.8523,; %kg - mass of component 2 (yaw)

f =[0;0;0]; %set the initial control = 0 for all components

% Time Characteristics for Simulation

i=1; %Counter for the "for-loop"

iter = 1,

ti(i)=0.0; %sec - initial start time of the system

tf = 5.0; %sec - final time of the system

dt = 0.01; %sec - time steps for RK44 integration
time_intervals = 1; %number of steps till control is adjusted
tsteps=(tf-ti)/dt; %total number of iterations

% Initial Position and Angular Rates of Gimbals (Co mmanded and Actual)

ang_com_temp = [0.1;0.1;0.2];
angrate_com_temp = [0;0;0];
[commands] = commanded_values(i,0);
ang_com = commands(1:3);
angrate_com = commands(4:6);
angaccel_com = commands(7:9);
Ang_Com(:,i) = ang_com;
AngRate_Com(;,i) = angrate_com;

thel_0=0.4; %radians - Initial Position, Component 1
the2_0=0.4; %radians - Initial Position, Component 2
the3_0 =0.4; %radians - Initial Position, Component 3
u_0 = angrate_com(1); %radians/sec - Initial Velocity, Component 1
v_0 = angrate_com(2); %radians/sec - Initial Velocity, Component 2
w_0 = angrate_com(3); %radians/sec - Initial Velocity, Component 3
thel(i) = thel_O; %Angle of Component 1, for graphing
the2(i) = the2_0; %Angle of Component 2, for graphing
the3(i) = the3_0; %Angle of Component 3, for graphing

105

u() =u_0; %Angular Velocity of Component 1, for graphing

v(i) =v_0; %Angular Velocity of Component 2, for graphing
w(i) =w_0; %Angular Velocity of Component 3, for graphing
% PID Augmented Integration Term

z = [0;0;0];

% Defining State Vector for Various Controllers

controller = input(‘Enter "1" for PID, "2" for DI: ');

if controller ==

X = [thel(i);the2(i);the3(i);u(i);v(i);w(i);z];
elseif controller == 2
x = [thel(i);the2(i);the3(i);u(i);v(i);w()];

end;
% Gains
if controller ==
Kp = 400;
Ki = 400;
Kd =100;
elseif controller ==
Kp =400;
Ki=0;
Kd =100;
end;

%Graphing Parameters
time(i) = 0.0;

ang_1(i) = x(2);
ang_2(i) = x(2);
ang_3(i) = x(3);
control_1(i) = f(1);
control_2(i) = f(2);
control_3(i) = f(3);
error_mag(i) = 0;
error_norm_total = 0;

% Integration Process for the RK44
for i= l:tsteps
ti(i+1) = ti(i) + dt;

k1 = dt*deriv_con(controller,x,f);

k2 = dt*deriv_con(controller,x+k1/2,f);
k3 = dt*deriv_con(controller,x+k2/2.f);
k4 = dt*deriv_con(controller,x+k3,f);

X = X + (1/6)*(k1+2*(k2+k3)+kd);

[commands] = commanded_values(i,ti(i+1));
ang_com = commands(1:3);

angrate_com = commands(4:6);
angaccel_com = commands(7:9);
Ang_Com(;,i+1) = ang_com;
AngRate_Com(;,i+1) = angrate_com;

106

[f,error_norm] = control_develop(controller,i,x

error_mag(i+1) = error_norm,;
error_norm_total = error_norm_total + error_nor
ang_1(i+1) = x(1);
ang_2(i+1) = x(2);
ang_3(i+1) = x(3);
control_1(i+1) = f(2);
control_2(i+1) = f(2);
control_3(i+1) = f(3);
time(i+1) = ti(i+1);
end;

error_norm_avg = error_norm_total/tsteps

kkkkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkhkkhkkkkkkkkkkkkkkkkk

function [k]=Controller_Main(controller,x,f)

global gdI11213 mdtang_com angrate_com

1x =11(1,1);
11y = 11(2,2);
11z = 11(3,3);
12x = 12(1,1);
12y = 12(2,2);
12z = 12(3,3);
13x = 13(1,1);
13y = 13(2,2);
13z = 13(3,3);
thel = x(1);
the2 = x(2);
the3 = x(3);
tld = x(4);
t2d = x(5);
t3d = x(6);

M11 = I1ly + (I2x+13x)*(sin(the2))"2 + (12y + 13y*(c
13z*(sin(the3))*2)*(cos(the2))"2;
M12 = (13y-13z)*cos(the2)*cos(the3)*sin(the3);
M21 = M12;
M13 = I3x*sin(the2);
M22 = I3y*(sin(the3))"2 + 13z*(cos(the3))"2 + 12z;
M23 = 0;
M31 = M13;
M32 = M23;
M33 = 13x;
M = [M11 M12 M13;
M21 M22 M23;
M31 M32 M33];

107

*kkkkkhkkhkk

os(the3))"2 +

hl = (t2d"2)*sin(the2)*cos(the3)*sin(the3)*(13z-13y) ...
+ tld*t2d*2*cos(the2)*sin(the2)*(12x-12y+I3x
-(13y*(cos(the3))"2+13z*(sin(the3))"2))

+ t1d*t3d*(-2*(13y-13z)*cos(the3)*sin(the3)*(c os(the2))*2)

+ t2d*t3d*cos(the2)*(I3x+13y*((cos(the3))"2
-(sin(the3))"2)+13z*((sin(the3))*2-(cos(the3)) 2)) ..

+ m*g*(-(sqrt(2)/2)*d*(((1-cos((pi/2)-the1))"\(-1/2))*sin((pi/2)
-thel)*sin((pi/4)-0.5*the1)+sqrt(1-cos((pi/2)- thel))*cos((pi/4)

-0.5*thel))+d*(1-cos(the2))*sin((pi/2)-thel));

h2 = (t1d"2)*cos(the2)*sin(the2)*(12y-12x
-13x+13y*(cos(the3))"2+13z*(sin(the3))"2)
+ t1d*t3d*cos(the2)*(I3y*((cos(the3))"2
-(sin(the3))"2)+13z*((sin(the3))*2-(cos(the3)) 72)-13x)
+ t2d*t3d*2*(13y-13z)*cos(the3)*sin(the3)
+ m*g*d*sin(the2)*cos((pi/2)-thel);

h3 = (t1d"2)*(13y-13z)*(cos(the2))"2*cos(the3)*sin(the3) ...
+ (t2d"2)*(13z-13y)*cos(the3)*sin(the3)
+ t1d*t2d*cos(the2)*(I13x+13y*((sin(the3))"2
-(cos(the3))"2)+13z*((cos(the3))*2-(sin(the3)) 2));

h = [h1;h2;h3];
ang_rate_dot = M\(f - h);

if controller ==

ang = [thel;the2;the3];

error = ang_com - ang;

int_error = error;

k = [t1d;t2d;t3d;ang_rate_dot;int_error];
elseif controller ==

k = [t1d;t2d;t3d;ang_rate_dot];
end;

kkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkhkkkkhkkkhkhkkkkhkkkhkkkkkkkk *kkkkkkkkk

function [commands]=Controller_Main(i,t)

global dtang_com_temp angrate_com_temp

% Commanded Angles and Rates for Sinusoidal Motion

% ang_com = [0.5*sin(t);0.5*sin(t);0.5*sin(t)];

% angrate_com = [0.5*cos(t);0.5*cos(t);0.5*cos(t)];

% angaccel_com = [-0.5*sin(t);-0.5*sin(t);-0.5*sin(9]

% Commanded Angles and Rates for Constant Motion
ang_com =[0.1;0.1;0.2];

angrate_com = (ang_com - ang_com_temp)/dt;
angaccel_com = (angrate_com - angrate_com_temp)/dt;

ang_com_temp = ang_com;
angrate_com_temp = angrate_com;
% Step Function after a Given Time Period

108

% if i>=500
% ang_com =][0.2;0.2;0.5];
% end,;

commands = [ang_com;angrate_com;angaccel_com];

kkkkkkkkkkkkkkkkkhkkkhkkkhkkkhkkkkkkkhkkhkkkhkkkkkkkkkkkkkkhkkkkk *kkkkkkkkk

function [ftemp,error_norm]=Controller_Main(controller,i,x)
global ang_com angrate_com Kp Ki Kd

ang = [x(1);x(2);x(3)];
vel = [x(4);x(5);x(6)];
angle_error = ang_com - ang;
if i>=0
error_norm = norm(angle_error);
else error_norm = 0;
end;

if controller ==
€ = ang_com - ang;
de = angrate_com - vel;
z_vec = [x(7);x(8);x(9)];
ftemp = Kp*e + Ki*z_vec + Kd*de;

elseif controller ==

[gr,qdr,Mr,hr,fr,g,qd,M,h]=model_components(ang vel);

ftemp = M*(Mn\fr) + (h - M*(Mn\hr)) - M*(Kp*(g- gr)+Kd*(qd-qdr));
end;
*kkkkkkkkkkkkkkkkkhhkkkhkkhhkkkkhkhhhkkhkkhkhhkhkhkhhhkkhkhhkkkhkhikikik *kkkkkkkkk
function [qgr,qdr,Mr,hr,fr,q,qd,M,h]=control_develop(the,vel)

global gdI11213 mdtang_com angrate_com angaccel_com

11x =11(1,1);
11y =11(2,2);
11z = 11(3,3);
12x = 12(1,1);
12y = 12(2,2);
12z = 12(3,3);
I3x = 13(1,1);
13y =13(2,2);
13z = 13(3,3);

109

%%%% %% %% %% %% %% %% %%%%% Reference Values %% % PdhdPaPerdsiashin %% %% %% %% %%

% Positional Variables
thelr = ang_com(1);
the2r = ang_com(2);
the3r = ang_com(3);
gr = [thelr;the2r;the3r];

% Velocity Variables
tldr = angrate_com(1);
t2dr = angrate_com(2);
t3dr = angrate_com(3);
qdr = [t1dr;t2dr;t3dr];

% Acceleration Variables
tlddr = angaccel_com(1);
t2ddr = angaccel_com(2);
t3ddr = angaccel_com(3);
tddr = [t1ddr;t2ddr;t3ddr];

% Returned Variables
M11 = 11y + (I2x+13x)*(sin(the2r))"2 + (12y + 13y*(cos(the3rn)"2 +
I3z*(sin(the3r))"2)*(cos(the2r))"2;
M12 = (13y-13z)*cos(the2r)*cos(the3r)*sin(the3r);
M21 = M12;
M13 = I3x*sin(the2r);
M22 = I3y*(sin(the3r))"2 + 13z*(cos(the3r))"2 + 12z ;
M23 = 0;
M31 = M13;
M32 = M23;
M33 = 13x;
Mr = [M11 M12 M13;
M21 M22 M23;
M31 M32 M33];

hl = (t2dr*2)*sin(the2r)*cos(the3r)*sin(the3r)*(13z -13y)
+ tldr*t2dr*2*cos(the2r)*sin(the2r)*(12x-12y+I3x-
(13y*(cos(the3r))"2+13z*(sin(the3r))"2))

+ t1dr*t3dr*(-2*(13y-13z)*cos(the3r)*sin(the3r)*(cos(the2r))"2)
+ t2dr*t3dr*cos(the2r)*(13x+I3y*((cos(the3r))* 2-

(sin(the3r))"2)+13z*((sin(the3r))*2-(cos(the 3aN2) ..
+ m*g*(-(sqrt(2)/2)*d*(((1-cos((pi/2)-thelr))* (-1/2))*sin((pi/2)
-thelr)*sin((pi/4)-0.5*thelr)+sqrt(1-cos((pi/2)
-thelr))*cos((pi/4)-0.5*thelr))+d*(1-cos(the2r)*sin((pi/2)
-thelr));

h2 = (t1dr*2)*cos(the2r)*sin(the2r)*(12y-12x
-13x+13y*(cos(the3r))"2+13z*(sin(the3r))"2)
+ t1dr*t3dr*cos(the2r)*(13y*((cos(the3r))*2
-(sin(the3r))*2)+I13z*((sin(the3r))"2-(cos(the3 N)"2)-13x)
+ t2dr*t3dr*2*(13y-13z)*cos(the3r)*sin(the3r)
+ m*g*d*sin(the2r)*cos((pi/2)-thelr);

h3 = (t1dr*2)*(13y-13z)*(cos(the2r))*2*cos(the3r)*s in(the3r)
+ (t2dr*2)*(13z-13y)*cos(the3r)*sin(the3r)
+ tldr*t2dr*cos(the2r)*(13x+I3y*((sin(the3r))* 2

110

-(cos(the3r))"2)+I13z*((cos(the3r))*2-(sin(the3

hr = [h1;h2;h3];
fr = Mr*tddr + hr;

N"2));

%%%%%%%%%%%%%%%%%% Actual Values 9%6%%%% % %% %0%8%88/0 % %%

% Positional Variables
thel = the(1);

the2 = the(2);

the3 = the(3);

g = [thel;the2;the3];

% Velocity Variables
tld = vel(1);

t2d = vel(2);

t3d = vel(3);

qd = [t1d;t2d;t3d];

% Returned Variables
M11 = 11y + (I12x+13x)*(sin(the2))*2 + (12y + 13y*(c
13z*(sin(the3))*2)*(cos(the2))"2;
M12 = (13y-13z)*cos(the2)*cos(the3)*sin(the3);
M21 = M12;
M13 = I3x*sin(the2);
M22 = 13y*(sin(the3))"2 + 13z*(cos(the3))"2 + 12z;
M23 = 0;
M31 = M13;
M32 = M23;
M33 = 13x;
M =[M11 M12 M13;
M21 M22 M23;
M31 M32 M33];

hl = (t2d"2)*sin(the2)*cos(the3)*sin(the3)*(13z-13y
+ tld*t2d*2*cos(the2)*sin(the2)*(12x-12y+I3x
-(13y*(cos(the3))"2+I3z*(sin(the3))"2))
+ t1d*t3d*(-2*(13y-13z)*cos(the3)*sin(the3)*(c
+ t2d*t3d*cos(the2)*(I13x+13y*((cos(the3))"2
-(sin(the3))"2)+13z*((sin(the3))"*2-(cos(the3))
+ m*g*(-(sqrt(2)/2)*d*(((1-cos((pi/2)-the 1))\
-thel)*sin((pi/4)-0.5*thel)+sqrt(1-cos((pi/2)-
-0.5*thel))+d*(1-cos(the2))*sin((pi/2)-thel));

h2 = (t1d"2)*cos(the2)*sin(the2)*(12y-12x
-13x+13y*(cos(the3))"2+13z*(sin(the3))"2)
+ t1d*t3d*cos(the2)*(I3y*((cos(the3))"2
-(sin(the3))"2)+13z*((sin(the3))*2-(cos(the3))
+ t2d*t3d*2*(13y-13z)*cos(the3)*sin(the3)
+ m*g*d*sin(the2)*cos((pi/2)-thel);

h3 = (t1d"2)*(13y-13z)*(cos(the2))"2*cos(the3)*sin(
+ (t2d"2)*(13z-13y)*cos(the3)*sin(the3)
+ tld*t2d*cos(the2)*(I3x+13y*((sin(the3))"2
-(cos(the3))*2)+13z*((cos(the3))*2-(sin(the3))

h = [h1;h2;h3];

111

os(the3))"2 +

os(the2))*2)

A2)) ...

-1/2))*sin((pi/2)

thel))*cos((pi/4)

2)-13x)

the3) ...

"2));

