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Abstract

Since modern data centers have been significantly scaling up in capacity in past decades,

it is demanding to curtail energy consumption of virtual-machine-powered data centers.

Cloud computing has radically changed the landscape of computing, storage, and commu-

nication infrastructures and services. Cloud computing’s benefits encompass on-demand

capacity, low cost of ownership, and flexible pricing. In the first part of this dissertation I

propose a frequency-aware management strategy, which controls dynamic power and static

power of processors running virtual machines in data centers. Unlike existing dynamic volt-

age and frequency scaling schemes, my strategy simply incorporates frequency requirements

rather than task execution times. This salient feature is practical because task execution

times in a raft of real-world applications are unknown in a priori. I build a frequency-aware

model to derive an optimal frequency ratio that minimizes processors’ energy consumption.

With my model in place, the energy efficiency of a datacenter can be maximized by adjust-

ing the processor’s frequency to meet the optimal frequency ratio. I design a management

approach to judiciously adjust frequency ratio to conserve energy without violating the fre-

quency requirements imposed by virtual machines. After analyzing the correlations between

frequency ratio and energy consumption, I show that a small static power proportion gives

rise to high energy-saving performance. The results demonstrate that my model lays out a

solid theoretical foundation catering to the development of power management software in

DVFS-enabled clouds.

Besides the energy consumption, security issues coupled with resource allocations in

cloud computing remain a challenging problem to be tackled by the industry and academia.

While moving towards the concept of on-demand services and resource pooling in a dis-

tributed computing environment, security is a major obstacle for this new dreamed vision
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of computing capability. In the second part of the dissertation study, I articulate novel

energy-aware scheduling policies customized for virtual machines running on clouds, in which

service-level agreements (SLAs) are fulfilled. After addressing security concerns in cloud com-

puting, I advocate for a research roadmap towards future security-aware energy management

in clouds. I propose a high-level design for a security- and frequency-ware DVFS model or

SF-DVFS, which orchestrates security services, security overhead analysis, and DVFS con-

trol green cloud computing systems. I delve into the main technical challenges associated

with the proposed SF-DVFS model. To solve this multi-objective problem, I design a Se-

cure and Economical DVFS-enabled Scheduling Policy with NSGA-II-SER(Non-dominated

Sorting Genetic Algorithm II with Security and Energy Requirement) for Clouds.

Blockchain is an ideal privacy protection technology characterized by decentralization,

transparency, data security, and system autonomy. As the last project in this dissertation

research, I navigate leading-edge energy saving and privacy protection techniques for clouds.

Next, I investigate privacy controls in blockchain systems. Inspired by modern blockchain

and cloud computing techniques, I elaborate on a research roadmap towards future energy-

aware privacy protection mechanisms in clouds. In a case study, I design a blockchain-based

VM consolidation framework accompanied by the DVFS (Dynamic Voltage and Frequency

Scaling) technique to offer energy savings and privacy controls in clouds. I expect that the

roadmap will open up potentials to develop energy-efficient blockchain-based cloud comput-

ing platforms.
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Chapter 1

Introduction

In this dissertation research, I will present novel approaches to enhancing energy effi-

ciency and security of computing clouds. I start off the dissertation with background knowl-

edge of data centers, cloud computing, and virtualization techniques. Perhaps most impor-

tantly, this Chapter highlights the motivations for the three research thrusts - frequency-

aware management, security-aware management, and energy-aware privacy controls.

More specifically, this chapter is organized as follows. I introduce the background of

data centers, cloud computing, and virtualization technique in Section 1.1. Then, I elaborate

on the motivations and basic ideas for frequency-aware management strategies in Section 1.2.

Next, I share the motivations for security-aware energy management in clouds and energy-

aware privacy controls for clouds in Section 1.4 and Section 1.4, respectively. After that,

Section 1.5 concludes the contributions of this dissertation research. Last, but not least, I

show the organization of this dissertation in Section 1.6.

1.1 Data Centers, Cloud Computing, and Virtualization Techniques

1.1.1 Data Centers

In our expanding digital world, data is changing the way I live, work, and entertain.

International Data Corporation or IDC speculates that the aggregated data in the world will

grow from 33 zettabytes in 2018 to 175ZB by 2025 at a significant annual growth rate of

61% [119]. To meet the accommodate such a massive amount of data, the scale of datacenters

is snowballing to reach an unbelievable level. The global data-center market is estimated

to exceed $174 billion by 2023, growing at an annual rate of approximately 4% during the

1



forecast period. The largest companies such as Facebook, Google, Amazon, and Microsoft are

focusing on the development of modular and hyperscale data-center construction facilities [3].

1.1.2 Cloud Computing

Cloud-based datacenters have become a new trend of the enterprise data repository re-

placing traditional datacenters. Cloud computing offers promising benefits such as enhanced

scalability, efficiency, flexibility of business operations, and to name just a few. A growing

number of large companies have chosen to utilize cloud datacenters (e.g., Microsoft Clouds

and Amazon Web Services) to store enormous amount of data. IDC predicts that 49% of

the world’s stored data will reside in public cloud environments in year 2025 [119]. A report

published by Cisco forecasts that 94% of all workloads and computing will be placed in

cloud datacenters in 2021 [64]. More specifically, overall workloads and compute instances in

datacenters will be doubled (i.e., 2.3-fold) from 2016 to 2021. When it comes to computing

clouds, the workloads are expected to expand by a factor of 2.7-fold during the same period.

1.1.3 Virtualization Techniques

With the advanced virtualization technologies deployed in data centers, cloud infrastruc-

tures become a predominant computing platform (see, for example, Amazon Elastic Compute

Cloud (EC2) [148] and Microsoft Azure [152]). Virtual computation environments furnish

on-demand and elastic computation and storage capabilities, thereby facilitating large-scale

data analysis and big-data applications. In modern virtualization techniques, resources re-

siding in physical machines are partitioned into individual virtual machines (VMs), which

isolates one application from the counterparts running on the other VMs. Multiple VMs

assigned to one physical machine share resources on the same machine. One or more appli-

cations may run on a virtual machine; in contrast, a large-scale application can make use of

enormous resources across multiple virtual machines.
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1.2 Motivations and Basic Ideas for Frequency-aware Management Strategies

The performance of cloud computing platforms has been significantly growing in the

past decade. With the dramatic evolution in computing capacity, the power consumption

of datacenters customized for cloud computing is skyrocketing. In the first part of this

dissertation study, I propose to seamlessly integrate DVFS (i.e., Dynamic Voltage and Fre-

quency Scaling) scheduling with virtual machine management to effectively conserve energy

consumption in datacenters.

My frequency-aware scheduler presented in Chapter 3 aims to minimize CPU energy cost

in virtual-machine-enabled datacenters by configuring the most appropriate CPU frequency

ratios according to workload conditions. Four emerging trends below strongly motivate us

to contrive my frequency-aware DVFS scheduling algorithm.

• Virtual-machine-based cloud computing platforms are technical underpinnings for mod-

ern datacenters in the future (see Section 1.2.1).

• Large-scale datacenters have a pressing demand to be economically and environmen-

tally friendly (see Section 1.2.2).

• The dynamic voltage and frequency scaling technique or DVFS is one of the most

practical energy-saving technologies (see Section 1.2.3).

• Quality of service (i.e., QoS) opens a door for optimizing energy efficiency without

violating service-level agreements (see Section 1.2.4).

I detail the above four motivations followed by the basic idea behind my novel frequency-

aware management design presented in Section 1.2.5.

1.2.1 Virtual Machines

Virtual machines are a driving force behind the wide adoption of cloud-based datacen-

ters. Virtual machines - software-based machine emulations - facilitate flexible, cost-effective,
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and on-demand computing environments. Virtual machines make it feasible to save a lot of

energy by increasing workloads and compute instance density. The workload and compute

instance density of cloud servers is expected to grow from 8.8 in 2016 to 13.2 by 2021. In

comparison, the workload and compute instance density in traditional data center servers

will merely increase from 2.4 in 2016 to 3.8 in the same period [64]. Moreover, virtual

machines are positioned to support legacy software and computing environments [93].

1.2.2 Economically and Environmentally Friendly Datacenters

The energy consumption of these large-scale datacenters is truly tremendous. A long-

term goal of this study is to devise resource management tools for future economically and

environmentally friendly datacenters. Servers, core IT components in datacenters, are major

players contributing to high energy cost (e.g., more than 26%) [57]. CPUs, main memory,

and disk I/Os are key contributors to energy cost in servers. The energy cost of CPU, in

turn, occupies the highest proportion in the server (i.e., 42%) [18]; in some scenarios, CPUs

account for up to 70% of total energy consumption in servers [19]. Thus, conserving CPU

energy is indispensable in tackling the datacenter energy problem. In a handful of prior

studies [105], CPU energy saving policies have been investigated without considering main

memory or I/Os and; therefore, I followed this research methodology to place the CPU

energy efficiency under the microscope.

1.2.3 Dynamic Voltage and Frequency Scaling

VM consolidation and DVFS (Dynamic Voltage and Frequency Scaling) are two popular

energy conservation methods adopted in data centers. The VM consolidation technique re-

duces the number of physical servers by migrating VMs and shutting down idle servers to save

energy consumption [158][69]. Unlike VM consolidation, DVFS is beneficial when servers ex-

hibit low idle power consumption, high utilization, and large VM migration overhead. DVFS

enables processors to consume less power by adjusting to the most appropriate frequency and
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supplied voltage. Almost all processors are built in CMOS circuit and; therefore, evidence

shows that energy consumption of CPU is approximately proportional to frequency and

the square of the voltage. Decreasing voltage and processor frequency will, of course, scale

down computing performance and stretch executing times. This performance problem is well

addressed by incorporating the concept of quality of service (a.k.a., QoS) while adjusting

voltage and CPU frequency. The popularity of the DVFS technique motivates us to explore

an optimization strategy to enhance the energy efficiency of DVFS-endabled datacenters.

When deploying the DVFS technique, one has to be aware of static power consumption

that is incurred by leakage current in CMOS devices. More often than not, DVFS inevitably

extends execution times at the cost of increased static power consumption. I advocate a

holistic solution that orchestrates both dynamic power and static power management. More

specifically, I propose a model that takes into account static and dynamic power consumption.

With the proposed model in place, I conduct an experiment to evaluate the energy efficiency

of servers running multiple virtual machines in datacenters.

1.2.4 Quality of Service

To build energy-efficient datacenters, it is prudent to make a good tradeoff between

energy efficiency and performance. A practical energy-saving method is to conserve energy

while meeting Service Level Agreements (a.k.a., SLA requirements) [113]. Improving the

energy efficiency of datacenters maximizes profits by significantly cutting back energy con-

sumption. It is conventional wisdom to incorporate execution time and deadlines into QoS

requirements of submitted tasks. In a raft of real-world scenarios (e.g., web crawlers), task

execution times are unknown a priori. This constraint motivates us to pilot a novel model

that does not rely on task execution times and deadlines.
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1.2.5 Basic Idea of My New Frequency-aware Management Approach

In my design, I take into account frequency requirements as part of SLAs. In cloud

computing platforms like Google Cloud and Microsoft Azure, users submit the required

number of virtual-machine instances accompanied by frequency requirements. Since cloud-

computing platform cost is proportional to the number of VMs as well as required frequency,

users strive to make the most appropriate tradeoff between performance and cost.

I propose a new Qos model, where minimum frequency requirements is a core component.

In doing so, users have no obligation to specify execution times and deadlines in QoS; rather,

frequency requirements can straightforwardly serve the purpose. My energy conservation

scheme fosters energy efficiency while striving to meet frequency requirements rather than

deadlines. QoS requirements will be guaranteed if configured frequencies are the same or

higher than the specified minimum frequencies.

Compared with existing solutions, my approach has the following three salient strengths.

First of all, frequency ratios are used as a metric to specify QoS requirements and energy

consumption rather than the execution time parameter. My model derives optimal energy

savings for servers without estimating execution times or specifying deadlines. Second, my

model offers optimal frequency ratios customized for various processors in accordance to

their static power proportions, thereby maximizing the processors’ energy efficiency. Last,

my frequency-aware DVFS model, being practical in nature, is readily to be adopted by

power management systems. Given a server’s static power and max dynamic power, the

model can govern a power manager to achieve high energy efficiency.

1.3 Motivations for Security-Aware Energy Management in Clouds

In the second part of the dissertation research, I are focusing on research thrusts in

security-aware energy management for cloud computing infrastructures. My research is

inspired by the following three trends.
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• Cloud computing is an effective technology that delivers interesting services to cus-

tomers over the Internet.

• There is a pressing demand to build energy-efficient clouds housed in large-scale data

centers.

• Building trustworthy cloud environments remains a challenging issue.

1.3.1 Hyper-Scale Data Centers

In a drastically expanding digital world, big data are changing the way we live, work,

and entertain. International Data Corporation or IDC speculates that the aggregated data

around the world will grow from 33 zettabytes in 2018 to 175ZB by 2025 at a significant

annual growth rate of 61% [119]. To accommodate such a massive amount of data, the scale of

data centers is demanded to snowball to reach an unprecedented and unbelievable level. The

global data center market is estimated to exceed $174 billion by 2023, representing an annual

growth rate of approximately 4% during the forecast period. To meet such pressing demands,

the largest technology companies such as Facebook, Google, Amazon, and Microsoft are

focusing on the development of modular and hyper-scale data center construction facilities [3].

1.3.2 Energy-Efficient Data Centers

The energy consumption of these large-scale datacenters is truly tremendous. For ex-

ample, the global data center power market size will hit the bar of $10.77 billion by year

2025, expanding at an annual rate of 6.9%, even faster than that of the datacenter mar-

ket [1]. Globally, Power consumption of data centers is close to 416 terawatts, representing

three percent of all electricity generated on the planet. In other words, data center energy

consumption around the world accounts for 40 percent more than all the energy consumed
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in the United Kingdom [100]. Nowadays, over 80% of the world’s energy is still being gen-

erated by fossil fuels [5], which could lead to CO2 emissions and other global environmental

problems like global warming.

1.3.3 Trustworthy Cloud Environments

Cloud computing offers services with scalable resources in a protected view. Although

cloud features are well understood from a business point of view, building trustworthy cloud

environments remains a challenging issue. Cloud computing has increasingly gained in pop-

ularity among individual users and organizations, but recently raised security issues demand

new solutions. For example, organizations have a dire need for secure infrastructures when

data are transferred to and managed at remote locations.

It is conventional wisdom to handle big data in local storage systems, where data pro-

cessing, movement, and management are carried out in local domains. More often than not,

security measures developed by cloud service providers are transparent to the public and,

for this reason, some enterprise users hesitate to rely on cloud services and infrastructure to

store and process digital assets [81][73].

1.4 Motivations for Energy-Aware Privacy Controls for Clouds

I navigate energy-aware privacy preserving techniques in realms of centralized and de-

centralized computing systems. I start my investigation by focusing on cloud data cen-

ters, the backbone of cloud infrastructure platforms supporting large-scale data processing

and storage, followed by blockchain techniques that safeguard energy transactions in a dis-

tributed network. This study is inspired by the following two motivations - (1) privacy-aware

energy-efficient data storage (see Section 1.4.1) and (2) blockchain-based privacy preserving

techniques for clouds (see Section 1.4.2).
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1.4.1 Privacy-aware Green Data Storage

BP or British Petroleum forecasts that global energy demand continues to grow in

the predictable future, driven by increasing prosperity and living standards [6]. Moreover,

ExxonMobil predicts that global energy demand will rises by 20 percent to 2040 and; during

the same time period, the electricity consumption will rise by 60 percent [4]. The trend

to electrify buildings, factories, cars, and buses, along with smart appliances, spurs the

pressing need for more electricity everywhere. Constructing energy-efficient data centers

catering to cloud computing aims to address the concerns of increasing electricity demands.

Cloud data center is energy friendly by the virtue of the on-demand deployment of resources

through cutting-edge virtualization technology. Cloud users are enabled to swiftly allocate

computing power and resources according to dynamically changing needs at any time without

maintaining the underlying physical structure of computing platforms. Growing evidence

demonstrates that cloud computing platforms are slated to conserve energy by providing

information resources in a pay-as-you-go model [145].

The virtualization technology in cloud data centers brings forth versatility and reliabil-

ity to cloud services. To facilitate virtual machine (VM) management in cloud data centers,

system administrators make use of shared data storage to handle VMs’ data in uniform

storage space. The concept of shared data storage is implemented by adopting a central-

ized structure, where all physical nodes are connected to a centralized storage unit such as

network-attached storage (NAS) [146]. Even it is convenient to build high-end centralized

storage systems, a centralized structure is prone to data leakage of VMs running in cloud

data centers when access privileges of some nodes are comprised [65].

1.4.2 Blockchains and Privacy Protections

The preceding discussions emphasize the importance of decentralization, one trait com-

monly associated with blockchain [168]. Blockchain is characterized by decentralization,

transparency, data security, and system autonomy. It has been applied widely in areas such
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as finance, education and employment, culture and entertainment, public service, informa-

tion security, healthcare, supply chain, and internet of things. Moreover, blockchain gains

its popularity in the energy sectors [23] thanks to blockchain’s underpinning characteristics

such as anonymity, decentralization, transparency, and reliability.

Despite the observable benefits of using blockchain in a diversity of areas including

the energy sectors, privacy concerns are restricting blockchain’s applications. For instance,

users may need to disclose private energy demand data to a third-party in order to schedule

the use of shared energy resources. This process may reveal sensitive personal data such

as working patterns, number of occupants, and vacation periods. On the other hand, the

privacy-related attacks should not be overlooked. Representative privacy concerns include

linking attacks, which utilize open information recorded in blocks and obtain privacy from

linking the information with other datasets. Moreover, in the arena of privacy preserving

methods, I confront the following challenges. First, more times than not, attackers are

capable of obtaining privacy with inaccurate data. Thus, any features pertaining to privacy

control ought to be hidden to prevent privacy leakage. Second, most existing differential

privacy schemes are inadequate for accurately recording energy trading operations because

a noised record stored in blocks results in a malfunction of a transaction ledger. Hence,

there is an urgent demand for designing adoptable privacy-preserving mechanisms catering

for blockchain-enabled energy applications.

1.5 Contributions

This section summarizes the main contributions of this dissertation research, which

embraces three technical underpinnings. The contributions of each research component are

articulated in Section 1.5.1, Section 1.5.2, and Section 1.5.3, repectively.

• Frequency-aware management in clouds.

• Security-aware energy management in clouds.
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• Energy-aware privacy controls for clouds.

• I apply the novel model to measure the energy efficiency of virtual-machine-powered

servers in data centers.

1.5.1 Contributions for Frequency-aware Management

I design a QoS-base strategy that adjusts frequency ratios to optimize energy efficiency.

Next, I build a model that offer optimal frequency ratios customized for various processors

in accordance to static power proportions. Then, I investigate the intriguing features of

the frequency-ratio-based DVFS model. Finally, I apply the novel model to measure the

energy efficiency of virtual-machine-powered servers in data centers. The contributions are

tabulated in the list below.

• A QoS-base strategy adjusts frequency ratios to optimize energy efficiency.

• A new model offers optimal frequency ratios customized for various processors in ac-

cordance to static power proportions.

• Investigating the features of the frequency-ratio-based DVFS model.

• Applying the developed model for gauging the energy efficiency of data centers.

1.5.2 Contributions for Security-Aware Energy Management

I discuss the development of security overhead models for various security services,

followed by proposing an idea to incorporate security and frequency awareness into the

context of qualify of service (QoS). Next, I develop a security-aware energy management

system for cloud computing environments. My novel energy management system, which is

expected to achieve high security and energy efficiency in clouds, seamlessly integrates the

security services, a security overhead model, and the security- and frequency-aware DVFS

model. Then, I articulate an approach to translating security and energy requirements into a

11



multi-objective optimization problem that can be solved by the genetic algorithm NSGA-II.

Finally, I implement the novel algorithm to enhance energy efficiency of computing servers

where the prescribed security requirements are met. The contributions are tabulated in the

list below.

• An improved security- and frequency-aware QoS model converts security overhead

incurred in security-sensitive applications into frequency requirements

• The security-aware energy management system design achieves high security and en-

ergy efficiency in clouds by the virtue of a seamless integration of security services, a

security overhead model, and the security- and frequency-aware DVFS model.

• Treating the security and energy requirements are defined in a format of a multi-

objective optimization problem to be solved by the genetic algorithm NSGA-II

• The developed model is applied to optimize the energy efficiency and security strengths

of data centers.

1.5.3 Contributions for Energy-aware Privacy Controls

Among all the energy-saving and privacy protection schemes for cloud computing, I

shed bright a light on blockchain-based virtual-machine consolidation combining DVFS to

offer energy savings and privacy protection in clouds. In this last part of the dissertation

study, I investigate three connected research issues: (1) energy-aware privacy protection

services, (2) energy-efficient blockchains, and (3) blockchain-enabled energy management

modules in clouds. I design a blockchain-based virtual-machine consolidation framework

accompanied by the DVFS (Dynamic Voltage and Frequency Scaling) technique to conserve

energy consumption and privacy controls in clouds. This system combines virtual machine

(VM) migrations with the DVFS technique to further improve energy efficiency. To protect

data during VM migrations and data movement, I propose to make use of blockchain-enabled

resource allocation to offer a transparent and trustworthy service on clouds. I promote
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the blockchain technique as an advanced decentralized structure to avoid privacy leakage

during VM migrations while guarding data against malicious tampering. My designed energy

management system is expected to achieve high privacy and energy efficiency in clouds by

orchestrating the blockchain, VM consolidation and frequency-aware DVFS model.

• Virtual machine (VM) migrations is combined with the DVFS technique to improve

energy efficiency.

• Blockchain-enabled resource allocation is proposed to protect data during VM migra-

tions and data movement.

1.6 Dissertation Organization

This dissertation is organized as follows. In the next Chapter, Chapter 2, related work

reported in the literature is comprehensively and extensively reviewed. In Chapter 3 I

describe a new frequency-aware QoS model, in which QoS requirements are represented

using CPU frequencies rather than deadlines. The concept of frequency ratio accompanied

by the frequency-aware DVFS model and the analysis of the DVFS model with respect to

frequency ratio are proposed and detailed in this chapter. Moreover, I discuss the sample

usages and applicability of the proposed frequency-aware model and conclude this paper

with future work.

I kick off Chapter 4 with a research roadmap by presenting the concepts of security

services and strengths. After I discuss the development of security overhead models for

various security services, I propose an idea to incorporate security and frequency awareness

into the context of qualify of service (QoS). In this chapter, I also present a security- and

frequency-aware DVFS model, referred to as SF-DVFS, for cloud computing systems.

In Chapter 5, I dive into three connected research issues centered around the privacy-

aware energy management in clouds: (1) energy-aware privacy protection services, (2)

energy-efficient blockchains, and (3) blockchain-enabled energy management modules in
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clouds. My novel energy management system is expected to achieve high privacy and en-

ergy efficiency in clouds by seamlessly integrating the blockchain, VM consolidation and

frequency-aware DVFS model.

The last chapter (Chapter 6), I conclude this dissertation by summarizing an array of

major research contributions. More importantly, I discuss future research directions from

various perspectives that have not yet been fully addressed in Chapter 4 and Chapter 5.
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Chapter 2

Literature Review

In the past decade, the scale of cloud data centers snowball to reach an unprecedented

and unbelievable level, a growing number of large companies have chosen to utilize cloud

datacenters (e.g., Microsoft Clouds and Amazon Web Services) to store enormous amount of

data. The challenges of cloud datacenters can be categorized into two camps, namely, energy

consumption and security preservation. In this chapter, I present a diversity of previous

research studies that are closely related to this dissertation - the energy saving and privacy

preservation in cloud data centers. I start off this chapter with the power model and stricture

of cloud datacenter. Then, I focus on the existed energy-saving methods in cloud-based

datacenters, and the sample methods include energy-aware hardware/software techniques

as well as the popular DVFS scheme (Dynamic Voltage and Frequency Scaling). After

that, research projects of task scheduling in cloud computing are surveyed and introduced.

Finally, I reviewed a bevy of privacy protection strategies have been raised to protect data

by considering the security issues of cloud data centers.

More specifically, this chapter is organized as follows. I introduce various power models

of cloud datacenters in Section 2.1. Then, I discuss one of the major differences between

cloud datacenter and traditional datacenter–virtual machines in Section 2.2. Next, clas-

sify leading-edge energy saving techniques from the following perspectives of infrastructure,

hardware techniques, and software in section 2.3. Moreover, I classify in Section 2.4 exist-

ing real-time task models followed by scheduling schemes for clouds. Last, but not least,

Section 2.5 summarizes the security issues in cloud computing, and Section 2.6 shows the

related solutions for privacy protections.
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2.1 Power Modeling of Cloud Datacenters

Prior studies have been focused on energy-consumption monitoring and management of

datacenters from a global perspective [156]. In order to monitor and manage cloud severs in

a much more meticulous view, researchers built up models to gauge the energy consumption

of hosts. For example, Roy et al. [124] demonstrated that server energy consumption is the

summation of CPU and RAM energy consumption. Additionally, Jain et al. [67] divided

CPU and RAM into the accumulation of data and instruction features, respectively. Tudor

et al. [144] incorporated I/O energy consumption into an energy-consumption model. Song

et al. [138] replaced the previous I/O energy consumption with disk and network card energy

consumption.

In addition to the above cumulative models, a handful of practical models shed light

on the relationship between CPU utilization and total energy consumption of severs. For

instance, Inozahy et al. [41] discovered the energy consumption models of severs under various

CPU frequencies. Following-up studies (see, for example, [42][49]) investigated that energy

consumption is linearly proportional to CPU frequency. On this basis, Ang et al. [141] raised

two concerns about two dependent model parameters, which rely on specific server power

to the model. Such a design made the energy consumption model fairly complicated. In

contrast, linear-like models are popular and practical thanks to the advantages of simplicity

and high accuracy. Therefore, in this study I adopt the linear-like modeling method to build

a new model for DVFS-enabled clouds.

2.2 Virtual Machines and Load Balancing

2.2.1 Load Balancing for Virtual Machines

The purpose of load balancing is to evenly distribute computing workloads across mul-

tiple computing resources to maximize overall system performance. Load balancing aims

to achieve an array of objectives, including (1) optimizing resource usage, (2) maximizing
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throughput, (3) minimizing response time, and (4) avoiding the overload of any resource.

VM-based load balancing is implemented through live VM migrations in data centers, where

a primarily concern is to optimize the usage of physical computing resources by migrating

virtual machines from heavily loaded physical machines (PMs) to those with least workload.

By dynamically adjusting the locations of VMs, one may optimize various objective functions

to provide superb cloud services. Sample objective functions include, but are not limited to,

improving performance, boosting system security, minimizing failure impact, and reducing

energy consumption.

Fig. 2.1 illustrates a classic load balancing architecture in a cloud computing platform.

All user requests are submitted to the load balancing module, which is responsible for dis-

patching requests to virtual machines to optimize resource utilization and energy efficiency.

Load balancing plays a critical role in guaranteeing the service-level agreements (SLAs)

of applications in cloud computing. The increasing workload of applications in virtual ma-

chines may trigger overloaded utilization in one resource or more (e.g., CPU, memory, I/O

and network bandwidth) on physical machines. More often than not, an overloaded physical

machine degrades application performance of all the VMs running on the PM. Consequently,

unbalanced loads inevitably impose an adverse impact on the finish times of batch appli-

cations and the response times of interactive applications. To eliminate the potential bot-

tleneck, one has to migrate excess load from overloaded physical machines to under-utilized

ones in computing clouds.

2.2.2 Challenges in Load Balancing

It is arguably true that load balancing techniques powered by VM migrations confront

the following challenges.

• Overhead. It is prudent to quantify the amount of overhead involved in deploying a

load balancing system. Load balancing overhead entails VM migration cost and com-

munication cost. For example, load of each physical machine ought to be periodically
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Figure 2.1: A load balancing architecture for clouds, where all user requests scheduled and
dispatched by the load balancing module to optimize resource utilization and energy effi-
ciency.

collected by a load balancing mechanism, which pays the communication cost to moni-

tor load across multiple PMs. A well-designed load balancing algorithm should reduce

such an overhead.

• Prediction. Due to the dynamic changes of application workload in VMs, it is ineffi-

cient to make migration decisions merely based on the current status of the system. An

ideal load balancing algorithm should be equipped with the capacity to accurately pre-

dicting workload to orchestrate VM management prior to any sharp changes in future

load. Such proactive approaches avert making last-minute load-balancing decisions,

which are in some cases too late.

• Performance. Various performance metrics are introduced to assess the efficiency of

cloud computing systems. Performance of a computing cloud can be measured from the

perspectives of system throughput as well as user experience and satisfaction. Given

performance requirements prescribed by end users, computing clouds are responsible for
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ensuring such requirements defined as quality of service (QoS). Modern load balancing

mechanisms seek to boost overall system performance while meeting QoS requirements.

2.3 Green Cloud Data Centers

Cloud computing has radically changed the landscape of computing, storage, and com-

munication infrastructures. With strong interest and investment from the industry and

government, cloud computing infrastructures are being increasingly patronized by both or-

ganizations and individuals. With increasing energy prices and data center scaling, high

energy consumption has become an impediment to the development of cloud-computing

environments. Reducing operational costs of data centers should be achieved through boost-

ing energy efficiency. As such, optimizing the energy efficiency of data centers supporting

cloud computing has captured much attention. A flood of intriguing studies have been re-

cently conducted to facilitate the development of energy-efficient data centers. As shown in

Fig. 2.2, I classify leading-edge energy saving techniques from the following perspectives of

infrastructure, hardware techniques, and software solutions.

Figure 2.2: Commonly adopted energy conservation techniques for clouds.
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2.3.1 Energy-Efficient Infrastructure Techniques

Infrastructure techniques intend to curb energy consumption by building green data

centers. The infrastructural energy conservation techniques entail cooling equipment [109],

flooring choices [71], and renewable energy sources [167].

With regard to the cooling principle, existing cooling solutions fall into three camps,

namely, air-cooling, liquid-cooling or free-cooling schemes. Thanks to low operational cost

accompanied by simple maintenance, the air-cooling technology is the most conventional way

of cooling down large-scale data centers [109]. Unlike air-cooling solutions, liquid cooling is

one of the most prominent and practical methods to be directly or indirectly implemented

in data centers. An indirect liquid-cooling system embraces a heat dissipation process where

heat sources and liquid coolants contact indirectly [82]. In contrast, liquid coolant in a direct

liquid-cooling method directly contacts electronic devices, where dielectric fluid offers electri-

cal insulation [133]. Furthermore, a raft of data centers leverage the free-cooling technology

to conserve cooling cost by the virtue of natural free cooling sources [164]. For instance,

Facebook constructed a naturally cooled data center in northern Sweden in 2013 [147].

Apart from the above versatile cooling techniques, a growing number of green data cen-

ters adopt flooring techniques with perforated tiles and a raised floor plenum for cool air

intake [71]. The application of renewable sources of energy (e.g., solar, geothermal, wind,

hydro power) unequivocally and considerably cut back energy consumption in data centers.

For example, Zhang et al. devised GreenWare, a novel middle-ware system that conducts

dynamic request dispatching to enhance the percentage of renewable energy powering a dis-

tributed data center [167]. GreenWare fully utilizes renewable energy sources while meeting

the desired cost budget for cloud service providers.

2.3.2 Energy-Aware Hardware Techniques

Acquiring a diversity of energy-efficient hardware components makes it possible and de-

sirable to construct green data centers with high energy efficiency. Energy-efficient hardware
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techniques deployed in modern data centers include hard disks [137], processors [75], main

memory [35], and network interconnections [10].

When it comes to data storage systems, solid-state disks and multi-speed disks are

proved to be capable of trimming energy consumed by disks [137]. The dynamic voltage

frequency scaling (DVFS) technique [75] is a popular technique, which is a feasible solution to

conserve energy consumption of DVFS-enabled CPU and main memory - key underpinnings

in computing servers. It is evident that DVFS enables processors and main memory to

consume less power by electing the most appropriate frequency and supplied voltage. For

example, Garg et al. developed the near-optimal energy-efficient scheduling algorithms,

where DVFS is employed to decrease carbon emission by scaling down CPU frequency and

optimizing cloud providers’ profits [50]. Speaking of energy-aware network interconnects

for data centers, an array of network architectures have been proposed and customized for

data centers. Representative techniques include, but not limited to, energy proportional

networks [8], networks based on the elastic tree topology [59] and the Proteus network [134].

2.3.3 Energy-aware Software Techniques

A wide range of software techniques were designed to conserve energy consumption in

clouds. Such cutting-edge software solutions include task scheduling [38], data concentra-

tion [114], virtual machine (VM) placement [106] and scheduling [89].

Dong et al. developed a greedy task-scheduling policy (the most efficient-server-first

scheduling) to enhance energy efficiency of servers deployed in data centers. This scheduling

scheme shortens the average task response time while minimizing the energy expenditure

of servers [38]. Pinheiro et al. devised the popular data concentration (PDC) technique, a

promising technique that migrates frequently accessed data to a small subset of disks [114].

The overarching goal of PDC is to skew the load towards a few of the disks, allowing the

other disks to be transitioned to a low-power energy-saving mode [114]. VM placement,

consisting of VM migration and consolidation, is one of the most common approaches to
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achieving high energy efficiency by dynamically scaling down the size of running clusters.

With the help of virtualization, energy consumed by cluster computing infrastructures are

immensely reduced by applying energy-aware VM migrations and consolidations [106]. In

the arena of VM management, VM scheduling is an outstanding energy-saving method in

cloud environments. For example, Li et al. proposed GRANITE - a holistic virtual machine

scheduling algorithm being capable of minimizing total energy consumption in a data cen-

ter [89]. GRANITE embraces an elaborate thermal model, which is adept at analyzing the

temperature distribution of airflow and processors [89].

2.3.4 Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling or DVFS is a widely adopted energy-conservation

technique for clusters housed in data centers. Much attention has been paid toward DVFS-

based task schedulers that minimize the total energy consumption without violating dead-

lines [162]. Aydin and Yang [16] showed that task scheduling on multiprocessors to minimize

energy consumption is an NP-Hard problem in the strong sense. As such, a heuristic EDF

(i.e., Earliest Deadline First) scheduler was devised to minimize CPU energy of multipro-

cessors. For example, Wu et al. [155] applied DVFS to reduce the energy consumption of a

server during the course of idle or light workload. Unlike the existing DVFS techniques that

are focused on dynamic CPU power, my model pay heed on CPU static power consumption

due to CMOS circuits.

The utilization-based DVFS scheme devised by Arroba et al. [15] is adept at making

excellent trade-offs between energy consumption and performance degradation. Lin et al.

proposed a two-tier algorithm to solve the local chip mapping problem with polynomial time

complexity. Pahlevan et al. investigated an energy proportionality-aware dynamic allocation

method (EPACT) [112] - a novel dynamic VM allocation scheme combining DVFS and VM

consolidation. It is assumed in this study that the optimal utilization is a fix value for all the

servers (e.g., 50% when satisfying QoS). My solution is similar to the above studies in the
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way that all the approaches address the concerns of static power consumption. Nevertheless,

there are the following two stark differences between the aforementioned utilization-based

DVFS techniques and my method. First, the former one assumes that task execution times

are specified in a priori, whereas ours orchestrates frequency requirements. My solution is

beneficial for non-stopping services (e.g., web crawlers and streaming applications). Second,

unlike the fixed optimal utilization in the existing study (see [112][91]), the optimization

criteria in ours are configurable. It is evident that my method can be readily customized for

a raft of servers.

2.4 Scheduling in Clouds

At the heart of a cloud computing platform that orchestrates a diversity of virtualized

resources, scheduling mechanisms become a vital component to optimize resource utilization.

A client may leverage multiple virtualized computing resources to accomplish tasks submitted

to clouds. An overarching goal of task scheduling is to slate tasks running on computing

clouds to achieve specific objectives. Sample objectives include minimizing response time,

maximizing performance, reducing energy consumption, and improving system security, to

name just a few.

Fig. 2.3 depicts a scheduling architecture designed for cloud computing platforms, in

which scheduling mechanisms and security-service optimization modules are fully integrated.

Similar architectures can be found in the literature (see, for example, [7][96]). In the archi-

tecture illustration, a cloud is depicted in a dotted box. Cloud users dynamically submit

a wide range of tasks to the scheduler, which oversees virtualized resources in the cloud.

After scheduling decisions are made by the scheduler, tasks are dispatched to corresponding

virtual machines. As a part of the scheduling mechanism, a monitor periodically keeps track

of the utilization of the virtual machines as well as physical machines in the cloud. Apart

from scheduling tasks, the scheduler is in charge of launching appropriate security services

for input and output data of tasks to fulfill user requirements.
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Figure 2.3: The scheduling architecture for cloud computing platforms, which embrace
scheduling mechanisms and security-service optimization modules.
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2.4.1 Task Models for Real-time Computing

Before reviewing real-time scheduling algorithms in Section 2.4.2, I briefly go through

the background knowledge of tasks models that lay a solid foundation for task scheduling

research. When it comes to real-time tasks, corresponding QoS requirements ought to be

satisfied when conserving system energy consumption. Task models become an underpinning

component of energy-efficient schedulers for real-time tasks [87]. For instance, Wang et

al. [149] constructed a model, in which tasks have various priorities coupled with task-

precedence constraints. In some cases, a group of tasks are represented in the form of a

weighted directed acyclic graph or DAG.

Real time tasks embrace deadlines, which are specified in the format of QoS require-

ments. Missing deadlines is treated as a failure or an error for the real-time tasks submitted

to clouds. The ability to satisfy deadlines (a.k.a., timing constraints) of real-time tasks is

an overarching goal to be achieved by schedulers managing virtualized resources in cloud

computing environments.

As conventional schedulers, real-time schedulers customized for clouds aim to make

good trade-off among multiple factors such as scheduling complexity, real-time performance,

energy efficiency, and security [157]. Real-time tasks ought to be carried out by clouds

correctly and in a timely fashion. Evidence shows that obtaining a minimal schedule for a

set of real-time tasks running in multiprocessor systems is an NP-hard problem [171]

In another model, an array of tasks share a common deadline [160][76]; these tasks

have diversified worst case execution time or WCET. Aydin and Yang built a periodic task

model, for which a scheduling algorithm improves energy efficiency [16]. With the tasks

models in place, numerous scheduling algorithms were implemented for saving energy of

computing systems running real-time applications [125][175][115]. In contrast to the existing

task models, ours incorporates frequency requirements rather than relying on task execution

times. My model addresses a critical issue in a raft of real-time applications, where task

execution times are unknown in a priori.
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2.4.2 Real-Time Scheduling

The timeliness of to real-time applications is a key toward high quality of service (QoS)

on clouds. Virtual machines can be handled as tasks from the perspective of real-time

scheduling. Therefore, I use terms virtual machines and tasks interchangeably throughout

this manuscript.

For hard real-time applications, the timeliness measures the system capability of guar-

anteeing deadlines specified by users. In the realm of cloud computing, timeliness is referred

to as a performance metric that entails the sum of utility or benefits obtained by real-time

tasks or services [97].

Real time tasks embrace deadlines, which are specified in the format of QoS require-

ments. Missing deadlines is treated as a failure or an error for the real-time tasks submitted

to clouds. The ability to satisfy deadlines (a.k.a., timing constraints) of real-time tasks is

an overarching goal to be achieved by schedulers managing virtualized resources in cloud

computing environments.

As conventional schedulers, real-time schedulers customized for clouds aim to make

good trade-off among multiple factors such as scheduling complexity, real-time performance,

energy efficiency, and security [157]. Real-time tasks ought to be carried out by clouds

correctly and in a timely fashion. Evidence shows that obtaining a minimal schedule for

a set of real-time tasks running in multiprocessor systems is an NP-hard problem [171].

Unsurprisingly, real-time schedulers are unable to deliver deterministic response times, which

are an important metric gauged for system robustness analysis. Security-sensitive real-

time tasks running on clouds must be protected against cyber-security threats, which make

the design of resource management systems for clouds a grand challenge. To address the

aforementioned challenging issues, I will pilot a security- and frequency-aware DVFS model

(SF-DVFS) to incorporate security services and energy management in a computing cloud.

Please refer to my roadmap elaborated in Section 4.3.2 for a detailed research plan on FS-

DVFS.
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2.4.3 Energy-aware Scheduling

In the past decade, high energy consumption in cloud-based data centers has motivated

the research community to develop energy-efficient techniques, among which a growing num-

ber of energy-aware scheduling algorithms offer impressive energy savings to computing clus-

ters on clouds [174][166]. Generally speaking, energy-efficient scheduling approaches can be

categorized into two camps, namely, DVFS-based (Dynamic Voltage and Frequency Scaling)

and VM-based (Virtual Machine) techniques.

DVFS-based Scheduling

Recall that DVFS-based schemes strive to make good trade-offs between energy con-

sumption and performance in processors, which are a major player in reducing power con-

sumption of data centers. For example, Garg et al. developed the near-optimal energy-

efficient scheduling algorithms, where DVFS is employed to minimize carbon emission by

scaling down CPU frequency while maximizing profits of cloud providers [50]. Fettes et

al. designed practical scheduling policies, which seamlessly integrate DVFS and the virtual-

machines consolidation scheme to make cloud-based data centers energy efficient [43]. Maroulis

et al. applied DVFS to curb the energy consumption of MapReduce applications running on

computing clusters [101]. Suleiman et al. merged the thermal-aware approach and DVFS in

a smart way to offer power management in data centers [140]. Duan et al. devised an algo-

rithm to judiciously tune CPU frequency in accordance with QoS requirements [40]. In this

algorithm, a prediction method was incorporated to adapt CPU frequency by jointly consid-

ering QoS and available slack time. Consequently, the novel scheduler is capable of reducing

energy consumption in heterogeneous Hadoop clusters. Similarly, Ibrahim et al. mixed the

DVFS and machine learning approaches to slash energy consumption in network-on-chips

systems (NoCs) [63].
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Virtual-Machine-based Scheduling

A tremendous effort in building energy-aware schedulers over the past several years

has concentrated on dynamical consolidation of virtual machines. A vast majority of such

scheduling algorithms aim to manage virtual machines according to dynamic system work-

load, thereby cutting back the number of physical hosts so that idle hosts are switched

off to conserve energy. Recently developed scheduling strategies leverage live migrations

of virtual machines to support multiple fields, including scientific workflows and real-time

tasks. For example, Xu et al. designed an energy-aware resource allocation method to allo-

cate virtual machines in support of scientific workflow executions [159]. After proposing a

novel rolling-horizon scheduling architecture for real-time tasks running on clouds, Zhu et al.

implemented an energy-aware scheduling algorithm called EARH for real-time, aperiodic,

independent tasks [172].

A wide range of scheduling algorithms was designed to conserve energy consumption in

clouds by the virtue of virtual-machine migrations and consolidation. For instance, Khazaei

et al. proposed a scheduling technique to minimize service delay in clouds by lowering trans-

mission and processing times through virtual-machine migrations [122]. After investigating

a way of dynamically consolidating tasks to boost resource utilization and to reduce energy

consumption, Hsu et al. presented an energy-aware task consolidation (ETC) method to

optimize energy efficiency in clouds [61]. To take uncertain-ties into account, Chen et al.

employed proactive and reactive algorithms to mitigate adverse impacts of uncertainties on

scheduling quality of cloud-based data centers [28].

2.4.4 Cloud-aware Scheduling

Online Scheduling

Much attention has been paid to towards online scheduling of multiple tasks and jobs.

For example, Shin et al. extended the conservative back-filling algorithm by utilizing the
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earliest deadline first and the largest weight first policies to schedule real-time jobs [132].

Ge et al. dived into a genetic algorithm based task scheduler, which manages waiting tasks

through a genetic algorithm with a goal of balancing load [52]. Liu and Han proposed an

online scheduler allowing virtual machines to obtain extra CPU shares when blocked by I/O

interrupts, thereby curtailing energy-efficiency losses caused by I/O intensive tasks [92].

Scheduling for Multi-processors

When cloud computing platforms are fueled by multi-processor systems, scheduling

algorithms are focused on enhancing the overall performance of multi-processor systems.

For instance, Dorronsoro.et al. presented a two-level strategy for scheduling large workloads

on multicore distributed systems, taking into account their total execution time and energy

consumption [39]. Kwok and Ahmad devised an array of optimal static algorithms to schedule

task graphs with random parameters for multiple homogeneous processors [80]. Similarly,

Mohamed and Awadalla proposed multi-processor-based scheduling approaches, namely the

modified list scheduling heuristic (MLSH) and the hybrid genetic algorithm (GA) [108].

Performance-aware scheduling

Performance-aware scheduling solutions were deployed to optimize system performance

measured in terms of response time, makespan, and completion time. Please refer to [103]

and [163] for the comprehensive surveys on task and resources scheduling policies that are

intended to speed up system performance of clouds. For example, Tang et al. designed a

self-adaptive scheduling algorithm for jobs running on MapReduce-based computing clus-

ters [142]. This algorithm dynamically decides the start time of each reduce task according

to the corresponding job’s context such as task completion time and map tasks’ output size.

Gan et al. implemented a genetic simulated annealing algorithm to optimize the makespan

of a set of tasks. In this approach, simulated annealing is used to optimize each offspring

yielded by the genetic algorithm [47]. Furthermore, an improved genetic algorithm was
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developed to apply the outputs of Max-Min and Min-Min as initial solutions to schedule

independent tasks [79]. Zuo et al. proposed a multi-objective ant colony algorithm to ad-

dress the task scheduling problem. The focal point of this multi-objective algorithm is to

minimize makespans by incorporating user-budget costs as constraints during the course of

task scheduling [176].

2.5 Security Issues in Cloud Computing

Fig. 2.4 summarizes the five major data security issues to be addressed in the arena of

cloud computing. A risk of data misuse is likely to occur when resources are shared among

multiple organizations. To avert such a risk, it is prudent to secure storage infrastructures

along with processed and archived data. Data protection, a vital and challenging feature of

cloud computing, keeps any potential security threats at bay. Authentication, authorization,

and access control services are devised for to enhance data security in clouds.

Figure 2.4: Five major data security issues to be addressed in the arena of cloud computing.
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2.5.1 Confidentially, Integrity, and Availability

Confidentiality, integrity, and availability, which are known to as the CIA triad, are the

three critical properties of data centers. Confidentiality ensures that data owned by cloud

service consumers should not be revealed to unauthorized parties under any circumstance

[15]. Various encryption techniques [116] and key management [85] mechanisms are deployed

to ensure high confidentiality of cloud services. Data integrity entails confidence that data

stored in and transferred to/from clouds are not fiddled by unauthorized users. Data in-

tegrity can be detected by modern techniques like mirroring, parity, or checksumming at

either the file or the block levels [135]. Data availability implies that data should be readily

accessed by users without any delay or denial of service when the users issue requests. A

handful of leading solutions are available to achieve high data availability. For example, data

replication [54] and prewrite operation [95] are two common practices to furnish high data

availability to cloud computing systems.

2.5.2 Distributed Computing

When it comes to distributed computing in clouds, two security challenges to be tackled

are locality and access. Nowadays, data tends to be distributed across multiple regions,

where pinpointing the location of data is non-trivial. When data are moved or migrated

to/from one geographic location into another, the laws and regulations governing the data

may change. Consequently, cloud service providers must be compliant with data privacy laws

according to the geographic locations. This emerging challenge is referred to as locality issues

of data security in cloud computing environments. Such a data locality issue is handled by

clouds in two fashions. On one hand, cloud service providers make data locality transparent

to end users. On the other hand, users are in full control of data locations to meet prescribed

security requirements. I refer to the former one as transparent data locality and the later

one as non-transparent data locality. A benefit of the transparent approach is that users
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can easily access their data without being aware of the locations of data. In contrast, non-

transparent location policies enable a cloud user to elect desired service locations to safeguard

data with respect to locality.

Access control is regarded as a second security issue in distributed computing over

clouds. In an organization where computing platforms are outsourced to clouds, members of

the organization are authorized to manage a portion of data in accordance with access poli-

cies. Such data may not be retrieved or modified by the other members of the organization

in the distributed computing environments. Most leading-edge access control techniques

applied to cloud computing fall into two camps, namely, role-based and attribute-based

schemes. For example, Zhou et al. designed a role-based encryption scheme to enforce ac-

cess control policies for encrypted data stored in public clouds [169]. Yang et al. developed a

time-domain attribute-based access control scheme, which allows a group of users to securely

share videos in clouds [161].

2.6 Privacy Protections in Cloud Computing

The key benefits of cloud computing, from the cloud provider’s perspective, include

resource consolidation, uniform management, and cost-effective operation. When it comes

to cloud computing users, cloud computing’s benefits encompass on-demand capacity, low

cost of ownership, and flexible pricing. The sharing and consolidation features that bring

forth such benefits inevitably introduce potential security and privacy concerns. Security

and privacy issues arising from illegal and unethical use of data as well as disclosure of

confidential information can tremendously hinder users’ willingness to participate in cloud-

based services. Recognizing such security concerns, a growing research and development

efforts in the industry and academia have been devoted to preserving the cloud’s data privacy.

Domingo-Ferrer et al. classified the privacy protection techniques into three categories (see

Fig. 2.5), namely, (1) data splitting mechanisms, (2) data anonymization methods, and (3)

cryptographic techniques [37].
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Figure 2.5: Commonly adopted privacy protection techniques for clouds.

2.6.1 Data Splitting

Privacy-preserving data splitting protects data privacy by deploying multiple-CSPs-

based (cloud service providers) architectures [17]. It is evident that data splitting minimizes

information leakage through distributed data among an array of CSPs. This technique is

proved to be a practical solution as long as the distributed CSPs have zero communication

with one another.

A horde of data splitting mechanisms devised in the prior studies undertake data par-

titioning at the binary level. For instance, Zhang et al. implemented a scheme to split

sensitive files into bits, which are reassembled to form numerous part-files before being up-

loaded to various cloud storage servers. After part-files are downloaded from multiple cloud

servers, the part-files are concatenated to build an original file [165]. To strength the secu-

rity protection for split chunks, Gai et al. mixed the byte-level data splitting technique with

an encryption module [46]. The secure-efficient data distributions algorithm or SED2 was

proposed to spill data in a way of preventing sensitive information from leaking on clouds.

The SED2 algorithm was realized through two underpinning algorithms, which are slated

to efficiently encrypt and decrypt data [46]. Dev et al. assigned each file a privacy level in

accordance with the sensitivity of the file’s content [36]. Then, file fragments are created

under the governance of a standalone RAID storage system, in which data with high privacy

levels are stored in trustworthy locations [36].
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Apart from the aforementioned binary-level strategies, innovative split methods built at

the attribute level capture much attention. In this technique category, data splitting may

be executed in a horizontal or vertical fashion. A horizontal format implies that sets of

data records are separately stored, whereas a vertical layout indicates that sets of attributes

are separately stored. In the case of horizontal data splitting, data sets are structured in a

tabular format according to attributes. To achieve confidentiality at the record level, vertical

chunks are comprised of all data records on a single attribute. Aggarwal et al. designed an

approach to decomposing a dataset into two privacy-preserving vertical fragments [9]. With

the deployment of the graph-coloring techniques, the proposed decomposition algorithm cuts

back the data querying cost. In case sensitive attribute pairs require more than two chunks

to preserve data privacy, an encryption module will be incorporated [9]. Ganapathy et al.

investigated a solution based on two fragments coupled with a data encryption service [48].

The three additional heuristics were developed to shorten query time by applying the greedy

hill-climbing algorithm. In this study, the time complexity of the proposed data splitting

solution was articulated [48].

2.6.2 Data Anonymization Methods

A key advantage of anonymized data over encrypted data and data splitting is rooted

in ease of data processing. In the realm of data anonymization, masking is merely performed

at the data storage phase. More times than not, data anonymization are implemented by

linear or quasi-linear algorithms. In this type of approaches, anonymized data’s query, being

transparent, does not incur hefty overhead for clouds. Original data of a micro data set are

manipulated to originate new data, which are applicable for statistical analysis. In doing so,

the confidentiality of respondents is enforced. Masking methods in turn are be divided into

two camps, depending on the effect on original data (see Fig. 2.6).
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Because Non-perturbative methods have no intent to alter data, these methods yield

partial suppressions or reductions of detail in an original dataset. Representative non-

perturbative masking methods are sampling, generalization, top and bottom coding, and

local suppression. A sampling scheme masks a sample of original files rather than publishing

the original files [154]. If an intruder identifies a unique record in released file (sample),

the intruder will be unsure about the data uniqueness in the original file. Generalization,

which is referred to as global recording, forms a new less specific attribute by combining

several more specific categorical attributes [127]. Top and bottom coding approaches can be

envisioned as special cases of generalization techniques, where a new category is forged by

gleaning values that are above (top coding) or below (bottom coding) a threshold [32]. A

local suppression mechanism aims to suppress the values of individual attributes to increase

a set of records supporting quasi-identifiers. Chen et al. explored a local suppression method

to build a customized privacy model for trajectory data anonymization [30].

Figure 2.6: Nine data anonymization methods for clouds.

A perturbative masking technique manipulates a dataset in a way that respondents’ pri-

vacy is preserved to a certain degree. It is noteworthy that such an approach aims to protect

statistical properties of the dataset. Representatives of leading-edge perturbative masking

methods are noise addition, micro-aggregation, data/rank swapping, microdata rounding,

and re-sampling. A noise addition scheme intends to mask an original dataset by inject-

ing random noise [31]. A micro-aggregation solution groups individual tuples into small
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aggregates of a fixed dimension k, where an average over each aggregate rather than indi-

vidual values is published [139]. Data/rank swapping techniques are adroit at transforming

databases by switching values of confidential attributes across stored records [123]. Round-

ing techniques substitute rounded values for the original values of attributes [110]. The key

idea behind re-sampling schemes is to exchange the values of a continuous attribute with an

average value derived from a set of samples gleaned from original data [102].

2.6.3 Cryptographic Techniques

Cryptography is one of the predominant building blocks deployed to address privacy

concerns in the clouds. For example, growing evidence indicates that homomorphic en-

cryption [120], attribute-based encryption [126], broadcast encryption [58], searchable en-

cryption [70] are adopted to offer remote secure computation solutions for clouds. These

diversity of techniques furnish fine-grained access controls in cloud storage.

In homomorphic cryptosystems, encryption functions are a homomorphism that protects

group operations by the virtue of ciphertexts. With homomorphic encryption algorithms in

place, one is enabled to perform computations on ciphertexts without decrypting data in

advance, thereby preserving data privacy. After Rivest et al. introduced homomorphism in

1978 [120], all the homomorphism schemes are classified into two categories, namely, partially

homomorphic encryption and fully homomorphic encryption. A partially homomorphic en-

cryption solution supports merely one type of operation repeatedly running for unlimited

times [72]. In contrast, a fully homomorphic encryption allows an unlimited number of op-

erations performed on encrypted data, where output data range within a given ciphertext

space [53][14].

Attribute-based encryption approaches are proved to be a practical and promising tech-

nique. These solutions cater to facilitate encrypted fine-grained access controls for outsourced

data. An attribute-based encryption or ABE applies public-key encryption where the secret

key of a user as well as ciphertext rely on attributes. The decryption of a ciphertext becomes
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feasible only if the attribute set of the user key matches the ciphertext’s attributes [126].

Given an access policy, I group these solutions into two camps - (1) key policy attribute-

based encryption schemes or KP-ABE and (2) ciphertext-policy attribute-based encryption

schemes or CP-ABE. A KP-ABE scheme employs an attribute set to model encrypted data

and to construct an access policy in private key [118]. On the flip side, ciphertext in CP-ABE

is associated with an access policy, whereas secret keys are associated with attributes [88].

In this case, data owners are enabled to elect users who have the privilege to decode. If the

policy ought to be frequently managed, the CP-ABE schemes will be flexible because the

data owner can readily update the ciphertext’s access structure.

Now let us introduce broadcast encryption and searchable encryption schemes - two

popular cryptographic techniques. Broadcast encryption solutions allow a broadcaster to

encrypt messages and to transmit the messages to any subset of authorized users. Given

a broadcast encryption scheme, a broadcasting sender is positioned to encrypt a message

by combining receivers’ public identities in the subset coupled with system parameters. In

doing so, only a dynamically changing privileged subset of users are able to decode encrypted

messages [58]. Searchable encryption techniques equip data users with the capability to

securely search over encrypted data using keywords without having to decrypt the data.

The overall objective of a searchable encryption system is to combine confidentiality with

respect to cloud providers with a powerful search functionality. Kamara et al. made use of

the multicore architecture to realize a searchable encryption scheme [70]. Such a multicore-

based implementation makes the searchable encryption module highly scalable. This novel

solution offers sublinear search time by the virtue of a tree-based multimap data structure

per keyword, which is referred to as red-black trees [70].

37



Chapter 3

A Frequency-aware Management Strategy for DVFS-Enabled Clouds

It is demanding to curtail energy consumption of virtual-machine-powered data centers,

because modern data centers have been significantly scaling up in capacity in past decades. In

this chapter, we propose a frequency-aware management strategy, which controls dynamic

power and static power of processors running virtual machines in data centers. Unlike

existing dynamic voltage and frequency scaling schemes, my strategy simply incorporates

frequency requirements rather than task execution times. This salient feature is practical,

because task execution times in a raft of real-world applications are unknown in a priori. We

build a frequency-aware model, which is adept at deriving an optimal frequency ratio that

minimizes processors’ energy consumption. With my model in place, the energy efficiency of

a data center can be maximized by adjusting the processor’s frequency to meet the optimal

frequency ratio. We design a management approach to judiciously adjust frequency ratio to

conserve energy without violating the frequency requirements imposed by virtual machines.

After analyzing the correlations between frequency ratio and energy consumption, we show

that a small static power proportion gives rise to high energy-saving performance. The

results demonstrate that my model lays out a solid theoretical foundation catering to the

development of power management software in DVFS-enabled clouds.

The remainder of this chapter is organized as follows. Section 3.1 describes a new

frequency-aware QoS model, in which QoS requirements are represented using CPU frequen-

cies rather than deadlines. The concept of frequency ratio accompanied by the frequency-

aware DVFS model are proposed in Section 3.2 and Section 3.3, respectively. The analysis

of the DVFS model with respect to frequency ratio can be found in Section 3.4. Section 3.5
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discusses the sample usages and applicability of the proposed frequency-aware model. We

conclude this chapter with my achievements in Section 3.6.

3.1 Frequency-Aware QoS

Recall that the DVFS conserves energy consumption by lowering processor frequency.

Scaling down processor frequency inevitably increases task execution times, which may incur

violations in service level agreements or SLA. In this section, we shed some light on the

concept of worst case execution time in Section 3.1.1. Next, we discuss a way of applying

my model to satisfy QoS requirements in Section 3.1.2.

3.1.1 Worst Case Execution Time

From the perspective of QoS modeling, virtual machines are treated as standalone tasks

running on servers. As such, we use terms virtual machines and tasks interchangeably

throughout this section. Table 3.1 lists the notation used throughout this chapter.

Table 3.1: Symbol and Annotation
Symbol Annotation

fopt
c optimal energy-saving frequency for processor c applied my model.

freq
i,c frequency requirement of virtual machine vmi on processor c

freq
V,c frequency requirement of virtual machine set V on processor c.

V is the set of virtual machine running on processor c.

fconf
V,c frequency configured for virtual machine set V on processor c

Γi total execution requirements of virtual machine vmi.

γi,j execution requirements of the j th segment of virtual machine vmi.

P sta
c static power of processor c.

P dmax
c max dynamic power power of processor c.

rc frequency ratio of processor c.

fmax
c max frequency level of processor c.

Eopt
c the optimal energy consumption of processor c.

Eopt
C the optimal energy consumption of processor set C.

In real-time task modeling, it is a conventional wisdom to adopt WCET (i.e., Worst case

excution-time) and deadlines (i.e., upper timing bound) to characterize QoS requirements

of real-time applications [153]. Fig. 3.1 shows a traditional QoS model that shed light

on the relationships among CPU frequency, WCET time, and deadlines. Task τ1 and τ2,

sharing the same deadline, have different WCET requirements measured in clock cycles.

39



These two tasks have different execution time under the same CPU frequency. If no DVFS

energy-saving technology is deployed, server will run at the its full capacity using the max

frequency level fmax. In this case, τ1 and τ2 finish at FinT ime1 and FinT ime2, which

must be earlier than the deadline. The last sub-figure in the bottom of Fig. 3.1 depicts that

DVFS scales the CPU frequency from fmax down to fα. If τ1 and τ2 both run on this server

concurrently, each task’s execution time is extend. Nevertheless, it is mandatory to make

finish time FinT imeNew earlier than the deadline.

Figure 3.1: Traditional Time-aware Qos Model
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3.1.2 Frequency-Aware QoS Modeling

Apart from WCET and deadlines, CPU frequency is an exceptional and practical param-

eter to capture the QoS requirement of real-time tasks. Giving memory and I/O resources,

task execution times largely depends on processors and the elected CPU frequency level.

Therefore, it is arguably feasible to transfer a time-aware requirement into a frequency-aware

requirement.

Fig. 3.2 depicts two types of real-time tasks coexisting in my frequency-aware QoS

modeling. For the traditional real-time tasks (see the left-hand side of Fig. 3.2), real-time

tasks should entail timing constraints like deadlines and WCET values, and we transfer

the time-aware requirements to the frequency-aware requirements (e.g., minimum frequency

requirements). When it comes to non-time-sensitive tasks like long-running applications.

(see the right-hand side of Fig. 3.2), non-time-sensitive applications merely pass on frequency

requirements to the DVFS-enabled system.

In my frequency-aware QoS model, we propose to maintain a processor frequency higher

than the summation of the minimum frequency requirements of all the tasks running on the

processor. Fig. 3.3 shows my frequency-aware Qos model for traditional tasks, in which

task τ1 and τ2 have the same settings as those in Fig. 3.1. Frequency fmin
1 and fmin

2 are

the minimum frequency that averts SLA violations in τ1 and τ2 governed by DVFS. As

the execution time of τ1 and τ2 extend to the max time task allowed, fmin
1 and fmin

2 are

no doubt lower than fmax. When τ1 and τ2 both run on this processor, fmin
sum is the new

minimum frequency requirement that is higher than fmin
1 and fmin

2 . In this scenario, the

most appropriate energy-saving frequency fα is higher than fmin
sum . As such, we choose fα

as the processor frequency; Otherwise, we should use the sum of the minimum frequency

requirements as the processor frequency. In a nutshell, this model allows servers to undertake

real-time tasks using frequency requirements rather than traditional WCET and deadlines.

In real-world scenarios, there might be the lack of specified requirements in terms of

deadline or WCET in submitted tasks. This phenomenon is specially true when it comes to
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Figure 3.2: Frequency-aware modeling for time-sensitive and non-time-sensitive real-time
tasks running in DVFS enabled systems.
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long-running tasks like crawlers and web services. For such non-time-sensitive tasks, a system

can render QoS by satisfying their minimum frequency requirements rather than WCET or

deadlines (see Fig. 3.2). After taking into account minimum frequency requirements, my

model facilitates the comparison between the sum of tasks’ minimum frequency requirements

running on the same processor and the best energy-saving frequency of that CPU. Then, we

specify a higher one to avoid potential SLA violations.

Figure 3.3: Our frequency-aware Qos model for traditional real-time tasks

We consider multiple independent aperiodic virtual machines running on a group of

processors C = {c1, c2, ..., cm}. For simplicity without the loss of generality, we investigate a
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set of n independent aperiodic virtual machines V = {vm1, vm2, ..., vmn} running on process

c (i.e., c ∈ C). Each virtual machine is represented by a pair, namely, vmi = (ai, f
req
i ), where

ai is the arrival time of virtual machine vmi, f req
i is the minimum frequency requirement of

virtual machine vmi. As fmin
sum is the summation of frequency requirements fmin

1 and fmin
2

in Fig. 3.3, the relation between overall frequency requirement and each virtual machine

frequency requirement is:

f req
V,c =

∑
i∈V

f req
i,c . (3.1)

If f conf
V,c ≥ f req

V,c holds, then processor c is able to perform tasks without SLA violations.

Therefore, after we obtain the summation of minimum frequency requirement on processor

c, we compare the summation with the energy-saving frequency f opt
c derived from DVFS

algorithm (see Section 3.3). If the overall frequency requirement f req
V,c is lower than f opt

c , we

should elect the derived optimal energy-saving frequency. If f req
V,c is higher or equal to f opt

c ,

we should guarantee the overall minimum frequency requirement in order to satisfy the Qos

requirement of c performing virtual machine set V .

f conf
V,c = max(f opt

c , f conf
V,c ). (3.2)

3.2 Frequency Ratio Modeling

Nowadays, modern processors are powered by the CMOS technology. The energy con-

sumption of a CMOS circuit is composed of dynamic energy consumption Edyn and static

energy consumption Esta [74]:

E = Esta + Edyn. (3.3)

Prior studies [173][160][51] confirmed that dynamic power P dyn is computed as

P dyn = Cl · A · V 2
dd · f, (3.4)
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where Cl is load capacitance, A is the percentage of active gates, Vdd is supply voltage, and

f is processor frequency.

The voltages of CMOS processors affect processor frequencies. For example, decreasing

voltages would enlarge circuit delay, changing the clock frequency [24]. The correlation

between frequency and voltage is expressed as:

f = k · (Vdd − Vth)
2

Vdd

, (3.5)

where Vth - typically a small value - is a threshold voltage [25][60]. Approximately, there

is a linear relation between frequency and voltage (i.e., f ≈ k · Vdd). Because Cl, A, k are

constants, we consolidate these three constants as β = Cl · A/k. Thus, the CPU dynamic

power consumption is rewritten as

P dyn = β · f 3. (3.6)

We use max dynamic power P dmax to represent the dynamic power when the processor

frequency is set to a maximum level fmax. Thus, we derive (3.7) from (3.6) as

P dyn = P dmax · f 3

(fdmax)3
. (3.7)

Combined with CPU static power P sta - a constant irrelevant to the voltage and fre-

quency, the total CPU power is represented in the format of frequency as

P = P sta + P dmax · f 3

(fmax)3
. (3.8)

It should be noted that when using DVFS, not all frequencies ranging from 0 to fmax are

available due to discrete frequency levels like 10%fmax, 20%fmax,40%fmax, 100%fmax [150].

We introduce frequency ratio r as a ratio between the current processor frequency f and the

maximum frequency fmax held by a processor. Thus, we have r = f/fmax. The total CPU
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power can obtained from frequency ratio r as

P = P sta + P dmax · r3. (3.9)

3.3 Modeling Frequency-aware DVFS

Now we are in a position to present a DVFS model tailored for tasks issuing frequency

requirements (see Fig. 3.2). If virtual machine vmi is executed at frequency fi in time ti, Γi

is the total number of clock cycles of vmi. The energy consumption of virtual machine vmi

is derived from clock cycles Γi and frequency fi as

Ei = Pi · ti = Pi · Γi

fi
. (3.10)

Power consumption is an instantaneous value depending on frequency in per time unit.

We assume that virtual machine vmi’s execution consists of Ki segments, where the clock

cycles of the jth segment (1 ≤ j ≤ Ki) is γi,j. Thus, the clock cycles of all the segments

of virtual machine vmi form a frequency set {γi,1, γi,2, ..., γi,Ki
}, which determines the total

execution requirements Γi of virtual machine vmi. Thus, we have

Γi =

Ki∑
j=1

γi,j. (3.11)

Let fi,j be the execution frequency for the jth execution segment of virtual machine

vmi. Energy consumption of the virtual machine can be obtained from the power, clock

cycles, and frequency of each segment as

Ei =
k∑

j=1

Pi,j
γi,j
fi,j

. (3.12)

The Lagrange multiplier method is applied to minimize energy Ei [84]. In case where

frequencies of vmi during all its intervals are identical, the computation of (3.12) will be
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simplified. Furthermore, the common execution frequency fi is equal to the overall execution

requirement of vmi divided by the overall execution time of vmi. Thus, we have

fi = fi,1 = fi,2 = fi,3 = ... = fi,K . (3.13)

Hence, the optimal frequency of each segment is equal to the optimal solution for the

entire virtual machine vmi. Combining with the energy formula (see (3.10)), we derive

energy consumption of processor c as

Ec =

∑
i∈T Γi

fc
(P sta

c + P dmax
c (rc)

3).

Ec =

∑
i∈T Γi

fmax
c

(
P sta
c

rc
+ P dmax

c (rc)
2). (3.14)

(4.4) is a quadratic function with respect to frequency ratio rc. To obtain the extreme

value of the energy consumption, we take the derivative of Ec with respect to rc

E ′
c =

∑
i∈T Γi

fmax
c

· 1

(rc)2
(2 · (rc)

3 · P dmax
c − P sta

c ). (3.15)

To investigate the trend of this quadratic function parabola, let us take the second

derivative of Ec with respect to rc

E ′′
c =

2 ·
∑

i∈T Γi

fmax
c

· (
P sta
c

(rc)3
+ P dmax

c ). (3.16)

Since we have E ′′
c > 0, it is verified that Ec is a convex function of rc and the parabola

opens upward. From the features of parabola, by setting the first derivation of E ′
c to zero, we

can obtain the most energy-efficient consumption Eopt
c at the optimal frequency ratio f opt

c .

The optimal frequency ratio roptc is derived from P sta
c and P dmax

c as
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roptc = 3

√
P sta
c

2P dmax
c

. (3.17)

Noticing that f is discrete, we choose the nearest r value to meet deadline requirements.

The optimal energy consumption of processor c is Eopt
c , which can be calculated as follows.

Eopt
c =

∑
i∈T Γi

fmax
c

(
P sta
c

roptc

+ P dmax
c · (roptc )2). (3.18)

After optimizing energy consumption Eopt
c for a single processor (i.e., c), we derive

optimal energy consumption Eopt
C for computing systems equipped with multiple processors

(i.e., C = {c1, ..., cm} ) in a datacenter. More specifically, energy Eopt
C is an accumulative

value of the optimal energy consumption of all the processors in set C. Thus, the system

level energy consumption can be expressed as:

Eopt
C =

∑
c∈C

Eopt
c . (3.19)

where Eopt
c on the right-hand side of the expression is obtained from (4.6).

It is noteworthy that in frequency-aware DVFS model, virtual machine energy consump-

tion is independent of virtual machine execution time. Rather, the energy consumption is

reliance to virtual machines’ execution requirements and server hardware parameters (e.g.,

static power and max dynamic power.)

When the current frequency ratio is configured to ropt, the energy consumption will be

minimized to Eopt. There is a challenging roadblock to setup r to value ropt due to the

discrete value of processor frequency in the real world. If the current frequency ratio is

less than ropt, the energy consumption will be proportional to the frequency ratio. On the

contrary, if the current frequency ratio is greater than ropt, the energy consumption will be

inversely proportional to the frequency ratio.
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The optimal execution time of processor c is toptc governed by the optimal frequency

ratio roptc . Hence, we express time toptc as a function of frequency ratio roptc in (3.20).

toptc =

∑
i∈T Γi

fmax
c · roptc

. (3.20)

3.4 Analysis of Frequency Ratios

3.4.1 Energy Consumption and Frequency Ratio

Recall that in proposed frequency-aware DVFS model (see Section 3.3), optimal energy

consumption derived from Eq. (4.6) is dependent of frequency ratio r. In this section, we

place the spotlight on the trend and features of the optimization formula by applying the

DVFS model to various theoretical cases. Such an analysis validates the versatility of my

new model with frequency awareness.

Eq. (4.4) indicates the correlation between energy consumption and frequency ratio r.

Fig. 3.4 depicts the normalized energy consumption E as a function of frequency ratio r of

processors. This analysis is focused on a single processor. Nevertheless, the findings can be

readily applied to scenarios where a computer system is orchestrating multiple processors.

In order to make the trends plotted in Fig. 3.4 broadly representative, we introduce a

parameter called static power proportion in lieu of a server’s power data. Eq. (4.4) suggests

that the most vital parameters in the DVFS model is server static power P sta and max

dynamic power P dmax - two constants. We simplify these two parameters by defining static

power proportion λ to gauge static power P sta as a percentage of the total power consumption

in max frequency level. Thus, we have λ = P sta / (P dmax + P sta). More often than not,

a server’s static power proportion λ is anywhere between 15% and 35 %. We categorize all

types servers in terms of λ values, thereby allowing us to capture the energy consumption

features of a wide range of general cases.

Fig. 3.4 shows five parabolas of the function expressed in Eq. (4.4) in a variety of cases.

The red line represents a server’s energy consumption when the server keeps running on at
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Figure 3.4: Impacts of frequency ratio on normalized energy consumption under various
value.

the peak power with the maximal frequency level all the time (i.e., frequency ratio r = 1).

We refer to the energy consumption plotted by the red line as peak energy consumption or

Ep; in this scenario, no DVFS is involved in conserving energy. For comparison purpose, we

normalize all the energy consumption derived from the model, within which Ep turns to be 1

- an ideal baseline. The five curves in Fig. 3.4 are the normalized energy consumption when

the static power proportion λ is configured to 15%, 20%, 25%, 30%, and 35%, respectively.

Fig. 3.4 depicts the energy consumption outcomes of the five λ values that cover a majority

of real-world server cases.
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The five parabolas in Fig. 3.4 share a similar pattern with respect to energy consumption

values under a given frequency ratio. All the parabolas have a raft of points lower than

baseline Ep, meaning that the servers embrace ample opportunities to conserve energy. The

findings unveil that static power proportion λ is proportional to the energy consumption. The

results confirm that a server with a low static power proportion λ has an energy-efficiency

edge over its counterparts with high λ values.

3.4.2 Energy-saving Windows

Now we introduce energy-saving windows, within which frequency ratios lead to energy

savings using DVFS. In other words, frequency ratios outside an energy-saving window are

unable to take leverage DVFS to conserve energy. We refer to a frequency ratio within an

energy-saving window as energy-saving frequency ratio.

Fig. 3.5 shows an example of energy-saving windows and energy-saving frequency ratios

when static power proportion is set to 20%. Recall that when frequency ratio r equals to 1

(i.e., r = 1, f = 100%fmax), energy consumption spikes at the value of Ep, which is expressed

as

Ep =

∑
i∈T Γi

fmax
· (P sta + P dmax). (3.21)

Fig. 3.5 suggests that the curve obtained from my model may go beyond the red line (i.e.,

from 0 to fr1), meaning that there exist cases where DVFS fails in offering energy savings.

This phenomenon is expected, because the DVFS technology reduces frequency and voltage

to save dynamic energy at the cost of increasing static power consumption. When frequency

ratios are set to a value that is outside the energy-saving window, a large amount of energy

is consumed during excessively enlarged execution times. On the flip side, the curve below

the red line in Fig. 3.5 represents energy consumption when frequency ratios are in the range

of the energy-saving window (i.e., r1 to 1).

Fig. 3.5 intuitively shows that the upper bound of an energy-saving window is 1 and the

lower bound is r1. Let us represent energy consumption obtained from my model as EDV FS
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Figure 3.5: An example of energy-saving windows and optimal energy-saving frequent ratio.
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rather than Ec for processor c. Because peak energy consumption Ep (see (3.21)) is larger

than EDV FS inside the energy-saving window, we express the correlation between EDV FS

and Ep in (3.22) by incorporating (4.4). In light of (3.22) we show that frequency ratio r

is greater than
√

1 + 4P sta / P dmax − 1

2
, signifying the lower bound of an energy-saving window

(see also r1 in Fig. 3.6 and Fig. 3.7).

Ep − EDV FS =

∑
i∈T Γi

fmax
(P sta + P dmax)−

∑
i∈T Γi

fmax
(
P sta

r
+ P dmax(r)2) > 0

r >

√
1 + 4P sta / P dmax − 1

2
(3.22)

Given the upper and lower bounds of an energy-saving window, we argue that frequent

ratio r residing within the energy-saving window offers energy savings. In other words,

energy can be conserved by DVFS if we have r ∈
(√

1+ 4Psta

Pdmax−1

2
, 1

)
.

(3.22) suggests that an energy-saving window is dependent of server static power P sta

and maximum dynamic power P dmax. To further explore intriguing trends of energy-saving

windows, we plot in Fig. 3.6 and Fig. 3.7 energy window size as functions of static power and

maximum dynamic power. We shine a bright light on energy-saving window size, because a

large window size implies there are ample opportunities to conserve energy using DVFS.

Fig. 3.6 shows the energy-saving window size of servers when the maximum dynamic

power settings are 80W, 120W, 160W, respectively. Similarly, Fig. 3.7 plots the energy-

saving window size as functions of maximum dynamic power when static power is configured

to 30W, 50W, 70W, respectively. We observe from Fig. 3.6 that regardless of the maximum

dynamic power, increasing static power continuously curtails the energy-saving window size.

On the contrary, Fig. 3.7 reveals that energy-saving window size goes up with an rising

maximum dynamic power. Interestingly, energy-saving window size is quite sensitive to

maximum dynamic power when the dynamic value is below 120W; when maximum dynamic

power is sitting at a high level (e.g., 200W), further pushing up the maximum dynamic power
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Figure 3.6: Static Power vs. Energy-Saving Window Size

54



0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

En
er

gy
-s

av
in

g 
W

in
do

w
 S

iz
e

Max Dynamic Power Pdmax(W)

 Psta30(W)
 Psta50(W)
 Psta70(W)

Figure 3.7: Maximum Dynamic Power vs. Energy-Saving Window Size
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leads to a marginal growth in energy-saving window size. In summary, the energy-saving

window size is proportional to maximum dynamic power and inversely proportional to static

power.

3.4.3 Optimal Energy-Saving Frequency Ratio

Fig. 3.5 unravels normalized energy consumption as a function of frequency ratio r.

We mark the energy-saving window (i.e., from r1 to 1) in Fig. 3.5, where an optimal fre-

quency ratio (see ropt) is the lowest point of the energy-consumption value obtained from my

frequency-aware DVFS model. It is noteworthy that frequency ratio ropt minimizes energy

consumption denoted as Eopt. The discovery of the ropt value is the centerpiece of my algo-

rithm, because energy consumption can be minimized by adjusting frequency ratio to reach

ropt.

Eq. (4.5) suggests that the optimal frequency ratio is affected by static power and

maximum dynamic power. As such, we plot optimal frequency ratio as functions of static

power and maximum dynamic power in Fig. 3.8 and Fig. 3.9 .

Similar to Fig. 3.6 and Fig. 3.7, Fig. 3.8 and Fig. 3.9 plots the optimal frequency ratio

as the functions of static power and maximum dynamic power, respectively. Comparing the

five parabolas in Fig. 3.4, we conclude that Eopt climbs with an increasing value of ropt.

Moreover, a high Eopt value leads to low energy-saving performance. Fig. 3.8 reveals that

the optimal energy-saving frequency ratio is proportional to the static power, meaning that

a large static power gives rise to a small amount of saved energy. On the flip side, Fig. 3.9

shows that the optimal frequency ratio is inversely proportional to the maximum dynamic

power when the static power is a constant.

3.4.4 Static Power Proportion

Recall that energy-saving windows and optimal energy-saving frequency ratios are de-

pendent of static power and maximum dynamic power. To simplify the presentations of
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the results plotted in Fig. 3.6, Fig. 3.7, Fig. 3.8 and Fig. 3.9 , we adopt a concept of static

power proportion (i.e., λ) (see the second paragraph in Section 3.4.1). Fig. 3.10 intuitively

illustrates the impacts of static power proportion λ on energy-saving windows and optimal

frequency ratios when the static power proportion varies from 10% to 50%, which resembles

the static power proportions of most modern servers.
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Figure 3.10: Impacts of static power proportion λ on energy-saving windows and optimal
frequency ratios.

Fig. 3.10 unravels that a small static power proportion of a server leads to a large

energy-saving window size and a low optimal energy-saving frequency ratio. From the find-

ings discussed in Section 3.4.3, we observe that a low ropt value implies good energy-saving

performance. On the other hand, a large energy-saving window size means there are ample
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opportunities to conserve energy using DVFS. In contrast, when the static power proportion

λ grows, the energy-saving window size is narrowed coupled with an increasing ropt value.

We conclude that servers with large static power proportions tend to deliver deteriorated

energy-saving performance.

In summary, my energy-saving model is evident that servers that have small λ pa-

rameters (a.k.a., static power proportion) are capable of taking advantages from the DVFS

technique to offer high energy efficiency. This trend is reasonable, because a small static

power proportion provide a wide space to tune frequencies to harvest energy savings. On

the other hand, DVFS is not an ideal technique to conserve energy for servers where the λ

parameters are high.

3.4.5 Power Consumption Compared with Baseline

We compare the energy consumption of servers equipped with and without my frequency-

aware DVFS technique. The energy efficiency of the non-DVFS enabled system is represented

by peak energy consumption Ep, which is a baseline measure offering no energy savings. In

this group of experiments, the CPU static power is 100 W; the workload is configured to

10,000 clock cycles. Fig. 3.11 shows the energy savings obtained by the frequency-aware

DVFS scheme under various static power proportion values. The findings confirm that en-

ergy savings offered by frequency-aware DVFS becomes pronounced under low static power

proportion; the energy-efficiency strength of DVFS is diminishing when the static power

proportion grows.

In theory, the shadow area is the the max energy I could save after applied frequency-

aware DVFS algorithm, achieving average energy saving 20.7%.
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3.5 Results and Discussions

I conduct simulations to demonstrate the usage of the frequency-aware DVFS model

elaborated in Section 3.3. More specifically, I simulate the energy consumption behaviors of

three servers governed by the power management policies.

3.5.1 Experimental Setup

Table 3.2: The CPU configurations of the five tested servers.
Server Frequency (GHz) Psta (W) Pdmax (W)

Xeon E5-2670 {1.2,1.3,...,2.5,2.6} 84.1 342.9

Intel i7-4770 {0.8,1.0,...,3.2,3.4} 19 76

AMD Athlon {0.8,1.5,2.0,2.7,3.0} 53 121.1

Intel Pentium 950 {1.0,1.5,2.2,2.9,3.4} 68 126

Intel Pentium 4630 {1.0,1.2,1.5,2.4,3.0} 30 64

As a numerical study, I implement the model to test five popular CPUs, namely, Xeon

E5-2670 [12][117], Intel i7-4770 [111][131], AMD Athlon, Intel Pentium 950, and Intel Pen-

tium 4630 [86]. I make use of the static power psta, maximum dynamic power pdmax, and

the frequency levels of the five real-world processors to demonstrate a way of applying my

model to determine the most energy-efficient frequency for real-world settings. Table 3.2

summarizes the three parameters of the five CPUs.

I implement the proposed mathematical model, the input of which includes a static

power and the max dynamic power. The output of the model implementation is an op-

timal frequency ratio accompanied by the lowest energy consumption. To illustrate the

usage of my implemented model, I compare my frequency-aware DVFS with the two com-

petitive approaches in the context of the five tested processors. After deriving the optimal

frequency ratios coupled with the minimized energy consumption, I put spotlight on the

energy-efficiency comparison of my frequency-aware DVFS scheme against the utilization-

based DVFS scheme and a baseline scheme. Let us briefly articulate the key ideas of the

three schemes below.
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• The baseline scheme. In this scenario, the simulated servers are operated at the

maximum frequency. The energy consumption of the servers managed by the baseline

scheme is referred to as peak energy consumption Ep (see also (3.21) in Section 3.4.2).

• The utilization-based DVFS scheme [42][15]. This popular DVFS scheme ad-

justs CPU frequency according to processor utilization that is dynamically changing.

A server’s power consumption is proportional to the server’s utilization [42]. The

correlation between power consumption and CPU utilization is expressed as

P = Pidle + (Pbusy − Pidle) · u (3.23)

where Pidle and Pbusy are power consumption of a system when its CPU’s power state

is idle and busy, respectively; u is the CPU utilization. In prior studies (see, for

example, [15]), the optimal utilization in the utilization-based DVFS scheme is set to

80%. Please refer to [15] for the detailed description on the utilization-based DVFS

scheme.

• The frequency-aware DVFS scheme. My proposed energy-saving method explores

frequency ratio to optimize energy efficiency. Obtaining ropt from Eq. (4.5), my scheme

minimize energy consumption by electing a frequency-ratio value r that is close to ropt.

3.5.2 Experimental Results

Fig. 3.12 shows the results of normalized energy consumption of the AMD and In-

tel processors governed by three power management policies (i.e., frequency-aware DVFS,

utilization-based DVFS scheme, baseline). The normalized energy consumption of the base-

line approach is fixed at the value of 1.0. Therefore, the baseline’s energy consumption is

marked as a red line rather than multiple bars. Compared with the baseline policy, my

frequency-aware DVFS conserves the energy by anywhere between 19% to 41%. The energy
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savings measured by the simulator are consistent with estimates offered by the model elabo-

rated in Section 3.4.5. The simulation results validate the correctness of the model developed

in this chapter.

 Utilization-based DVFSBaseline

Figure 3.12: Normalized energy consumption of the AMD and Intel processors managed
by the frequency-aware DVFS scheme, utilization-based DVFS scheme, and the baseline
scheme.

Comparing the energy efficiency between my frequency-aware DVFS method and the

utilization-based DVFS technique, I observe three intriguing and surprising trends. When

it comes to the Xeon E5-2670, Intel i7-4770, and the AMD Athlon, the frequency-aware

DVFS technique conserves more energy than the utilization-based DVFS counterpart. For

instance, compared with utilization-based DVFS, frequency-aware DVFS slashes the energy
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consumption of Intel i7-4770 by 15.5%. From the perspective of the Intel Pentium 4630

processor, the utilization-based DVFS method is superior to the frequency-aware DVFS

policy. In the context of the Intel Pentium 950 processor, the frequency-aware and utilization-

based DVFS schemes share identical energy efficiency. Such versatile trends motivate us to

shed some light on the applicability of the frequency-aware DVFS in the next subsection.

3.5.3 Applicability Discussions

The results plotted in Fig. 3.12 suggest that frequency-aware DVFS outperforms the

utilization-based DVFS scheme on three cases (i.e., Xeon, Intel i7, and AMD Athlon),

whereas the opposite is true for an outlier - Intel 4630. I delve into the features of these five

processors to justify the three winning cases of Xeon, Intel i7, and AMD Athlon, in which the

frequency-aware DVFS scheme more energy efficient than the utilization-based alternative.

The frequency-aware scheme is not on par with the utilization-based technique in the

case of Intel Pentium 4630, because this Intel processor has no appropriate frequency levels

that take full advantage from for my scheme. For example, optimal frequency ratio ropt of

Intel Pentium 4630 is 0.617; unfortunately, the nearest ratio close to ropt is just 0.5, which

is far away from the optimal energy-saving frequency ratio of 0.617. When it comes to Intel

Pentium 950, the frequency-based and utilization based schemes are equally energy efficient.

This trend is reasonable, because, Pentium 950’s static power proportion λ is over 35% - the

highest one among those of the three processors. Recall that (see Section 3.4.4) a high λ

value suppresses the capability of DVFS to conserve energy by adjusting frequency, adversely

affecting the energy-saving performance.

The aforementioned comparisons of the policies managing the five processors demon-

strate that my model is adroit at analyzing the energy efficiency of DVFS-enabled servers.

The results suggest that servers powered by processors with more frequency levels have a

higher likelihood to achieve the lowest energy consumption, because the frequency ratios of

these processors are more likely to be closer to optimal ratio ropt. Furthermore, servers with
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low static power proportion can enjoy energy savings offered by my frequency-aware DVFS

model.

My frequency-aware DVFS method delivers comparable energy-saving performance as

the utilization-based DVFS policy. A distinctive feature of my model is that frequency

ratio is introduced to measure the QoS and energy consumption. The existing utilization-

based DVFS model [15] assumes that virtual machine execution times are given in a priori;

more often than not, the estimates of the execution times are inaccurate. In contrast,

my frequency-aware model applies DVFS to conserve energy without estimating virtual

machine execution times. My model makes energy-saving decisions in accordance with server

configuration data. My model is more practical than the existing utilization-based model.

3.6 Summary

In this chapter, I have developed a frequency-aware DVFS model for virtual machines

running on cloud computing platforms. It is conventional wisdom to apply worst-case exe-

cution time or WCET as QoS requirements of virtual machines running on DVFS-enabled

systems, which conserve energy by scaling down CPU frequency. My model advocates for

specifying QoS requirements in form of frequency rather than WCET. The prominent benefit

of my proposed frequency requirements is to avert inaccurate WCET estimates. I demon-

strated the feasibility of transforming the traditional time-aware QoS model into a novel

frequency-aware QoS model. I showed that my model can be applied to govern the power

management of DVFS-enabled systems without violating the SLAs of virtual machines. In

the model, I introduced a new parameter referred to as frequency ratio, which impacts the

energy consumption of processors.

Given a processor’s hardware information, my model is adept at deriving the optimal

frequency ratio that leads to the minimum energy consumption of the processor. A power

manager can maximize energy efficiency by adjusting the processor’s frequency to meet the

optimal frequency ratio. After analyzing the correlations between frequency ratio and energy
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consumption, I drew an intriguing conclusion - a small static power proportion leads to high

energy-saving performance. To shed bright light on the applicability of my frequency-aware

DVFS model, I conducted a simulation study using the parameters from three real-world

processors. I confirmed that the energy-efficiency performance of my model is on par with

the well-known utilization-based DVFS scheme. The simulation results are evident that my

model is conducive to projecting the energy-saving performance of DVFS-enabled computing

systems running virtual machines.

67



Chapter 4

Security-Aware Energy Management in Clouds

Cloud computing over the internet reveals a remarkable potential to provide on-demand

services to consumers with great flexibility in a cost-effective manner. Security issues cou-

pled with resource allocations in cloud computing remain a challenging problem to be tackled

by the industry and academia. While moving towards the concept of on-demand services

and resource pooling in a distributed computing environment, security is a major obsta-

cle for this new dreamed vision of computing capability. At the same time, the research

on energy-efficient networking infrastructures is of great importance for service providers,

network administrators, and equipment manufacturers. In this chapter, novel energy-aware

scheduling policies are developed catering for virtual machines running on clouds, in which

service-level agreements (SLAs) are fulfilled. After addressing security concerns in cloud com-

puting, I advocate for a research roadmap towards future security-aware energy management

in clouds. I propose a high-level design for a security- and frequency-ware DVFS model or

SF-DVFS, which orchestrates security services, security overhead analysis, and DVFS con-

trol green cloud computing systems. I delve into the main technical challenges associated

with the proposed SF-DVFS model. After the description on the SF-DVFS high-level struc-

ture, the NSGA-II-SER algorithm (NSGA-II with security and energy-aware requirements)

is developed to optimize both energy efficiency and security protections in cloud data centers.

In Section 4.1, I begin this chapter with a roadmap description by presenting the con-

cepts of security services and strengths. Next, Section 4.2 discusses the development of

security overhead models for various security services. I propose in Section 4.3.1 an idea to

incorporate security and frequency awareness into the context of qualify of service (QoS), and

Section 4.3.2 presents a security- and frequency-aware DVFS model (SF-DVFS) in clouds.
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Our newly developed NSGA-II with security and energy-aware requirements algorithm is

proposed in Section 4.4. Finally, I conclude this chapter with our achievements in Sec-

tion 4.5.

4.1 Security Services and Strengths

The security of a cloud computing system entails a capability of keeping various attacks

at bay. A security system built for clouds consists of a diversity of security services like data

integrity, confidentiality, and authentication. Because security services are implemented

by different algorithms, the security services experience various strength associated with

computational overhead. For instance, data confidentiality may be furnished by the RC4

(Rivest Cipher 4 ) or AES (The Advanced Encryption Standard) cryptographic algorithms.

RC4 is a fast algorithm with low memory space overhead [130]. Importantly, Fluhrer et al.

discovered a few vulnerabilities in the RC4 algorithm, meaning that RC4 is unsafe for any

key size [44]. In contrast, AES encryption was rigorously reviewed for potential security

loopholes before being standardized by NIST in 2001. Compared with RC4, AES is more

secure at the cost of high overhead.

The security strength of a cryptographic algorithm largely depends on key size and the

number of operation rounds. The key size directly resembles the strength of the algorithm

against key search attacks. In the AES case, the key size can be configured at 128, 192,

and 256 bits. Theoretically speaking, the number of guesses to crack AES protected data is

3.41038 for the 128-bit key, 6.21055 for the 192-bit key, and 1.11077 for the 256-bit key. On the

other hand, expanding the number of operation rounds makes ciphers more secure, because a

large number of rounds leaves no trails of original data. Therefore, one may make use of the

number of operation rounds to gauge the quality of ciphers against potential cryptanalysis

attacks [129].

To optimize the security strength of applications running on computing clouds, I advo-

cate for future efforts to quantitatively measure the strength and computational overhead

of different security services implemented by cutting-edge algorithms. It is arguably true
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that the strength of a security service is proportional to the service’s computing and com-

munication overhead, because low-quality security services that bear high overhead should

be replaced by either fast-service counterparts or high-quality services with high overhead.

4.2 Security Overhead Models

Among a variety of security services, confidentiality, integrity, and availability are three

common services to safeguard sensitive data. Among these three types of services, I first

focus on the security overhead models developed to capture the correlation between strength

and overhead in the confidentiality and integrity services. Then, I shed some light on the

idea of constructing a security overhead model for data availability services.

4.2.1 Confidentiality and Integrity

A security service may be implemented by multiple implementation instances, each of

which have distinctive security strength and computing overhead. In this chapter, I refer

to the implementation instances as security service instances or security instances for short.

Given a security service, I assign 1 as the strength value of the strongest security instance.

The strength values of the other security instances in this service type are normalized based

on the strongest instance. The overhead of each security instance should be derived from

a program profiling study. Let us take the confidential service security as an example.

Table 4.1 summarizes the strengths and speed of the encryption algorithms implemented in

the five confidentiality instances. Similarly, Table 4.2 lists the hash functions supporting the

five integrity instances. The details on these security overhead models can be found in the

literature [116][94].

The overhead of the cryptographic instances is measured on virtual machines running

on a physical machine powered by a 3.3 GHz duo-core CPU, 2.0 GB main memory, and 400

GB disk [29]. The overhead of each security instance is heavily reliant on the size of data to

be protected and the security instance’s speed. More specifically, the overhead of securing
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data equals to data size divided by the speed of the given security instance. Such a security

overhead plays a key role in utilizing slack time to adjust security and frequency levels in a

resource management system articulated in Section 4.3.1.

Table 4.1: The Encryption Algorithms for Confidential Service.
Encryption algorithms Strength Speed (Mb/s)

IDEA 1.00 17.34

DES 0.90 18.21

Rijndael 0.64 39.88

Blowfish 0.36 39.96

RC4 0.30 87.07

Table 4.2: The Hash Functions for Integrity Service.
Hash functions Strength Speed (Mb/s)

TIGER 1.0 48.03

RIFDMD-160 0.77 71.27

SHA-1 0.63 80.67

RIFDMD-128 0.36 86.97

MD5 0.26 138.12

4.2.2 Data Availability

Now I propose an approach to building overhead models for data availability services in

cloud storage. High data availability becomes possible with the full support of replication

services or erasure code services, which are summarized as follows.

Data replication is a simple yet effective approach to tolerating failures in cloud storage.

In case of a lost data block, one replica block is sufficient to fix the problem with the minimum

data movements over networks. A high replica factor like triplication boosts storage system

performance via parallel I/Os [170]. An overhead model dedicated to data replication is

comprised of replication service instances representing different replica factors. In this model,

a high replica factor offers high data availability at the cost of creating replications. On the

flip side, the overhead can be reduced by lowering the replica factor. Intuitively, in this

model security levels of data availability are measured by replica factors. The overheads of

read operations are in stark contrast from those of write operations. A high replica factor
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leads to fast reads and expensive writes; the opposite is true for a low replica factor. Thus,

the overhead model must be separately developed for reads and writes.

Erasure codes are widely adopted in cloud storage housed in data centers [22][45][62].

The Reed-Solomon (RS) code is a popular erasure-code solution, thanks to its optimal storage

efficiency and high level of data availability tolerance [151]. These (k+r,k) RS codes encode

source data with a k×(k+r) Generator Matrix, which involves a k×k Identity Matrix and a

k×r Redundancy Matrix (see the details in [98]). In RS encoding, parity strips are originated

by multiplying k data strips with the k×r redundancy matrix. In the security overhead model

for data availability services fueled by RS code, security levels and overhead are obtained

from parameters k and r. In general, the large values of r offer a high level of availability

(high security level) at an expensive cost of constructing parity strips. Reducing r value

curtails the overhead by sacrificing data availability.

4.3 Security- and Frequency-aware Modeling

This section consists of two related components: I first investigate the security and

frequency awareness issues in QoS (see Section 4.3.1), followed by a DVFS modeling method

that incorporates security and frequency awareness (see Section 4.3.2).

4.3.1 Security and Frequency Awareness in QoS

The security overhead models articulated in Section 4.2 can be incorporated into a QoS

model to estimate the time spent in performing assigned security services. Specifically, secu-

rity overhead prolongs task execution times, which in turn triggers performance degradation.

Nevertheless, tasks that are slowed down by such security overhead are acceptable as long

as QoS requirements can be fulfilled.

In conventional real-time task models, the worst case execution-time (WCET) and dead-

lines are two key parameters capturing QoS requirements of real-time applications. Besides
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WCET and deadlines, CPU frequency is a practical parameter to prescribe QoS require-

ments. Given memory and I/O resources, a task’s execution time largely depends on an

assigned processor and its CPU frequency level. It is feasible to convert time-aware require-

ments into frequency-aware requirements.

Fig. 4.1 outlines a model of converting frequency requirements from deadlines and

WCET specified as timing constraints. In this modeling procedure, task requirements are

modeled in the format of minimum frequency requirements. By the same token, security

overhead incurred in security-sensitive applications should be integrated into the WCET

measures, which are converted into frequency requirements. As a future research direction,

tremendous efforts will be dedicated to ways of constructing frequency requirements from

WCET values that are reliant on time spent in performing security services. Such security

service times will be derived from security overhead model (see also Section 4.2).

Figure 4.1: A procedure of converting frequency requirements from deadlines and WCET
specified as timing constraints. Task requirements are modeled in the format of minimum
frequency requirements in clouds.

I investigate multiple virtual machines running on a group of physical machines modeled

as C = {c1, c2, ..., cm}. Let us define a set of n virtual machines as V = {vm1, vm2, ..., vmn}

running on machine c, where I have c ∈ C. Each virtual machine is denoted as a pair vmi =

(ai, f
req
i ), where ai is the creation time of virtual machine vmi, f req

i is the minimum frequency
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requirement of virtual machine vmi. The correlation between an overall task’s frequency

requirement and each virtual machine’s frequency requirement is formally expressed as:

f req
V,c =

∑
i∈V

f req
i,c . (4.1)

I define a security-related frequency requirement cofre as the frequency requirement that

is derived from the corresponding security overhead. I layout in Eq. (4.2) the relation between

an overall security-related frequency requirement and each virtual machine’s security-related

frequency requirement. The security-related frequency requirement of virtual-machine set V

running on physical machine c is an accumulated measure of the security-related requirements

of all the virtual machines in set V . Thus, I have

cofreV,c =
∑
i∈V

cofrei,c . (4.2)

Considering the minimum security-related frequency requirement cofreV,c , I show that

physical machine c has a capability to support all the virtual machines in V without violating

SLAs as long as the following requirement (4.15) holds.

f conf
V,c ≥ f req

V,c + cofreV,c . (4.3)

where f conf
V,c is a frequency configured for virtual-machine set V on physical machine c. To

meet specified SLA requirements, one has to regulate the frequency f conf
V,c in a way to exceed

a threshold of f req
V,c + cofreV,c .
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4.3.2 Security- and Frequency-aware DVFS Modeling

Now, I propose a DVFS model embracing security and frequency awareness. Fig. 5.2

unravels a high-level architecture of the security- and frequency-aware DVFS model or SF-

DVFS, in which the frequency-aware DVFS, a security overhead model, and security services

are seamlessly integrated.

Figure 4.2: The security- and frequency-aware DVFS model SF-DVFS integrates the
frequency-aware DVFS, a security overhead model, and security services in the context of
quality of services (QoS).
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In one of my recent studies [99], I proposed a frequency-aware DVFS model aiming

to conserve energy consumption of tasks with QoS requirements. In my DVFS model, the

energy consumption of processor c is calculated as:

Ec =

∑
i∈V Γi

fmax
c

(
P sta
c

rc
+ P dmax

c (rc)
2). (4.4)

where Γi is the total number of clock cycles of vmi, fmax
c is the max frequency level of

processor c, frequency ratio r is the ratio between the current processor frequency f and the

maximum frequency fmax held by a processor. P sta
c is the static power of processor c; P dmax

c

is the maximum dynamic power of processor c.

Let ropt be an optimal frequency ratio that curbs the energy consumption in the system.

I obtain optimal ratio ropt as:

roptc = 3

√
P sta
c

2P dmax
c

. (4.5)

Given the optimal frequency ratio ropt in Eq. (4.5), I derive the minimized energy con-

sumption Eopt from this ratio ropt, static power P sta
c , and maximum dynamic power P dmax

c .

Thus, I have

Eopt
c =

∑
i∈V Γi

fmax
c

(
P sta
c

roptc

+ P dmax
c · (roptc )2). (4.6)

In the system architecture depicted in Fig. 5.2, the QoS requirement module outputs a

minimum frequency requirement from two input parameters, namely, (1) the minimum fre-

quency requirement f req and (2) the security-related frequency requirement cofre prescribed

in virtual machines. On the left-hand side of the architecture, my frequency-aware DVFS

model incorporates the static and maximum dynamic power constants to obtain an optimal

frequency ratio ropt. Finally, the frequency adjusting module compares the optimal frequency

ratio and the overall minimum frequency requirement to configure the most appropriate fre-

quency level to reduce the energy consumption of the virtual machines running on a physical

machine.
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To enhance the system architecture outlined in Fig. 5.2, I advocate for the following

future research directions. First, practical VM consolidation and management policies should

be blended with DVFS to build energy-efficient clouds running tasks with QoS requirements.

Second, machine-learning-based prediction techniques are expected to boost the performance

of the VM consolidation and management policy. Third, the security overhead (see also

Section 4.2) largely depends on security levels. Hence, it is desirable to dynamically configure

security levels to fulfill QoS requirements in my proposed security-aware energy management

system. For example, if QoS requirements are permitted, security service instances with

strong strengths should be elected to maximize security in clouds. Otherwise, security levels

must be lowered to avert performance degradation.

4.4 Secure and Economical DVFS-enabled Scheduling Policy with NSGA-II-

SER for Clouds

After proposing the SF-DVFS high-level structure, I am positioned to design the NSGA-

II-SER algorithm (NSGA-II with security and energy-aware requirements) to optimize both

energy efficiency and security protections in cloud data centers.

This section consists of four related components. I first introduce the procedure and

benefits of genetic algorithms in Section 4.4.1. Then, I formulate this multi-objective opti-

mization problem in Section 4.4.2). Next, I introduce the widely adopted NSGA-II algorithm

in Section 4.4.3, followed by my newly developed NSGA-II with security and energy-aware

requirements algorithm in Section 4.4.4 and 4.4.5). Finally, I introduce the Pareto frequency

ratio in Section 4.4.6 and obtain the experimental results from three real-world processors

under two groups of security methods in Section 4.4.7.

4.4.1 Genetic Algorithms

Recall that (see Section 2.4.4) genetic algorithms or GAs, a random search method that

simulates biological evolution process, are widely adopted in resource scheduling for cloud
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computing systems [52]. Genetic algorithms are rooted in an early development spearheaded

by Holland and his associates back in 1975 [107]. A genetic algorithm - a search heuristic -

is inspired by Charles Darwin’s theory of natural evolution: the algorithm reflects a process

of natural selection where the fittest individuals are chosen for reproduction with a hope to

produce offspring of the next generation.

There are six phases are considered in a genetic algorithm:

• Initialization of Population. A population consists of a certain number of indi-

viduals, each with its unique code, treated as gene chromosomes. More specifically,

chromosomes are entities with characteristics, and the external performance of indi-

viduals is determined by chromosomes.

• Fitness Function. The fitness of individuals is calculated, and the calculation of

fitness must be based on the optimization goal. Generally speaking, individuals with

high fitness measures are close to an optimization goal.

• Selection. According to fitness levels, the algorithm elects individuals who perform

crossover mutation operations with different probabilities. Higher fitness corresponds

to more possibility of being selected, and the unselected individuals are unable to par-

ticipate in subsequent evolution processes - thus, the dominant individuals are retained.

Overly strong or insufficient fitness selection bias must be protected against, and the

awfully strong fitness selection bias can lead to sub-optimal solutions. In contrast,

week fitness bias selection may results in an unfocused search.

• Crossover. The crossover operator is similar to reproduction and biological crossover.

According to the preset crossover probability, two individuals are randomly selected,

and some of their coding sequences are exchanged to generate new individuals. The

individual obtained by crossover operation may be a combination of the dominant

genes of its mother parent - a more optimized individual. There are three commonly
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used crossing operations: single point crossing, multiple point crossing, and uniform

crossing.

• Mutation. Few individuals are randomly chosen to mutate based on a specific proba-

bility. In other words, some bits of chromosomes can be flipped. It is used to maintain

and introduce diversity in genetic population; normally, the probability is minuscule.

• Termination Condition. Determine the termination time of the evolutionary it-

erative process. The algorithm manages various termination conditions, such as the

fitness of optimal individuals that have met the requirements (fitness within the speci-

fied range), the number of iterations reaching a specific number, and the fitness of the

optimal individual or population tends to be stable, and to name just a few.

Genetic algorithm starts with initialization population to mutation operation, followed

by jumping back to individual evaluation. The algorithm continues its computation until

the termination condition is met. Considering that each new generation is a set of objective

function solutions, I argue that increasing the number of algebras tend to boost the accuracy

of an objective function.

When it comes to a single-objective optimization problem, general genetic algorithms

simply fulfill the requirements. The original genetic algorithm design, however, is no longer

applicable when the problem is extended to the multiple-objective optimization field. This

is because there is usually a deep relationship among multiple goals - optimizing one goal

usually affects the other goals, and it is hard to get the optimal solution for all the goals.

At this time, finding a suitable fitness function becomes the key toward solving the multi-

objective genetic algorithm in my dissertation research.
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4.4.2 Multiple-objective Optimization Problem Formulation

The Objectives

According to the security- and frequency-aware QoS and SF-DVFS structure proposed

in Section 4.3, I demonstrate the feasibility of combing my frequency DVFS model (see

chapter 3) with security requirements. Now, I formulate the SF-DVFS model as a multiple-

objective optimization problem to furnish the development of the generic algorithm - NSGA-

II-SER - in Section 4.4.4. Table 4.3 lists the notation used throughout this section.

Table 4.3: Symbol and Annotation 2
Symbol Annotation

fopt
c optimal energy-saving frequency for processor c applied my model.

freq
i,c frequency requirement of virtual machine vmi on processor c

freq
V,c frequency requirement of virtual machine set V on processor c.

V is the set of virtual machine running on processor c.

fconf
V,c frequency configured for virtual machine set V on processor c

Γi total execution requirements of virtual machine vmi.

γi,j execution requirements of the j th segment of virtual machine vmi.

P sta
c static power of processor c.

P dmax
c max dynamic power power of processor c.

rc frequency ratio of processor c.

fmax
c max frequency level of processor c.

Eopt
c the optimal energy consumption of processor c.

tc the execution time of processor c.

t′i the overall executing time t′i of virtual machine i.

ti the original task executing time of virtual machine i.

tsi the security overhead encryption time of virtual machine i.

sli the security level of virtual machine i.

tei the time overhead of encrypting each clock cycle on virtual machine i.

Per Eq. 3.9 articulated in Section 3.2, the total CPU power is obtained from frequency

ratio r as:

P = P sta + P dmax · r3,

and Eq. 3.10 in Section 3.3 captures the relation between energy, power and time consumption

as:

E = P · t = Pi · Γi

fi
(4.7)
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The energy consumption of processor c which T VMs running on is:

Ec = (P sta
c + P dmax

c (rc)
3) · tc, (4.8)

where processor c is executed in time tc, rc is the frequency ratio of processor c. P sta
c and

P dmax
c is the static and maximum dynamic power of processor c, respectively.

Assessing the security overhead in this model, I partition the overall executing time t′i

on virtual machine into two camps: the original task executing time ti and security overhead

encryption time tsi. Thus, I have

t′i = ti + tsi. (4.9)

Each security service is implemented through an algorithm such as encryption/decryption

algorithms. For instance, the time cost of using the encryption algorithm to encrypt data

is associated with the corresponding quantitative security level achieved by the encryption

algorithm. The encryption time of each data unit is generally linear with the security level

achieved. I denote the security level of virtual machine vmi is sli, and let time tei be the

time overhead of encrypting each clock cycles using the encryption algorithm to fulfill the

security-level requirements. Given T virtual machines running on processor c, I derive overall

executing time t′c of processor c by applying Eqs. (4.7) and (4.9). Hence, I express overall

executing time t′c as

t′c =

∑
i∈T Γi

fc
+
∑
i∈T

tei · Γi (4.10)

where Γi is the total number of clock cycles of vmi.

After modeling the new overall time t′c of processor c, I am able to gauge the overall en-

ergy consumption Ec, a portion of which is contributed by security overhead. More formally,
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I write the overall energy consumption Ec as follows.

Ec = (

∑
i∈T Γi

fc
+
∑
i∈T

tei · Γi) · (P sta
c + P dmax

c (rc)
3).

Ec = (

∑
i∈T Γi

rc · fmax
c

+
∑
i∈T

tei · Γi) · (P sta
c + P dmax

c (rc)
3). (4.11)

Intuitively, the above Eq. 4.11 is not a quadratic function with respect to frequency

ratio rc, and security service time tei for each data unit is also a variable. Consequently, it

becomes futile to take the derivative of Ec - a solution proposed in Section 3.3 - to resolve

the optimization problem in this section. To tackle this issue, I manage to formulate this

challenging problem into a multiple-objective optimization problem. More prosaically, I

start off modeling the optimization problem with two distinct objectives: minimizing energy

consumption in clouds and maximizing the quality of security offered to applications.

I formally express the first objective - minimizing energy consumption in cloud data

centers below.

Min Ec = Min (

∑
i∈T Γi

rc · fmax
c

+
∑
i∈T

tei · Γi) · (P sta
c + P dmax

c (rc)
3). (4.12)

The second objective - maximizing the quality of security - is written as the following

expression. It is noteworthy that the quality of security is enhanced by lifting the corre-

sponding security levels.

Max
∑
i∈T

sli. (4.13)

Aiming to solve the multiple-objective optimization problem, I ought to seamlessly

integrate these two objective functions. Thus, I translate the security function from the
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maximization problem into the minimization problem as the following format

Min(−
∑
i∈T

sli). (4.14)

The Constraint Conditions

Here I present the constraint conditions that play a critical role in my multi-objective

optimization model.

Recall that (see also Section 4.3.1) to fulfill the minimum security-related frequency

requirement cofreV,c , I demonstrate that physical machine c has a capability to support all the

virtual machines in V without violating SLAs as long as the following requirement (4.15)

holds.

f conf
V,c ≥ f req

V,c + cofreV,c . (4.15)

where f conf
V,c is a frequency configured for virtual-machine set V on physical machine c. To

meet specified SLA requirements, one has to regulate the frequency f conf
V,c in a way to exceed

a threshold of f req
V,c + cofreV,c .

The frequency ratio of each possessor has its own rage rather than directly from 0 to 1.

As I studied, frequency ratio r is a ratio between the current processor frequency f and the

maximum frequency fmax held by a processor. Hence, the lowest range of frequency ratio

largely depends on the lowest frequency level of the processor. Hence, I have

r > fminlevel/fmax. (4.16)

4.4.3 The NSGA-II Algorithm

Multi-objective genetic algorithms are a family of evolutionary algorithms analyzing and

solving multi-objective optimization problems. A core component of genetic algorithms is to
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coordinate the relationships among objective functions and to discover an optimal solution

set that makes each objective function reach a relatively large or relatively small function

value as much as possible.

The Non-Dominated Sorting Genetic Algorithm or NSGA-II is a powerful multi-objective

genetic algorithm for solving multi-objective optimization problems. Deb et al. improved

the NSGA algorithm in 2002 by proposing a non-dominated sorting genetic algorithm with

an elite strategy, and the new algorithm is referred to as Elitist Non-Dominated Sorting

Genetic Algorithm or NSGA-II [33]. The following three aspects have been addressed in the

updated version of the algorithm.

• A fast non-dominated sorting algorithm was devised to suppress the complexity of

non-dominated sorting.

• Elite strategy was designed to expand the sampling space.

• The crowding and crowding comparison operators were applied to ensure the diversity

of a given population.

Now I am positioned to design and implement a multi-objective genetic algorithm, the

security- and energy-aware scheduling algorithm, to analyze and solve my multi-objective

optimization problems in scheduling. My algorithm, which is referred to as NSGA-II-SER,

is an improved NSGA-II algorithm in nature. The key and distinct feature of NSGA-II-SER

lies in a coordinator that orchestrates the relationship between the energy-saving function

and the security function, aiming to locate an optimal solution.

NSGA-II, one of the most efficient multi-objective evolutionary algorithms, only needs to

be run once to obtain a Pareto optimal solution (see also 4.3). The NSGA-II procedure starts

off with a randomly selected population, ranked by non-dominance. The first generation is

initiated using binary selection, crossover, and mutation. After the first generation, elitism

is introduced by comparing the population with the best non-dominated solution obtained

in the previous phase. To create a new population, binary selections based on non-dominant
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Figure 4.3: The workflow of the NSGA-II genetic algorithm.
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and crowding distances are employed first, followed by the crossover and mutation operators.

The algorithm deploys two functions, namely, the non-dominated sorting function and the

crowding distance function.

It is noteworthy that the non-dominant sorting function is a cyclic classification process.

This function consists of the following two steps. First, the non-dominated set in a group is

identified as the first non-dominated layer, which is is removed from the group; the search

for the non-dominated set in the remaining group is continued. Second, all solutions in

the solution set are sorted according to the dominance relationship. Crowding distance is

gauged for each individual, thereby making calculation results evenly distributed in a target

space while maintaining the population’s diversity. The crowding distance of each individual

is calculated as the sum of distance differences between two adjacent individuals in each

sub-objective function.

4.4.4 NSGA-II-SER: Non-dominated Sorting Genetic Algorithm II Processing

Security and Energy Requirements

Now I am primed to design NSGA-II-SER - my NSGA-II algorithm that handles security

and energy requirements. In what follows, I present the NSGA-II-SER algorithm from the

perspectives of encoding, energy genes, and security genes. All the three pieces are seamlessly

integrated in the newly designed NSGA-II-SER.

The Encoding Scheme. I implement an encoding scheme to furnish a mapping

method from candidate solutions to chromosomes amid the process. This scheme, one of

the critical components in a genetic algorithm, directly influences the operators carried out

in the following crossover and mutation steps. Hence, the selection of a reasonable coding

scheme immensely impacts the quality and efficiency of the NSGA-II-SER algorithm. In my

implementation, I advocate for applying the binary code to divide the chromosomes into two

parts: the left part is dedicated to energy genes, whereas the right portion is reserved for

security genes.
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Energy Genes. Energy genes represent a critical parameter of the energy objective

function – frequency ratio. Recall that in Chapter 3, I measure frequency ratio as a ratio

between current and max frequency. Obviously, parameter frequency ratio is a non-integer

number sitting in a window between 0 and 1. I round this decimal number to two decimal

places for the computing purpose. I opt for this configuration because choosing three decimal

places does not necessarily improve optimization results. Therefore, I make use of seven genes

to resemble the energy genes because the seventh power of 2 is 128, which is sufficiently large

to cover all the possibilities of the frequency ratio.

Security Genes. Security genes represent the security strengths of a given tasks to

be scheduled by the NSGA-II-SER algorithm. I ought to guarantee that the number of bits

for genes is large enough to denote all the possibilities of security strengths. The range of

security strengths is determined by the highest strength. For instance, in Table 4.4 illustrates

that the security strengths are represented in a range between 29 and 118. This table is

only for demonstration purpose, meaning that the table along with the security strengths

should be dynamically updated according to deployed security services and measures. The

implementation of NSGA-II-SER maintains an interface to take any security-strength table

as input configuration data.

Process Description. The process is comprised of the following five steps. First,

the algorithm I run the encoding scheme outlined above. Second, after carrying out the

encoding scheme, I randomly originate initial population, referred to as the initial energy-

security population, using a uniform distribution ranging from a lower bound to a upper

bound. For example, the lower and upper bounds for frequency ratios are 0 and 1; the lower

and upper bounds of security strengths are 29 and 118 as stipulated in Table 4.4. Third, I

spark the fast non-dominated sorting and the crowding distance methods to implement the

elitism policy. Fourth, I kick off the binary tournament, intermediate crossover, and Gaussian

mutation operations to process the aforementioned energy genes and security genes. Fifth,

I union the parent energy-security population and the current population generate a new
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energy-security population. Hence, elite energy-security individuals in the parent population

are retained, and the diversity is guaranteed during the process. The above five steps are

repeatedly performed until the energy-security generation is reach to the generation number

specified by us.

4.4.5 How to use the NSGA-II-SER Algorithm?

As an instance case, Table 4.4 summarizes the strengths and speed of the encryption

algorithms implemented for the seven selected variants of RC6, running at the maximum

frequency. The detailed measures are documented in the literature by Jiang et al. [68].

Table 4.4: The strength and encryption/decryption time of different RC6 rounds.
RC6 rounds 4 6 8 10 12 14 16

Strength 29 45 61 78 94 110 118

Time/Block (µs) 17 26 35 44 52 61 70

In my example environment, I apply implemented algorithm to solve the multi-objective

optimization problem where the CPU is Intel i7-4770: the frequency level are 0.8, 1.0, ...,3.2,

3.4 GHZ with the 19W static power, and 76W max dynamic power. The frequency ratio is

from 0.8/3.4 = 0.23 to 1 (r ∈ [0.23, 1])

I observe from Table 4.4 that the correlation between the strength and the speed is an

approximately linear relationship. Consequently, I deploy the linear regression method to

bridge the relation between security strength stren and encryption time for per block TB

using the following expression.

TB = 0.568 ∗ stren+ 0.104 (4.17)

The linear regression relation represented in Eq. 4.17 is also outlined in Fig. 4.4.

To normalize the input of the devised NSGA-II-SER algorithm, I have to figure out

the relationship between energy objective function Eq. 4.12 and security objective function
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Figure 4.4: Linear regression for security strength and encryption speed. See also Eq. 4.17.
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Eq. 4.14. After obtaining the linear relation between security strength stren (the quality

of security sli in this example) and encryption time per block TB (see eq. 4.17), I link

the encryption time per block TB with sli, which is derived from Eq. 4.14. Furthermore,

encryption time tei in Eq. 4.12 can be expressed as:

tei =
TB ∗ fmax

f
=

TB

r
. (4.18)

After Eq. 4.18 is combined with the energy consumption objective functions written in

4.12, the energy objective function Ec is updated as

Ec = (

∑
i∈T Γi

rc · fmax
c

+
∑
i∈T

tei · Γi) · (P sta
c + P dmax

c (rc)
3).

= (

∑
i∈T Γi

rc · fmax
c

+
∑
i∈T

TB

r
· Γi) · (P sta

c + P dmax
c (rc)

3). (4.19)

With the two objective functions Eq. 4.14 and Eq. 4.19 in place, the above question

model is plugged into the NSGA-II-SER algorithm to facilitate solving the optimization

problem. Assuming the clock cycle of virtual machine Γi is 1012, I obtain the Pareto front

of the NSGA-II-SER Model as depicted in Fig. 4.5, where the population size is 50 and

maximum generation is 100.

Table 4.5 list the result of the implemented algorithm to demonstrate the format of a

solution set, which consists of the optimal frequency ratio and picked security strength sli

along with corresponding energy consumption. The security function is the opposite number

of the normalized security strength - a ratio between current quality of security sli and the

maximum measure sli (see, for example, 118 in Table 4.4). The normalized security strength

makes the algorithm analysis more universal than using the directly opposite number of sli

as the security function. Noticing that frequency f and strength sli are discrete, I choose the
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Figure 4.5: Pareto Front of the NSGA-II-SER algorithm. The population size is 50 and
maximum generation is 100.
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nearest r and sli values to optimally balance energy-saving and security measures. When

the optimal security method is elected according to the QoS requirements, the frequency

ratio is rounded up with rounded- down security requirements (e.g., satisfying Eq. 4.15).

The optimal solution, of course, can be customized by users. For example, let us consider

a data center that is more sensitive to security. In that case, a Pareto solution is chosen with

a high quality of security: frequency ratio 0.23 and 110.572, which use the 0.8 frequency

level and RC6 14 rounds (strength 110). In contrast, if an overarching goal of a data

center is high energy efficiency, the Pareto solution (0.23,29) will be selected to use RC6

4 rounds with a 0.8 frequency level to aggressively conserve energy while maintaining the

encryption requirement. Therefore, the NSGA-II-SER algorithm is deployed to balance the

energy-saving and security requirements in cloud data centers, where hardware information

- including processors’ static power and maximum dynamic power - is specified. Recall that,

as detailed in Chapter 3, optimal energy conversation can be derived from static power and

maximum dynamic power.

4.4.6 Pareto Frequency Ratio

Now I introduce the concept of Pareto frequency ratio, which is a frequency ratio when

the current situation is included in the Pareto front. According to the data displayed in

Fig. 4.5, each security strength has its own Pareto frequency ratio, leading to an optimal

balance between energy savings and security protection.

Fig. 4.6 unravels the trend of the Pareto frequency ratio under different security strengths.

It is noteworthy that the Pareto frequency ratio corresponds to different security levels hover-

ing between 0.45 and 0.55, which agrees the modeling trend plotted in Fig. 3.4 in Chapter 3.

It is evident that NSGA-II-SER keeps adjusting frequency ratio and tries to reach the best

energy-saving performance in various security-level scenarios.
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Table 4.5: Pareto Solutions of NSGA-II-SER after 100 generation
Frequency ratio r Quality of Security sli Energy consumption (KWh) Security function

0.500582 118 10.6287 -1

0.4995419 29 2.624579 -0.162136

0.4791961 70.53771 6.371529 -0.4760989

0.5087977 88.58534 7.985717 -0.6509584

0.4776638 93.77896 8.467762 -0.7064368

0.4193662 49.94709 4.640713 -0.306681

0.5493056 79.5809 7.239084 -0.5603759

0.4848251 110.998 10.0083 -0.9088532

0.5311597 73.05245 6.610943 -0.4988907

0.5057545 82.17824 7.408037 -0.5857984

0.5141162 47.1203 4.25753 -0.2856448

0.5023456 86.52297 7.797979 -0.6295966

0.4762359 91.41571 8.257052 -0.68089

0.5180988 44.71431 4.042986 -0.2681331

0.5109865 48.5413 4.38408 -0.2961557

0.4956241 67.82411 6.116628 -0.4520447

0.5174023 41.93097 3.791992 -0.2483151

0.5589574 90.2774 8.240618 -0.6687657

0.4847718 52.9495 4.782961 -0.3295811

0.4631311 34.70877 3.155959 -0.199021

0.4947543 32.68228 2.95607 -0.185723

0.4963171 55.94063 5.047714 -0.3529829

0.4712487 57.32992 5.190178 -0.3640559

0.4841618 83.2804 7.51389 -0.5967568

0.5228693 115.2429 10.4018 -0.9634639

0.5016829 77.64313 6.999314 -0.5417697

0.5096007 112.8821 10.1721 -0.9328494

0.4607338 36.82 3.349542 -0.21312

0.4661541 75.26748 6.818173 -0.5193714

0.4771739 31.3188 2.83921 -0.176903

0.5219624 39.2922 3.556832 -0.2299529

0.455111 96.11403 8.734763 -0.7321888

0.5398858 43.3142 3.935568 -0.2581047

0.5295522 97.88661 8.849442 -0.7520782

0.4976362 113.9629 10.2658 -0.9467942

0.539322 78.04541 7.076789 -0.5456065

0.4764708 100.02 9.032287 -0.77642

0.5255105 39.7729 3.602479 -0.233269

0.4657222 58.92027 5.341618 -0.3768928

0.4678242 84.80415 7.676331 -0.6120768

0.4668708 95.3643 8.632454 -0.7238635

0.4920991 59.79678 5.3956 -0.3840412

0.5239896 61.22749 5.535233 -0.3958261

0.441664 29.44781 2.704321 -0.164966

0.5418952 116.4211 10.5565 -0.9789781

0.4901881 102.86 9.270642 -0.8095025

0.4984331 63.92497 5.765552 -0.418435

0.44888 35.93019 3.284359 -0.207148

0.4627028 109.6119 9.932212 -0.8914537

0.4825869 74.09629 6.688537 -0.508494
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Figure 4.6: The frequency ratio of the point on Pareto front
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4.4.7 Preliminary Result the NSGA-II-SER Algorithm

Table 4.6: The CPU configurations of the three tested servers.
Server Frequency (GHz) Psta (W) Pdmax (W)

Xeon E5-2670 {1.2,1.3,...,2.5,2.6} 84.1 342.9

Intel i7-4770 {0.8,1.0,...,3.2,3.4} 19 76

AMD Athlon {0.8,1.5,2.0,2.7,3.0} 53 121.1

Recall that Table 3.2 summarizes the parameters of the five popular CPUs, from which

I choose Xeon E5-2670, Intel i7-4770 , AMD Athlon (Table 4.6) to evaluate the performance

of the NSGA-II-SER algorithm.

Given the security method chosen from Table 4.4, the Pareto front of Intel i7-4770 was

discussed in Section . Fig. 4.7 and Fig. 4.8 reveal the Pareto fronts of the AMD Athlon and

Xeon E5-2670 processors.

Running different security methods, I compare in Figs. 4.9, 4.10 and 4.11 the energy

consumption of servers equipped with and without the NSGA-II-SER algorithm. Compar-

ing the NSGA-II-SER algorithm with the baseline solutions, I assert that NSGA-II-SER is

able to offer energy savings for servers running security services tabulated in Table 4.4 in

Section 4.4.5.

Table 4.7: The strength and encryption/decryption time of other popular encrypt algorithm.
Encrypt Algorithm Algorithm performance

(KB/ms)
Security Level

SEAL 168.75 0.08

RC4 96.43 0.14

Blowfish 37.5 0.36

Knufu/Khafre 33.75 0.40

RC5 29.35 0.46

Rijndael 21.09 0.64

DES 15 0.90

IDEA 13.5 1.00

Aiming to validate the applicability of the NSGA-II-SER algorithm, I apply my NSGA-

II-SER algorithm to these three processors running the other security methods listed in

Table 4.7. Fig. 4.12, Fig. 4.13 and Fig. 4.14 depict the Pareto fronts of the Intel i7-4770,

AMD Athlon and Xeon E5-2670 processors. The Pareto fronts of these processors using
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Figure 4.7: Pareto Front of the NSGA-II-SER algorithm of AMD Athlon using method from
Table 4.4
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Figure 4.8: Pareto Front of the NSGA-II-SER algorithm of Xeon E5-2670 using method from
Table 4.4
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Figure 4.9: Energy consumption comparison for Intel i7-4770 equipped with and without
the NSGA-II-SER algorithm using method from Table 4.4
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Figure 4.10: Energy consumption comparison for AMD Athlon equipped with and without
the NSGA-II-SER algorithm using method from Table 4.4
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Figure 4.11: Eergy consumption comparison for Xeon E5-2670 equipped with and without
the NSGA-II-SER algorithm using method from Table 4.4
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methods in Table 4.7) share the same trend pattern as that of the processors executing

services summarized in Table 4.4. The comparison result entails that my NSGA-II-SER

algorithm is capable of discovering optimal solutions for the processors running new security

services.
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Figure 4.12: Pareto Front of the NSGA-II-SER algorithm of Intel i7-4770 using method from
Table 4.7

Fig. 4.15, Fig. 4.16 and Fig. 4.17 unveil the energy consumption of the NSGA-II-SER

-enabled and NSGA-II-SER-disabled servers executing the security method outlined in Ta-

ble 4.4.

After testing these three processors in two experiment groups of security methods, I

obtain similar Pareto front and energy consumption comparison trends. The empirical study
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Figure 4.13: Pareto Front of the NSGA-II-SER algorithm of AMD Athlon using method
from Table 4.7
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Figure 4.14: Pareto Front of the NSGA-II-SER algorithm of Xeon E5-2670 using method
from Table 4.7
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Figure 4.15: Energy consumption comparison for Intel i7-4770 equipped with and without
the NSGA-II-SER algorithm using method from Table 4.4
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Figure 4.16: Energy consumption comparison for AMD Athlon equipped with and without
the NSGA-II-SER algorithm using method from Table 4.4
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Figure 4.17: Energy consumption comparison for Xeon E5-2670 equipped with and without
the NSGA-II-SER algorithm using method from Table 4.4
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confirms the efficacy of the NSGA-II-SER approach in terms of energy saving and security

protection for cloud datacenters.

4.5 Summary

In this chapter, I proposed the research roadmap towards the security-aware energy

management in clouds. The roadmap possesses four connected components: (1) security ser-

vices, (2) security overhead models, (3) security- and frequency-aware QoS, and (4) security-

enabled DVFS. I formulated the SF-DVFS model as a multiple-objective optimization prob-

lem to furnish the development of the generic algorithm referred to as NSGA-II-SER. My

novel energy management system achieves high security and energy efficiency in clouds by

seamlessly integrating the security services, a security overhead model, and the security- and

frequency-aware DVFS model.
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Chapter 5

The blockchain-based privacy protection for the VM consolidation mechanism coupled with

the frequency-aware DVFS model

Cloud computing has radically changed the landscape of computing, storage, and com-

munication infrastructures and services. Cloud computing’s benefits encompass on-demand

capacity, low cost of ownership, and flexible pricing. While moving towards the concept

of on-demand services and resource pooling in distributed computing environments, pri-

vacy protection becomes a major concern due to the sharing and consolidation features of

clouds. At the same time, blockchain is an ideal privacy protection technology character-

ized by decentralization, transparency, data security, and system autonomy. In this chapter,

I investigate privacy controls in blockchain systems. Inspired by modern blockchain and

cloud computing techniques, I articulate a research roadmap towards future energy-aware

privacy protection mechanisms in clouds. As a case study, I propose a blockchain-based

VM consolidation framework accompanied by the DVFS (Dynamic Voltage and Frequency

Scaling) technique to offer energy savings and privacy controls in clouds. I expect that

the roadmap will open up the potential to develop energy-efficient blockchain-based cloud

computing platforms.

The remainder of this chapter is organized as follows. In Section 5.1, I introduce rep-

resentative blockchain-based privacy protection mechanisms. I present a research roadmap,

where new approaches and directions are discussed in Section 5.2, Section 5.3 and Section 5.4.

Finally, Section 5.5 presents concluding remarks.
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5.1 Privacy of Blockchain Systems

The blockchain technology has emerged as a creative way of maintaining distributed sys-

tems thanks to its high efficiency, high data security, and high credibility at a low cost [168].

Blockchain techniques employ a linked block structure to store and verify data, the changes

of which are synchronized by a trusted consensus mechanism. A growing number of novel

consensus mechanisms catering to cryptocurrencies have been proposed in the past few years.

For example, an innovative consensus method was incorporated in the Kraft system to avert

multiple hash-rate scenarios [78], thereby offering stable average block times. Sompolinsky

and Zohar designed the GHOST chain selection rule, which weights branches to speed up

selection tasks for miners [136]. The PeerCensus system is capable of maintaining a strong

consistency in Bitcoin-like systems [34]. Discoin, built atop PeerCensus, enhances consensus

efficiency by decoupling block creations from transaction confirmation operations.

The blockchain techniques make it feasible to forge a tamper-proof storage system cater-

ing to data storage. It is noteworthy that data privacy challenges may hinder the wide ap-

plications of the blockchain technology. For instance, Kosba et al. unveiled that blockchain

may not guarantee the privacy of transactions because the values of all transactions and

balances for a public key are publicly visible [77]. Biryukov et al. developed a technique to

link user pseudonyms to IP addresses even in case that users are behind firewalls [20]. with

this technique in place, clients have potentials to be identified by a set of nodes, which are

learned and used to discover a transaction’s origin.

Similar to the privacy-preserving methods for clouds, a raft of privacy protection mecha-

nisms were developed in the arena of the blockchain techniques. Representative mechanisms

include, but not limited to, mixing service [27], anonymous signatures [26], and encryption

techniques[143].
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5.1.1 Mixing Service

Chaum et al. proposed a mechanism of coin mixing [27]. Fig. 5.1 (a) depicts that this

mechanism allows privacy-seeking coin users to deliver transactions to a mixer service, which

blends a pool of coins to delink a transaction trail. Bonneau et al. [21] developed Mixcoin,

where a central server is in charge of mixing transaction addresses to offer external anonymity.

Such a centralized mixing mechanism relies on third-party servers, where dishonest mixers

may stealthily archive transaction records or provide poor mixing services. To tackle the

thread imposed by untrusted servers, decentralized mixing pattern was proposed (see Fig.5.1

(b)). Because decentralized mixing mechanisms are independent of the credibility of third-

party servers, decentralized designs effectively avert third party thefts and leakages of coin

mixing information.The decentralized coin mixing mechanism cancels the participation of

the third-party coin mixing providers and merges multiple one-to-one transaction records

into a many to many transaction record. The attacker cannot directly find the relationship

between them. The decentralized approaches also eliminate mixing fees. CoinJoin is the

earliest decentralized mixing scheme first proposed by Maxwell et al. [104].

5.1.2 Anonymous Signatures

Unlike the mixing methods suffer a delay in which participants discover their partners

for transactions to be mixed, anonymous signature schemes have strengths in furnishing

anonymity for signers. Among anonymous signature schemes, the group signature and ring

signature solution are two representative schemes [26][121]. The group signature method,

designed by Chaum and Heyst [26], enables group members to set up anonymous signatures

on behalf of a group, the managers of which may open signatures when the signature is

disputed. A ring signature is constructed by a group member, whose identify is protected

from the other members [121]. Monero is a successful implementation of the ring signature

approach, where ring signatures coupled with hidden addresses to camouflage the linkage

between input and output addresses [2].
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(a) Mixing transaction

(b) CoinJoin transaction

Figure 5.1: Mixing service mechanisms in blockchain.
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5.1.3 Encryption Methods

The homomorphic encryption and attribute-based encryption methods are widely ap-

plied in blockchains. Recall that (see Section 2.6.3) homomorphic encryption allows computa-

tions to be accomplished on encrypted data without accessing a decryption key. Distributed

electronic voting and bidding systems deploy the homomorphic encryption technology to

protect data privacy, to enhance the anonymity of participants, and to boost data reliability

and verifiability [143]. It is evident that attribute-based encryption is powerful. For ex-

ample, Lewko et al. implemented a decentralized attribute-based encryption scheme on a

blockchain [83]. Nevertheless, applications of attribute-based encryption schemes ought to

be further explored.

Another cryptographic technology that embraces privacy-preserving properties is zero

knowledge proofs (ZKP) [56]. A prover in a zero knowledge proof system makes a verifier

believe that a message is correct without sending valid information to the verifier. Non-

interactive zero-knowledge proof or NIZK is an extension of ZKP, where only a single message

is transferred from a prover to a verifier. NIZK was deployed in Zcash - a privacy-protecting

digital currency system that shields transaction information [128].

All the aforementioned privacy-preserving techniques (mixing, anonymous, and encryp-

tion) are tabulated in Table 5.1, which summarizes the strengths and weaknesses of the

leading-edge privacy protection techniques.

Table 5.1: Summary of Privacy Techniques on Blockchian.
Techniques Applications Advantages Disadvantages

Mixing Mixcoin [21] It can obfuscate users’ addresses from
being

Cause a Delay waiting to be mixed.
High risky on

CoinJoin [104] linked. unprotected transaction content.

Group signature It is efficient anonymity and revocabil-
ity.

Need a trusted manager.

Ring signature Monero [2] It can hide tradition origin and no need
for trusted participant.

The identity of the signer cannot be
revealed even in a dispute. The storage
overhead is heavy.

Homomorphic en-
cryption

It enable to perform computations on
ciphertexts without decrypting data in
advance.

Low efficiency for complex functions
and no support for auditing.

NIZK Zcash [128] It can simultaneously achieve
anonymity and transaction pri-
vacy.

Heavy computation overhead.
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5.2 Energy-aware Privacy Protections in Clouds

5.2.1 Energy Efficiency of Privacy Protections

High energy efficiency and privacy protections are two vital design objectives for cloud

computing platforms. In the first phase of my research roadmap, I focus on bringing forth

energy-efficient privacy protection techniques in clouds.

Splitting takes constant work to split an original data set into fragments. Extra energy

consumption is expected because operations on the fragments lead to additional input/output

overhead. Jaikar et al. devised a secure data distribution scheme anchored on secret splitting

to preserve data privacy over clouds [66]. Although this technique protects sensitive data,

the secret splitting technique inevitably increases energy usage due to extra bandwidth and

storage utilization.

Most anonymization methods cost energy to generate anonymized data sets. Once

anonymized data sets are generated and uploaded to the cloud, no further intervention

is required. Any query like search and retrieval on anonymized data incurs no overhead

on clouds. When it comes to homomorphic encryption, the complexity of encryption and

decryption are normally higher than that of plain encryption. Searchable encryption’s energy

efficiency lies between those of plain encryption and homomorphic encryption.

5.2.2 Design Issues in Energy-aware Privacy Protection Systems

There are four design issues in developing energy-aware privacy protection systems in

clouds. First, I design an energy-efficient data splitting mechanism by storing fragments

on energy-aware data storage systems such as Eco-storage [11]. Second, energy-efficient

anonymization and encryption strategies are expected to become technological underpinnings

of energy-aware privacy preserving mechanisms in clouds. Third, it is critical to navigator

an approach to making a good trade-off between privacy protection and energy efficiency
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in clouds. Last, a key research component is the development of blockchain-based privacy-

preserving techniques, which offer high energy efficiency in clouds. Please refer to Section 5.4

for the details.

• Design Issue 1. To build energy-efficient data splitting mechanisms by storing frag-

ments on energy-aware data storage systems such as Eco-storage [11].

• Design Issue 2. To design energy-efficient anonymization and encryption strategies,

which expect to become technological underpinnings of energy-aware privacy preserving

mechanisms in clouds.

• Design Issue 3. To navigator an approach to making a good trade-off between privacy

protection and energy efficiency in clouds.

• Design Issue 4. To develop blockchain-based privacy-preserving techniques, which offer

high energy efficiency in clouds. Please refer to 5.4 for the details.

5.3 Energy-Efficient Blockchains for Privacy Controls

Unlike traditional centralized solutions, the blockchain technology securely manages

chain data across a distributed and interlinked network of nodes. Blockchains, serving as a

tamper-resistant distributed ledger, naturally offer data privacy protections in clouds.

Blockchain-based data provenance provides tamper-proof records, enables the trans-

parency of data accountability in clouds, and enhances data privacy. Very recently, Ali et al.

demonstrated that the blockchain techniques embrace immutable, deterministic, and public

natures that play a vital role in data provenance [13]. The concept of smart contract balances

data provenance, functionality, and trusted environment, regardless of on-chain or off-chain

data storage. Liang et al. devised a decentralized and trusted cloud data provenance archi-

tecture - ProvChain - powered by the blockchain technology [90]. To glean provenance data

on storage clouds, ProvChain is slated to detect user operations on cloud files. User’s privacy
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is protected by ProvChain because users’ identities are constructed in a hashed form, where

only service providers are authorized to map hashed values to the identities.

Because wasting resources of mining networks becomes a key drawback of blockchain

technology, I will explore the following research directions to construct energy-efficient blockchain

techniques.

• Research Direction 2-1. I will pilot low-energy architecture designs to furnish the

development of energy-efficient blockchains to preserve user privacy.

• Research Direction 2-2. I intend to explore new ways of enhancing the energy efficiency

of consensus mechanisms in blockchains. I will kick off this direction by profiling energy

consumption of popular consensus mechanisms on edge computing platforms.

• Research Direction 2-3. I plan to extend novel ideas [55] of applying renewable en-

ergy to the blockchain techniques. I will evaluate the energy efficiency of blockchain

algorithms powered by solar and wind farms.

5.4 Blockchain-based Energy Management for Clouds

In one of my recent studies [99], I proposed a frequency-aware DVFS (Dynamic Volt-

age/Frequency Scaling) model aiming to conserve energy consumption of tasks imposing

QoS requirements. My model advocates for specifying QoS requirements with respect to

frequency rather than execution time.

A proposed framework depicted in Fig. 5.2 combines virtual machine (VM) migrations

with the DVFS technique to further improve energy efficiency. To protect data during

VM migrations and data movement, I propose to make use of blockchain-enabled resource

allocation to offer a transparent and trustworthy service on clouds (see also Section 5.3). I

promote the blockchain technique as an advanced decentralized structure to avoid privacy

leakage during VM migrations while guarding data against malicious tampering.
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To facilitate an energy-efficient cloud platform, my DVFS model intends to derive an

optimal frequency ratio that leads to the minimum energy consumption of each active server

while shutting down idle servers. The model makes power management decisions by incor-

porating the servers’ hardware information such as static power P sta
c and maximum dynamic

power P dmax
c . The frequency adjusting module compares the optimal frequency ratio and an

overall minimum frequency requirement to appropriately configure frequency levels to cut

back the energy consumption of VMs running on clouds.

I will spearhead this research effort along with the two directions below.

• Research Direction 3-1. I will develop a blockcahin-based VM consolidation mechanism

accompanied by the DVFS technique to offer energy savings and privacy protection in

clouds.

• Research Direction 3-2. I will incorporate reinforcement-learning algorithms into my

privacy-aware energy management system to optimize the performance of resource

allocation in the realm of cloud computing.

5.5 Summary

I introduced in this chapter the blockchain techniques make it feasible to forge a tamper-

proof storage system catering to data services on clouds. I surveyed an array of representa-

tive mechanisms such as mixing service, anonymous signatures, and encryption techniques.

Among all the energy-saving and privacy protection schemes for cloud computing, I shed

bright a light on blockchain-based VM consolidation combining DVFS to offer energy sav-

ings and privacy protection in clouds.

As the research roadmap towards the privacy-aware energy management in clouds, I

proposed three connected research activities: (1) building energy-aware privacy protection

services, (2) developing energy-efficient blockchains, and (3) devising blockchain-enabled
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Figure 5.2: The blockchain-based privacy protection for the VM consolidation mechanism
coupled with the frequency-aware DVFS model.
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energy management modules in clouds. Currently, I am in the process of designing a privacy-

aware energy management system for cloud computing environments. my novel energy

management system is expected to achieve high privacy and energy efficiency in clouds by

seamlessly integrating the blockchain, VM consolidation and frequency-aware DVFS model.
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Chapter 6

Conclusions and Future Research Directions

In this dissertation, I proposed a frequency-aware management strategy - a new way of

controlling dynamic power and static power of processors running virtual machines in data

centers. The frequency-aware model is adept at deriving an optimal frequency ratio that

minimizes processors’ energy consumption. With my model in place, the energy efficiency of

a data center can be maximized by adjusting the processor’s frequency to meet the optimal

frequency ratio. A management approach was devised to judiciously adjust frequency ratio to

conserve energy without violating the frequency requirements imposed by virtual machines.

The results demonstrate that my model lays out a solid theoretical foundation catering to

the development of power management software in DVFS-enabled clouds. Furthermore,

I constructed a high-level design for a security- and frequency-ware DVFS model or SF-

DVFS, orchestrating security services, security overhead analysis, and DVFS control green

cloud computing systems. After proposing the SF-DVFS high-level structure, I developed

the NSGA-II-SER algorithm (NSGA-II with security and energy-aware requirements) to

optimize both energy efficiency and security protections in cloud data centers. Last but

not least, I proposed a blockchain-based VM consolidation framework accompanied by the

DVFS technique to offer energy savings and privacy controls in clouds.

In what follows, I first present in Section 6.1 the main contributions made in each

chapter. Then, I weigh in on the future research directions in Section 6.2.

6.1 Main Contributions

The scale of data centers has increased dramatically in recent years, and the energy

consumption of these large-scale datacenters is truly tremendous. At the same time, cloud-

based datacenters, not surprisingly, are becoming a new trend of enterprise data repositories

119



replacing traditional datacenters. Evidence clearly show that virtual-machine-based cloud

computing platforms are technical underpinnings for modern datacenters in the future. Thus,

this dissertation research is focused on building energy-efficient cloud data centers.

While moving towards the concept of on-demand services and resource pooling in dis-

tributed computing environments, security is a major obstacle for deploying this new leading-

edge computing capability. A centralized structure is prone to data leakage of VMs running

in cloud data centers when access privileges of some nodes are comprised. Therefore, the

projects presented in this dissertation, expected to solve energy efficiency and security prob-

lems, facilitate the development of modern cloud-based data centers.

6.1.1 Frequency-aware Management for DVFS-based Clouds

In the first part of this dissertation study, I made the following three contributions.

Contribution 1: Frequency-Aware Quality of Service Unlike the conventional

wisdom applying worst-case execution time or WCET as QoS requirements, the frequency

model proposed in Chapter 3 advocates for specifying QoS requirements in the form of

frequency rather than WCET. The proposed frequency requirements’ primary benefit is

to avert inaccurate WCET estimates. I demonstrated the feasibility of transforming the

traditional time-aware QoS model into a novel frequency-aware QoS model. I showed that

the developed model can be applied to govern the power management of DVFS-enabled

systems without violating the SLAs of virtual machines. My model derives optimal energy

savings for servers without estimating execution times or specifying deadlines.

Contribution 2: A Frequency-aware DVFS Model Given the hardware infor-

mation of the processor, the frequency-aware DVFS model is able to derive the optimal

frequency ratio, which leads to the minimum energy consumption of the processor. A power

manager can maximize energy efficiency by adjusting the frequency of the processor to meet

the optimal frequency ratio. After analyzing the correlations between frequency ratio and

energy consumption, Several intriguing conclusions were drawn. First, the energy-saving

120



window size is proportional to maximum dynamic power and inversely proportional to static

power. Second, the optimal energy-saving frequency ratio is proportional to the static power,

meaning that a sizeable static power gives rise to a small amount of saved energy. On the

other hand, the optimal frequency ratio is inversely proportional to the maximum dynamic

power when the static power is a constant. Third, a small static power proportion leads to

high energy-saving performance.

Contribution 3: Applicability and Energy-efficiency Performance My frequency-

aware DVFS model, being practical, is ready to be adopted by power management systems.

Given a server’s static power and maximum dynamic power, the model can control a power

manager to achieve high energy efficiency. To shed a bright light on the applicability of

my frequency-aware DVFS model, I conducted a simulation study using the parameters

from three real-world processors. I also confirmed that the energy-efficiency performance of

my model is on par with the well-known utilization-based DVFS scheme. The simulation

results show that my model is conducive to projecting the energy-saving performance of

DVFS-enabled computing systems running virtual machines.

6.1.2 Security and Frequency Awareness in QoS

By the same token of the frequency-Aware QoS management designed in Chapter 4,

security overhead incurred in security-sensitive applications is integrated into WCET mea-

sures, which are converted into frequency requirements. I investigated the relation between

an overall security-related frequency requirement and each virtual machine’s security-related

frequency requirement. The security-related frequency requirement of virtual machines run-

ning on a physical machine is an accumulated measure of the security-related requirements

of all the virtual machines. To meet specified SLA requirements, I argued that one has to

regulate the frequency in a way that exceeds a threshold of execution and security require-

ments.
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6.1.3 Security- and Frequency-aware DVFS Modeling and NSGA-II-SER

In the security- and frequency-aware system architecture, the QoS requirement module

outputs a minimum frequency requirement from two input parameters, namely, (1) the min-

imum frequency requirement and (2) the security-related frequency requirement prescribed

in virtual machines. My frequency-aware DVFS model incorporates the static and maximum

dynamic power constants in this architecture to obtain an optimal frequency ratio. Last but

not least, the SF-DVFS model was formulated as a multiple-objective optimization problem

to furnish the development of the generic algorithm - NSGA-II-SER.

6.2 Future Projects

As future work directions, I plan to extend my model by combining different energy effi-

ciency and security protection methods. I believe that advanced machine learning algorithm

including reinforcement learning could become a game changer for the cloud data center

management. The detailed future research projects are articulated below.

6.2.1 Power Management Software

Recall that the first part of this dissertation (see also Chapter 3) lays out a solid theo-

retical foundation for power management software tailored for DVFS-enabled clouds. There

are three future research directions that will further expand this project of the disserta-

tion research. First, I intend to dabble a little bit in the development of a power manager

where the frequency-aware model is incorporated to adjust CPU frequencies in a heteroge-

neous computing environment on clouds. The frequency-aware model will offer the power

manager insightful hints on optimal frequency ratios, which boost the energy efficiency of

heterogeneous processors. Second, I have a solid plan to dive into the development of a hy-

brid mechanism that seamlessly blends the DVFS and VM consolidation techniques. Third,

thanks to the prominent energy-saving features offered by GPU DVFS, I plan to explore

energy conservation techniques in GPU computing systems. I will forge my model to guide
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the configuration of frequency ratios minimizing GPU’s energy consumption. I also have a

desire to push my future directions further by upgrading the model to handle CPU-GPU

heterogeneous systems in the face of cloud computing.

6.2.2 Energy-aware Distributed File Systems

From the perspective of green file systems, I plan to study the energy-efficient data

management in distributed file system in general and in Hadoop distributed file system or

HDFS in particular. In the HDFS system, there are usually three replicas for each data

block: when a file is created in HDFS, three copies of the same file are created. I intend to

design an energy-efficient HDFS, which will coordinate with my proposed frequency-aware

management strategy articulated in Chapter 3. One of a few key component in my new

design include a green data transmission mechanism, which will energy efficiently transfer

massive amounts of data between clients and HDFS.

6.2.3 Security-aware Energy Management in Clouds

To enhance the security- and frequency-aware system architecture, I advocate for the

following future research directions. First, practical VM consolidation and management

policies should be blended with DVFS to build energy-efficient clouds running tasks with

QoS requirements. Second, machine-learning-based prediction techniques are expected to

boost the performance of the VM consolidation and management policy. Third, the security

overhead largely depends on security levels. Hence, it is desirable to dynamically configure

security levels to fulfill QoS requirements in my proposed security-aware energy management

system. For example, if QoS requirements are permitted, security service instances with

strong strengths should be elected to maximize security in clouds. Otherwise, security levels

must be lowered to avert performance degradation. Developing a security-aware energy

management system should incorporate underpinning techniques from multiple areas like
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machine learning solutions, DVFS techniques, real-time scheduling, security services, security

strength evaluation, and security overhead analysis.

6.2.4 Energy-aware Privacy Protections in Clouds

Now I present future research directions in the arena of developing energy-aware privacy

protection systems in clouds. I propose to build energy-efficient data splitting mechanisms

by storing fragments on energy-aware data storage systems such as Eco-storage. I plan to

design energy-efficient anonymization and encryption strategies, which expect to become

technological underpinnings of energy-aware privacy preserving mechanisms in clouds; I will

navigator an approach to making a good trade-off between privacy protection and energy

efficiency in clouds. I will delve in the development of blockchain-based privacy-preserving

techniques, which offer high energy efficiency in clouds.

6.2.5 Blockchain-based Energy Management for Clouds

Among all the energy-saving and privacy protection schemes for cloud computing, I shed

bright a light on blockchain-based VM consolidation combining DVFS to offer energy savings

and privacy protection in clouds. As a future project, a framework will be implemented to

combine virtual machine (VM) migrations with the DVFS technique to further improve

energy efficiency.

Blockchain-enabled resource allocation will be utilized to offer a transparent and trust-

worthy service on the cloud. I plan to promote the blockchain technique as an advanced

decentralized structure to avoid privacy leakage during VM migrations while guarding data

against malicious tampering. Along with this direction, three connected research activities

will be undertaken in the future: (1) building energy-aware privacy protection services, (2)

developing energy-efficient blockchains, and (3) devising blockchain-enabled energy manage-

ment modules in clouds.
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Furthermore, I will incorporate reinforcement-learning algorithms into privacy-aware en-

ergy management systems to optimize the performance of resource allocation in the realm of

cloud computing. Thanks to the explosion of the machine learning technology, reinforcement

learning is widely used in the field of resource allocation. It is expected that the development

of a privacy-aware energy management system should incorporate underpinning techniques

from reinforcement learning.
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