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Abstract

Edge-colorings of graphs have a rich history and are widely studied. Trade spectra of

graphs are relatively new and ripe for study. The color-trade-spectrum of a graph G is defined

to be the set of all t for which there exist two proper edge-colorings of G using t colors such

that each vertex of G is incident to the same set of colors under each edge-coloring while each

edge receives a different color under each edge-coloring. We show some general results and

present various constructions which are used to determine the color-trade-spectrum of several

families of graphs.
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Chapter 1

Introduction

We first give a brief history of edge-colorings and trades on graphs. Edge-colorings of graphs

can be traced back to the four-color problem, first posed in 1852 by Francis Guthrie, which asks

if every map can be colored with four colors so that adjacent countries are colored differently.

The first “proof” of this was produced by Alfred Kempe in 1879 [12]. While his arguments

were incorrect, he introduced the idea of Kempe chains, which remain a key ingredient in edge-

coloring theory. Later in the 19th century, Peter Tait attempted to improve Kempe’s arguments

and in the process introduced Tait colorings [18].

In the early 20th century, Dénes König showed that a graph is bipartite if and only if every

cycle has even length, and then showed that every k-regular bipartite graph can be partitioned

into 1-factors, which are sets of disjoint edges that meet all the vertices, by using Kempe chains.

In the middle of the 20th century, Claude Shannon showed that the wires of any network can

be properly colored, meaning no color appears more than once at a node in a network, with

b3m
2
c colors, where m is the largest number of wires at a point [15]. An equivalent statement

is the minimum number of colors needed to properly edge-color a graph is between ∆ and

b3∆
2
c, where ∆ is the maximum degree of the graph, which is the maximum number of edges

appearing at a vertex in the graph.

In 1964, Vadim Vizing proved that the minimum number of colors required to properly

edge-color a graph, the chromatic index denoted by χ′(G), is no more than ∆ + u where u

is the maximum number of repeated (or parallel) edges between any two vertices in the graph

[19]. In particular, if G is simple, meaning it has no parallel edges or loops (edges connecting

a vertex to itself), then χ′(G) ∈ {∆,∆ + 1}. This led to classifying simple graphs as Class 1
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or Class 2, depending on whether their chromatic index is ∆ or ∆ + 1 respectively. Classifying

graphs as Class 1 or 2 is an NP-complete problem [11], but has a rich history. One possibility

is to consider families of graphs whose cores have simple structure [6][7][8][10].

Work on trades in design theory originated in the 1960s [9] although the idea behind

trades was used as early as 1916 [20] to construct Steiner triple systems. Trades reflect possible

differences between two combinatorial objects of the same type (Steiner systems, latin squares,

etc.). The original use of a trade as defined by Hedayat [9] was to avoid some undesirable

blocks in an experimental design while retaining the same parameter set and variety set. Some

other uses of trades include the following: solving intersection problems for two combinatorial

structures, creating defining sets for block designs [16], creating critical sets for partial latin

squares, creating designs with different support sizes which is used in statistical applications

of designs [9], constructing t-designs, and constructing irreducible designs. Much of these

applications are considered in the surveys by Billingon [2] and Khosrovshahi [13].

The basic idea behind a trade is to partition an object into subsets satisfying some list of

properties. If we can partition the object into a different set of subsets which still satisfy the

same list of properties, we say the partitions form a trade. Formally, a (k, t) trade of volume

m and foundation size v (sometimes referred to as a (v, k, t) trade), is a pair {T1, T2} of sets of

subsets of size k based on a v-set, such that T1 and T2 each contain m subsets of size k, with

T1 ∩ T2 = ∅, and so that each t-set chosen from the v-set occurs exactly the same number of

times in the blocks of T1 as it does in the blocks of T2. A trade is called Steiner if each t-set

occurs at most once in each Ti, and a trade is called simple if there are no repeated blocks in T1

or in T2.

While there are a variety of types of trades, four kinds appear most often in the literature;

trades in designs, latin squares, graphs, and trades derived from “latin representations”. The

trades described above are most often used in design theory, where trades are allowed to contain

repeated subsets, often called blocks. A latin trade is a pair {L1, L2} of partial latin rectangles

with precisely the same m filled cells such that: 1. L1 and L2 contain different elements in

each filled cell (i, j); 2. in each occupied row i, L1 and L2 contain set-wise the same symbols;

3. in each occupied column j, L1 and L2 contain set-wise the same symbols. In graph theory,
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the trade-spectrum of a graph G is the set of all integers t for which there is a graph H for

which two G-decompositions of H exist; this means the edges of H can be partitioned in two

unique ways into t copies of G with no copies of G in common [3]. Some uses of trades from

latin representations are addressed by Billington and Cavenagh [5][4]. Most previous work on

trades has involved 2-way trades, but some work has been done on µ-way trades [1]. In this

dissertation, we consider a synthesis of edge-colorings and trades, called color trades.

We now give a brief summary of the contents of this dissertation. First, we cover the

preliminaries in chapter 2, which includes formally defining color trades, mate colorings, and

the color-trade-spectrum of a graph. In the preliminaries section we also list some general

lemmas, such as determining lower and upper bounds of the color-trade-spectrum of a graph in

Lemma 2.1. Additionally, we determine the color-trade-spectrum of all cycles in Lemma 2.2,

and use this in Lemma 2.3 in which we use cycle decompositions to create a general method to

find a subset of the color-trade-spectrum of a graph. We then define a new graph G′ in Lemma

2.4 based on two mate colorings of a given graph, and use G′ to find a subset of the color-trade-

spectrum of the original graph. We conclude the preliminaries section with Lemma 2.5, which

details a way to determine if two edge-colorings are mate colorings by considering a new graph

M(G, k). In particular, two edge-colorings of a graph G are mate colorings if and only if the

corresponding M(G, k) is bipartite.

In chapter 3, we determine the color-trade-spectrum of three small families of graphs,

namely Theta, Wheel, and n-cube graphs. Theta and Wheel graphs are simple modifica-

tions of cycles, so the methods for finding the color-trade-spectrum of cycles in Lemma 2.2

is used again, and explicit constructions are given for both families of graphs. The color-trade-

spectrum of trivial cases of Theta graphs is determined in Lemma 3.1, and the color-trade-

spectrum in full is determined in Theorem 3.2. The color-trade-spectrum for Wheel graphs is

determined in Theorem 3.2. The color-trade-spectrum of trivial cases of n-cube graphs is de-

termined in Lemma 3.2, and in Theorem 3.3 the full color-trade-spectrum for n-cube graphs is

determined using a recursive construction based on the well known fact that the (n+m)-cube

graph is isomorphic to the Cartesian product of the n-cube and m-cube graphs.
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In chapter 4, we determine the color-trade-spectrum of complete bipartite graphs and list

explicit constructions for attaining each value in the color-trade-spectrum. We make frequent

use of Latin rectangles in the constructions, where we define and use row and column blocks of

Latin rectangles. In Theorem 4.1, for a complete bipartite graph Km,n under a proper ∆-edge-

coloring with m even, we list a specific construction for the corresponding Latin rectangle L∆

which we then use to create a new Latin rectangle π(L∆) which corresponds to a mate coloring

for the original edge-coloring ofKm,n. From this, we identify a 4-cycle decomposition ofKm,n

on which we use Lemma 2.3 to attain the entire color-trade-spectrum of Km,n. We deal with

K3,n as a special case in Lemma 4.3 and use this to create modified constructions of L∆ and

π(L∆) in Theorem 4.2. From this, we identify a cycle decomposition of Km,n for odd m on

which we again use Lemma 2.3 to attain the entire color-trade-spectrum of Km,n.

In chapter 5, we determine a subset of the color-trade-spectrum for Cartesian products of

paths Pm�Pn and fully determine the color-trade-spectrum for P2�Pm. In Lemma 5.1, we

list specific constructions for proper ∆-edge-colorings of P2�Pm depending on the parity of

m along with the associated mate colorings. From this, we identify cycle decompositions of

P2�Pm on which we again use Lemma 2.3 to achieve a subset of the color-trade-spectrum.

In Theorem 5.1, we show the subset of the color-trade-spectrum from Lemma 5.1 is indeed

the entire color-trade-spectrum of P2�Pm. In Theorem 5.2, we list specific constructions for

proper 4-edge-colorings and proper 5-edge-colorings of Pn�Pm depending on the parities of

n and m, along with their mate colorings. From the proper 5-edge-colorings, we identify cycle

decompositions of Pn�Pm on which we use Lemma 2.3 to attain a subset of the color-trade-

spectrum of Pn�Pm. We conjecture that the subset from 5.2 is indeed the entire color-trade-

spectrum.

In chapter 6, we fully determine the color-trade-spectrum for complete graphs Kn where

n ≡ 0 mod 8 and n ≡ 4 mod 8. In Theorem 6.1, we identify a (K4, C4) decomposition of

Kn for n ≡ 0 mod 8 by first finding aK4 and n
4
K4 decomposition, where n

4
K4 is the complete

n
4
-partite graph where each part contains four vertices. From this, we consider a new graph Km

which we use to find a (K4, C4) decomposition of n
4
K4. Using this decomposition, we present

a ∆-edge-coloring of Kn along with its mate coloring, and use Lemma 2.3 to determine the
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color-trade-spectrum of Kn. In Theorem 6.2, we modify the process of Theorem 6.1 to find a

(K4, C4) decomposition of Kn for n ≡ 4 mod 8 where we consider a modified Km, namely

K2m. Again, we present a ∆-edge-coloring ofKn along with its mate coloring, and use Lemma

2.3 to determine the color-trade-spectrum of Kn. In Theorem 6.3, we again modify the process

of Theorem 6.1 to find a C4 decomposition of Kn for n ≡ 1 mod 8. We present a 2n + 4-

edge-coloring of Kn for n ≥ 17 along with its mate coloring, and use Lemma 2.3 to partially

determine the color-trade-spectrum of Kn.
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Chapter 2

Preliminaries

A graph is a pair G = (V,E) where V is a set of vertices and E is a multiset of paired vertices,

called edges. If u ∈ V and (u, u) ∈ E, we say the edge joining u to itself is a loop. For

u, v ∈ V , we say the number of times (u, v) appears in E is the edge-multiplicity of (u, v). We

say a graph G is simple if G contains no loops and the maximum edge-multiplicity of G is 1.

We assume all graphs from this point onward are simple unless otherwise stated. If (u, v) ∈ E,

we say this edge is incident to vertices u and v. If e1, e2 ∈ E are incident to a common vertex

v ∈ V , we say e1 and e2 are adjacent edges.

A k-vertex-coloring of a graph G is an assignment of “colors” to the vertices of G. More

formally, ϕ : V (G) → C is a k-vertex-coloring of G where |C| = k. A vertex-coloring is

proper if no two adjacent vertices share a common color. Formally, for two vertices u and v

in V (G) where u 6= v, ϕ(u) 6= ϕ(v). The minimum number of colors needed to properly

vertex-color a graph G is known as the chromatic number of G, denoted by χ(G). In studying

edge-colorings, we often consider the degree of a vertex, which is the number of edges incident

to a vertex in a loopless graph. The minimum degree of a graph G, denoted δ(G), is the degree

of the vertex with the least number of edges incident to it in G. Likewise, the maximum degree

of G, denoted ∆(G), is the degree of the vertex with the greatest number of edges incident to

it in G.

Analogously, a k-edge-coloring of a simple graph G is an assignment of “colors” to each

edge of G. More formally, Φ : E(G)→ C is a k-edge-coloring of G where |C| = k. An edge-

coloring is proper if no two adjacent edges share a common color. Formally, for any vertex

v ∈ V (G) and any pair of edges incident to v, ukv and ujv where k 6= j, Φ(uk, v) 6= Φ(uj, v).
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The minimum number of colors needed to properly edge-color a graph G is known as the

chromatic index of G, denoted by χ′(G).

Let G be a simple graph under a proper t-edge-coloring C1. We say an edge-coloring C2

of G is a mate coloring of C1 if and only if the following conditions are true:

1. For every v ∈ V (G), the set of colors assigned to edges incident to v under C1 is the

same as the set of colors assigned under C2

2. For every e ∈ E(G), the color assigned to e underC1 is different than the color assigned

under C2.

Clearly, C1 and C2 must have the same cardinality, and in fact must consist of the same

set of colors. We define the color-trade-spectrum of a graph G,CTS(G), to be the set of all t

for which there exist two mate colorings of G using t colors.

Consider a graph G with n vertices, and where every pair of vertices is joined via an edge.

Then G is the complete graph on n vertices, denoted by Kn, sometimes called the clique on n

vertices. An example of two mate colorings using three colors for K4 is given below, showing

that 3 ∈ CTS(K4).

Next, we list some elementary observations about mate colorings and color trade spectra.

Lemma 2.1. Let G be a simple graph with chromatic index χ
′
(G).

1. If G contains a vertex of degree one, then CTS(G) = ∅.

2. In a mate coloring, each color must be assigned to at least two edges of G.

3. χ
′
(G) ≤ min CTS(G) and max CTS(G) ≤ b |E|

2
c.

Proof. 1: If G contains a vertex of degree one, say u, then CTS(G) = ∅ as there is no way for

two edge-colorings to both make u incident to the same color without assigning the same color

to the singular edge incident to u.
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2: Let C1 be a proper edge-coloring applied to G such that only a single edge (u, v) is

colored c1. For contradiction, suppose C2 is a mate coloring of C1. Then there must exist other

vertices u′ and v′ such that (u, u′) and (v, v′) are colored c1 under C2. This means u′ and v′

must be incident to edges colored c1 in C1, contradicting our assumption that u and v are the

only vertices incident to edges colored c1 under C1. Thus, any color in a mate coloring must be

assigned to at least two edges in G.

3: Since mate colorings are proper edge-colorings, it immediately follows that χ′(G) ≤

min{CTS(G)}. By observation 2, each color in a mate coloring must be assigned to at least

two edges in G, so max{CTS(G)} ≤ b |E|
2
c.

A walk is an alternating sequence of vertices and edges beginning and ending with a

vertex in which each edge is incident with the vertex immediately preceding it and the vertex

immediately following it. A trail is a walk in which the edges are distinct and a path is a trail in

which the vertices (and thus edges) are distinct. A cycle is a non-empty trail in which only the

first and last vertices are the same. A cycle decomposition is a partitioning of a graph’s edges

into cycles. We say a cycle is even or odd if it respectively contains an even or odd number of

vertices. The following lemma characterizes the color trade spectra of cycles, which are often

used in determining the color trade spectra of more complicated graphs.

Lemma 2.2. Let G be a graph containing at least three vertices. If G is an even cycle, then

CTS(G) = {2}. If G is an odd cycle, then CTS(G) = ∅.

Proof. Suppose G is an even cycle containing at least four vertices, denoted by v0, v1, ..., vn−1.

Without loss of generality, suppose the edges of G are of the form (vi, vi+1) (or (vi+1, vi) since

edges are unordered pairs of vertices) where 0 ≤ i ≤ n− 1 and addition is done modulo n. Let

C1 be a proper edge-coloring of G using two colors c1 and c2, and without loss of generality

suppose each edge of the form (vi, vi+1) where i is odd is colored c1 while each edge of the

form (vj, vj+1) where j is even is colored c2. In particular, note each vertex is incident to an

edge colored c1 and an edge colored c2.

8



Modify C1 by swapping the assignment of c1 and c2 to create a new edge-coloring C2.

This new edge-coloring doesn’t assign the same color to any edge as C1 by definition, and still

maintains the property that each vertex is incident to an edge colored c1 and c2. Thus, C2 is a

mate coloring of C1 so 2 ∈ CTS(G).

Now, suppose thatC1 is a proper edge-coloring ofG using at least three colors, c1, c2, ..., ck.

Then there must exist some sequence of three consecutive edges using three colors, say (v0, v1),

(v1, v2), and (v2, v3). Without loss of generality, suppose that c1 is assigned to (v0, v1), while c2

and c3 are respectively assigned to (v1, v2) and (v2, v3). For any mate coloring of C1, the edge

(v1, v2) would then need to be assigned both c1 and c3, but this is impossible since edges can

only be assigned one color under proper edge-colorings. Thus, C1 has no mate coloring, and

we conclude that CTS(G) = ∅. Therefore, {2} = CTS(G).

It is well known that for any odd cycle, a proper edge-coloring must contain at least three

colors. By the previous paragraph, this shows that the color-trade-spectrum for odd cycles is

empty.

We now proceed to list some general lemmas about color-trade-spectra. A graph is con-

nected if there is a walk between every pair of vertices in the graph. We say H is a component

of G if H is a connected subgraph which is not part of any larger connected subgraph of G.

We say a subgraph H is spanning if it contains every vertex of G. Let C1 and C2 be two edge-

colorings of G using colors k colors which are mate colorings. The following lemma gives a

method to increase the number of colors used in a pair of mate colorings.

Lemma 2.3. LetC1 ad C2 be mate k-edge-colorings of a graph G. For each j in 1 ≤ j ≤ k,

let Hj be the subgraph of G spanned by the edges colored cj in either C1 or C2. Then the

components of Hj are even cycles. Let αj be the number of these cycles and α =
k∑

j=1

αj . Then

CTS(G) contains all integers in the interval [k, α].

Proof. Suppose K is a component of Hj . Since C1 and C2 are mate colorings, any vertex in

K is incident to exactly one edge of color cj from C1 and exactly one (different) edge of color

cj from C2. Thus, every vertex of K has degree two and is thus a cycle. If K is an odd cycle,
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at least one vertex of K must be incident to two edges belonging to the same edge-coloring, a

contradiction. Thus, K is an even cycle.

Suppose that Hj consists of disjoint even cycles. Consider two such cycles, say

(vx1 , vx2 , ..., vxm) and (vy1 , vy2 , ..., vyn). By definition, these cycles are pairwise vertex disjoint,

so we can freely assign a new color to each cycle. Since we have α of these cycles, we can

extend our original k-edge-coloring of G up to an α-edge-coloring.

A bridge is an edge whose removal from a graph increases the graph’s number of con-

nected components. Lemma 2.3 gives us the following corollary.

Corollary 2.0.1. If G is a graph which contains a bridge, then CTS(G) = ∅.

Proof. By Lemma 2.3, if G had a pair of mate colorings, then each Hj would consist of even

cycles. However, this can not occur if G has a bridge.

A cycle-double-cover of a graph G is a collection of cycles which together contain every

edge of G exactly twice. Clearly, the Hj subgraphs from Lemma 2.3 form a cycle-double-

cover, although not every cycle-double-cover correlates to the Hj subgraphs from a pair of

mate colorings. Of note, this is related to the open cycle-double-cover conjecture by Seymour

and Szekeres, which states that every bridgeless graph has a cycle-double-cover. [14][17]

A set of vertices is independent if no two vertices in the set are adjacent. A graph is bi-

partite if the vertices can be partitioned into two disjoint and independent sets. We denote the

complete bipartite graph on sets of size m and n by Km,n. Below is a 6-edge-coloring of K4,6,

along with its mate. Following these is an example of some of the Hj subgraphs from Lemma

2.3. In particular, note that everyHj consists of two 4-cycles. Thus, we could recolor one of the

4-cycles per color class to increase the total number of colors by one, and we could continually

do this for each value of j until we have a pair of mate 12-edge-colorings of K4,6.
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We say two colors c1 and c2 are incident if two edges colored c1 and c2 are incident.

The following lemma gives a method to decrease the number of colors used in a pair of mate

colorings.

Lemma 2.4. Suppose that C1 and C2 are proper mated k-edge-colorings of G on the same set

of k colors. Denote by G′ the graph where the k vertices of G′ represent the colors used in both

C1 and C2, and where vertices are adjacent if the respective colors are incident in C1 and C2.

Then CTS(G) contains all the integers in the interval [χ(G′), k].

Proof. Suppose C1 and C2 are mated k-edge-colorings of G on the same set of colors and let

c1 and c2 be colors which are not incident in G. Using notation from Lemma 2.3, we know H1
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and H2 are edge-disjoint. Since the associated vertices of these colors in G′ are not adjacent,

we may assign the same color to these vertices and likewise the same color to both sets of

corresponding edges in G. Furthermore, we can freely continue this process until G′ is χ(G′)-

colored.

Below is an 8-edge-coloring of K4,4 along with its mate. Following these is an example of

the G′ graph made from these edge-colorings, where a circular vertex represents a solid color

while a square vertex represents a dashed color. Since this graph has a chromatic number of 4,

we could recolor the edges of G using only four colors, and still have a mate coloring.

Let m be a positive integer and denote by mG the graph on V (G) in which two vertices

are joined by m edges if they are adjacent in G and no edges otherwise. If we superimpose the

edges from two proper edge-colorings C1 and C2 ontoG, we get a copy of 2Gwhere each color

class is a union of even cycles by Lemma 2.3. A natural question is: when can we take some
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copy of 2G which has been k-edge-colored, and decompose the graph into two separate copies

of G, each uniquely associated with one of C1 or C2, where C1 and C2 are mate colorings. To

answer this, we define a new graph, M(G, k) as follows: given a k-edge-coloring (which is not

proper) of 2G, the vertices of M(G, k) are the edges of 2G, and two such vertices, ei and ej ,

are adjacent in M(G, k) if and only if either ei and ej are the two copies of an edge of G, or ei

and ej are adjacent in 2G and belong to the same color class.

Lemma 2.5. Suppose 2G has a k-edge-coloring where each color class is a union of pairwise

vertex disjoint cycles of length greater than two. The edge-coloring arises from a pair of mate

colorings if and only if M(G, k) is bipartite.

Proof. For the forward implication, let C1 and C2 be the two mate colorings giving rise to our

k-edge-coloring of 2G. Let Hj denote the subgraph of 2G spanned by the edges colored cj in

either C1 or C2. By assumption, each color class is a union of pairwise vertex disjoint cycles of

length greater than two, and furthermore a pair of adjacent edges in Hj , ei and ej , must belong

to different copies of G as otherwise one of C1 or C2 wouldn’t be proper. Suppose {e′i, e′′i } is

a multi-edge in 2G and without loss of generality suppose e′i is assigned its color from C1 and

likewise e′′i is assigned its color from C2. We consider two cases.

Case 1: ei and ej are vertices in M(G, k) that belong to the same multi-edge in 2G.

By the above paragraph, ei and ej must each be associated with a different edge-coloring,

and since the edge-colorings C1 and C2 are mates, this means the edges must receive different

colors.

Case 2: ei and ej are vertices in M(G, k) that are adjacent and have the same color in 2G.

Since the edges share the same color, they can not belong to the same multi-edge by case

1. By the above paragraph, ei and ej receive their colors from different edge-colorings.

Putting these cases together, we can properly color the vertices ofM(G, k) with two colors

by assigning one color to all of the vertices associated with C1 and another to all of the vertices

associated with C2. Therefore, M(G, k) is bipartite.

For the backwards implication, letA andB be two independent sets of vertices ofM(G, k)

which partition the vertices of M(G, k). For contradiction, suppose |A| > |B|. Then there

13



exists vertices in A, say ai and aj which must correspond to the same multi-edge in 2G, but

this means ai and aj are adjacent, contradicting our assumption of A being independent. Thus,

|A| = |B|, and each set corresponds to one of the copies of G which make 2G. Suppose C1

is the edge-coloring associated with A and C2 the edge-coloring associated with B. Let e′i and

e′′i be vertices in M(G, k) whose edges belong to the same multi-edge of 2G. Without loss of

generality, suppose e′i = ai ∈ A and e′′i = bi ∈ B. Since ai belongs to the same multi-edge

in 2G as bi, this means ai and bi must have different colors, as otherwise we contradict our

assumption of each color class consisting of cycles of length greater than two. Thus, for any

edge e ∈ E(G), C1(e) 6= C2(e).

By assumption, we know ai must be adjacent to vertices which share the same color as ai,

say ui and vi. Furthermore, if the color of ai comes from C1, this means the color of both ui

and vi must come from C2, so we say ui = bi−1 and vi = bi+1 without loss of generality. For

a given vertex v ∈ V (G), consider the set of multi-edges incident to v in 2G. Suppose v is

incident to an edge colored cj in 2G and that this color comes from C1. By assumption, there

must be another edge incident to v with color cj and by the previous argument, this edge must

get its color from C2. Therefore, the set of colors incident to v under C1 is the same as the set

of colors under C2. Thus, C1 and C2 are mate colorings.

Below is an example of a 3-edge-coloring of K4 along with its mate. Following these is

the graph 2G made by superimposing both edge-colorings of K4 together, along with the graph

M(K4, 3) associated with these edge-colorings. The circular and square vertices respectively

represent edges colored under C1 and C2. The green edges represent that the vertices (edges in

2G) belong to the same multi-edge, and the other colored edges show that these edges form a

cycle in 2G.
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Let G = K3,3. The following is an example of 2G where each color class is a union of

pairwise vertex disjoint cycles of even length greater than two, but M(G, 4) is not bipartite.

To see this, let A = {a, b, c} and B = {d, e, f} be the partite sets of G. Then the 6-cycle in

blue is (a, e, c, d, b, f), the 4-cycle in red is (a, d, b, e), the 4-cycle in black is (b, e, c, f), and

the 4-cycle in green is (a, d, c, f). Let xy denote an edge in G with vertices x and y, and denote

the corresponding vertices of M(G, 4) by xy and xy′. Then M(G, 4) is not bipartite since it

contains the 7-cycle (ad, ad′, af ′, af, bf, bd, bd′). Note this notation implies ad and ad′ have

the same color, so this forces how the labelings of xy and xy′ are assigned. Examples of 2G

and M(G, 4) are given below to the left and right respectively.
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Chapter 3

Theta, Wheel, and n-cube Graphs

In this chapter we determine the color-trade-spectrum of three simple families of graphs, namely

Theta graphs, wheel graphs, and n-cube graphs.

3.1 Theta Graphs

Let Θk
n denote the Theta graph which consists of k paths of length n, with only the first and last

vertices∞1 and∞2 in common. In particular, note that Θ1
n is a path of length n, Θ2

n is a cycle

of length 2n, and Θk
1 is a multi-edge with edge multiplicity k, which is not a simple graph. An

example of Θ3
4 is given below.

Lemma 3.1. For non-negative integers k and n,

1. CTS(Θk
n) = ∅ for n = 0.

2. CTS(Θk
n) = {k} for n = 1 and k ≥ 2, and CTS(Θk

n) = ∅ for n = 1 and 0 ≤ k ≤ 1.

Proof. 1: If n = 0, then Θk
n is a graph containing no edges and two isolated vertices, regardless

of the value of k. Thus, the color-trade-spectrum is trivially empty.
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2: If n = 1, then Θk
n is a multi-edge consisting of k parallel edges. When k = 0, the graph

contains no edges, and by the above case, the color-trade-spectrum is empty. When k = 1, Θk
n

is a path of length one, which has an empty color-trade-spectrum since there is only one way

to edge-color this graph. When k ≥ 2, each edge is assigned a unique color from {c1, ..., ck}.

Any permutation of this set with no fixed points creates a mate coloring, so k is in the color-

trade-spectrum. Since the only way to properly edge-color this graph is to use k colors, this

means {k} = CTS(Θk
n).

Theorem 3.1. For n ≥ 2, CTS(Θk
n) = {k} if k is even and CTS(Θk

n) = ∅ if k is odd.

Proof. Let the jth path be denoted by (v1,j, v2,j, ..., vn+1,j) where v1,j = ∞1 and vn+1,j = ∞2

for 1 ≤ j ≤ k (so the naming of ∞1 and ∞2 is not unique). If k = 0, the graph consists of

two isolated vertices with no edges, so the color-trade-spectrum is trivially empty. If k = 1, the

graph is a path consisting of n edges which contains two vertices of degree one, and by Lemma

2.1, the color-trade-spectrum is empty. Suppose k ≥ 2 and that C1 is a proper k-edge-coloring

of Θk
n. Without loss of generality, suppose that edge (v1,1, v2,1) is colored c1 and that edge

(v2,1, v3,1) is colored c2. Since C1 is proper, no other edge incident to∞1 can be colored c1 or

c2. If (v3,1, v4,1) was given a color other than c1, say c3, then C1 would have no mate coloring

since the edge (v2,1, v3,1) would need to be colored both c1 and c3 in the mate coloring. Thus, in

order for C1 to have a mate coloring, the edges along the path v1,1, v2,1, ..., vn+1,1 must alternate

between colors c1 and c2. Furthermore, this assignment of alternating colors must be true for

every path from∞1 to∞2 if C1 were to have a mate coloring.

Since the maximum degree of Θk
n is k, no value lower than k can be in the color-trade-

spectrum. By the first paragraph of the theorem, we know each path must have an alternating

assignment of colors to its edges if the edge-coloring C1 were to have a mate coloring. Fur-

thermore, if the edges of path i alternate between c1 and c2, then there must be another path

j where the edges alternate between c2 and c1 in order for C1 to have a mate. This means

that C1 has a mate only when C1 induces a 2n-cycle decomposition of Θk
n where each cycle in

the decomposition alternates between two unique colors . This only happens when k is even,
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so we conclude ∅ = CTS(Θk
n) if k is odd. We now given an explicit construction to show

k ∈ CTS(Θk
n).

Suppose that k and n are both even integers which are at least two, and consider the follow-

ing proper k-edge-coloring of Θk
n, C1. Assign c2j−1 to edges of the form (v2i−1,2j−1, v2i,2j−1)

and (v2i,2j, v2i+1,2j) for 1 ≤ i ≤ n
2

and 1 ≤ j ≤ k
2
. Then, assign c2j to edges of the form

(v2i,2j−1, v2i+1,2j−1) and (v2i−1,2j, v2i,2j) for 1 ≤ i ≤ n
2

and 1 ≤ j ≤ k
2
. We find a mate color-

ing, C2, by swapping the colors between edges colored c2j−1 and c2j for 1 ≤ j ≤ k
2

under C1.

If n is odd, we consider a different proper k-edge-coloring of Θk
n, C3. Assign c2j−1 to edges

of the form (v2i−1,2j−1, v2i,2j−1), (v2i,2j, v2i+1,2j), and (vn,2j−1, vn+1,2j−1) for 1 ≤ i ≤ n−1
2

and

1 ≤ j ≤ k
2
. Then, assign c2j to edges of the form (v2i,2j−1, v2i+1,2j−1), (v2i−1,2j, v2i,2j), and

(vn,2k, vn+1,2j) for 1 ≤ i ≤ n−1
2

and 1 ≤ j ≤ k
2
. Again, we find a mate coloring, C4, by

swapping the colors between edges colored c2j−1 and c2j . Hence, k ∈ CTS(Θk
n).

To show that nothing else is in the color-trade-spectrum, recall from the second paragraph

of the theorem that C5 must induce a 2n-cycle decomposition of Θk
n where each cycle in the

decomposition alternates between two unique colors. Since there are only k
2

such cycles in

Θk
n (when k is even), this means this condition can only be met when C5 uses no more than k

colors. Therefore, {k} = CTS(Θk
n).

3.2 Wheel Graphs

Let n ≥ 3 be a positive integer and let Wn denote the wheel graph which consists of a single

n-cycle and n “spokes” which originate from a central vertex v∞ which is adjacent to every

vertex of the n-cycle. An example of W6 is given below.
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Theorem 3.2. For n ≥ 3, CTS(Wn) = {n}.

Proof. Note that Wn consists of 2n edges, and that the central vertex v∞ has degree n. By

Lemma 2.1, this means the only possible value in the color-trade-spectrum of Wn is n, and we

present an explicit construction to show n ∈ CTS(Wn).

Without loss of generality, suppose the vertices of the n-cycle are labeled in order by

v0, v1, ..., vn−1, so that vi is adjacent to vi−1 and vi+1 where addition is computed modulo n.

Denote an edge in Wn by (vi, vj). Consider the following proper n-edge-coloring of Wn, C1.

Assign color ci to edges (v∞, vi) and (vi+1, vi+2), where again addition is under modulo n. To

find a mate coloring for C1, consider the following proper edge-coloring C2. Assign color ci

to edges (v∞, vi+2) and (vi, vi+1). Geometrically, this is equivalent to rotating the spokes of

the wheel two times to the right and rotating the rim of the wheel once to the left. Then C1

and C2 are mate colorings, so n ∈ CTS(Wn), and since this is the only possible value in the

color-trade-spectrum, {n} = CTS(Wn).

3.3 n-cube Graphs

The final family of graphs we will consider in this chapter is n-cubes. Denote byQn the n-cube

graph on 2n vertices, each labeled with an n-bit binary number, where two vertices are adjacent
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if the corresponding binary numbers differ by exactly one digit, i.e. their Hamming distance is

one. Note that the maximum degree of Qn is n, and that |E(Qn)| = n2n−1. By Lemma 2.1,

this means the color-trade-spectrum is bounded below by n and above by n2n−2.

We say two graphs G and H are isomorphic, denoted G ∼= H , if there exists a bijection

Φ : V (G)→ V (H) with the property that any two vertices u and v in G have an edge between

them if and only if Φ(u) and Φ(v) have an edge between them inH . An equivalent construction

of Qn is found by taking the Cartesian product of n K2 graphs, denoted K2�K2� · · ·�K2.

Furthermore, one can show that Qn�Qm
∼= Qn+m as follows. Let the vertices of Qn and Qm

be denoted by binary sequences of length n and m respectively. As in the previous paragraphs,

vertices are adjacent when their Hamming distance is one. To construct Qn�Qm, we take 2m

copies of Qn. In particular, for each vertex in Qn denoted by a unique binary sequence of

length n, we concatenate a binary sequence of length m to create a new binary sequence of

length n + m. The first n digits correspond to unique vertices within a copy of Qn while the

last m digits correspond to unique copies of Qm. For example, in Q2�Q3, the binary sequence

01001 would correspond to the vertex labeled 01 in Q2 in the 001th copy of Q2. This creates

a graph with 2n+m vertices and (n + m)2n+m−1 edges, where vertices are adjacent only when

their Hamming number is one. Therefore, Qn�Qm
∼= Qn+m. In Lemma 3.2 we calculate the

color trade spectra ofQn for 0 ≤ n ≤ 3, and in Theorem 3.3 we calculate the remaining spectra

using a recursive construction based on the fact that Qn−1�Q2
∼= Qn+1.

Lemma 3.2. Let n be a non-negative integer. Then CTS(Qn) = ∅ for 0 ≤ n ≤ 1, CTS(Q2) =

{2}, and CTS(Q3) = {3, 4, 5, 6}.

Proof. Trivially, Q0 and Q1 have no color trades since they contain less than 2 edges, and any

color trade requires a graph to have at least 2 edges. Note thatQ2 is a 4-cycle, so by Lemma 2.2,

we conclude {2} = CTS(Q2). However we present an alternate proof using methods that will

be used for future cases of Qn. By the discussion above, the only possible value in CTS(Q2) is

2. As above, denote the vertices of Q2 by binary sequences of length two, b1b2, where each bi

is either 0 or 1. Denote edges of Q2 by (b1b2, d1d2), where b1b2 6= d1d2. Consider the following

proper 2-edge-coloring of Q2, C1. Assign c1 to edges (00, 01) and (10, 11), and assign c2 to
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edges (01, 10) and (00, 11). By swapping the colors between edges colored c1 and c2, we create

a mate coloring C2. Therefore, {2} = CTS(Q2). An example of these edge-colorings is given

below.

Next, we show {3, 4, 5, 6} = CTS(Q3). As before, denote vertices by binary sequences of

length three, b1b2b3, and denote edges by (b1b2b3, d1d2d3). Consider the the following proper

6-edge-coloring of Q3. Assign c1 to edges (000, 010) and (100, 110), c2 to edges (000, 001)

and (010, 011), c3 to edges (000, 100) and (010, 110), c4 to edges (001, 011) and (101, 111),

c5 to edges (100, 101) and (110, 111), and c6 to edges (001, 101) and (011, 111). Then any

permutation of the assignment of colors c1 through c6 with no fixed point creates a new edge-

coloring which is a mate for C1. Thus, 6 ∈ CTS(Q3).

To show {3, 4, 5} ⊂ CTS(Q3), we consider the graph G′ as defined in Lemma 2.4, where

the vertices of G′ correspond to colors used in C1 and C2, and vertices in G′ are adjacent when

the respective colors are incident in C1 and C2. For Q3, Q′3 is a 3-cycle, which has chromatic

number three. By Lemma 2.4, this means {3, 4, 5, 6} ⊆ CTS(Q3). Since |E(Q3)|
2

= 6 and Q3

has maximum degree 3, we conclude that {3, 4, 5, 6} = CTS(Q3) by Lemma 2.1. An example

of a proper 6-edge-coloring of Q3 along with its mate is given below.
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Theorem 3.3. Let n be a nonnegative integer. Then CTS(Qn) = ∅ for 0 ≤ n ≤ 1, and

CTS(Qn) = {n, n+ 1, ..., n2n−2} for n ≥ 2.

Proof. The cases for 0 ≤ n ≤ 3 are covered by the above lemma, and we cover the rest

of the cases using induction on n, based on the following construction based on the earlier

discussion that Qn�Qm
∼= Qn+m. In particular, Qn+1

∼= Qn−1�Q2, and we start the induction

on n = 2. By Lemma 3.2, the claim holds for n = 2, so we now suppose the claim holds for

n and consider n + 1. Note that Qn−1�Q2 yields four copies of Qn−1, and by induction, we

can find mate colorings using any value in the color-trade-spectrum of Qn−1 for each copy of

Qn−1. In particular, we can use (n − 1)2n−3 distinct colors for each copy of Qn−1, for a total

of 4(n − 1)2n−3 = (n − 1)2n−1 colors. Let v1, v2, ..., v2n−1 be a given ordering of the vertices

of Qn−1, let vi,j denote the ith vertex in the jth copy of Qn−1, and let (va,b, vi,j) denote an edge

between va,b and vi,j in Qn−1�Q2, assuming such an edge exists. The four copies of Qn−1

consist of 4(n− 1)2n−2 = (n− 1)2n edges, and the remaining (n+ 1)2n − (n− 1)2n = 2n+1

edges form 2n−1 disjoint 4-cycles of the form (vi,1vi,2vi,3vi,4).

Coloring each of these 4 cycles with 2 distinct colors gives us an edge-coloring of Qn+1

using 4(n − 1)2n−3 + 2 · 2n−1 = (n + 1)2n−1 colors. By the previous paragraph, we can find

mates for this edge-coloring for each copy of Qn−1, and we find a mate coloring for Qn+1 by

alternating the assignment of colors within each of the above 4-cycles. Thus, (n + 1)2n−1 ∈

CTS(Qn+1). Since each induced copy of Qn−1 is disjoint, we can lower the amount of colors

used in Qn+1 by reusing colors between copies of Qn−1. Since each of the 4-cycles connecting

the copies of Qn−1 are disjoint, we can use the same 2 colors on each of these cycles. Doing

this for all n ≥ 2 proves the claim. An example of this construction being applied to Q4 is

given below.
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Chapter 4

Complete Bipartite Graphs

Let Km,n be the bipartite graph consisting of vertex sets A = {a1, ..., am} and B = {b1, ..., bn}

where m ≤ n are non-negative integers, and the edge set E = {(aibj)|1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Recall that a graph is k − regular if every vertex has degree k. A k − facotr of a graph is

a spanning k-regular subgraph, and a k − factorization of a graph partitions the graph into

disjoint k-factors. Also, recall that a matching is a set of independent edges in a graph, meaning

the edges have no common vertices. One can easily show that a 1-factorization is equivalent to

a perfect matching, which is a matching which includes every vertex of the graph.

4.1 0 ≤ m ≤ n ≤ 3

Before stating the main results of this section, we first determine the color-trade-spectrum of

Km,n where at least one of m or n is either zero or one, K2,2, K2,3, and K3,3, which will be

used in later constructions.

Lemma 4.1. Let m ≤ n for non-negative integers m and n. Then CTS(Km,n) = ∅ if at least

one of m or n is zero or one, and the color trade spectra of K2,2, K2,3, and K3,3 are {2}, {3},

and {3} respectively.

Proof. If either m or n is 0, we have a graph with no edges, which trivially has an empty color-

trade-spectrum. If either m or n is one but both not zero, we have at least one vertex of degree

one, and by Lemma 2.1, the color-trade-spectrum is again empty. We now consider K2,2.

Since |E(K2,2)| = 4 and χ′(K2,2) = 2, the only possible value in CTS(K2,2) is 2. Like-

wise, the only possible value in CTS(K2,3) is 3. Note that K2,2 is isomorphic to a 4-cycle

25



graph, so by Lemma 2.2 2 = CTS(K2,2). To show 3 = CTS(K2,3), consider the proper 3-edge-

coloring C1 given below. Assign c1 to edges (a1b1) and (a2b2), c2 to edges (a1b3) and (a2b1),

and c3 to edges (a1b2) and (a2b3). Now, consider the edge-coloring C2 where c1 is assigned to

edges (a1b2) and (a2b1), c2 is assigned to edges (a1b1), and (a2b3), and c3 is assigned to edges

(a1b3) and (a1b2). Then C1 and C2 are mates, so 3 = CTS(K2,3). Below are examples of these

edge-colorings using 2 and 3 colors for K2,2 and K2,3 respectively.

For K3,3, the only possible values in the color-trade-spectrum are 3 and 4, and since any

proper 3-edge-coloring of K3,3 must be a 1-factorization, meaning that the colored edges form

a perfect matching, we can show 3 ∈ CTS(K3,3) as follows. Let C1 be any proper 3-edge-

coloring of K3,3, and apply any permutation with no fixed points to the colors of C1 to create a

mate coloring C2. For example, α := (c1c2c3) would be such a permutation. However, 4 is not

in the color-trade-spectrum, and to show this, note that any proper edge-coloring of K3,3 using

4 colors must contain a perfect matching, and three color classes of size two. Suppose c1 is a

perfect matching and consider assigning a color class of size 2, say c2, to two of the remaining

edges of the graph. The subgraph induced by c1 and c2 consists of either two components, or
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one component. A quick exhaustive search shows that neither case leads to a mate coloring.

Therefore, {3} = CTS(K3,3).

Below are mate colorings using 3 colors forK3,3. Following these are examples of the two

cases for K3,4 where the subgraph induced by c1 and c2 consists of either two components, or

one component.

4.2 n ≥ m ≥ 2 where m is even

For the following theorems, we consider Km,n with a proper edge-coloring C1. We also con-

sider the associated (and equivalent) n×m Latin rectangle L. Given vertices in different parts,

say aj and bi, the entry of cell (i, j) of L corresponds to the color assigned to biaj under C1.

Thus, finding a mate forKm,n is equivalent to finding a permutation π of Lwith no fixed points,

which preserves the Latin property, and where every color appearing in a row or column of L
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still appears after applying π to L. For this to happen, we note that if a set of colors appears

in some column k of L, then the same set must also appear in another column k′ of L. The

following theorems give constructions for L and π(L).

Theorem 4.1. {n, n+ 1, ..., mn
2
} = CTS(Km,n) where 2 ≤ m ≤ n and m is even.

Proof. We construct L∆, the Latin rectangle corresponding to a ∆-edge-coloring of Km,n. Let

a column block of size s on t colors, denoted by CB(s, t), be a set of s columns of L∆ where

t unique symbols appear in the column block. Partition the m columns of L∆ into m
2

column

blocks of size 2, and without loss of generality, suppose the 2 columns in each column block

are adjacent. Denote column k by ak and the column block containing columns a2i−1 and a2i

by Ai for 1 ≤ i ≤ m
2

. Fill the cells of a2i−1 and a2i in L∆ in order from top to bottom with

entries c2(i−1)+1, c2(i−1)+2, ..., cn, c1, ...c2(i−1) and c2(i−1)+2, c2(i−1)+3, ..., cn, c1, ..., c2(i−1)+1 re-

spectively. Then each column block of L∆ contains the same set of n colors and we find a

mate for L∆, π(L∆) as follows: let π := (a1a2)(a3a4) · · · (am−1am), a product of m
2

2-cycle

permutations. Each column and row in π(L∆) contains the same symbols as they did in L∆,

while no cell receives the same entry. Thus, π(L∆) and L∆ correspond to two mate colorings

of Km,n.

Let C1 and C2 refer to the corresponding edge-colorings of L∆ and π(L∆). Using notation

from Lemma 2.3, note that each Hj consists of m
2

many 4-cycles, each of which corresponds

to a unique column block, so α = mn
2

. By Lemma 2.3, we conclude {∆,∆ + 1, ..., mn
2
} ⊆

CTS(Km,n) and since ∆(Km,n) = n and |E(Km,n)| = mn, we conclude there are no other

possible values in the color-trade-spectrum.

Below are examples of L∆ and π(L∆) along with their corresponding graphs for K4,6.
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L∆

1 2 3 4 · · · m− 3 m− 2 m− 1 m

2 3 4 5 · · · m− 2 m− 1 m m+ 1

3 4 5 6 · · · m− 1 m m+ 1 m+ 2

4 5 6 7 · · · m m+ 1 m+ 2 m+ 3

...
...

...
...

...
...

...
...

...

n− 3 n− 2 n− 1 n · · · m− 7 m− 6 m− 5 m− 4

n− 2 n− 1 n 1 · · · m− 6 m− 5 m− 4 m− 3

n− 1 n 1 2 · · · m− 5 m− 4 m− 3 m− 2

n 1 2 3 · · · m− 4 m− 3 m− 2 m− 1

π(L∆)

2 1 4 3 · · · m− 2 m− 3 m m− 1

3 2 5 4 · · · m− 1 m− 2 m+ 1 m

4 3 6 5 · · · m m− 1 m+ 2 m+ 1

5 4 7 6 · · · m+ 1 m m+ 3 m+ 2

...
...

...
...

...
...

...
...

...

n− 2 n− 3 n n− 1 · · · m− 6 m− 7 m− 4 m− 5

n− 1 n− 2 1 n · · · m− 5 m− 6 m− 3 m− 4

n n− 1 2 1 · · · m− 4 m− 5 m− 2 m− 3

1 n 3 2 · · · m− 3 m− 4 m− 1 m− 2

29



4.3 n ≥ m ≥ 3 where m is odd

We now determine the color-trade-spectrum for K3,n, which we will use for the general case of

Km,n where m is odd. By Lemma 4.1, CTS(K3,3) = {3}. We first give a specific construction

that shows {4, 5, 6} = CTS(K3,4), and then use this to determine CTS(K3,n) in two cases,

where n ≥ 3 is an integer.

Lemma 4.2. {4, 5, 6} = CTS(K3,4)

Proof. Using the same notation from Theorem 4.1, L∆ contains a single column block A1 of

size three, consisting of the columns a1, a2, and a3. Furthermore, we now consider a row block

of size s on t colors, denoted RB(s, t), which is a set of s rows of L∆ where t unique symbols

appear in the row block. Below is a RB(4, 4) and its corresponding 4-edge-coloring of K3,4.
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1 2 3

2 3 4

3 4 1

4 1 2

To show that 4 is in the color-trade-spectrum, we apply the permutation π := (a1a2a3).

Each column and each row in π(L∆) contains the same symbols as they did in L, while no cell

receives the same entry. This corresponds to each vertex in K3,4 seeing the same color set, but

no edge receiving the same color, showing these two edge-colorings are mates. Note that this

implies n ∈ CTS(K3,n) where n ≥ 3 is an integer by using the following method to create L∆:

from top to bottom fill the cells of a1 and a2 with entries c1, c2, ...cn and c2, c3, ..., cn, c1 respec-

tively, and the cells of a3 with c3, c4, ..., cn, c1, c2. To show that 5 is in the color-trade-spectrum,

we modify L∆ to make L5, shown below along with its corresponding 5-edge-coloring of K3,4.

1 2 4

2 5 1

3 1 2

4 3 5

Applying the permutations π : (a1a2a3) on the first 3 rows of of L5 and σ : (a1a3a2) on

the last row of L5 gives us a mate coloring. Finally, we show 6 is in the color-trade-spectrum

by further modifying L5 to make L6, which consists of two separate RB(2, 3), shown below

along with its associated 6-edge-coloring of K3,4.
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1 2 3

2 3 1

4 5 6

5 6 4

Applying the permutations π : (a1a2a3) on rows 2 and 4 of L6 and σ : (a1a3a2) on rows 1

and 3 of L6 gives us a mate coloring. Since ∆(K3,4) = 4 and |E(K3,4)| = 12, we have found

a mate coloring for every possible value in the color-trade-spectrum. Using these blocks as our

building tools, we now determine the color-trade-spectrum of K3,n by considering two cases.

Lemma 4.3. Let n ≥ 4 be a positive integer. Then {∆,∆ + 1, ..., 3n
2
} = CTS(K3,n) if n is even

and {∆,∆ + 1, ..., 3n−1
2
} = CTS(K3,n) if n is odd.

Proof. Case 1: n is even.

Let n = 2k where k ≥ 2 is an integer. By Lemma 4.2, n is in the color-trade-spectrum by

considering a single RB(n, n). To show that {n+ 1, ..., 3n
2
− 2} is in the color-trade-spectrum,

consider the value n + u where 1 ≤ u ≤ n
2
− 2. We construct Ln+u by using a single RB(n−

2u, n−2u) and u many RB(2, 3) where each block uses a different set of colors. To find a mate

for this edge-coloring, we use the same permutations from Lemma 4.2, where π is applied to

the RB(n − 2u, n − 2u) along with the second row of every RB(2, 3) and σ is applied to the

first row of every RB(2, 3). An example of Ln+u is shown below along with its associated

n+ u-edge-coloring of K3,n.
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1 2 3

2 3 4

...
...

...

n− 2u− 1 n− 2u 1

n− 2u 1 2

n− 2u+ 1 n− 2u+ 2 n− 2u+ 3

n− 2u+ 2 n− 2u+ 3 n− 2u+ 1

n− 2u+ 4 n− 2u+ 5 n− 2u+ 6

n− 2u+ 5 n− 2u+ 6 n− 2u+ 4

...
...

...

n+ u− 5 n+ u− 4 n+ u− 3

n+ u− 4 n+ u− 3 n+ u− 5

n+ u− 2 n+ u− 1 n+ u

n+ u− 1 n+ u n+ u− 2

Note that when u = n
2
− 2, we have a single RB(4, 4) which we can assume is the same

RB(4, 4) from the K3,4 case without loss of generality. This shows that n+ u ∈ CTS(K3,n for

1 ≤ u ≤ n
2
− 2. To show 3n

2
− 1 is in the color-trade-spectrum, we can modify our Ln+u from

above by replacing the RB(4, 4) with a RB(4, 5) which again we can assume is the the same

RB(4, 5) from the K3,4. Applying π to the first 3 rows of the RB(4, 5) and to the second row of

every RB(2, 3), and applying σ to the last row of RB(4, 5) and to the first row of every RB(2, 3)

yields a mate. Finally, we show 3n
2

is in the color-trade-spectrum by modifying Ln+u again to

consist of n
2

many RB(2, 3). Applying π to the second row of every RB(2, 3) and σ to the first

row of every RB(2, 3) yields a mate.

Case 2: n is odd.

Let n = 2k + 1 where k ≥ 1 is an integer. Again, Lemma 4.2 guarantees n is in the

color-trade-spectrum by considering a single RB(n, n). To show {n + 1, ..., 3n−3
2
} is in the

color-trade-spectrum, we use the same construction from the even case where we consider

n+u for 1 ≤ u ≤ n−3
2

. To show 3n−1
2

is in the color-trade-spectrum, we consider the following
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construction of L 3n−1
2

.

1 n+ 1 n− k + 1

2 1 n− k + 2

3 n+ 2 1

4 n+ 3 n− k + 3

...
...

...

k + 1 3n−1
2

n

k + 2 2 n+ 1

k + 3 3 n+ 2

...
...

...

n− 1 n− k − 1 3n−1
2
− 1

n n− k 3n−1
2

To find a mate for this edge-coloring, apply the same π from the even case to the first k+1

rows of L 3n−1
2

and the same σ from the even case to the last k rows of L 3n−1
2

.

From Lemmas 4.1, 4.2, and 4.3, along with Theorem 4.1, we have covered every case

except for Km,n where m ≥ 5 is odd and n ≥ 5. The following theorem uses Lemma 4.3 to

cover this case where we consider subcases depending on the parity of n.

Theorem 4.2. Let m ≥ 5 be an odd integer and n ≥ m be an integer. Then {∆, ..., mn
2
} =

CTS(Km,n) if n ≥ 6 is even, and {∆, ...mn−1
2
} = CTS(Km,n) if n ≥ 5 is odd.

Proof. We construct L∆ by modifying the construction from Theorem 4.1. Partition the m

columns of L into m−3
2

column blocks of size 2 where we again suppose 2 columns in a column

block are adjacent without loss of generality. The final 3 columns form a column block of size 3.

As before, letAi denote the column block containing columns a2i−1 and a2i where 1 ≤ i ≤ m−3
2

and let B denote the column block containing columns am−2, am−1, and am. Fill the cells of

a2i−1 and a2i in order from top to bottom with entries c2(i−1)+1, c2(i−1)+2, ..., cn, c1, ...c2(i−1)

and c2(i−1)+2, c2(i−1)+3, ..., cn, c1, ..., c2(i−1)+1 respectively. Likewise, fill the cells of am−3 and
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am−2 with entries cm−2, cm−1, ..., cn, cn+1, ..., cm−3 and cm−1, cm, ..., cn, cn+1, ..., cm−2 and the

cells of am with entries cm, cm+1, ..., cn, cn+1, ..., cm−1.

Let π := (a1a2)(a3a4) · · · (am−4am−3)(am−2am−1am). Then each column and row in

π(L∆) contains the same symbols as they did in L, while no cell receives the same entry. Thus,

π(L∆) and L∆ correspond to two mate colorings of Km,n. Using the notation of Lemma 2.3,

C1 and C2 refer to the corresponding edge-colorings of L∆ and π(L∆). Note that each Hj

consists of m−3
2

many 4-cycles, where each cycle corresponds to some Ai, and one 6-cycle,

which corresponds to B, so α = mn−n
2

. By Lemma 2.3, we conclude {∆,∆ + 1, ..., mn−n
2
} ⊆

CTS(Km,n). We finish the rest of the color-trade-spectrum in cases by using Lemma 4.3.

Case 1: n ≥ 6 is even.

To show that {mn−n+1
2

, .., mn
2
} ⊂ CTS(Km,n), note that in Lmn−n

2
each column block uses

n different colors, including the column block of size 3, B. Using the argument from the even

case of Lemma 4.3, we conclude that we can extend the number of colors in B, j, to any value

of j where n ≤ j ≤ 3n
2

. Using the appropriate permutations from Lemma 4.3, we conclude

that {mn−n+1
2

, ..., mn
2
} ⊂ CTS(Km,n). Combining this result with the result of the previous

paragraph, this shows that CTS(Km,n) = {∆, ..., mn
2
}.

Case 2: n ≥ 5 is odd.

To show that {mn−n+1
2

, ..., mn−1
2
} ⊂ CTS(Km,n), we use the same argument as in the even

case, refering to the odd case of Lemma 4.3. We conclude that CTS(Km,n) = {∆, ..., mn−1
2
}.

Below are examples L∆ and π(L∆) along with their corresponding graphs for K5,5.
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L∆

1 2 3 4 · · · m− 4 m− 3 m− 2 m− 1 m

2 3 4 5 · · · m− 3 m− 2 m− 1 m m+ 1

3 4 5 6 · · · m− 2 m− 1 m m+ 1 m+ 2

4 5 6 7 · · · m− 1 m m+ 1 m+ 2 m+ 3

...
...

...
...

...
...

...
...

...
...

n− 4 n− 3 n− 2 n− 1 · · · m− 9 m− 8 m− 7 m− 6 m− 5

n− 3 n− 2 n− 1 n · · · m− 8 m− 7 m− 6 m− 5 m− 4

n− 2 n− 1 n 1 · · · m− 7 m− 6 m− 5 m− 4 m− 3

n− 1 n 1 2 · · · m− 6 m− 5 m− 4 m− 3 m− 2

n 1 2 3 · · · m− 5 m− 4 m− 3 m− 2 m− 1

π(L∆)

2 1 4 3 · · · m− 3 m− 4 m m− 2 m− 1

3 2 5 4 · · · m− 2 m− 3 m+ 1 m− 1 m

4 3 6 5 · · · m− 1 m− 2 m+ 2 m m+ 1

5 4 7 6 · · · m m− 1 m+ 3 m+ 1 m+ 2

...
...

...
...

...
...

...
...

...
...

n− 3 n− 4 n− 1 n− 2 · · · m− 8 m− 9 m− 5 m− 7 m− 6

n− 2 n− 3 n n− 1 · · · m− 7 m− 8 m− 4 m− 6 m− 5

n− 1 n− 2 1 n · · · m− 6 m− 7 m− 3 m− 5 m− 4

n n− 1 2 1 · · · m− 5 m− 6 m− 2 m− 4 m− 3

1 n 3 2 · · · m− 4 m− 5 m− 1 m− 3 m− 2
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Chapter 5

Products of Paths

Denote the Cartesian product of two graphs G and H by G�H which consists of the vertex

set {(gi, hj)|gi ∈ V (G), hj ∈ V (H)} where two vertices (u, u′) and (v, v′) are adjacent if and

only if either u = v and u′ is adjacent to v′ in H , or u′ = v′ and u is adjacent to v in G. We

will let (i, j) denote the ith vertex along the jth path where i ∈ {1, 2, ..,m} and j ∈ {1, 2}, and

let (s, t)(u, v) denote the edge incident to the vertices (s, t) and (u, v), assuming such an edge

exists. Let 2 ≤ n ≤ m be integers and denote by Pn the path on n vertices. For convenience,

let G = Pn�Pm. Then |V (G)| = nm and |E(G)| = n(m − 1) + m(n − 1). For n = m = 2,

δ(G) = ∆(G) = 2. For n = 2 and m ≥ 3, δ(G) = 2 and ∆(G) = 3. For 3 ≤ n ≤ m,

δ(G) = 2 and ∆(G) = 4. Thus, by Lemma 2.3, CTS(G) ⊆ {4, 5, ..., bn(m−1)+m(n−1)
2

c} for

3 ≤ n ≤ m. When n = m = 2, G ∼= C4 so CTS(G) = {2}. When n = 2 and m ≥ 3,

CTS(G) ⊆ {3, 4, ..., bn(m−1)+m(n−1)
2

c}. Since Pn�Pm is clearly isomorphic to Pm�Pn, we

will only consider Pn�Pm, so this allows us to assume n ≤ m without loss of generality.

We begin with the case where n = 2 and m ≥ 3.

5.1 P2�Pm Graphs

Lemma 5.1. Let m ≥ 3 be an integer. Then {3, 4, ...,m} ⊆ CTS(P2�Pm).

Proof. As above, let G = P2�Pm for convenience. We consider two cases depending if m is

even or odd.

Case 1: m ≥ 3 is odd.
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GiveG a proper 3-edge-coloring as follows. Assign c1 to (1, 1)(1, 2), (2i+2, 1)(2i+3, 1),

and (2i + 2, 2)(2i + 3, 2) for 0 ≤ i ≤ m−3
2

. Assign c2 to (1, 1)(2, 1), (1, 2)(2, 2), and (i +

3, 1)(i+ 3, 2) for 0 ≤ i ≤ m− 4. Assign c3 to (2, 1)(2, 2), (m, 1)(m, 2), (2i+ 1, 1)(2i+ 2, 1),

and (2i+1, 2)(2i+2, 2) for 1 ≤ i ≤ m−3
2

. This edge-coloring has the following mate coloring.

Assign c1 to (1, 1)(2, 1), (1, 2)(2, 2), and (i + 3, 1)(i + 3, 2) for 0 ≤ i ≤ m − 3. Assign c2

to (1, 1)(1, 2), (2, 1)(2, 2), (2i + 1, 1)(2i + 2, 1), and (2i + 1, 2)(2i + 2, 2) for 1 ≤ i ≤ m−3
2

.

Assign c3 to (2i + 2, 1)(2i + 3, 1), and (2i + 2, 2)(2i + 3, 2) for 0 ≤ i ≤ m−3
2

. Examples of

these edge-colorings are given below respectively where c1 is black, c2 is red, and c3 is blue.

Using the notation of Lemma 2.3, note that H1 consists of m−3
2

many 4-cycles and one

6-cycle, while H2 consists of m−1
2

many 4-cycles and H3 consists of one 2(m− 1) cycle. Thus,

α = m, so by Lemma 2.3 we conclude {3, ...,m} ⊆ CTS(P2�Pm) when m ≥ 3 is odd.

Case 2: m ≥ 3 is even.

Give G a proper 3-edge-coloring as follows. Assign c1 to (1, 1)(1, 2), (2i + 2, 1)(2i +

3, 1), (2i+2, 2)(2i+3, 2), and (m, 1)(m, 2) for 0 ≤ i ≤ m−4
2

. Assign c2 to (2i+1, 1)(2i+2, 1)

and (2i + 1, 2)(2i + 2, 2) for 0 ≤ m−2
2

. Assign c3 to (i + 2, 1)(i + 2, 2) for 0 ≤ i ≤ m − 3.

This edge-coloring has the following mate coloring. Assign c1 to (2i + 1, 1)(2i + 2, 1) and

(2i + 1, 2)(2i + 2, 2) for 0 ≤ i ≤ m−2
2

. Assign c2 to (i, 1)(i, 2) for 1 ≤ i ≤ m. Assign c3

to (2i + 2, 1)(2i + 3, 1) and (2i + 2, 2)(2i + 3, 2) for 0 ≤ i ≤ m−4
2

. Examples of these edge-

colorings are given below respectively where c1 is black, c2 is blue, and c3 is red.
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Using the notation of Lemma 2.3, note that H1 consists of 1 2m cycle, while H2 consists

of m
2

many 4-cycles and H3 consists of m−2
2

many 4-cycles. Thus, α = m, so by Lemma 2.3

we conclude {3, ...,m} ⊆ CTS(P2�Pm) when m ≥ 3 is even.

Theorem 5.1. Let m ≥ 3 be an integer. Then {3, 4, ...,m} = CTS(P2�Pm).

Proof. From Lemma 5.1, it remains to show that nothing else is contained in the color-trade-

spectrum. Note that G has m vertical edges of the form (i, 1)(i, 2) for 1 ≤ i ≤ m. Suppose

that we have two copies of G under the mate colorings of C1 and C2 respectively, each on

the same set of k colors. Between the two copies of G, each color uses at least two vertical

edges. Furthermore, each copy of a vertical edge receives a different color in each copy of G.

Therefore, k ≤ m, so the color-trade-spectrum contains no values larger than m. By Lemma

5.1, we conclude {3, 4, ...,m} = CTS(P2�Pm).

5.2 Pn�Pm Graphs

From the beginning of this chapter, recall that Pn�Pm
∼= Pm�Pn so we assume n ≤ mwithout

loss of generality.

Theorem 5.2. Letm and n be integers where 3 ≤ n ≤ m. Then {4, 5, ..., (n−1)(m−1)+1} ⊆

CTS(Pn�Pm).

Proof. We consider 4 cases depending on the parities of m and n.
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Case 1: n and m are both even.

GiveG a proper 4-edge-coloring as follows. Assign c1 to (2i−1, 1)(2i, 1), (2i−1, n)(2i, n), (2i−

1, 2j)(2i − 1, 2j + 1), and (2i, 2j)(2i, 2j + 1) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−2
2

. Assign c2 to

(1, 2j − 1)(1, 2j), (m, 2j − 1)(m, 2j), (2i, 2j − 1)(2i+ 1, 2j − 1), and (2i, 2j)(2i+ 1, 2j) for

1 ≤ i ≤ m−2
2

and 1 ≤ j ≤ n
2
. Assign c3 to (2i−1, 2j)(2i, 2j) and (2i−1, 2j+1)(2i, 2j+1) for

1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−2
2

. Assign c4 to (2i, 2j − 1)(2i, 2j), and (2i+ 1, 2j − 1)(2i+ 1, 2j)

for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n
2
. An example is shown below where c1 is black, c2 is red, c3 is

blue, and c4 is green.

The above edge-coloring has the following mate coloring. Assign c1 to (i, 2j−1)(i, 2j) for

1 ≤ i ≤ m and 1 ≤ j ≤ n
2
. Assign c2 to (2i−1, 2j−1)(2i, 2j−1), and (2i−1, 2j)(2i, 2j) for

1 ≤ i ≤ m
2

and 1 ≤ j ≤ n
2
. Assign c3 to (2i−1, 2j)(2i−1, 2j+ 1), and (2i, 2j)(2i, 2j+ 1) for
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1 ≤ i ≤ m
2

and 1 ≤ i ≤ n−2
2

. Assign c4 to (2i, 2j− 1)(2i+ 1, 2j− 1), and (2i, 2j), (2i+ 1, 2j)

for 1 ≤ i ≤ m−2
2

and 1 ≤ j ≤ n
2
. An example is shown below.

Now, give G a proper 5-edge-coloring as follows. Assign c1 to (2i−1, 2j−1)(2i−1, 2j),

and (2i, 2j−1)(2i, 2j) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n
2
. Assign c2 to (2i, 2j−1)(2i+ 1, 2j−1),

and (2i, 2j)(2i+ 1, 2j) for 1 ≤ i ≤ m−2
2

and 1 ≤ j ≤ n
2
. Assign c3 to (2i− 1, 2j)(2i, 2j), and

(2i− 1, 2j + 1)(2i, 2j + 1) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−2
2

. Assign c4 to (2i, 2j)(2i, 2j + 1),

and (2i + 1, 2j)(2i + 1, 2j + 1) for 1 ≤ i ≤ m−2
2

and 1 ≤ j ≤ n−2
2

. Assign c5 to (2i −

1, 1)(2i, 1), (2i − 1, n)(2i, n), (1, 2j)(1, 2j + 1), and (m, 2j)(m, 2j + 1) for 1 ≤ i ≤ m
2

and

1 ≤ j ≤ n−4
2

. We use the same assignment of colors as above and include c5 as purple.
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The above edge-coloring has the following mate coloring. Assign c1 to (2i − 1, 2j −

1)(2i, 2j − 1), and (2i − 1, 2j)(2i, 2j) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n
2
. Assign c2 to

(2i, 2j− 1)(2i, 2j), and (2i+ 1, 2j− 1)(2i+ 1, 2j) for 1 ≤ i ≤ m−2
2

and 1 ≤ j ≤ n
2
. Assign c3

to (2i− 1, 2j)(2i− 1, 2j+ 1), and (2i, 2j)(2i, 2j+ 1) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−2
2

. Assign

c4 to (2i, 2j)(2i + 1, 2j), and (2i, 2j + 1)(2i + 1, 2j + 1) for 1 ≤ i ≤ m−2
2

and 1 ≤ j ≤ n−2
2

.

Assign c5 to (2i, 1)(2i+ 1, 1), (2i, n)(2i+ 1, n), (1, 2j − 1)(1, 2j), and (m, 2j − 1)(m, 2j) for

1 ≤ i ≤ m−2
2

and 1 ≤ j ≤ n
2
. An example is shown below.
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Using the notation of Lemma 2.3, note that H1 consists of mn
4

many 4-cycles, while H2,

H3, andH4 each consist of n(m−2)
4

, m(n−2)
4

, and (m−2)(n−2)
4

many 4-cycles respectively. H5 con-

sists of a single 2(m− 1) + 2(n− 1) cycle, so α = (n− 1)(m− 1) + 1 and by Lemma 2.3 we

conclude {4, ..., (n− 1)(m− 1) + 1} ⊆ CTS(Pn�Pm).

Case 2: n is even and m is odd.

GiveG a proper 4-edge-coloring as follows. Assign c1 to (2i−1, 1)(2i, 1), (2i−1,m)(2i,m), (2i−

1, 2j)(2i − 1, 2j + 1), and (2i, 2j)(2i, 2j + 1) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−2
2

. Assign c2

to (1, 2j − 1)(1, 2j), (2i, 2j − 1)(2i+ 1, 2j − 1), and (2i, 2j)(2i+ 1, 2j) for 1 ≤ i ≤ m−1
2

and

1 ≤ j ≤ n
2
. Assign c3 to (2i−1, 2j)(2i, 2j), (2i−1, 2j+1)(2i, 2j+1), and (m, 2j)(m, 2j+1)

for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−2
2

. Assign c4 to (i, 2j − 1)(i, 2j) for 2 ≤ i ≤ m and

1 ≤ j ≤ n
2
. An example is shown below.

44



The above edge-coloring has the following mate coloring. Assign c1 to (2i−1, 2j−1)(2i−

1, 2j), and (2i, 2j − 1)(2i, 2j) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n
2
. Assign c2 to (2i − 1, 2j −

1)(2i, 2j−1), (2i−1, 2j)(2i, 2j), and (m, 2j−1)(m, 2j) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n
2
. As-

sign c3 to (1, 2j)(1, 2j+1), (2i, 2j)(2i+1, 2j), and (2i, 2j+1)(2i+1, 2j+1) for 1 ≤ i ≤ m−1
2

and 1 ≤ i ≤ n−2
2

. Assign c4 to (2i, 1)(2i + 1, 1), (2i, n)(2i + 1, n), (2i, 2j)(2i, 2j + 1), and

(2i+ 1, 2j)(2i+ 1, 2j + 1) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−2
2

. An example is given below.
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Now, give G a proper 5-edge-coloring as follows. Assign c1 to (2i−1, 2j−1)(2i−1, 2j),

and (2i, 2j−1)(2i, 2j) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n
2
. Assign c2 to (2i, 2j−1)(2i+1, 2j−1),

and (2i, 2j)(2i+ 1, 2j) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n
2
. Assign c3 to (2i− 1, 2j)(2i, 2j), and

(2i− 1, 2j + 1)(2i, 2j + 1) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−2
2

. Assign c4 to (2i, 2j), (2i, 2j +

1), and (2i + 1, 2j)(2i + 1, 2j + 1) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−2
2

. Assign c5 to

(2i−1, 1)(2i, 1), (2i−1, n)(2i, n), (1, 2j)(1, 2j+1), (m, 2j−1)(m, 2j), and (m,n−1)(m,n)

for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−2
2

. An example is given below.
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The above edge-coloring has the following mate coloring. Assign c1 to (2i − 1, 2j −

1)(2i, 2j − 1), and (2i − 1, 2j)(2i, 2j) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n
2
. Assign c2 to

(2i, 2j− 1)(2i, 2j), and (2i+ 1, 2j− 1)(2i+ 1, 2j) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n
2
. Assign c3

to (2i−1, 2j)(2i−1, 2j+1), and (2i, 2j)(2i, 2j+1) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−2
2

. Assign

c4 to (2i, 2j)(2i + 1, 2j), and (2i, 2j + 1)(2i + 1, 2j + 1) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−2
2

.

Assign c5 to (2i, 1)(2i + 1, 1), (2i, n)(2i + 1, n), (1, 2j − 1)(1, 2j), (m, 2j)(m, 2j + 1), and

(1, n− 1)(1, n) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n
2
. An example is given below.
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Using the notation of Lemma 2.3, note that H1 and H2 each consist of (m−1)n
4

many 4-

cycles, while H3 and H4 each consist of (m−1)(n−2)
4

many 4-cycles. H5 consists of a single

2(m − 1) + 2(n − 1) cycle, so α = (n − 1)(m − 1) + 1 and by Lemma 2.3 we conclude

{4, ..., (n− 1)(m− 1) + 1} ⊆ CTS(Pn�Pm).

Case 3: n is odd and m is even.

GiveG a proper 4-edge-coloring as follows. Assign c1 to (2i−1, 1)(2i, 1), (2i−1, 2j)(2i−

1, 2j + 1), and (2i, 2j)(2i, 2j + 1) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−1
2

. Assign c2 to

(1, 2j − 1)(1, 2j), (m, 2j − 1)(m, 2j), (2i, 2j − 1)(2i+ 1, 2j − 1), and (2i, 2j)(2i+ 1, 2j) for

1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−1
2

. Assign c3 to (2i− 1, 2j)(2i, 2j), and (2i− 1, 2j+ 1), (2i, 2j+ 1)

for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−1
2

. Assign c4 to (2i, 2j − 1)(2i, 2j), (2i+ 1, 2j − 1)(2i+ 1, 2j),

and (2i, n)(2i+ 1, n) for 1 ≤ i ≤ m−2
2

and 1 ≤ j ≤ n−1
2

. An example is given below.
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The above edge-coloring has the following mate coloring. Assign c1 to (2i−1, 2j−1)(2i−

1, 2j), (2i, 2j − 1)(2i, 2j), and (2i− 1, n)(2i, n) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−1
2

. Assign c2 to

(2i− 1, 2j − 1)(2i, 2j − 1), and (2i− 1, 2j)(2i, 2j) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−1
2

. Assign

c3 to (1, 2j)(1, 2j+ 1), (m, 2j)(m, 2j+ 1), (2i, 2j)(2i+ 1, 2j), and (2i, 2j+ 1)(2i+ 1, 2j+ 1)

for 1 ≤ i ≤ m
2

and 1 ≤ i ≤ n−1
2

. Assign c4 to (2i, 1)(2i + 1, 1), (2i, 2j)(2i, 2j + 1), and

(2i+ 1, 2j)(2i+ 1, 2j + 1) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−1
2

. An example is given below.
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Now, give G a proper 5-edge-coloring as follows. Assign c1 to (2i−1, 2j−1)(2i−1, 2j),

and (2i, 2j−1)(2i, 2j) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−1
2

. Assign c2 to (2i, 2j−1)(2i+1, 2j−1),

and (2i, 2j)(2i+1, 2j) for 1 ≤ i ≤ m−2
2

and 1 ≤ j ≤ n−1
2

. Assign c3 to (2i−1, 2j)(2i, 2j), and

(2i− 1, 2j + 1)(2i, 2j + 1) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−1
2

. Assign c4 to (2i, 2j)(2i, 2j + 1),

and (2i + 1, 2j)(2i + 1, 2j + 1) for 1 ≤ i ≤ m−2
2

and 1 ≤ j ≤ n−1
2

. Assign c5 to (2i −

1, 1)(2i, 1), (2i, n)(2i + 1, n), (1, 2j)(1, 2j + 1), and (m, 2j − 1)(m, 2j) for 1 ≤ i ≤ m
2

and

1 ≤ j ≤ n−1
2

. An example is given below.
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The above edge-coloring admits the following mate coloring. Assign c1 to (2i − 1, 2j −

1)(2i, 2j − 1), and (2i − 1, 2j)(2i, 2j) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−1
2

. Assign c2 to

(2i, 2j− 1)(2i, 2j), and (2i+ 1, 2j− 1)(2i+ 1, 2j) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−1
2

. Assign c3

to (2i− 1, 2j)(2i− 1, 2j + 1), and (2i, 2j)(2i, 2j + 1) for 1 ≤ i ≤ m
2

and 1 ≤ j n−1
2

. Assign c4

to (2i, 2j)(2i+ 1, 2j), and (2i, 2j+ 1)(2i+ 1, 2j+ 1) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n
2
. Assign c5

to (2i, 1)(2i+ 1, 1), (2i−1, n)(2i, n), (1, 2j−1)(1, 2j), and (m, 2j)(m, 2j+ 1) for 1 ≤ i ≤ m
2

and 1 ≤ j ≤ n−1
2

. An example is given below.
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Using the notation of Lemma 2.3, note that H1 and H3 each consist of m(n−1)
4

many 4-

cycles, while H2 and H4 each consist of (m−2)(n−2)
1

many 4-cycles. H5 consists of a single

2(m − 1) + 2(n − 1) cycle, so α = (n − 1)(m − 1) + 1 and by Lemma 2.3 we conclude

{4, ..., (n− 1)(m− 1) + 1} ⊆ CTS(Pn�Pm).

Case 4: n and m are both odd.

GiveG a proper 4-edge-coloring as follows. Assign c1 to (2i−1, 1)(2i, 1), (2i−1, 2j)(2i−

1, 2j + 1), and (2i, 2j)(2i, 2j + 1) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

. Assign c2 to

(1, 2j − 1)(1, 2j), (2i, 2j − 1)(2i + 1, 2j − 1), and (2i, 2j)(2i + 1, 2j) for 1 ≤ i ≤ m−1
2

and

1 ≤ j ≤ n−1
2

. Assign c3 to (2i−1, 2j)(2i, 2j), (2i−1, 2j+1)(2i, 2j+1), and (m, 2j)(m, 2j+1)

for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

. Assign c4 to (2i, 2j−1)(2i, 2j), (2i+1, 2j−1)(2i+1, 2j),

and (2i, n)(2i+ 1, n) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

. An example is given below.
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The above edge-coloring admits the following mate coloring. Assign c1 to (2i − 1, 2j −

1)(2i−1, 2j), (2i, 2j−1)(2i, 2j), and (2i−1, n)(2i, n) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

. As-

sign c2 to (2i−1, 2j−1)(2i, 2j−1), (2i−1, 2j)(2i, 2j), and (m, 2j−1)(m, 2j) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

. Assign c3 to (1, 2j)(1, 2j + 1), (2i, 2j)(2i + 1, 2j), and (2i, 2j + 1)(2i +

1, 2j+1) for 1 ≤ i ≤ m−1
2

and 1 ≤ i ≤ n−1
2

. Assign c4 to (2i, 1)(2i+1, 1), (2i, 2j)(2i, 2j+1),

and (2i+ 1, 2j)(2i+ 1, 2j+ 1) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

. An example is given below.
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Now, give G a proper 5-edge-coloring as follows. Assign c1 to (2i−1, 2j−1)(2i−1, 2j),

and (2i, 2j − 1)(2i, 2j) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

. Assign c2 to (2i, 2j − 1)(2i +

1, 2j − 1), and (2i, 2j)(2i + 1, 2j) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

. Assign c3 to

(2i− 1, 2j)(2i, 2j), and (2i− 1, 2j+ 1)(2i, 2j+ 1) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

. Assign

c4 to (2i, 2j)(2i, 2j + 1), and (2i + 1, 2j)(2i + 1, 2j + 1) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

.

Assign c5 to (2i− 1, 1)(2i, 1), (2i− 1, n)(2i, n), (1, 2j)(1, 2j + 1), and (m, 2j − 1)(m, 2j) for

1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

. An example is given below.
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The above edge-coloring admits the following mate coloring. Assign c1 to (2i − 1, 2j −

1)(2i, 2j − 1), and (2i − 1, 2j)(2i, 2j) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

. Assign c2 to

(2i, 2j− 1)(2i, 2j), and (2i+ 1, 2j− 1)(2i+ 1, 2j) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

. Assign

c3 to (2i−1, 2j)(2i−1, 2j+1), and (2i, 2j)(2i, 2j+1) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

. As-

sign c4 to (2i, 2j)(2i+1, 2j), and (2i, 2j+1)(2i+1, 2j+1) for 1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

.

Assign c5 to (2i, 1)(2i+ 1, 1), (2i− 1, n)(2i, n), (1, 2j − 1)(1, 2j), and (m, 2j)(m, 2j + 1) for

1 ≤ i ≤ m−1
2

and 1 ≤ j ≤ n−1
2

. An example is given below.
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Using the notation of Lemma 2.3, note that H1, H2, H3 and H4 each consist of (m−1)(n−1)
4

many 4-cycles. H5 consists of a single 2(m− 1) + 2(n− 1) cycle, so α = (n− 1)(m− 1) + 1

and by Lemma 2.3 we conclude {4, ..., (n− 1)(m− 1) + 1} ⊆ CTS(Pn�Pm).

Note there is a possible gap in these spectra, since for a given graphG, the maximum value

of its color-trade-spectrum is b |E(G)|
2
c. In particular, the gap consists of bn(m−1)+m(n−1)

2
c−(n−

1)(m− 1) + 1 = bm+n
2
c − 2 possible values. We conjecture that {4, ..., (n− 1)(m− 1) + 1}

is indeed the entire color-trade-spectrum of Pn�Pm.
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Chapter 6

Complete Graphs

Denote by Kn the complete graph on n vertices with n(n−1)
2

edges. By Lemma 2.1, K1 and K2

have empty color trade spectra since they contain vertices of degree one. Since K3 is an odd

cycle, it also has an empty color-trade-spectrum by Lemma 2.2. For K ≥ 4, the color-trade-

spectrum of Kn is bounded below by χ′(Kn), which is n− 1 when n is even, and n when n is

odd. The color-trade-spectrum is bounded above by bn(n−1)
4
c. We first consider the case where

n ≡ 0 mod 8.

6.1 n ≡ 0 mod 8

Theorem 6.1. Let n be a positive integer such that n ≡ 0 mod 8. Then {n−1, n, ..., n (n−1)
4
} =

CTS(Kn).

Proof. Let V (Kn) = {vi,j|0 ≤ i ≤ n
4
− 1, 1 ≤ j ≤ 4} and denote by (vi,j, vh,k) the edge

between vertex vi,j and vertex vh,k. For each i, consider the vertices vi,1, vi,2, vi,3, and vi,4

and the induced K4 subgraph induced by these vertices. In total, this yields m = n
4

many

disjoint K4 subgraphs. Let mK4 denote the complete m-partite graph where each part contains

four vertices. Then Kn consists of m many K4s and a singular mK4. We now find a C4

decomposition of mK4.

The inducedK4,4 on the vertices {vs,i, vt,j|s, t ∈ {0, 1, ..., n4−1}, s 6= t, i, j ∈ {1, 2, 3, 4}}

consists of the following C4s: (vs,1, vt,1, vs,2, vt,2), (vs,3, vt,3, vs,4, vt,4), (vs,1, vt,3, vs,2, vt,4), and

(vs,3, vt,1, vs,4, vt,2). In particular, the first two cycles are disjoint, as are the last two cycles,

which we will refer to as T1 and T2 cycles respectively. With the K4s from above, this yields a
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(K4, C4) decomposition of Kn. We give an example of the the (K4, C4) decomposition of K8

below where each K4, T1 cycle, and T2 cycle, is colored black, red, and blue respectively.

Next, we consider a new graph, Km. In particular, let V (Km) = {v∞, vi|0 ≤ i ≤

m − 2} where each vertex of Km corresponds to the contraction of the K4 induced by the

vertices {vi,j|1 ≤ j ≤ 4} from Kn, and v∞ corresponds to the contraction of the K4 for

i = m − 1. Likewise, an edge in Km will correspond to the four C4s between the associated

K4s. Consider the following 1-factorization of Km where addition is under modulo m − 1:

{(v∞, vd), (vd+i, vd−i)|0 ≤ d ≤ m − 2, 1 ≤ i ≤ m
2
− 1}. In particular, each value of d yields

a unique 1-factor. We give an example of the Km associated with K16 below where the central

vertex is v∞ and each 1-factor is represented by one of black, red, or blue.
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The 1-factorization above yields a proper (m−1)-edge-coloring ofKm where the edges in

the dth 1-factor are colored cd for 1 ≤ d ≤ m−1. Furthermore, this yields a 4(m−1) = n−4-

edge-coloring of the edges of the mK4 in Kn by alternating between colors c4d and c4d+1 in

the associated T1 cycles and by alternating between colors c4d+2 and c4d+3 in the associated T2

cycles for each value of d. Finally, we assign cn−4 to edges of the form (vi,1, vi,2), (vi,3, vi,4),

cn−3 to (vi,1, vi,3), (vi,2, vi,4), and cn−2 to (vi,1, vi,4), (vi,2, vi,3). In total, this yields a n−1-edge-

coloring of Kn.

To find a mate coloring, we alternate the colors in each C4, and apply a 3-cycle permuta-

tion to the color classes cn−4, cn−3, and cn−2. Now, consider the subgraph Hi as mentioned in

Lemma 2.3. Note that each color class consists of n
4

many C4s. Since we have a n − 1-edge-

coloring, this yields a total of n(n−1)
4

cycles, so {n − 1, n, ..., n(n−1)
4
} ⊆ CTS(Kn) for n ≡ 0

mod 8. Since this set of values in includes all possible values for the color-trade-spectrum of

Kn for even n, this proves the claim. We give an example of these edge-colorings forK8 below,

where the top vertex is v0,1 and the vertices are labeled in clockwise order so the bottom vertex

would be v1,1.
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6.2 n ≡ 4 mod 8

Theorem 6.2. Let n be a positive integer such that n ≡ 4 mod 8. Then {n−1, n, ..., n(n−1)
4
} =

CTS(Kn).

Proof. We use a modified version of the construction from the n ≡ 0 mod 8 case. Let

V (Kn) = {vi,j|0 ≤ i ≤ n
2
− 1, 1 ≤ j ≤ 2} and denote by (vi,j, vh,k) the edge between vertex

vi,j and vertex vh,k. Let m = n
4

and consider the graph K2m where V (K2m) = {v∞, vi|0 ≤ i ≤

2m− 2} such that v∞ corresponds to the vertices vn
2
−1,1 and vn

2
−1,2 while vi corresponds to the

vertices vi,1 and vi,2.

Consider the following 1-factorization of K2m where addition is under modulo 2m − 1:

{(v∞, vd), (vd+i, vd−i)|0 ≤ d ≤ 2m− 2, 1 ≤ i ≤ m− 1}. In particular, each value of d yields a

unique 1-factor, and we create a (K4, C4) decomposition of Kn from K2m as follows. For the

1-factor where d = 0, we create K4s on the vertices vi,1, vi,2, v−i,1, and v−i,2 for 1 ≤ i ≤ m−1,

and we also create a K4 on the vertices v2m−1,1, v2m−1,2, v0,1, and v0,2. For the other 1-factors

where 1 ≤ d ≤ 2m − 2, we create a C4 on the vertices (vd+i,1, vd−i,1, vd+i,2, vd−i,2) for

1 ≤ i ≤ m − 1, along with the C4 on the vertices (v2m−1,1, vd,1, v2m−1,2, vd,2). An example of

the K2m associated with K12 is given below where the central vertex is v∞ and each 1-factor

is represented by one of black, red, blue, green, or purple, along with an associated partial (for

readability) (K4, C4) decomposition of K12 where we include the K4s and C4s which contain

the vertices v5,1 and v5,2.
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We color Kn as follows. For 1 ≤ d ≤ 2m − 2, alternate between colors c2d−1 and c2d in

the cycles coming from the associated 1-factor in K2m. For d = 0, we assign cn−3 to edges of

the form (vi,1, vi,2) and (v−i,1, v−i,2), cn−2 to edges of the form (vi,1, v−i,1) and (vi,2, v−i,2), and

cn−1 to edges of the form (vi,1, v−i,2) and (vi,2, v−i,1). In total, this yields a n− 1-edge-coloring

of Kn.

The same argument from the n ≡ 0 mod 8 case shows how to find a mate, and that

{n − 1, n, ..., n(n−1)
4
} = CTS(Kn) for n ≡ 4 mod 8, proving the claim. An example of

these edge-colorings is shown below applied to the partial (K4, C4) decomposition of K12

from above.
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6.3 n ≡ 1 mod 8

Theorem 6.3. Let n be a positive integer such that n ≡ 1 mod 8. Then {2n, 2n+1, ..., n(n−1)
4
} ⊆

CTS(Kn) for n ≥ 17, and {14, 15, ..., 18} ⊆ CTS(K9).

Proof. Let V (Kn) = {vi|0 ≤ i ≤ n−1} and consider theK4 subgraphs consisting of the edges

(v8j+1, v8j+2), (v8j+1, v8j+5), (v8j+1, v8j+6), (v8j+2, v8j+5), (v8j+2, v8j+6), and (v8j+5, v8j+6),

along with theK4 subgraphs consisting of the edges (v8j+3, v8j+4), (v8j+3, v8j+7), (v8j+3, v8j+8),

(v8j+4, v8j+7), (v8j+4, v8j+8), and (v8j+7, v8j+8) for j ∈ {0, 1, ..., n−1
8
− 1}. For any two K4s

with the above form on the same index j, along with v0, we have a C4 decomposition of a K9

with the following nine C4s: (v0, v8j+1, v8j+2, v8j+3), (v0, v8j+2, v8j+4, v8j+8),

(v0, v8j+4, v8j+1, v8j+5), (v0, v8j+6, v8j+1, v8j+7), (v8j+1, v8j+3, v8j+5, v8j+8),

(v8j+2, v8j+5, v8j+6, v8j+8), (v8j+2, v8j+6, v8j+3, v8j+7), (v8j+3, v8j+4, v8j+7, v8j+8), and

(v8j+4, v8j+5, v8j+7, v8j+6). Below is an example of K17 under the (v0, K4) decomposition

listed above where the central vertex is v0 and the other sets of vertices follow a clockwise pat-

tern. Following this is an example of a C4 decomposition of a singular K9 where the leftmost

vertex is v0.
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As in the n ≡ 0 mod 4 case, we can form a K4,4 between any two such K4 subgraphs

as described above (assuming n ≥ 17), which we can partition into four pairwise disjoint C4

subgraphs. If the two K4s belong to the same K9 as described above, the edges of the K4,4

have already been used in the C4 decomposition of the corresponding K9. Otherwise, the K4s

belong to disjoint K9s, so the K4,4 between them decomposes into four C4s. Since our con-

struction contains two K4s in each K9, this gives us four different K4,4s for each pair of K9s,

for a total of sixteen C4s for each pair of K9s as follows:

(v8i+1, v8j+1, v8i+2, v8j+2), (v8i+1, v8j+3, v8i+2, v8j+4), (v8i+1, v8j+5, v8i+2, v8j+6),

(v8i+1, v8j+7, v8i+2, v8j+8), (v8i+3, v8j+1, v8i+4, v8j+2), (v8i+3, v8j+3, v8i+4, v8j+4),

(v8i+3, v8j+5, v8i+4, v8j+6), (v8i+3, v8j+7, v8i+4, v8j+8), (v8i+5, v8j+1, v8i+6, v8j+2),

(v8i+5, v8j+3, v8i+6, v8j+4), (v8i+5, v8j+5, v8i+6, v8j+6), (v8i+5, v8j+7, v8i+6, v8j+8),

(v8i+7, v8j+1, v8i+8, v8j+2), (v8i+7, v8j+3, v8i+8, v8j+4), (v8i+7, v8j+5, v8i+8, v8j+6), and

(v8i+7, v8j+7, v8i+8, v8j+8) for i, j ∈ {1, 2, ..., n−1
8
} where i 6= j. In total, this yields a 9(n−1

4
) +

16
(n−1

8
2

)
= n(n−1)

8
C4 decomposition of Kn. A partial example for K17 is shown below.
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Referencing the n ≡ 0 mod 8 case, note that the sixteen C4s from the previous paragraph

can be partitioned into four sets of disjoint cycles, which we again refer to as T1, T2, T3, and

T4 type cycles respectively. In particular, we will use the following assignment of the cycles

from above. T1: 1st, 6th, 11th, 16th. T2: 2nd, 7th, 12th, 13th. T3: 3rd, 8th, 9th, 14th. T4:

4th, 5th, 10th, 15th. As in the n ≡ 0 mod 8 case, we consider m = n−1
4

along with a new

graph Km where vertex v2i in Km corresponds to the contraction of the K4 induced by vertices

v8i+1, v8i+2, v8i+5, and v8i+6 inKn and where vertex v2i+1 inKm corresponds to the contraction

of the K4 induced by the vertices v8i+3, v8i+4, v8i+7, and v8i+8 in Kn, for 0 ≤ i ≤ n−1
8
− 1. As

before, an edge between vertices inKm corresponds to the fourC4s between the associatedK4s

in Kn. However, some of these edges were used in the C4 decomposition of the K9s, and this

corresponds to removing a 1-factor from our Km, denoted Km − F1. An example of Km − F1

for K17 is given below.

As in the n ≡ 0 mod 8 case, a 1-factorization of Km−F1 yields a proper (m− 2)-edge-

coloring of Km − F1, which further corresponds to a 4(m − 2) = n − 9-edge-coloring of the

edges between theK4s by alternating between colors c8k+2p−2 and c8k+2p−1 in the associated Tp
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cycles for 0 ≤ k ≤ n−1
8
− 1 and 1 ≤ p ≤ 4, again assuming that n ≥ 17. Next, note that within

each K9, the 1st and 9th cycles from the C4 decomposition of K9 above are disjoint, as are the

3rd and 7th cycles. Furthermore, cycles five through nine are vertex disjoint for each pair ofK9s

inKn. In total, we need eight colors for each copy ofK9 to account for the edges incident to v0,

ten colors which can be shared among all copies of K9 among the cycles which are not incident

to v0, and n− 9 colors for the edges between the K9s, for a total of 8(n−1
8

) + 10 + n− 9 = 2n

colors to properly color the edges of Kn for n ≥ 17. We find a mate for this edge-coloring by

reversing the assignment of colors within each cycle as in the previous cases, and this process

shows that {2n, 2n + 1, ..., n(n−1)
4
} ⊆ CTS(Kn) for n ≡ 1 mod 8 when n ≥ 17. For K9, the

K9 decomposition alone shows that {14, 15, ..., 18} ⊆ CTS(K9). An example of the proper

m− 2-edge-coloring of the associated Km − F − 1 for K25 is shown below.

It should be noted that our lower bound is not tight. Taking K17 as an example, the

colors assigned to the cycle (0, 1, 2, 3) in the first K9 copy could also be used among the cycle

(3, 11, 4, 12) between the K9 copies. There are other examples of disjoint cycles where colors

could be reused, so our lower bound can indeed be decreased. Furthermore, it remains to be

determined if our construction yields the highest amount of disjoint cycles, although the answer

to this question should not require extensive work.
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Chapter 7

Further Work

There are many ways in which this work could be continued. Since the color-trade-spectrum

of complete bipartite graphs was determined in this dissertation, a natural next step would be

to determine the color-trade-spectrum of complete multipartite graphs. Perhaps the usage of

Latin rectangles could be extended to higher dimensions.

The color-trade-spectrum of Pn�Pm remains incomplete. As mentioned at the end of

chapter 5, we conjecture {4, 5, ..., (n−1)(m−1)+1} is indeed the entire color-trade-spectrum

of Pn�Pm for 3 ≤ n ≤ m, but it remains to show that none of the other bm+n
2
c − 2 possible

values are in the color-trade-spectrum.

Likewise, the color-trade-spectrum for Kn remains incomplete. As shown in chapter 6,

{2n, 2n + 1, ..., n(n−1)
4
} ⊆ CTS(Kn) for n ≥ 17, but we also showed an example where

the lower bound is not tight. Furthermore, the cases of n ≡ 2, 3, 5, 6, 7 mod 8 are ripe for

exploration.

In this dissertation, the color-trade-spectra of 2-regular graphs (cycles) and complete graphs

(which are n−1-regular on n vertices) were explored. Further work could be done in exploring

the color-trade-spectra of generic k-regular graphs. Extensions of this could lead to studying

cages, snarks, and strongly-regular graphs.

Likewise, the color-trade-spectrum of any family of graphs is open for discovery. Some

interesting graphs for which the color-trade-spectrum is unknown includes the Platonic graphs,

the Heawood graph, and the Petersen graph.
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