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The Toxics Release Inventory is a public access database established under the 

Emergency Planning and Community Right-to-Know Act (EPCRA) to protect public 

health, safety and the environment from toxic chemical hazards.  In 2002, industrial 

facilities in the US were required to report their annual environmental releases of 

approximately 650 toxic chemicals to the Environmental Protection Agency.  Around 4 

billion pounds of toxic chemicals were released into the environment in 2002 from 

industrial facilities.  These toxic substances have the potential to impact morbidity and 

mortality in a significant way. 
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The City of Anniston in Calhoun County, Alabama is one of many places that 

have to deal with multiple environmental hazards.  In the mid-1990s Anniston discovered 

that the city had been heavily contaminated with PCBs.  Then, in the late-1990s, the US 

Army began the construction of Anniston Chemical Agent Disposal Facility to dispose of 

chemical weapons at the Anniston Army Depot, which is a Superfund site and generating 

a significant amount of toxic chemicals.  To make the situation worse, lead contamination 

in Anniston was discovered in 2000, when EPA conducted tests for PCBs.   

Impacts of toxic chemicals on human health may impose several types of costs to 

the society.  The first type of these costs is the depreciation of values of residential 

properties in the area with high levels of toxic chemicals.  The second type is the ultimate 

direct and indirect costs associated with health impacts of toxic substances.   

The purpose of this dissertation is to investigate the impacts that toxic chemicals 

pose on the society.  Specifically, we analyze how toxic substances affect property 

values, individual’s health status and labor productivity losses.  A number of economic 

models including hedonic price model and health capital models as well as econometric 

models including Full Information Maximum Likelihood model, generalized instrumental 

variable model and count model, are employed for the analysis.   
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I. INTRODUCTION 

 

The Emergency Planning and Community Right-to-Know Act (EPCRA) was 

enacted in 1986 by Congress to protect public health, safety and the environment from 

toxic chemical hazards.  The law gives the public the right to know about toxic chemical 

releases in their community by requiring major industrial facilities in the U.S. to report 

their emissions of certain toxic chemical substances into the environment.  Under 

EPCRA, the Toxics Release Inventory (TRI) program, managed by US Environmental 

Protection Agency (USEPA), was established to contain yearly information on toxic 

chemical releases and other waste management from industrial facilities.   

In 2002, industrial facilities were required to begin reporting their annual 

environmental releases of approximately 650 toxic chemicals to USEPA.  Around 4 

billion pounds of toxic chemicals were released into the environment in 2002 from 

industrial facilities, of which 1.6 billion pounds were air releases, 0.2 billion pounds were 

water releases, and 2.2 billion pounds were land releases (RTK NET 2002).  Water and 

land toxic chemical releases include a huge amount of arsenic and arsenic compounds, 

lead compounds, nickel and nickel compounds, chromium compounds, and cadmium 

compounds, which are either possible or proven human carcinogens, respiratory 

toxicants, developmental toxicants, skin and sense organ toxicants, or cardiovascular 
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toxicants (EPA 2005).  All these toxic substances have the potential to impact morbidity 

and mortality in a significant way. 

The City of Anniston in Calhoun County, Alabama is one of many places that 

have to deal with multiple environmental hazards.  National focus on Anniston began in 

the mid-1990s when it was discovered that the city has been heavily contaminated with 

PCBs.  The contamination occurred gradually over several decades since the time PCBs 

were first produced at the Anniston Monsanto plant.  Then, in the late 1990, the US Army 

began the construction of Anniston Chemical Agent Disposal Facility to dispose of 

chemical weapons at Anniston Army Depot.  The chemical weapons include the nerve 

agents GB (known as sarin) and VX, and blistering agents HD and HT (know as mustard 

gas), which are very toxic.  Residents of the area surrounding the disposal facility are 

concerned about the health risks in the case of leaking of chemical weapons during the 

process of disposal.  The Anniston Army Depot is also a Superfund site and generating a 

significant amount of toxic chemicals.  To make the situation worse, lead contamination 

in Anniston was discovered in 2000, when EPA conducted tests for PCBs.  Unlike PCBs 

contamination, lead has been released into Anniston by a number of sources including 

several private enterprises.  Both PCBs and lead are very toxic chemicals, which may 

cause a number of ill health effects. 

There may be a number of economic impacts resulting from environmental health 

risks associated with toxic chemicals.  The first type of costs is the depreciation of values 

of residential properties in areas where high levels of toxic chemicals are present.  It is 

believed that property values are determined not only by the physical characteristics of 

the house such as its age, size and quality but also by environmental goods such as parks 
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and beaches and environmental bads such as landfills, incinerators and all types of 

pollution.  In this case, concerns about potential heath risks may drive people away from 

the area filled with toxic chemical releases depressing property values in the area as a 

result. 

The second type of cost is related to the ultimate direct and indirect health impact 

costs associated with substances.  People exposed to toxic chemical releases may develop 

some environmental illnesses including asthma, developmental problem, immune system 

damage, birth defects as well as cancer.  Direct costs would be costs of treatments for 

these environmental illnesses.  Indirect costs come from productivity losses associated 

with these illnesses, including sick days in bed, restricted activity days and especially loss 

of workdays.   

The purpose of this dissertation is to investigate the economic impacts that toxic 

chemicals impose on the society.  Specifically, we analyze how toxic substances affect 

property values, individual’s health status and labor productivity.  A number of economic 

models, including the hedonic price model and health capital model are investigated 

using econometric techniques such as Full Information Maximum Likelihood model, 

generalized instrumental variables and count model.  The next three chapters of this 

dissertation present three independent studies.  The last chapter concludes the findings in 

this dissertation and provides some recommendations. 

In the second chapter, we explore how environmental health risks influence 

property values where environmental risks are represented by toxic chemical releases, 

Superfund sites and cancer mortality.  A simultaneous Full Information Maximum 

Likelihood (FIML) approach is employed to control for endogeneity of toxic releases and 
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cancer mortality using a county level dataset from the US.  A comparison between 

Ordinary Least Squares and FIML models is performed.  We also estimate the value of 

statistical life and predict the effect of an environmental cleanup and calculate net 

benefits of such a policy. 

In the third chapter, we investigate how toxic chemical releases impact 

individual’s health status and labor productivity losses.  We begin by providing a 

theoretical model of health capital to explain how time lost due to illness is affected by 

toxic chemical exposure.  We then construct a system of equations to simultaneously 

estimate impacts of toxics on workdays lost.  A generalized instrument variable approach 

is employed using a unique dataset combining the 2002 National Health Interview 

Survey, TRI and other data. 

In the fourth chapter, we examine the effects of multiple environmental hazards 

on health and labor productivity in Calhoun County, Alabama.  This study is a modified 

version of the third chapter using micro level data.  Another difference is that in this 

study we employ the maximum likelihood approach to solve simultaneously the system 

of equations instead of an instrumental variable approach.  Environmental hazards 

include PCB contamination, lead contamination and the Army Depot.  A survey was 

conducted to obtain individual characteristics, economic status, education status, health 

status and labor productivity losses.   The dataset used for this study is created by 

merging survey data with PCB and lead levels from EPA office in Anniston and other 

data. 

The results from these studies may be useful for environmental policy makers, 

especially in cost-benefit analysis.  For example, the results of the first and second studies 
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could be used in cost-benefit analysis for environmental cleanup of Superfund sites and 

reduction of toxic chemical releases at the aggregate level of county in the US.  The 

results of the third study would inform policy makers about the health effects and indirect 

costs of environmental hazards and those results may be used for welfare estimates for 

environmental cleanup of the City of Anniston or other places that contaminated with 

PCBs or lead. 
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II. CANCER MORTALITY, TOXIC CHEMICAL RELEASES, AND HOUSE 

VALUES IN THE UNITED STATES 

 

2.1  Introduction 

Environmental health risks have attracted much public attention in recent decades.  

Environmental risks arise from air, water and land pollution that come from automobiles, 

agricultural activities or undesirable facilities such as hazardous waste sites and industries 

at the local or regional level.   In this paper, we attempt to measure the economic impacts 

of environmental health risks originating from point sources such as waste sites and 

industrial facilities. 

Concerns about environmental health risks may be reflected in lowered property 

values, with a resulting negative impact on individual economic welfare.  The idea is that 

people are willing to pay more to reduce environmental risks.  However, compensating 

differentials for risk are only indirectly observed in marketed goods.  One method that 

has been developed to estimate the risk-money tradeoff is the hedonic price model 

(HPM) using housing market data (Rosen 1974).  The model assumes that housing 

consists of a bundle of characteristics.  Hedonic prices are defined as the implicit prices 

of characteristics and can be estimated from observed house prices and specific quantities 

of characteristics embodied in the houses.  The effect of environmental risks on property 
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values can thus be measured by regressing house values on characteristics, including 

environmental health risks. 

The purpose of this paper is to estimate the effect of environmental health risks on 

property values in the United States.  We include environmental disamenities, such as 

Superfund sites and toxic chemical releases, as proxies for environmental health risks.  

We also include cancer mortality as a factor that can impact house values; however, 

cancer mortality may also be a function of demographic characteristics and 

environmental disamenities.  Further, toxic chemical releases may be explained by 

county demographic and economic characteristics such as percent male, percent white, 

percent with college degree and percent in the 35-54 age group.  We hypothesize that 

house values, health risks and toxic releases are endogeneously determined.  To test this, 

we employ a simultaneous Full Information Maximum Likelihood modeling approach to 

jointly estimate housing prices, cancer mortality, and total chemical releases using a 

county level dataset from the United States and compare the results to Ordinary Least 

Square models.  The results indicate that a single model of house values significantly 

underestimates the effect of releases and cancer mortality.  In addition, using the 

simultaneous model, we predict the effects of an environmental cleanup, estimating net 

benefits of such a policy. 

 

2.2  Literature Review 

There has been an intensive literature that uses the HPM to investigate the 

property value impacts of environmental goods as measured by proximity to toxic sites.  

Michaels and Smith (1990) use the hedonic model to investigate the impact of hazardous 
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waste sites on house prices in Boston, finding that property values increase with distance 

from the house to the nearest site.  Kohlhase (1991) studies the impact of toxic sites in 

Houston on property values before and after the sites were listed in the Superfund 

National Priorities List (NPL).  Her study suggests that toxic sites have a significant 

impact on house prices once they are listed as NPL sites, with prices positively related to 

distance from toxic sites for up to 6.2 miles.  Nelson, Genereux, and Genereux (1992) 

examine the effect of landfills on house sales in Minnesota and conclude that landfills 

have a negative impact on house values for homes within two miles and the value of a 

house located on a landfill boundary could be reduced more than 12 percent.  Kiel and 

McClain (1995) use sale data from Massachusetts to examine the impact of an incinerator 

on sale prices and find that the impact of the incinerator is significant during the 

construction and ongoing operation stages.  Hite et al. (2001) study the impact of the 

presence of four landfills in Ohio on the property values of nearby houses.  The authors 

find that property values are negatively impacted by the proximity of both open and 

closed landfills.  Anstine (2003) tests the influence of buyer information on house price, 

by examining how the presence of two very different noxious facilities impact property 

values in a semi-rural area of Tennessee.  He finds that a visible noxious facility 

negatively affects home values while a non-visible disamenity does not. 

A number of studies focus on the way environmental health risk beliefs affect 

property values.  McClelland, Schulze, and Hurd (1990) estimate the effect of health risk 

beliefs on property values in the Los Angeles area.  They find that health risk beliefs have 

a substantially negative correlation with property values, and risk beliefs decrease when 

moving away from hazardous waste sites.  Gayer, Hamilton, and Viscusi (2000) examine 
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the effect of cancer risk perceptions from Superfund sites on house prices in Grand 

Rapids, Michigan before and after the USEPA released its assessment of site risks.  Total 

lifetime cancer risk is defined as the sum of soil and groundwater cancer risk from each 

site.  They find that people are willing to pay more for houses with lower levels of 

exposure to cancer risk, and residents’ willingness to pay to reduce risks decreases after 

release of the assessment.  McCluskey and Rausser (2001) study the impact of perceived 

risks on property value, where perceived risk is assumed to be a function of lagged 

perceived risk and media coverage of certain hazardous waste sites in Dallas County, 

Texas.  The authors find that perceived risk is negatively related to house prices, and 

media coverage increases perceived risk. 

In contrast to previous studies that use house-level data, Chay and Greenstone 

(2005) used county-level data to investigate how total suspended particulates (TSPs) 

affect median values of owner occupied housing units in the county in 1970 and 1980.  

Their dataset consists of 988 counties, accounting for approximately 80 percent of the US 

population.  They use two different models based on two measures of TSPs.  In the first 

model, they regressed actual TSPs on median house values and find that the results are 

mixed.  For 1970, correlation between housing prices and TSPs was significant and 

negative but for 1980, correlation between housing prices and TSPs was unexpectedly 

positive.  In the second model, nonattainment status, which is defined by concentrations 

of TSPs that exceed a federally set ceiling, is used as an instrumental variable for TSPs.  

They estimate that a reduction of 1 mg/m3 in TSPs results in an increase of 0.2–0.4 

percent in mean housing values, or a -0.20 to -0.35 elasticity, using the county-level 
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regulations as an instrument.  They also estimate aggregate welfare gain of $45 billion for 

homeowners for the late 1970s reductions in TSPs. 

 

2.3  Empirical Model and Data 

2.3.1  Environmental health risks 

Sources of air, water, and land pollution are categorized into two groups: point 

and nonpoint.  Point sources consist of stationary facilities or processes that generate a 

significant amount of pollution from their activities.  Point sources include major 

industrial facilities like chemical plants, power plants, steel mills, oil refineries, and 

incinerators.  Nonpoint sources arise from a large number of small and widely dispersed 

origins.  Nonpoint sources include emissions from automobiles or runoff from land-

disturbing activities like agriculture, forestry, mining, and urban development.  The focus 

of this paper is environmental risks imposed by point sources, as there are currently 

policy prescriptions and regulatory infrastructure in place to measure these hazards. 

Environmental exposure to toxic substances from hazardous waste sites or toxic 

chemical releases from industries poses human health risks.  The potential health effects 

may be cancer or noncancer-related, such as birth defects, respiratory and immune system 

damage.  Cancer is defined as a disease of heritable, somatic mutations affecting cell 

growth and differentiation, characterized by an abnormal, uncontrolled growth of cells.  

Cancer has been linked to exposure to toxic substances by means of carcinogenic 

chemicals. 

In addition to direct indicators of health risks such as total toxic chemical releases, 

cancer mortality and cancer incidence form indirect cancer risk indicators.  Individuals 
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may form subjective measures of health risks by examining cancer statistics in their 

areas, since cancer mortality is observable and information is readily available.  

 

2.3.2  Empirical model  

We use the hedonic price model to investigate county-level cross-sectional 

relationships between median house values and environmental health risks.  House value 

in each county reflects the value people place on a bundle of characteristics associated 

with a housing unit.  The hedonic house price in equation 1 is assumed to be a function of 

house, neighborhood, county, and environmental characteristics  

V = f (H, C, E) + ε                         (1) 

where V is house value, H is a vector of the house characteristics, C is a vector of county 

socio-demographic characteristics, E is a vector of environmental disamenities with their 

attendant risks. 

A number of previous studies have used individual house sale price as the 

dependent variable in hedonic price models (Gayer, et al. 2000a; Gayer, et al. 2000; Kiel 

and Zabel 2001; Kohlhase 1991; McCluskey and Rausser 2001; Nelson, et al. 1992).  

This paper, however, uses the county level median value of owner-occupied units 

obtained from the 2000 census as the dependent variable as we were unable to obtain 

cancer data at any lower level of aggregation.  Review of the literature provides 

precedence for using median unit value to estimate the impact of environmental goods on 

housing (Nelson 1978; Schulze and King 2001; Zabel and Kiel 2000).  In particular, as 

previously mentioned, Chay and Greenstone (2005) use the county level median value of 



owner-occupied housing units in their study.  An advantage of using owners’ self 

valuation of their house is that it provides values for houses whether or not they sell; 

therefore it eliminates the likelihood of sample selection bias (Kiel and Zabel 1997).  Kiel 

and Zabel (1997) tests the accuracy of owner-estimated values and concluded that 

hedonic equations based on owners’ valuation would provide unbiased estimates of 

changes in house prices. 

People exposed to local environmental risks arising from Superfund sites and 

toxic chemical releases from industrial facilities suffer potential health impacts.  We use 

several variables as proxies to measure environmental health risks, including total 

releases of toxics.  Individuals may also be exposed to environmental health risks arising 

from hazardous waste sites.  We thus include the number of Superfund sites on the 

National Priority List within a county to represent health risks.1 

If individuals use publicly available statistics to assess local environmental health 

risks, we can assume cancer mortality or cancer incidence are potential candidates to 

represent environmental health risk proxies.  Individuals’ valuations of health effects of 

hazardous substances may therefore be reflected in house values, allowing us to include 

cancer incidence and death rates as an explanatory variable in the hedonic housing 

equation.  County level cancer mortality data used in this analysis are the only publicly 

available data.  

The effect of potential spatial correlation on house prices needs to be addressed in 

hedonic analysis.  Several papers have used absolute location into econometric analysis  

 

 
1 Although we recognize that these are imperfect measures of actual health risk, perceived risks may be 
relevant for their impacts on individual willingness to pay to avoid exposure. 
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to control for spatial effects (Anselin 1988; Case 1991; Clapp 2003; Fik, et al. 2003; 

Pavlov 2000).  Pavlov (2000), Clapp (2003), and Fik, Ling, and Mulligan (2003) 

incorporate geographic coordinates of individual housing units as explanatory variables 

in the hedonic house price model.  Anselin (1988) uses neighborhood centroid 

coordinates to explain the variation in crime while Blair and Hite (2005) use geographic 

coordinates for county centroid to control for location effects on the landfill industry.  

Following these papers, county centroid geographic coordinates are included as 

explanatory variables in this analysis to control for spatial effects in house values.  

The exponential specification of the hedonic price model with an additive error 

term is used in this paper.  Within the hedonic framework, house value is assumed to be a 

function of environmental health risks including total chemical releases, number of 

Superfund sites, cancer mortality, and other explanatory variables. 

We hypothesize that there are endogeneities in the system of equations.  In 2000, 

579 individual chemicals were tracked in the TRI database, of which 189 are classified as 

recognized carcinogens under the requirements of the Occupation Safety and Health 

Administration.  Thus, total chemical releases may increase cancer mortality to exposed 

individuals; in addition, some Superfund sites may pose a risk.  Some studies also find 

that cancer mortality is affected by local socioeconomic patterns (Burnley 1997; 

Faggiano et al. 1997; Singh et al. 2002).  Singh et al (2002) show that cancer morality 

differs significantly among different age groups and Kesteloot (1994) finds there are 

highly significant positive correlations between cancer mortality and age, and a decrease 

in the rate of cancer incidence after 65 years of age.  Thus it is important to control for 

these variables to the extent possible.  



Other health-related characteristics within a county may also help explain 

differences in cancer death.  We thus include county percent of obese individuals as an 

explanatory variable, since there is evidence that obesity and overweight positively affect 

cancer death rates, especially in women (Adderley-Kelly and Williams-Stephens 2003; 

Calle, et al. 2003).  We also include the proportion of the population with any kind of 

health care coverage, since people with health care may be more likely to have cancer 

discovered early and are more likely to receive treatments in a timely manner.  Tobacco 

use has been found a cause to lung cancer; hence percent of persons smoking on a daily 

basis is included as an explanatory variable in the cancer mortality equation.  Since 

cancer mortality statistics used in this analysis covers all types of cancer, including skin 

cancer, average temperature is included as an explanatory variable2. 

Total chemical releases are probably endogenous to house values and cancer 

incidence.  Toxic sites could be located in areas where poor people live (Hamilton 1993, 

1995; Gayer, Hamilton, and Viscusi 2000).   Further, Bui (2003) finds that TRI-emitting 

plants tend to locate in communities with more middle-aged residents, and where 

residents are more likely to be registered as Democrats.   

 The system of three equations is written as 

V =exp (α V + β DR + χ H +δ C +σ CM + ϕ V TR +γ V NPL +ιX + κ Y) +ε V        (2) 

CM =exp (α CM +λ DR +μ C + ν HE +ϕ CMTR +γ CMNPL +ιX + κ Y) + ε CM        (3) 

TR =exp (α TR + θ  DR + ϑ C + γ TR NPL +ιX + κ Y) + ε TR                             (4) 

2 Although skin cancer is associated with exposure to sunlight, increased exposure is correlated 
with warmer climates. 
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where V is the median value of a county’s owner-occupied housing units; DR is a vector 

of dummy variables for regions, to control for unobserved heterogeneity in the data (e.g. 

differences in building material costs, job markets or tastes);  H is a vector of house  

characteristics; C is a vector of county characteristics; CM is cancer mortality at county 

level in year 2000; TR is total release/ person for years 1987-2000 at the county level; 

NPL is the number of Superfund sites on the NPL /1000 sq mile within a county; X and 

Y are county centroid coordinates; where HE is a vector of health characteristics; and ε is 

the error term.  

Each of the four environmental health risk variables is expected to have negative 

impacts on house values so that as environmental health risks increase, there will be a 

reduction in property values.  House values are also expected to be positively related to 

desirable variables such as percent white, percent college degrees and household income. 

Environmental hazards, such as total toxic releases and number of Superfund 

sites, are expected to increase cancer mortality.  That is, the higher the total releases and 

the more Superfund sites within a given county the greater the potential exposure to 

carcinogens, which in turn increases incidence of cancer and cancer deaths.  Total 

releases are assumed to be positively affected by the number of NPL sites and negatively 

related to household income.  Certain regions are known to have particularly high 

concentrations of industrial activity; hence region dummy variables are included.   

 We first estimate the system of equations (2)-(4) using OLS.  However if cancer 

mortality and total releases are endogenous, OLS parameter estimates will be biased and 

inconsistent.  We thus also estimate a simultaneous FIML to compare with the OLS 
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results.  The FIML model is also useful for simulating outcomes of various policy 

alternatives, as it can capture feedback effects from endogenities in the system.   

  

2.3.3  Data 

The county-level data for this paper are obtained from several sources.   House 

values and housing characteristics come from the 2000 decennial census, US Census 

Bureau.  The crime rate is obtained from Federal Bureau of Investigation Uniform Crime 

Statistics.  The number of Superfund sites on the Final National Priorities List is obtained 

from the CERCLIS database, Superfund Information System, EPA. Cancer mortality 

comes from the National Center for Health Statistics while health characteristics come 

from the Behavioral Risk Factor Surveillance System (BRFSS) 2000, Centers for Disease 

Control and Prevention. 

Air, water, and land toxic releases are derived from the USEPA’s TRI database, 

housed on the Right-to-Know network (www.rtknet.org).  These are total releases of all 

chemicals into the air, water, and land reported to EPA by major industrial facilities in 

each county.  Air releases include stack emissions, which occur through confined air 

streams, such as stacks, vents, ducts or pipes, and fugitive emissions such as equipment 

leak, evaporative losses from surface impoundments and spills, and releases from 

building ventilation systems (TRI).  Water releases include surface water discharges to 

streams, rivers, lakes, oceans and other bodies of water and underground injection, which 

is the subsurface emplacement of fluids through wells.  Land releases include all the 

chemicals disposed of on land within the boundaries of the reporting facility.  

http://www.rtknet.org/
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The total releases in the inventory cover about 582 individually listed chemicals 

accounting for less than 1% of the over 75,000 chemicals manufactured in the U.S., 

according to EPA's Toxic Substances Control Act Inventory (USEPA).  However, TRI 

does not address all sources of releases and other waste management activities of TRI 

chemicals.  The TRI releases contain annual data from its initial year, 1987, to 2000.  

Since it generally takes many years after exposure to a toxic substance for chemically-

induced cancer to develop, we use cumulative TRI chemical releases from all sources 

from 1987 to 2000 as the explanatory variable in this paper. 

Due to missing variables in Alaska, Hawaii and Washington DC, the final data set 

constructed from the different sources includes 3,106 counties in 48 states in the US. 

Identification issues arise when we estimate parameters in a simultaneous 

equation model.  Before estimating equations (2)-(4), we examine potential identification 

problem to determine whether we can obtain parameter estimates for the system.  

Regional dummies, county characteristics are included in all three equations.  Proportion 

of county’s population that is obese, proportion with any kind of health care coverage, 

and percentage of daily smokers are included only in the cancer mortality equation.  

Similarly, total earnings in manufacturing, percent of jobs in manufacturing, and percent 

Democratic votes in the 2000 Presidential election as a proportion of total population are 

included only in the total release equation.  Housing characteristics included only in the 

house equation are number of rooms, year built, proportion of housing units with 

complete kitchen, real estate taxes, proportion of vacant houses and proportion of owner-

occupied houses.  To be sure that we exclude them reasonably, correlation coefficients 

are calculated (Table 2.1) between room and year built and age and gender of the owners 
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since certain age and male or female may prefer houses of a certain age or with a certain 

number of rooms and year built.  The correlation coefficients justify our exclusion.  The 

results are similar for variables representing proportion of obese people, proportion of 

daily smokers, and proportion of people with health care.  The correlation coefficients 

between them and 35-54 age group, gender, rooms, and year built are very small; 

therefore we exclude them from the house value and total release equations. 

Table 2.2 presents descriptive statistics for all variables in the model.  The mean 

value of county median owner-occupied housing units is $80,864 for the sample.  The 

main explanatory variables are environmental health risks, represented by total releases, 

number of Superfund sites, counties with high chemical releases, and cancer mortality.  

The mean value of total releases is 626 pounds of toxic chemicals per person and the 

average number of Superfund sites is 0.79 per thousand square miles.  The mean cancer 

mortality per county is 200 per hundred thousand persons. 

 

Table 2.1 Correlation coefficient matrix 
 

 Rooms Year 
built 

35-54 
age Male Obese Health Dem00

Rooms      1     
 

 

Year built   -0.29      1    
 

 

35-54 age     0.23   0.17      1   
 

 

Male   -0.09   0.06   0.17      1  
 

 

Obese   -0.13 -0.06 -0.10  -0.08    1 
 

 

Health    0.44 -0.25  0.14  -0.03  -0.16 
 
     1  

Dem00    0.09 -0.14  0.17  -0.19  -0.06 
 
  0.24     1 



Table 2.2  Variable definitions and descriptive statistics (N=3,106) 

Variable Mean Std Dev 

Median value of owner-occupied housing units ($1,000) 80,864.26 41,893.27 
Cancer mortality (deaths/100,000 population)  200.3659  27.7276 
Total releases (10,000 pounds/person) 0.0626    0.6903 
Superfund sites (sites/1000sq mile) 0.7911    0.2236 
Dummy for county with total release > 0.05 0.0959    0.2945 
Household income($1,000)    40.7993  10.7805 
Percent with college degrees (%)    10.9542   4.9238 
Percent white (%)    84.7681   16.0126 
Percent male (%)    49.5087   1.9389 
Percent married people (%)    60.4018   5.3682 
Percent people in 35-54 age group (%)    29.0931   2.5870 
Percent employed in services (%)    23.2208   4.7242 
Unemployment rate (%) 3.3901   1.4235 
Crime rate (%) 3.2268   2.0785 
Median rooms of  housing units 5.9327   0.4479 
Median year built of  housing units 1969.3 11.2174 
Percent house with complete kitchen %)    99.4231   0.9442 
Real estates taxes ($1,000)  840.7414 634.2332 
Percent vacant houses (%)    14.1438  9.5472 
Percent owner occupied housed (%)    74.1038  7.5274 
X coordinate of county’s centroid   -91.6642 11.4803 
Y coordinate of county’s centroid    38.2790   4.8381 
Percent jobs in manufacturing (%)  6.7768   5.1178 
Dummy for Northwest region3 0.0637   0.2443 
Dummy for Northeast region4  0.0698   0.2549 
Percent votes for Democrat in 2000 election (%) 15.7034   5.0591 
Percent population with health coverage (%) 86.6429   5.8989 
Percent obese population (%) 19.6754   3.2329 
Percent daily smoker (%) 18.0382   3.5531 
Average temperature (oF) 54.8480   8.3669 

 

 

3 Northwest region: Washington, Oregon, Idaho, Montana and Wyoming 
4 Northeast region: Maine, Vermont, New Hampshire, Massachusetts, Connecticut, Rhode  Island, 
New York, New Jersey and Pennsylvania. 
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2.4  Model Estimates 

Using the Breusch-Pagan test, we found that heteroscedasticity existed in the OLS 

model.  After correcting for heteroscedasticity, the modified regression result showed that 

the chi-square statistics were calculated to be 0.52 for the first equation, 3.72 for the 

second equation , and 5.35 for the third equation, which are all smaller than the 5% 

critical value of significance of 7.81 (3 degrees of freedom).  Therefore, we fail to reject 

the null hypothesis of homoscedasticity and concluded that heteroscedasticity is mitigated 

in the corrected model. 

Tables 2.3, 2.4, and 2.5 present house value, cancer mortality, and total release 

regression results using OLS.  In the house value equation, out of four variables for 

environmental health risks, parameter estimates for cancer mortality, total releases and 

county with high releases have the expected negative signs and are statistically 

significant.  From the model specification, coefficients can be interpreted as the 

percentage impact of parameter on house values.  For example, an increase of 1 cancer 

death per 100,000 in a county reduces house values by 0.07 percent, while an increase of 

10,000 pounds of toxic releases per person reduces house values by 3.6 percent.  The 

coefficient for number of Superfund sites is insignificant.  The significantly positive 

coefficient for latitude is interpreted to mean that house values rise when moving to the 

North and a significantly negative coefficient of longitude indicates that property value 

increases when moving to the East.  Holding latitude and longitude constant, house 

values are found to be higher in the Northeast and Northwest region.  Housing 

characteristics include median number of rooms and median year built of housing units, 

in which median number of rooms has negative impact on house values and median year 
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built has positive impact on house values.  One additional room leads to a decrease of 

house values by 10.42 percent and one additional year in year built leads to an increase of 

house values by 0.75 percent.   Neighborhood characteristics of household income, 

proportion of white, proportion population in the 35-54 age group, proportion employed 

in services and vacancy rate have positive effects on house values.  An increase of 1 

thousand dollars in household income raises house values 3.34 percent and an increase of 

1 unit in proportions of white, population in the 35-54 age group, employed in services 

and vacant houses raise house values by 0.28, 0.93, 1.17 and 0.38 percent, respectively.  

Other neighborhood characteristics including proportion of college graduates, proportion 

of male, proportion of married people, unemployment rate and proportion of owner-

occupied houses are negatively related to house values.  One additional unit in these 

numbers leads to a decrease of house values by 0.36, 1.18, 0.94, 0.74 and 0.15, 

respectively. 

In the cancer mortality equation, the coefficients for total releases, number of 

Superfund sites, and the dummy for county with high releases are unexpectedly 

insignificant.  Counties with higher percent of daily smokers have a higher cancer death 

rate with a 1 percent increase in daily smoker increasing cancer mortality by 0.65 percent.  

County average temperature increases the rate of cancer mortality; each degree increase 

in average annual temperature is associated with a 0.24 percent increase in cancer 

mortality.  One additional thousand in household income results in an increase of 0.12 in 

the cancer death rate.  An increase of 1 unit in unemployment rate and crime rate raises 

cancer mortality rate by 0.42 and 0.43, respectively.  Each percent increase in proportion 
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of college graduates, males and married people reduces cancer death rate by 1.18, 0.55 

and 0.63 percent, respectively.   

In the total release equation, household income has an unexpectedly positive 

effect on total releases.  An increase of household income by 1 thousand dollars raises 

toxic releases by 11.24 percent.  This may be explained by recognizing that there are 

more jobs where there are more releases and that chemical factories provide high-paying 

jobs.  Toxic chemical releases increase with unemployment rate, percent male and 

percent employed in services, but decrease with percent of college graduates, crime rate 

and percent of married people. Counties with a higher percentage of people voting 

Democratic in the 2000 President election have lower toxic chemical releases.  Each 

percent increase in people voting Democratic is associated with a 15.62 percent decrease 

in total releases. 
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Table 2.3  Nonlinear OLS estimates for house value equation (N=3,106) 

Variable Parameter 
Estimate 

Standard 
Error t value 

Intercept    -4.2224*** 0.8818 -4.79

Household income     0.0334*** 0.0007 46.86

Percent with college degrees    -0.0036*** 0.0012 -2.95

Percent white     0.0028*** 0.0004 7.61

Percent male    -0.0118*** 0.0022 -5.27

Percent married people    -0.0094*** 0.0011 -8.45

Percent people in 35-54 age group     0.0093*** 0.0016 5.77

Percent employed in services     0.0117*** 0.0012 9.87

Percent vacant houses     0.0038*** 0.0005 8.45

Percent owner occupied housed    -0.0015** 0.0007 -2.02

Unemployment rate    -0.0074** 0.0035 -2.10

Crime rate (crimes per 1,000 population)    -0.0025 0.0019 -1.37

Median rooms of  housing units    -0.1042*** 0.0108 -9.69

Median year built of  housing units     0.0075*** 0.0005 16.58

Real estates taxes ($1,000)    -0.0001*** 0.0000 -5.73

X coordinate of county’s centroid    -0.0044*** 0.0004 -10.86

Y coordinate of county’s centroid     0.0084*** 0.0012 6.90

Dummy for county with population > 100,000     0.0035 0.0116 0.30

Cancer death rate (death/100,000)    -0.0007*** 0.0002 -4.16

Total releases (10,000 pounds/person)    -0.0358*** 0.0085 -4.20

Superfund sites (sites/1000 sq mile)     0.0386 0.1584 0.24

Dummy for county with total release > 0.05    -0.0318** 0.0151 -2.11

Dummy for Northeast region     0.1860*** 0.0175 10.61

Dummy for Northwest region     0.0919*** 0.0168 5.46
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 2.4  Nonlinear OLS estimates for cancer mortality equation (N=3,106) 

Variable Parameter 
Estimate 

Standard 
Error t value

Intercept         5.5014*** 0.0888 61.96

Household income         0.0012*** 0.0004 3.25

Percent with college degrees       -0.0118*** 0.0008 -14.65

Percent white       -0.0003* 0.0002 -1.69

Percent male       -0.0055*** 0.0011 -4.96

Percent married people       -0.0063*** 0.0006 -10.31

Percent people in 35-54 age group        0.0109*** 0.0010 10.52

Percent employed in services       -0.0014* 0.0008 -1.80

Unemployment rate        0.0042** 0.0020 2.13

Crime rate (crimes per 1,000 population)        0.0043** 0.0011 3.84

Percent population with health coverage       -0.0005 0.0004 -1.20

Percent obese population        0.0010 0.0008 1.27

Percent daily smoker        0.0065*** 0.0007 9.35

Average temperature        0.0024*** 0.0004 6.81

Dummy for county with population > 100,000      -0.0204 0.0193 -1.06

Total releases (10,000 pounds/person)        0.0004 0.0034 0.10

Superfund sites (sites/1000 sq mile)        0.0306 0.1015 0.30

Dummy for county with total release > 0.05        0.0103 0.0079 1.30

Dummy for Northeast region      -0.0046 0.0104 -0.44

Dummy for Northwest region        0.0069 0.0109 0.64
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 2.5  Nonlinear OLS estimates for total releases equation (N=3,106) 

Variable Parameter 
Estimate 

Standard 
Error t value

Intercept     -5.5139*** 1.7962 -3.07

Household income      0.1124*** 0.0120 9.35

Percent with college degrees     -0.1908*** 0.0305 -6.25

Percent white      0.0160* 0.0089 1.80

Percent male      0.0772*** 0.0194 3.98

Percent married people    -0.0482*** 0.0182 -2.65

Percent people in 35-54 age group      0.0129 0.0208 0.62

Percent employed in services      0.0798*** 0.0119 6.69

Unemployment rate      0.1005*** 0.0319 3.15

Crime rate (crimes per 1,000 population)     -0.1751*** 0.0636 -2.75

Percent votes Democratic in 2000 election     -0.1562*** 0.0245 -6.37

Percent jobs in manufacturing     -0.0776 0.0594 -1.31

Dummy for county with population>100000     -1.3486* 0.7204 -1.87

Superfund sites (sites/1000 sq mile)      1.6261 2.8117 0.58

Dummy for Northeast region     -0.9655 1.1945 -0.81

Dummy for Northwest region     -0.3629 0.3755 -0.97
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Our suspicion that endogeneities exist in the model means the OLS results are 

inconsistent.  We thus performed a Hausman specification test (Hausman 1978) to test for 

endogeneity.  The chi-squared statistics testing OLS against FIML is 10.42, which when 

compared with a critical value at the 5% level of significance of 3.84 (1 degree of 

freedom) suggests that there is endogeneity in the model, suggesting a simultaneous 

estimation method is appropriate.  We thus employ a FIML model to jointly estimate the 

three equations. 

Tables 2.6, 2.7 and 2.8 present the FIML model results corrected for 

heteroscedasticity.  In the house value equation, coefficients for total releases and cancer 

mortality remain statistically significant.  It is interesting to note that the magnitude of the 

significant coefficient for total releases is larger in the FIML model.  Specifically, the 

percentage impact of total releases per person increases from 3.58 percent in the OLS 

model to 6.63 percent in the FIML model.  Similarly to toxic releases, the negative effect 

of cancer mortality in the system model is greater than in the OLS model, increasing from 

0.07 percent to 0.13 percent.  This indicates that the OLS model underestimates the effect 

of toxic releases and cancer mortality.  The coefficient for the dummy for counties with 

toxic releases greater than 500 pounds per person becomes insignificant.  Coefficients for 

latitude, longitude and the Northeast and Northwest region remain statistically 

significant.  The effects of other variables including housing characteristics and 

neighborhood characteristics remain the same in terms of the direction and magnitude of 

the effects. 

 In the cancer mortality equation, coefficients for total releases, number of 

Superfund sites and high release county dummy remain insignificant.  The coefficients 
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for economic and demographic characteristics including household income, percent 

college degrees, percent male, percent married people and percent in the 35-54 age group 

are consistent terms of signs and absolute values of the parameters with OLS model.  

Coefficients for percent white and percent employed in services become statistically 

significant at the 5 percent level.  One percent increase in percent white and percent 

employed in services reduces cancer mortality by 0.03 and 0.15 percent, respectively.  

The insignificant coefficient for percent with health care coverage in the OLS becomes 

significant with the expected negative sign, with one additional percent of health care 

coverage reducing cancer mortality by 0.08 percent.   

 In the total release equation, the coefficient for number of Superfund sites remains 

insignificant.  The effects of household income, proportion of college graduates, white 

and male, and unemployment rate, crime rate, percent voting Democratic in 2000 

President election on house values are consistent with the OLS model in terms of the 

direction but are greater in absolute values. The coefficient for percent employed in 

services becomes insignificant in the system model. 
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Table 2.6  Nonlinear FIML Estimates for house value equation (N=3,106) 

Variable Parameter 
Estimate 

Standard 
Error t value

Intercept     -4.2276*** 0.6335 -6.67

Household income      0.0334*** 0.0004 84.31

Percent with college degrees     -0.0052*** 0.0009 -5.57

Percent white      0.0027*** 0.0003 8.94

Percent male     -0.0124*** 0.0020 -6.11

Percent married people     -0.0100*** 0.0008 -12.38

Percent people in 35-54 age group      0.0105*** 0.0010 10.26

Percent employed in services      0.0116*** 0.0008 14.87

Unemployment rate     -0.0067** 0.0031 -2.16

Crime rate (crimes per 1,000 population)     -0.0021 0.0018 -1.14

Median rooms of  housing units     -0.1024*** 0.0066 -15.57

Median year built of  housing units      0.0076*** 0.0003 23.12

Real estates taxes($1,000)     -0.0001*** 0.0000 -9.76

Percent vacant houses      0.0037*** 0.0003 13.37

Percent owner occupied housed     -0.0014*** 0.0005 -2.90

X coordinate of county’s centroid     -0.0043*** 0.0002 -19.16

Y coordinate of county’s centroid      0.0082*** 0.0010 8.07

Dummy for county with population > 100,000      0.0035 0.0101 0.35

Cancer death rate (death/100,000)     -0.0013*** 0.0002 -5.89

Total releases (10,000 pounds/person)     -0.0663** 0.0291 -2.27

Superfund sites (sites/1000 sq mile)      0.0315 0.2541 0.12

Dummy for county with total release > 0.05     -0.0260 0.0203 -1.28

Dummy for Northeast region      0.1856*** 0.0133 14.00

Dummy for Northwest region      0.0915*** 0.0134 6.85
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 2.7  Nonlinear FIML estimates for cancer mortality equation (N=3,106) 

Variable Parameter 
Estimate 

Standard 
Error t value

Intercept      5.5361*** 0.0704 78.62

Household income      0.0011*** 0.0004 2.88

Percent with college degrees    -0.0117*** 0.0007 -15.87

Percent white    -0.0003** 0.0002 -2.01

Percent male    -0.0056*** 0.0007 -7.90

Percent married people    -0.0065*** 0.0005 -12.57

Percent people in 35-54 age group      0.0110*** 0.0009 12.77

Percent employed in services    -0.0015** 0.0006 -2.32

Unemployment rate      0.0039*** 0.0013 2.88

Crime rate (crimes per 1,000 population)      0.0044*** 0.0012 3.74

Percent population with health coverage    -0.0008** 0.0004 -2.00

Percent obese population      0.0012* 0.0008 1.65

Percent daily smoker      0.0064*** 0.0007 9.13

Average temperature      0.0023*** 0.0003 7.96

Dummy for county with population > 100,000    -0.0205* 0.0126 -1.65

Total releases (10,000 pounds/person)      0.0030 0.0260 0.11

Superfund sites (sites/1000 sq mile)      0.0299 0.0976 0.31

Dummy for county with total release > 0.05      0.0099 0.0083 1.19

Interaction of DPOP and Superfund sites      1.9559 1.6615 1.18

Dummy for Northeast region     -0.0033 0.0151 -0.22

Dummy for Northwest region      0.0054 0.0109 0.49
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 2.8  Nonlinear FIML estimates for total releases equation (N=3,106) 

Variable Parameter 
Estimate 

Standard 
Error t value 

Intercept     -7.5733 7.1406 -1.06

Household income      0.2030** 0.0371 5.47

Percent with college degrees    -0.3614** 0.0764 -4.73

Percent white      0.0732* 0.0412 1.78

Percent male      0.0703* 0.0407 1.73

Percent married people    -0.0862 0.0646 -1.34

Percent people in 35-54 age group      0.0802 0.0620 1.29

Percent employed in services    -0.0627 0.0382 -1.64

Unemployment rate      0.4393*** 0.0859 5.11

Crime rate (crimes per 1,000 population)    -0.7795*** 0.2399 -3.25

Percent votes for Democrat in 2000 election    -0.5702*** 0.1298 -4.39

Percent jobs in manufacturing    -0.2268 0.1712 -1.32

Dummy for county with population>100000    -0.9286 9.1080 -0.03

Superfund sites (sites/1000 sq mile)   -14.5501 78.0084 -0.19

Interaction of DPOP and Superfund sites    37.8538 32.8000 0.01

Dummy for Northeast region    -0.1334 6.7000 0.00

Dummy for Northwest region    -4.1638 40.5903 -0.10
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
 
 

There are some significant differences when comparing OLS results with FIML 

results.  In the house value equation, the coefficients for cancer mortality and total 

releases in the two models are significant and negative in both models, but the 

coefficients of the FIML are almost double in absolute value the coefficients of the OLS.  

The OLS coefficients for other variables are similar to the FIML results.  In the cancer 

mortality equation, the estimates for total releases and number of Superfund sites are not 



significant in both the OLS and FIML models.  The OLS coefficient for health care 

coverage is not significant while the FIML coefficient is significant.  In the total release 

equation, number of Superfund sites does not have any impact on total toxic releases in 

both models.   

 

2.5  Marginal Willingness to Pay and Value of Statistical Life 

In the hedonic price model, the derivative of price with respect to a characteristic 

is equivalent to the marginal willingness to pay for changes in characteristic, which can 

be computed using the parameter estimates from Tables 2.3 and 2.6.  The negative 

coefficients for cancer death and total releases in the house equation suggest that people 

are willing to pay higher prices for houses located in areas with lower cancer mortality 

rates and lower toxic chemical releases. Marginal willingness to pay for reducing cancer 

mortality and chemical releases is 

  ∂ house value      
——————— = σ̂ * house value                      (5)  
∂ cancer mortality 

 
∂ house value  
—————— = ϕ̂ V * house value                                     (6)      
∂ total releases           

 
            

     
where σ̂  is the estimated coefficient for cancer mortality, and ϕ̂ V is the estimated 

coefficient for total releases in the house value equation. 

From the OLS parameter estimates in Table 2.3, the marginal willingness to pay 

for a reduction of 1 cancer death per 100 thousand persons is calculated to be $55.05 and 

for a 1 pound reduction of total chemical releases to be $0.29.   
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Taking endogeneity of cancer and total chemical releases into account, the 

equation to compute marginal willingness to pay for reducing cancer death is the same as 

in equation (5), but to compute marginal willingness to pay for reducing total releases as 

follow 

         ∂ house value  
—————— = ϕ̂ V *house value + σ̂ * house value *ϕ̂ CM*cancer death        (7) 
∂ total releases 

where ϕ̂ CM is the estimated coefficient for total releases from equation 3.  The FIML 

estimated parameters reported in Table 2.6 give the marginal willingness to pay for one 

cancer death reduction per 100 thousand persons to be $105.47 and for a 1 pound 

reduction of total chemical releases to be $0.54.   

An important implication of the model estimated in this paper is that it can be 

used to calculate the value of statistical life based on the correlation between house 

values and cancer mortality.  The assumption here is that there is a tradeoff between risk 

and property values, with mean willingness to pay for decreased cancer mortality using 

OLS and FIML estimated to be $55.05 and $105.47 respectively.  However, this 

willingness to pay is for a representative household.  To calculate the willingness to pay 

for an individual, the willingness to pay per household must be divided by the mean 

number of persons per household.  With the mean household size of 2.586 at the county 

level, the mean willingness to pay per individual using OLS and FIML is estimated to be 

$21.29 and $40.79, respectively. 
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The value of statistical life is computed using the equation 

             Willingness to pay 
 Value of statistical life = ——————————                    (8). 
              Size of risk reduction      
  

For example, the willingness to pay estimates of $21.29 and $40.79 represent the 

amount of money an individual would be willing to pay to reduce cancer deaths by 1 per 

100,000 persons.  This results in an average value of statistical life per person of $2.13 

million using OLS and $4.08 million using the FIML model in 2000 dollars. 

 There is a large difference in the value of statistical life between using OLS and 

FIML.  Statistical life when cancer mortality and total releases are treated as exogenous is 

nearly half of the value of statistical life when they are treated as endogenous.  However, 

the estimated value of statistical life from the simultaneous model seems to be more 

consistent with the findings of other studies in the housing market using hedonic price 

model to investigate the relationship between house prices and cancer risks.  In their 2000 

paper, Gayer, Hamilton, and Viscusi estimate the willingness to pay of residents to avoid 

cancer risks at Superfund sites and calculate the statistical value of cancer to be $4.6 

million in 1996 dollars.  Analyzing how changing information on cancer risk of 

Superfund sites affects house price, Gayer, Hamilton, and Viscusi (2002) report the value 

of a statistical cancer case to be $8.3 million.  The range of our estimates is also similar to 

the calculations from the labor and automobile markets.  Viscusi (1993) reviews labor 

market studies and reports a range for value of statistical life from $3 million to $7 

million in 1990 dollars.  Atkinson and Halvorsen (1990) calculate the value of statistical 

life at $3.4 million 1986 dollars using the hedonic price model for automobiles.  Because 
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we have imperfect measures of the correlation between total releases and cancer deaths, 

we suspect our measure is conservative.  With better measures of specific carcinogenic 

releases, the links between releases and cancer should be more pronounced. 

 

2.6  Welfare Estimates 

  In this section we conduct a rudimentary benefit cost analysis to estimate the 

welfare effects of cleaning up Superfund sites and reducing industrial point source 

releases.  We use the simultaneous-equation model to perform this analysis. The 

assumption is that all Superfund sites are completely cleaned up and total toxic releases 

are decreased by half.  The benefits and costs associated with our assumptions are 

calculated to obtain net benefits representing the welfare gain from reducing 

environmental health risks. 

 Predicted house values and cancer mortality rates are calculated by 

simultaneously solving the system represented by equations 2-4.  We apply the Quasi-

Newton method to simultaneously solve for predicted house value and cancer mortality 

under the baseline and different policy assumptions.  The simulations are reported in 

Table 2.9.  If a policy mandated elimination of Superfund sites and a reduction of total 

releases by half, the median house value would rise by $396.27 and cancer death rates 

would drop by 0.45 per 100,000 persons.  
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Table 2.9  House value and cancer mortality simulations 

Original level of total 
releases and number of 

Superfund sites 

Total releases decreased by 
50% and clean-up of all 

Superfund sites Variable 

Mean Std Error Mean Std Error 

House value ($) 

Cancer mortality 

(per 100,000 persons) 

80,812.110 

     200.316    

 

38,008.870 

       16.041 

 

 81,208.380 

      199.866    

 

 38,466.850 

        16.031 

 

 

 

2.6.1  Benefits 

Benefits from environmental risk reduction are estimated from the change in 

house value and cancer death rate.  Table 2.10 presents estimated benefits for changes in 

house value and cancer rate that result from environmental improvement.  The house 

value increase is multiplied by the total number of housing units in the sample to obtain 

benefits from the house value change.  There are around 69 million owner-occupied 

housing units in the US and the net present value of benefits from changes in capitalized 

house values is $27.5 billion.  Benefits from the cancer mortality decrease are calculated 

by multiplying the number of lives saved by the value of statistical life, where the number 

of lives saved is computed by multiplying the cancer rate reduction by the total number 

of persons living in owner-occupied houses.  The cancer death rate decrease yields 

benefits of $3.3 billion per year.  If we assume that such benefits will accrue over the 

foreseeable future, we can obtain a rough estimate of the net present value of all future 

benefits as a perpetuity.  Based on a 3% interest rate, the net present value would be 
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about $109.7 billion dollars. Therefore, the total benefits from cleaning up all Superfund 

sites and reducing toxic releases are $137.1 billion dollars. 

 

Table 2.10  Estimated benefits 

Variable 
Change in 

Value 
Sample Size Benefits ($1,000) 

Capitalized house value  

 

Annual cancer mortality 

 

NPV cancer mortality in 

perpetuity 

Total  NPV benefit 

       396.270 

($/housing unit) 

         -0.450 

(death/100,000) 

 

 

      69,323,860 

  (housing units) 

    179,271,502 

         (persons) 

 

      27,470,966 

 

        3,290,214 
 
 

    109,673,703 
   

    137,144,669 

 

2.6.2  Costs 

Costs associated with the new level of toxic chemical releases and number of 

Superfund sites are costs from reducing total releases and cleanup of Superfund sites.  

Average cost of cleanup activities per Superfund site is presented in Table 2.11.  The 

average cost of cleanup actions per site is around $31.6 million dollars. There are 1,152 

Superfund sites in the final NPL and total cost of cleanup for all sites in the US is 

estimated to be $36 billion. 

Costs for reduction of toxic chemical releases are not readily available.  However, 

EPA annually spends about $7 billion in monitoring and regulatory costs for all US 

facilities.  For the sake of expediency, we will assume that costs will increase 

incrementally by about $7 billion per year to reduce toxic chemical releases, adding a 



 37

NPV of about  $233 billion to the total cost for cleanup of the NPL sites above, for a 

grand total cost of  about $269 billion. 

 The net benefit of environmental health risk reduction is the difference in benefits 

and costs.  In this case the difference between $137 billion in benefits is outweighed by 

the $269 billion in costs.  However, as previously noted, our benefit estimate 

underestimates the true benefit significantly, as it includes only owner occupied house 

values and cancer mortality.  Arguably, costs of lost value in rental housing and costs of 

treating cancer, as well as the other chronic illnesses related to toxic releases, such as 

respiratory diseases and birth defects will incur an even greater cost to society; further 

lost labor productivity is also not accounted for.  Reductions in conditions associated with 

toxic releases might therefore result in an actual net benefit. 

 

Table 2.11  Average cost of cleanup actions per NPL site 

Cost category Average total cost 
per site (US$) 

Remedial investigation/Feasibility study   1,300,000 

Remedial Design   1,500,000 

Remedial Action 25,000,000 

Net present value of operation and maintenance   3,770,000 

Total 31,570,000 
 
Source: Office of Program Management, Office of Superfund Remediation Technology 
Innovation, EPA. 
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2.7  Conclusions 

 In this paper, we investigate the effects of environmental health risks on house 

values in the US at the county level.  A unique data set consisting of 3,106 counties in the 

US is used for the analysis.  Several variables are used to represent environmental health 

risks including total chemical releases, number of Superfund sites, and cancer mortality.  

We assume that there are endogeneities in the model, using a system of equations to 

capture indirect impacts of variables.  Both OLS and FIML are used to estimate the 

system.  We go on to simulate cleanup of sites and toxic releases using a quasi-Newton 

method to solve the system.  Our findings suggest that property value responds negatively 

to total releases and cancer mortality.  The results of the FIML estimate indicate that a 

reduction of total releases by 1 pound per person leads to an estimated increase of $0.54 

in house value and a decrease of cancer mortality by 1 death over 100,000 persons leads 

to an increase of $105.47 in housing values when cancer mortality and total chemical 

releases are endogenous.  The value of statistical life is estimated to be $4 million with 

FIML model. 

Based on the value of statistical life and capitalized house values, a simple cost 

benefit analysis is conducted.  The results indicate that cleanup costs of $267 million 

exceed benefits of $137 million when only owner-occupied housing units and cancer 

mortality are accounted for.  The findings suggest that in future research, we will need to 

include other kinds of health costs in order to estimate the true benefit of environmental 

cleanup, as reflected in housing markets.  In addition, effects of releases, not just on 

cancer deaths but on morbidity associated with cancer and other diseases will be the 

subject of future research. 
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III. TOXIC CHEMICAL RELEASES, HEALTH EFFECTS,  

AND LABOR PRODUCTIVITY LOSSES 

 

3.1  Introduction 

The effects of pollution on human health have been investigated widely in the 

environmental and health literature.  Pollutants may be linked to a wide range of effects 

on human health, including cancer or noncancer-related diseases, such as birth defects, 

respiratory and immune system damage.  Since health is considered to be a capital good 

in the production process, health effects may impact labor productivity.  As a result, 

exposure to pollution may contribute to productivity losses. 

Although the relationship between pollution and morbidity has been investigated 

thoroughly in the health literature, almost all previous studies focused on air pollution 

alone (Bates and Sizto 1987; Ostro 1983; 1987; Ostro and Rothschild 1989; Pope-III 

1991; Xu, et al. 1995).  Two other types of pollution, including land and water pollution, 

which cause potentially more serious human health effects (Hopenhayn-Rich, et al. 1998; 

Lopez-Abente, et al. 2006; Smith, et al. 1998), have been neglected.   

The focus of this analysis is to investigate the effects of pollution measured by 

aggregate levels of toxic chemical releases to air, land and water from industrial facilities 

on productivity losses represented by lost work days.  The analysis uses a simultaneous 

equation count data model of work day lost and health status to estimate impacts of 
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environmental factors on work days lost.  Health instruments include toxic chemical 

releases, demographic and socioeconomic characteristics, a number of health conditions 

and behavior variables.  A unique dataset combining the 2002 National Health Interview 

Survey (NHIS), TRI, US Census 2000 data and climatic data is used to estimate the 

impact of toxic releases on health status and lost labor productivity. 

 

3.2  Literature Review 

There is an extensive literature studying the impacts of pollution on human 

morbidity.  Pollution has been linked to several kinds of diseases including respiratory 

symptoms, asthma, chronic bronchitis, and cancer by Mills et al., 1991, Ostro et al., 

1991, Portney and Mullahy, 1986.  A number of other papers have analyzed relationships 

between air pollution, hospital admissions and emergency room visits (Bates and Sizto 

1987; Pope-III 1991; Samet, et al. 1981; Xu, et al. 1995). However, the focus of this 

section is to review some of the previous papers investigating the effects of pollution on 

labor productivity losses in the form of lost work days. 

Ostro (1983) used 1976 NHIS data to study the effect of air pollution on 

morbidity measured by work loss days and restricted activity days.  Two air pollution 

variables used were annual mean levels of particulates and sulfates (SO4).  The author 

found that there was a statistically significant relationship between particulates, work 

days lost and restricted activity days in three different functional forms tested including 

linear, Tobit, and logit-linear. 

In another paper, Ostro (1987) replicated the previous analysis with four NHIS 

datasets from the year 1976 to 1981.  Fine particles were used as a measure of air 
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pollution instead of total suspended particulates.  Another change from his previous study 

was that a Poisson distribution was used for work days lost and restricted activity days.  

The study reported that fine particles were positively and significantly associated with 

work loss days in 4 out of 6 years, and were positively related to restricted activity days 

in all 6 of the years. 

Portney and Mullahy (1986) also used NHIS data to analyze health effects of air 

pollution.  The dependent variable was the number of respiratory-related restricted 

activity days during survey respondents’ 2-week recall periods with air pollution 

measured by ozone and sulfates during the same period.  Maximum likelihood was used 

to estimate a Poisson model in the analysis.  The authors found that there were positive 

and significant associations between ozone and respiratory-related restricted activity 

days. They also calculated the elasticity of respiratory-related restricted activity days with 

respect to ozone and evaluated the change in respiratory-related restricted activity days 

resulting from a change in ozone concentrations.  The elasticity ranged from 0.005 to 0.5 

and respiratory-related restricted activity days for urban adult population ranged from 

240,000 to 22,000,000. 

Ostro and Rothschild (1989) contributed to a series of studies on the relationship 

between health effects and air pollution by analyzing the health consequences of two air 

pollutants using 6 separate years of NHIS data.  Respiratory-related restricted activity 

days and minor restricted activity days were used as indicators of acute morbidity.  The 

results indicated that there was a positive and significant relationship between fine 

particles and respiratory-related restricted activity days in all six of the years.  The 

association of fine particles with minor restricted activity days appeared to be weaker and 
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the coefficient for fine particles was positive and significant in 4 out of the 6 years.  The 

study found no relationship between ozone and respiratory-related restricted activity days 

but a weak association of ozone with minor restricted activity days. 

  Ostro (1990) used the 1979-1981 NHIS data to explore the association between 

acute respiratory morbidity and different measures of particulate matter, including 

sulfates, total suspended particulates, and fine and inhalable particulates.  The author 

reported that of the alternative measures of particulate matter, sulfates appeared to have 

the greatest association with acute respiratory morbidity. 

 Samakovlis et al. (2005) investigated the impacts of NO2 concentrations on 

incidence and duration of respiratory restricted activity days in Sweden using the 1999 

National Environmental Health Survey.  To handle the overdispersion problem in the 

Poisson model, the authors used a logit model to analyze how NO2 concentrations affect 

incidence of respiratory problems and then used a Poisson model to investigate the 

relationship between NO2 concentrations and number of respiratory restricted activity 

days.  The results indicated that NO2 level did not affect incidence of respiratory 

problems but positively affected respiratory restricted activity days. 

 

3.3  Health Capital Model 

This study follows the health capital model by Grossman (1970a,b) and Cropper 

(1981). A consumer maximizes the utility function 

  U = U(H0, H1, … , Hn, Z0, Z1, … , Zn)           (9) 
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where H0 is initial stock of health, Ht is the stock of health in period t, and Zt is total 

consumption of another commodity in period t. 

 Investments in health are given by the production function 

  It = D (Mt, Xt, THt; Et)        (10) 

where Mt is medical care, Xt is the market good input, THt, is time input, and Et is the 

stock of human capital. 

The increase in the stock of health is the net investment in health capital 

dHt/dt = Ht+1 – Ht = It – δt Ht         (11) 

where It is gross investment and δt is the rate of health depreciation during the tth period. 

 The marginal cost of gross investment in health capital is given by 

  πt = N (PMt, Wt)         (12) 

where PMt is price of purchased goods and Wt is wage rate. 

The production function of healthy days is written as 

  ht = F (Ht)          (13) 

The stock of health and the number of healthy days are presented in Figure 3.1. At 

Ht=Hmin, the number of healthy days equal zero.  Along the curve, healthy time increases 

at a decreasing rate and approaches the 365-day line.  The marginal product of the stock 

of health is Ri = ∂ ht/ ∂Ht>0. 



365 

ht 

Figure 3.1  Stock of health and the number of healthy days 

HtHmin 

 

 

Sick time equals the total amount of time available in any period minus the 

number of healthy days in that period 

TLt = Ω – ht             (14) 

where TLt is time lost due to illness and Ω is total amount of time available. 

The marginal product of health capital, the increase in the number of healthy days 

due to a one unit increase in the stock of health, equals the negative of the marginal 

product of lost health capital: Ri = ∂ ht/ ∂Ht= - ∂ TLt/ ∂Ht. 

The optimal amount of sick time can be derived by equating the value of marginal 

product of lost health capital due to illness to the cost of health depreciation 

Wt(∂ TLt/ ∂Ht) = - πtδt
  or  ∂ TLt/ ∂Ht = - πtδt/ Wt           (15) 

where πt is the marginal cost of gross investment in health. 
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 In Grossman’s model, the rates of health depreciation are assumed to be 

exogenous.  However, this paper follows Cropper (1981) by assuming that the rates of 

health depreciation are endogenous.  If an individual is exposed to air, water, and land 

pollution, her/his health is degraded gradually.  Beside, the rates of depreciation also are 

affected by age and stock of health.  Therefore, the rate of depreciation of health capital is 

written as  

δt = G(t,Pt,St)              (16) 

where t is time, Pt is pollution, and St is chronic illness or stress. 

From (10), (15), and (16), we have  

∂ TLt/ ∂Ht = Q(t,Wt, PMt, Pt, St)          (17). 

This equation is interpreted to mean that pollution, along with wages, medical 

care, and other variables would affect health and time lost due to illness. 

 

3.4  Empirical Model 

3.4.1  Poisson regression and statistical tests for Poisson model 

 An empirical model is formulated to test whether toxic chemical releases have a 

positive impact on number of lost work days.  We employ a Poisson regression model for 

count data to estimate discrete days of work lost, assuming number of lost work days, Y, 

follows a Poisson distribution with parameter λ 
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Equation (18) gives the probability an individual has n work loss days in a given period 

of time.  Both the expected value and variance of a Poisson distribution are equal to λ 

  E[y] = Var[y] = λ.          (19) 

The Poisson regression model can be formulated as a loglinear model 

  ln λ = αX + ελ           (20) 

where X is the vector of explanatory variables. 

 The Poisson model is a more restrictive version of the negative binomial in that λ 

= E[y] = Var[y]; it is thus necessary to test if the restrictions of the Poisson model hold.  

If the variance is greater than the mean, overdispersion exists and if the variance is 

smaller than the mean, underdispersion exists.  Thus, a number of tests for the equality of 

the mean and the variance must be conducted (Cameron and Trivedi 1998).  The first test 

is the likelihood ratio test based on Poisson and negative binomial regressions.  In the 

negative binomial distribution 

Var[y] = E[y] + k (E[y])2  

where k is a dispersion parameter; for the Poisson distribution Var[y] = E[y]  or k=0.  

The null hypothesis is H0 : k = 0 and the alternative hypothesis is Ha : k > 0.  The null 

hypothesis is rejected if the likelihood ratio statistic is greater than χ2 
(1-2α , 1 df) where α is 

the significance level. 

The second test for equality of the mean and the variance is the Wald test, which 

is conducted as a t test of dispersion parameter k using the one-sided test critical value of 

z1-α where α is the level of significance. 



3.4.2  Negative binomial 

If the tests for equality of the mean and variance in the Poisson model fail, the 

negative binomial model is used. The probability mass function with a negative binomial 

distribution takes the following form  
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where y is number of lost work days, y=0,1,2…, Γ is the gamma function, and p and k are 

parameters of the distribution. 

In investigating how toxic chemicals affect labor productivity, losses are 

measured by number of work days lost.  Based on the dataset created from the 2002 

NHIS, the work-loss days equation is thus specified as 

 ln λ = ζ0 + ζ1 H + ζ2 I + ζ3 T + ζ4 CO + ζ5 WE + εY         (22) 

where λ is expected value of work days lost, H is health status, I is a vector of 

individual’s characteristics, T represents total toxic chemical releases, WE is a vector of 

weather condition including average temperature and precipitation, and CO is a vector of 

characteristics of the county of residence. 

 

3.4.3  Sample selection bias 

The dependent variable in this analysis is number of work days lost for those 

people who had a job in the past 12 months.  Individuals with poor health might be 

systematically less likely to be employed; leading to potential selection bias in the model 
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due to censoring of the data.  Thus, a two-stage sample selection model developed by 

Heckman (1979) is used to control for selection bias. 

A probit model using all observations in the dataset is employed to estimate 

probability of working 

 W = ς0 + ς1 H + ς2 I + ς3 T + ς4 CO + ς5 WE + εw    (23) 

where W is a binary variable for working status, H is health status, I is a vector of 

individual characteristics, T represents total toxic chemical releases, CO is a vector of 

characteristics of the county of residence, WE is a vector of weather condition and ε is 

the error term.  A selection bias control variable, which is equivalent to the Inverse Mill's 

ratio, is calculated using the equation 
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where Θ and Φ are the probability density function and the cumulative distribution 

function, X is the vector of explanatory variables in the employment equation, and ω is 

the conformable parameter vector.  The inverse Mills ratio is then included as an 

additional explanatory variable in the main model to correct for selection bias between 

those working and those not working. 

 

3.4.4 Endogenous health status 

 Previous studies show that pollution is positively related to a number of diseases 

(Mills, et al. 1991; Ostro, et al. 1993; Ostro, et al. 1991; Pope-III 1991; Portney and 

Mullahy 1986; Samakovlis, et al. 2005), which would lead to health deterioration.  As a 
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result of reduced health input, labor productivity would drop; not only would number of 

days worked drop, actual on-the-job performance may suffer as well.  In the context of 

the effect of toxic chemical releases on productivity losses, health may be an endogenous 

variable.  It follows that in the health literature, health status is  hypothesized to be 

endogenous in a number of studies (Cai and Guyonne 2004; Dwyer and Mitchell 1999; 

Haveman, et al. 1994; Stern 1989).  While Dwyer and Mitchell (1999) reject the 

endogeneity of self-reported health measures, Stern (1989), Haveman et al. (1994), Cai  

and Guyonne (2004) find health status to be endogenous. 

We follow the literature and assume that health is an endogenous variable.  The 

generalized instrumental variable method is used to control for the endogeneity of health 

status.  First, health status is regressed against explanatory variables that affect health 

status and predicted values of health status are calculated from this regression.  Then, 

health status is replaced by the predicted values in the sample selection equation and 

work-loss equation.   

The instrument equation is written as 

  H* = β1X + εH           (25) 

where H* is an unobservable latent variable, and X is a vector of explanatory variables 

including demographic and economic characteristics of an individual.  The instrument 

equation of health status is estimated using a probit model. 
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3.5  Dependent and Independent Variables 

Two measures of self-reported health status that have been used in the health 

literature are dichotomous (Dwyer and Mitchell 1999; Haveman, et al. 1994) and a multi-

point scale of health status (Cai and Guyonne 2004; Lee 1982; Rivera 2001; Stern 1989).  

In this study, these two measures of health status are used to investigate how toxic 

chemical releases affect productivity loss.   

The 5-point scale measure is respondents’ self-reported health status, ranging 

from excellent, very good, good, fair and poor, and taken directly from the survey.  A 

dichotomous health status measure is then created from 5-point scale by including 

excellent and very good in a “good health” category and good, fair and poor in a “fair 

health” category.   

Determinants of self-reported health status include toxic chemical releases and 

other variables that affect employment status and work-loss days including demographic 

and socioeconomic variables; behavioral variables; employment conditions; and 

meteorological conditions.  We also include health-related conditions, health care access 

and utilization, and health insurance as explanatory variables of health status.  These 

variables are common in much of the literature modeling general health status (Cai and 

Guyonne 2004; Haveman, et al. 1994; Stern 1989). 

Employment is assumed to be a function of demographic and socioeconomic 

characteristics including gender, age, race, education, marital status, income and home 

ownership (Bradley, et al. 2002; Cai and Guyonne 2004; Stern 1989) as well as health 

status.  Annual mean precipitation and the annual minimum temperature are included as 

explanatory variables and differences in regions also are controlled using regional 
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dummies.  Other variables that may influence working status are toxic releases, behaviors 

such as drinking and smoking and living in an urban environment, controlled for by 

population density and a dummy for urban counties.  

Work loss is hypothesized to be affected by environmental pollution measured by 

total toxic chemical releases at the county level.  Ostro (1983, 1987 and 1989) found a 

positive relationship between air pollution and work loss and restricted activity days.  

Work loss is also assumed to be a function of general health status (Marmot, et al. 1995; 

Marmot, et al. 1993; North, et al. 1993).  It is expected that good health status has a 

negative effect on work loss. 

Biological variables such as gender, age, and race and of education and economic 

variables are believed to affect work loss.  Women are expected to miss more work days 

since their labor may be valued more highly at home, and are more often required to care 

for sick children (Machnes 1992; Ostro 1987).  People who are married or have children 

tend to miss more work days since they have to spend more time to take care of their 

family (Ostro 1987). People become less healthy as they age, so age is predicted to have a 

positive effect on work-loss days (Ostro 1987; Silver 1970).  More highly-educated 

people tend to lose fewer work days since they have greater job responsibility, and may 

also have higher paying jobs (Grossman 1972; Stratmann 1999).  High-income and wage 

rate are predicted to negatively impact lost work days since they represent higher 

opportunity costs (Meyer, et al. 1995; Ostro 1987).  Likely because of limited access to 

health care, African-American individuals experience higher morbidity than whites, so 

they are expected to take more sick days than white workers (Ostro 1987; Stratmann 

1999).   
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Other independent variables assumed to affect work days lost are behavior 

variables including lifestyle habits, work characteristics and meteorological conditions of 

the county of residence.  Lifestyle habits including smoking and drinking are linked to a 

number of diseases and injuries, which results in losses of work days (Centers for Disease 

Control and Prevention 1994; Parrish, et al. 1993; Robbins, et al. 2000; Smith, et al. 

1999; US Department of Health and Human Services 1982; 1983; 1984).  Employment 

characteristics are included to control for the differences in working environments of 

respondents, since in service industries, workers are exposed to lower risk levels, while 

manufacturing and agricultural industries are riskier.  Dummies for regions are also 

included since people in different regions have different culture, lifestyles, which may 

result in variations in health status and lost work days.  

 

3.6  Data 

3.6.1  Sources of data 

As previously mentioned, we use a unique dataset, combining individual data 

from NHIS with county level TRI data, National Climatic data, and Census 2000 data, to 

investigate the effects of toxic release exposure on work loss.  

The NHIS is conducted annually by the National Center for Health Statistics, 

Centers for Disease Control and Prevention (http://www.cdc.gov/nchs/nhis), and is the 

main source of health information for the American household population.  The primary 

data in the NHIS consists of a Basic Module which is divided into three components: 

Family Core, Sample Adult Core, and Sample Child Core.  The Family Core component 

collects information on household composition and socio-demographic characteristics, 

http://www.cdc.gov/nchs/nhis
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income and assets, health status and limitation of activity, injuries, and health care access 

and utilization and health insurance coverage for all family members.  One sample adult 

and one sample child are randomly selected in each sample family and their detailed 

information is included in Sample Adult Core and Sample Child Core components.  The 

Sample Adult component requires self-response to all questions and the Sample Child 

component requires response from a knowledgeable adult in the family.  The Sample 

Adult component covers subjects that are included in the Family Core, in which the 

questions are more specific and some additional subjects, including adult health 

behaviors and occupation and employment status.  Similarly, additional subjects are 

covered in the Sample Child Core component including child behavior and child 

immunization.  The interviewed sample size of 2002 NHIS was 36,161 households with 

93,386 persons in 36,831 families.  The Sample Adult component consisted of 31,044 

persons 18 years of age or older and the Sample Child component consisted of 12,524 

children under 18 years old.  The data used in this study are from the Sample Adult 

component of the 2002 NHIS including work loss, health status, demographic 

characteristics, economic status and education status.  

Total toxic chemical releases at county level are derived from the TRI, USEPA 

(http://www.rtknet.org).  Data for population density, urban county and population at 

county level are taken from Census 2000 Summary File 3, US Census Bureau, 

(http://www.census.gov/Press-Release/www/2002/sumfile3.html ).  Average temperature 

and precipitation data at the station level come from National Climatic Data Center, 

National Oceanic and Atmospheric Administration (http://www.ncdc.noaa.gov).  

http://www.rtknet.org/
http://www.census.gov/
http://www.ncdc.noaa.gov/


The individual-level NHIS data are then merged with county-level data from TRI, 

US Census 2000 and National Climatic Data Center using the county FIPS code.   

However, the public release of the NHIS dataset does not contain county codes because 

of confidentiality issues.  Hence, our county-level dataset of environmental and other 

variables was sent to the Research Data Center, National Center for Health Statistics, 

CDC to be merged with individual-level NHIS data by the Research Data Center5.  Data 

analysis conducted in this study is performed using remote access where SAS programs 

are submitted and outputs are received via email.  

 

3.6.2  Data description 

Working status is used as a dependent variable in the sample selection equation. 

Working status takes the value of 1 if response was ‘had job last week’ or ‘had no job last 

week but had job past 12 months’.  Data for this variable were taken from the responses 

to the question “Although you did not work last week, did you have a job or business at 

any time in the past 12 months”.  Data for work days lost is based on responses to the 

question “During the PAST 12 MONTHS, about how many days did you miss work at a 

job or business because of illness or injury (do not include maternity leave)?”.  Only 

those who had a job in the past 12 months were asked this question.  General health status 

is self-reported, based on the response to the question “Would you say your health in 

general is excellent, very good, good, fair, or poor?” where 5 represents excellent health 

and 1 represents poor health. 

 

 
5 We would like to thank Negasi Beyene at the National Center for Health Statistics, CDC for his help 
on merging data and providing access to the dataset using the remote access system 
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Demographic characteristic variables used are race, age, sex and marital status 

socio-economic variables are education and income.  Education attainment is represented 

by dummy variables where having a college degree is assigned a 1 and 0 otherwise.  

Income is a dummy variable taking a value of 1 if total combined family income was less 

than $45,000 and 0 otherwise. 

A dummy for alcohol drinking is created from the current alcohol drinking status, 

taking the value of 1 if the respondent had more than 3 drinks per week.  The current 

smoker dummy takes the value of 1 if the respondent currently smokes at least some 

days.  

Employment conditions and characteristics include number of hours worked, 

number of years worked, a dummy variable for paid sick leave (1 if having paid sick 

leave on the current or most recent job), a dummy hourly worker at the current or most 

recent job, and a dummy for respondents who work more than one concurrent job.  

Dummies are also included for the type of industries in which respondents are employed.  

These include dummies for employment in service, manufacturing and agricultural 

industries. 

Several health care access and utilization variables were used as determinants of 

health status, including the number of times the respondent had seen a doctor or other 

health care professional about his or her own health, number of emergency room visits, 

and if the respondent had a pneumonia shot during the past 12 months.  A dummy is 

created taking the value of 1 if the respondent did not have any health insurance coverage 

at the time of interview.   



Health-related conditions include existence of cancer, asthma and migraine, and 

body mass index.  Data for the existence of cancer is based on response to the question 

“Have you ever been told by a doctor or other health professional that you had cancer or 

a malignancy of any kind?”, existence of asthma is based on the question “Have you ever 

been told by a doctor or other health professional that you had asthma?” and existence of 

migraine is based on the question “During the past three months, did you have severe 

headache or migraine?”. 

Population density is the number of persons per square miles.  The dummy for 

urban county takes the value of 1 if the county belongs to a Metropolitan statistical 

containing a core urban area of 50,000 or more population.  The dummy for the  

Western region takes value of 1 if county of residence is in the Western region.  The 

same applies for dummies for the Northeast and the Midwest regions6. 

Total toxic chemical releases are the sum of air, water, and land releases at the 

county level.  Precipitation data are the annual average precipitation level per station.  If a 

county has missing data, we use data from the nearest station of another county, based on 

distance from the county’s centroid. 

Of the original 31,044 observations in the Sample Adult component, 25,552 

remain after eliminating data for item non-response.  The sub-sample that excludes those 

who did not have a job in the past 12 months contains 14,632 observations.  Table 3.1 

contains definitions and Table 3.2 contains descriptive statistics of all the variables used  

 

 

 

6 Western region: Washington, Oregon, California, Nevada, New Mexico, Arizona, Idaho, 
Utah, Colorado, Montana, Wyoming, Alaska, and Hawaii. Northeast region: Maine, Vermont, New 
Hampshire, Massachusetts, Connecticut, Rhode  Island, New York, New Jersey, and Pennsylvania. 
Midwest region: Ohio, Illinois, Indiana, Michigan, Wisconsin, Minnesota, Iowa, Missouri, North 
Dakota, South Dakota, Kansas, and Nebraska
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in this study.   The means of the two measures of health status of the sub-sample are 

statistically higher than those of the whole sample at the 1% level of significance.  The 

means for binary and 5-point scale health status for the whole sample are 3.74 and 0.61, 

respectively and for the sub-sample are 4.02 and 0.72, respectively.  Other variables 

which have significant differences at the 5% level between mean in the whole sample as 

compared to the sub-sample include DU, MALE, COLLEGE, MARRIED, INCOME45, 

DRINK and SMOKE.  The mean work loss days is 3.5 days per year and average total 

toxic chemical releases is 10 pounds per person in 2001 for the sub-sample.  Table 3.3 

presents the frequencies of the three main categorical variables.   
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Table 3.1  Variable description 

Variable Description 

NE =1 if living in the Northeast region, =0 otherwise 

WE =1 if living in the West region, =0 otherwise 

MW =1 if living in the Midwest region, =0 otherwise 

HEALTH5 General health status on a five-point scale (1=excellent, 5=poor) 

HEALTH2 Binary general health status (1=good, 0=fair) 

TOTREL Total toxic  releases in 2001 at county-level (10,000 pounds/person) 

DU =1 if county of residence is urban county, =0 otherwise 

DENSITY Thousand of persons/square mile 

PRECIP Annual mean precipitation (inch) 

LOWTEMP Lowest temperature (oF) 

MALE =1 if male, =0 otherwise 

AGE Years of age 

WHITE =1 If white, =0 otherwise 

COLLEGE =1 If has a college degree, , =0 otherwise 

MARRIED =1 If married, =0 otherwise 

INCOME45 =1 if  income < $45,000, =0 otherwise 

ASTHMA  =1 if having asthma, =0 otherwise 

CANCER =1 if having cancer, =0 otherwise 

MIGRAINE =1 if had severe migraine in past 3 months, =0 otherwise 

BMI Body Mass Index 

NOINSUR =1 if had no health insurance coverage, =0 otherwise 

EMER Number of times in a hospital emergency room 

DOCVISIT Number of times seeing a doctor 

PNEUSHOT =1 if ever had pneumonia shot,=0 otherwise 

HOME50 =1 if respondent's home built before 1950, =0 otherwise 

HOUSEOWN =1 if owning a house, =0 otherwise 

DRINK =1 if current moderate or heavy drinker, =0 otherwise 
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Table 3.1 (continued) 

Variable Description 

SMOKE = 1 if current smoker, =0 otherwise 

WORK =1 if had a job in past 12 months, =0 otherwise 

WORKLOSS Number of work-loss days 

SERVICE =1 if working in service industry, =0 otherwise 

MANUF =1 if working in manufacturing  industry, =0 otherwise 

AGRI =1 if working in agriculture, =0 otherwise 

ONEJOB =1 if having more than 1 job, =0 otherwise 

HOURWORK Number of hours worked in a week 

YEARONJOB Number of years on a current or recent job 

PAIDSICK =1 if had paid sick leave, =0 otherwise 

PAIDHOUR =1 if paid by hour, =0 otherwise 

EMP500 =1 if working in place > 500 employees, =0 otherwise 
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Table 3.2  Descriptive statistics  

The whole sample 
(N=25,552) 

Subsample (those 
working) (N=14,632) Variable 

Mean  Std dev  Mean  Std dev  

NE 0.1843 0.3878 0.1794 0.3837

WE 0.2058 0.4043 0.2068 0.4050

MW 0.2400 0.4271 0.2474 0.4315

HEALTH5 3.7405 1.0824 4.0167 0.9122

HEALTH2 0.6111 0.4875 0.7161 0.4509

TOTREL 0.0011 0.0041 0.0010 0.0039

DU 0.8350 0.3711 0.8504 0.3566

DENSITY 0.0221 0.0719 0.0214 0.0692

PRECIP 37.7165 17.4160 37.4308 17.2815

LOWTEMP 10.1479 13.5197 9.8939 13.6266

MALE 0.4435 0.4968 0.5004 0.5000

AGE 47.1817 17.7876 41.0985 12.6523

WHITE 0.7991 0.4007 0.8049 0.3962

COLLEGE 0.1623 0.3687 0.2027 0.4020

MARRIED 0.4930 0.5000 0.5224 0.4995

INCOME45 0.6500 0.4770 0.4678 0.4989

ASTHMA 0.1081 0.3106 0.1039 0.3052

CANCER 0.0770 0.2666 0.0430 0.2029

MIGRAINE 0.1527 0.3597 0.1515 0.3585

BMI 2.6976 0.5738 2.6988 0.5571

NOINSUR 0.1371 0.3440 0.1355 0.3423

EMER 0.3215 0.7752 0.2427 0.6263

DOCVISIT 2.6330 2.2690 2.2466 2.0636

PNEUSHOT 0.1787 0.3831 0.0863 0.2809

HOME50 0.3066 0.4611 0.2843 0.4511
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Table 3.2 (continued) 

The whole sample 
(N=25,552) 

Subsample (those 
working) (N=14,632) Variable 

Mean  Std dev  Mean  Std dev  

HOUSEOWN 0.6766 0.4678 0.6839 0.4649

DRINK 0.1918 0.3937 0.2272 0.4190

SMOKE 0.2258 0.4181 0.2412 0.4278

WORK 0.6951 0.4604 1 0

WORKLOSS 3.4950 12.2222

SERVICE 0.3952 0.4889

MANUF 0.1285 0.3347

AGRI 0.0210 0.1435

ONEJOB 0.0800 0.2713

HOURWORK 40.6040 12.8768

YEARONJOB 7.7776 8.5663

PAIDSICK 0.5947 0.4909

PAIDHOUR 0.5516 0.4973

EMP500 0.2129 0.4094
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Table 3.3  Frequencies of health status and working status 

Variable Frequency 

5-point scale health status  

    Excellent   7,493 

    Very good   8,123 

    Good   6,585 

    Fair   2,516 

    Poor     835 

Binary health status  

    Good 15,616 

    Fair   9,936 

Working status  

    Working 17,762 

    Not working   7,790 
 

3.7  Empirical Results 

 In this section, we present the empirical results of investigating how toxic 

chemical releases impact productivity losses.  The first section reports the results for the 

model using binary health status. 

 

3.7.1  Results using binary health status 

The estimated coefficients of variables in the working status equation with 

exogenous health status are presented in Table 3.4.  Respondents were more likely to 

work if they lived in the Midwest region or in areas experiencing lower minimum 
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temperatures.  Health status has a positive and significant association with the likelihood 

of working.  The healthier the respondent, the more likely they are to have held a job in 

the past 12 months.  The likelihood of working increased if respondents were male, 

young, had a college degree, or owned a house and decreased if family had an income 

less than $45,000 and were married.  To correct for selection bias, the inverse Mill ratio 

is calculated and included as an explanatory variable in the work loss equation (Heckman 

1979). 

Results for work-loss days using the Poisson model and overdispersion tests of 

Poisson regression are presented in the Appendix A.  Tests of overdispersion suggest the 

negative binomial is the appropriate model for days work lost (Appendix B). 

 Table 3.5 presents the parameter estimates from the negative binomial regression 

for the work loss model assuming binary health status is exogenous.  The estimated 

coefficient for the inverse Mills ratio was statistically significant.  General health status is 

significantly related to work days lost.  It is estimated that being in good health reduces 

the number of work-loss days by 2.92 days per year.  This result is consistent with other 

findings (Marmot, et al. 1995; Marmot, et al. 1993; North, et al. 1993). Levels of toxic 

chemical releases in county of residence are positively related to work days lost, which is 

similar to other studies (Ostro 1983; 1987; Ostro and Rothschild 1989).   An increase in 

toxic releases by 1 pound/person would raise lost work days by 6.2 per year. Respondents 

in the Northeast and Midwest regions lost more days at work than respondent in other 

regions.  An increase in population density of 100,000 persons/square mile decreases 

days on the job by 1.53 days.  Higher minimum temperatures are associated with more 

work days lost, suggesting these conditions promote more rapid spread of diseases like 
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colds and influenza.  Coefficients for all six biological and socioeconomic variables are 

negative and statistically significant except for the white dummy.  Women lost 0.88 more 

work days compared to men.  Interestingly, an additional year in age lowers number of 

days missing from work by 0.04.  Possible explanations for this finding are that the older 

workers rarely miss work because there is a possibility that they will be replaced by 

younger workers if they take days off and that they have more responsible jobs.  Married 

people and people with college degrees have fewer days lost.  Having family income less 

than $45,000 reduced number of days lost by 0.58.  This is likely because they do not 

have sick leave or no health insurance.  Behavior variables including smoking and 

drinking are both positively associated with number of days missed, with drinking 

contributing more to productivity loss by 0.35 days, in concurrence with other studies 

(Batenburg and Reinken 1990; Bush and Wooden 1995; Marmot, et al. 1993; North, et al. 

1993).  Working in a service industry decreased the work days missed by 0.58.  

Individuals who work for more years or work longer numbers of hours are also likely to 

miss fewer work days.  Having paid sick leave, being paid by the hour and working in a 

place with more than 500 others is associated with increased work days lost. 
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Table 3.4  Results for working status equation with exogenous binary health status 
(Dependent variable = working status) 
 

Variable Parameter Estimate Standard Error Chi-Square 

Intercept           2.3962**** 0.0635   37.73 

NEA -0.0260 0.0309   -0.84 

WE  -0.0560 0.0365   -1.53 

MW       0.0707** 0.0317     2.23 

HEALTH2         0.3455*** 0.0201   17.13 

TOTREL   0.3383 2.2464     0.15 

DU   0.0183 0.0268     0.68 

DENSITY   0.0163 0.1496     0.11 

PRECIP -0.0005 0.0007    -0.61 

LOWTEMP     -0.0022** 0.0009   -2.28 

MALE        0.4117*** 0.0202   20.34 

AGE       -0.0403*** 0.0006 -64.65 

WHITE              -0.0094 0.0248   -0.38 

COLLEGE        0.2503*** 0.0288     8.68 

MARRIED       -0.1200*** 0.0210   -5.70 

INCOME45       -0.5620*** 0.0233 -24.07 

DRINK        0.1219*** 0.0268             4.54 

SMOKE        0.1058*** 0.0241     4.38 

HOUSEOWN        0.2140*** 0.0239     8.95 
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 3.5  Negative binomial results for work loss with binary exogenous health 
(Dependent variable = work days lost) 
 

Variable Parameter  
Estimate 

Standard  
Error 

Chi-
Square 

Discrete change 
(1 unit) 

INTERCEPT   1.7140*** 0.1479  134.32  

NEA   0.2348*** 0.0584 16.18  0.8961 
WE       0.0887 0.0681   1.70  0.3212 
MW   0.1528*** 0.0585   6.83  0.5630 
HEALTH2 -0.7507*** 0.0506  219.74 -2.9187 
TOTREL 9.7839** 4.9265   3.94  62,626 
DU       0.0173 0.0537   0.10  0.0607 
DENSITY     -0.5670** 0.2866   3.91 -1.5274 
PRECIP     -0.0026* 0.0015   3.02 -0.0090 
LOWTEMP  0.0060*** 0.0019 10.37  0.0211 
MALE -0.2530*** 0.0501 25.55 -0.8836 
AGE -0.0109*** 0.0031 11.99 -0.0381 
WHITE     -0.0581 0.0476   1.49 -0.2084 
COLLEGE     -0.1129** 0.0519   4.73 -0.3836 
MARRIED     -0.0787** 0.0408   3.72 -0.2775 
INCOME45 -0.1623*** 0.0603   7.24 -0.5816 
DRINK 0.2595*** 0.0472 30.22  0.9866 
SMOKE 0.1735*** 0.0453 14.70  0.6371 
SERVICE -0.1677*** 0.0415 16.29 -0.5808 
MANUF       0.0193 0.0582   0.11  0.0686 
AGRI       0.0674 0.1318   0.26  0.4380 
ONEJOB       0.0516 0.0679   0.58  0.1862 
HOURWORK -0.0042*** 0.0015   7.61 -0.0147 
YEARONJOB  0.0087*** 0.0026 11.25  0.0308 
SDAYPAID  0.2841*** 0.0408 48.36  0.9741 
PBYHOUR  0.2241*** 0.0396 31.96  0.7726 
EMP500  0.1583*** 0.0468 11.45  0.5829 
INVERSE MILLS  1.6465*** 0.4549 13.10  

***, **, * Significant at the 1%, 5%, and 10% level, respectively. 



 67

The generalized instrumental variable method is used to estimate the working 

equation and the work loss equation, in order to account for the endogeneity of health 

status.  A Hausman specification test (Hausman 1978) is used to test for endogeneity of 

health status.  In this case, we conclude that health status is endogenous since the 

calculated statistic of 267.74 is greater than the critical value of 3.84 for a chi-square with 

1 degree of freedom.  However, it is necessary to test for the validity of any instrument 

used in instrumental variables estimation.  The Nelson and Startz (1990) test is used in 

this analysis.  The calculated Nelson and Startz statistic is 5,267, which is greater than 

critical value of 2.  We conclude that the instruments are relevant. 

 The instrumental variable probit results for working status using binary health 

status are reported in Table 3.6.  All of the coefficients that are statistically significant in 

the exogenous health model remain significant in the endogenous model and the Western 

dummy becomes significant as well.  Health status still has positive but even greater 

effect on employment status.  Coefficients for the other significant variables are slightly 

smaller in absolute values than those in the exogenous model.  This means that the effect 

of explanatory variables is overestimated in the case of exogenous health status. 
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Table 3.6  Results for working status equation with endogenous binary health status 
(Dependent variable = working status) 
 

Variable Parameter Estimate Standard Error Chi-Square 

INTERCEPT         2.1752*** 0.0681   1,019.55 

NEA -0.0258 0.0309   0.70 

WE     -0.0695** 0.0365   3.61 

MW        0.0764*** 0.0317   5.79 

HEALTH2IV        0.4111*** 0.0247      278.13 

TOTREL 0.7585 2.2357   0.12 

DU             -0.0028 0.0270   0.01 

DENSITY               0.0163 0.1495   0.01 

PRECIP             -0.0006 0.0008   0.52 

LOWTEMP  -0.0018* 0.0010   3.20 

MALE        0.4056*** 0.0202      402.35 

AGE      -0.0371*** 0.0007   2,880.79 

WHITE              -0.0365 0.0250   2.12 

COLLEGE        0.2267*** 0.0288 61.80 

MARRIED      -0.1307*** 0.0211 38.51 

INCOME45      -0.5094*** 0.0238      456.74 

DRINK       0.0916*** 0.0270 11.50 

SMOKE       0.1515*** 0.0247 37.68 

HOUSEOWN       0.2160*** 0.0239 81.65 
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
 

The instrumental variable estimation for the work days lost equation is presented 

in Table 3.7.  Comparing the results in Table 3.7 and Table 3.5, there are some significant 

differences in the estimated coefficients.  The coefficient for health status remains 

significant and of the expected negative sign but the magnitude of the effect of health 
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status on work loss increases in a nontrivial way: when endogeneity of health status is 

controlled for, the negative impact on work loss nearly doubles.  It is not surprising that 

the effect of health on work loss is understated in the case of exogenous health, which 

may result from measurement error on the health status variable.  The coefficient for 

toxic releases remains significant, but less so.  The coefficient for toxic chemical releases 

is smaller than that with exogenous health, but the marginal effect of toxic releases on 

work-loss days is greater.  The likely reason for the increase in the effect is that in the 

case of endogenous health, toxic chemicals have direct and indirect impacts on work days 

lost, and toxic releases negatively affect health, which in turn negatively affects work 

loss.  A 1 pound/person increase in toxic releases results in an increase of 8.7 days in 

work lost.  The coefficient for the urban county dummy becomes significant and has the 

expected positive sign.  Dummies for college, being married and smoking no longer have 

significant effects on work days lost.  Coefficients for age and dummies for male, income 

of less than $45,000 and drinking remain significant.  The effects of male and drinking 

dummies on work-loss days are almost the same but those for the age and income 

dummies triple.  The coefficients for dummy variables for working in the service 

industry, number of years on job, having paid sick leave, being paid by the hour and 

working in a place of more than 500 people all remain significant and consistent. 
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Table 3.7  Negative binomial results for work loss with binary endogenous health 
(Dependent variable = work days lost) 
 

Variable Parameter 
Estimate 

Standard 
Error 

Chi-
Square 

Discrete change  
(1 unit) 

INTERCEPT       2.7118*** 0.1540 310.10  

NEA       0.2117*** 0.0569   13.86  0.7938 
WE       0.0280 0.0681     0.17  0.0987 
MW       0.0942* 0.0575     2.69  0.3382 
HEALTH2IV     -1.4080*** 0.0579 592.01 -7.4041 
TOTREL       9.0982* 5.1710     3.10  87,489 
DU       0.1963*** 0.0529   13.80  0.6427 
DENSITY     -1.0167*** 0.2901   12.28 -2.2326 
PRECIP     -0.0036*** 0.0015     5.89 -0.0124 
LOWTEMP       0.0030* 0.0018    2.73  0.0105 
MALE     -0.2008*** 0.0487  16.98 -0.6947 
AGE     -0.0244*** 0.0029  69.78 -0.0842 
WHITE       0.1365*** 0.0470    8.43   0.4602 
COLLEGE       0.0020 0.0498    0.00   0.0071 
MARRIED      -0.0479 0.0404    1.40 -0.1675 
INCOME45      -0.4063*** 0.0565  51.75 -1.5049 
DRINK       0.3546*** 0.0460  59.35   1.3832 
SMOKE      -0.0195 0.0454   0.18 -0.0678 
SERVICE      -0.2248*** 0.0405  30.86 -0.7679 
MANUF      -0.0288 0.0569    0.26 -0.0995 
AGRI      -0.1679 0.1293    1.69 -0.5421 
ONEJOB      -0.0453 0.0664    0.46 -0.1553 
HOURWORK      -0.0044*** 0.0015    9.21 -0.0154 
YEARONJOB       0.0092*** 0.0026  12.86   0.0324 
PAIDSICK       0.2282*** 0.0399  32.71   0.7797 
PAIDHOUR       0.2282*** 0.0386  34.98   0.7798 
EMP500       0.1557*** 0.0454  11.73   0.5681 
INVERSE MILLS       2.0373*** 0.4230  23.20  

***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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3.7.2  Empirical results using a 5-point scale health status 

The probit regression results for working status using an exogenous 5-point scale 

health status are reported in Table 3.8.  The coefficients for the variables are consistent in 

terms of signs and magnitude when compared with the coefficients using binary health 

status.  Health status is significantly positively associated with working status. 

Testing for dispersion, it is obvious that the Poisson regression model is 

inadequate for lost work days since the calculated likelihood ratio is 127,552.  Therefore, 

the negative binomial is used to model number of work days lost.   

Table 3.9 shows the negative binomial regression results for work loss with an 

exogenous 5-point scale health status.  As expected, health status has a significantly 

negative effect on work loss.  Discrete changes in work days lost with a change in health 

status from one scale to another are not constant, increasing when health status gets 

worse.  For example, a change in health status from excellent to very good results in an 

increase of work loss by 1.12 days while a change in health from fair to poor results in an 

increase of work loss by 4.19 days (Table 3.10).  The coefficient for toxic releases is 

positive in sign and remains significant at the 10% level, suggesting pollution contributes 

to work days lost.  However, the effect of toxic releases on work loss is reduced.  An 

increase of toxic releases by 1 pound raises the number of work days lost by 1.63 

compared with 6.26 days with exogenous binary health status.  The rest of the 

coefficients have the same signs and levels of significance as using exogenous binary 

health status. 
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Table 3.8  Results for working status equation with exogenous 5-point scale health status 
(Dependent variable = working status) 
 

Variable Parameter Estimate Standard Error Chi-Square 

INTERCEPT          1.7652*** 0.0729   24.21 

NEA        -0.0370 0.0310   -1.19 

WE        -0.0627* 0.0367   -1.71 

MW          0.0626** 0.0318    1.96 

HEALTH5          0.2163*** 0.0094  22.94 

TOTREL          0.5754 2.2559    0.26 

DU          0.0084 0.0270    0.31 

DENSITY        -0.0011 0.1504   -0.01 

PRECIP        -0.0004 0.0007   -0.49 

LOWTEMP        -0.0023*** 0.0009   -2.35 

MALE          0.4184*** 0.0207   20.55 

AGE        -0.0390*** 0.0006 -62.03 

WHITE        -0.0250 0.0250   -1.00 

COLLEGE          0.2291*** 0.0289    7.92 

MARRIED        -0.1227*** 0.0211   -5.80 

INCOME45        -0.5445*** 0.0234 -23.21 

DRINK         0.1008*** 0.0269    3.74 

SMOKE         0.1309*** 0.0243    5.38 

HOUSEOWN         0.1952*** 0.0240    8.11 
 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
 

 

 

 

 



 73

Table 3.9  Negative binomial results for work loss with exogenous 5-point scale health 
(Dependent variable = work days lost) 
 

Variable Parameter 
Estimate 

Standard 
Error 

Chi-
Square 

Discrete change 
(1 unit) 

Intercept        2.9664*** 0.1765 282.60  

NEA        0.2276*** 0.0580   15.40  0.7992 
WE        0.0477 0.0674     0.50  0.1574 
MW        0.1329** 0.0583     5.21         0.4490 
HEALTH5      -0.4392*** 0.0265 274.44  
TOTREL        8.5263* 4.8518     3.09  16,256 
DU        0.0135 0.0534     0.06  0.0437 
DENSITY      -0.6697*** 0.2860     5.48 -1.5889 
PRECIP      -0.0034** 0.0015     5.36 -0.0110 
LOWTEMP        0.0068*** 0.0018   13.82  0.0223 
MALE      -0.2962*** 0.0507   34.12 -0.9528 
AGE      -0.0100*** 0.0031   10.24 -0.0324 
WHITE      -0.0381 0.0474     0.65 -0.1252 
COLLEGE      -0.1123** 0.0512     4.80 -0.3515 
MARRIED      -0.0658* 0.0405     2.64 -0.2139 
INCOME45      -0.1396*** 0.0592     5.56 -0.4610 
DRINK       0.2813*** 0.0466   36.44  0.9947 
SMOKE       0.1656*** 0.0454   13.34  0.5587 
SERVICE      -0.1673*** 0.0413   16.45 -0.5349 
MANUF      -0.0098 0.0578     0.03 -0.0319 
AGRI       0.0366 0.1311     0.08  0.1212 
ONEJOB       0.0534 0.0673     0.63  0.1778 
HOURWORK      -0.0029** 0.0015     3.67 -0.0094 
YEARONJOB       0.0083*** 0.0026   10.52  0.0271 
SDAYPAID       0.2760*** 0.0404   46.71  0.8725 
PBYHOUR       0.2077*** 0.0392   28.06  0.6625 
EMP500       0.1467*** 0.0464   10.00  0.4969 
INVERSE MILLS       1.2650*** 0.4595     7.58  

***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 3.10  Discrete change of work loss with exogenous 5-point scale health status  
 

Health status Change Discrete change in  
lost work days 

From excellent to very good 5 → 4 1.1230 

From very good to good 4→ 3 1.7423 

From good to fair 3 → 2 2.7032 

From fair to poor 2→ 1 4.1939 
 

Table 3.11 presents probit regression results for working status using an 

endogenous 5-point scale health status, and the results are similar to those using the 

exogenous 5-point scale health status presented in Table 3.8 and to the results using 

binary health status in Table 3.6. 

Table 3.12 and table 3.13 report the negative binomial regression results for work 

days lost when health status is endogenous.  Compared to the work loss estimate with the 

HEALTH5 model in Table 3.7, coefficients for health status both have negative and 

statistically significant effect on work loss but the magnitude of the effect is quite 

different.  The effect of health status on work loss is much stronger in the endogenous 

model than in the exogenous model.  Moving from excellent health status to very good 

health status raises number of work days lost by 2.30 while raising work days lost only 

1.12 days with exogenous health.  Discrete changes in work loss when moving from one 

health status to another increase with endogenous health status.  The change in work days 

lost resulting from a change in health status from excellent to very good is 2.30 days 

while from fair to poor is 15.46 days.  The coefficient for toxic releases is insignificant in 

the endogenous health model while it is significant at the 10% level in the exogenous 
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model.  The dummy for urban county becomes significant in the case of endogenous 

health.   Lowest minimum temperature no longer has an effect on work days lost. The 

coefficient for dummy for white respondent becomes significantly positive with 

endogenous HEALTH5.   

 There are some similarities and differences when comparing estimated 

coefficients for explanatory variables in endogenous HEALTH2 with endogenous 

HEALTH5 model.  Regardless of the way health status is measured, it has a significant 

and negative effect on work-loss.  The significant coefficient for total releases in the 

endogenous HEALTH2 becomes insignificant in the endogenous HEALTH5 model.  The 

dummies for urban county, white, male and income less than $45,000, age, drinking, 

population density and precipitation all have significant effects on work-loss in both 

models and the magnitude of those effects are consistent.  The dummies for college and 

smoking become significant in the endogenous HEALTH5 model.  The coefficients for 

other variables of employment status including the dummies for working in the service 

industry, having sick days paid, being paid by the hour, working place of more than 500 

people, number of hour worked and years on the job remain significant and are consistent 

in terms of signs and absolute values in the endogenous HEALTH5 model. 
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Table 3.11  Results for working status with endogenous 5-point scale health status 
(Dependent variable = working status) 
 

Variable Parameter Estimate Standard Error Chi-Square 

Intercept        1.7089*** 0.1032      274.41 

NEA -0.0368 0.0308  1.42 

WE   -0.0625* 0.0365  2.94 

MW      0.0654** 0.0317  4.26 

HEALTH5IV        0.2100*** 0.0182      133.71 

TOTREL  0.4560 2.2313  0.04 

DU  0.0084 0.0269  0.10 

DENSITY  0.0204 0.1491  0.02 

PRECIP -0.0004 0.0008  0.25 

LOWTEMP       -0.0023*** 0.0010  5.71 

MALE        0.4079*** 0.0202      409.30 

AGE      -0.0382*** 0.0007   2,830.52 

WHITE -0.0311 0.0251   1.54 

COLLEGE        0.2230*** 0.0293 58.09 

MARRIED      -0.1273*** 0.0210 36.74 

INCOME45      -0.5275*** 0.0240      483.10 

DRINK       0.1040*** 0.0271 14.73 

SMOKE       0.1366*** 0.0248 30.21 

HOUSEOWN       0.2202*** 0.0239 85.24 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 3.12  Negative binomial results for work loss with endogenous 5-point scale health 
(Dependent variable = work days lost) 
 

Variable Parameter 
Estimate 

Standard 
Error 

Chi-
Square 

Discrete change 
(1 unit) 

INTERCEPT       7.0100*** 0.2250 970.51  

NEA       0.3213*** 0.0560  32.92  1.2593 
WE       0.1584*** 0.0660    5.75  0.5839 
MW       0.0884 0.0564    2.45  0.3190 
HEALTH5IV     -1.2778*** 0.0388 1,083.11  
TOTREL       5.9586 4.6515    1.64  5,5339 
DU       0.2425*** 0.0518  21.92  0.7873 
DENSITY      -0.9517*** 0.2850  11.15 -2.1608 
PRECIP      -0.0024* 0.0014     2.71 -0.0082 
LOWTEMP       0.0025 0.0018     2.03  0.0089 
MALE      -0.3524*** 0.0476   54.72 -1.2165 
AGE      -0.0291*** 0.0030   95.92 -0.1009 
WHITE        0.2381*** 0.0463   26.41  0.7888 
COLLEGE        0.1970*** 0.0504   15.29  0.7449 
MARRIED      -0.0157 0.0394    0.16 -0.0551 
INCOME45      -0.4618*** 0.0571  65.32 -1.7340 
DRINK        0.4317*** 0.0455  90.09  1.7455 
SMOKE      -0.2495*** 0.0454  30.20 -0.8397 
SERVICE      -0.1905*** 0.0397  23.00 -0.6569 
MANUF        0.0643 0.0557    1.33  0.2318 
AGRI      -0.0507 0.1260    0.16 -0.1742 
ONEJOB      -0.0080 0.0651    0.01 -0.0279 
HOURWORK      -0.0047*** 0.0015  10.53 -0.0165 
YEARONJOB        0.0082*** 0.0025  10.62  0.0289 
SDAYPAID        0.2491*** 0.0391  40.65  0.8534 
PBYHOUR        0.2023*** 0.0380  28.40  0.6973 
EMP500        0.1691*** 0.0447  14.31  0.6226 
INVERSE MILLS        0.6273 0.4281    2.15  

***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 3.13  Discrete change of work loss with endogenous 5-point scale health status 
 

Health status Change Discrete change in 
lost work days 

From excellent to very good 5 → 4   2.3037 

From very good to good 4→ 3   5.2671 

From good to fair 3 → 2  9.6674 

From fair to poor 2→ 1          15.4644 
  

3.7  Conclusion 

Although the Toxics Release Inventory program has been in operation since 1988, 

the Toxics Release Inventory data have not been widely used in health literature.  This 

paper tries to take advantage of this rich dataset by investigating how air, water and land 

pollution all together impact productivity losses measured by work days lost using a 

unique dataset merging individual-level NHIS data and county-level Toxic Releases 

Inventory data. 

A simultaneous equation model using a negative binomial regression for work 

days lost is built taking into account the endogeneity of health status.  Instrumental 

variable estimation is used to estimate parameters of the model.  This study also 

compares the effect of health status on work days lost using two different measures of 

self-reported health status: a binary and a 5-point scale.  The results show that health 

status is negatively associated with work days lost, regardless of how health status is 

measured.  The magnitude of the effect of health status on productivity loss increases 

when health status is endogenous.   The estimations also indicate that air, water and land 

pollution have positive and significant impacts on work days lost with both exogenous 
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and endogenous binary health status.  Although the absolute value of the coefficient for 

toxic releases is reduced when binary health status is endogenous, the discrete change in 

work days lost from 1 pound reduction in toxic chemical releases increases.  A 1 pound 

increase in toxic releases leads to an increase in work-loss by 6.26 days with exogenous 

binary health status and 8.75 days with endogenous binary health status.  The coefficient 

for toxic releases is not significant in the case of endogenous 5-point scale status.  The 

findings confirm that it is important to control for selection sample bias in the case of a 

censored sample. 

As research on the effects of toxic chemicals on labor productivity has not 

received much attention, this paper may be useful for policy-makers.  These results 

provide information on how industrial pollution including air, water and land pollution 

together impact individual productivity losses.  The estimates of this study may be used 

for cost-benefit analysis for reducing industrial pollution.  Benefits of pollution reduction 

would be increased significantly when taking into the account that toxic chemicals 

significantly increase productivity losses.  It would help policy-makers decide what level 

of toxic chemical releases from industries is appropriate. 

However, it is important to conduct future research at a sub-county level in order 

to better understand the impact of toxic chemical releases on health and productivity.  

Since air pollution is easily dispersed in the air, it is expected that the effect of toxic 

releases on work loss will be greater at the lower levels of aggregation.  Future research 

should also be detected toward identifying which toxic chemicals contribute the most to 

work days lost, thus helping decision-makers to more efficiently target reductions of 

those chemicals. 
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IV. EFFECTS OF MULTIPLE ENVIRONMENTAL HAZARDS ON HEALTH AND 

LABOR PRODUCTIVITY IN CALHOUN COUNTY, ALABAMA 

 

4.1  Introduction 

Unique environmental characteristics have brought the City of Anniston into the 

spotlight in recent years.  It is home to Anniston Army Depot and the Anniston Chemical 

Agent Disposal Facility, and is highly contaminated with polychlorinated biphenyls 

(PCBs) and lead, which resulted in several high-profile lawsuits.  Furthermore, Anniston 

is located in a county that was ranked among the worst 30% of all counties in the United 

States in terms of total environmental releases, the worst 20% in terms of cancer risk and 

the worst 10% in terms of noncancer risk in 2002 (Scorecard 2006). 

 Anniston is located in Calhoun County, Alabama, about 90 miles west of Atlanta, 

Georgia and 65 miles east of Birmingham, Alabama.  The city has a population of 24,000 

with 49% African America and 48% white.  The per capita income for the city in 2005 

was about $18,800 and 23% of the population were below the poverty line.  The city was 

founded in 1872 as a private enterprise when Samuel Noble and General Daniel Tyler 

formed the Woodstock Iron Company.  Historically, Anniston was an industrialized 

manufacturing town where at least 23 major industrial facilities operated over the past 

one hundred years. 
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 The purpose of this study is to analyze the relationship among environmental 

hazards, health status, and labor productivity in Calhoun County.  Environmental hazards 

are represented by PCBs and lead contamination and the Depot.  The theoretical 

framework from the previous essay is employed, in which labor productivity losses are 

measured by numbers of sick days, restricted activity days and lost work days and they 

are hypothesized to be adversely affected by environmental hazards.  A direct mail 

survey was conducted to obtain data on individual characteristics, health status and 

productivity losses.  Maximum likelihood estimation is employed to estimate a 

simultaneous system of equations. 

 

4.2 PCBs Contamination and the Monsanto Anniston Plant 

4.2.1 Background information 

In 1929, PCBs were first produced by the Theodore Swann Company in Anniston.  

In 1935, the Swann Anniston PCB plant was purchased by the Monsanto Corporation.  In 

1971, the Monsanto Anniston plant stopped producing PCBs.  In 1979, due to concerns 

about the environmental and health impacts of PCBs, the United States government 

banned the production of PCBs by the U.S. Environmental Protection Agency regulations 

under the Toxic Substances Control Act.  In 1997, the Anniston plant under the name 

Solutia was spun off from Monsanto.  Para-nitrophenol and polyphenyl compounds are 

now manufactured at the site (ATSDR 2000b).  Solutia filed for bankruptcy in 2003.  

 

 



 

Figure 4.1: Map of the study area 

 

The Solutia plant covers 70 acres located one mile west of downtown Anniston on 

State Highway 202 in Calhoun County, Alabama.  The plant is bordered on the south by 

Highway 202, on the east by the Clydesdale Avenue extension, on the west by First 

Avenue, and on the north by the Norfolk Southern and Erie Railroads.  The area north of 

the plant is surrounded by residential, commercial, and industrial properties.  Residential 

properties are also located east and west of the plant. 

During four decades of PCBs production at the Anniston Solutia plant, millions of 

pounds of PCB-containing waste may have been released into the environment through 

various pathways.  These pathways include direct discharges to ditches, streams and other 

waterways, air emissions, dumping of PCB wastes into sewers, and the release of PCB 

wastes into unlined landfill sites.  According to the company's July 1970 progress report, 
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about 16 pounds of PCB waste were dumped daily into the town's waterways, while the 

year before, the company had been dumping about 250 pounds a day (Beiles 2000).  The 

West End Landfill and the South Landfill located adjacent to the plant are the two 

unlined landfills where hazardous wastes from the Monsanto facility were disposed of 

(ATSDR 2000b).  The West End Landfill comprises an area of six acres situated on the 

southwest side of the facility, north of Highway 202.  The landfill was used for disposal 

of all wastes from the facility from the mid-1930s to 1961.  In November 1961, the West 

End Landfill was closed and traded to the Alabama Power Company. With the closure of 

the West End Landfill, Monsanto began disposing of wastes at the South Landfill.  The 

South Landfill was located southeast of the Monsanto facility, south of Highway 202, 

sitting on the lower northeast slope of Coldwater Mountain.  The South Landfill was 

divided into 10 individual cells, each intended to hold a specific type of waste (ATSDR 

2000b).  Operations at the South Landfill ceased in 1988.  

USEPA reported that PCBs migrated away from the Solutia facility during 

precipitation events as surface water flowed through areas containing PCBs during 

precipitation events and into various drainage ditches leading to Snow Creek, which 

flows north of the Solutia facility and through residential and business areas before 

emptying into Choccolocco Creek (EPA 2003).  PCBs were also disseminated into the 

Anniston area through wind-blown dust, open burning and volatilization into the air.   

 

4.2.2  Lawsuits 

In Summer 1993, Anniston residents got their first glimpse of PCBs and 

Monsanto’s involvement (Beiles 2000).  Largemouth bass with blistered scales were 
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discovered in the nearby Choccolocco Creek and tests showed that the fish contained 

extremely high levels of PCBs.  In November 1993, the Alabama Department of Public 

Heath issued a fish consumption advisory warning residents not to eat fish caught 

between the confluence of Snow Creek and Choccolocco Creek south of Oxford, 

downstream to where Choccolocco Creek flows into Lake Logan Martin (ADPH 2001).  

Around the same time, Alabama Power Company broke ground on land that previously 

belonged to Monsanto, breaching a PCB landfill that bled black tar (Beiles 2000).   

Since the discovery of PCB contamination in Anniston, there have been a number 

of lawsuits filed against Monsanto by Anniston residents.  In 1996, the Mars Hill 

Missionary Baptist Church, which was located across the street from Soluttia, filed a 

lawsuit against Monsanto over PCBs contamination.  This case was settled in 1998 for 

$2.5 million.  In 1996, the Owens v. Monsanto class action suit of 1,596 plaintiffs was 

filed over PCB contamination and was settled in April 2001 for $43 million.  Also in 

1996, Abernathy v. Monsanto was filed in Alabama state court on behalf of 3,500 

plaintiffs in Anniston who have high levels of PCBs in their blood and on their 

properties, alleging that the company knew the hazards of introducing PCBs into the 

environment, failed to inform the community and tried to conceal what it had done 

(Beiles 2000).  In 2001, more than 17,000 Anniston residents filed the Tolbert v. 

Monsanto suit against Monsanto in federal court over property and health damages 

associated with PCB contamination.  In August 2003, lawyers for more than 20,000 

plaintiffs in both the Abernathy v. Monsanto and Tolbert v. Monsanto cases and Solutia 

agreed to a $700 million settlement to resolve all outstanding Anniston PCB litigation 

(Centers 2003).  The $700 million would include costs for cleanup, prescription drugs 
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and $600 million in cash payments, of which Monsanto will provide $390 million in cash 

and $160 million in commercial insurance and Solutia will pay $50 million over 10 years.  

The $600 million was split between the two cases, with $350 million for 17,000 plaintiffs 

in the federal court case and $350 million for 3,500 plaintiffs in the state court case. 

 

4.2.3 Responses from authorities 

Several studies have been conducted by government agencies in response to the 

discovery of PCB contamination in Anniston.  In 1996, the Alabama Department of 

Public Health studied the potential health effects of PCBs contamination and concluded 

that exposure to soil and sediment in the West End Landfill, Snow Creek and 

Choccolocco Creek presents a public health hazard (ADPH 1996b).  Also in 1996, the 

Alabama Department of Public Health conducted an Exposure Investigation for the 

Cobbtown/Sweet Valley Community (ADPH 1996a).  This is a neighborhood in West 

Anniston near the Solutia plant, where most houses have been purchased and demolished 

by Solutia.  The Exposure Investigation found that PCB levels were elevated and 

concluded that PCB levels in soil, sediment, indoor dust and surface water in this 

neighborhood presented a public health hazard.  

In February 2000, the Agency for Toxic Substances and Disease Registry 

(ATSDR) conducted an investigation on whether PCBs in soil, blood, and air in the area 

of Solutia are a threat to public health (ATSDR 2000b).  The investigation has detected 

elevated blood PCB levels in many residents living around the Solutia plant as well as 

high PCB levels in soil in West Anniston.  ATSDR concludes that soil concentrations of 
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PCBs in some areas of Anniston are high enough to present a public hazard in the form of 

cancer and non-cancer health impacts.   

In October 2000 Solutia entered into an Administrative Order on Consent for a 

removal action at the Anniston PCB site (EPA 2006a).  The purpose of the removal 

action is to reduce the short-term threat to public health and the environment caused by 

PCBs in the area around the Solutia facility and part of Oxford where they were 

contaminated with PCBs.  The removal action includes sampling properties in these areas 

and cleanup for residential properties with PCBs level of 10 part per million (ppm) (EPA 

2003).  The cleanup includes the removal of the top three inches of soil from the 

impacted area.  Additional composite sampling and removal of soils in these areas will 

continue until remaining soils within the next 9 inches of soil have PCB levels below 2 

ppm.  Soils in these areas below a depth of 12 inches will be removed until the PCBs 

level based on composite sampling is below 10 ppm (EPA 2001).   

 

4.3  Lead Contamination  

USEPA has determined that “the Anniston Lead Site consists of the entire 

geographic area in Anniston and its environs where lead has come to be located” 

(USEPA 2005).  Lead contamination in Anniston was discovered in 2000, when USEPA 

conducted tests for PCBs.  USEPA believes that lead has been released into Anniston’s 

environment through a number of pathways, including urban activities such as lead paint 

and leaded gasoline and through the operations of various private enterprises in the 

Anniston area, and it is also been found to be naturally occurring.  For the last source of 

lead contamination, EPA's investigation indicated that lead had been released into the 
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environment through air emissions, use of foundry sand as residential fill material, and 

through surface water runoff.    

 The USEPA responded to the lead contamination problem in the Anniston area in 

2000, and cleanup activities began in April 2002 (USEPA 2006c).  The USEPA has set 

400ppm of lead as the cutoff level for cleanup for the Anniston area.  Any house with 

lead level greater than 400ppm is subject for cleanup.  USEPA has cleaned up 133 

properties with elevated lead and 209 properties are waiting for cleanup. 

 

4.4  The Anniston Army Depot 

The Anniston Army Depot (ANAD), built in 1941 as an ammunition storage 

depot, covers an area of 15,200 acres in Calhoun County, and is located about 8 miles 

west of the city of Anniston.  Currently, activities at the Depot include rebuilding and 

maintaining equipment such as tanks, missiles, and small arms.  

 

4.4.1 Anniston Chemical Agent Disposal Facility 

The ANAD is one of the eight Army Depots in the U.S. and has stored chemical 

weapons in on-site bunkers since 1961.  Currently, the ANAD stores approximately 

2,254 tons or 7.4 percent of the original U.S. stockpile of chemical weapons including 

projectiles, cartridges, rockets, ton containers and land mines containing the nerve agents 

GB (known as sarin) and VX, and blistering agents HD and HT (know as mustard gas). 

In 1993, the United States was one of 120 countries that signed an international 

treaty called the Chemical Weapons Convention.  The treaty required signatories to 
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destroy their chemical weapons stockpiles by April 2007, with the possibility of a 5-year 

extension. 

In 1996, the U.S Army contracted with Westinghouse Anniston to build, test, 

operate and close a facility to dispose of the ANAD stockpile.  Facility construction was 

completed in 2001, and the Army began disposing of the chemical weapons at the 

Anniston Chemical Agent Disposal Facility (ANCDF) in August 2003.  The facility 

operates 24 hours a day, 7 days a week and will be closed once all the chemical weapons 

have been destroyed. ANCDF uses high-temperature incineration technology to destroy 

the weapons.  

 Release of a chemical agent may affect different areas in different ways and at 

different times.  The likelihood of being exposed to a chemical agent from a release 

decreases as the distance from the point of release increases.  The extent of exposure also 

decreases with distance as the concentration of the agent becomes lower.  Therefore, 

zones have been established to differentiate appropriate levels of response to a potential 

accidental chemical release.  The zones are 

• Immediate response zone (pink zone): 6 miles from ANCDF 

• Protective action zone (orange zone): 9 miles from ANCDF 

• Precaution zone (yellow zone): 20-30 miles from ANCDF. 

Approximately 116,000 residents of Calhoun County are impacted to varying 

degrees.  The map and table below describe the affected areas and the population 

distribution among the affected zones in Calhoun County. 

 
 



Table 4.1  Affected population by risk zones for Calhoun County, Alabama 
 

Zone Distance from ANAD (miles) Number of Residents % of 
residents 

Pink Zone 6   35, 000   30.17  

Orange Zone 9   40, 000   34.48  

Yellow Zone 20-30   41, 000   35.35 

TOTAL  116,000 100.00 
 

Figure 4.2  Map of the risk zones of Calhoun County 

 

            Source: Alabama Emergency Management Agency 

4.4.2  The Superfund site and TRI facility 

The Anniston Army Deport was listed as a Superfund site in the final National 

Priority List Past in 1989 (EPA 2006d).  Past activities at the Depot included vapor 

degreasing, metal cleaning, sandblasting, electroplating, and painting operations.  The 
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Depot generated a significant amount of solid and liquid wastes including metals, 

cyanide, phenols, pesticides, herbicides, chlorinated hydrocarbons, petroleum 

hydrocarbons, solvents, acids, chelating agents, asbestos, and creosote, that were 

disposed of in trenches, lagoons, landfills, or other holding vessels from the 1940s 

through the late 1970s.  Soil and groundwater in the area were contaminated as a result of 

the on-site disposal of wastes. 

The Depot was ranked among the dirtiest 10% of all facilities in the US in terms 

of total environmental releases, cancer risk and non-cancer risk in 2002 (Scorecard 2006).  

In 2003 the Deport released into the environment 451,581 pounds of TRI chemicals. 

 

4.5  Health Risks and Effects 

4.5.1  PCBs 

PCBs are mixtures of up to 209 individual chlorinated compounds (ATSDR 

1999).  There are no known natural sources of PCBs in the environment.  PCBs are either 

oily liquids or solids and are colorless to light yellow, having no smell or taste.  Due to 

their non-flammability, chemical stability, high boiling point and electrical insulating 

properties, PCBs were used widely as coolants and lubricants in transformers, capacitors, 

and other electrical equipment. 

 Upon entering the environment, PCBs may remain for a long period of time. They 

can easily cycle between soil, water, and air since they can evaporate from both soil and 

water.  In the atmosphere, PCBs are present as solid particles or as a vapor. 

 PCBs are classified as probable human carcinogens by the USEPA and the 

International Agency for Research on Cancer (IARC) (ATSDR 1999; 2000a; IARC 1978; 
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1987; NCI 1978).  Other studies link PCB exposure with health effects, including 

neurotoxicity,adverse reproductive and developmental effects, immune system 

suppression, liver damage, skin irritation, and endocrine disruption (ATSDR 1999; EPA 

2006b; Gladen and Rogan 1991; Hagamar, et al. 1995; Jacobson, et al. 1990; Jacobson, et 

al. 1985; Taylor, et al. 1984; Taylor, et al. 1989; Tryphonas 1995).  

The USEPA Office of Pollution Prevention and Toxics has created the TRI 

Chronic Human Health Indicators called toxicity weights in order to compare the 

relationship between various chemicals and chronic human health effects including 

cancer and non-cancer effects (Bouwes and Hassur 1997).  Two toxicity weights are 

calculated for most TRI chemicals based on exposure pathway: oral toxicity weight and 

inhalation toxicity weight.  PCB was assigned an oral toxicity weight of 100,000 and an 

inhalation toxicity weight of 1,000.  It should be noted that the higher the weight, the 

more toxic the chemical. 

 

4.5.2 Lead 

Lead is described as “a heavy and low melting metal that occurs naturally” 

(ATSDR 2005).  However, it is rarely found naturally as a metal but usually found 

combined with two or more other elements to form lead compounds.  

Lead is a toxic element, which can cause a variety of adverse health effects 

ranging from reproductive or developmental effects to acute and chronic effects (EPA 

2000).  Reproductive or developmental effects include high likelihood of spontaneous 

abortion in pregnant women, increased risk of preterm delivery, low birth-weight, and 

impaired mental development (ATSDR 1992; 1997; DHHS 1993).  Acute effects include 
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death from lead poisoning, brain and kidney damage and gastrointestinal symptoms 

(ATSDR, 1992, 1997).  Chronic effects include anemia, neurological symptoms and 

slowed conduction in peripheral nerves (ATSDR, 1992, 1997).   

 Lead has been assigned a toxicity weight of 100,000 for both inhalation and oral 

exposure pathways (Bouwes and Hassur 1997). 

 

4.5.3  The chemical weapons 

The chemical weapons in ANAD include GB and VX agents and mustard.  When 

released into the air, GB and VX are broken down but persist for a few days.  These 

agents tend to break down quickly in water and moist soil, but small amounts may 

evaporate or travel below the soil surface and contaminate groundwater (ATSDR 2002a).  

GB and VX are rapidly acting, lethal nerve agents which are extremely toxic chemical 

agents.  Health effects of GB and VX include rhinorrhea and chest tightness, pinpoint 

pupils, shortness of breath, excessive salivation and sweating, nausea, vomiting, 

abdominal cramps, involuntary defecation and urination, muscle twitching, confusion, 

seizures, flaccid paralysis, coma, respiratory failure, and death.   

HT and HD agents or mustard agents are not readily water soluble, but dissolve 

easily in oils, fats, and other solvents (ATSDR 2002b).  Mustard agents can cause skin 

burns and blisters and damage to the respiratory airways. 

 

4.5.4  TRI chemicals 

 TRI chemicals released by the Depot include very toxic chemicals such as lead 

compounds, chromium compounds, hexachloroethane, tetrachloroethylene and 
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dichloromethane.  A number of health effects including acute and chronic effects, 

reproductive and developmental effects and cancer are caused by these chemicals 

(ATSDR 1997; EPA 2007a; 2007b).  

 

4.6  Data 

4.6.1  Sources of data 

Data for this analysis come from a number of sources.  A direct mail survey 

provides data on perceived risks, health status, labor productivity and demographic and 

socioeconomic characteristics.  Housing characteristics were taken from the Calhoun 

County Property Tax System, Calhoun County Administrative Offices.  Toxic chemical 

releases at census block level and socioeconomic characteristics of block group are 

obtained from Toxic Release Inventory, USEPA (http://www.rtknet.org) and Census 

2000, US Census Bureau (http://www.census.gov), respectively.  Data on PCBs and lead 

levels in Anniston come from the regional EPA office in Anniston. 

 

4.6.2  The survey 

 The survey instrument was developed and the targeted population determined 

after a research trip to Anniston in 2005 during which we met and discussed with citizen 

groups, county officers, newspaper reporters and Army personnel overseeing the 

incinerators.  A mail survey entitled the 2006 Anniston Environmental Risk Survey was 

conducted to obtain the perceived risks from the incinerator and PCBs, health status, and 

labor productivity losses from residents in Calhoun County.  The survey also obtained 

http://www.rtknet.org/
http://www.census.gov/
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demographic and lifestyle data to control for confounding factors in order to isolate 

health and environmental effects on labor productivity.  

 Questions on health status and labor productivity losses were adapted from the 

National Health Interview Survey, Center for Disease Control and Prevention.  Residents 

were asked about their general health status, and several diseases that may be linked with 

PCBs such as cancer, bronchitis and migraine.  Labor productivity loss questions 

included how many hours a week residents work at their job, the number of days lost due 

to illness and injury, and the number of restricted activity days. 

 A cover letter accompanied the questionnaire stating the purpose of the survey 

and providing contact information to the respondents.  The questionnaire and the cover 

letter were reviewed and approved by the Auburn Office of Human Subjects before being 

sent to Calhoun County residents.  The cover letter and questionnaire are provided in 

Appendix C. 

 Although not the focus of this study, one of the purposes of the survey is to 

investigate if risk perceptions affect house prices in Calhoun County.  Thus, the target 

population for the survey was individuals who purchased housed between 1993 and 2005 

in Calhoun County.  A total of 4,719 transactions that took place between 1993 and 2005 

with complete addresses were taken from transactions records of the Calhoun County 

Property Tax System.  A probability design to select addresses was used with stratified 

sampling by zone where each zone has a different sampling rate.  The Pink Zone, which 

is the closest to the incinerator and contains the PCBs contaminated sites, was sampled at 

the highest rate.  The Orange Zone, located 7-9 miles away from the incinerator, was 

sampled at the second highest rate and the Yellow Zone was sampled at the lowest rate.  



A final sample of 3,492 house owners from 4,719 addresses were randomly selected 

using Excel.  A map of the distribution of survey recipients is presented in Figure 4.3.   

 Questionnaires were first mailed to 3,492 residents in Calhoun County on January 

20, 2006 using bulk rate mailing service.  There were 480 responses or 13.7 percent 

within four weeks of the first mailing.  On February 17, 2006, a total of 1,939 reminder 

postcards were randomly sent to residents those who did not respond.  Subsequently, a 

second set of 1,550 questionnaires was mailed randomly to selected nonrespondents on 

March 18 and March 28.  There were a total of 738 usable responses yielding a raw 

response rate of 21%.  However, it should be noted that because surveys were mailed via 

bulk rate, there was no way to track bad addresses; thus the true response rate is likely 

higher. 

  

Figure 4.3  Map of survey recipients 
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Figure 4.4  Map of the survey responses 

 

4.6.3 Data 

Demographic and economic characteristics of survey respondents are reported in 

Table 4.2.  Almost two third of respondents are aged between 35 and 65 and about 85 

percent are white.  Respondents are divided rather evenly between male and female.  

Around 40 percent of respondents have college, professional and graduate degrees and 70 

percent have family annual income of $40,000 or more. 
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Table 4.2  Demographic characteristics of survey respondents (N=738) 

 Variable Number Percentage 

Age   
   20-34 107 15 
   35-49 244 33 
   50-64 240 32 
   Over 65 147 20 
Gender   
   Male 392 53 
   Female 346 47 
Race   
   White 623 84 
   African-American   96 13 
   Other   19   3 
Education   
   Less than 12th grade   54   7 
   High school graduate 135 18 
   Associate or college, no degree 353 35 
   College degree 146 20 

  Graduate or professional degree 150 20 
Income   
   Under 20,000   86 11 
   20,000-39,999 145 20 
   40,000-59,999 169 23 
   60,000-99,999 237 32 
   100,000-150,000   79 11 
   Over 150,000   22   3 
Marital status   
   Single   45   6 
   Married 538 73 
   Other 155 21 

 

There are 3,586 PCB soil samples with PCB levels in soil ranging from 0 to 5,501 

ppm and 5,301 lead soil samples with lead levels in soil ranging from 0 to 52,000 ppm in 

Anniston.  Table 4.3 presents descriptive statistics for PCBs and lead levels in soil 
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samples.  The mean value of PCB levels in soil is 5.37 ppm and the mean lead level is 

247.90 ppm.  Maximum values of PCB and lead levels are 5,501 ppm and 52,000 ppm, 

respectively, which are much higher than the baseline levels for cleanup actions. 

 

Table  4.3  Statistics for PCBs and lead samples 

  PCBs (ppm) (N=3,586) Lead (ppm) (N=5,301) 

Mean 5.37 247.90 

Median 0 151 

Standard Deviation 111.91 859.28 

Minimum 0 0 

Maximum 5,501.00 52,000.00 

Skewness 42.45 44.85 
 

Geographic Information System software (ArcGIS 9.0) is employed to estimate 

and assign calculated values of PCBs and lead to all unsampled locations.  Specifically, 

we use interpolated kriging, an advanced geostatistical procedure that generates an 

estimated surface of PCB and lead levels from a scattered set of points.  Kriging assumes 

that a local influence of an input point diminishes with distance; hence it weights the 

points closer to the processing cell greater than those farther away.  Kriging assigns 

values to locations based on the surrounding measured values, mathematical formulas 

that determine the smoothness of the resulting surface, and statistical models that include 

the statistical relationship among the measured points.  In this study, PCBs and lead 

levels are calculated for a square cell size of 30 meters for an area with a radius of 1,000 

meters around the measured points. 
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 Maps of PCB and lead levels in Anniston soil are presented in Figures 4.5 maps 

of PCB and lead kriging are presented in Figures 4.6.  PCB and lead levels are assigned 

to each house using GIS by overlaying the PCB and lead kriging maps with the map of 

survey respondents’ houses.  

 GIS is also used to measure proximity of each house to the incinerator and Solutia 

plant.  Since x and y coordinates of the incinerator are not released to the public because 

of confidentiality issues, the centroid of the Army Depot is used instead. 

 The survey data were merged with data for census block group demographic 

characteristics, and with toxic chemical releases using the census block group code. The 

final dataset consists of 738 observations.  

 

4.7  Empirical Models 

This analysis employs the theoretical health model framework presented in the 

previous essay.  An empirical model is designed to investigate health effects and 

productivity losses of the risks associated with the ANCDF, PCBs and lead levels in 

Anniston.   

L = Q (I, E, W, E, H)       (26) 

where L is a vector of production loss measures, I represents a vector of individual 

demographic and economic characteristics, W is working condition, E is environmental 

characteristics and H is health status. 

 



  

 Figure 4.5: Maps of PCB and lead levels in Anniston soil samples 

   

Figure 4.6  Maps of PCB and lead kriging  
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Three different types of measures of productivity losses are used, including sick 

days lost, restricted activity days and work days lost.   Sick days lost is based on the 

question “During the past 12 months, how many days did illness or injury keep you in 

bed more than half of the day”, restricted activity days is based on the question “During 

the past 12 months, about how many days were your activities restricted due to illness or 

injury” and work days lost based on the question “During the past 12 months, about how 

many days did you miss work at a job or business due to illness or injury.   Health status 

is based on responses to the question “How do you evaluate your general health? 

Excellent, good, fair and bad”.  Health status is then recoded into binary variable where 

excellent and good take the value of 1 and fair and bad take the value of 0. 

 As presented in the previous section, there might be a number of health effects 

associated with PCBs, lead and the Depot.  Therefore, we assume that health status is 

endogenous.  A simultaneous-equations approach is employed to control for the 

endogeneity of health status, using maximum likelihood estimation of the simultaneous 

equations. 

Three different systems of equation are set up based on three productivity loss 

measures.  The simultaneous equations model is written as 

 lnL = αD + ηH + γLI + ζLP + τLA + θLT + δLD + εL                    (27) 

 H    = αH + γHI + ζHP+ τHA + θHT + δHD + ς S + εH                    (28) 

where L is productivity loss measured by sick days lost, restricted activity days and work 

days lost, H is health status, I is a vector of individual’s characteristics, P is PCBs level, 

A is lead level, T is toxic release at census block group level, D is distance from each 

house to the centroid of the ANCDF and S is lifestyle characteristics. 
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To control for selection bias due to data censoring of those whose did not respond 

to the survey, the 2-stage Heckman sample selection model is used.  In the first stage, a 

probit regression is used to estimate the individual probability of responding 

R = β0 + β1Z + εR                 (29) 

where R is a binary variable with survey respondents coded 1 and addresses from with a 

response not received are coded 0, X is a vector of explanatory variables including 

housing characteristics and demographic and socioeconomic characteristic at census 

block group level. 

The inverse Mills ratio is calculated 

         øi (Zi, β1) 
 μi = ─────             (30) 
                    Φi (Zi, β1) 

where ø and Φ are the probability density function and the cumulative distribution 

function, Z is a vector of explanatory variables in the survey response equation, and β1 is 

the conformable parameter vector of equation 4.  In the second stage, the inverse Mills 

ratio is included as an explanatory variable in the main model to correct for selectivity 

bias.  

 The inverse Mills ratio is also calculated for working status to control for 

selection bias when estimating the lost work days model.  Working status is assumed to 

be a function of individual demographic and socioeconomic characteristics and health 

status.  The inverse Mills ratio for working is included in the lost work days model, along 

with the inverse Mill ratio for survey response. 



A negative binomial equation for count data is employed to estimate productivity 

losses.  The equation for productivity losses is written as 

  y = α'X1 + εy                       (31) 

where y is productivity losses, and X1 is a vector of explanatory variables.  

The probit equation for health status is given as 

  H* = β'X2 + εH           (32) 

  H = 1 iff H* > 0, H = 0 iff H* ≤ 0  

where H* is a latent variable for health status. 

The likelihood function for the simultaneous model represented in equations 31-

32 is written as 
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4.8  Empirical Results 

A test for endogeneity of health status is conducted using a Hausman specification 

test (Hausman 1978).  The calculated chi-squared statistic is 14.49, which when 

compared with a critical value at 5% level of significance of 3.84 (1 degree of freedom) 

suggests that there is endogeneity in the model and thus a simultaneous estimation 

method is appropriate.  We employ a maximum likelihood approach to jointly estimate 

the two equations. 
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 Dummy variables for PCB and lead levels are created, in which the PCB dummy 

takes a value of 1 for any positive PCB level and 0 otherwise, and the lead dummy takes 

the value of 1 if lead value is greater than 50 ppm and 0 otherwise.  The cutoffs were 

chosen after testing a number of models that used different cutoff levels.  Since PCBs and 

lead levels are positively correlated, the simultaneous model is estimated separately for 

the PCB and lead dummies. 

Tables 4.4, 4.5 and 4.6 show definitions and descriptive statistics for the 

dependent and independent variables for the survey response model, sick days in bed 

model and work days lost model, respectively.  There are 3,492 observations in the 

dataset for the survey response model, comprising demographic and socioeconomic 

characteristic data at the census block group level, along with individual housing 

characteristics.  Data for the sick days in bed and restricted days models include 738 

observations from the survey at individual level merged with the PCB and lead dummies 

at individual property level, and total releases at census block group level.  The dataset 

for work days lost is a sub-sample of the dataset for sick days in bed, containing 530 

observations for those who had held a job in the past 12 months. 
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Table 4.4  Descriptive statistics of variables for survey responding model (N=3,492) 

Variable Definition Mean 

Response =1 if responding; 0 otherwise   0.2113 

% white Percent of white at census block group (%) 80.8464 

% male Percent of male at census block group (%) 47.4913 

% never married Percent of never married at census block group (%) 19.7185 

% bachelor degree Percent of bachelor degree at census block group (%) 10.9638 

% poverty Percent of household below poverty line census block 
group   9.7455 

% rural population Percent rural population at census block group (%) 22.6003 

Year erected Year the house was erected 1969 

Basic area Total basic area of the house (square feet) 1501 

Total releases Total toxic releases/person at census block group 
(pound/person) in 2005   1.4026 

Distance to Solutia Distance from the house to Solutia (mile)   6.3947 

Distance to Depot Distance from the house to Depot (mile)   9.8874 
 

 

 

 

 

 

 

 

 

 

 



 106

Table 4.5  Descriptive statistics of variables for sick days in bed and restricted days 
models (N=738) 
 

Variable Definition Mean 

Working status =1 if had a job in the past 12 months; =0 otherwise 0.7182

Sick days in bed Number of days in bed more than half of the day 8.1653

Restricted days Number of days in which activity is restricted due to 
illness or injury 20.1043

Male =1 if male; =0 otherwise 0.5312

Black =1 if black; =0 otherwise 0.1301

Degree 
=1 if has college or graduate or professional degree; 
=0 otherwise 0.3997

Married =1 if married; =0 otherwise 0.7290

Age Years of age 51.4472

Income 2005 household income ($10,000) 0.6263

Years at residence Number of years at the current residence 7.9118

Pcbdum =1 if PCBs level > 0 ppm; =0 otherwise 0.1640

Leaddum =1 if lead level > ppm; =0 otherwise 0.1640

Total releases Total toxic releases/person at census block group 
(pound/person) 0.1497

Distance to Depot Distance from the house to Depot (mile) 9.9645

Health insurance =1 if has health insurance; =0 otherwise 0.9309

Health status =1 if health status is good; =0 otherwise 0.7480

Alcohol =1 if daily alcohol drinker; =0 otherwise 0.0691

Smoke =1 if daily smoker; =0 otherwise 0.1531

Cancer =1 if has cancer; =0 otherwise 0.0650

Asthma =1 if has asthma; =0 otherwise 0.1043

ER visits Number of emergency room visits 1.2696

No adults Number of adults in the household 1.1165

No kids Number of kids in the household 0.7168
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Table 4.6  Descriptive statistics of variables for work days lost model (N=530) 

Variable Definition Mean 

Working status =1 if had a job in the past 12 months; =0 otherwise 1.0000

Sick days in bed Number of days in bed more than half of the day 4.8962

Restricted days Number of days in which activity is restricted due to 
illness or injury 10.1340

Work days lost Number of days missed at a job or business due to 
illness or injury 5.2774

Male =1 if male; =0 otherwise 0.5377

Black =1 if black; =0 otherwise 0.1132

Degree 
=1 if has college or graduate or professional degree; 
=0 otherwise 0.4453

Married =1 if married; =0 otherwise 0.7623

Age Years of age 46.2340

Income 2005 household income 0.6998

Years at residence Number of years at the current residence 7.2582

Pcbdum =1 if PCB level > 0 ppm; =0 otherwise 0.1453

Leaddum =1 if lead level >50 ppm; =0 otherwise 0.1415

Total releases Total toxic releases/person at census block group 
(pound/person) 0.1537

Distance to Depot Distance from the house to Depot (mile) 10.1981

Health insurance =1 if has health insurance; =0 otherwise 0.9340

Health status =1 if health status is good; =0 otherwise 0.8226

Alcohol =1 if daily alcohol drinker; =0 otherwise 0.0679

Smoke =1 if daily smoker; =0 otherwise 0.1528

Cancer =1 if has cancer; =0 otherwise 0.0415

Asthma =1 if has asthma; =0 otherwise 0.0925

ER visits Number of emergency room visits 1.2472

No adults Number of adults in the household 1.2208

No kids Number of kids in the household 0.8396

Construction Percent of worker employed in construction at census 
block group level 9.5580

Work at Depot =1 if working at Army Depot 0.0962
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4.8.1  Results for survey response model 

Regression results for the survey response equation are presented in Table 4.7.  

Percent male and never married at census block group level are negatively associated 

with the likelihood of responding to the survey but percent bachelor degree is positively 

associated with the likelihood of a survey response.  The year a house was erected and 

the square footage of the house are positively associated with the likelihood of a survey 

response. 

 

Table 4.7: Regression results for survey response equation (N=3,492) 

Variable Parameter 
Estimate Std Error Chi-Square 

Intercept       -6.0559*** 2.5315 5.72 

% white -0.0016 0.0024 0.44 

% male     -0.0189** 0.0092 4.22 

% never married    -0.0129** 0.0061 4.53 

% bachelor degree   0.0087* 0.0048 3.32 

% poverty 0.0077 0.0076 1.01 

% rural population         -0.0005 0.0010 0.28 

Year erected       0.0031*** 0.0013 5.76 

Basic area       0.0002*** 0.0001      13.42 

Total releases 0.0026 0.0031 0.69 

Distance to Solutia 0.0102 0.0121 0.71 

Distance to Depot         -0.0078 0.0122 0.40 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 

The inverse Mills ratio is calculated from the survey response model in Table 4.7 

and then is included as an additional independent variable for the simultaneous model 

using survey dataset. 
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4.8.2   Results of  sick days in bed model 

Table 4.8 provides maximum likelihood estimates for the sick days in bed model 

for PCB levels.  The likelihood of good health is positively associated with college or 

graduate or professional degrees and income.  This may be explained that those with 

college degree or better or higher income are more likely to have a healthy lifestyle, to 

consume healthy food and to have access to healthcare.  As expected, good health is 

negatively associated with age.  The number of years living at a residence has a negative 

impact on good health; the longer a resident’s tenure, the lower the likelihood of good 

health.  It should be noted that both PCB and lead are the chemicals that have very high 

toxicity weight in terms of chronic health effects on human.  Hence, it may be the case 

for those who have been living in the area for a long period of time suffering chronic 

health effects that deteriorate their health over time.  Another explanation is that children 

are very susceptible to PCB and lead, thus the longer respondents live in the area, the 

higher the chance their health was affected when they were young.   

The PCB dummy, the variable of interest, was negatively associated with good 

health.   This means that residents of a house with any positive kriged PCB level are less 

likely to enjoy good health.  Distance to the Depot has a positive effect on the probability 

of good health; the closer a respondent lives from the Depot, the smaller the likelihood of 

good health.  The Depot is the source of many toxic chemicals, thus those who live close 

to the Depot may suffer some health effects which result in bad health status or they may 

simply believe their health is worse because of the Depot.  Working status is positively 

correlated with good health, possibly because the employ have better access to health 
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care.  Respondents with cancer are less likely to be in good health, and numbers of 

hospital emergency room visits are associated with poor health. 

 

Table 4.8  Results for PCB sick days in bed model 

Health status equation Sick days in bed equation 
Variables 

Estimate Std Error Estimate Std Error 

Male   0.0197 0.1306      -0.5361*** 0.1805 

Black -0.2467 0.1729      -0.1737 0.2637 

Degree      0.3214** 0.1381      -0.5146*** 0.1857 

Married  0.0452 0.1453     0.4086** 0.2218 

Age      -0.0159*** 0.0054 0.0033 0.0077 

Income     0.4684** 0.2251   -0.6454** 0.2877 

Years at residence   -0.0193** 0.0083 0.0093 0.0153 

PCBs dummy   -0.3329** 0.1723     0.4693** 0.2608 

Toxic releases 0.0454 0.0525      -0.1741 0.1366 

Distance to Depot     0.1121** 0.0579 0.0824 0.0781 

Health status       -1.6808*** 0.2199 

Health insurance 0.2151 0.2326 0.1207 0.3521 

Working      0.3987*** 0.1551      -0.5543*** 0.2228 

Alcohol       -0.2291 0.2363   

Smoke       -0.2137 0.1591   

Cancer   -0.1788** 0.0783   

Asthma       -0.0966 0.0823   

Emergency room visit     -0.1853*** 0.0285   

No of adults   0.1314 0.1034 

No of kids   0.0779 0.0823 

Inverse Mills - response       5.3779*** 2.0676     -3.7958 2.8794 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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For the sick days in bed equation, males and those with a college or graduate or 

professional degree are likely to have fewer sick days in bed.  A possible explanation is 

that those respondents are more likely to have a job; hence it is the opportunity cost that 

makes them less likely to stay in bed.  Married respondents are more likely to have more 

sick days in bed.   Income is also negatively associated with sick days in bed; possibly 

because of higher opportunity cost.  Residents who had a job in the past 12 months have 

fewer sick days in bed; again possibly because of opportunity cost.  The PCB dummy is 

positively associated with sick days in bed.  Those living in a house with a positive 

kriged PCB level may experience health effects, so they are likely to stay in bed longer.  

As expected, good health is negatively associated with sick days in bed. 

Maximum likelihood estimates for the sick days in bed model using the lead 

dummy are reported in Table 4.9.  Except for the insignificant coefficient for distance to 

Depot, the results for the health status equation are similar to the PCB model, with the 

lead dummy negatively associated with health status.  However, the magnitudes of the 

effects of PCBs and lead on health status are different; the coefficient for PCB in the 

health status equation is -0.3329 and for lead is -0.4187.  A reasonable explanation is that 

the toxic weight for lead is greater than that for PCBs.  This means that lead may cause 

more severe chronic health effects, which results in more severe health deterioration. 

The sick days in bed equation results are similar to the model with PCBs, except 

that the lead dummy no longer has an effect on sick days in bed.  It should be noted that 

sick days in bed is the measure of an individual’s health that reflects how the individual 

can react to an acute condition.  The finding of an insignificant effect of lead in the sick 
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days in bed equation indicates that PCBs may cause more seriously acute health effects 

than lead does. 

 

Table 4.9  Results for lead sick days in bed model 

Heath status equation Sick days in bed equation 
Variable 

Estimate Std Error Estimate Std Error

Male -0.0002 0.1314      -0.5583*** 0.1838 

Black -0.2234 0.1743 -0.0846 0.2720 

Degree        0.3268*** 0.1385      -0.5571*** 0.1873 

Married  0.0484 0.1449    0.3613* 0.2196 

Age      -0.0165*** 0.0054  0.0038 0.0079 

Income     0.4494** 0.2252    -0.6431** 0.2851 

Years at residence    -0.0195** 0.0083  0.0101 0.0152 

Lead dummy     -0.4187*** 0.1765 -0.0579 0.2845 

Toxic releases 0.0476 0.0524 -0.1591 0.1375 

Distance to Depot 0.0930 0.0586  0.0535 0.0828 

Health status        -1.7796*** 0.2249 

Health insurance 0.1941 0.2325 -0.0310 0.3628 

Working      0.3860*** 0.1549      -0.4609*** 0.2206 

Alcohol       -0.2342 0.2368   

Smoke       -0.2039 0.1588   

Cancer  -0.1825** 0.0786   

Asthma      -0.0962 0.0827   

Emergency room visit   -0.1879*** 0.0286   

No of adults     0.1091 0.1042 

No of kids    0.0858 0.0828 

Inverse Mills - response    5.2457*** 2.1076 -4.4623 3.0531 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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4.8.3  Results for restricted days model 

Regression results for the PCB restricted days model are presented in Table 4.10.  

In the health equation, coefficients for the college degree or better dummy and income 

have significantly positive signs, while the coefficients for age and number of years at 

residence have significantly negative signs.  The variable of interest, the PCB dummy, is 

negative and statistically significant.  This indicates that residents at houses with non-

zero PCB levels are less likely to enjoy good health.  The coefficient for distance to 

Depot is positive and significant.  Working status, cancer and number of emergency room 

visits are significantly associated with health status. 

 A restricted activity day are defined as a day in which usual activities are limited 

because of illness or injury, and reflect a loss of ability to perform one’s social role at 

work, home or school.  Restricted activity days are expected to be correlated to physical 

limitations (Scholes, et al. 1991).  In the restricted days equation, those with college 

degree or better experience fewer restricted days, possibly because these respondents are 

more likely to have had better overall health care, thus preventing physical limitations.  

Good health significantly reduces the number of restricted days.  This suggests that 

restricted days may be used as an indicator for health status.  Working status is negatively 

correlated with restricted days, possibly because those without a job are likely to have 

some physical limitations that prevent them from doing so.  However, PCBs do not have 

a significant role in restricting respondents’ activities. 
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Table 4.10  Results for PCB restricted days model 

Health status equation Restricted days equation 
Variable 

Estimate Std Error Estimate Std Error 

Male 0.0203 0.1306 -0.0881 0.1834 

Black     -0.2493 0.1728      -0.3989 0.2602 

Degree      0.3339*** 0.1382      -0.7776*** 0.1747 

Married      0.0425 0.1453 0.0639 0.2152 

Age    -0.0161*** 0.0054 0.0009 0.0076 

Income   0.4701** 0.2244      -0.2129 0.2842 

Years at residence  -0.0193** 0.0083 0.0104 0.0135 

PCBs dummy    -0.3367*** 0.1721 0.3758 0.2511 

Toxic releases      0.0444 0.0519 0.0029 0.0588 

Distance to Depot  0.1101** 0.0577  0.1301 0.0763 

Health status       -1.5785*** 0.2124 

Health insurance      0.2091 0.2314 0.4324 0.3335 

Working    0.3888*** 0.1546     -0.8055*** 0.2173 

Alcohol     -0.2282 0.2364 -  

Smoke     -0.2201 0.1589 -  

Cancer  -0.1802** 0.0784 -  

Asthma     -0.0969 0.0823 -  

Emergency room visit    -0.1853*** 0.0285 -  

No of adults   -0.0101 0.1018 

No of kids    0.1267 0.0854 

Inverse Mills - response     5.3834*** 0.20612 -4.1986 2.7548 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 4.11 provides regression results for the restricted days model that includes 

the lead dummy.  The results for this model are consistent with the results for restricted 

days model with PCBs.  The coefficient for the lead dummy, the variable of interest, is of 

the expected negative sign and significant in the health status equation but is not 

significant in the restricted days equation.  Once again, lead has a greater impact on 

health status than PCBs do; the coefficient for PCBs in the health status equation is  

-0.3367 compare with -0.4167 for lead.  It is possible that lead has a more severe chronic 

effect on health status than PCBs do because of its higher toxic weight. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 116

Table 4.11  Results for lead restricted days model 

Health status Restricted days 
Variable 

Estimate Std Error Estimate Std Error

Male  0.0032 0.1315 -0.1521 0.1861 

Black -0.2173 0.1742 -0.3323 0.2714 

Degree       0.3468*** 0.1386      -0.8171*** 0.1771 

Married 0.0496 0.145 -0.1167 0.2178 

Age     -0.0165*** 0.0054  0.0008 0.0077 

Income    0.4499** 0.225 -0.2085 0.2865 

Years at residence    -0.0193*** 0.0083  0.0132 0.0136 

Lead dummy    -0.4167*** 0.1765      -0.2074 0.2727 

Toxic releases       0.0482 0.0526 0.0191 0.0601 

Distance to Depot  0.0954* 0.0586 0.0974 0.0808 

Health status       -1.6428*** 0.2153 

Health insurance 0.1981 0.2316 0.2900 0.3472 

Working     0.3741** 0.1552     -0.7229*** 0.2148 

Alcohol      -0.2351 0.2369   

Smoke      -0.2094 0.1586   

Cancer      -0.1847*** 0.0787   

Asthma      -0.0963 0.0826   

Emergency room visit      -0.1876*** 0.0286   

No of adults        -0.0272 0.1019 

No of kids   0.1163 0.0856 

Inverse Mills - response      5.2383*** 2.0839  -4.8204* 2.9535 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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4.8.4   Results for work days lost model 

Among the three measures of productivity losses, number of work days lost is the 

most important variable.  This variable represents a direct labor productivity loss, which 

may be readily quantifiable in economic terms, while sick days in bed and restricted days 

represent general productivity loss and are more difficult to measure.  Table 4.12 reports 

maximum likelihood estimates of the work-loss days model using the PCB dummy.  

Those with college degree or better are more likely to enjoy good health.  The older the 

respondents are, the higher the likelihood they will experience poor health.  Asthma and 

the number of emergency room visits are negatively related to good health as expected.  

Surprisingly, the presence of PCBs does not have an effect on the health status of those 

who were employed.  This is possibly because those who are affected by PCBs are less 

likely to work because of their sickness.  At the same time those who had a job are likely 

to have access to health care, hence they would get treated if they have ever suffered any 

health effects from PCBs.  In addition, those with jobs may live in areas of Calhoun 

County that are less likely to be contaminated. 

In the work days lost equation, the coefficient for the college degree or better 

dummy is of the expected negative sign and is significant.  This is consistent with the 

notion that those higher education levels have greater opportunity costs from missing 

work (Grossman 1972b; Stratmann 1999).  Income is also negatively associated with lost 

work days; residents with higher income miss fewer days of work, which is similar to 

findings in the labor literature (Meyer, et al. 1995; Ostro 1987).  The PCB dummy is 

significant and has a positive impact on missed work; that is, living in a house with 

positive PCB levels increases the number of lost work days.  Like sick days in bed, lost 
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work days reflect an outcome from acute health effects.  The result shows that PCBs do 

acutely and negatively affect respondents’ work histories.  Good health is significantly 

and negatively associated with work days lost.  Health insurance is positively related to 

lost work days; possibly because those with health insurance will also work for an 

employer who provides paid leave benefits.  Percent employed in construction at the 

census block group level is also positively related to number of lost work days, possibly 

because those working in the construction industry are more likely to be exposed to dust 

and other air pollutants. 

Table 4.13 presents maximum likelihood estimates for the lost work days model 

using the lead dummy, rather than PCB dummy as the explanatory variable of interest.  

The results for the health status equation are consistent with the equation using the PCB 

dummy, in which the coefficient for lead dummy is not significant.  In the lost work days 

equation, the coefficients for college degree or better, health status, health insurance and 

construction remain statistically significant, but the coefficient for income becomes 

insignificant.  The lead dummy is not significant in the work days lost equation.  These 

results are consistent with the results in the sick days in bed model (these two measures 

reflect individual’s react onto acute conditions) in which the coefficient for the lead 

dummy is not significant, but the coefficient for the PCB dummy is significant in the lost 

work days equation. 
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Table 4.12  Results for PCB work days lost model 

Health status Work days lost 
Variables 

Estimate Std Error Estimate Std Error 

Male  0.0446 0.1635 -0.1469 0.1817 

Black -0.2244 0.2371 -0.5586 0.3263 

Degree    0.2985* 0.1691      -0.5922*** 0.1622 

Married 0.0784 0.1855 0.2001 0.2145 

Age      -0.0263*** 0.0073      -0.0173 0.0129 

Income 0.4359 0.2759   -0.4354** 0.2191 

PCBs dummy      -0.2233 0.2236       0.7158*** 0.2877 

Distance to Depot 0.0408 0.0586 0.0092 0.0754 

Toxic releases 0.0588 0.0694 0.0505 0.0785 

Health status       -0.6094*** 0.2203 

Health insurance 0.1633 0.2964      0.8395*** 0.3295 

Alcohol      -0.2686 0.2835   

Smoke      -0.2863 0.1987   

Cancer      -0.0928 0.0939   

Asthma      -0.426** 0.2134   

Emergency room visit     -0.1501*** 0.0334   

Work at Depot 0.1064 0.4196  0.6248 0.2708 

Construction 0.0591 0.0733      0.0367** 0.0179 

No of adults        -0.0027 0.1051 

No of kids   0.0017 0.0838 

Inverse Mills-response    5.7674** 2.6476      -0.3831 2.6712 

Inverse Mills-working     2.4581*** 1.0329       2.1117*** 1.1365 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table 4.13  Results for lead work days lost model 

Health status Work days lost 
Variable 

Estimate Std Error Estimate Std Error 

Male 0.0133 0.1650 -0.1518 0.1826 

Black     -0.1742 0.2409 -0.2943 0.3338 

Degree      0.3132*** 0.1690      -0.6486*** 0.1616 

Married 0.0881 0.1841 0.1552 0.2177 

Age     -0.0261*** 0.0073      -0.0117 0.0130 

Income 0.4421 0.2758      -0.4393 0.3038 

Lead dummy      -0.3101 0.2342  0.0794 0.3221 

Distance to Depot 0.0481 0.0701 -0.0105 0.0787 

Toxic releases 0.0449 0.0596   0.0684 0.0841 

Health status        -0.6308*** 0.2207 

Health insurance 0.1771 0.2973       0.8642*** 0.3274 

Alcohol     -0.2682 0.2846   

Smoke     -0.2679 0.1990   

Cancer     -0.0992 0.0944   

Asthma     -0.4290** 0.2141   

Emergency room visit    -0.1534*** 0.0335   

Work at Depot      0.0951 0.2118  0.7823 0.6694 

Construction      0.0367 0.1177     0.0273** 0.0174 

No of adults        -0.0284 0.1066 

No of kids   0.0075 0.0854 

Inverse Mills - response 4.7476 2.6174      -1.7323 2.8858 

Inverse Mills - working      1.9720*** 0.8993 1.3875 1.0998 
***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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4.9 Discussion 

 The simultaneous system of equations and the inclusion of PCBs and lead in those 

two equations allow us to draw some conclusion about the extent of direct and indirect 

effects of labor productivity losses.  PCB presence has both direct and indirect effects on 

the number of days in beds, has indirect effects on the number of restricted days and has 

direct effects on number of work days lost.  Lead presence has indirect effects on the 

number of days in bed and restricted days, but has no effect on lost work days. 

 The coefficients for the PCB and lead dummies are used to calculate the marginal 

effects of those variables on productivity losses.  The results are reported in Table 4.14.  

A discrete change in the PCB dummy from 0 to 1 results in an increase of sick days in 

bed by 0.77, an increase in restricted days by 0.15 and an increase in lost work days by 

0.52 annually.  Similarly, a discrete change in the lead dummy from 0 to 1 results in an 

increase of sick days in bed by 0.19 and restricted days by 0.17 annually.   

 In terms of toxic weight of chronic health effects, PCBs are less toxic than lead.  

In this study we find that PCBs have stronger effects on productivity losses than lead 

does.  However, this result is not surprising if we consider that sick days in bed and lost 

work days both reflect mostly the effect of an acute conditions rather than a chronic 

condition.  This indicates that PCBs are more toxic in terms of acute health effects than 

lead is.  Further, the PCB effect may reflect the significant local and national media 

coverage, which raised Calhoun County residents’ awareness level about the potential 

danger of PCBs. 

 We can use the marginal effects of PCB and lead on productivity losses to 

estimate welfare losses from lost days at work.  However, costs for sick days in bed and 



 122

restricted days are not available; we estimate here costs of labor productivity loss based 

on cost of one work day lost.  The mean annual income for a household in the subsample 

of working respondents is $69,980.  Under the assumption that the income comes from 2 

people in the household, each working 250 days per year, one working day is worth $140 

for the average household.  The cost per work day lost as a result of the presence of PCBs 

is thus estimated to be $73 per working person.  For the entire sample of working 

respondents this suggests a total loss of $38,690.  If we extrapolate to numbers of 

employed persons in Calhoun County are 82,300 (71% working rate of 116,000 persons), 

the aggregate loss is $6 million, suggesting a significant economic loss given that the 

total annual value of labor in Calhoun County in 2002 was $959 million. 

 

Table 4.14  Marginal effects for discrete change in PCB and lead dummies 

Productivity loss Discrete change in 
PCB (0→ 1) 

Discrete change in 
lead (0→ 1) 

Sick days in bed 0.77 0.19 

Restricted days 0.15 0.17 

Lost work days 0.52  
 

4.10  Conclusion 

 The empirical results presented here demonstrate that PCBs have significant and 

negative effects on the health status of residents in general, but no significant effect on 

the health status of working residents in particular.  Similarly, lead is significantly and 

negatively associated with the health status of residents but is not associated with the 

health status of working residents.  The effect of the chemical weapon incinerator on 
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health status is inclusive since the coefficient for distance to Depot is significant in the 

model using PCB levels but insignificant in the model using lead levels.  Since 

measurements of both PCBs and lead were generally taken at the same houses in the 

sample, this result is somewhat puzzling and worthy of further investigation. 

 PCBs are positively associated with all three measures of productivity loss.  The 

presence of PCBs in the soil of respondents’ house increases sick days in bed by 0.77, 

restricted days by 0.15 and lost work days by 0.52.  Lead is positively related to only sick 

days in bed and restricted days.  The presence of lead increases sick days in bed by 0.19 

and restricted days by 0.17. 

 The evidence suggests that there are welfare losses associated with PCB and lead 

contaminations in Anniston City.  Welfare losses come from the deterioration of 

residents’ health status and labor productivity losses.  Hence, it is necessary to carry out 

cleanup actions to restore worker productivity and limit welfare losses.  Currently, the 

base level for PCB cleanup is 10 ppm and for lead is 400 ppm.  As shown in this study, a 

positive level of PCB and a 50 ppm level of lead are associated negatively with health 

status and positively with productivity losses.  Hence, the base levels of cleanup actions 

on PCBs and lead should be reduced since PCBs and lead are shown to have significant 

effects on health and productivity losses at levels smaller than the clean up level.  It is 

also recommended that cleanup be accelerated since through 2006 USEPA has only 

mitigated 133 of the 209 properties with elevated lead levels in Anniston. 
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V. CONCLUSION 

 

In this dissertation, we investigate economic impacts that toxic chemical hazards 

may impose on society, including losses in house values and indirect costs of health 

effects resulting from toxic chemicals.  Specifically, we study how toxic chemicals 

impact property values, health status and labor productivity.   

In the second chapter, we analyze the relationship between environmental health 

risks and property values in the US at the county level using a dataset with 3,106 

counties.  Several variables are used to represent environmental health risks including 

total chemical releases, number of Superfund sites, and cancer mortality.  FIML is 

employed to control for the endogeneities of cancer mortality and toxic chemical releases 

in the model.  Our findings indicate that house values are negatively associated with total 

releases and cancer mortality.  The FIML estimates show that a reduction of total 

chemical releases by 1 pound per person results in an increase of $0.54 in house value 

and a decrease of cancer mortality by 1 death in 100,000 persons results in an increase of 

$105.47 in housing value.  The value of statistical life is estimated to be $4 million with 

the FIML model.  The value of statistical life and capitalized house values are used to 

estimate benefits of cleanup.  Based on these estimates, a simple cost benefit analysis 

suggests that cleanup costs exceed benefits.  However, it should be noted that the benefits 
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are underestimated since only owner-occupied housing units and cancer mortality are 

accounted for in this study. 

In the third chapter, we investigate how toxic chemical releases impact 

productivity losses measured by work days lost using a unique dataset merging 

individual-level NHIS data and county-level Toxic Releases Inventory data.  A 

generalized instrumental variable estimation is used to account for the endogeneity of 

health status.  The results reveal that health status is negatively associated with work days 

lost, regardless of how health status is measured, either in binary form or on a 5-point 

scale.  The model underestimates the effect of health status on productivity loss when 

health status is exogenous.  The estimations show that toxic chemical releases have 

positive and significant impacts on work days lost with both exogenous and endogenous 

binary health status.  A 1 pound increase in toxic releases leads to an increase in lost 

work by 6.26 days with exogenous binary health status and 8.75 days with endogenous 

binary health status.  The coefficient for toxic releases is not significant in the case of 

endogenous 5-point scale health status.   

 In the fourth chapter, we investigate how environmental hazards impact health 

status and labor productivity in Calhoun County, Alabama.  Environmental hazards are 

represented by PCB contamination, lead contamination and distance to the Depot.  A 

maximum likelihood approach is employed to simultaneously estimate the models of 

count and dichotomous data.  A data set of direct mailing surveys, census block group 

data and kriged PCB and lead levels is used for the analysis.  The results reveal that PCBs 

have significant and negative effects on the health status of residents in general, but no 

significant effect on the health status of working residents in particular.  Similarly, lead is 
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significantly and negatively associated with health status of respondents but is not 

associated with health status of working respondents.  PCBs have positive impacts on all 

three measures of productivity losses.  The presence of PCBs in the soil of respondents’ 

houses increases sick days in bed by 0.77, restricted activity days by 0.15 and lost work 

days by 0.52.  Lead has positive impacts only on sick days in bed and restricted days.  

The presence of lead increases sick days in bed by 0.19 and restricted days by 0.17.  

Welfare losses from the deterioration of residents’ health status and lost work days 

associated with PCB contamination are estimated to be $6 million annually for Calhoun 

County.   

Although the three essays in this dissertation are independent studies, they are 

connected by the main topic of environmental health risks.  These studies may be useful 

for the general public since they provide information on how toxic chemicals impact their 

lives including their property values and health status.  These studies are especially 

valuable to environmental policy-makers as they provide rich information on welfare 

losses associated with environmental hazards.   

The results of the second chapter are important to decision makers as not only do 

they provide information on how property values respond to levels of toxic chemical 

releases, but also on how cancer mortality is associated with toxic chemicals.  Along with 

the value of statistical life also estimated in this study, these results can be used for cost-

benefit analysis for considering environmental cleanup of toxic releases.  However, to 

estimate the true benefits of environmental cleanup, we suggest that in addition to cancer 

deaths, other health effects of toxic chemicals including cancer incidence, respiratory 

diseases, immune system damage and birth defects should be included in future research.  
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Costs of cancer treatment should also be included to calculate true benefits of reducing 

toxic chemical releases.  It is also recommended that rental housing units should be 

included in future research. 

The results of the third chapter provide information on how industrial pollution 

including air, water and land pollution together impact individual productivity losses.  

Like the results of the second chapter, the estimates of this study may be used for cost-

benefit analysis for reducing toxic releases from industrial facilities.  Benefits of 

pollution reduction would be increased significantly when taking into the account that 

toxic chemicals significantly deteriorate individual’s health and increase productivity 

losses.  However, it is important to conduct future research at a sub-county level in order 

to better understand the impact of toxic chemical releases on health and productivity 

because of the easily dispersed characteristics of air pollution.  Future research should 

also be directed toward identifying which toxic chemicals contribute the most to work 

days lost, thus helping decision-makers to more efficiently target reductions of those 

specific chemicals. 

 The information in the fourth essay may be useful for policy makers in addressing 

areas that are contaminated with PCBs or lead.  Currently, there are only a few studies 

investigating the economic impacts of PCBs and lead, therefore the results of this study 

may be used for cost-benefit analysis associated with the contamination.  The study 

indicates that PCBs and lead affect not only individual’s health status but also labor 

productivity.  This is useful for policy makers to estimate the true cost of PCB and lead 

contamination.  The results may also be used as a reference to establish a base level for 

cleanup action for contaminated areas.  Currently in Anniston, the base level for PCB 
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cleanup is 10 ppm and for lead it is 400 ppm.  However, as shown in this study, a positive 

level of PCB and a 50 ppm level of lead are associated negatively with health status and 

positively with productivity losses.  Hence, the base levels of cleanup actions on PCBs 

and lead should be reduced since PCBs and lead are shown to have significant effects on 

health and productivity losses at the level that is smaller than the clean up level.  
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APPENDICES 

Appendix A: Poisson results for work loss days 
Table A1: Poisson results for work loss days with binary exogenous health status  
(Dependent variable = work days lost) 
 

Variable Parameter Estimate Standard Error Chi-Square 

HEALTH2 -0.6791*** 0.0114       3,570.48 
TOTREL  4.6635*** 0.9884     22.26 
DENSITY -0.8585*** 0.0788   118.78 
PRECIP -0.0038*** 0.0004   106.20 
LOWTEMP  0.0059*** 0.0005   160.43 
MALE -0.1655*** 0.0123   180.19 
AGE -0.0134*** 0.0008   311.43 
WHITE        -0.0138 0.0113       1.51 
COLLEGE -0.0684*** 0.0136     25.21 
MARRIED -0.0848*** 0.0099    73.52 
INCOME45 -0.1667*** 0.0145  131.87 
DRINK  0.1737*** 0.0112  239.92 
SMOKE  0.2093*** 0.0103  415.07 
SERVICE -0.1825*** 0.0100  331.20 
MANUF          0.0094 0.0137      0.47 
ONEJOB  0.1041*** 0.0164    40.23 
HOURWORK -0.0072*** 0.0004  330.87 
YEARONJOB  0.0090*** 0.0006  224.19 
SDAYPAID  0.2669*** 0.0101  694.24 
PBYHOUR  0.1784*** 0.0099  321.43 
EMP500  0.2051*** 0.0106  373.52 
INVERSE MILLS  1.9867*** 0.1087  333.79 

***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table A2: Poisson results for work loss days with binary endogenous health status 
(Dependent variable = work days lost) 
 

Variable Parameter Estimate Standard Error Chi-Square 

NEA  0.2266*** 0.0142 254.74 
MW   0.1378*** 0.0148   86.61 
HEALTH2IV -1.4398*** 0.0133  11,645.10 
TOTREL          -0.0697 1.0219     0.00 
DENSITY -0.9738*** 0.0796 149.64 
PRECIP -0.0039*** 0.0004 109.47 
LOWTEMP  0.0035*** 0.0005   56.18 
MALE -0.1071*** 0.012   80.14 
AGE -0.0281*** 0.0007    1,741.32 
WHITE  0.1197*** 0.0114 109.91 
COLLEGE  0.0708*** 0.0136  27.18 
MARRIED -0.0516*** 0.0099  27.17 
INCOME45 -0.4543*** 0.0136    1,111.89 
DRINK   0.3351*** 0.0112       898.41 
SMOKE          -0.0236** 0.0106    4.99 
SERVICE -0.1930*** 0.0100       369.13 
MANUF  0.0345*** 0.0137    6.34 
AGRI  0.0965*** 0.0341    8.04 
ONEJOB           0.0129 0.0165    0.61 
HOURWORK -0.0068*** 0.0004       300.63 
YEARONJOB  0.0099*** 0.0006       273.36 
SDAYPAID  0.2357*** 0.0101       544.23 
PBYHOUR  0.1960*** 0.0099       389.05 
EMP500  0.2170*** 0.0106       418.69 
INVERSE MILLS  2.3702*** 0.1031       528.19 

***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table A3: Poisson results for work loss days with 5-point exogenous health status 
(Dependent variable = work days lost) 
 

Variable Parameter Estimate Standard Error Chi-Square 

NEA  0.2464*** 0.0142 301.40 
MW   0.1501*** 0.0148 102.34 
HEALTH5 -0.4397*** 0.006    5,388.17 
TOTREL   4.0768*** 0.9948    16.79 
DU   0.0974*** 0.0135    52.22 
DENSITY -0.8692*** 0.0791 120.79 
PRECIP -0.0038*** 0.0004 107.85 
LOWTEMP   0.0061*** 0.0005 174.45 
MALE -0.1861*** 0.0122 232.53 
AGE -0.0133*** 0.0007 347.14 
WHITE          0.0017 0.0113     0.02 
COLLEGE -0.0625*** 0.0134   21.64 
MARRIED -0.0815*** 0.0099   67.93 
INCOME45 -0.1572*** 0.0139 128.56 
DRINK  0.1811*** 0.0112 262.91 
SMOKE  0.1789*** 0.0103 299.46 
SERVICE -0.1761*** 0.0100 307.69 
MANUF        -0.0039 0.0137     0.08 
AGRI        -0.0263 0.0341     0.60 
ONEJOB  0.1045*** 0.0164   40.57 
HOURWORK -0.0064*** 0.0004 265.35 
YEARONJOB  0.0095*** 0.0006 250.94 
SDAYPAID  0.2676*** 0.0102 694.95 
PBYHOUR  0.1686*** 0.0099 287.61 
EMP500  0.2145*** 0.0106 407.81 
INVERSE MILLS  1.6457*** 0.1041 250.14 

***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Table A4: Poisson results for work loss days with 5-point endogenous health status 
(Dependent variable = work days lost) 
 

Variable Parameter Estimate Standard Error Chi-Square 

Intercept   6.6252*** 0.0485 18,691.80 
NEA   0.2920*** 0.0142  423.20 
WE   0.0679*** 0.0175    15.01 
MW   0.1962*** 0.0148  175.56 
HEALTH5IV -1.2265*** 0.0083 21,754.40 
TOTREL          0.6769 1.0106     0.45 
DU   0.2670*** 0.0135 389.04 
DENSITY -0.8501*** 0.0782 118.15 
PRECIP -0.0030*** 0.0004   66.87 
LOWTEMP   0.0046*** 0.0005   94.75 
MALE -0.1309*** 0.0123 114.10 
AGE -0.0304*** 0.0007   1,776.78 
WHITE   0.2142*** 0.0114 351.97 
COLLEGE   0.2387*** 0.0135 310.53 
MARRIED        -0.0100 0.0099      1.01 
INCOME45 -0.4897*** 0.0142   1,191.74 
DRINK   0.4060*** 0.0113   1,291.03 
SMOKE -0.1465*** 0.0106 189.75 
SERVICE -0.1698*** 0.0100 286.35 
MANUF   0.0651*** 0.0137   22.55 
AGRI   0.1717*** 0.0341   25.30 
ONEJOB          0.0001 0.0164     0.00 
HOURWORK -0.0068*** 0.0004 310.07 
YEARONJOB   0.0089*** 0.0006 223.09 
SDAYPAID   0.2429*** 0.0101 573.54 
PBYHOUR   0.1959*** 0.0099 390.92 
EMP500   0.2082*** 0.0106 385.61 
INVERSE MILLS   1.4539*** 0.1065 186.53 

***, **, * Significant at the 1%, 5%, and 10% level, respectively. 
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Appendix B: Overdispersion tests 

 
The likelihood ratio for Poisson and negative binomial models is calculated as 

LR = -2 (LL (Poisson) – LL(negative binomial)) = 130,738.   

Since the likelihood ratio test statistic is greater than the critical value of 5.41 at the 1% 

level, the null hypothesis is rejected, indicating the presence of overdispersion.  The Wald 

test statistic is 4.2236/0.0682 = 61.92, which is greater than the 1% critical value of 2.33. 

We thus reject the null hypothesis of Poisson distribution of work-loss days.  Hence, 

these two tests conclude that the Poisson model is inadequate for lost work days data and 

the negative binomial regression is used to model number of lost work days. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix C: Information letter and survey questionnaire 
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