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Abstract

This master’s thesis serves as an introduction to the Bernstein-Gel’fand-Gel’fand corre-

spondence first written in 1978 [1]. We shall cover some of the fundamental objects that the

reader may not be familiar with, mainly tensor algebras and adjunction between categories.

Finally we prove the Bernstein-Gel’fand-Gel’fand correspondence for the case of complexes

of graded modules as stated in Eisenbud-Fløystad-Schreyer [4], fleshing out all of the details.
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Chapter 1

Introduction

Formally, the Bernstein-Gel’fand-Gel’fand correspondence, shortened to BGG correspondence,

is an adjunction between the category of complexes of exterior modules and the category of

complexes of modules over a symmetric algebras. An adjunction is a type of categorical equiv-

alence weak enough to be useful but still strong enough to preserve the required structure. This

yields a way to port problems and computations from one category to another and back while

preserving the structure of each. This is particularly useful since finitely generated modules

over the exterior algebra are finite dimensional, which is typically not the case for the sym-

metric algebra. This provides fertile ground for applications in computational algebra. One of

the most well-known applications of the BGG correspondence is an algorithm to compute sheaf

cohomology over Pn developed by David Eisenbud, Gunnar Fløystad, and Frank-Olaf Schreyer

[4], already built into Macaulay2. This algorithm was recently extended to any weighted pro-

jective stack by Michael K. Brown and Daniel Erman. This is given as Algorithm 6.14 in Tate

resolutions on toric varieties [2]. At the core of Brown and Erman’s work is a generalized BGG

correspondence and Brown-Erman’s generalization of Eisenbud-Fløystad-Schreyer’s theory of

Tate resolutions. The next step would be to extend this algorithm to toric stacks. David Eisen-

bud and Frank-Olaf Schreyer have gotten a lot of mileage out of the BGG correspondence.

In two famous algebra papers, Betti Numbers of Graded Modules and Cohomology of Vector

Bundles [6] and Resultants and Chow forms via Exterior Syzygies [5], Eisenbud-Schreyer use

the BGG correspondence to draw bridges between seeming disparate algebraic structures. This

is all to say that BGG correspondence is an active area of research and a useful tool for anyone

interested in computational algebra.
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Chapter 2

Preliminaries

Before we discuss the Bernstein-Gel’fand-Gel’fand correspondence we need to discuss the

objects that are in correspondence and the setting in which this correspondence takes place.

This correspondence is between modules over two seemingly different algebras: the symmetric

algebra and exterior algebra. These algebras are quotients of a tensor algebra.

2.1 Algebras

Essentially, an algebra is a ring with a module structure or a module with a ring structure.

Definition. Let R be a ring. An algebra over R, also denoted R-algebra, is a ring S with a

ring homomorphism α : R → S into the center of S . This defines scalar multiplication given

by α(r)s = rs. NOTE if S is a commutative ring then any map into S is in its center. This is

referred to as a commutative R-algebra.

For our case, we let R be a field k. This implies that our map that defines scalar multipli-

cation is injective. This follows from the facts that fields only have two ideals, (0) and (1), and

the kernel is an ideal of k, implying that the kernel is either the whole field or (0). But since

1 7→ 1, the kernel can’t be the whole field. Hence we think of a k-algebra as a ring that contains

a field.

Examples:

• Every ring, with a map into its own center is an algebra over itself.

• Just like every abelian group is a Z-module, any ring is a Z-algebra.
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• Polynomial ring S = R[x1, ..., xn] in finitely many variables is an algebra over R.

• The complex numbers form a 2-dimensional algebra over the reals.

• The quaternions form a 4-dimensional algebra over the real numbers but not the complex

numbers since C is not in the center of the quaternions.

Definition. A subalgebra is a subring S ′ of S that is an R-module.

Definition. A homomorphism ofR-algebras is anR-linear ring homomorphism. Let ϕ : S →

T for R-algebras S, T be an R-algebra homomorphism and x, y ∈ S r ∈ R, then

ϕ(rx) = rϕ(x),

ϕ(x+ y) = ϕ(x) + ϕ(y),

ϕ(xy) = ϕ(x)ϕ(y),

ϕ(1) = 1.

2.1.1 Graded Algebras

A graded ring is a ring R with a set of additive subgroups {Rn}n≥0 where R =
⊕

Rn and

RmRn ⊂ Rm+n for all m,n ≥ 0. Hence R0 is a subring of R and each Rn is an R0-module.

Example. Probably the most familiar graded ring is a polynomial ring. Let R = k[x1, ..., xm].

Then each graded component Rn is the set of all homogeneous polynomials of degree n. More

explicitly, for R[x, y] we have the following breakdown,

degree homogeneous components

0 R

1 x, y

2 x2, xy, y2

3 x3, x2y, xy2, y3

4 x4, x3y, x2y2, xy3, y4

...
...
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Definition. Given a graded ring R, a graded R-module is an R-module M with a family

(MN)n≥0 of subgroups of M such that M =
⊕∞

n=0Mn and RmMn ⊂ Mm+n∀m,n ≥ 0.

Notice that this makes each Mn an R0-module. We call an element of M homogeneous if that

element is in one graded piece. From this we can decompose any element of M into a finite

sum of homogeneous components.

A graded R-algebra is a graded ring S that is also a graded R−module.

2.1.2 Tensor Algebras

Some important and naturally graded algebras are the tensor algebra and its quotient algebras,

the exterior algebra and symmetric algebra, that inherit their grading from the original tensor

algebra. We define tensor algebra over a field since that is the construction used in the BGG

correspondence.

Definition. Let V be a vector space of a field k. We may create a tensor algebra of V , denoted

T (V ), by letting the tensor product define multiplication between elements in our vector space

to create an algebra over V . We define the nth tensor power of V to be the nth tensor product

of V with itself, denoted T nV = V ⊗n. Then we construct T (V ) by taking the direct sum of all

the nth tensor powers, T (V ) =
⊕

n∈N T
nV . Notice that T iV ⊗T jV and T i+jV are canonically

isomorphic. This map determines the multiplication and hence gives T (V ) a natural grading

by N. We generally refer to this grading by Z where the subspaces of degree less than zero are

0.

2.1.3 Exterior Algebra

The exterior algebra of a vector space over a field k, denoted
∧
(V ), is defined to be isomorphic

to a quotient algebra of T (V ) by the ideal, I , generated by all of the elements of the form

(x ⊗ x) for all x ∈ V , i.e.
∧
(V ) = T (V )/I . Say T (V ) is generated by x, y then

∧
(V ) =

T (V )/(x ⊗ x, y ⊗ y). We get skew-commutative from noticing that (x + y) ⊗ (x + y) =

x⊗x+x⊗y+y⊗x+y⊗y = 0, since squares go to zero, this implies that x⊗y+y⊗x = 0.
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2.1.4 Symmetric Algebras

Similar to the exterior algebra, the symmetric algebra over a vector space V , denoted S(V ),

can be constructed as a quotient algebra of T (V ). Here the ideal, J , is generated by all of the

commutators, x⊗ y − y ⊗ x. Say V is generated by x, y, z, then S(V ) = T (V )/(x⊗ y − y ⊗

x, x⊗ z − z ⊗ x, z ⊗ y − y ⊗ z).

Definition. Let M,N be graded R−modules, a homomorphism of graded R-modules is an R-

module homomorphism f : M → N such that f(Mn) ⊂ Nn∀n ≥ 0, i.e. graded pieces get

sent to graded pieces. If these graded pieces get sent to a different degree then we call the map

f a graded map of degree i, denoted deg(f )=i, such that f(Mn) ⊂ Nn+i∀n ∈ Z. Note, when

composing graded maps the degrees add.

Example. Given a chain complex, C with differential dn : Cn → Cn−1 for all n ∈ Z, then

deg(d)=−1.

Definition. In fact rings, modules, and algebras can be graded by any arbitrary abelian group.

An object with a Z × Z grading is called bigraded. Similar to before for rings, we have R =⊕
(p,q)∈Z×ZRp,q and Ri,jRm,n ⊂ Ri+m,j+n. The rest follow as above but now with two indices.

Definition. From a bigraded ring, module, or algebra we can create a bicomplex or double

complex: LetM be a bigraded module, denotedMp,q such that (p, q) ∈ Z×Z, with differentials

dhp,q : Mp,q → Mp−1,q and dvp,q : Mp,q → Mp,q−1 in bidegree (-1,0) and (0,-1) respectively and

properties dhdh = 0, dvdv = 0, and dhp,q−1d
v
p,q + dvp−1,qd

h
p,q = 0 i.e. anticommutativity. Placing

each Mp,q on lattice points of Z× Z we have the following diagram:
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...
...

...

. . . Mp−1,q+1 Mp,q+1 Mp+1,q+1 . . .

. . . Mp−1,q Mp,q Mp+1,q . . .

. . . Mp+1,q−1 Mp,q−1 Mp+1,q−1 . . .

...
...

...

dvp−1,q+1

dhp,q+1

dvp,q+1

dhp+1,q+1

dvp+1,q+1

dvp−1,q

dhp,q

dvp,q

dhp+1,q

dyp+1,q

dhp,q−1 dhp+1,q−1

Given a commutative diagram, we may turn it into a bicomplex using a sign change to get

anti-commutivity. Given dhp,q−1d
v
p,q − dvp−1,qd

h
p,q = 0 from the commutivite diagram we define

bvp,q = (−1)pdvp,q to get anti-commutivity,

dhp,q−1b
v
p,q + dvp−1,qb

h
p,q = (−1)pdhp,q−1d

v
p,q + (−1)p−1dvp−1,qd

h
p,q

= (−1)p(dhp,q−1d
v
p,q − dvp−1,qd

h
p,q) = 0.

Definition. Total Complex: Given a bicomplex M , the total complex of M , denoted Tot(M ),

is the complex with terms and differentials defined as,

Tot(M)n =
⊕

p+q=nMp,q,

Dn : Tot(M)n → Tot(M)n−1 such that,

Dn = Σp+q=n(d
h
p,q + dvp,q)

Notice that since Tot(M)n is the sum of all the modules in total degree n = p + q, this corre-

sponds to the diagonal line y = −x+ n for an integer n in the lattice.

Lemma. The total complex is a complex.

Proof. First, notice that im(Dn) ⊂ Tot(M)n−1 since im(dhp,q) ⊂Mp−1,q and im(dvp,q) ⊂Mp,q−1

implying that im (Dn) = im (Σp+q=n(d
h
p,q + dvp,q)) ⊂ Tot(M)n−1. Second we need to show

that D is a differential, meaning DD = 0. This is where anti-commutativity of the bicomplex
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comes in,

DD = Σ(dh + dv)(dh + dv)

= Σ(dhdh) + Σ(dhdv + dvdh) + Σ(dvdv)

= Σ(dhdv − dhdv) = 0.

2.2 Category Theory

Category theory is often scoffed at as “abstract nonsense” but for much of algebra and math-

ematics it is a natural setting to talk about more general structure. The language of category

theory allows us to compare one collection of objects to another collection of objects.

Definition. A category, C, contains three bits of data:

1. a collection of objects denoted obj(C),

2. a collection of morphisms, denoted Hom(A,B) for every ordered pair of objects,

3. a binary operation called the law of composition Hom(A,B) × Hom(B,C) → Hom(A,C)

denoted (f, g) 7→ gf , for every ordered triple A,B,C of objects.

The above must satisfy the following:

1. There exists an identity morphism for each object, 1A ∈ Hom(A,A) such that f1A = f and

1Bf = f for all f : A→ B.

2. Associativity of composition: given morphisms A
f−→ B

g−→ C
h−→ D, then (hg)f = h(gf).

Examples:

• Set: The objects in this category are sets (not proper classes), morphisms are functions,

and composition is the usual composition of functions.

• Groups: The objects are groups and the morphisms are homomorphims, and composi-

tion is the usual composition.
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• Top: Objects are all topological spaces and morphisms are continuous functions. Note

that identity functions are continuous and the composition of continuous functions is

continuous.

• Ab: Objects are abelian groups and morphisms are homomorphisms.

• Rings: Objects are rings and morphisms are ring homomorphisms. Note that we are

assuming rings with a unit element and that ϕ(1) = 1 for every ring homomorphism.

• ComRings: Objects are commutative rings and morphisms are ring homomorphisms.

• ModR: Objects are right R-modules for a given ring R, denoted RMod for left R-

Modules and morphisms are all R-homomorphims.

• Vectk: Objects are k-vector spaces and morphism are k-linear maps.

• Opposite Category: Let C be a category. Cop has the same objects as C, but the morphism

in C, f : X → Y , has the domain and codomain swapped, f op : Y → X and composition

of morphisms gf ∈ Cop is defined to be the composition fg in C.

Definition. A category S is a subcategory of a category C if the following are satisfied,

(i) obj(S) ⊂ obj(C),

(ii) HomS(A,B) ⊂ HomC(A,B) ∀A,B,∈ obj(S), where the Hom sets in S are denoted

by HomS(−,−),

(iii) if f ∈ HomS(A,B) and g ∈ HomS(B,C) then the composite gf ∈ HomS(A,C) is

equal to the composite gf ∈ HomC(A,C),

(iv) if A ∈ obj(S), then the identity 1A ∈ HomS(A,A) is equal to the identity 1A ∈

HomC(A,A).

Definition. A subcategory S of C is a full subcategory if, ∀A,B ∈ obj(S), we have HomS(A,B) =

HomC(A,B).
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2.2.1 Functors

Definition. Functor (covariant): Let C and D be categories, a covariant functor F : C → D is

a function such that,

(i) if A ∈ obj(C), then F(A) ∈ obj(D),

(ii) if f : A→ A′ in C, then F(f) : F(A) → F(A′) in D,

(iii) if A
f−→ A′ g−→ A′′ in C, then F(A) F(f)−−→ F(A′)

F(g)−−→ F(A′′) in D and F(gf) =

F(g)F(f),

(iv) F(1A) = 1F(A) ∀A ∈ obj(C).

Example. Forgetful Functor: F : Groups → Sets. For a given group G, F(G) is just the

underlying set of G and F(f) is a homomorphism regarded as a function. Since a group is a set

G and an operation ϕ : G×G→ G, then F : (G, ϕ) 7→ G. More generally this is what forgetful

functors do, they ”forget” the structure/s. We have the Forgetful functor F : Rings → Ab

for some Ring the ordered triple (R, ϕ, ψ) 7→ (R, ϕ) where the ”multiplication” operation is

”forgotten”. Similarly for F : Rings → Sets.

Example. Free Functor: An example of a free functor is a functor from the category of Set

→ Groups, where a set gets sent to the Free Group generated by that set.

Definition. A contravariant functor is a covariant functor F : Cop → D or F : C → Dop.

Meaning the range and domain of morphism are swapped and thus so is composition.

Example. The Hom Functor is a map Hom(−,−) : C → Set. There is a contravariant

and covariant version of the Hom fuctor. In the first component we have Hom(−, B) such

that for each C ∈ C, C 7→ Hom(C,B) and for each morphism f : X → Y , Hom(B, f) :

Hom(Y,B) → Hom(X,B). In the second component we have Hom(A,−) such that for each

C ∈ C, C 7→ Hom(A,C) and for each morphism f : X → Y , Hom(A, f) : Hom(A,X) →

Hom(A, Y ).

Theorem. Functors preserve isomorphisms of objects. Given F : C → D and f : X → Y is

an isomorphism in C, then F(f) is an isomorphism in D.
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Proof. Let g : Y → X such that fg = 1Y and gf = 1X . Since functors preserve composition

and identities, 1F(Y ) = F(1Y ) = F(fg) = F(f)F(g). Similarly for 1F(1X).

Definition. Given two functors F,G : C → D, a natural transformation τ : F → G is a

function which assigns to each object A ∈ C an map τA = τA : F(A) → G(A) of D in such a

way that every map f : A→ A′ in C yields a diagram below that commutes.

A F(A) G(A)

A′ F(A′) G(A′)

f F(f)

τA

G(f)

τA′

When the diagram commutes we say that τA : F(A) → G(A) is natural. We often call nat-

ural transformations a “morphism of functors”. In other words a natural transformation is a

collection of maps from one diagram to another such that the diagrams commute.

Definition. A natural isomorphism or natural equivalence is a natural transformation τ where

every component τA is invertible in D.

2.2.2 Types of Equivalences

Definition. The first and strongest type of equivalence is an isomorphism of categories. It is

generally too strong to be useful. Given F : C → D and G : D → C such that FG = IdD

and GF = IdC are the identity functor for their respective categories. This means that both

the objects and the morphisms of C,D are in one-to-one correspondece. Implying that these

categories share all the same categorical properties.

Definition. An Equivalence of Categories between two categories C,D is a pair of functors

F : C → D and G : D → C that are natural isomorphisms, FG ∼= IdD and GF ∼= IdC .

Example. A stronger version of the BGG correspondence presented in this paper is an equiv-

alence from the category of graded E-modules to the category of linear free complexes of

S-modules. There is a nice treatment of this in chapter 7 of David Eisenbud’s The Geometry

of Syzygies [3].

Definition. An Adjunction is a pair of functors L : C → D, R : D → C such that for all objects

C ∈ C, D ∈ D there is an isomorphism HomD(L(C), D) ∼= HomC(C,R(D)) that is natural in

10



both C and D. Here naturality means that for all morphims f : C1 → C2 in C and g : D1 → D2

in D we have the following commutative diagram:

HomD(L(C2), D1)

HomD(L(f),g)
��

∼= // HomC(C2,R(D1))

HomC(f,R(g))
��

HomD(L(C1), D2)
∼= // HomC(C1,R(D2)).

Example. Any student who has taken linear algebra has unknowningly seen an example of

an adjunction, the Free-Forgetful adjunction. In linear algebra this was taught as every vector

space has a basis and any linear independent set generates a vector space. Making this more

explicit, let R : Vectk → Set be the forgetful functor and L : Set → Vectk be the free

functor, where a set is sent to a formal linear combination and each function extends to a unique

linear transformation. We say that the forgetful functor is right adjoint to the free functor. This

familiar construction can be generalized to any of the familiar categories that has a forgetful

functor.

Example. One of the most useful adjunction in algebra is the Hom-Tensor adjunction for

graded modules. This adjunction will play a key role in the proof of the BGG correspon-

dence. Given graded a right R-module AR, bimodule RBS , and right S-module CS , for graded

rings R and S, there is a natural isomorphism given by,

T : HomS(A⊗R B,C) → HomR(A,HomS(B,C)),

where T (f)(a)(b) = f(a ⊗ b) and T−1(g)(a ⊗ b) = g(a)(b). Notice the underline under

HomS(B,C). This is called an internal Hom, meaning it is the set of all graded maps of degree

0.
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Chapter 3

Bernstein-Gel’fand-Gel’fand Correspondence

Fix a field k. Let V,W be finite dimensional dual vector spaces over k. We define the elements

of W to have degree 1, so that the elements of V have degree -1. Let V have basis {e1, ..., en}

and W have basis {w1, ..., wn}. Then we define E =
∧
V to be the exterior algebra of V and

W = Sym(W ) to be the symmetric algebra of W , graded such that Si = Symi(W ) has degree

i and Ej =
∧j V has degree −j. Let M be a graded S-module and N be a graded E-module.

Let M be a complex of graded S-modules and N a complex of graded E-modules as below.

Note that we start with cohomological indexing and then add in the homological indexing later.

We start with the following complexes,

M : · · · →M i−1 ∂i−1
M−−→M i ∂iM−−→M i+1 → . . . ,

N : · · · → N i−1 ∂i−1
N−−→ N i ∂iN−→ N i+1 → . . . .

Fixing i for M i and N i we define R and L to be the following complexes,

R(M i) : . . . −→ Homk(E(j),M
i
j)

ϕij−→,Homk(E(j + 1),M i
j+1) → . . .

with ϕij : α 7→ [e 7→ Σnxnα(ene)].

L(N i) : · · · → S(j)⊗k N
i
−j

ψj−→ S(j + 1)⊗N i
−j−1 → . . . ,

with ψ : s⊗ n 7→ Σmxms⊗ emn.

Applying R to each M i results in the following complex,

12



· · · → R(M i−1)
F i−1

−−−→ R(M i)
F i

−→ R(M i+1) → . . . ,

with F i : α(−) 7→ ∂iM ◦ α(−).

Expanding this out, yields our double complex.

...
...

...

. . . // Homk(E(j + 1),M i−1
j+1)

F i−1
j+1

//

OO

Homk(E(j + 1),M i
j+1) F i

j+1

//

OO

Homk(E(j + 1),M i+1
j+1)

//

OO

. . .

. . . // Homk(E(j),M
i−1
j )

F i−1
j

//

ϕi−1
j

OO

Homk(E(j),M
i
j) F i

j

//

ϕij

OO

Homk(E(j),M
i+1
j ) //

ϕi+1
j

OO

. . .

. . . // Homk(E(j − 1),M i−1
j−1)

F i−1
j−1

//

ϕi−1
j−1

OO

Homk(E(j − 1),M i
j−1) F i

j−1

//

ϕij−1

OO

Homk(E(j − 1),M i+1
j−1)

//

ϕi+1
j−1

OO

. . .

...

OO

...

OO

...

OO

Notice that the arrows are going in opposite direction as in the earlier definition. In this

case, the line in the lattice where we gather the modules to create the total complex doesn’t

change. Now for the sign change, we chose the vertical differential to carry the −1 and write

(−1)iϕij in place of ϕij . Letting i, j vary, we have the following total complex,

. . .
∂t−2
R−−→

⊕
i+j=t−1

Homk(E(j),M
i
j)

∂t−1
R−−→

⊕
i+j=t

Homk(E(j),M
i
j)

∂tR−→ . . . ,

R(M)t =
⊕
i+j=t

Homk(E(j),M
i
j),

∂tR = {F i
j + (−1)iϕij}i+j=t.

We define L(N) in a similar manner. Take each N i in N and apply L to each producing the

following double complex:

13



...
...

...

. . . // S(j + 1)⊗k N
i−1
−j−1

Gi−1
j+1

//

OO

S(j + 1)⊗k N
i
−j−1 Gi

j+1

//

OO

S(j + 1)⊗k N
i+1
−j−1

//

OO

. . .

. . . // S(j)⊗k N
i−1
−j

Gi−1
j

//

ψi−1
j

OO

S(j)⊗k N
i
−j Gi

j

//

ψi
j

OO

S(j)⊗k N
i+1
−j

//

ψi+1
j

OO

. . .

. . . // S(j − 1)⊗k N
i
−j+1

Gi−1
j−1

//

ψi−1
j−1

OO

S(j − 1)⊗k N
i−1
−j+1 Gi

j−1

//

ψi
j−1

OO

S(j − 1)⊗k N
i+1
−j+1

//

ψi+1
j−1

OO

. . .

...

OO

...

OO

...

OO

Then we totalize the above double complex to get the following total complex,

. . . −→
⊕

i+j=n−1

S(j)⊗k N
i
−j

∂t−1
L−−→

⊕
i+j=t

S(j)⊗k N
i
−j −→ . . . ,

L(N)t =
⊕
i+j=t

S(j)⊗k N
i
−j,

∂tL = {Gi
j + (−1)i+1ψ}i+j=t.

Theorem. Bernstein-Gel’fand-Gel’fand (1978): The functor L, from the category of com-

plexes of graded E-modules to the category of complexes of graded S-modules, is a left adjoint

to functor R. [4]

Proof. We want to show that HomCom(S)(L(N),M) ∼= HomCom(E)(N,R(M)). Below we define

L : HomCom(S)(L(N),M) → HomCom(E)(N,R(M)), by looking at a chain map as a product of

maps in the category of modules. Then we need to check that this product of maps is a chain

map.

HomCom(S)(L(N),M) ⊂
∏
t∈Z

HomS(
⊕
i+j=t

S(j)⊗k N
i
−j,M

t)

(1) ∼=
∏
t∈Z

∏
i+j=t

HomS(S(j)⊗k N
i
−j,M

t)

(2) ∼=
∏
t∈Z

∏
i+j=t

Homk(N
i
−j,HomS(S(j),M

t))

14



(3) ∼=
∏
t∈Z

∏
i+j=t

Homk(N
i
−j,M

t(−j))

∼=
∏
t∈Z

∏
i+j=t

Homk(N
i(−j),M t

−j)

(4) ∼=
∏
t∈Z

∏
i+j=t

Homk(N
i ⊗E E(−j),M t

−j)

(5) ∼=
∏
t∈Z

∏
i+j=t

HomE(N
i,Homk(E(−j),M t

−j))

(∗)re-index ∼=
∏
i∈Z

∏
i=t−j

HomE(N
i,Homk(E(−j),M t

−j))

(6) ∼=
∏
i∈Z

HomE(N
i,

∏
i=t−j

Homk(E(−j),M t
−j))

(∗∗) ∼=
∏
i∈Z

HomE(N
i,
⊕
i=t−j

Homk(E(−j),M t
−j))

∼=
∏
i∈Z

HomE(N
i,
⊕
i=t+j

Homk(E(j),M
t
j ))

∼=
∏
i∈Z

HomE(N
i,R(M)i) ⊃ HomCom(E)(N,R(M))

Let f ∈ HomCom(S)(L(N),M), so that f := {{f ij}i+j=t :
⊕
i+j=t

S(j) ⊗k N
i
j → M t}t∈Z.

We track f through L to then check L(f) respects the differential in the category of complexes

of E-modules as we desire. The unmarked isomorphisms above are basically identities, i.e.

identities on the domain or codomain, and don’t affect f so we omit them.

(1) We start by applying the following isomorphism. Let R be a ring, let B be a left R-

module, and let (Ai)i∈I be an indexed family of left R-modules, then there is an isomorphism,

µ : HomR(
⊕
i∈I

Ai, B) →
∏
i∈I

HomR(Ai, B),

µ : h 7→ {hαi : Ai → B}i∈I such that αi is the inclusion of Ai →
⊕
i∈I

Ai.

With the inverse, µ−1 : {hi}i∈I 7→ {hipi}i∈I := h where pi is the projection of
⊕
i∈I
Ai → Ai

When we apply this isomorphism to our case we have the following,
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µ :
∏
t∈Z

HomS(
⊕
i+j=t

S(j)⊗k N
i
−j,M

t) →
∏
t∈Z

∏
i+j=t

HomS(S(j)⊗k N
i
−j,M

t).

(2) Now we apply the Hom-tensor adjunction:

T :
∏
t∈Z

∏
i+j=t

HomS(S(j)⊗k N
i
−j,M

t) →
∏
t∈Z

∏
i+j=t

Homk(N
i
−j,HomS(S(j),M

t)).

(3) Now we apply the isomorphism Homs(S(j),M
t) ∼= M t(−j) in the second component.

We have a similar isomorphism for the case of modules but now we need to deal with the

degree. Define ϕ : Homs(S(j),M
t) → M t(−j) where ϕ(p) = p(1S(j)). Since p is a degree

respecting map and 1 ∈ S(j) is in degree −j implies p(1) is in degree −j. Meaning we

need to shift elements in M t up by degree j, and hence p(1) ∈ M t(−j). Similarly we define

ϕ−1 : m 7→ (qm(s) = sm) for fixed m ∈ Mn(j), ∀s ∈ S(j). Now to see that they are

actually inverses of each other ϕ−1ϕ(p(s)) = ϕ−1(p(1)) = s(p(1)) = p(s) ∀s ∈ S(−j) and

ϕϕ−1(m) = ϕ(pm(s)) = pm(1) = (1)m = m. We now define our isomorphism:

Φ :
∏
t∈Z

∏
i+j=t

Homk(N
i
−j,HomS(S(j),M

t)) →
∏
t∈Z

∏
i+j=t

Homk(N
i
−j,M

t(−j)).

(4) Here we apply the isomorphism γ to the first component of Hom, γ : N i⊗EE(−j) →

N i(−j) where γ : n ⊗ e 7→ ne. Here n is not twisted and e has degree twisted by j.

Similarly,γ−1 : N i(−j) → N i ⊗E E(−j) where γ−1 : n 7→ n ⊗ 1E(−j). The degree is pre-

served by gamma since 1E(−j) has degree j. Now to see that they are inverses, γ−1(γ(n⊗e)) =

γ−1(ne) = ne ⊗ 1 = (n ⊗ 1)e = n ⊗ e and γ(γ−1(n)) = γ(n ⊗ 1) = (n)(1) = n. We define

the following isomorphism:

Γ :
∏
t∈Z

∏
i+j=t

Homk(N
i(−j),M t

j ) →
∏
t∈Z

∏
i+j=t

Homk(N
i ⊗E E(−j),M t

j ).
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(5) Now we apply Hom-tensor adjunction one last time.

T−1 :
∏
t∈Z

∏
i+j=t

Homk(N
i ⊗E E(−j),M t

j ) →
∏
n∈Z

∏
i+j=t

Homs(N
i,Homk(E(−j),M t

j )).

(*) Here we reindex the products.

(6) Following a similar set up as (1) we use the following isomorphism,

ν :
∏
i∈I

Hom(A,Bi) ∼= Hom(A,
∏
i∈I

Bi).

ν : {hi}i∈I 7→ {βihi}i∈I := h, such that βi is the inclusion of Bi →
∏
i∈I

Bi.

When we apply this isomorphims to our case we have the following,

ν :
∏
i∈Z

∏
t−j=i

HomE(N
i,Homk(E(−j),M t

j )) →
∏
i∈Z

HomE(N
i,

∏
i=t−j

Homk(E(−j),M t
j )).

(**) Given gradedR-modules {Mi}i∈I , their product is the graded module P =
⊕

m∈Z Pm

where Pm =
∏

i∈I(Mi)m. Here is the case we care about. Fix i ∈ Z,
∏

t−j=iR(M t)j =⊕
t−j=iR(M t)j . Below we prove it:

Proof. It suffices to show:
∏

n−j=iR(M t)jm =
⊕

n−j=iR(M t)jm∀m ∈ Z. That is, given only

m ∈ Z, there exists only finitely many pairs (t, j) such that t− j = i and R(M t)jm ̸= 0.

Let’s check this: R(M t)jm = Homk(E(j),M
t
j )m. Then note that M t

j is in internal degree

0 here. Thus, Homk(E(j),M
t
j ) lives in degrees −j,−j − 1, ...,−j − (t+ 1). So given m ∈ Z,

Homk(E(j),M
t
j )m ̸= 0 if and only if j ∈ {−m, ...,−m− (t+ 1)}. Thus, the only pairs (t, j)

such that t− j = i and R(M t)jm ̸= 0 are (i−m,−m), ..., (i−m− (t+1),−m− (t+1)).

So we have that L{f ij}i+j=t(n)(e) = {f ij(1⊗ ne)))}t−j=i. Now we confirm that the map

respects the differential, i.e. it commutes, L({f ij}i+j=t+1)(∂
t
N(n))−∂tR(L({f ij(n)}i+j=t)) = 0.

L({f ij}i+j=t+1)(∂
t
N(n))− ∂tR(L({f ij(n)}i+j=t)) =

= {f ij(1⊗ ∂iN(n)e)}i+1=t−j − {(−1)iϕij(f
i
j(1⊗ ne) + ∂iM(f ij(1⊗ ne)}i+1=t−j
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= {f ij(1⊗ ∂iN(n)e)}i+1=t−j − {(−1)iΣk
l xl(f

i
j(el(1⊗ ne))}i+1=t−j − {∂iM(f ij(1⊗ ne)}i+1=t−j

= {f ij(1⊗ ∂iN(n)e)}i+1=t−j − {(−1)iΣk
l xl(f

i
j(el(1⊗ ne))}i+1=t−j − {f ij(∂iL(1⊗ ne))}i+1=t−j

= {f ij(1⊗ ∂iN(n)e)}i+1=t−j − {(−1)iΣk
l xl(f

i
j(el(1⊗ ne))}i+1=t−j

− {(f ij((−1)i+1ψ(1⊗ ne)) + (1⊗ ∂iN(n)e))}i+1=t−j

= {f ij(1⊗ ∂iN(n)e)}i+1=t−j − {(−1)iΣk
l xl(f

i
j(el(1⊗ ne))}i+1=t−j

− {(−1)i+1f ij(Σ
k
l (xl(1⊗ elne))}i+1=t−j − {f ij(1⊗ ∂iN(n)e))}i+1=t−j

= −{(−1)iΣk
l xl(f

i
j(el(1⊗ ne))}i+1=t−j + {(−1)iΣk

l xl(f
i
j(el(1⊗ ne))}i+1=t−j

= 0

Hence we have shown that given a chain map f , L(f) is a chain map, but notice that that

the above argument can be traced backwards and shows that given a chain map L(f), then f is

a chain map.

Lastly notice that naturality is clear as the following diagram commutes as required for

f : N1 → N2 in Com(E) and g :M1 →M2 in Com(S),

HomCom(S)(L(N2),M1)

HomCom(S)(L(f),g)

��

∼= // HomCom(E)(N2,R(M1))

HomCom(E)(f,R(g))

��
HomCom(S)(L(N1),M2)

∼= // HomCom(E)(N1,R(M2)).
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Appendix A

Example

Let k be a field. Consider a vector space W generated by three elements, x0, x1, x2. Let V be

the dual of W , generated by e0, e1, e2. Again let E =
∧
V and S = Sym(W ). Consider E

as an E-module over itself. Similarly, let S be as an S-module. Recall that these are naturally

graded algebras and modules. Then the complex L(E) and R(S) have the form,

L(E) : 0 → S(0)⊗k E0 → S(1)⊗k E−1 → S(2)⊗k E−2 → S(3)⊗k E−3 → 0,

R(S) : 0 → Homk(E(0), S0) → Homk(E(1), S1) → Homk(E(2), S2) → Homk(E(3), S3) → . . . .

Notice that S(0) ∼= k and E(0) ∼= k. In general for a vector space generated by n variables the

lengths of the complex of L will be n + 1 since ei ⊗ ei = 0. So, the only element of degree

n+ 1 is e0 ⊗ ...⊗ en and anything that has greater degree would have a square.
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Appendix B

Macaulay2 Example

The bgg function in Macaulay2 is only the right adjoint R. It takes a finitely generated graded

S-module M and returns the ith map in the complex R(M). Here is the same example from

above that has been copied over from Macaulay2.

i1 : loadPackage "BGG";

i2 : S = ZZ/101[x_0..x_2];

i3 : E = ZZ/101[e_0..e_2, SkewCommutative => true];

i4 : M = Sˆ1;

i5 : bgg(0,M,E)

o5 = {-1} | e_0 |

{-1} | e_1 |

{-1} | e_2 |

3 1

o5 : Matrix E <--- E

i6 : bgg(1,M,E)

o6 = {-2} | e_0 0 0 |

{-2} | e_1 e_0 0 |

{-2} | e_2 0 e_0 |

{-2} | 0 e_1 0 |

{-2} | 0 e_2 e_1 |

{-2} | 0 0 e_2 |
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6 3

o6 : Matrix E <--- E

i7 : bgg(2,M,E)

o7 = {-3} | e_0 0 0 0 0 0 |

{-3} | e_1 e_0 0 0 0 0 |

{-3} | e_2 0 e_0 0 0 0 |

{-3} | 0 e_1 0 e_0 0 0 |

{-3} | 0 e_2 e_1 0 e_0 0 |

{-3} | 0 0 e_2 0 0 e_0 |

{-3} | 0 0 0 e_1 0 0 |

{-3} | 0 0 0 e_2 e_1 0 |

{-3} | 0 0 0 0 e_2 e_1 |

{-3} | 0 0 0 0 0 e_2 |

10 6

o7 : Matrix E <--- E

i8 : bgg(3,M,E)

o8 = {-4} | e_0 0 0 0 0 0 0 0 0 0 |

{-4} | e_1 e_0 0 0 0 0 0 0 0 0 |

{-4} | e_2 0 e_0 0 0 0 0 0 0 0 |

{-4} | 0 e_1 0 e_0 0 0 0 0 0 0 |

{-4} | 0 e_2 e_1 0 e_0 0 0 0 0 0 |

{-4} | 0 0 e_2 0 0 e_0 0 0 0 0 |

{-4} | 0 0 0 e_1 0 0 e_0 0 0 0 |

{-4} | 0 0 0 e_2 e_1 0 0 e_0 0 0 |

{-4} | 0 0 0 0 e_2 e_1 0 0 e_0 0 |

{-4} | 0 0 0 0 0 e_2 0 0 0 e_0 |

{-4} | 0 0 0 0 0 0 e_1 0 0 0 |

{-4} | 0 0 0 0 0 0 e_2 e_1 0 0 |

{-4} | 0 0 0 0 0 0 0 e_2 e_1 0 |
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{-4} | 0 0 0 0 0 0 0 0 e_2 e_1 |

{-4} | 0 0 0 0 0 0 0 0 0 e_2 |

15 10

o8 : Matrix E <--- E
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