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Abstract

Graph-formatted data is ubiquitous among different domains from social networks and

academic citation networks to drug-target interactions and others. Graph neural networks

(GNNs) have achieved outstanding performance in applying node classification, link pre-

diction, and node clustering, etc. However, there are two common questions asked by re-

searchers.

First, how to get a considerable amount of labeled high quality data? Data quality is

crucial in training deep neural network models. However, most of the current works in this

area have focused on improving a model’s performance with the assumption that the pre-

processed data are clean. Our first result is about improving data quality by removing noise

information. Here we build a real knowledge graph from data sets LitCovid and Pubtator.

The multiple types of biomedical associations of the real knowledge graphs, including the

COVID-19-related ones, are based upon the co-occurring biomedical entities retrieved from

recent literature. However, the applications derived from these raw graphs (e.g., associa-

tion predictions amongst genes, drugs, and diseases) have a high probability of false-positive

predictions as the co-occurrences in literature do not always mean a true biomedical asso-

ciation between two entities. We proposed a framework that utilized generative-based deep

neural networks to generate a graph that can distinguish the unknown associations in the

raw training graph. Two Generative Adversarial Network models, NetGAN and CELL, were

adopted for the edge classification (i.e., link prediction), leveraging unlabeled link informa-

tion based on the real knowledge graph. The performance of link prediction, especially in

the extreme case of training data versus test data at a ratio of 1:9, demonstrated that the

promised method still achieved favorable results (AUCROC > 0.8 for synthetic and 0.7 for

real dataset) despite the limited amount of testing data available.
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Second, what is the decision-making process of GNNs as it often remains a black box?

In addition, many of the models are vulnerable to adversarial attack. Our second result

focuses on the study of the robustness of GNNs. Recent studies revealed that the GNNs are

vulnerable to adversarial attacks, where feeding GNNs with poisoned data at training time

can lead them to yield devastative test accuracy. However, the prior studies mainly posit

that the adversaries can access freely and manipulate the original graph, while obtaining such

access could be too costly in practice. To fill this gap, we propose a novel attacking paradigm,

named Generative Adversarial Fake Node Camouflaging(GAFNC), with its crux laying in

crafting a set of fake nodes in a generative-adversarial regime. These nodes carry camouflaged

malicious features and can poison the victim GNN by passing their harmful messages to

the original graph via learned topological structures. These messages can maximize the

devastation of classification accuracy (i.e., global attack) or enforce the victim GNN to

misclassify a targeted node set into prescribed classes (i.e., target attack).
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Chapter 1

Introduction

1.1 Motivation

With the explosion of the amount of available data and computation power, Artificial

Intelligence has achieved tremendous progress. Examples include image-classification [1],

generation [2] and objective detection [3] in computer vision; Chat bot [4] for answering

customer questions, speech recognition [5] in virtual assistants and Grammarly [6] which

simplifies writing by conducting grammar checks. As such, researchers came up with two

frequent questions unanswered questions.

First, how can we obtain high quality labeled data? Most of the excellent performances

of machine learning tasks are formed from a large amount of available high quality labeled

data. Sophisticated AI algorithms or models that we see today would not perform well

without clean and quality data. Data has been increasingly important in our development

of AI-models. As Dr. Andrew Ng states ”Data is food for AI”, and true to his words,

attention has shifted from academic and industrial researchers using model-centric AI to

data-centric AI. Regarding the shortage of training data , especially for image data [7], we

would first need to create the generative models for generating more data. One exmaple is

the Generative adversarial networks [8] (GAN) as it is widely used in data augmentation

[9] and can generate realistic or specific style of images [10]. GAN also has been used for

generating text data [11] and even graph data [12]. However, the quality of labeling the

training data still plays a key in supervised learning tasks. Startup company Scale AI which

focuses on providing high quality training data for leading machine learning teams has raised

a total of 602.6 million dollars in 2021. Within this dissertation, we explore the capability of

applying GAN for generating similar graphs and used those graphs for filtering or removing
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noise or invalid links in our raw-built biomedical knowledge graph. This is the first study

that uses GAN to denoise a biomedical knowledge graph to the best of my knowledge.

Second, what is the deep neural network decision process? Many works have explained

the capability of convolution networks [13] in computer vision. However, it’s more complex

and not easy to interpret the result of a neural network as the graph are represented as vectors

in the model. Here, we will focus our studies on graph data instead of regular structured

data such as images and sequences. Graph data provides a universal representation of

data. In other words, various data are presented as graphs for example, social networks,

protein-protein interaction networks, knowledge graphs, etc. It becomes more challenging

when dealing with graph data, as there are different types of edges among graphs and each

node has different dimensional features. In addition, many real world problems can be

modeled as a set of computational tasks on graphs. Examples include anomalous nodes

detection, link prediction for knowledge graph completion, community detection through

graph clustering , and so on. As graph data becomes increasingly popular, the number of

deep neural networks designed for representation learning on graphs has increased, such as

network embedding [14, 15, 16] and graph convolution networks [17] and graph attention

[18], etc. Here, we want to explore the explainable and interpretable of the decision making

of GNN by analyzing its robustness. We will try to propose an attack algorithm on a graph

neural network (GNN) to explore the robustness of GNN. Compared with previous attacks

on GNN, our plan of attack is to insert poisoned camouflaged nodes instead of manipulating

the origin graph directly, and prove an attack success ratio in node classification tasks.

1.2 Thesis overview

The outline of this dissertation is as shown in Figure 1.1. As stated in our motivation,

we first want to explore the capability of automatically labeling graph data, and second, the

robustness of GNN on graph. The first result applies GAN for graph link prediction through

2



a case study on the denoising of a biomedical knowledge graph. The second work is about

a data poisoning attack on graph neural networks.

Figure 1.1: Thesis Overview.
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Chapter 2

Background

2.1 Graph representation

Figure 2.1: Graph representation

Most graphs can be represented by an adjacency matrix as per Figure 2.1, where there

is a total of five nodes and seven edges. Each node has a 3-dimensional binary feature.

Based on the direction of the edges, the graph can be categorized as a directed graph or

an undirected graph. Based on the value of the edge, the graph can divide into a weighted

graph or an unweighted graph. In addition, based on the type and number of edges or nodes,

there are heterogeneous graphs, bipartite graphs, multi-dimensional graphs, signed graphs,

hypergraphs, and dynamic graphs. Due to its universal and natural representation of the

complex world, many deep learning works are proposed based on graph data.

In many real life cases, graphs consist of a large number of nodes with very sparse

edges, and the degree of nodes obeys power-law distribution as per Figure 2.2 [19]. Instead

of representing a graph as an adjacency matrix, we explore the work NetGAN [20] which

uses random walks sampled from the graph as a representation. The random walks can

4



Figure 2.2: Power law degree distribution

be stored more efficiently, considering that the adjacent matrix has a lot of zero values.

Also, in a deep learning framework, we need fewer learnable parameters to fit our model

thus avoiding overfitting when training deep neural networks. Here, given an unweighted,

undirected, and connected graph G = (V,E) with nodes V = [N ] = 1, , N , edges E ⊆ V ×V ,

adjacency matrix A ∈ {0, 1}N×N , and degree matrix D = diag(d) ∈ RN×N , a single random

walk of length T is an ordered tuple R = (v0, ..., vT ) ∈ V T+1. In NetGAN, as shown in

Figure 2.3 in work [20]. The generator G was modeled as a sequence process based on Long

short-term memory architecture (LSTM)[21] fθ parameterized by θ. At each step t, given

the current memory state mt that consists of the cell state Ct, the hidden state ht, node

vt, and the fθ output distribution pt+1 over the next node vt+1 in the form of logits. Then

the next node represented as a one-hot vector is sampled from the categorical distribution

vt+1 ∼ Cat(σ(pt+1)), where σ(·) denotes the softmax function. This is proven by the equation

2.1 below.

(mt+1, pt+1) = fθ(mt, vt)

vt+1 ∼ Cat(σ(pt+1))

(2.1)

5



Figure 2.3: Overview of Framework in NetGAN

NetGAN is a generative model for graphs mainly used for generating new graph with

similar structures and graph statistics (for example, max degree, triangle count, Character

path length, etc.) as a given input graph. The generator G tries to learn an implicit

probabilistic model for generating random walks of fixed length T. The discriminator D tries

to distinguish the generated random walk from a node-sequence sampled from the input

graph. Both generator and discriminator use the Long short-term memory architecture

(LSTM)[21] and trained with Wasserstein loss [22]. As the original NetGAN did not consider

the weight of the link when sampling the random walk, we decided to adopt the sampling

method proposed in [23]. Also, when the graph is very sparse and we only want the edge

related to some specific nodes, we add a filter in the construction of the training graph to

prefer local homomorphism.

2.2 Generative Adversarial Networks for Discrete Data

Generative Adversarial Networks (GANs) are used widely in the computer vision area.

Typically, GANs consist of two models: a generator (G) and a discriminator (D) shown in

Figure 2.4. D and G are commonly implemented by any type of neural network as long as

the mapping from the prior noise space to data space is differentiable. The generator tries to

capture the distribution of the real data for new data example generation. The discriminator

6



Figure 2.4: The original GAN model

discriminates generated examples from the real examples as accurately as possible. The

optimization of GANs is a minimax optimization problem. The optimization terminates at

a saddle point whereby the generator will be at the minimum, and the discriminator will be

at the maximum. In other words, the optimization goal is to reach Nash equilibrium [24].

Finally, the generator in theory, has the capability to capture the true distribution of real

examples.

However, few recent works proposed applies GANs to sequence discrete data genera-

tion. e.g. natural language generation [25]. The reason behind this phenomenon is that

the generator network in a GAN is designed to be able to adjust the output continuously

instead of doing discrete data generation, and the discrete outputs from the generative model

make it difficult to pass the gradient update from the discriminator to the generator. The

development of recurrent neural networks widely applied to produce sequences of tokens, is

used in machine translation [26, 27]. There has been an increase in publishings after [28]

proposed that sequence data generation can turn into a sequential decision-making process.

These publications open the door for solving this problem by applying reinforcement learning

techniques [26, 29, 30].

Although GAN could be used to generate graphs via random walks, it can also remove

noise based on the generated graph. The first work in which applied graph generation is
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Figure 2.5: Generative Adversarial Networks with Binary Neurons

proposed by [31], takes the graph as an image. Inspired by the idea from the [31], we

investigated NetGAN and CELL[32] in link prediction when the labeled edges are limited.

And in our second work, we are trying to generate poisoned features for newly added nodes.

We applied the GAN with binary neurons in our attack framework, as show in Figure 2.5

which details the framework of binary neurons [33]. Here, we provided the implementation

of both deterministic binary neuron and stochastic binary neuron for flexibility.

2.3 Adversarial Attack on Graph Neural Networks

2.3.1 Graph Neural Networks (GNNs)

GNNs originated from the idea of extending neural networks from Euclidean spaces to

discrete graphs [34]. The key idea lies in learning enriched node embeddings that recur-

sively aggregate information from their neighborhood through message-passing. As shown

in Figure 2.6 from work [35], the model first defines the computation graph then all the

nodes update their status through the defined aggregation function. Depending on the var-

ious realization of aggregation functions suggested by [36, 37], existing GNN works form

two categories: spectral-based methods and spatial-based methods. Motivated by the suc-

cesses of convolutional neural networks, the spectral-based methods generalize the concept
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and design of convolution filters from continuous image pixels to the domain of graph spec-

tral [38, 39, 40, 41, 38, 42]. However, these spectral-based GNNs usually require the whole

Figure 2.6: Learn how to propagate information across the graph to compute node features

graph as the input, thereby being bottlenecked for graphs at a real-world scale due to the

high memory and computational cost.

To improve efficiency and scalability, subsequent spatial-based methods [43, 44] were

proposed, defining message aggregation operations directly on the graph topological struc-

tures with subgraph windows or node sequences. Representative works include the Graph

Attention Networks [45, 46], which assigns different weights for neighboring regions in the

message-passing process. In such a way, the GNN models are able to operate on graphs

with stochastic inputs, instead of the entire topology, thereby leading to much improved

memory efficiency. Despite their differences, the main idea behind the two threads of GNNs

remains constant, where an embedding space harmonizing both graph topological structure

and nodal features is desired. We have modeled a generic GNN as a victim model which is

discussed in Section 4.2 to respect this key concept without losing generality.

We note that our GAFNC paradigm is general and can be exploited to attack GNNs

with various architectures, with the only leverage being the gradient information of the
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victim GNN. During implementation, attacking the graph convolutional network (GCN) is

exemplified to substantiate the viability of the GAFNC paradigm.

2.3.2 Adversarial Attack and Defense on Graphs

Figure 2.7: A demonstration of fast adversarial example generation applied to GoogLeNet
(Szegedy et al., 2014a) on ImageNet.

The robustness and vulnerability of deep neural networks have been extensively stud-

ied in continuous Euclidean domains, including images [47, 48], acoustics [49], and natural

languages [50]. As per Figure 2.7 in [51], when there is a small intentional perturbation to

the clean image, the deep model would make a false prediction. This domain was highly

motivated by [52]’s seminar work, which reports that human-imperceptibly small perturba-

tions on the input data can be escalated through the layer-by-layer representation of a deep

network. Hence, it leads to the shift of correct classification boundaries and thus disastrous

accuracy results. Starting from [53], the security issues of GNNs has been brought into wide

attention. Mainstream attack techniques on GNNs are categorized into evasion attacks and

poisoning attacks. Defense techniques to counter against both attack techniques are pro-

posed in [54, 55, 56, 57]. To compare, in the evasion attack, the adversaries are tasked to

mislead the models to make incorrect predictions on the manipulated data in the test time.

However, the models can still keep their accuracies when given normal, undistorted data

samples [58, 59].
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Figure 2.8: Small perturbations of the graph structure and node features lead to misclassi-
fication of the target.

Poisoning attacks, in contrast, strive to reduce the performance of GNN models dur-

ing training, so that the poisoned models can not give a reliable prediction on any test

samples [60, 61, 62]. So by this definition, our GAFNC approach falls into the category

of poisoning attack. Prior arts mainly posit that the adversaries are given the privilege to

manipulate the training data arbitrarily, such as adding or deleting graph edges [60, 62] or

changing nodal features [61]. As per Figure 2.8 from [63]. Also, this assumption could be too

costly to be realized in real-world applications, e.g., hacking into a social network infrastruc-

ture such as Twitter or Facebook, limiting the practicality of the existing proposals. To fill

the gap, our GAFNC paradigm aims to craft a set of adversarial nodes and propagate their

camouflaged malicious features via strategically learned connections to the original graph,

which needs no access to the training data and thus is more practical.

We note that the recent studies of node injection attack focusing on creating new nodes

can use either evasion [64, 65, 66] or poison [67, 68] settings. However, these studies only

consider destroying the model performance in test or training. They fail to consider stealthi-

ness of the injected nodes. That said, their crafted nodes usually carry vicious contents that

prominently differs from the original nodes. Our GAFNC approach performs better against

these node injection attackers by leveraging a generative adversarial network (GAN) [69, 70]

to generate camouflaged adversarial nodes, Our GAFNC process two properties: 1) The gen-

erated nodes enforced look like and follow a similar feature distribution as the original nodes;
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2) The connectivity between the new and the old nodes shares the same graph properties

e.g., sparsity, average degree, as the original graph. As such, the fake nodes generated by

our GAFNC approach can fool outlier detectors [71] and hence it performs poisoning attack

in a more stealthy fashion.
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Chapter 3

Deep Denoising of Raw Biomedical Knowledge Graph from COVID-19 Literature, LitCovid

and Pubtator1

3.1 Introduction

The effects of the pandemic caused by the coronavirus disease 2019 (COVID-19) linger

in 2022—globally affecting over 11.6 million people in the past year, and accounting for over

2.5 million deaths in more than 220 countries [72]. With the continuous accumulation of

peer-reviewed publications on the topic, a literature hub serves as a means to track the most

up-to-date scientific information about the virus [73]—encompassing research on treatment,

diagnosis, and prevention of COVID-19. A knowledge base built upon the integration of the

biomedical entities, from such a literature hub, provides tremendous value to the exploration

of the explicit or implicit associations amongst diverse biomedical entities as investigators

attempt to answer clinical questions related to COVID-19. A number of recently published

journal articles have included graph-based analysis of COVID-19 datasets [74]. For example,

Groza [75] has analyzed how a semantically annotated dataset would be helpful in detecting

and preventing potentially harmful misinformation regarding the spread of COVID-19 based

on CORD-19-on-FHIR [76].

Most knowledge graphs constructed for COVID-19 are currently based upon the co-

occurring biomedical entities of recent literature. A knowledge graph of co-occurring con-

cepts, such as the one created by Oniani et al. [77] can help researchers find associations

among genes, drugs, and diseases related to COVID-19. Utilizing knowledge graphs with het-

erogeneous biomedical associations (e.g., gene-drug, disease-drug, drug-side effect) in these

1This work was done at Mayo Clinic, under the supervision of Dr. Nansu Zong

13



types of applications, however, results in a high probability of false-positive predictions be-

cause the co-occurrence in literature does not always mean a true biomedical association

between the two entities. These co-occurrence edges, hence, are considered, “noise,” due to

its untrue associations. For example, the term, “glucose,” may co-occur with the term, “yel-

low fever,” but there is no real medical association between the two terms. Noise removal

can be beneficial to downstream applications, such as link prediction [78], representation

learning [79, 14], and node classification [80].

The manual processes of cleaning data and removing noise are resource-intensive. There-

fore, an automated denoising method is ideal in facilitating the curation of knowledge graphs.

Existing methods for denoising knowledge graphs can be divided into two groups: internal

and external [81]. For the internal method, the predefined semantics or rules [82] are used

for non-numerical data. The outlier detection [83] removes noise by modeling the real facts

data as a distribution for numerical data. As for external methods, a pre-trained Graph

Neural Network integrates heterogeneous data sources, [84] not only improving the perfor-

mance of link prediction but also reducing the training time of the existing GNN model. In

this work, our investigated methods can be categorized as an internal method where data

augmentation with Generative Adversarial Network (GAN) removes noise. GAN has been

widely applied in the medical imaging process [85] to denoise CT images based on generative

adversarial networks with Wasserstein distance and perceptual similarity. Zhou et al. [86]

has previously shown improvement of ultrasonic image quality and noise reduction caused

device limitations through the construction of a two-stage GAN. Other than the application

of generating images, GAN has mainly been used for generating discrete medical data to-

ward contributing to the scenario of diagnosis of disease with few labels [87] or unbalanced

classification [88].

Specific contributions of this work are as follows:

1. To the best knowledge of the authors, our study is the first study that uses GAN

to denoise a biomedical knowledge graph. we propose a framework that generates a
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similar graph from a raw knowledge graph to distinguish the true and false edges of

association based on generative-based deep neural networks. Two recent generative-

based models, Cross-Entropy Low-rank Logits (CELL) [89] and a generative-based

graph method, NetGAN [90], have been adopted as a component to remove noise and

retain true associations.

2. Our framework has generated two datasets. The first one is synthetic data generation

which simulates the process of labeling and the quality of unlabeled data with annota-

tion ration and noise ratio. Second, we build a real dataset from raw RDF turtle and

human annotation 500 edges.

3. Extensive experiments are carried out over two datasets. The performance of link

prediction, especially in the extreme case of training data versus test data at a ratio

of 1:9, demonstrated that the proposed method still achieved favorable results (area

under the receiver operating characteristic curve > 0.8 for the synthetic data set and

0.7 for the real data set), despite the limited amount of testing data available.

3.2 Problem definition

Given a network G(V, E) where V stands for a set of vertices (i.e. biomedical concepts

in the literature) and E represents the edges among two vertices (i.e. the co-occurrence of

two concepts), two kinds of edges exist, which are denoted as L (known true associations)

and U (unknown true associations). Please note, if no edge exists between two vertices, we

call it a false association. The goal of this study is to find the true associations among U (i.e.,

denoise U). Specifically, a proposed method should have the capacity to determine whether

an unknown true association from U is a true association or false.
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Figure 3.1: Overview of our investigation process.

3.3 Methodology

3.3.1 Framework

As this problem could be considered a classification of an unknown edge with a small

number of known true associations and a large number of unknown true associations, we

define this classification problem as few-shot learning (FSL) [91]. We propose a framework

that utilized generative-based deep neural networks (e.g., NetGAN and CELL) to denoise

the unknown true associations in U, based on similar networks generated. This framework is

divided into three parts. We first briefly describe the GAN-based denoising graph adopted

behind the development of the framework followed by an introduction of data preparation,

which is comprised of two strategies: 1) synthetic data generation and 2) real dataset col-

lection and annotation. Then, a comprehensive design of our experiments is conducted to

verify our assumptions.

3.3.2 Denoise based on generative-based deep neural networks

We adopted NetGAN to generate a new network that would be used to distinguish the

unknown associations in the raw training data (i.e, graph). To achieve this, we randomly

sampled walks from the raw graph consisting of unlabeled edges and trained a generator to
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learn the walks sampled and a discriminator on how to separate a real walk and a fake one.

After achieving equilibrium among the discriminator and generator, the random walk sample

from the generator was used for filtering the unreal edges in the raw graph. As in work [89],

sampling enough random walks was sufficient to reconstruct the graph. Both the generator

and discriminator used the Long short-term memory architecture (LSTM) [92] and were

trained with the Wasserstein loss [93]. The generator G generated large numbers of random

walks (nodes sequence) of fixed length. The discriminator D distinguished the sequence of the

nodes sampled from G and x which were sampled from the real graph (including unlabeled

associations) with randomly started nodes. D and G played the following minimax game

with the value function V(D,G):

min
G

max
D

V (D,G) = Ex∼plabel(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.1)

Finally, the D generated a similar authentic graph network that could not be distinguished

by the discriminator G.

To generate the probability of the edges, CELL approximated it with a score matrix

S, which was computed by S
nT

a.s.−−−−−→
n,T−>∞

diag(π)P , where n is the number of random walks,

T is each length of a random walk and diag(π) is the stationary distribution matrix. P

a transition matrix that proximates the unbiased random walk used in NetGAN. P can

be low-rank approximated by W , which is the logit transition matrix and is solved by the

objective function as:

min
W∈RN×N

−
N∑

k,l=1

Ak,l logσrows
(W )k,l −

N∑
k,l=1

Ak,l[Dk,l ≤ k] logσrows
(W )k,l (3.2)

where the A is the adjacency matrix and s.t. rank(W ) ≤ H.

Instead of the random walk as origin implementation, we further adapted node2vec[94]

for the random sampling process in NetGAN to more flexibly control the preference of DFS

or BFS transition among walks. Also, through constraining the edge generation length with
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k in the above loss function in CELL, we adapted the method to allocate more preference

to the local homophily of the graph.

3.4 Experiments

3.4.1 Data preparation

Figure 3.2: Synthetic dataset

We generated two datasets for this study: 1) a synthetic dataset based on CORA-ML,

and 2) a real dataset extracted from CORD-19-on-FHIR datasets [76]. First, we defined

two types of associations: labeled associations denoted as (L) [red colored] and unlabeled

associations represented as (U) [green colored] (Figure 3.1), based on two types of association;

this was used to construct our training and test graphs. The training graph consisted of both

the labeled (L) and unlabeled (U) associations, while there were only labeled (L) associations
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Figure 3.3: Real dataset

in the test graph, as we need the ground truth for evaluating the performance of our proposed

methods. The histogram of each dataset is given below, where (Figure 3.2) is the synthetic

dataset. This does not include the false associations added in our subsequent experiments.

(Figure 3.3) shows the histogram of degree in the real dataset.

Synthetic Dataset The synthetic dataset was formed based on CORA-ML with the

same preprocessing work as NetGAN [20]; we chose the largest connected component (LCC)

in the graph. The final total number of nodes and edges is shown in the top right corner

of (Figure 3.2). We took as ground truth the existing edges as true associations, and the

nonexistent edges as false associations, to test our proposed methods.

Synthetic dataset generation First, a positive association graph was constructed

from the origin adjacency matrix labeled as 1. Second, a negative association graph was

sampled based on the 0-labeled elements in the origin adjacency matrix. Finally, we merged
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the two types of associations in one graph as our synthetic dataset. (Also, as a restriction

of NetGAN, we also colored the minimum spanning tree as red which will be kept in the

training set.) An example is shown in (Figure 3.4) for the whole pipline of constructing the

synthetic dataset.

Figure 3.4: Synthetic dataset construction pipeline

# Litcovid # Pubtator

Chem-Dise 1572-104 3728-7748
Gene-Dise 2304-124 5146-8540
Gene-Chem(filtered) 1499-1318 4725-3352
Gene-Chem(queried) 2350-2014 20,881-13,518

Table 3.1: The raw dataset with node numbers counted from Litcovid and Pubtator

Real dataset From CORD-19-on-FHIR [76] (a linked data version of the COVID-19

Open Research Dataset (CORD-19) data represented in FHIR RDF by mining the CORD-

19 dataset and adding semantic annotations), we utilized two annotated networks (Litcovid

[95], Pubtator [96]), extracting the COVID-19 related terms in our SPARQL query with

three types of biomedical concepts (i.e., Gene, Chemical, Mutation/Disease). After merging

identical IDs from both Litcovid and Pubtator, we were able to obtain a new dataset with

a total of 23578 nodes (Figure 3.3). Finally, we randomly chose a proportional number of

edges with a total of 500 associations (i.e., Chemical-Disease, Gene-Disease, Gene-Chemical
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associations) from a total of 288270 edges in the whole graph and manually labeled them as

our labeled dataset.

Type # Number # Labeled(ground truth)

Chem-Dise 228,148 350
Gene-Dise 32,611 100
Chem-Dise(filtered) 27,511 50
total 288,270 500

Table 3.2: Constitution of our real dataset with different types of edges

Figure 3.5: Degree of gene-chem types of edges in real dataset

Real dataset preprocessing and statistic (Table 3.1) shows the detailed number of

associations we preprocessed and collected from the raw data, as well as data filtered from

the Gene-Chem associations (by requiring that the vertices must appear in our previous two

types of associations) (Chem-Dise, Gene-Dise). After merging the identical node id within
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Figure 3.6: Degree of gene-dise types of edges in real dataset

the same category, we got a total of 23587 nodes. (Table 3.2) shows the number of the three

types of edges and the corresponding labeled ground truth. Except for the histogram of

degree in all associations reported in the manuscripts. Here we report the histogram degree

of each type of association in our (Figure 3.5, 3.6, 3.7).

3.4.2 Experiment design

We conducted experiments on both a synthetic dataset (i.e., CORA-ML) and a real

dataset extracted from CORD-19-on-FHIR, in order to investigate the capability of our

proposed methods of incorporating unlabeled information for improving the link prediction

performance despite limited annotation. We analyzed the performance of our models with

multiple tasks based on two types of ratios to mimic the percentages of noise and annotation

during the data curation: 1) Noise Ratio (NR), the percentage of true and false association
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Figure 3.7: Degree of chem-dise types of edges in real dataset

in the unlabeled edges; and 2) Annotation Ratio (AR), the percentage of training and testing

association in the labeled edges.

Task (1): Test of Annotation Ratio (AR) over the synthetic dataset.

We wanted to understand how many annotations were needed during the data curation for

our proposed method to predict the true and false associations. We set a fixed NR and

evaluated the performance of the tested method in two cases: one included the unlabeled

data (i.e., training set=labeled true and false associations + unlabeled associations), and

another one did not include the unlabeled data (i.e., training set=labeled true and false

associations). The unlabeled associations were taken as true associations for training. In

the experiment, we tested the performances based on different AR to mimic the percentage

of the annotations already completed during the data curation. In practice, the AR varied
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from 1:9 to 9:1. For each ratio, we repeated 10 times with a random sampling of the training

and testing sets to get the average results.

Task (2): Test of Noise Ratio (NR) over the synthetic dataset.

In this task, we wanted to understand how many false associations were deemed as true

associations in unlabeled data for training because it affected the performance of the proposed

method in prediction. We wanted to see whether the proposed method was robust enough

to learn useful information for prediction, especially from unlabeled edges with more noise.

With a fixed AR of 1:1, we tested the proposed method when the false edges were more than

the real edges in the unlabeled data. In practice, the NR varied from 1:1 to 1:9.

Task (3): Test over the real dataset.

After the same training of annotation, two of the co-workers (C.J. and Y.Y.) manually

labeled the 500 edges from 288270 to simulate an extreme use case for data curation, and

the coworker (V.N.) verified the annotation by random sampling the edges. Among the

500 edges, three types consisted of Chem-Dise, Gene-Chem, and Gene-Dise. Each edge

was marked as true, false, and unknown. In practice, the annotations for the gene-chem

were excluded and marked as unknown in the final evaluation after discussion and reaching

consensus among the authors that they were conducted without enough confidence. Thus,

in our final result report of the ROC curve, we only considered two types of associations

Chem-Dise and Gene-Dise.

3.4.3 Setting and evaluation metrics

For each proposed method (i.e., NetGAN and CELL), a grid search strategy was adapted

for obtaining the best hyperparameters. In our experiment, we defined the search range by

referencing the original settings in the articles. For NetGAN, the parameter ranges for

the grid search are specified as walk p = 0.01, 0.1, 1, 10, 100 and q = 0.01, 0.1, 1, 10, 100. For

CELL, the parameter ranges are specified as rankH = 9, 20, learning rate lr = 0.01, 0.05, 0.1,
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and weight decay weightdecay = 1e− 5, 1e− 6, 1e− 7. In practice, the origin NetGAN was

obtained from [97] , and the origin CELL was obtained from [98].

In the evaluation step, we chose the area under the receiver operating characteristic

curve (AUC ROC) and Average Precision (AP) as the metrics of link prediction for our

proposed methods in both synthetic and real datasets. In the implementation, both AUC

ROC and AP scores were calculated by scikit-learn [99]. The visualization of predicted

results in our real dataset was a plot with Cytoscape [100], an open-source software platform

for visualizing complex networks and integrating these with any type of attribute data.

3.5 Results and Conclusion

3.5.1 Results

Task (1): Comparison of the link prediction results in a graph with/without the

unlabeled associations among different annotation ratios.

We conducted our experiments in two scenarios, one was the base case (dash line was used

in Figure 3.8) where we tested our models without using the unlabeled information, without

explicitly stating as the base case, all of our statements in the following would be the default

case (solid line is used in our Figure 3.8) that indicated that we included the unlabeled

associations in the link prediction tasks. We reported the AUC ROC score in figure 3.8.

Here, the Figure 3.8 displayed the AUC ROC curve with a fixed annotation ratio of 0.5. The

dashed line named “Base NetGAN” meant the method of NetGAN without incorporating the

unlabeled information. Detailed information about the adaption of NetGAN can be found

in our appendix. The same goes for “Base CELL” which stands for the method CELL runs

in the base case. There was no big difference between the two methods when considering

the base case with AUC ROC Score as 0.597 for NetGAN and 0.591 for CELL. However,

when unlabeled information was taken into consideration, both methods achieved better

performance compared with the base case, the AUC ROC Score of NetGAN has 0.724 and

CELL achieved 0.828. The Figure 3.9 showed the performance of the proposed methods in
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Figure 3.8: AUC ROC performance of NetGAN and CELL with/without unlabeled infor-
mation at AR=0.5

different annotation ratios ranging from 0.1 to 0.9. We saw the CELL had overall better

performance.

Task (2): How are the models performing with different noise ratios in the

unlabeled edges. We tested the performance of methods when the unlabeled information

contained a different ratio of by a factor of 10 (Figure 3.10). CELL demonstrated exceptional

performance when the noise ratio equaled 1:1. And even in the extreme case where the true

vs false ratio reached 1:9, CELL still had better performance compared to NetGAN with

an AUC score of around 0.7. The performance of CELL had less variance compared with

NetGAN in all noise ratios. In other words, CELL had a relatively better capability and

stability to utilize unlabeled data compared with NetGAN when dealing with the complexity

of the noise ratio in the unknown information.
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Figure 3.9: AUC ROC performance of NetGAN and CELL with/without unlabeled infor-
mation with different AR

Task (3): The performance of proposed models in our collected real dataset.

After our exploration of our methods in task 2, we conducted our methods on a real dataset.

Although the noise ratio was unknown in our real dataset, the proposed methods still per-

formed better than random classification with the incorporation of unknown associations.

Also, compared with NetGAN, CELL still had an impressive result with ROC-AUC achieved

up to around 0.706 when the test and train ratio was 1:1 and the unknown association oc-

cupied about 99.95% as shown in Figure 3.11.

The good performance of CELL showed that it had an excellent capability to predict

the true association with the use of unlabeled data. We reported the ROC-AUC value of

each type of association separately in (Figure 3.12).
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Figure 3.10: Performance of AUC Score in different noise ratios (NR)

Combining the figure of edge degree of each type of association in (Figure 3.5, 3.6, 3.7),

we concluded that, as the degree is larger, there would be more noise contained in each edge.

Thus, the results would be affected correspondingly. The performance of average precision

for our proposed models in our synthetic and real datasets can be found in Figure (3.13 and

3.14).

Denoised knowledge graph generated from the real dataset. We trained the adapted

NetGAN with the whole real dataset, and plot the predicted denoised knowledge graph in

(Figure 3.15), where the edges are generated based on the score matrix calculated following

the generation method used in NetGAN. There are a total of 21,016 edges in our visualization

consisting of Gene-Chem (7562), Gene-Dise (7613), and Chem-Dise (5841). Three different

colors (red, green, and blue) stand for three different types of associations/edges (Gene-

Chem, Gene-Dise, Chem-Dise). The prediction can be found at [101].
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Figure 3.11: Performance on real dataset

3.5.2 Discussion and Conclusion

Despite the capability and stability of our proposed methods shown in this study, there

are a few limitations that need to be discussed.

Firstly, the associations labeled in the real dataset are limited due to the limited re-

sources. In addition, with the reality of vagueness or missing concepts found in different

biomedical literature, there will be some bias. A large sample of annotated associations may

provide a solution to reduce this bias and thus is needed in our future work. One way to

potentially accomplish this goal would include utilizing NLP methods to standardize the

concepts prior to annotation, which may improve the construction of knowledge graph input

to our methods. Another way includes collaborating with professional annotators to both

increase the number of annotations as well as improve the quality.
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Figure 3.12: AUC ROC Score for different types of associations in the real dataset.

Secondly, while we have achieved notable improvement with AUC around 0.7 in our real

dataset compared with random classification, there is still a gap between the experimental

results in a controlled environment compared to the adaptation of the proposed method

for data curation in real-world scenarios. Performance improvement is still needed. The

complexity of our investigated algorithm comes from the module of LSTM which generates

random walks for reconstructing the graph. An adaption of binary neurons [102] that directly

produces the discrete adjacency matrix for the graph may have the potential to significantly

improve the efficacy of our investigated methods as reconstruction of the adjacency matrix

from random walks will not be needed. Another approach to improving the performance of

removing noise in our investigated methods could be looking into the possibilities of transfer

learning or external methods as we discussed earlier, such as [103]. By importing prior

knowledge into the process of graph generation, we could employ the knowledge from an
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Figure 3.13: AP performance of NetGAN and CELL with/without unlabeled information in
synthetic dataset.

already built dataset [104] to help us remove the false associations when constructing our

biomedical graph.

Thirdly, our evaluation was based on the logic of classifying the true or false associa-

tions directly, and intentionally not focused on the impact evaluation of the denoised datasets

generated in our work on the downstream applications (e.g., the prediction for drug-target

association and protein-protein interaction). While we assume the performance will be im-

proved in those applications [36], we acknowledge that there has not yet been any scientific

proof to support that. The whole data stream, including the methods of data processing,

data curation (i.e., denoising method proposed in this study), and the application needs to

be investigated further to fill this gap—ideal in providing convincing evidence of the impact

of our proposed method in denoising knowledge base construction.
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Figure 3.14: Average Precision Score for different types of associations in real dataset.

In this study, we proposed a method to automate the denoising of a knowledge graph

generated via the counting of co-occurrence from biomedical literature. Our work can be

considered as the pre-processing part for the curation of the knowledge graph. We adopted

the state-of-the-art generate-based graph methods, NetGAN and CELL, to leverage the

unlabeled co-occurred biomedical entities in the training process by the perturbation of the

original graph in the determination of an unknown edge. Two datasets (i.e., synthetic and

real datasets) were used to evaluate proposed methods in three link prediction tasks, and

our experiments showed promising results achieved with both synthetic and real datasets.
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Figure 3.15: Visualization of the predicted knowledge graph based on the real covid-19
related dataset.
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Chapter 4

Camouflaged Poisoning Attack on Graph Neural Networks

4.1 Introduction

Graph neural networks (GNNs) have enabled many web applications and multimedia

systems to envision a higher level of automation in data analytics, such as malicious user

detection in social media [105, 106], interest group discovery in recommender systems [107,

108, 109, 110], event prediction in service networks [111], to just name a few. Data in

such applications are represented by graphs, in which the information is encoded in two

channels – 1) the contents of the nodes and 2) the topological structure that encodes their

correlations. The key to the success of GNN lies in its harmonized representation learning

of the two information channels through message-passing. At each GNN layer, the node

representations are enriched by collecting information from their immediate neighbors; By

stacking multiple such layers, the neighborhood information traverses through the graph,

allowing the nodes acquire knowledge about their wider surroundings.

Despite its effectiveness, this message-passing mechanism requires robustness and trust-

worthiness of GNNs. Indeed, recent results show that the training data of GNNs can be

easily poisoned by making slight perturbations to the input graph, e.g., manipulating the

edge connections [53, 60] or changing contents of existing nodes [58]. Training the GNNs

with the poisoned graph data shall lead to diminished or even disastrous test performance.

Spurred by this awareness, several researchers addressed the problem of defending GNNs via

detecting and correcting the distorted graph information, such as adversarial edge correc-

tion [112, 113, 114] and nodal perturbation detection [115, 116].

Although the field of GNN attack and defense is popular, most existing methods are

built upon a strong assumption, namely, the adversaries have full access to the training
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graph data and can make any changes at will. This assumption is restrictive in many real

applications. Take online business networks for example, where the attackers aiming to

poison and fail an anti-scam system must hack into the customer/merchant accounts to

change their contents (i.e., nodal features) or connection with other users (i.e., edges), which

is indeed onerous, costly, and time-consuming. To lift this assumption, one may think to

perform a node injection attack [64, 65, 67, 66, 68], where a set of fake nodes (e.g., user

accounts) are created and added to poison the graph. Also, this idea does not work well

in practice, as the fake nodes usually carry vicious contents which are so prominent that

their pattern differs from the benign nodes drastically, and simple classifiers, e.g., an outlier

detector [71], can easily spotlight and hence screen out the added fake nodes.

Motivated by this, we in this work mainly investigate two questions:

1. Can we poison GNNs without manipulating the original training graph?

2. Can the poisoning attack be performed in a stealthy fashion, such that current outlier

detectors are fooled?

Our affirmative answers are provided through a novel attacking paradigm against GNNs,

termed Generative Adversarial Fake Node Camouflaging (GAFNC). The key idea of GAFNC

is to leverage the power of Generative Adversarial Networks (GAN) [69, 70] to synthesize

an inconspicuously small set of adversarial nodes, each of which carries seemingly authentic

yet distorted features. By connecting these new nodes to the original graph with different

strategies, the malicious information hidden behind them are aggregated through message-

passing, poisoning the victim GNN in two ways. First, our GAFNC can perform a global

attack, where the new nodes scatter across the graph and strive to lower the classification

accuracy of the victim GNN over all original nodes uniformly. Second, we can control the

poisoning attack at a finer level of granularity by performing a target attack, where the new

nodes neighbor a set of target nodes, forming a deliberate topology that encourages the

victim GNN to misclassify the target nodes into prescribed classes.
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Specific contributions of this work are as follows:

1. This is the first work to investigate the poisoning attacks against GNNs in a generative-

adversarial regime. Our explored problem is novel in the sense that 1) we do not

require access nor manipulation of the original nodes or edges and 2) our attack is at

the training time, while the prior studies mainly focus on test time, evasion attacks;

The challenges and goals thus differ and have be discussed in Section 2.2.

2. A novel GAFNC paradigm is proposed to realize both global and target attacks, where

seemly-authentic nodes that form legitimate connectivities with the original graph are

generated. Technical details are scrutinized in Sections 4.2, and 4.3.

3. Extensive experiments are carried out over four widely used real-world graph datasets,

with the results demonstrating the viability, effectiveness, and stealthiness of our pro-

posed attacking approach. Section 4.4 extrapolates the findings.

4.2 Problem definition

Node Classification with GNNs. This work uses the following conventions. Let G =

(V,A,X) denote an attributed graph, where V = {v1, . . . , vN} is the set of N nodes, A ∈

{0, 1}N×N is the adjacency matrix encoding the graph topology, where Ai,j = 1 if an edge

exists between two nodes vi and vj and Ai,j = 0 otherwise. Denoted by X = {x1, . . . ,xN} ∈

RN×D is the nodal feature matrix, where each node is associated with a D-dimensional

feature vector.

The problem of node classification on graphs is usually framed in a transductive learning

setting. Our work follows this convention. Given a small subset of nodes being labeled,

denoted by VL = {(v1, y1), . . . , (vL, yL)}, where yi ∈ {C1, C2, · · · , Ck} is the true label of vi

and there are k possible classes in total. The goal is to learn a function that can accurately

predict the labels of the remaining unlabeled nodes VU := V \VL, where |VU | > |VL|.
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GNNs have manifested their remarkable classification performance in the literature [36,

37]. Despite their many variants, the core function of GNNs is message-passing, where each

node is represented in an enriched latent space by aggregating information from its neighbors.

A generic formulation of this representation learning mechanism takes a recursive form as

follows.

hl
i = ϕl

(
hl−1
i ,Agg

(
{ψl(hl−1

j ) | j ∈ Ni}
))
, (4.1)

∀l = 1, 2, . . . ,M, h0
i = xi,

where, for node vi at the l-th layer, hl
i denotes its latent representation, Ni encloses its

first-order neighbors, Agg(·) aggregates information/messages from its immediate context,

and ϕl and ψl implement arbitrary learnable transformations. In this work, we implement

ϕl and ψl with a non-linear activation and a linear mapping, for the sake of simplicity and

without loss of generality, reducing Eq. (4.1) to the following format.

Hl = σ(ÂHl−1Wl), ∀l = 1, 2, . . . ,M, H0 = X (4.2)

where Hl ∈ RN×Zl
stacks the node representations at the l-th layer, and Wl ∈ RZl−1×Zl

is

the corresponding learnable weight matrix that linearly maps the input to a different latent

space. Â = D̃− 1
2 ÃD̃− 1

2 is the symmetric normalized adjacency matrix of the (undirected)

input graph G after adding the self-loop Ã = A + IN and D̃ is the degree matrix with

D̃ii =
∑

j Ãij. Denoted by σ(·) is the non-linear activation function (e.g., ReLU). As such,

a GNN having in total M layers allows the messages to travel across the graph by means of

an M -hop neighboring context, yielding node representations that harmonize nodal features

and graph topology, thereby uplifting the classification performance.
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To learn the weights in Eq. (4.2), a straightforward and popular idea is to minimize the

cross-entropy loss function that leverages the limited labeled nodes, defined as follows.

min
W1,...,WM

∑
vi∈VL

P(yi ̸= ŷi) := −
∑

vi∈VL

yi log ŷi, (4.3)

where ŷi = softmax(hM
i ) is the predicted label of the i-th node, and hM

i is the i-th column

of HM being the output of the last GNN layer. The optimization process of Eq. (4.3) starts

from the M -th layer with parameters WM , and the gradient information back-propagates

with chain rule layer-by-layer until W1 is updated. This process repeats multiple times until

convergence is achieved.

Threat Model In this work, we restrict our interest to attacking GNN models with linear

aggregation function, modeled by Eqs. (4.1) and (4.2), for two reasons. First, our GAFNC

attacking approach operates in an end-to-end fashion with no assumption made on the model

architecture – the only leverage is the gradient information of the victim model. Therefore,

a linear realization delivers simplicity, helping to facilitate the understanding of how our

poisoning attack is succeeded. Second, a GNN with linear aggregation is also known as a

graph convolutional network (GCN), which has manifested its effectiveness in a variety of

real-world applications [38, 44, 117], necessitating an analysis on its robustness and reliability

towards adversaries who may or may not have access to the training data.

Opportunities. For adversaries who have access to the training data and can freely manip-

ulate the nodes and edges of the original graph, the attacking opportunities appear naturally.

In particular, two key components of Eq. (4.2), i.e., the graph connectivity represented by

Â and the nodal feature denoted by X, can be deliberately distorted to perform poisoning

attack on graphs, where the GNN models trained on the distorted graph cannot reach the

same level of accuracy as on the clean data. More specifically, two types of poisoning attacks

38
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Figure 4.1: An illustrative comparison of traditional poisoning attacks on graph (left) and
our GAFNC paradigm (right).

are considered, which take the forms as follows.

Global Attack: argmax
A′,X′

∑
vi∈V

P
(
yi ̸= ŷi | W1, . . . ,WM

)
, (4.4)

Target Attack: argmax
A′,X′

∑
vi∈V∆

P
(
y∆ = ŷi | W1, . . . ,WM

)
, (4.5)

s.t. ∥A′ −A∥F ≤ ϵA, ∥X′ −X∥F ≤ ϵX , (4.6)

where Eq. (4.4) defines the global attack in which the task is to maximize the probability that

the victim model gives incorrect predictions over all nodes uniformly, Eq. (4.5) defines the

target attack in which the victim model is encouraged to predict a set of target nodesV∆ into

prescribed classes y∆. The constraints in Eq. (4.6) ensure that the distorted graph topology

A′ and nodal feature matrix X′ do not differ from those of the original graph significantly

and the distortions are within the Frobenius distances of ϵA and ϵX , respectively. Intuitively,

changing the graph connectivity to A′, e.g., adding new edges or deleting existing edges, is

more effective than perturbing nodal features to X′, as Â is involved in the computation

of every layer while X is at the first layer only. A recent study further substantiate this
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Figure 4.2: Pipeline of our proposed GAFNC. Blue colored are the original nodes and the
corresponding adjacency matrix. Purple colored are the feature matrix of origin graph. Red
colored are the new artificial node and its feature contents. Orange colored are the edges
between the new node and the original graph and how the adjacency is augmented.

intuition [112]. Most existing poisoning attack methods can be framed in the modeling of

Eqs. (4.4), (4.5), and (4.6).

The Challenge and Limitation The aforementioned threat model suffers from a promi-

nent drawback – it requires access to the original graph data. Obtaining such access in

real-world applications, however, can be very difficult. For example, to harm a scam detec-

tion system in an online social network such as Facebook or Twitter or a business network

such as Amazon or ebay, the attackers have to hack into the central server or the user ac-

counts, so as to perform data poisoning by manipulating the nodal features (e.g., the contents

that the users posted) or graph connectivity (e.g., the follower-followee relationship), which

is time-consuming and labour-costly and thus close to impossible in practice.

Our Idea To lift the limitation of requiring data access, we propose to add artificial

nodes in the graph, letting their malicious messages propagate to their immediate contexts,

and gradually to their M -hop neighbors by taking advantage of the message-passing of

GNNs, such that the entire graph can be eventually poisoned. We term such an attacking

paradigm Generative Adversarial Fake Node Camouflaging (GAFNC). Figure 4.1 illustrates

a comparison between the traditional poisoning attack methods and our GAFNC proposal,
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where the main difference is that GAFNC does not request the permission of making any

change on the original graph and hence is more practical. For example, an adversary can

register many fake accounts in social/business networks, which is much cheaper and feasible

than hacking into the server or real accounts.

The problem then is how would these artificial nodes look. To make the attack practical,

the added nodes should not carry strong patterns, e.g., a new account that keeps posting

spam contents and/or sending out friend requests with high frequency – such nodes can be

so easily detected by näıve network defending system such as an anomaly detector [118]. To

this end, we in this study impose three requirements on the added nodes, so that our attack

is stealthy.

1. The features of the artificial nodes follow a similar yet non-identical distribution as

those of the original nodes, such that their malicious information is camouflaged.

2. The edges between the added nodes and the original graph are capable of effectively

passing the poisonous messages of the new nodes yet should not be too dense; The

sparsity of such new edges should be similar to that of the original graph.

3. The total number of added nodes should be small – otherwise, neatly crafting a large

group of seemingly-authentic nodes would again be overly expensive.

In this work, we strictly restrict the number of new nodes to be less than 1% of the graph

scale. To meet the three requirements, our key idea is to frame the node generation process

in a generative adversarial network (GAN) regime, where the contents of the artificial nodes

and their connectivity with the original graph are learned jointly by solving a bi-objective

two-player minimax game.

4.3 Methodology

In this section, we elaborate the building blocks of our GAFNC paradigm, with the

pipeline delineated in Figure 4.2. In a nutshell, two questions are solved in order to perform
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poisoning attacks on graphs without manipulating the original data. First, what features

should the added nodes carry, such that they look authentic, can camouflage their poisonous

contents, and would not be detected and rejected by simple classifiers running on graphs.

To answer this question, the generative adversarial network (GAN) is employed to ensure

that the features of the generated nodes follow a similar distribution of those of the original

nodes, as shown in the top panel in Figure 4.2. We shall scrutinize this block in Section 4.3.1.

Second, how should the added nodes connect to the original graph, such that two types

of poisoning attacks can be effectively implemented in which, for global attack, the goal is to

maximize the accuracy degradation of the victim GNN classifier and, for target attack, the

goal is to encourage the targeted node to be misclassified into a prescribed class. To this end,

we draw insights from soft mask learning, which was devised for capturing important image

regions in computer vision [119, 120], to devise the edge mask learning block, as shown in

the bottom panel in Figure 4.2. The objective of this block is to identify a sparse topological

structure, through which the malicious contents hidden in the newly added nodes can be

propagated so as to poison the entire graph with high efficacy. The details of the edge mask

learning are presented in Section 4.3.2.

4.3.1 Adversarial Node Generation

The learning objective of our GAFNC paradigm can be framed in a generic minimax

game as follows.

min
D,Φ

max
G

LGNN(G,Φ,G,G ′) + LGAN(G,D,G ′), (4.7)

where G, D, and Φ represent the generator, the discriminator, and the victim GNN model,

respectively. Denoted by G ′ = (V′,A′,X′) is the augmented graph, where V′ = {v1, . . . , vN ,

vN+1, . . . , vN+m} includes both the N original nodes and the added m artificial nodes, A′ =A B⊤

B C

 ∈ R(N+m)×(N+m) in which B and C encode the edges between the old and new

nodes and that among the new nodes, respectively, and X′ = [X,Xnew]
⊤ ∈ R(N+m)×D in
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which Xnew stacks the feature vectors of the artificial nodes. The goal of G is to generate

B, C, and Xnew that together deliver a stationary point of solving Eq. (4.7). The first term

is the GNN loss term, which varies in accordance with the different attack settings and thus

shall be detailed later on. The second term in Eq. (4.7) is the GAN loss term, which is

defined as follows.

LGAN(G,D,G ′) = Evi∈V [1− logD(A,xi)]

+Evj∈{vN+1,...,vN+m} [log (D(A′, G(zj)))] , (4.8)

where A′ and zj are the generated connections and nodal features from G. The intuition

behind Eq. (4.8) is that, with D fixed, the second term of Eq. (4.8) with respect to G is

maximized such that the features of the nodes vN+1, . . . , vN+m that are generated by draw-

ing from a latent code zj follows a similar distribution of those of the original nodes V,

striving to fool the classifier at the current round. In an alternative fashion, with G fixed,

minimizing Eq. (4.8) equals to maximizing the first term in which D is guided to identify the

original nodes and meanwhile minimizing the second term in which D aims to screen out

the generated nodes. A Graph Convolutional Network (GCN) is selected to implement the

discriminator D due to its capability of tracing changes in both graph topology and nodal

features.

To implement the generator G, a fully-connected decoder would suffice in most tasks.

However, we note that the nodes in several tasks may carry binary features, such as schol-

arly graphs, where each node represents a research article and 1 or 0 in a specific entry of

the feature vector indicates the existence or not of the corresponding keyword [121, 122]

and bioinformatics graphs, where each node is a chemical medicine with the binary features

indicating whether or not a particular molecule is a part of this medicine. For such tasks,

the decoder architecture would suffer from the discreteness and hence yield inferior perfor-

mance in generating seemingly authentic nodes. To solve the issue, we adapt the idea of
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binary neurons suggested in the BinaryGAN [33], where the output layer of a generator was

binarized through sigmoid-adjusted, straight-through estimators for generating data in con-

tinues domain. Two types of binary neurons, named deterministic binary neuron (DBN) and

stochastic binary neuron (SBN), are both implemented in this work for the sake of efficacy.

The formulation are as follows.

DBN(x) = µ(σ(x)− 0.5), (4.9)

SBN(x) = µ(σ(x)− v), v ∼ U [0, 1], (4.10)

where µ(·) and σ(·) denote the unit step function and the sigmoid, respectively. σ(x) is the

preactivated outputs, and U [0, 1] denotes a uniform distribution.

4.3.2 Graph Poisoning with Edge Mask Learning

Thus far we have elaborated what features are in the newly added nodes, the question

now is how to connect them to the original graph. Conceptually, for different attacking

purposes, the resultant connectivities would also differ. As such, we in the next present

details of how the two types of poisoning attacks are realized by learning the topological

structure of the augmented graph via extrapolating the GNN loss term in Eq. (4.7).

Global Attack We first introduce the global attack, where the only objective is to lower

the classification accuracy in general of a GNN model over all nodes uniformly. In practice,

such an attack has a broad effect. For example, by making up a small set of seemly legitimate

merchants, an online business infrastructure such as Amazon or ebay would weaken its

capability of detecting scam sellers, incurring huge economic loss [123]. For another example,

by spreading fake users across an online social network such as Facebook or Twitter, the

platforms would lose their agility in screening bots and malicious users, so that rumors and

fake news cannot be stopped in their early spreading stage, leaving space for attackers to

corrupt democracy in the worst case [124, 125].
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To realize the global attack, we define the GNN loss term in Eq. (4.7) that is to be

maximized as follows,

LGNN(G,Φ,G,G ′) =
∑
vj∈V′

−yi log ŷi + λ1Ω(S) + λ2H(S), (4.11)

where ŷi = PΦ(S⊙K(1),X′) denotes the prediction of the node i in the augmented graph.

S ∈ R(N+m)×(N+m) is the edge mask and K(1) ∈ R(N+m)×(N+m) stands for a full 1’ matrix.

With their scales controlled by tuned parameters λ1 and λ2 are the regularization terms,

with Ω =
∑

|(σ(S)| representing the sum of ℓ1 norm of the edge mask, and H(S) = −Ω ∗

log(Ω+ ϵ)− (1−Ω)∗ log(1−Ω+ ϵ) with ϵ = 1e−15 is the entropy of Ω. Note, to ensure that

the topology of the original graph can be kept unchanged during optimization, we split our

edge mask into two parts in implementation, namely, the part corresponding to the edges

of the origin graph that is fixed as-is, and the part that is trainable representing the edges

encoded by B ∈ {0, 1}N×m and C ∈ {0, 1}m×m in A′.

The intuition behind Eq. (4.11) is to maximize the cross entropy of y and ŷ. One more

thing to note is that we exclude the output for the new node in the second term of equation

Eq. (4.11) for two reasons. First, we cannot decide the groundtruth labels of newly added

nodes at the initial iterations, as which label assignment would lead to the highest attacking

efficacy remains unclear. Enforcing a priori assignment would introduce noises and thus slows

down the training efficiency. Second, in this way we could align the numbers of the nodes

that are unlabeled and need to be predicted in the original and augmented graph, launching

a fair performance comparison of the GNN models, being either healthy or poisoned, in a

transductive learning regime.

Target Attack The global attack leaves the question, which nodes are misclassified into

which classes in a black-box, thereby preventing a further analysis on the GNN robustness.

We now give details of the target attack, where the GNN is enforced to misclassify specified

nodes into pre-designated classes. Given a target node vi with label yi = Ct, the goal is to
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encourage a misclassification of this node such that ŷi = Ck ̸= Ct, with Ck being a desired

class. The attack is straightforward and can be realized by defining the the GNN loss term

in Eq. (4.7) as follows.

LGNN(G,Φ,G,G ′) =
∑

vj∈V′,
vi∈Ct

−Ck log ŷi + λ1Ω(S) + λ2H(S), (4.12)

where the predictive function of ŷi and the two regularizers Ω(S) and H(S) share the same

definitions as in Eq. (4.11). The intuition behind Eq. (4.12) is to minimize the probability

that the predicted label ŷi is not the pre-designated class Ck, so that all nodes in the victim

class Ct are likely to be misclassified by the poisoned GNN.

4.4 Experiments

4.4.1 Data preparation

We benchmark our experiments on four real-world datasets, which are all widely-used in

the literature. As a convention, we adapt the largest connected components search from [53]

to filter out the very small sets of nodes in which the nodes are mutually connected and do

not connect to the entire graph. The statistics of the datasets are summarized in the table

4.1 below.

Datasets # Nodes # Edges # Features # Classes

Cora 2485 5069 1433 7
CiteSeer 3327 4732 3703 6
PubMed 19,717 44,338 500 3
Amazon 7487 11,9043 745 8

Table 4.1: Statistics of the studied datasets

A detailed introduction of the studied datasets is given below.

• Cora [121] and CiteSeer [122] represent two citation network that contains a collec-

tion of scientific publications. Each node is a research article and is associated with
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a 0/1-valued word vector, where each entry represents the absence/presence of the

corresponding unique word. As each article cites or is cited by other papers, the links

between pairs of nodes are naturally formed. The dimension of the nodal vectors in-

dicates the volume of the used dictionary. For example, in Cora each nodal vector is

1433-dimensioned, meaning that the dictionary encodes 1433 unique words in total.

The learning task in both datasets is to classify the research articles into a number

of research domains. For example, the class labels in Cora represent 7 domains in

machine learning, e.g., neural networks, probabilistic methods, genetic algorithms, and

others. Our task in Cora is thus to synthesize a small number of articles that makes

the GNN incapable of classifying existing articles into the 7 classes correspondingly.

• PubMed [126] is formed by extracting diabetes-related publications from PubMed

database. It differs from Cora and CiteSeer in three aspects. First is its edge sparsity,

which is 6× higher than Cora and CiteSeer on average. Second is its finer learning

granularity, as PubMed focuses on diabetes-related articles only with a larger sample

size, while Cora and CiteSeer both cover a boarder research scope. Third, PubMed

represents the nodal features in a denser modality, where each publication is described

by a TF-IDF [127] weighted word vector in a 500-dimensional latent space. Per these

unique properties of PubMed, the experiment carried out on it could substantiate the

generalizability of our attacking approach.

• Amazon [128] is is a dataset profiling the co-purchase behaviors of Amazon users, with

the nodes representing the products, the edges pinpointing the pairs of products that

are frequently bought together, the nodal features being the product reviews encoded

with the bag-of-words, and the class labels indicating the product category. Amazon

has a significantly smaller sparsity compared to the other three datasets due to the

Matthew effect in E-commerce [129], where the more frequently a pair of products has
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been co-purchased before, the more likely either one product in this pair is recom-

mended if the other is purchased. A successful attacking on this dataset could hint

the viability of applying our GAFNC paradigm to undermine the deep-learning-based

recommender systems [130], helping the online business users to build and uplift the

awareness of analyzing and reinforcing the robustness of their systems.

4.4.2 Experiment design

To fully investigate the roles that different building blocks play in our GAFNC pipeline,

ablation study is a must. To this end, we devise five model variants (denoted by V1 – V5) by

controlling different blocks, based on the combination of imposing attacks on graph topology

and nodal features along with randomness, as summarized in the below table.

V1 V2 V3 V4 V5 GAFNC

Features Learned? ✗ ✗ ✓ ✂ ✂ ✓

Edges Learned? ✗ ✓ ✗ ✗ ✓ ✓

Table 4.2: Model Variants

V1: Purely Random Attack, where a number of new nodes with randomly generated features

are connected to the original graph with randomly selected nodes.

V2: Random feature attack with learned topology, which differs from V1 in the sense that

the new nodes having randomly generated features are learned to strategically connect to

the original in a way that maximizes the attacking efficacy.

V3: Random topology attack with learned features, which is parallel to V2 with randomly

connected edges yet learnable nodal features.

V4: Random topology attack with sampled features, which differs from V3 by having the

newly added nodes sampled from the original graph.

V5: Learnable topology attack with sampled features, which evolves from V4 with the con-

nectivities between the new nodes and original graph learned with edge masks.
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GAFNC, which further upgrades V5 with a higher degree of freedom, both nodal features

and the topology of augmented graph are purely learned from data through the method

described in Section 4.3.

4.4.3 Setting and evaluation metrics

The computational environment is Ubuntu 18.04.5 LTS with CPUs of Intel Xeon Gold

6248R and GPUs of NVIDIA Tesla V100S (on a 4096-bit memory bus), 376GB of RAM

and 50TB of HDD. The victim model is implemented as a 2-layer GCN with ReLU as

activation in a hidden dimension of 16 and IdenticalPool as the readout in the last layer.

To ensure comparison fairness, we fixed the number of maximum training epochs at 300

with a .005 learning rate. All experiments were conducted by splitting the datasets with

a training/validation/test ratio of 7:1.5:1.5. To satisfy a semi-supervised setting in node

classification, 20% nodes in the training set are associated with labels and 80% training nodes

remain unlabeled. To offset randomness, 10-fold cross-validation is executed by shuffling the

split and averaged results were reported. For all experiments, a maximum ratio of 0.44%

adversarial nodes were added to perform the attack.

To carry out a comprehensive evaluation, we employ Accuracy, Precision, Recall, and

Macro-F1 to evaluate the model performance and Attack Success Rate (ASR) to gauge the

attacking efficacy. In a nutshell, to respect the multi-class nature of the studied datasets,

Precision, Recall, and Macro-F1 that give an extrapolation of correct classification ratio in

finer-level of granularity can eliminate the inherent bias of the commonly used Accuracy.

For the global attack, ASR indicates the overall misclassification rate; for the target attack,

ASR summarizes the rate to misclassify nodes into the target class.

To carry out a comprehensive evaluation, we employ accuracy, precision, recall, and

macro-F1 as the four metrics to gauge the model performance. Due to the multi-class

nature of the studied datasets, we decompose the classification problem into multiple binary

classification subproblems, in each of which one class is selected as the target class (positive)
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and the others are merged into a non-target class (negative). Note, each subproblem suffers

from imbalance, where the number of samples in the negative class significantly outweighs

that of the target class. As such, we define a few terms at first, and then introduce the

intuition behind these metrics. True Positive (TP) and True Negative (TN) denote correct

predictions, where the model prediction aligns with the groundtruth. False Positive (FP)

and False Negative (FN) indicate misclassifications, where FP means the model predicts the

input as positive but the true label is negative, and FN is vice versa.

Accuracy = (TP + TN)/(TP + TN + FP + FN), which is the most commonly-used and

straightforward metric in node classification. It defines how likely the model would give

correct prediction in general, yet may introduce bias in imbalanced or multi-class settings.

Precision = TP/(TP+FP ) and Recall = TP/(TP+FN) decompose the Accuracy metric

into a finer-level of granularity by favoring the positive class with small sample size, where

Precision measures how likely a predicted positive sample is indeed positive, and Recall gives

the ratio of correctly predicted positive samples in that class.

Macro-F1 = 2 ∗ Precision ∗Recall/(Precision+Recall) harmonizes Precision and Recall

and is a more comprehensive and robust metric. We would like to note that, although

Accuracy is mostly used in the literature, lowering the model performance with poisoning

attacks is relatively easy under the Accuracy metric, as in many real tasks there exists pairs

of classes being naturally difficult to distinguish (e.g., ML, AI, and IR in CiteSeer). Macro-F1

that gives a better measure of incorrectly classified cases is thus a better metric to evaluate

our attacking efficacy on.

4.5 Results and Conclusion

4.5.1 Results

Two Tables and 16 Figures in this section present the experimental results, from which

we answer the four research questions as follows.
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Datasets Baseline V1 V2 V3 V4 V5 Mettack Our-Global Our-Target

Cora 0.150 0.215 0.430 0.230 0.229 0.333 0.259 0.488 0.714
CiteSeer 0.310 0.320 0.430 0.445 0.353 0.401 0.315 0.697 0.717
PubMed 0.122 0.418 0.484 0.485 0.438 0.476 0.192 0.516 0.537
Amazon 0.061 0.136 0.278 0.216 0.118 0.186 - 0.369 0.405

Table 4.3: Comparative results of the victim GNN and our GAFNC approach and its five
variants and Mettack on four real-world graph datasets in terms of Attack Success Rate
(ASR). “Baseline” is the error rate of the GNN trained on clear, unpoisoned data.

Q1. How vulnerable is GNN to our GAFNC attack?

Figure 4.3: Performance of the classification accuracy of the baseline GNN on the clear
datasets and the datasets poisoned by our GAFNC methods and its V4 and V5 variants,
where the ratios of training data to the original datasets vary from 20% to 80%. A fixed
number of 20 adversarial nodes were added to perform the poisoning attack on Cora.

The answer is immediate from the comparison between our GAFNC approach and the

baseline in Table 4.3, where our approach leads to an increased ASR of 72.77%, with a

71.06% global ASR and a 74.49% target ASR on average. We note that such an attack

efficacy is achieved by adding only 20 adversarial nodes, revealing the vulnerability of GNN
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Figure 4.4: Performance of the classification accuracy of the baseline GNN on the clear
datasets and the datasets poisoned by our GAFNC methods and its V4 and V5 variants,
where the ratios of training data to the original datasets vary from 20% to 80%. A fixed
number of 20 adversarial nodes were added to perform the poisoning attack on CiteSeer.

models because they can be attacked at very low cost in our generative-adversarial poisoning

regime.

To further explore this question, we make the following observations from Table 4.3,

Figures 4.3, 4.4, 4.5, and 4.6. First, as the node classification task is semi-supervised,

given a larger number of training nodes can intuitively leads to a better model performance.

The increasing trends of classification accuracy with a larger proportion of training nodes

in Figures 4.3, 4.4, 4.5, and 4.6 validate this intuition. However, our GAFNC lead to the

most flat increasing trends, meaning that our GAFNC attack keeps its efficacy even if more

groundtruth labels are given in the training phase. Second, the attacking efficacy of V4 and

V5 is affected by the training data ratios largely. In Cora and CiteSeer, V4 and V5 even

improved the classification accuracy of the victim GNN. This phenomena is also termed as

the positive effect of adversarial training [57], where a jointly learning of benign and malicious

nodes can increase the robustness of GNNs. Our GAFNC does not suffer this issue and can
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Figure 4.5: Performance of the classification accuracy of the baseline GNN on the clear
datasets and the datasets poisoned by our GAFNC methods and its V4 and V5 variants,
where the ratios of training data to the original datasets vary from 20% to 80%. A fixed
number of 20 adversarial nodes were added to perform the poisoning attack on PubMed.

always perform effective poisoning however the imbalanced ratio between the benign nodes

(e.g., 1988 in Cora and 15,773 in PubMed) for training and the added adversarial nodes

(i.e., 20 in our study). This suggests that adding more healthy nodes cannot uplift the

classification performance of the GNN models once being poisoned by our GAFNC attack.

We further added a more strong baseline Mettack [62] for comparison. The experiment

source code is downloaded from the work Deep Robust [131]. And the setting of the method

is default with a perturbation ratio of 0.05. We did not report the result of Mettack on

Amazon as it did not finish within a reasonable time due to limited computer resources.

Comparing Mettack with five model variants can show that adding poisoning node attack

through edge mask learning and generative of feature matrix is more efficient compared with

the meta-learning for disturbance of origin graph.

Q2. How poisonous are the adversarial nodes?
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Figure 4.6: Performance of the classification accuracy of the baseline GNN on the clear
datasets and the datasets poisoned by our GAFNC methods and its V4 and V5 variants,
where the ratios of training data to the original datasets vary from 20% to 80%. A fixed
number of 20 adversarial nodes were added to perform the poisoning attack on Amazon.

Figure 4.7: A boxplot comparison between GAFNC and V2 with a 25th – 75th interquartile
range on Cora.
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Figure 4.8: A boxplot comparison between GAFNC and V2 with a 25th – 75th interquartile
range on PubMed.

The answer are provided in two aspects, namely, the attacking efficacy and the attacking

robustness. The efficacy is extracted by comparing our GAFNC to V5 and comparing V3

to V1, where the impact of graph topology is controlled. First, with both learned topology,

we observe from Table 4.3 that GAFNC enjoys a 16.31% higher ASR than V5 on average,

which suggests that, with strategical connections solely, our GAN-generated nodes carry

more poisonous contents. Second, with both random connection, V3 outperforms V1 in

terms of ASR by 13.1%, which indicates that, even being connected to the original graph

randomly, the GAN-generated nodes may also achieve malicious purposes because of their

poisonous features. In addition, comparing GAFNC to V2 as shown in Figure 4.7, 4.8, we

observe that with a fixed topological structure, the features learned by GAFNC makes the

attacking efficacy more robust, where the performance variances of the resultant model are

significantly smaller across all metrics.

Q3. How effective can edge mask generate poisoning connections?
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Figure 4.9: Attacking efficacy in four datasets w.r.t. different Sparsities on Cora

First, we compared the effect of V4 to V5 with nodal features both randomly generated.

From Figures 4.9, 4.10, 4.11, and 4.12, we can seen that, our learned edges are more effective
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Figure 4.10: Attacking efficacy in four datasets w.r.t. different Sparsities on CiteSeer

compared with randomly connections among four datasets with respect to four evaluation

metrics Accuracy, Precision, Recall and F1-Score. Also, we control the effect of poisonous
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Figure 4.11: Attacking efficacy in four datasets w.r.t. different Sparsities on PubMed

nodal features by comparing GAFNC to V3 and V2 to V1. We observe from Table 4.3 that

GAFNC and V2 excel in ratios of 18.22% and 21.64% to their competitors, respectively.
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Figure 4.12: Attacking efficacy in four datasets w.r.t. different Sparsities on Amazon

This finding reveals that the edge mask can learn how to connect the added nodes to the

original graph in a way that their malicious contents (being smartly generated in GAFNC
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or randomly generated in V2) can be propagated so as to poison the entire graph most

effectively. In addition, our GAFNC ends up with the highest ASR in CiteSeer with a 20.22%

higher ratio than in the other three datasets, where the key attribute that differentiates

CiteSeer from the other three is its substantially lower sparsity. This shows that the graph

density matters, where a denser graph is more flexible because of the choices of routes

are many, but in a sparse graph the poisonous messages cannot be effectively propagated

without strategical edges. The edge mask in GAFNC provides such an apparatus to place

the connections between the new nodes and the original graph strategically, thereby arriving

at the remarkable attacking success rates.

Q4. How stealthy is our GAFNC poisoning attack?

Figure 4.13: Attacking efficacy in four datasets w.r.t. different numbers of added nodes on
Cora.

The stealthiness of the adversarial nodes added by our GAFNC approach comes from

three aspects.

(1) The total number of added nodes is very small, where we note that all the empirical

studies were conducted with only 20 adversarial nodes added and connected. As shown in
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Figure 4.14: Attacking efficacy in four datasets w.r.t. different numbers of added nodes on
CiteSeer.

Figure 4.15: Attacking efficacy in four datasets w.r.t. different numbers of added nodes on
PubMed.

Figures 4.13, 4.14, 4.15, and 4.16, with more nodes added, the performance of the victim

GNN can be further degraded, with the macro-F1 ends up with 23.93%, 15.13%, 40.98%,
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Figure 4.16: Attacking efficacy in four datasets w.r.t. different numbers of added nodes on
Amazon.

and 29.87% in Cora, CiteSeer, PubMed, and Amazon, respectively, if we increase the number

of added nodes to 1% of the original graph. Yet, this ratio of added nodes is still rather

negligible.

(2) The nodes generated by GAFNC are seemingly-authentic, i.e., the new nodes follow a

similar distribution as the original nodes. To see this, a state-of-the-art outlier detector

COPOD [132] is applied to distinguish our generated nodes from the nodes in the original

datasets. We first try COPOD on the nodes with randomly generated features, where CO-

POD is capable of detecting those nodes 100% from the original ones. However, with our

GAFNC nodes, COPOD ends up with a 12% detection ratio, leaving most of the adversarial

nodes undetected. This validates that the malicious features of our GAFNC generated nodes

are camouflaged and can hence perform poisoning attacks stealthily.

(3) Our GAFNC approach allows a target attack beyond 1-hop. A qualitative result from

the Cora dataset is exemplified in Figure 4.17, where the objective of the target attack is to

encourage a misclassification of Node #1336 into a prescribed class. After 1973 epochs of
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Figure 4.17: A successful 3-hop target attack in the Cora dataset.

poisoning, we observe that by adding two adversarial nodes as the second- and third-order

neighbors of the victim node, the malicious messages can be propagated in such a stealthy

path that the immediate neighbors of the Node #1336 can still be classified correctly by the

poisoned GNN, but still leads to the misclassification of the victim #1336. Considering the

large size of neighborhood of each node in more than 1-hop, such a multi-hop target attack

make our poisoning approach even more difficult to be detected in practice.

4.5.2 Discussion and Conclusion

This work propose a novel attacking paradigm, named Generative Adversarial Fake

Node Camouflaging (GAFNC), its crux lying in crafting a set of fake nodes in a generative-

adversarial regime. These nodes carry camouflaged malicious features and can poison the

victim GNN by passing their malicious messages to the original graph via learned topological

structures. They 1) maximize the devastation of classification accuracy (i.e., global attack)

or 2) enforce the victim GNN to misclassify a targeted node set into prescribed classes (i.e.,

target attack). We benchmark our experiments on four real-world graph datasets, and the
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results substantiate the viability, effectiveness, and stealthiness of our proposed poisoning

attack approach by evaluating four metrics.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, we focus on using a GAN technique for dealing with graph data.

Through two case studies, we prove that GAN can benefit from graph data preprocessing

and contribute to adversarial data poisoning attacks on GNNs.

In the first work, we described a novel framework that utilized a generative-based deep

neural network to distinguish the unknown associations in the raw training graph. Two Gen-

erative Adversarial Network models, NetGAN and CELL, were adopted for the edge classifi-

cation (ie, link prediction), leveraging unlabeled link information based on a real knowledge

graph built from LitCovid and Pubtator. The performance of link prediction, especially in

the extreme case of training data versus test data at a ratio of 1: 9, demonstrated that the

promised method still achieved favorable results (AUCROC > 0.8 for synthetic and 0.7 for

real dataset) despite the limited amount of testing data available. Our preliminary find-

ings showed the proposed framework achieved promising results for removing noise in data

preprocessing of the biomedical knowledge graph improves the performance of downstream

applications by providing cleaner data.

In the second work, we explored the robustness of graph neural network (GNN) in node

classification from an adversary perspective. A novel data poisoning attack paradigm on

graphs, named Generative Adversarial Fake Node Camouflaging (GAFNC), was proposed,

with its essence being the creation of adversarial nodes that are seemingly authentic yet carry

malicious contents. The key idea of GAFNC is to leverage the message-passing mechanism of

GNN, such that the connectivity between this set of crafted nodes and the original graph is

established in a way that expedites the propagation of the hidden malicious contents over the
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entire graph. Two attacking goals were realized, namely, 1) global attack, where the GNN

trained on such poisoned graph would suffer poor prediction performance in general, with

the margin to that of a healthy GNN is maximized, and 2) target attack, where the GNN

is encouraged to misclassify a target node into a prescribed class. The practicality of our

proposal lies in that, compared to the prior arts requiring to either distort the nodal features

or add/delete the existing linkages or both, our GAFNC paradigm does not entail any

manipulation on the original graph (note that such manipulation could be very expensive in

practice such as hacking into an internet infrastructure e.g., Amazon or Facebook). Empirical

study on four widely used, real-world graph datasets and extensive ablation studies together

substantiated the viability, effectiveness, and stealthiness of our proposed GAFNC poisoning

attack approach.

5.2 Future Work

• I aim to continue working on the denoising of the knowledge graph and to explore the

potential solution in two directions with respect to the effectiveness and efficiency of

the current framework. First, to utilize existing knowledge graphs through transfer

learning so that we can make better decisions by considering prior experience. Second,

to design more advanced generative models for generating graphs, as the previous

generation of graphs through random walks are not easy to parallel and are time-

consuming. For example, using binaryGAN[102] to create an adjacent matrix as a

graph would be an alternative solution.

• I aim to continue my work on the robustness of GNNs. First, to focus on injecting

domain knowledge into the design of GNNs for explainability or interpretability. For

example, for drug-drug protein interaction networks, we can first design the rules based

on the biological properties of small molecules that interact with one another. Then,

we can produce the hyper-graph for future small molecules predictions if GNNs can
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capture the prior knowledge. Second, to work on the defense model for detecting the

newly added poison nodes.
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