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Abstract

This thesis will consist of two main projects, Chapters 2 and 4, and a smaller project in
Chapter 3. We will be studying a general space-time fractional stochastic partial differential
equation in Chapters 2 and 3 and the stochastic heat equation in Chapter 4, which is a special
case of the just mentioned space-time fractional equation. The aim of this thesis is to handle
the following: solvability of the equations, deriving exact moment asymptotics and proving the
existence of an invariant measure.

In Chapter 2, we study a class of space-time fractional stochastic partial differential equa-
tions subject to some time-independent multiplicative Gaussian noise. We derive sharp con-
ditions, under which a unique global LP({2)-solution exists for all p > 2. In this case, we
derive exact moment asymptotics following the same strategy as that in a recent work by Balan
et al [BCC22]. In the case when there exists only a local solution, we determine the precise
deterministic time, 75, before which a unique LQ(Q)—solution exists, but after which the series
corresponding to the L?(2) moment of the solution blows up. By properly choosing the pa-
rameters, results in this chapter interpolate the known results for both stochastic heat and wave
equations.

In Chapter 3, we will again be studying the space-time fractional equation but driven by a
space-time white noise. The goal of this project is to show the global existence of the solution
when the diffusion term has super-linear growth. The work follows closely a recent work by
Millet and Sanz-Solé [MS21].

Chapter 4 deals with the long term behavior of the solution to the nonlinear stochastic
heat equation with no drift term that is driven by a Gaussian noise that is white in time and
colored in space. Using the theory of the stochastic integral laid out by John Walsh, we provide
conditions which will guarantee the existence of an invariant measure for a broad range of

initial conditions, which includes bounded LZ functions as well as the Dirac delta distribution

do-
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Chapter 1

Introduction

The field of stochastic partial differential equations (SPDEs) is a relatively new field that has
proven to be extremely useful. In the 1960’s a Japanese mathematician named Kyosi Ito pio-
neered what would later be referred to as Ifo calculus. This new and innovative material would
then inspire other mathematicians, such as J. Walsh and R. Dalang, to set the framework for
stochastic partial differential equations. Today, SPDEs is as active as ever and the field has
even seen a Field’s medal winner, Martin Hairer [Hail3], and several Nobel Memorial Prize in
Economics winners, Myron Scholes and Robert Merton ' [BS73].

Let’s consider one application that will lead us to the first project presented in Chapter
2. Consider the situation where an infinitesimally thin piece of wire is initially heated. Also
suppose that there is no external source of heat. Can we model the temperature of the wire as
a function of position and time? In other words, does there exist a function, u(¢, z), such that
u(t, x) gives the temperature of the wire at a position = and at a time ¢? The answer is yes, and

this scenario can be modeled by the well known heat equation:

ou 0%u
E(t,l’) = W(t,l’) t20, IER,

u(0,z) = ((x) reR,

where ((z) describes the initial temperature at a position .
However, the above system is completely deterministic in the sense that there is no ran-
domness involved. In other words, every single simulation of modeling the evolution of heat

starting from ((z) will be the same. In practice this is unrealistic and for sure there will be

!Fischer Black would have also been Awarded the Nobel Memorial Prize in Economics but he passed away
prior to the presentation of the award.



some randomness involved that will affect the evolution of the temperature. The need to model

this randomness is the motivation behind the field of stochastic partial differential equations.
We will use a centerd, or 0-mean, Gaussian noise, which we denote as W, to introduce

randomness into our system. The noise will always be uniquely defined by associating it with

an appropriate positive-definite covariance functional of the following form:

B[ @)W (@] - [ as [ ranwis ) 36 (10,1

where ) and ¢ are Schwartz functions, ¢(s, ))(z) = ¢(s,—x) and '+’ denotes the spatial
convolution. We will always assume that I'(dz) = f(z)dx is a non-negative and non-negative
definite tempered measure and we will refer to f as the correlation function and its Fourier

~

transform, f (&) = (o, exp(—ixz - £) f(x)dz, will be denoted as the spectral density.
Definition 1.0.1. The noise W has the following names under the following scenarios.

1. Space-time white : f(x) = d¢(x) where dy is the Dirac delta distribution,

2. White in time and colored in space : When f(x) is a non-negative and nonnegative
definite function. For example, f may take the form of any of the following well known

kernels: Riesz kernel, Poisson kernel, Ornstein-Uhlenbeck kernel, or Bessel kernel.

3. Time-independent : When the integral in (1.0.1) is indepnedent of s, in other words,

B[ ()W (0)] = | o)) +30)(a),

Rd

and I'(dx) can be as in either of the two cases above.

Following Walsh [Wal86], we incorporate the noise into our system in the following way:

ou o0“u -
—(t,z) — = (t,x = b(u(t,z))W(t,x) t=0, zeR?
ot ox (1.0.2)

u(0,7) = () r e RY,

where we assume the diffusion term, b, to be Lipschitz continuous with Lipschitz constant L.

The above equation is purely notational and can be legitimately interpreted as the following

2
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Figure 1.1: Simulations of Equation (1.0.2) with d = 1, {(-) = do(+) and b(u) = Au.

stochastic integral equation:

u(t,z) = JRd G(t,z —y)((y)dy + Jot fRd G(t —s,x —y)b(u(s,y))W(ds,dy),  (1.0.3)

where the stochastic integral above is the Walsh integral and G(t, x) is the Gaussian heat kernel



Equation 1.0.2 is referred to as the stochastic heat equation (SHE) and is a widely studied
stochastic partial differential equation, see for example [Kho14; Wal86; CD13; CD14; CM9%4;
HHN16; BC18] and also Chapter 4 below, where we prove the existence of an invariant measure
for the stochastic heat equation.

The noise term, W, brings fundamental changes to the solution u(t, z) which can be seen
from the simulations in Figure 1.1. In particular, one can notice that as we increase A, or the
level of noise that we allow in our system, then the formation of taller and taller peaks begin to
form. This phenomena is referred to as intermittency, see [CK19; KK15; CM95]. This concept

will be one of the main focuses of Chapter 2, which I will now introduce.

1.0.1 A brief overview of Chapter 2

In the following chapter we will study the a space-time fractional stochastic partial differen-
tial equation driven by a time-independent noise, W(:c) The equation interpolates both the

stochastic heat and wave equations and has the following form:

-

(60 + L(—=A)2) u(t,x) = I} [\/é ult, z) W@)] reRY >0,

1 u(0,) =1 be (0,1], (1.0.4)

u(0,) =1, Jdu(0,-) =0 be (1,2),

where ! is the Caputo derivative, (—A)¥? is the fractional Laplacian and I] is the Riemann-
Liouville fractional integral. Similar to the stochastic heat equation above, (1.0.4) is understood

through the following stochastic integral equation:

u(t,z) =1+ ﬁf: UR Gt — s,z — y)u(s,y)W(éy)) ds, (1.0.5)

where, because of the choice of noise, the stochastic integral above is the Skorohod integral
[NN18] and here G = Ggp,,.4 1s the fundamental solution which is given through the Fox H-

function (see Figures 1.2 and 1.3 and [CHN19, Theorem 4.1]). One can see that when a = 2,
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Figure 1.2: Some plots of G p021(t, ) with —4 <z <4and1 <t <4

b = 1and r = 0 then (1.0.4) reduces to the stochastic heat equation and when ¢ = b = 2 and
r = 0 then it reduces to the stochastic wave equation.
An important key feature of the solution, which is due to the choice of noise and simplified

initial conditions, is the following Wiener Chaos expansion of the solution:

u(t,x) = 14 ) 0PI (fi(-,2,1)), (1.0.6)

k=1

where I;, denotes the k' order Skorohod integral and the kernels fj, are calculated through a
standard Picard iteration procedure (see the discussion after Definition 2.3.1 below). Because
of an orthogonality result that is exhibited by the integrals I (e.g. [NN18, Equation 4.1]),
one may deduce the following useful expression for the second moment of the solution (see

Theorem 2.3.3 below):

2
E (Ju(t,z)|*) = >} 0™l o forall (t,2) € (0,7) x R,

n=0

Fuloa.t)]

The main goals will be to prove existence and uniqueness of the solution (Theorem 2.1.6)

and to calculate the following limits:

lim ¢’ logE (|Ju(t,z)[") and lim p~?logE (Ju(t,z)|P),
t—00 p—©
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Figure 1.3: Cross sections of G2 ,.0.2,1(t,z) with -4 <z < 4andt = 1.

where [ is a constant that is to be determined (see Theorem 2.1.7 and Corollary 2.1.8). One
should note that both the positivity and the finiteness of the above limits imply that the following

functions exhibit exponential growth:

t—E(|ut,z)[") and p—E(|ut,z)[").

The calculation of these limits is a very long and lengthly process so we hold any further
discussion until Chapter 2.
However, as for the solvability of (1.0.4), we prove that the solution may uniquely exist

either globally or locally. We say a global solution exists if for all p > 2, x € R® and t > 0,

the p'"* moment, |u(t, z) ,» €xists. On the other hand, we say that a local solution exists when
there exists two times 71}, < Tb,, such that for all p > 2 and = € R, the p"* moment exists for
t < Ty, and blows up for ¢t > 75 ,. We prove that T} , = 75 and in addition, for all p > 2,
we calculate 77 , and give precise conditions on when a solution will be global or local. It is

worth mentioning that the calculation of the cutoff time, 7} ,, is only possible due to our ability

to express the solution in terms of its Wiener Chaos expansion as in (1.0.6).



1.0.2 A brief overview of Chapter 3

In this chapter we will study the same space-time fractional SPDE as in the previous chapter,
however, in this case we will assume the noise is space-time white and that the diffusion term

exhibits the following super-linear growth property as |z|, |z| — oo:
lo(2) = o(2)] < 02|z — 2|[Ins (Jz — 2]))°,

where 05,0 > 0 and In; (z) := In(z v e) for z > 0. Moreover, we consider more general initial
data, ug and vy, than from the equation studied in Chapter 2. More precisely, we allow for any

Borel-measurable initial conditions which satisfy for all 7' > 0 the following:

sup | Jo(t, )| < oo,
(z,y)€[0,T]x R4

where J; is the solution to the homogeneous equation (see (1.0.8) below). With these slight

changes, the equation takes the following form:

,

(60 + L(—A)2) u(t,x) = I [a(u(t,m)) W(t,x)] zeRyE>0,
§ u(0,-) = up(") be (0,1], (1.0.7)

w(0,) = ug(+), u(0,-) = vo(+) be(1,2).

As before, this is purely notational, and Equation (1.0.7) is legitimately viewed as the

following stochastic integral equation:

u(t,z) = Jo(t,z) + I(t,x), (1.0.8)

where

[Z(#,-) = uol(2) pe(0,1]

[Z(t,-) * vo](x) + [Z7(, ) = uo](x) B e (1,2)

Jo(t, l‘) =



and

I(tz) L fRdY(t— 5.2 — y)o(u(s, )W (ds, dy).

The goal of this chapter is to prove the existence and uniqueness of a global solution
to (1.0.7) (see Theorem 3.1.2 below). The work is highly motivated by the recent work by
Millet and Sanz-Solé [MS21]. It is a well studied phenomena that either a super-linear drift
or diffusion term may cause blow-up of the solution. As for the stochastic heat equation, we
direct the reader to [FN21; MS93; DKZ19; BG09]. On the other hand, the only other work that
we are aware of that is dedicated to proving some non-existence results of (1.0.7) is [AMN20].
So, to the best of our knowledge, this is the first work on proving the global existence of a
solution to (1.0.7) with a super-linear diffusion term. However, as we will see, the calculations
given below are essentially identical to those performed in [MS21], which is the cause for our
motivation.

We will end this section with some comments on trying to prove Theorem 3.1.2 below
but for a noise that is white in time and colored in space. This problem was answered in
[MS21, Theorem 4.13] for the stochastic wave equation where global existence and uniqueness
is proven. The challenge with applying their techniques to the space-time fractional equation,
as in (1.0.7), comes from the increased complexity of the fundamental solutions. In particu-
lar, proving corresponding upper bounds for Ry, - - - , R4 from the proof of Theorem 4.10 ibid

becomes less clear and will be saved for a future project.

1.0.3 A brief overview of Chapter 4

In the final chapter, we will turn our focus towards proving the existence of an invariant measure
for the stochastic heat equation (1.0.2) on the whole space R?. Equations such as the SHE can
be used by researchers to describe dynamical systems. Moreover, there often is a strong need to
know the ergodic behavior of the dynamical system and no ergodic behavior can exist without
an invariant measure. Hence proving the existence of such a measure is a crucial starting point.

Since we work on the whole space, one needs to introduce a positive, bounded and contin-

uous weight p € L' (R?) and the corresponding p-weighted space of square integrable functions



Li(Rd) (see Section 4.2.1). We will see below in Theorem 4.1.2, that the solution starting from
the initial condition p, which we denote as u(t, -; i), is almost surely in this weighted space
for a broad range of initial conditions, which includes all bounded functions, some unbounded
functions such as |z|~® with 0 < « < d/2 and even some measures such as the Dirac delta
measure.

A crucial property of the system that must be exhibited for an invariant measure to exist
is the Markov property. Essentially this means that one must be able to stop and restart their
system whenever they choose and that the system then must act the same as it would if it were
allowed to run uninterrupted. It makes sense that the SHE would satisfy this property since
heat always moves from hot to cold. Thus no matter when we restart our system, the transfer
of heat will just continue as if nothing happened.

However, this restart property is not always satisfied. Consider the situation where we
pull back a string that is tightly secured at both end points. When we release the string, it
will vibrate back and fourth until it loses its momentum and ends back at rest. The problem
that presents itself here is that two vibrating strings could have the same position but different

velocities (see Figure 1.4).

|

Figure 1.4: A still shot of two vibrating strings at the same position but moving in opposite
directions.

For example, suppose we froze both strings illustrated above. When we initiate the restart, both
stings will not continue as they were prior to the restart. What will happen is that they both will
start moving in the direction of least resistance (see Figure 1.5). Thus the system will appear
differently as it would if it were never restarted at all. This heuristically shows us that this
system can not satisfy the Markov property and therefore an invariant measure will not exist in

this setting.



— . T
l

Figure 1.5: Direction of movement when re-releasing the string, regardless of the prior velocity.

We define the probability laws of the solution as
ZLu(t,5O)NA) =PlweQ:ult,;()(w) e 4], Ae B(LyRY)),

where Z(L2(R?)) denotes the Borel subsets of L2(R?) and ( is the initial condition. Because of
the Markov property of the solution, the laws form a family of Markovian transition functions,
Py(¢, A) == ZL(u(t,;¢))(A), for ¢ € L3(R?). Moreover, the transition functions form a

transition semi-group defined as follows:

Pe@ = | R ae). e BIEY)

where B(L?(R?)) denotes the bounded Borel measurable functions on L2(R?).
With this said, we say that a probability measure, 7, on % (Li(Rd)) is invariant for (1.0.2)

when the following holds:

f Pp(z)n(de) = f o(z)n(dzr), forallt >0andpe B(Lz)(Rd) . (1.09)
L3(R%)

L3(RY)

Recall that by definition Pyp(x) = ¢(x) and so (1.0.9) is essentially saying that the transition
semi-group is time-invariant with respect to the invariant measure 7. We mention that this is a
key feature of ergodicity.

We should also mention now that there is an equivalent way that one can define the invari-
ant measure, and in fact it is the definition that we will choose to use for the remainder of this

thesis. Any probability measure, 7), on the Borel o-field % (LZ(Rd)) is said to also be invariant

10



for (1.0.2) if
n(A) = f ZL(u(t,0)(A) n(d¢), forallt>0and Ae B(L2)(RY).  (1.0.10)
Lg(Rd)

For more on these equivilent definitions, we direct the reader to [DZ14, Section 11.1].
Tessitore and Zabczyk laid forth a schematic to prove the existence of an invariant measure

in their paper [TZ98], which revolves around showing the following:
1. the probability laws of the solution form a family of Markovian transition functions,
2. the solution, u(t, x; 11), satisfies a boundedness in probability condition.

Moreover, when one verifies the above steps, then by applying the Krylov—Bogoliubov exis-
tence theorem ([DZ14, Theorem 11.7]), it can be shown that the invariant measure, 7, takes the

following form for any ¢y > 0:
1 Tn+to
n(A) = lim —f L(u(t,;p)(A)dt, Ac %’(Li(Rd)), (1.0.11)
t

where {71}, },>1 is an appropriately chosen sequence with 7}, T oo (see Theorem 4.1.3 below).
Note that we already discussed that item 1 above is satisfied in our setting. On the other
hand, the second item will require some effort to show. A sufficient condition that is more

easily verified which implies this boundedness condition is the following:

supE (Hu(t, -)Hi) <. (1.0.12)

t>0

We remind the reader that for the SHE, moments usually grow exponentially in time (e.g.
see [CK19, Theorem 1.3]), and so for the above finiteness to occur, we will need additional
assumptions (e.g. see (4.1.10) below).

In fact, in order for Tessitore and Zabczyk to provide a specific scenario where an in-

variant measure exists (e.g. [TZ98, Theorem 3.3]), they had to significantly strengthen their

11



assumptions and require the following:

i3 and L2 2(2;)12)5(1/2_2 JR d (’}" <\/fT )

where L, is the Lipschitz constant of the diffusion term and f is the spectral density of the

*

F (V1)) @i

(1.0.13)

noise (see Section 4.2.4 below). Moreover, under this strengthened assumption, they proved
that there exists an invariant measure for the SHE starting from the constant 1 initial condition
(e.g. (1.0.2) with {(z) = 1). However, due to its complexity, (1.0.13) was not calculated for
any specific J?and without being able to do so, one may not apply this result for a specific noise.
This is clearly a huge set back as picking the noise of your system is the main reason one would
want to study a SPDE.

Our results vastly improve on this as we provide much simpler and more easily verifiable
conditions in our Theorem 4.1.3 below that will guarantee the existence of an invariant measure.
Moreover in Section 4.2.3, we are able to give specific examples of spectral densities, f that
satisfy the conditions of our Theorem 4.1.3. In addition, in Section 4.2.2 we enlarge the space
of allowable initial conditions to include all bounded functions, some unbounded functions and

even some measures such as the Dirac delta measure.

12



Chapter 2

Exact Moment Asymptotics for the Interpolated Stochastic Heat and Wave Equation

2.1 Introduction and main results

In this chapter we study the following stochastic partial differential equation (SPDE) with

fractional differential operators:

-

@%g@memedﬂWM@@W@ﬂxewj>m

1 u(0,) =1 be (0,1], (2.1.1)

w(0,) =1, du(0,-)=0 be(1,2),

where a € (0,2],b€ (0,2),r >0, > 0and § > 0. Here the noise W = {W(¢) : ¢ € D(R?)}
is a centered and time-independent Gaussian process, defined on a complete probability space

(Q, F, P), with mean zero and covariance

EW(@W()] = | Fo©)F(E)u(ds) =: (¢, v)u,

Rd

where p refers to the spectral measure, which is assumed to be a nonnegative and nonnegative
definite tempered measure on R?. Let -y be the Fourier transform of ;. (see Section 2.3.1), which
is also a nonnegative and nonnegative definite measure on R? thanks to Bochner’s theorem.
Throughout this chapter, we will use F¢(§) = (., exp(—iz€)p(x)dz to denote the Fourier

transform of a test function ¢.

13



In (2.1.1), (—=A)¥2 refers to the fractional Laplacian of order a, 0 denotes the Caputo

fractional differential operator

1 . f(m) (T) ‘
. I'(m —b) SOdT(t_T)bem itm—1<b<m,
o f(t) =
d—mf (t) ifb=m
dtm - )

where m is an integer, and ] refers to the Riemann-Liouville fractional integral of order r > 0

0

If(E) = ﬁj (t— )1 f(s)ds, fort >0,

with the convention that when r = 0, I? = Id reduces to the identity operator. The fundamental
solution to (2.1.1) is expressed explicitly in terms of the Fox H-function, H]";"(z), which is
much more complicated than the Green’s function for either the heat or wave equation. We

denote the fundamental solution as
G(t,x) := Gaprpalt,x), 2.1.2)

where

|| (1,1), (b+r,0b)

Guprwaltyz) = wPlaf 13 |
YU (d)2,a/2), (1,1), (1,a/2)

We direct the reader to Theorem 4.1' of [CHN19] for more details. Since we are interested in
the constant one initial condition (and zero initial velocity when b > 1), Theorem 4.1 (ibid.)
implies that the corresponding solution to the homogeneous equation (i.e. the solution when
there is no driving source) is equal to the constant one. Hence through superposition, (2.1.1)

can be written as the following stochastic integral equation:

u(t,z) =1+ \/éjot ( G(t— s,z — y)u(s,y)W(éy)) ds, (2.1.3)

R4

'G(t,z) corresponds t0 Yy p 1-,a(t, z) from [CHN19].
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where the stochastic integral is in the Skorohod sense; see Definition 2.3.1 below. In the fol-
lowing, the fundamental solution will exclusively refer to G(¢, z), which is indeed a smooth

function for z # 0. Our results rely on the following assumption for the nonnegativity of

G(t,x):

Assumption 2.1.1 (Nonnegativity). Assume that the fundamental solution G(¢, ) is nonnega-

tive for all > 0 and z € R?.

Remark 2.1.2. Thanks to Theorem 4.6 of [CHN19] (see also Theorem 3.1 of [Che+17] for the
case when 7 = (), we have the following four groups of sufficient conditions 2, under either

group of which G/(t, -) is nonnegative (see Figure 2.1 for an illustration) :
l.d>1,be(0,1],a € (0,2],7 = 0;

2.1<d<3,1<b<a<2,7r>0;

3. 1<d<3,1<b:a<2,r>¥—b.

|

I
R
AV

1 2

Figure 2.1: Tllustration of the sufficient conditions (Remark 2.1.2) for G(t, -) to be nonnegative.

Regarding the noise, we formulate the following assumption in order to cover the Riesz

kernel case, the fractional noise and a mixture of them:

ZNote that when d > 1,b = 1l and a € (0,2], part (1) of [CHN19, Theorem 4.6] says that the fundamental
solution Y, which is the fundamental solution G in this chapter, is nonnegative provided » = 0 or r > 1. Indeed,
because in this case Z is always nonnegative, for r > 0, Y as a fractional integral of Z (see (4.5), ibid.), Y, or our
G, should also be nonnegative. We thank Guannan Hu who pointed out to us this observation.
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Assumption 2.1.3 (Noise). Letk € {1, - - - , d} and partition the d-coordinates of x = (x1, -+, 24)
into k distinct groups of size d; so that d; + - -- + dj, = d. Denote z(;) = (z;,, - - - ,:cidi) to be
the coordinates in the i’ partition. Assume that the correlation function of the Gaussian noise
is given by

y(@) =[Tleel™  witha; e (0,d). 2.1.4)
Define o := 3 | .
Remark 2.1.4 (Spectral density and decomposition). Recall that the spectral density of v from
(2.1.4), which by definition is F7y, takes the following form:

k

pu(dg) = p(€)de  with (&) = [ [ Cava,

i=1

Eay| (o), (2.1.5)

Moreover, in the derivations below, we need to find a nonnegative and nonnegative definite /'

such that v = K = K where ‘+’ denotes the spatial convolution. Indeed, one can choose

—(d;+a;)/2
e (2.1.6)

k
K(ZE) = Hﬁahdi
=1

(2

The two constants in both (2.1.5) and (2.1.6) are defined as

O iy oLld =)

_auL(d+a)/4) T((d - a)/2)
[(a/2) '

Nd-a)yn\ fap =~ ¢

and fB,q=m

Example 2.1.5 (Noises). We have the following special cases: (1) Setting £k = 1 in (2.1.4) and

(2.1.5) recovers the Riesz kernel case. In this case,
v(z) =|z|7  plz) = Ca7d|x\_(d_a) and K(z) = 5a,d\x\_(d+a)/2. (2.1.8)

(2) Setting k = din (2.1.4) and (2.1.5) recovers the time-independent fractional noise. The cor-

responding SHE with such noise was earlier studied by Hu come back to this citation [HuO1].
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For this noise, we have that

d
= [ [lzl™, « ]_[Ca, 61707 and  K(x Hﬁallm ()
=1

i=1
(2.1.9)

In a recent work by Balan et al [BCC22], the same equation as (2.1.1), but exclusively
for the stochastic wave equation (SWE), namely, the case whena = b = v = 2andr = 0,
has been studied, where both the well-posedness and the exact moment asymptotics have been
obtained. The corresponding stochastic heat equation (SHE), namely, the case when a = 2,
b =v = 1andr = 0, has been earlier studied by Hu [HuO1], but only for the well-posedness
and exclusively for the fractional noise (2.1.9). The corresponding moment asymptotics have
been obtained by X. Chen [Chel7b] as a special case by setting oy = 0. One may check
Remark 1.9 of Balan er al [BCC22] for the explicit expressions in terms of notation of the
current thesis. In this chapter, by working on a more general class of SPDEs, we are able to
interpolate the asymptotics for both SWE and SHE; see Section 2.2.2 below for more details.
Moreover, we give the sharp conditions under which there exists only a local L?(£2) solution.

The moment asymptotics obtained by X. Chen, such as those in [Chel7b; Chel9], rely
crucially on the Feynman-Kac representation of the moments of the solution. However, when-
ever b # 1, especially for the case when b € (1,2), we are not aware of any such Feynman-Kac
formula for the moments. Instead, in the recent work by Balan et al [BCC22], this difficulty
has been overcome by studying the Wiener chaos expansion of the solution. In this chapter, we
follow the same strategy laid out by Balan et al (ibid.). The challenge comes from the much

more involved parametric form of the fundamental solution.

Now let us state the main results of this chapter. The first main result deals with the well-
posedness of the SPDE (2.1.1) (or (2.1.3)) as stated in the following theorem. For this, we need

to introduce the following variational constant (see Section 2.3.2 for more details):

1
Ma(f) = sup {<g x g2, f>j;/22Rd) _ga(g,g)}, (2.1.10)

9g€Fa
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We use the convention that M, (f) := M, 4 (f) when the dimension is clear from the context,
and M, := M,(v), where ~ is defined in (2.1.4). It is important to note that by Theorem 2.3.5,

stated and proven below, that M, < c0.

Theorem 2.1.6 (Solvability). Assume that both Assumptions 2.1.1 and 2.1.3 hold.
(1) (2.1.1) has a unique (global) solution u(t,x) in LP(Q) forallp > 2, t > 0, and x € R?

provided that

0 < a < min (% [2(b+r)—1],2a,d>. 2.1.11)

(2) Otherwise, if
rel0,1/2)  and 0<a=%[2(b+r)—1] <d, (2.1.12)

then (2.1.1) has a local solution in the sense that

(2-i) Forany p = 2, (2.1.1) has a unique solution u(t,z) in LP(Q) for all p = 2 and x € R¢,
but only for t € (0,T,) where

T, .= 2.1.13)
(2-ii) For any t > Ty, the series (2.3.9) below diverges, that is, the L?(Q)-solution u(t, ) to
(2.1.1) does not exist whenever t > T5.

The second main result of this chapter is about the moment asymptotics. We use || o

denote the L”({2) moments.

Theorem 2.1.7. Under Assumptions 2.1.1 and 2.1.3, if condition (2.1.11) holds, then we have

that

1 2a g
. -8 S
tll)l_[g@% log Hu<t,$)Hp (2) <2a(b+7” —ba)

) . 2.1.14)
X (QV_O‘/“MQ . )Mbmibaia (Q(b +r) - = - 1) ;

a
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where

8= baa and  t,:=(p— 1)t (2.1.15)

Proof. We prove the matching upper bound (2.5.1) and the lower bound (2.6.1) of (2.1.14) at

the end of Sections 2.5 and 2.6 below, respectively, which together prove (2.1.14). O]
As a direct consequence of (2.1.14), one can send either ¢ or p to infinity as follows:
Corollary 2.1.8. Under both Assumptions 2.1.1 and 2.1.3, if condition (2.1.11) holds, then

(1) Forall p = 2 fixed, it holds that

lim ¢ log B (fult, 2) ") =p(p — 1) %1 ( 2 2a ’
tggj og ul\t,r =p(p e 5 2a(b+r)_ba

2a—a \ sap5r)—ba—a
% <9y—a/aMaa >2(b+) b <2(b+r)_b_a_1);
a

(2.1.16)

(2) Forallt > 0 fixed, it holds that

lim p~? log E ([u(t, z)|") =t ( = 2 ’
p—o0 ’ 2) \2a(b+r)—ba

2a—a\ 3aF7) ba=a b
X <9V*°‘/“./\/la“ > e <2(b+r)——a—1).

a

(2.1.17)

This chapter is organized as follows. In Section 2.2, we first give some concrete examples,
where one can find many explicit formulas for either moment asymptotics in the case of global
solutions or the expressions for the critical time 7, in the case of local solutions. Then in
Section 2.3, we present some preliminaries, including the Skorohod integral, definition of the
mild solution, and some asymptotics with corresponding variational constants. We prove part

(1) and part (2) of Theorem 2.1.6 in Sections 2.4 and 2.5, respectively. The upper bound and
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lower bounds for (2.1.14) are established in Sections 2.5 and 2.6, respectively. Finally, in the

appendix — Section 2.7, we list a few proofs of results that will be used.

2.2 Examples on solvability and asymptotics

In this section, we will give various examples to illustrate our main results. The cases with
b = 1and r = 0 are mostly known, which will be pointed out in the example below and will be
used as test examples for our results. To the best of our knowledge, all results in this chapter

for either b # 1,2 or > 0 should be new.

2.2.1 Examples on solvability

In this part, we list some concrete examples regarding the solvability — Theorem 2.1.6.

Example 2.2.1 (SHE). By settinga = 2, b = 1 and » = 0 in (2.1.12), we obtain the following

condition for the SHE under which there only exists a local solution:

a=2<d. (2.2.1)

Clearly, the fundamental solutions in this case are nonnegative for all d > 1. Hence, the
picture is slightly more complicated since we need to check all possible dimensions d > 1. We

illustrate possible cases in Figure 2.2. In particular, let us explain a few cases:

(a) When d = 2, condition (2.2.1) says that the 2-dimensional SHE driven by white noise
has only a local LP(€2) solution. By applying (2.1.13) to this case, the critical time 7,

becomes

v

26(]) — 1)./\/12,2((50) ’

T, = p = 2. (2.2.2)

Note that in part 2) of Theorem 4.1 of Hu [Hu02], some lower and upper bounds for 75
were obtained. More precisely, by setting additionally that 6 = 1 and v = 1, Hu (ibid.)

proved that when ¢ < 2, an L?(2) solution exists but when ¢ > 27, the second moment
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of the solution blows up. It is an interesting exercise to show that

1

20<Ty= ——
27 2 My (00)

< 2, where d = 2.

This case is covered as a special time-independent case (i.e., H/; = 1) by Chen et al

[Che+21, Theorem 3.4 and Remark 3.13].

(b) Recall that the white noise driven SHE corresponds to when o = d. Therefore by exam-
ining (2.1.11) and (2.1.12), we see that when d > 3, the SHE driven by white noise no
longer has any L?()-solution. In addition, local solutions exist only when o = 2 and
the noise is not white. This is illustrated in Figure 2.2 below. In addition, the critical time

T, takes the same expression as (2.2.2) but one needs to replace dy by .

Remark 2.2.2. Note that we use the Skorohod integral to interpret the multiplication of the
solution with the noise in (2.1.1). Multiplication interpreted in this way is traditionally called
the Wick product which is consistent with the Ir6 or Walsh integral (see, e.g., [Dal+09]) when
the noise is white in time. One can also interpret this product as the usual product. In order
to handle the singularities caused by this multiplication, one needs to carry out certain renor-
malization processes. In fact, for the standard SHE with white noise in R? (i.e., a = 2, b = 1,
a = d and r = 0), Hairer and Labbé constructed pathwise solutions using the regularity struc-
ture for both cases d = 2,3 in [HL15] and [HL18], respectively. The relation between these

two types of solution is left for future work.

Example 2.2.3 (SWE). By setting ¢ = 2 and formally setting b = 2 in (2.1.12), we obtain
the following condition for the stochastic wave equation under which there only exists a local

solution:
a=3+2r<d and 7re]l0,1/2]. (2.2.3)

We recall that results in Balan ef al [BCC22] require d < 3, and likewise, Assumption 2.1.1 and

all known sufficient conditions for the nonnegativity of the fundamental solution (see Remark
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d r=20
5 > &) m— Global L7(£2)-solution
4 ?——@ o Local L?(Q)-solution
3 O—=¢] ——= No L*(Q)-solution
2 () [0 White noise
| D]
% : % } } a
12 3 4 5

Figure 2.2: Solvability for the stochastic heat equation (i.e., a = 2, b = 1 and r = 0) with
p = 2.

2.1.2) also require d < 3 in case of b € (1, 2). With this restriction, conditions (2.2.3) reduce to
a=3=d and r =0,

which says that at dimension d = 3, when W is a white noise, there exists only a local L”((2)
solution for all p > 2. See Figure 2.3 for an illustration. Moreover, one can check easily that

the expression for the critical time 7}, in (2.1.13) in this case reduces to

13/2
T > 9 (2.2.4)

T 20(p— 1)/ Mas(00)

which is identical to (1.12) (ibid.) when setting v = 2.

Example 2.2.4 (Fractional SPDEs with r = [b] — b and a = 2). For the fractional SDPEs with
b # 1, many known works focus on the case when r = [b] — b, where [b] is the ceiling function;
see, e,g., [Chel7a; MN15]. To facilitate the discussions here, we will only focus on the case

when a = 2. In particular, by setting » = [b] — b and a = 2, conditions in (2.1.12) become

o =

< d and be [1/2’1]7

SN

(2.2.5)

S O

<d and be|[3/2,2).

o =
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12 3 4 5

Figure 2.3: Solvability for the stochastic wave equation (i.e., a = b = 2 and r = 0). See Figure
2.2 for an additional legend.

When b = 1, we have r = 0 and the fundamental solution is the standard heat kernel. Hence,
Assumption 2.1.1 is satisfied for all d > 1. When b < 1, sufficient conditions in Remark 2.1.2
guarantees Assumption 2.1.1 for all d > 1. However, when b > 1 and a = 2, from Remark
2.1.2 we see that the fundamental solution is nonnegative only for d < 3. The solvability for
this case is illustrated in Figure 2.4 and the critical time 7}, in case of local solution (hence,

only for the case when b € [1/2, 1]) is equal to

T, = . (2.2.6)

Example 2.2.5 (Fractional SPDEs with » = 0 and a = 2). In this example, we study the
special case of the fractional SPDEs when » = 0. The choice of » = 0 has been used in, e.g.,
[Che+17]. We will only consider the case a = 2 for simplicity. Now by setting » = 0 and

a = 2 and restricting b < 1, conditions in (2.1.12) become

<d and be (0,1]. (2.2.7)

SN

a=4-—

As discussed in Example 2.2.4, Assumption 2.1.1 is satisfied for all d > 1 when b < 1 but only
for d < 3 when b > 1. The solvability for this case is illustrated in Figure 2.5 with 7}, given in

(2.2.6). In particular, for the example in the second figure in Figure 2.5, namely, when b = 2/3
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Figure 2.4: Solvability for the fractional SPDEs in case of @ = 2 and r

2.2 and 2.3 for the legend.
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and o = d = 1, the white noise driven SHE has a local solution with

7 2PV

forall p > 2, 2.2.8
14 3(p_1)97 ora p ( )

where we have applied (2.2.6) and the relation (2.3.22).

More examples regarding the solvability can be studied in a similar way, which are left to

the interested readers.

b=4/3 _—

d ; p :
S s EL _______________ E] 5 i 5]
4%—_—_—_—_—_—_—_—_—_—_5—_—_—_—_—_-.@ 4 “i“——@
3*;_(%):@ 3 Q:J—B
273__55 2—;——@

% %E% Y % : A S B

1 2 3 4 5 1 2 3 4 5
b=2/3 e
d d
5 i B 59-%' 5
4 T = 49-(59' 5]
3 :;—@ 3aa$: |
2—;—(%):@ 23_(%):@
13—@ 13-@5

1 2 3 4 5) 1 2 3 4 5

Figure 2.5: Solvability for the fractional SPDEs in case of a = 2 and » = 0. See Figures 2.2
and 2.3 for the legend.

Example 2.2.6 (SHE with fractional Laplacian). The stochastic heat equation with fractional
Laplacian (i.e., the case when b = 1, r = 0 and @ € (0, 2]) has been widely studied in the liter-

ature, but possibly with different noises. In this case, the fundamental solutions are transition
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densities for the alpha-stable jump processes, which are necessarily to be nonnegative. This
is also consistent with the sufficient conditions for nonnegativity in Remark 2.1.2. By setting

b=1andr = 0in (2.1.12), we have the following condition:

The solvability for this case is illustrated in Figure 2.6.

a=1/2 a=1

d d

5 po ] 5 a

4 b 5] 4 o) ]

3a-q>:@ 3 @—@

2 pm>——f] ) o]

| it e

N S U N TN S S S S N
1 2 3 4 5 1 2 3 4 5
a=3/2 =92

d : d :

5 a 5 a

4 b 4 N

3 i;—@ 3 @—@
%E% % % % 0] % i % % % o
1 2 3 4 5 1 2 3 4 5

Figure 2.6: Solvability for the stochastic heat equation with fractional Laplacian, i.e, the case
when b = 1 and r = 0. See Figures 2.2 and 2.3 for the legend.
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2.2.2 Examples on asymptotics

In this part, we list several examples for the asymptotics when global solutions exist. In par-
ticular, we will show that the asymptotics in (2.1.14) interpolates the corresponding results for

both stochastic wave and heat equations.

Example 2.2.7 (Asymptotics for SWE). Even though our results requires b to be strictly less

than 2, but by formally setting

a=b=v=2 and r =0,

we have that

and results in (2.1.14), (2.1.16), and (2.1.17) recover the corresponding results for the stochastic
wave equation, namely, (1.9), (1.10), and (1.11) of [BCC22], respectively. Due to the impor-
tance of white noise and for the future references, here we list two special cases regarding white

noise:

(1) The SWE with white noise in R: By further setting d = o = 1, we see that

p _1V1/2 p 3/2
o BB [t )] pp =12V g R[lu(t)P] V6

t—00 £3/2 3(2y)1/4 P—00 p3/2 o 3(2]/)1/47 (229)

where we have applied (2.3.22).

(2) The SWE with white noise in R?: Similarly, by setting d = o = 2, we see that

po BBt )P]  plp—1D0Ma0(8) - logEfJu(t.a)] _ £0Maa(5)

t—o0 2 2v p—®© p? 2v

(2.2.10)
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Example 2.2.8 (Asymptotics for SHE). As for the stochastic heat equation case, by setting

a=2, b=v=1 and r =0,

we have that

_4—04
92—«

3 and t, = (p—1)¥1),

and results in (2.1.14) and (2.1.16) recover the corresponding conjectured results for SHE,
namely, (1.16) and (1.17) of Balan et al [BCC22], respectively, which are equivalent to Theo-
rem 1.1 and 1.2 of X. Chen [Chel7b] when setting oy = 0 and using [Che+15, Lemma A.2] to
rewrite the constant £ in [Chel7b] in terms of M,. Due to the importance of the white noise

case, we list the corresponding asymptotics here. When o« = d = 1,

P _1)2H2 P 302
i OSE(UEDl) _pp- 0% logB(u(t o)) _ 6

2211
t—00 3 24y 0 p3 2%y’ ( )

where we have applied (2.3.22). Note that some upper and lower bounds for the first limit in

(2.2.11) in case of p = 2 were earlier obtained by Hu [Hu02, part 1) of Theorem 4.1].

Example 2.2.9 (Asymptotics for SHE with fractional Laplacian). In this example we restrict
ourselves to the case when b = 1, a € (0,2], @ < d, and r = 0, which is the 1-dimensional

SHE with fractional Laplace. With this set up we have

_Qa—a

b=

d t,=(p—1)==at
a— o an p (p ) )

and by Corollary 2.1.8,

20—«

i BB e (1) (G2 ) 7 e ] (150)

t—m a—c 20 — « a

(2.2.12)
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and

2a—a
loo E (lu(t. )P oo (1 2 e e
lim og (|27j£a7 .T)‘ ) _ tzaj (_) ( a ) [el/_a/a./\/la;lb

p—0 pa—«

]“a”‘ (“ - O‘) L (2.2.13)

this setup has been studied in [Che+18] for the case of a time-dependent noise where the co-

variance function is given by
E[W (r,2)W (s,9)] = |r — s| **y(z — y)
and ~y(x) is defined to be either of the following:

x|~ where « € (0,d) or
() = (2.2.14)

H;l:l |z;]%  where a; € (0,1).

They proved that for & < min{a,d} and letp > 2,

lim ¢t~
t—0o0

S logEfJu(t, z)["] = p(p — 1) = M(a, a0, d, 7), (2.2.15)

where the variational constant is given by

M(a, ag,d,y) = sup { J f f (s,2)g*(r, y)dedydrds
R2d \7’ - s|a0

9EAL 4
(2m)~ f f |z|*|Fg(s, )] dgds}

with?

1
Aga = {g(s,x) ; fRd g*(s,z)dx = 1,Vs € [0,1] and (27r)_dfo J;&d 2|*| Fg(s, €)|?déds < oo} .

By setting oy = 0 and letting ¢(s,x) = g(x) € F, be independent in s, which is the time-

independent setup, then Equation (2.2.12) and Lemma 2.3.9 together recover (2.2.15). Indeed,

3Note that the Fourier transform is defined differently in [Che+18].
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by observing (2.3.29) and (2.3.33), we see that

1
M<a7 g, da 7) = Ea,d (577 2)

2a—a

— 93 <a—a> ( 2 > T Maa (1) (2.2.16)

a 20 — «

and by rewriting (2.2.15) with (2.2.16) yields (2.2.12). Finally, we note that condition (2.2.14)
can be relaxed to allow white noise in one dimensional case, namely, & = d = 1. In this case,
one can simply replace « and d in both (2.2.12) and (2.2.20) by 1 and in addition replace M, 4
by M.1(6o).

Example 2.2.10 (Asymptotics for SPDEs with = [b] — b and white noise). In this example,
we consider the case when @ = 2, d = a = 1 (white noise), and r = [b] — b. As seen in
Example 2.2.4, there exists a global solution. In this case,

4[] — b

2
_ Y — (p— 1)

and by (2.3.22) and Corollary 2.1.8,

logE p
lim = (ﬁ(f; o)) =p(p — 1)
T g 2.2.17)
962 W __4[b]=b o
(50)" am- o=z - o
1%
and
p _ 2 4[b]ib—2 _
iy BRI s () -0 0y ap -y L 229
p—0

pATI=b=2

Example 2.2.11 (Asymptotics for SPDEs with » = 0 and white noise). From Example 2.2.5,
we see that when a = 2, r = 0, d = o = 1 (white noise), the global solution exists when

b € (2/3,2). In this case, we have that

3b
/6 = %—_2 and tp = (p — 1)2/(36) t,
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and by (2.3.22) and Corollary 2.1.8,

. logE (]u(t, $)|p) 2 2 s (0% B2
tlLIg 3/ Gh—2) =p(p—1)% [b— 3 b 32 5 and (2.2.19)
1
. 1ogE (Ju(t, z)[?) _3b_ 2\ s [0\ B2
ph_)rg) D) =32 (b— 3 b 32 2 . (2.2.20)

2.3 Some preliminaries

2.3.1 Skorohod integral and mild solution

We start with a nonnegative and nonnegative definite tempered measure [' with density ~y in the

sense that I'(dz) = v(z)dz and

JRd ['(dz)(¢ = Qg) (x) =0 forall ¢ € y(Rd>

where ¢(z) := ¢(—z). According to the Bochner theorem, there exists a nonnegative and
nonnegative definite measure y, often referred as the spectral measure on R? whose Fourier

transform (in the weak sense) is I', namely, that for any ¢ € D(]Rd) (the space of test functions),

| rtanote) = | nae)Foc)

Rd

Since 1 is nonnegative definite, the following functional

C(6,0) = fR FOOFDEN(E),  forall g, € DR @.3.1)

is nonnegative-definite and thus one can associate it with a zero-mean Gaussian processes,
W = {W(¢) : ¢ € D(R?)}, with the covariance functional of W given by (2.3.1). In other

words,

E (W(e)W (1)) = fR FHOFHORAE) =: (6, .
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Let H be the completion of D(RY) with respect to (-, )3 and thus we see ¢ — W (@) is an
isometry from D(R?) to L*(2), that is, E (W (4)?) = | ¢|3, for ¢ € D(R?). One can extend this

isometry from D(R?) to H. We refer the interested readers to [Dal+09] and references therein.

We denote § the Skorohod integral with respect to W and denote its domain by Dom(0).
u is called Skorohod integrable if u € Dom(d), in which case we write 6(u) = §, u(x)W (éx)
and by isometry, E (§(u)?) = IE(HuHil) For a complete treatment of the Skorohod integral, see

Nualart er al [NN18].

Definition 2.3.1 (Mild, local and global solutions). (1) For 7" € (0, o], a random field u =
{u(t,z):te (0,T), x € R} is called a mild solution to the equation (2.1.1) if for all z € R?
and s,t fixedwith0 < s <t < T,y — G(t — s,z — y)u(s,y) is Skorohod integrable and the

following stochastic integral equation holds almost surely

u(t,z) =1+ véfot (JR Gt — s,z — y)u(s,y)W(éy)) ds. (2.3.2)

(2) Let u(t, x) be a mild solution to (2.1.1) (or (2.3.2)) and fix p > 1. We call u(t, z) a global

LP(Q))-solution, or simply an LP(Q))-solution if
Ju(t,z)|, <o  forallt>0andzeR". (2.3.3)

(3) If there exist 0 < T < Ty < oo such that [u(t, z)|, is finite for all ¢ € (0,7}) and 2 € R,
but [u(t,z)|, diverges to infinity whenever ¢ > T5, the mild solution u(t, ) in this case is

called a local LP(S2)-solution.

Note that through construction of the Skorohod integral ¢, a mild solution is necessarily to

be an LQ(Q)—solution. For more details, one may check, e.g., Nualart [NN18, Chapter 3].
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Through the standard Picard iteration scheme, the solution can be expressed by the fol-

lowing Wiener chaos expansion *:

u(t,x) = 14 ) 0L (fi-,2,1)), (23.4)

k=1

where I, : H® ((R?)F) — H, is the k™ order Skorohod integral and #,, is the k' Wiener

chaos space and the kernels fx(-, x,t), obtained through the iteration, are equal to

t tn to
@1, oz 2, 1) :J J J Gt —tn,x —xy) - Gty — t1, 09 — x1)dty - - - di,,
0 Jo 0

t rtn to
:ff J Glty, x —a) - Gty — taey, @3 — x1)dty - - - dt,.
0 JO 0

For ease of notation, throughout this article, we may write the above integrals as

fn(xla "'7~Tn;$7t) = f G(t —ln, T — mn) e G(tQ — 11, T2 — xl)df

[0,t]%

= f G(tl,x—xn)---G(tn—tn_l,xg—xl)dt_:
[0,¢]%

where [0,£]" := {(t1,-- ,ta) € [0,8]" : t; < --- < t,}. Asusual, we use f, (-, z,t) to denote

the symmetrization of f, (-, x,t):

~

1
fals2,t) = — D Fa (@) Tom)

" pEX,
1 —
i D [ GOt ) G = 3 )
T pEX, [0,¢]2
where ¥, is the set of all permutations of {1, - - - , n}. By setting ¢,,,1 = t, the Fourier transform

of the kernels, f,, is given by

n k
Flalsa,0)(E, &) = e (Zin &) J[0 ] [ [FG(thn =t ) <Z §j> woea

2 k=1

“Wiener chaos expansion has been widely to solve the linear stochastic partial differential equations. We direct
interested readers to [BS17, Section 5] for a presentation of this procedure.
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Recall the notation above in (2.1.2) that G(t,x) = Ggpra(t, ). The following scaling

properties for both FG(t,-)(§) and

ﬁ(-, x,t) H . play an important role in this work.
H n

Lemma 2.3.2. Forany c,t > 0, n > 1, £,&1,--- , &, € RY, the following scaling properties

hold:

FG(t,)(c€) = s0r=1) r (C%t, ) (&) and FG(ct,)(&) = Cb+r—1]_—G<t’ '>(Cb/a€>,

(2.3.6)

fﬁl(a 07 Ct) (517 T 7571) = Cn(b+r)fﬁl('7 07 t)(cb/agh T ’Cb/agn)’ (237)
- 2 - 2

0| = ez Fo| (2.3.8)

Proof. The scaling properties in (2.3.6) are direct consequences of the explicit expression of
FG(t,-)(€) as in [CHN19, (4.8)]. Property (2.3.7) is an easy exercise of change of variables
on (2.3.5). Property (2.3.8) is a direct consequence of (2.3.6), (2.3.7), and the scaling property

of the spectral measure p. We leave the details for the interested readers. ]

Finally, let us recall the following standard result about the existence and uniqueness of

the solution to (2.1.1) (or (2.3.2)) when it can be written as the Wiener chaos expansion (2.3.4).

Theorem 2.3.3. Fix any T € (0,0]. Suppose that f,(-,z,t) € H®" forany t € (0,T), x € R?
andn = 1. Then (2.1.1) (or (2.3.2)) has a unique L*())-solution on (0,T) x R® if and only
if the series (2.3.4) converges in L?(Q) for any (t,z) € (0,T) x R% which is equivalent to the
convergence of the series (2.3.9). In this case, the solution is given by (2.3.4) with the second

moment given by

E (u(t,z)?) = Z 0"n! forall (t,z) € (0,T) x R% (2.3.9)

2
®Xn
n=0 H

Jua,)|
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2.3.2 Some asymptotics and variational constants

Recall that the correlation function v satisfies Assumption 2.1.3 and that the corresponding

spectral measure is p; see Remark 2.1.4. Define

2
flx+y)f(y)
Pvaly) = sup J = ——dy | p(dz (2.3.10)
") 171 2 gy =1 JR [ ke /1 + 5z +yle/1 + 5[yl ] )
and
1/2
0
Ma(v,0) := sup (Jf Y(x +y)dedy | — 5 &a(9,9)
geFa
(2.3.11)
0
— sup <g * g ,7>L2(Rd - §5a(g,g)},
g€Fa
where
Eulgrg) 1= (2n) | ePIFgOFE and (23.12)
Rd
Farm {f € LP®Y : [ flpage) = 1 Ealf, ) < 0} (2.3.13)

We often omit the dimension d in M, 4 when it is clear from context. We use the convention
that M, (f) := M,(f,1) to be consistent with notation (2.1.10). By a similar argument as the

proof of [BCC22, Lemma 2.3], one can show that

My(07,0) = Ozaf 7 M,(y,1),  forall §and © > 0. (2.3.14)

For the Riesz kernel case (see Example 2.1.5), Bass, Chen and Rosen [BCR09] established

that when a € (0,2], v = 2 and o < min{2a, d},

2
. 1 = o R
tim o | s | Q;!E+EKQA>M%>_MQMU'»’

(2.3.15)
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and °

pra (|- 17%) = M (|7, 2), (2.3.16)
where
= [ [n(dg) =] J#(&)ds;. (2.3.17)
J=1 j=1

We first apply some scaling arguments to accommodate the parameter v in both (2.3.15) and

(2.3.16), the proof of which can be found in Appendix:
Lemma 2.3.4 (The Riesz kernel case). If y(x) = |z|~* for some o € (0, d), then for any v > 0

and a € (0, 2],

_ /(l
pra (|- 17%) ME@a) (|7 9) = pralap2-(efa)(| L ey (2.3.18)

[
/N
NN
N————

Q

and

. 1 i g —«
Jim o los | JRd)n<2 lgsre |> e | =tos e (117)):

oed, k=1
(2.3.19)
More generally we have the following theorem:

Theorem 2.3.5. Suppose that the correlation function vy satisfies Assumption 2.1.3 and is such
that o < min{2a, d}. Then both (2.3.18) and (2.3.19) hold with | - |~ and 1 replaced by -~y and

was in (2.1.5), respectively. More precisely, it holds that
pra(y) = v M (y) < o0, (2.3.20)

and

2
7}1_{20 % log f < Z 1_[ + ZJ N ) N(dg) =log (pua (7). (2.321)

UEZkl

5In Theorem 1.5 or eq. (1.20) of Bass et al [BCR09], the factor (27) ~¢ should not be present.
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Remark 2.3.6. It is often very difficult to obtain the exact value for the variational constant
M., a(7). To the best of our knowledge, only in case of « = 2 and @ = d = 1 (white noise),

one can compute explicitly that

M (60) = (3/4)(1/6)"?, (2.3.22)

which is a consequence of Chen and Li [CL0O4, Lemma .2] with p = 2. When d > 2, the value
of My 4(dp) can be expressed using the best constant for the classical Gagliardo-Nirenberg

inequality; see Remark 3.13 of Chen et al [Che+21] for more details.

Sketch of the proof of Theorem 2.3.5. The proof of this theorem follows essentially the identi-
cal proof as Bass et al [BCR09], which is exclusively for the Riesz kernel. One simplification
is that we only need to handle the case p = 2 thanks to the hypercontractivity property. For our
slight extension to the noise given in Assumption 2.1.3, there is no need to repeat their paper.
Instead we will only point out the differences and necessary changes. For your convenience,
the correspondence of parameters between Bass ef al [BCR09] and the current chapter is listed
in the following Table 2.1.

Table 2.1: Notation correspondence.

Laplace Noise Moment | Variational Const.
Bassetal [BCRO9] | 5| 2 | o || 77| ¢ao D A,
Current chapter | a | v | a| () © 2 M. (]-17%,2)

Theorem 2.3.5 is proven by showing the following claims: for v given in Assumption

2.1.3,

1) pualy) < o0;

(i) liminf, o = IOgl 7 §(ma (dezn [ 1 1m> pu(dg )] = 1og (pua (7))

(i) limsup,,_,, = log [( S (ZUEEn | m) M(dg)] < log (pua (7))

(iv) Mq(7) < oo

(v) pu,a( ) = Vﬁa/aM (/) ('7)
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Part (i) which corresponds to Lemma 1.6 (ibid.) is established by Lemma 2.3.7 below.

Following exactly the same arguments as those in Section 3 (ibid.) with ¢, , (ibid.)
replaced by our ¢ as in (2.1.5), one can prove part (ii) for » = 2. Then an application of the
scaling property as the proof of Lemma 2.3.4 shows the general case v > 0.

The proof of the upper bound, namely part (iii), is more challenging. This part corresponds
to Sections 5 and 6 (ibid.). By examining these two sections carefully, we need to make some
changes in Section 5 (ibid.), where as the arguments in Section 6 (ibid.) follow unchanged. For

Section 5 (ibid.), we need to use the following decomposition of ¢ as opposed to (5.4) (ibid.):

k
) — [ Ca, 7)) (&@) »

=1

k
p(§) = H Co, d;
i=1
with

—(di—ai/2)
()| ;

Pi (&4)) = Bai-and,

see (2.1.7) for the constants. Or equivalently,

(di—a;/2)

p(&) = (P+P) (&) with P(¢ Hﬁﬁd

&wl

Now (5.5) (ibid.) should be written as

Pse(€) = h(e€) H 5\/?52 Cz;/;) forall 5, >0

where h(-) is defined in (5.2) (ibid.). So P(§) = Poo(§) and

(Ppe * Ppe) (§) < (Pso* Pgo) (§) < (Poo * Poo) (§) = ¢(§);

see (5.6) (ibid.). With these changes, one can update accordingly the proof of Lemma 5.1 (ibid.)

without any difficulty. Then the rest of Section 5 (ibid.) follows unchanged. In this way, we
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establish part (iii) for v = 2. Finally, a scaling argument as in part (i) proves part (iii) for all
v > 0.

Parts (iv) and (v) correspond to Section 7 (ibid.). In particular, part (iv) corresponds to
Lemma 7.1 (ibid.). Note that we only need to study the case p = 2. By (2.3.24) with p(z — y)

replaced by v(z — y), we see that

f 92 (1’)92<—y)’y(]} - y)dxdy < C H§2HL2(1/(2d7Q)(Rd) ngHLQd/@d—a) (]Rd)
(R4)? (2.3.23)

4
=C Hg”L‘ld/@d*a)(Rd) J

where §2(x) = g(—x). Note that we must have o < 2a to ensure that the right hand side of the
above is finite. This is seen by applying A~ = v in Lemma 2.3.7. Thus equation (7.1) (ibid.) can
be applied in our setting . The rest of the proof of Lemma 7.1 (ibid.) remains unchanged.

It remains to update the proof of Theorem 1.5 in Section 7 (ibid.). For this, one needs only
to update the four appearances of 1/(| - |7) in (7.15), (7.22) and (7.23) (ibid.) to (-). Note that
the factor (27)~%?*+1) in the first equation of (7.22) (ibid.) should be (27)~%. With this, we

complete the sketch proof of Theorem 2.3.5. [

Note that the proof of [BCR09, Lemma 1.6] relies on inequality (1.27) on p. 630 (ibid.),
which was a consequence of Sobolev’s inequality. For the more general noises studied in this
chapter, we can no longer apply this inequality. Instead, we prove the following lemma using
the weak Young’s inequality (see, e.g., [LL97, p.107]) as a generalization of Lemma 1.6 (ibid.).

Even though we only need the case p = 2, the following lemma is proven for all p > 2.

Lemma 2.3.7. Forany f, g, hwith h = 0, for ¢ given as in (2.1.5) (see also Assumption 2.1.3),

and for all p = 2, it holds that

|f(x+y)g(y)] ’ "
(J [ m<x+y>m<y>dy] de) < O las 9l 127 ey

Proof. By observing the proof of Lemma 1.6 of [BCR09], we only need to prove that

JRd JRd F(y)G(z)p (z —y)dydz < C HFHL2d/<d+a>(Rd) ‘|G||L2d/(d+a>(ued) ) (2.3.24)
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where

F(zx) = @) and G(z) =

(h(x)”

|9(z)|
(h(z))r?
Note that when op(z) = C|z|~@~®), (2.3.24) is nothing but (1.27) (ibid.). Here we need to
handle more general ¢ as given in (2.1.5). To prove (2.3.24), we need to apply the weak version
of Young’s inequality (see, e.g., [LL97, eq. (7) on p. 107]), which says that for all p,q,r > 1

with 1/p + 1/q + 1/r = 2, it holds that

fRd fRd a(z)b(z — y)C(y)dxdy‘ < Kpgord HGHLP(Rd) Hqu,w HCHLT(Rd) ) (2.3.25)

where

6] := sUD |A|‘WJ b(z)|dz,  with 1/g+1/(¢) =1,
w i SU )

and A is an arbitrary Borel set of finite measure |A| < co. Now we apply (2.3.25) with

d

a=F, c¢=G, b=y, p=r=2d/(d+a), and ¢=—c;
d_ijlaj

=d/(d — a).
By (2.3.25) above, it suffices to prove that |||, is finite with ¢ = d/(d — «) and 1/¢' =
1—1/q=a/d.

Recall that according to Assumption 2.1.3, the d coordinates are partitioned into k groups.
Define A := A; x --- x A}, where A; = Bp4,(0) is the ball in R% centered at the origin with
radius R. With this we have that

R
f |~ da g = (ST — (2.3.26)
A

)
(%)

where we have used polar coordinated to calculate the integral and [S%~!| = 27%/2/T'(d;/2) is

the surface area of the unit sphere in R% (clearly, when d; = 1, |S°| = 2). Moreover, by the
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formula for the volume of balls in R%, we see that

Q / d; _ |Sdi—1|R_

Al = ———~ :
4 (1+4) d;

(2.3.27)

Recall that 1/¢" = «/d. Then a combination of (2.3.26), (2.3.27) and (2.1.5) shows that

k
| Ap| Vo f e = [ [Cuaal ™ f 2|~ dry
) |

,1 ’Sdlfl llfa/dRazf%lada/d
(2

Oéz

'::];r i :?r u

,\q
Il
—

—1)odi—1|1—a/d jo/d .
Cai7diai |S ' ’ /di = K,

where the constants C,,, 4, are defined in (2.1.7) and the final constant /' does not depend on

R. Finally, by symmetry of ¢, we have that

[l = S0P | AR f p(r)dz = K < . (2:3.28)
’ R>0 AR
Hence, ¢ € L, ,,(R?) with ¢ = d/(d — «). This completes the proof of Lemma 2.3.7. O

Remark 2.3.8. Note that when there is only one partition (i.e., £ = 1), or equivalently when ~y

itself is the Riesz kernel, by [LL97, (6) on p. 107], we see that

H| . ‘*(dfa)H _ a*1‘5d71|17a/dda/d,

_d_
a—a W

which is consistent with the norm we find in (2.3.28) up to a constant C, 4.

In order to compare our results with known results (see, e.g., Example 2.2.9), let us intro-

duce another commonly used variational constant

0
Eqq(7,0) := sup ” Y(x + y)dady — 3 Ea(9,9)
957 | 23 (2.3.29)
)
= sup {<g *9%,7) o) — 3 5&(979)} :
ge a
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By using the same techniques used to derive (2.3.14), one can show that for any © > 0 and
6 > 0 that
Ea,d(@7a 9) = Gﬁe_ﬁEa,d(’yv 1) (2330)

The relation between E, 4(7, #) and M, 4(, f) can be established in a similar way as [Che+15,

Lemma A.2], which is stated in the following lemma:

Lemma 2.3.9. Under Assumption 2.1.3 and assuming o < min{a,d}, the following three

expressions hold:

E,q(07,0) = Qiaf aa o(a,d,a)@=), (2.3.31)

a a
a>a/(2a a) 20 — «
a

Mo 4(07,0) = 7<) 7= ( -

a—« 2 — o\ ~Pe)/(a—a) 20—
E,.(07,0) = ( ) 9a/(a—a) ( > Maa(©7,0) 5

o(a,d, o)) (2.3.32)

2.3.33
a 2a ( )

where o(a,d, «) is defined in the following Lemma.
We need to prove two lemmas in order to prove Lemma 2.3.9.

Lemma 2.3.10. Under Assumption 2.1.3, for any f € L*(R?) with E,(f, f) < oo, it holds that

Playy(@)dr < CfI % & 1) (2334)
R

where the constant C only depends on a,d and o with « < min{a, d}. Denote the best constant
in (2.3.34) by o(a, d, a).

Proof. The proof of this result follows the scheme laid out in the proof of [Chel2, Lemma
A.3]. By the same techniques presented above in Lemma 2.3.5, one can show the following

quantity is finite:

A= sup UR B2 (2)y(z)dz — %m) J ]x|“|]—"h(x)|2dx}

heFq

1
= sup {J R (z)y(x)dz — =&, (h, h)} < 0
heFq R 2
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Fix an arbitrary f € F,. Clearly, | f|, = 1 and &,(f, f) < . Let C be the constant such that

P an(@ds = Creulf, H™

Now for g(z) := t%2 f(tx), it is easy to see that ||g|, = 1 and

Eug.0) =610 and | glantde = | Plands

Rd

From this we can deduce that

| #@n@is - creuto.a

Next we note that

A= J}Rd g*(x)y(r)dr — lga(g,g)

2
=t*| fzx)y(z)dz — %tagzL(fa )
Rd
= CHEf, )" = 1€l 1. )

= Oy (t€(f, M) = 5 (tEalf. )"

N | —

Since t > 0, then t&,(f, f)"/* runs through all of R, and thus we have that

a/(a—a)
1 - a/(a—a 2
A>sup{0f:ca——x“} _— aC’f/( ) (—a) .

>0 2 a a

Note that this reduces to the equation present in the proof of Lemma A.3 [Chel2] when a = 2.

By taking the sup over all f € F, we see that

. 9 a/(a—a)
aa(a, d, )/ (@) (—&) )
a a

a
w>A>
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where

sup Cr = o(a,d, a)
feFa

and finally we conclude that for any f € F,
y FA(x)y(z)dz < o(a, d, @)E(f, f)a/“ < 0. (2.3.35)
For arbitrary f € L?(R?) with &,(f, f) < oo we apply (2.3.35) to f/| f], and see that
 Pan@de < olad o) L5 Ealf £

which again reduces to the equation A.4 [Chel2] when a = 2. ]

Lemma 2.3.11. Forany f € F, and for < min{a, d} we have

L@d (@ +y)f2(@) f*(y)dedy < o(a,d a)éalf, )" (2.3.36)

and o(a,d, «) is the sharpest such constant.

Proof. Suppose that f € L?(R?) and suppose that &£,(f, f) < o and let y € R? be arbitrary.

Recall the translation property of the Fourier transform

[FIOE] = [FFE =)l

Then by applying a change of variables and recalling (2.3.34) we see that

y Fa)y(z +y)de = » F(x = y)y(z)dz

<ola,d,a) |f(- =3 E(f(— ) f(—y)™"

= o(a,d, ) | fI2" ) &, (1, 1),
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and in return,

sup | @+ 9) < olad ) [F137 &7 1)

yeRd

Next, notice that

PPl pdedy = [ def (@) [ dufluntary

R2d

< o(a,da) |fI; 7 &l f, )"
and when f € F,, and thus | f|, = 1, we see that this reduces to

| A+ @ sy < e d )6t

We note that the sharpness of o(a, d, a) follows immediately from Lemma 2.3.10. In addition,

this reduces to equation (A.1) [Che+15] for the time independent case when a = 2. [l

Proof of Lemma 2.3.9. We only prove the case of © = § = 1, the general case can be proven
by applying the scaling properties (2.3.14) and (2.3.30).
We have that

1
Eaa(y,1) < sup {U(a, d, @)Ea(9,9)"" = 3 (8a(g,g)1/a)a}
g€Sa

1
< sup {a(a, d,a)x” — —x“}

x>0 2
2 a/(a—a) _
- (_a) ¢ ao(a, d, )/ (@~ (2.3.37)
a a

and similarly

1
Ma,d(’}/; 1) < sup {0’((1’ d, a)l/Qxa/Q _ 51'&}

x>0

o(a,d,a) =), (2.3.38)

<a>a/(2aa) 204 — «

a 2a
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Recalling Lemma 2.3.11 above, one can choose 0 < € < o(a,d, «) and f € F, such that

| A+ 0@ P 0oy > (ol d o) = O P

Now define

g(x) = 172 f(tz).

Notice that

Eoa(y,1) > J 9*(2)g*(y)y(x — y)dady — % (9, 9)

R2d

— | 2P @) - e

« aja 1 a
= (U(G,d,()é) _G)t 50L<fa f) / _§t ga(f7 f)
and this is true for all £ > 0 so we can say that

1
Bual:1) = sup {(0(0..0) = 0 — v

x>0 2
20\ ¢ — o
_ | == d _ \a/(a—a)
(2) " Ceda -9

and be letting ¢ — 0 gives us

9 a/(a—a) .
Eoa(y.1) = (—“) = %o(a, d )
a a

and if we combine this with (2.3.37) then we see that

2a>a/(aa) a— o

d a/(a—a)‘
- o(a,d,a)

Buan1) =

a

Similarly we show that

o(a,d, o) 2=

a)@c/(Zaa) 20 — «

Maa(r,1) = (g 2a
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Lastly, by combining (2.3.40) and (2.3.41), we see that

Eoal,1) = (52 2/ (2a —a

—(2a—a)/(a—a)
a 2a )

Ma(y,1)Fe/@=e) (33 42)

Equations (2.3.41), (2.3.40) and (2.3.42) recover equations (A.2), (A.3) and (A.4) of [Che+15]

respectively when a = 2. ]

2.4 Existence and uniqueness of the solution

In this section, we will prove part (1) of Theorem 2.1.6. The proof will need the following

lemma:

Lemma 2.4.1 (Lemma 3.5 of [BCC22]). If H : [0,0) — [0, ) is a non-decreasing function,

then

00 00 2
2 J e 2 HA(H)dt < (J e_tH(t)dt) . (2.4.1)

0 0
The proof of Theorem 2.1.6 follows the same strategy as [BCC22, Section 3] with minor

changes such as

1

T (2.4.2)

replaced by szf‘a
2

Nevertheless, for completeness, here we streamline and reorganize this proof as follows.

Proof of Theorem 2.1.6. We first introduce some notation. Let L(x) be the Laplace transform

of G(-, z) evaluated at one and calculate its Fourier transform FL(§) as follows:

0

L(z) = fooe_tG(t,x)dt and  FL(¢) = f UFG(E, ) (€)dE —

. (243)
0 0 L+ g[gle

see the proof of Theorem 4.1 of [CHN19] for the last equality. Similarly, let L, (%) to be the

Laplace transform of fn(g ,0,-) evaluated at one, namely,

0
~

Lo(7) = nl j et F(5:0,1)dt
0
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Z J f G (8K = Sk—1, Yo(k) — Yo(k—1))d5dt

€S, Ot"<k; 1

with the convention that 5o = 0 and y, ) = 0. By the relation of convolution and the Laplace

transform (or through a change of variables), we see that

La(#) = 2 L(4o) L (Y02 = %o0) -+ L (Yotm) = Yotn1) - (24.4)

OEYXn

Hence, from (2.4.3),

L (€) = ZE H L - (2.4.5)

5 Z;:k €o(j)

2

Moreover, define

H,(t,7) = n!J( ﬁ K (= yi) ful(750, 6)d5

f f H K fEk — Yk H G(Sk — Sk—1,Yo(k) — yo(k—l))dgdgv (2.4.6)
0,t]n< J(RA)™ }, b1

oEY

where recall that K is defined in (2.1.6). Under the nonnegativity assumption — Assumption
2.1.1, we see that for any Z € R fixed, the function t — H,, (t, ¥) is a non-decreasing function

for ¢ > 0. For this function, we are about to apply Lemma 2.4.1.

Step 1. We first compute the corresponding part to the right-hand side of (2.4.1). By Fubini’s

theorem,

0
J e 'H,(t,7)dt
— Z J J J H K(xk‘ - yk) H G(Sk- — Sk717 ya'(k:) — ya'(k:—l))dgdgdt
0,t]"< J(RE)™ . il

oEY =1

_ f [~ )L () 7
RI™ oy

Then an application of the Plancherel’s theorem and the fact that X = K = -y shows that

Q0 2
J U e‘tHn(t,f)dt] d7 = f | FL, (&) u(d€). (2.4.7)
(R (Rd)n

0
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One may check the proof of Lemma 3.3 of [BCC22] for more details.

Step 2. Now we compute the corresponding part to the left-hand side of (2.4.1). First, using
the fact that K = ' = -, we see that
2 1

F(-0:t H _ H2(t, 7)dT; 248
f( )H®" (n')g (R n( l‘) X ( )

one may check the proof of Lemma 3.4 of [BCC22] for more details. By the scaling property

for ./—"]?n in (2.3.7), one can show that

0 pe 0 2 4 2n(2(b+r)fba/a) 0 ) o I 2d 1 540
ool ar= I g (g spara s
L e | nl 0], (n))? L ‘ JRM (t, %) dz (249

see Appendix for the proof.

Step 3. Now we can apply Fubini’s theorem and Lemma 2.4.1 to the function ¢t — H, (¢, %) to

see that

0 2
f et H, (1, f)dt} dz. (2.4.10)
0

o0
f 2¢ Hn(t,f)Qda‘;’dtgf [
Rnd

0 Rnd

Therefore, combining (2.4.7), (2.4.8), and (2.4.10) shows that

Jooe—t 7.0 t)H2 dt < MJ \F L (&) 2(d€)

0 S e ()?  Jae T 2.4.11)
2n(2(b+r)fba/a)

= WTYL(V, a),

where

Tn(y,a)zf(w)n M1 ! | p(de). (2.4.12)

oeTn k=1 1+ 5 ‘Z?:k €oj)

By the same arguments as those of Lemma 3.6 of [BCC22] with the replacement (2.4.2), we

see that

1

2
—_— d¢). 24.13
) CORNCINE

T (v,a) < (n!)ZCZ(V, a) with C,(v,a) := J(Rd) (
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Notice that

1 2 0 poz—l
de =OJ P dpcon = —a+l>1. (24.14)
f(Rd) (1+|5|a) uld) o (1+p%)? P

Therefore, conditions in (2.1.11) imply that C,(v,a) < c. Combining (2.4.11) and (2.4.13)
gives that

F e ﬁz('aOQt)HQ

o< 220 =E 10 (v, a) < +o0. (2.4.15)
0 mn

Step 4. From the scaling property (2.3.8) we see that

~ 2 0O ba

fn('; 0, 1)H eftt[Q(b-H”)—?]ndt
H@n 0

2

JOO et (50, t)H L dt=

2
0 H

H a

which entails another part of the conditions in (2.1.11):

b
20b+ 1) — = > 0. (2.4.17)

a

From (2.4.15) and (2.4.16), we deduce that

0

N 2 1 —t
fn(-,O,l)HH@L - I ([2(b+7“) — %a]n—f- 1) JO ‘

(2[2(17-&-7‘)—1’70‘] Cu(v, a)) ' <2[2(b+r)_%&] Cu(v, a)>
<C"
I([2b+7)—2]n+1) (n!)2(b+r)—ba/a ’

n

~ 2
fn(-,O,t)H dt

n

~

where the constant C' depends only on the value of 2(b + r) — ba/a and the last inequality is
due to Stirling’s formula (see (2.5.2) below).
Because of the constant one initial condition, |u(t,z)[, = |u(t,0)], for all z € R? and

t > 0. Therefore, by (2.3.9), (2.3.8), and the above inequality,

2
lut,z)[3 = 3" g7nl ¢l20+n)-bajale

n=0

Fal0.1)]

HO™
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(2[2(b+r)—%“]cu(y7 a))n

nny[2(b+r)—ba/aln
< ) greman bl GG (2.4.18)
n=0
which is finite provided that (see (2.1.11))
2b+71)—1—baja > 0. (2.4.19)

Finally, an application of the Minkowski inequality and the hypercontractivity (see [BCC22,

Theorem B.1] or [LL&16] for the case of the SHE) shows that for all p > 2,

Ju(t, 2)], < 3 672(p — 12l

n=0

Fa 0.0

Xn

n/2

<2[2(b+r)*%a]cvu(,/7 a)>

(n!)%[2(b+r)flfba/a]

< Z 0n/20n/2(p . 1)n/2t[2(b+r)—ba/a]n/2

n=0

. (2.4.20)

Therefore, under condition (2.1.11), (2.1.1) has an unique L?({2)-solution u(¢, x) for all p > 2,

t > 0 and x € R?. This proves part (1) of Theorem 2.1.6.

Step 5. The proof of part (2) of Theorem 2.1.6 will be postponed to part (ii) of Lemma 2.5.1
below. []

2.5 Upper bound of the asymptotics

In this section, we will give the proof of part 2 of Theorem 2.1.6 and establish the upper bound

of (2.1.14) (under Assumptions 2.1.1 and 2.1.3, and condition (2.1.11)), namely,

lim sup £ log Ju(t, 2)], < ( 2 20 i
1m X —
tpfip p SOBIUE Dy 2 2a(b+7°) — ba

2a(b+r)—ba—a b
)W” <m+m—ﬂ_0.
a

As for the upper bound, we will first establish the corresponding result for p = 2 in Lemma

(2.5.1)

<9V7°‘/ “./\/l

2.5.2 and then apply the hypercontractivity property given by Theorem B.1 in [BCC22] to

obtain the general case for p > 2. To prove the next lemma, we will need the following
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equality

1 r 1
lim — log <M) =alog(a), foralla >0, (2.5.2)

n—ow n (nl)e
which is a direct consequence of Stirling’s formula.

Lemma 2.5.1. Assume Assumptions 2.1.1 and 2.1.3 hold and in addition that o < min{2a, d}.

Let p be the constant defined in (2.3.10). Then the following identities hold true:

fn(-, 0, 1)Hj{®n r (lQ(b +r)— b_a] n+ 1)) = log (22(1’”)’%&,0) and

1
lim —log (
n—o0 1,

a
(2.5.3)
) . ) 5 2(b+r)—b2
r}ii%oﬁl()g ((n!)z(b”)_a fn(:,0, 1)”H®n) = log (W) + log p.
(2.54)

Proof. The proof follows the same arguments as those of [BCC22, Lemma 4.3]. Nevertheless,
we sketch the proof here for completeness. Recall the definition of 7}, (v, a) defined in (2.4.12).

From (2.3.21), we see that

n—o0 M

L lmy, a)

lim — (n!)2

] = log (pv.a) - (2.5.5)

As a consequence of (2.4.11) and (2.4.16) in the proof of Theorem 2.1.6, we see that

- n 2(b+r)—b7"‘
7,0, 1)Hi®n r ([Z(b ) — b—“] n -+ 1) < umy, a).

a (n!)?

Combining this and (2.3.21) we see that

1
lim sup — log {
n

n—00

Ful-,0, 1)Hi®n r <[2(b +7)— %a] n+ 1)]
< log <2[2(b+7")—%“]> lim + log (Tn(% a))

n—ow n (n!)?
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— log (2120771 + 10g(p,.0),

which proves the upper bound for (2.5.3).

Now we prove the lower bound for (2.5.3). Let 7 and 7 be independent exponential random

variables with mean one. In the following, we will compute E[.J,, (7, 7)] in two ways, where

Ju(t,t') = H,(t,x)H,(t',x)dx, t,t' > 0;
Rnd

see (4.2.6) for the definition of the function H,,. Notice that using the above notation, (2.4.8)

can be rewritten as

~ . 2 B 1 2= 1
R0 = o f( o, Il 27T = i (0,1,

On the one hand, the Cauchy-Schwartz inequality implies that

Jn(t, t/) < Jn(t, t)1/2Jn(t,, t/)1/2 _ 15[2(b-‘,—r)—ba/a]n/?(151)[2(b+r)—bo¢/a]n/2(]n(l7 1>‘

where we have used the scaling property of .J,, (¢, t) inherited from that of

ﬁ(-,(];t)” as in

Rn

(2.3.8). Hence,

B[ (r,7)] < B [r20+0) b2 [120er-ln2] g, (1,1

o ([Q(b + T)Q— bajaln 1)2 (1)

2

Ful-,0; 1)H

HOn

On the other hand, by (2.4.7) and (2.4.12), we see that

E[J,(r,7)] = L ) L " et (4 DytdT - JRCM UOO etHn(t,x)dtrdx _ T, (v.a).

0

Therefore,

fn(VO; 1)

T.(v.0) _ . ([2(1» +1) —bajaln 1>2 (2:5.6)

~ 2
2 |

Hon
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Now, an application of Stirling’s formula as in (2.5.2) to see that, as n — oo,

2
r (W - T)z_ L 1) ~ T ([2(b+ 1) = bajaln + 1) 270 =C, - (2.5.7)

where C,, = 27![2(b+7) —ba/a]"/?(27n)"/2. Then an application of (2.5.5), (2.5.6) and (2.5.7)
proves the lower bound of (2.5.3). Lastly, (2.5.4) follows from (2.5.3) and the limit (2.5.2). This

proves Lemma 2.5.1. O
Now we are ready to prove part (2) of Theorem 2.1.6.

Proof of part (2) of Theorem 2.1.6. The critical case happens when the exponent of n! in (2.4.20)

vanishes, namely,

[2(b+7)—1].

a
a = —
b
Among the three inequalities in (2.1.11), we also need to make sure that the minimum is
achieved by ¢ [2(b 4 r) — 1], for which, we need to additionally require § [2(b+ 1) — 1] < d

and

% 200+7)—1] <21 <« rel0,1/2).

The reason for having a strict inequality above is our need to apply (2.5.4) and Theorem 2.3.5

later on in this proof. Putting these conditions together gives the conditions stated in (2.1.12).
We start by proving part (2-i). Let u) for A > 0 be the solution of the SPDE (2.1.1) with

6 replaced with A and u = uy. By the hypercontractivity property (see [BCC22, Lemma B.1]),

we have that

forallp > 2,t > 0and z € R%. (2.5.8)

lut, I)”p < H“(p—1)9(t’x)‘ 27
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Now by recalling Theorem 2.3.3 and by applying o = ¢ [2(b + r) — 1] and the scaling property
(2.3.8), we see that

2

ug-vo(t.2)[; = 3 6= 1)) nt| 700
DN ) PSS
=: Z [t@(p — 1)]71 R,,

- 2
with R, = n!|[f,.(:,0; 1)” o By the Cauchy-Hadamard theorem, this series converges for
H n

0t(p — 1) < limsup,,_,, |R,|~"/". However, by (2.5.4) and Theorem 2.3.5, we see that

1
lim —log(|R,|) = log (2p) = log (zy—a/aM((;a—oz)/a) ‘

n—aw N
Therefore, lim sup, . |R,|"/" = (2v~/a MEP*~*/*)=1 and ||u(t, x|, converges for

1
t < =:T,; see (2.1.13).
29(]7 _ 1)Vfa/aM((12a—Oé)/a P

To show part (2-ii), we use the Cauchy-Hadamard theorem and the same techniques above

to see that the radius of convergence of the series

|u(t, x Hz 7;)9””' fn 0; t)HH®n
is precisely T5. This completes the proof of part (2) of Theorem 2.1.6. ]

Lemma 2.5.2. Assume Assumptions 2.1.1 and 2.1.3 hold. Let p be the constant defined in
(2.3.10). Under condition (2.1.11), we have that

1 2 p . ba
]_' _]_ E t 2 — 0 2a(b+r)—ba—a b - ]_
lim -5 log E(Ju(t, 2)|%) (2a(b+r)—ba) (6p) ( (b+r)—— )
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Proof. By part (1) of Theorem 2.1.6, there is an L*(£2) solution u(t, z). By the scaling property
(2.3.8),

E(|u(t, z)[? 29” (n!)

n=0

fn( 0 t)H _ 2 Qn Tl' (2(b+r)—ba/a)n

fuom)|

H®" H®n

_ Z Zant(Q(b-‘rT)—ba/a)n

n=0

where

a3 2 o
R, = (n!)2(b+r)—ba/ fn(',(),l)HHW and 2, = (n)20+7)=(ba/a)-1

Notice that (2.5.4) above says that

1 9 (b4r)—ba
~log(R,) — log | [ ———p as n — o,
7 108 fn) = log (2(b+r)—%°‘> ’

Now define R to be

2(b r)—%’
R = 2 )
2(b+r) — %‘3‘ P

We want to find a 5 and A so that

lim — log Z z R (t 2(b+r)— bo‘/a))n = A.

t—owo ¢
n=0

Indeed, by the following limit (see [BCC22, Lemma A.3]),

lim ¢t~7 log Z (n))™t" =, for all v > 0,

t—00
n=0

we see that

[(QR)tQ(b-‘rr)—ba/a]n
log ) COECEECT 2(b + 1) — (bojJa) — 1,

n=0

' 1 = (BT =T
tll{g l (8R>t2(b+r)—ba/a ]
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which, by an easy algebraic manipulation, is equivalent to

. 1 ST Gara T 9 R $2(b+7) ba/a]
tli% th(b+r)—ba/a:| Og Z 2(b+r)—(ba/a)—1

n=0

= [2(b+ 1) — (ba/a) - 1](93)W.

Hence,

2a(b+ 1) — ba
2a(b+ 1) — (ba) —

8= and A =[2(b+r)— (ba/a) — 1](9R) 7w ba=a_

Finally, an application of [BCC22, Lemma A.2] shows that

lim — 1og]E(!u(t z)[?)

t—ot 6

a 2a 6 a bOC
I 7 (e e e %) baa | 9 2
G (Za(b+r) —ba) pr ( (b+7) a ) ’

which proves Lemma 2.5.2. []

Now we are ready to prove (2.5.1).

Proof of (2.5.1). By the hypercontractivity (2.5.8) and the scaling property (2.3.8), we see that

forall p > 2,

Jutt, 012 < Jugy-no(t, 0013 = X 00— 1 T 0.0
n=0
= e | (0.t - 1)<>/)Hi®

n=0
2

" (t(p— 1)m,o) H .

2

Hence,

u(t, 0)], < Hu (t(p - 1)i2<b+r>1—ba/a,o) H2 = ult,, 0], . (2.5.9)

where ¢, is defined in (2.1.15). Finally, an application of Lemma 2.5.2 proves (2.5.1). [
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2.6 Lower bound of the asymptotics

In this section, we will prove the lower bound of (2.1.14), namely,

lim inf =7 log |u(t, ). > [ = 2 ’
b p O8I Ty = 5 2a(b+ 1) — b

(oA )T ()

a

(2.6.1)

Through out this section, we assume that Assumptions 2.1.1 and 2.1.3, and condition (2.1.11)
hold.

We start by defining the function W, (¢, ) on (0,00) x L(u) by

Wh(t, ¢) = J[O’t]w J(Rd)n ’H d(k) 1[[1 FG(sk = sp-1,7) (& + -+ &)u(d&r) - p(dE,)ds.
(2.6.2)

with sy = 0. We now give conditions under which W), is well defined.

Lemma 2.6.1. If the measure y satisfies the relation in (2.4.13), then W, (t, ¢) is well defined

and for any d = 1, t > 0 and ¢ € L&(u). Moreover,

” —t — - - 1
[ e - J(Rd)n][[lcb(&k)ﬂ1+Z|£k+.__+£nau(d§) W), 2.63)

0 k=1 2

Proof. The proof follows the exact arguments as those in the proof of Lemma 6.2 of [BCC22]

except that one needs to use the following Laplace transform:

Q0 . ‘ B 1 .
L € ‘FG(t7 )(5) dt— 1+%|£‘a7

see the second equation in (2.4.3). [l

The next proposition is a restatement of Proposition 6.3 of [BCC22]. The proof follows

the same proof as that of Proposition 6.3 of [BCC22]. We will not repeat it here.
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Proposition 2.6.2. For f € H,t > 0, and p,q > 1 withp~* + ¢~ ! = 1, it holds that

Ju(t,0)], > exp {—%(q -1) fli}

DoMWLt F f)‘ (2.6.4)

n=0

and as a consequence, the series |y, _, 0"*W,,(t, F f)| converges provided that |ul(t, 0)[, <

oo, which is the case under Theorem 2.1.6.

Now we are going to apply a scaling argument to (2.6.4) in order to put ¢ and p together,

from which we can determine the constants ¢, and 3 defined in (2.1.15).
Proposition 2.6.3. Forp,q> 1, p~' 4+ ¢ ' = 1 and for any f € H,

1

Jutt0), > exp { 32111, |

n=0

0w, (1), F f)l , (2.6.5)

where the constants [3 and t,, are defined in (2.1.15).

Proof. From Proposition 2.6.2, we see that for any f € H, the inequality (2.6.4) holds. For
some constants V, W > 0, which will be determined in this proof, let f,(x) := 7V f(7"z) be
a scaled version of f. Itis clear that f. € H. By some elementary scaling arguments (see the

proof of the Lemma 6.4 of [BCC22]), one can show that

|£72, = 72V=aW+Wa g2 ang (2.6.6)

W, (t, Ffy) = 7V (@i @)l (178w Ff) . (2.6.7)
Hence, an application of Proposition 2.6.2 to f, shows that

S L1, F )

n=0

e, 0, > e {30~ 115

Z 9n/27_n[V—W((d—a)+%(b+7"))] Wn (tT%W, .Ff) )

n=0

1 — o
zexp{—é(q—l)Tz(V dW)+W f|3{}
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Comparing the above lower bound with that in (2.6.5), we obtain the following two relations

with three unknowns W, V and 7:

VoW ((d —a)+ %(b + r)) —0, (2.6.8)

(p — 1)—17_2(V—dW)+Wa -0 (2.6.9)

Since (2.6.9) should hold for all ¢ > 0 and p > 2, one can choose 7 = (p — 1)t to reduce the

relation (2.6.9) to

F2(V=dW)+Wa _ TEW-H’

which then gives the following equation
2V —dW) + Wa =1+ %W. (2.6.10)

Now solve the linear equations (2.6.8) and (2.6.10) for W and V to see that

b

W:E(ﬁ_l)v 2(b+7")—b—a
with (3 := baa

V=<%(b+r)—a+d)g(ﬁ—1), 2b4r) -1

Therefore, the scaling f, and tf) should be
Fola) = (30 0rd) -1 4 (Tg(ﬁ—l)x> and 13 = 178 = (p— 15147,

respectively. This completes the proof of Proposition 2.6.3. O]

To remove the absolute value sign in Proposition 2.6.3, we want to identify all the f € ‘H

for which W, (¢, F f) is nonnegative. In fact, if we consider the space

H. = {f € H: fisnonnegative and nonnegative definite} ,
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then by Plancherel’s theorem, for f € H .,

W,(t, Ff) = f J H Fen(@) | [ Glsk — sty o — -1)dddS = U, (¢, f) = 0
0,t]n< JRnd . kel

with the convention that s = 0 and zo = 0, where we have used the fact that the fundamental

solution G(t, =) is nonnegative (under Assumption 2.1.1). Now define

Wal) = sup Wt F()) and Un(t):i=  sup  Ua(t, f).
fer, | flly=1 FeH | fly=1

It is clear that W,,(t) = U, (t) = 0.

Proposition 2.6.4. If T is an exponential random variable with mean one, then

lim infl log E(Uy, (7)) = log(Pl/Q)

n—oo N
where p is the constant defined in (2.3.10).
Proof. We start by letting 7 be an exponential random variable with mean one. With this,

E (U,(7)) = JOO e ‘U, (t)dt = sup Jm e UL (t, f)dt

0 feHi, 1 fly=1J0

For any f € H, with | f|,, = 1, by Bochner’s theorem, F f is nonnegative and nonnegative

definite, which further implies that F f is even. In addition, Lemma 2.6.1 gives us that

foo e UL (t, f)dt = F e "W, (t, Ff)dt

0 0

- f [[Frenl ] Z1g, +1 e e lden).

Notice that the right hand side of the above equation takes the form as [BCR09, Equation (3.3)].

By the same arguments that follow in the proof of Theorem 2.3 ibid with the replacement
(2.4.2), we have that

n

hmmf—logJRdnH e [+ e e nlde) = log (F )

o0
noen k=1 5l
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where p(-) (check (2.3.10) for a comparison) is defined as,

h(§ +n)h(n)
. dn | p(dg), 2.6.11
(9) |h||LS21<1de)—1L{d9(§) [ iy \/14_ %|€_|_77‘a\/1+ Zlnle n | p(d€) ( )

for all nonnegative and nonnegative-definite functions g € L? (u(d€)). Before we proceed, we

first make a few comments:

(1) g € L? (p(d€)) if and only if F~'g € H. Moreover, |g| 2,y = [F gl

(2) For g € L? (uu (d€)), g is nonnegative definite if and only if F~'g € H,.

(3) For g € L? (u (d€)), g is nonnegative if and only if F~!g is nonnegative definite.

(4) Finding the best nonnegative and nonnegative-definite function g with [g[ .., = 1 to
maximize p(g) is equivalent to finding the best nonnegative and nonnegative-definite f € H,
with || f[,, = 1 to maximize p (Ff).

(5) p(g) is well defined (i.e., finite) because for any h € L?(R?) with 1Al Loy = 1,

h(€ +n)h(n)
J]Rdg@ [ ke A/1+ 5IE+n|%/1 + §nle

2 aer) h(€ + m)h(n) ’
= <JRdg(§) Mdg)) fRd [ ri /1 + 5[E + [t /1 + %\n!“dn ulde)

< H}—QHH Pra < 0O,

dn] u(df)‘

1/2

where the upper bound does not depends on £, and p, , is the constant defined in (2.3.10) which
is finite due to Theorem 2.3.5 (see (2.3.20)).

Note that since both y and g are nonnegative in (2.6.11), the supremum in (2.6.11) has to
be achieved by some nonnegative function /. Hence, we may assume h is also nonnegative for
the remainder of this proof. With this being said, we see that for any f € H, with | f|,, = 1,

lim inf 1 log E(U, (7)) = log p(Ff).

n—0 N

62



‘We now need to calculate

swp  p(Ff).
JeH 4, [ fly=1

Consider a nonnegative function i € L?(R?). The function h(-)/4/1 + 5] - |* € L*(R?) so that
. d/2 1 h(-) : o 1,a(Tod
gn(z) == (2m)Y*F (\/W) (x) is well defined. Under these conditions, g, € W *(R%)

with

1

1 a
llhrocen = g | 1+ EFm©Pag = [ 5

Tw’h(@Pdﬁ < Gy B72 gy < -

Notice that

h(& + n)h(n)
re A/1+ 5[E+n]*y/1 + E[nl

dn = (2m)~¢ fRd Fan(€ —n)Fgn(—n)dn

= (27) " (Fgn = Fgn)(€),

where we have used the notation that 1(z) = h(—z). Since h(-) is real valued, we see that
Fgn = Fgn = Fgp. Using this and the fact that F(fg) = 2m)~2F(f) = F(g), we see
that (27)~%(Fgp, « Fgn)(€) = F[lgnl?] (£). Hence, from (2.3.20), we see that Fgy * Fgp €
L? (1u(d€)) or equivalently |gy,|> € H. Then,

p(Ffy= sup  @m)| FFE)(Fgn*Fan)()u(de)

“hHLQ(Rd):l R4

= sup FFE)F[lgnl*1(€)(dE)

HhHLQ(Rd):l R4

= sup (f|gnlHn

HhHLQ(Rd)=1
With this we see that
_ N 2 n1/2
sup  p(Ff)= sup  sup {f,|gnln = sup {Jgnl%, l9n"x (2.6.12)
fe,Hv”f”'Hzl fEH»”fHH:1 HhHL2=1 ||h||L2=1
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where the optimal [ is chosen to be |g|*/ |[|gn|?[,- Now we claim that

|gh|2 € H-‘m

which implies that the supremum in (2.6.12) can be restricted to ‘H . and

sup  p(Ff) = sup p(Ff) = sup <|gh|2’ |gh|2>;{/2 .
feH, | £l3,=1 feHy, [ flla=1 Ih]2=1
Then notice that
- ap h(&+n)h
Flon?)(€) = (27)"U(F g » Fon)(€) = (€ +n)h(n) an.

rt /1 + 5E+n|"/1+ 5[0l

Hence, from (2.3.10) and (2.6.14), we see that

swp (oo = sw | (F(aOF ) = pu

HhHLQ(Rd>:1 ‘hHLQ(Rd):l

which then leads us to the lower bound:

1
lim inf — log E(U,,(7)) > log (p,/2) -

n—oo N

Therefore, it remains to proving (2.6.13). First notice that from the above we see that

[ () OF wide) < pua <0 — (P e

(2.6.13)

(2.6.14)

Moreover, since h is nonnegative, from (2.6.14), we see that F (|g,|?) () is also nonnegative.

The Bochner-Schwarz theorem then implies that | gy, (+)|?

is nonnegative definite. It is clear that

\gn(-)|? is nonnegative. This shows that |g;,(-)|* € H.. This completes the whole proof of

Proposition 2.6.4.
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Lemma 2.6.5. It holds that

1 e a v,a
lim inf — log [(n!)%@—fﬁ”Unu)] > log Pra_ —] @619
n—w n (g[a . % I %T])E(a S+ET

Proof. Let 7 be an exponential random variable with mean one. Notice that by some elemen-

tary scaling arguments, we have that for all ¢ > 0,
b aa b o a
W,(t) = "¢ (=881, (1) and U, (t) = "4 (== 57870, (1), (2.6.16)

which then imply that

Then by Proposition 2.6.4,
.1 b a a 12
liminf = log | T ( n- (a 2y —r) +1) U, (1) | = log (p22) . 2.6.17)
n—ow N a 2 b ’

Therefore, (2.6.15) is proven by noticing that, thanks to (2.5.2),

S [(ng(a—5+4r)+1) b a a b a a
hmmf‘l‘)g< —a(“—fz?“)bg(‘(a—a*z?‘))’

n—o N (nl)a(e=5+5r)

where the condition 2 (a — ¢ + 4r) > 0 is guaranteed by (2.4.19) (or (2.1.11)). O
We need one last lemma before the proof of the lower bound:

Lemma 2.6.6. For any k,0 > 0, there exists a constant ¢; = ¢1(a, M, k,0) > 0 such that, by

setting ny = [c1t], it holds that

1 Tab—atrsar S S—
liminf—log(k”tH”t/2Um(t))2<k\/§)2b I ((pY/2) Tt (2.6.18)
t—n

v,a
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Proof. Fix an arbitrary € > 0. Lemma 2.6.5 guarantees the existence of an N, > 0 so for all

n > N,
(=358)0,(1) 2 exp (n(log(R) ~ 9) = B'e™ 2619

where

b o a
b a a —E(G—TFE’")
1/2 [ _ 1= ]
R = P ( a 5 + bT ) .

Now fix a ¢ > 0 and let n; := [ct]. Notice that n, > N, for any ¢t > t. := (N, + 1)/c. For
t > t., from (2.6.19), we have
kntent/2t§(a*%+%7‘)nt

kment/2Unt() Lrtgne/2a ( T)ntUm( )/ - — R™e~ ¢ (2.6.20)
(nt!)a(“—iJrz")

Notice that [ct]/t — ¢ as t — oo which means that n,/t — c as t — co. With this we can say

lim 1nf . log (k™0™U,,(t)) = clim 1nf — log (K™0™/?U,,(t)) =t I(ny).

t—00 t—00 ny

Now, by (2.6.20), we have that

b a,a
1 E(a 7-"—77‘)1’“
I(ng) = climinf — log ((kR\f) ! - ) —ce

t—0 Ny

= clog(kVAR) + clim 1nf — log

t—o0 ’)’Lt

t>g(a—g+‘;r)nt ’fltb (a—§+ r)nt
— — C€

()& (2= 5+57)

r) log(c )—i—cé <a— 24 %T) hmmfllog ( n?t!> — ce
')

a 2 a 2 t—0 Ny

— clog(kVOR) — cé (a ~2y %
a
b

b o b a a
= clog(k;\fR) —Cc— (a— 5 + log(c) —i—ca <a— 5 + Z ) — ce

and letting e tend to 0 we see that

I(ny) = c [log(k\/@R) — g <a — % + %r) log(c) + 2 (a — % + %7")} =: h(c).
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+%T)

w\Q o

In order to maximize h(c), notice that
W(e)=0 < ¢ =kVIR)("

a

yelag50)

1/2

I(ne) > (k/8) 3 78) (12
]

After plugging c¢* and replacing R we arrive at the following inequality

which proves (2.6.18) after some simplification
= 1 we have that

We are now ready to prove (2.6.1)
Proof of (2.6.1). By proposition 2.6.3, for and p, ¢ > 0 with p™ + ¢
D0 PWL(t, Ff)l :

n=0

e {200 1713 )

|lu(t,0)[, =
k > 0. Recall that W, (¢, ¢)

We now take the supremum over all f € H with |||,
ivi W(t,-)on H,. Letc > 0.

k"W, (t, ¢/k) for ¢ € L?(u1) and the non-negativity of W,,(
0"W(ty, FI)

!

|lu(t,0)[, = exp {—itng} sup
feH+ | fla=Fk n=0
1
= exp {—§t£k2 sup /C"Qn/2Wn(t57 Ff)
fer4 [ fly=1 =0
1
> exp {—étﬁkQ} sup kMO PU, (1), f)
feH+ [ flly=1

[ct?]. Now by choosing c as in Lemma 2.6.6 we get that
n: Ane/2 B
k 9 / Unt (tp ) f)] )

where n;, =
_ 14812
e .. stk 1
liminf ¢, log |u(t, )|, = lim inf 7— + 5log sup
© tp—0 tp tp feH | flly=1
— _1k2 —|— ijabficllﬂrQar (pe) 2ab—ab+2ar — h(kj)
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By maximizing h for £ > 0, we see that / is maximized at the point

2ab—ab+2ar

2a—2[2ab—ab+2ar] Y
with B = (0p)2ab-ebr2ar,

1+ 2ab — ab + 2ar
B 2aB

Inserting £* into h gives us that

g _ _
h(l{;*)zBﬁ( 2a ) <2ab ab + 2ar a)

2ab — ab + 2ar 2a

and plugging in the value for B proves (2.6.1). [

2.7 Appendix

Proof of Lemma 2.3.4. In this proof, u(dz) = ¢(z)dr = C,4lz|~4~*dz. By the change of

variables 2’ = (v/2)"* z and y/ = (v/2)"/"y, we see that

poa (I-179) = sup Ldlwwﬂ+f@+yW@) ®]M@@

1712 gy =1 sle +yly/1+ 5yl

v\~ 4

vy ~Ve w\—1/a e 2
O [ fRdf((z) =+0) (") ()" | twiar

2 VI g/ + [yl 2

”fHLQ(Rd):l

By setting f*(z) = (v/2)"Y®" f <(V/2)_1/a x), we see that

2
_ v\ —efa [ @ +y) f* ()

v,a 1Y) =1z d d

pra (|- 17%) <2> f;l(lﬂg)_lfw l za A/1+ |z + y[*/1 + [y]° y] p(z)dz

— Fatyrw L
-(3) fi“j'llfw UR NG \x+5\a¢1i yy|ady] pla)de
(%)_a/a pra (117,

where the second equality is due to the fact that {,, f(x)*dz = {3, f*(x)*dz. Then an appli-

cation of (2.3.16) proves (2.3.18).
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Similarly, for (2.3.21), by change of variables &/ ;) = (v/2)"° &o(j)> We see that

2
1 1 . 1 -
lim —1 d
n1—I>r<)lo n ©8 (TL')2 J;Rd)n ( Z 1_[ 3 | Z] k &7 ’ ) M( é )

o€, k :1

. 1 1 v\ —no/a {' &
= lim —1 = d
ngrolon 0g (n!)? (2) J(Rd)n aénll_[l 1+ ’ZJ kfa )
~ 2
—aja 1 1 2
-1 v ] lim —1 J d
e[ ()] | o | & ﬂw 12 ol ] "

= log ((%) _a/a) +10g (p2a (|- 17%)) = 1og (pwa (|- 17%)) ,

where we have applied (2.3.15) and (2.3.18). This completes the proof of Lemma 2.3.4. ]

Proof of (2.4.9). Starting from (2.3.5), by the change of variables t; = t;/c and the scaling

property in (2.3.7), we have that

n k
Jrfn( OCt) 517" agn :JO o HFG tk+1_tk> (Z ) {
ct] =1

k=1
n k
= J H}_G c(tpsr — tr), Z )
0,t]2 k=1 j=1
k
J CbJrr 1?G (tk+1 tk’ ) (Cb/a Z )
0,t]% p—1 j=1

where in the last line we applied (2.3.6). Now,

-an(v 07 Ct)(glv e 7€n) = J H Cb+r71fG (tk‘Jrl - tk (Cb/
[0,2]2 k=1

IIMw
v

Cn(b+r)ffn ('7 07 t) (Cb/afb o 7cb/a€n) )
from which we see that

Q0 ~ 2 o0
-t n-,o,tH dt:J tf
foe fuonf = | et |

FR 00 &) pldé)ar
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f J]and ffn 0; 2t) <§17 75?1) i M(dg) 2dt

_ 22n(b+r) J 26_2t f
0 Rnd

where in the last line we have applied (2.3.7). Now,

0
0

an(a 07 t)(Qb/afla T 72b/a€n> i M(dg}dt

F]?n(> 07 t) (2b/a€1’ T >2b/a€n) i M(dg)dt

~ 2 o0
fn(-,o,t)H dt = 22"(”+7“>J 2¢ 2 f
H@" 0 Rnd

0
_ 22n(b+7“) f 26_2t f
0 Rnd

where the last line follows from a change of variables and recalling that ,u(dg ) in (2.3.17).

—nbd nb(d nb(d—a)

FR00E, 6] 272" u(ad )t

Lastly,
. —t | F 2 2n(b+r) * — > *nbd nb(d a)
700 ar=2 2 | |FRC00E 6] 2 pl(d€)at
0 HROn Rnd
o0 2 =
2(6+)~bera) f 262 f FR 00, €] pn(ag)dr
Rnd
2(b+r)—baja) o
= f 2¢72 H,(t ,f)Qdfdt,
0 R’”d
which proves (2.4.9). ]

70



Chapter 3

Global Solutions of the Interpolated Stochastic Heat and Wave Equation with a Super-linear
Diffusion Term

3.1 Introduction and main result

In this chapter, we study the interpolated stochastic heat and wave equation ISHWE) on the

whole space R?,

r

(af + g(-A)a/?) u(t,z) = I [a(u(t, 2)) W, x)] reRLE>0
J u(0,-) = up(x) Be(0,1] (3.1.1)

u(0,-) = up(x), u(0,-) = vo(z) pe(1,2),

where the fractional differential operators é’f , (—A)*/2 and I} respectively denote the Caputo
derivative, the fractional Laplacian and the Riemann-Liouville fractional integral operator.
The noise, W, is a centered Gaussian noise that is taken to be white in time and colored in
space. In other words, W is a 0-mean Gaussian processes on the space of Schwartz functions,

S (R¥*1), with the following covariance functional:

EQVOW) = [ as [ dsdysaointe ). o0 7@

where 0, denotes the Dirac delta distribution.
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The initial data, uo and vy, are assumed to be Borel measurable functions which are
Bounded on R%. The nonlinearity, o, is locally Lipschitz in the sense that the following asymp-

totic relation holds as |z|, |z| — oo:

o(x) = 0(2)] < ol — [ (2 — )], (3.1.2)

where 05,0 > 0 and In (z) := In(z v e) for z > 0. Further, this implies that as |z| — o0,

lo(2)] < oy + ooz|[Iny (|2)]°, (3.1.3)

where 0, = ¢(0).
Forany T' > 0, with t € [0, 7] and 2 € R, the solution to (3.1.1) is understood in the mild

sense as the solution to the following stochastic integral equation:

u(t,z) = Jo(t,z) + I(t, x),

where

[Z(tv ) * uO] (I) ﬁ € (O’ 1]

[2(#,) = vol(z) + [27(t, ) x uo](x)  Fe(1,2)

Jo(t, .l’) =

and

I(t,x) = L y Y(t— s, —y)o(u(s,y))W(ds,dy).

The stochastic integral above is a Walsh integral (e.g. see [Wal86]) and the fundamental
solution consists of a triple, {Z, Z*, Y}, and each member of the triple is defined through Fox-
H functions, however, one can more compactly define them through their Fourier transforms

[CHN19, Theorem 4.1]:

FZ(t,) () =t By g (=27 wt”])
FZ*(t,)(€) = Egy (=27 'vt”¢]*)

FY (t,)(€) = " Eg gy (=27 017[€]%)
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where we use F f (&) = (. exp(—iz-§) f(x)dx to denote the Fourier transform, E, () denotes

the two-parameter Mittag-Leffler function [Pod99]:

0 ¢] Zk
Eop(2) = ) ——, , >0, z€C,
(2) I;)F(aker) a>0,b>0,z¢€

and I'(-) is the standard Gamma function.

Remark 3.1.1. We mention that under the special case where o € (1,2), § € (0,1] and
v =1—0,that Z = Z* =Y, which is easily seen from their Fourier transforms given
above. Because of these equalities, we simply let Y denote the fundamental solution under this
situation. Moreover, under this case there is a probabilistic representation for Y which is used
by the authors in [FLN19; FN17; MN15; FLO17; MN16]. Indeed, let X; denote a symmetric
a-stable process with density p(¢, x). Let D = {D,, r = 0} denote a /-stable subordinator and
E} its first passage time. Then it is known that the density of the time changed processes Xg,

is given by Y (¢, x) and we have that

V) - | " p(s, ) (5) d,

where

fu(s) = t67 e P gy (tx71P)

where gg(-) is the density function of D; and is smooth on the real line with gg(x) = 0 for

r < 0.

The goal of this paper is to prove the existence and uniqueness of a global solution to
(3.1.1). The work is highly motivated by the recent work by Millet and Sanz-Solé [MS21]. It is
a well studied phenomena that either a super-linear drift or diffusion term may cause blow-up of
the solution. As for the stochastic heat equation, we direct the reader to [FN21; MS93; DKZ19;
BGO09]. On the other hand, the only other work that we are aware of that is dedicated to proving
some non-existence results of (3.1.1) is [AMN20]. So, to the best of our knowledge, this is the

first work on proving the global existence of a solution to (3.1.1) with a super-linear diffusion
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term (see Theorem 3.1.2 below). However, as we will see, the calculations given below are

essentially identical to those performed in [MS21] which is the cause for our motivation.

Here is the main result of this chapter. The proof will be postponed until Section 3.3

below.

Theorem 3.1.2. Suppose that o satisfies (3.1.2) and the initial data, v, and vy, are Borel

measurable functions and satisfy for all T' > 0,

sup [ Jo(t, z)| < 0,
(t,x)e[0,T] x R4

which is true if uy and vy are bounded. Then for any R > 0 and (t,x) € [0, T] x Bg(0), where
Br(0) denotes the closed d-dimensional ball centered around the origin, there exists a random
field solution to (3.1.1) denoted as (u(t,z) : (t,x) € [0,T] x Bg(0)). This solution is unique
and satisfies

sup  |u(t,z)| < oo, almost surely. (3.1.4)
te[0,T], |z|<R

The proof of Theorem 3.1.2 uses a standard stopping time argument along with a series of
truncations of the super-linear term, o, in order to construct a solution of (3.1.1). Indeed, we

define for N > 0,
UN(z) = (T(:E)l{mg]v} + U(N)l{x>N} + U(—N)l{x<,N}.

Then we associate for each N > 0, the corresponding global solution to (3.1.1) with o replaced
my oy as uy(t, x), whose existence follows due to Theorem 3.2.1 below. We then define the

stopping time 7y as follows:

lz|<R

7y = inf {t > 0: sup |un(t,z)| = N} AT,

and prove that {¢ < 7y} 1 2 and then show that the solution to (3.1.1) exists pathwise for
w € {2. We remind the reader that in the case of a globally Lipschitz diffusion term, one usually

proves that the solution exists as a limit in L*(£2). However, the stopping-time argument applied
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here will no longer guarantee the L?((2) existence of the solution. Moreover, because L?*(f2)

existence is no longer guaranteed, the solution may no longer satisfy the standard Itd isometry.

3.2 Preliminary results for a globally Lipschitz drift term

In this section, we assume that the coefficient o is globally Lipschitz and therefore satisfies the
following inequality:

lo(x)| < e(o) + L(o)|z|, (3.2.1)

where ¢(0) = |0(0)| and L(o) is the Lipschitz constant of ¢ and we assume that L(c) > 0.
The equation (3.1.1) under the assumption that o satisfies (3.2.1) has been studied in [CHN19]
where they establish in Theorem 4.1 ibid the existence and uniqueness of global random field

solutions. In order to do so, one needs to show Dalang’s condition:

t
J dSJ dy|Y (s,y)]* < o, forallt >0, (3.2.2)
0 Jrd

which is equivalent to (e.g. see Lemma 5.3 ibid)

d < 2a + %min{27 — 1,0} =: O, (3.2.3)
which is further equivalent to
p(d) >0 and d < 2a, (3.24)
where
p(x) :=20+2y—1-— fz/a. (3.2.5)

We now state the existence and uniqueness result proven in [CHN19].

Theorem 3.2.1. [CHN19, Theorem 4.1] Under (3.2.2), the SPDE (3.1.1) has a unique (in the
sense of versions) random field solution {u(t,z) : (t,z) € (0,00) x R4} if the initial data are
such that

Cr:= sup |Jo(t,z)| < 0. (3.2.6)

te[0,77], xzeR4
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We now state a lemma proven in [CHN19] that calculates the L' (R?) and L?*(R¢) norms

of the fundamental solutions. The lemma will be needed below in some of our calculations.

Lemma 3.2.2. [CHNI19, Theorem 4.1 and Lemma 5.5] Assume that d < 2, 8 € (0,2), and
v = 0. Then

J Y (t,x)dz =t and J Z(t,z)dx = P17

Rd Rd

and

J Y3(t,x)dx = O#t2(5+7—1)—dﬁ/a = Cutr !,
Rd

forallt > 0, where p = p(d) and

. 2 * d—1 ;2 «
C# = WL u Eﬂﬁﬂ(—u )du

Moreover, when (3 € (1,2),

J Z*(t,x)dx = 1.
Rd

Remark 3.2.3. When a« = f = 2, v = 0 and d = 1 then Lemma 3.2.2 gives us that

§g Y?2(t, 2)dz = ¢/2 which coincides with the L*(R) norm of the wave kernel.

3.2.1 Some moment bounds

In this section, we will prove some moment bounds and a continuity result for the solution
with a globally Lipschitz diffusion term. In the proof of the next proposition, we will use the

following two facts:

t
sup tfe ™ = k¥(ea) ™" for k > 0 and supf se”*ds = a~? fora > 0. (3.2.7)

t=0 t=0 Jo

Proposition 3.2.4. [MS21, Proposition 3.2] Let u and v, be Borel functions satisfying |uo| ., +
|vo|., < . Suppose that d < 2« and p = p(d) > 0, where p(x) is defined in (3.2.5). Then

there exists a universal constant K := K(«, 3,7, d) > 0 such that for any

2 2\1/p a’
a > (8L (U)K ) and pE |:2, W] s
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we have that

c(o)
N, <2 , 3.2.8
where
Juoll Be(0,1]
To = Tola, Byuo,v0) = 4
(ea)™ Jlvollo + luol,, B € (1,2).
Moreover, for all T > 0,
c(o) 1"
sup  E(|u(t,x)|?) < exp(apt) |2To + —= | - (3.2.9)
(t,x)e[0,T] xRd L(o)
Proof. First we fix an a > 0 and p € [2,00). Using Lemma 3.2.2 we see that,
(Z(t,-) * uo) ()| Be(0,1]
|J0(t,$)| = 9
((Z(t,-) = vo)(x) + (Z7(t,-) » wo)(x)] B e(1,2)
p
HUOHOO B € (07 1]
<3
Lol + ol B (1,2)
Now using (3.2.7), we see that
sup gl e §e(0.1]
Na,p<(]0) g < t>0, zeR!
sup (¢ [Jvolly, + uole) e™ Be(1,2)
t>0, zeR4
B HUOHOO ﬁ € (07 1]
\(ea)il HUOHOO + HU'OHOO 6 € (172)
= To. (3.2.10)
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Now we find an upper bound for N, ,(I). By simultaneously applying the Burkholder-

Davies-Gundy inequality and triangle inequality, we get that

|1(t, ) ds dy Y*(t — 5,2 — y)o?(u(s,y))

R4 p/2

< 4pf0 ds fRd dy Y2(t -8, —Y) HO’Q(U(S, y))Hp/2 )

Now by applying Lemma 3.2.2 and the Lipschitz property of o we get that

t t
|11(¢, a:)||12, < 8pc*(0)Cy f (t — )"~ 'ds + 8pL*(o) N7, (u) J dsJ dy e**Y?(t — 5,2 — ).
0 0o Jre

Now under Dalang’s condition (3.2.4), the first integral above can be calculated as

t tP
J (t—s)tds = —

0 P

By applying Lemma 3.2.2, we can calculate the second integral as

t t
f dsf dy Y3t —s,x —y) = Oy f ds e**5(t — s)P 1.
0o Jrd 0

Putting this together gives us that

tP t
1t < 893 (0)C " + SpLA (N2, (u)Cy | ds (e = 5.
p ’ 0

20t we see that

Now by multiplying both sides by e
8 C
(1, 2) |2 et < POk

t
+ 8pL2(0)N37p(u)C# L ds e 2e=9)(t — g)P—L,
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We now do a change of variables and again recall the definition of the Gamma function to see

that

2 0
|11(¢, x)Hi e < 8pc(0)Cy tPe 20t 8pL2(a)N3p(u)C’#J du e 2*qyP!
p ’ 0
Cyl (p)

(2a)7

_ 8pc*(0)Cy

P tPe " + 8pL?* (o) N7, (u)

where the last line is true if Dalang’s condition (3.2.4) holds. If we now apply (3.2.7) and also
recall the subadditivity of the square root, namely v/a + b < y/a + /b for all a,b > 0, then we

see that

N@U)gdﬁqé%&(é%ym+L@M%Am ﬁ%ﬁ%ﬁ. 3.2.11)

To simplify things, we now let
/2
K o= max { [358 (2)72 ) [BGTID
p \2e 2
Then we may bound N, , () by the following:

Ny p(I) < Kb (c(o) + L(o) Ny p(u)) . (3.2.12)

aP/2

Now by combining (3.2.10) and (3.2.12), we see that

MA@<%+K%§®

L gYPEO)

/2 ar/? ap(W)- (3.2.13)

Note that if we now restrict ourselves to the case of « = = 2,d = 1 and v = 0, then (3.2.11)

and (3.2.13) recover [MS21, (3.9) and (3.10)] respectively. Now choose a > 0 such that

a > (8L2(0)K2)1/p.
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This implies that the following interval is nonempty:

g
2 oy |
In addition, for any p in this interval, we have that

VPL(o)K 1
ap/2 < 5 and aP/2

vl
T 2K (o)

This along with (3.2.13) implies that

c(o)

N (o)

ap(u) <27 +

and this is precisely (3.2.8). Note that (3.2.9) follows immediately from (3.2.8). [l

We will need to recall the following result proved in [CHN19] in order to prove Proposition

3.2.6 below.

Proposition 3.2.5. [CH21, Propositions 2.1 and 2.2] Suppose that o € (0, 2], 5 € (0,2), v > 0,
and (3.2.3) holds. Consider p = p(d) which is defined above in (3.2.5). Then Y (t, x) satisfies

the following:

1. Suppose that 0 < 0 < (© — d) A 2 where © is given in (3.2.3), 0 < t,r < T for some
T >0, <1and~ < [B] — 5. Then there exists some C := C(«, 3,7,v,d,0,T) such

that
T
f dSJ dylY(t—s,a—y)—Y(r—sz—yPP<C(t—rf+z—=2).
0 Rd

2. Ifwe only assume that o € (0,2], 5 € (0,2), v > 0,0 < t,r < T for some T > 0 and that
(3.2.3) holds, then for 0 < 0 < (© — d) A 2, there exists some C' := C(«, 3,7,v,d,0,T)

such that

T
J dsf dylY(t—s,a—y)—Y(r—sz—yPP<C(t—rl"+ |z -2,
0 RY
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where

0<qg<p.

We now state and prove a proposition that will be used to prove the Holder continuity of

the stochastic integral, I (¢, z).

Proposition 3.2.6. Suppose that0 < 0 < (©—d) A2 and p = p(d) > 0. Then forall x, z € R¢,
a>0,p=>=2andforall T > 0 witht € [0,T], the stochastic integral, I(t,x), satisfies the

following:

|1t x) = I(r,2)], ~
(|t — r‘q + |;13 o 2‘9)1/2 < O<p797T) [Ml + Mze Na7p<u)] ) (3214)

where

My = /pc(o) and My = \/pL(0),

and q € (0, p] (resp. q € (0, p)) under Case 1 (resp. Case 2) of Proposition 3.2.5. Moreover, if

we consider the case when

p
L2 K2 1/p 2 a’—
a > (8 (o) ) and pe |2, )R’

then we have that

H[(t,l’) - I(T, Z)Hp eaT @
(= v+ ooy = CPOD {Ml M (2 ! L(U))] | (32-13)

Proof. We apply the Burkholder-Davies-Gundy inequality along with the triangle inequality,

as was done in the proof of Proposition 3.2.4, to see that

li(t.a) = 10 2)1; < p)| [ s [ gV =0 —0) =Vl =52 =) Hulsin)

p/2

T
< 4pf dsfd dy|Y(t—s,z—y)=Y(r—s,z—y) HJ2(u(s,y))Hp/2.
0 R

Now by applying the Lipchitz condition on o gives us that

lrt.a) =102 <80 [ s [ Vo =)=Vl =5z =) (20) + 220) s 0)1)
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T
<8p[02(a)f dsJ dy]Y(t—s,:U—y)—Y(T—S,Z—?/)‘2
0 Rd
T
+ LQ(O')J dsJ dy|Y(t—s,2—y)—Y(r—s,z— y)|2€Xp (2as) Nip(u)
0 Rd
T
< 8p 02(0>J dsf dylY(t—s,z—y)=Y(r—sz—y)|
0 Rd
+ L*(0) exp (2aT) N, J dsJ dy |[Y(t — s,z — )—Y(r—s,z—y)|2].
R4

We now apply Proposition 3.2.5 to see that

[1(t,2) = I(r,2)|, < 8p|(@)C(O,T) (|t = r[* + |z — 2|)

+ L*(0) exp (2aT) N2, (w)C(6,T) (|t — r[* + |z — 2|)

where C'(6,T) is as in Proposition 3.2.5. Now by taking the square root of both sides and

applying the identity /= +y < \/x + ,/y, we see that
11t,2) = 1(r,2)],, < 2/2C(0, T)p| () + L() exp (aT) Nop ()| (j£ = 717 + |o = 2/7)"*.

This proves (3.2.14). It is clear that (3.2.15) follows directly from (3.2.14) and Proposition
324, O

Proposition 3.2.7. The stochastic integral, I, has a version, still denoted by I that is n,-Holder
continuous in time and ny-Holder continuous in space with 0 < n; < q/2 and 0 < 1y < 6/2
where 0 < 0 < (© —d) A 2and q € (0, p] (resp. q € (0, p)) under Case I (resp. Case 2) of

Proposition 3.2.5. Moreover, if we consider the case when

2 2\1/p a’
a > (8L (U)K ) and peE |:2, W] s

where K is the constant from Proposition 3.2.4, then

A p
E [ Sup \u(t,g:)]p] <27'CL + C(p,0,T, R) [Mp + MBeT ( n C(U)) ] ’
[

€[0,T], |z|<R
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where 6’T is defined in (3.2.6).

Proof. Proposition 3.2.6 implies that

1/2

[ (t,z) — I(r,2)], < C(p,0,T) [Mi + Moe® Ny (w)] (|t —r|? + |2 — 2[%) (3.2.16)

By Kolmogorov’s continuity theorem, there exists a version of /, which we denote by 7, that is
n;-Holder continuous in time and 7,-Holder continuous in space with with 0 < 7; < ¢/2 and
0<m<0)2

Next, note that by triangle inequality,
[ut, 2)[” < 2270 (| Jo(, o) 1% + ult @) — Jo(t, ) IP)

te[0,T1, |z|<R

<t <CA'§1 +  sup |](t,x)|p)

=2 (@ +  sup If(t,x)|p) ,

te[0,T], |z|<R

where we recall that CA*T defined in (3.2.6). Due to the continuity of / on the compact set

[0,T] x Bg(0), there exists a point (ty, zo) € [0,T] x Bg(0) such that
sup [I(t,x)|P = |[I(to, zo)|"
te[0,T], |z|<R
Thus, for any (¢,z) € [0,T] x Bg(0),
u(t, @) < 277 (Ch + [1(to, 20)l")

which in return implies that

sup lu(t, z)|P < 2P71 (6‘{,’1 + |I(t0,$0)|p> )
te[0,T], |z|<R
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Now by taking the expectation of both sides and applying Proposition 3.2.6 gives us

1) [ sup |u(t,m)|p] <2100 4+ 27710 (p, 0, T)P ((21)7% + (2R)%?)" [My + Mae® N, ,(u)]”
te[0,T], |z|<R

= 27710 + C(p,0,T, R) [M? + MbeP N, ,(u)?] .
Now if we consider

2 2\1/p a’
a > (8[/ (O')K ) and pE [2,W—| ,

then by Proposition 3.2.4, we have that

p
E [ Sup |“<tvl“)|”] <27 + C(p,0, T, R) [M’f + Mpe™ (2 + C(U)) ] .
[

te[0,T7], |z|<R L(o)
[

Remark 3.2.8. The Holder continuity in time proven above in Proposition 3.2.7 recovers the
result proven by Foondun and Nane in [FN17, Theorem 1.9] if we restrict ourself to the case

where S € (0,1)andy =1 — §.

3.3 Proof of Theorem 3.1.2

Proof. We first solve a truncated version of (3.1.1). By this, we mean (3.1.1) with o replaced

by oy where for any N > 0,
on(z) = o()jg<n + o(N) sy + 0(—N)1e_n.

Note that since o satisfies (3.1.2), then oy is Lipschitz continuous with Lipschitz constant

L(oy) := 02 In(2N)°. In other words,

lon(z)| < 01 + 09 In(2N)°|z],
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where o is chosen so that

sup |o(z)] < o1 < 0.
jal<N

Hence we can apply Theorem 3.2.1 and see that there exists an unique solution of the truncated
version of (3.1.1), which we denote by uy := {un(t,z): (t,z) € [0,T] x R?}. In addition,
Proposition 3.2.7 implies that the solution has a version, still denoted by u, which is 7;-Holder
continuous in time and 7,-Holder continuous in space with 0 < 7; < ¢/2 and 0 < 1, < /2.
We will now apply Proposition 3.2.7 to find an upper bound on the p-norm of u . For this,

consider

9 2\ 1/p ar
a> (8L*(on)K?)""  and plQW]

Then Proposition 3.2.7 implies that

E( sup |uN<t,x>|p)<2p—1+c<p,e,T,R> [M€+M3<N>exp<apT> (2+ i )]
[

1€[0,1], |2|<R L(on)
(3.3.1)
where we recall that
M, = /po; and My(N) = /pL(oy) = /poy In(2N)°. (3.3.2)

We now use the above to prove the existence and uniqueness of (3.1.1) with superlinear o
satisfying (3.1.2). Forany 7' > 0 and N > 2 with N € N, we define the following stopping
time:

Ty := inf {t >0: sup |un(t,z)| = N} AT. (3.3.3)

|lz|<R
The uniqueness of the solution and the local property of the stochastic integral imply that on
{t < 7n}, un(t,z) = uni(t,x) for any k € N. Hence, (7y)y=2 is increasing and bounded
above by 7'.
We now momentarily assume that sup, 7 = 7', which would imply that {t < 75} T €.

On each {t < 7y}, define (u(t,z) : (t,z) € [0,T) x RY) by u(t,z) = uy(t,r) and hence
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u(t, ) = uy4(t,x) for any k € N. This implies that on {t < 7}

u(t,z) = Jo(t,z) + L ds fRd dy Y(t — s, —y)on(u(s,y))W(ds,dy).

However, on {t < 7y}, we have that o (uy(t,z)) = o(u(t,z)) and so u satisfies

u(t,x) = Jo(t, x) + L ds J;W dy Yt — s,z —y)o(u(s,y))W(ds,dy), {t<7n}.

Lastly, since {t < 7n} 1 €2, we conclude that

u(t,z) = Jo(t, x) + f ds f , dy Y(t —s,2 —y)o(u(s,y))W(ds,dy), (t,z)e[0,T) x R
’ : (3.34)
See the proof of [MS21, Theorem 3.5] for a comment pertaining to the issue that the solution
no longer exists in L*(Q).
We now focus on proving that supy 7y = T, or equivalently that P (7y <T) — 0 as
N — 0. To do this, note that by Chebychev’s inequality that
te[0,T], |z|<R te[0,T], |z|<R

Pty <T) <P < sup  |uy(t,z)| = N) < N PE < sup \uN(t,x)\p> :

Then an application of (3.3.1) gives

ME( sup |uN<t,x>|p)
[

te[0,1], |z|<R

< NP <2p—1 +C(p,0,T,R) [M{’ + My(N)? exp{apT'} (2 t L(U;N)>p )

p
21+ Clp0, T RME BT RIM(NP explapT} (2 + 725)
_ + :
NP NP

The first term clearly converges to 0 as N — o0. As for the second term, we expand using

(3.3.2) to see that

My (NP exp{apT} (2 4 o )7’ ( pPoa ln(2N)6)pexp{apT} (2 - Jl(ZN)é)p

L(on) po2 In

NP NP
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where above we use the symbol ~ to mean asymptotically equivalent as N — co. This com-

pletes the proof of Theorem 3.1.2. ]
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Chapter 4

Invariant Measures for the Stochastic Heat Equation

4.1 Introduction and main results

In this chapter we consider the following stochastic heat equation (SHE):

ou

E(t, x) — %Au(t, z) = b(x,u(t,z))W(t,z) zeR:t>0,

4.1.1)
u(0,-) = p(-).

The noise, W (t,z), is a centered Gaussian noise that is white in time and homogeneously
colored in space defined on a probability space (2, F,P) with the natural filtration {F;};>0

generated by the noise. Its covariance structure, .J, is defined as follows:

10.0) = B[V @)W (@] - [ as [ ranis ) dew. @12

6. n

for all continuous and rapidly decreasing functions 1 and ¢, where ¢(z) := ¢(—z), “+" refers
to the convolution in spatial variable, and I' is a nonnegative and nonnegative definite tempered
measure on R? that is commonly referred to as the correlation measure. The Fourier transform
of I (in the generalized sense) is also a nonnegative and nonnegative definite tempered measure,

~

which is usually called the spectral measure and is denoted by f(d€) !. Moreover, in the case

~ ~

where I" has density f, namely, ['(dz) = f(z)dx, then f(d§) = f(£)d&. The initial condition

1 1s a deterministic, locally finite, regular, signed Borel measure that satisfies the following

'See Remark 4.2.10 for the convention of Fourier transform that is used in this chapter.
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integrability condition at the infinity (see (4.3.1) below).
J exp (—alz|?) |p|(dz) < oo foralla > 0,
Rd

where |u| = py + p_ and g = py — p_ refers to the Hahn decomposition of the measure .
The function b(x, u) is uniformly bounded in the first variable and Lipschitz continuous in the

second variable, i.e., for some constants L, > 0 and Ly > 0,
lb(x,u) — b(z,v)| < Lylu —v| and |b(x,0)] < Ly forallu,veR, zeR%L  (4.1.3)

In particular, our assumption allows the linear case b(x,u) = Au, which is usually referred to

as the parabolic Anderson model [CM94]. The SPDE (4.1.1) is understood in its mild form:

u(t,z) = Jo(t, z; ) + L JRd by, u(s,y))G(t — s,x —y)W(ds,dy), (4.1.4)

where G(t,2) = (2mt) %2 exp (— (2t) " |z|?) is the heat kernel,

Jolts2) = Jo(t 23 1) = (G(t,-) » 1) () = f Glt.r—yuldy)  @15)

is the solution to the homogeneous equation, and the stochastic integral is the Walsh integral.

We refer the interested readers to [Wal86; Dal99; Dal+09; CK19] for more details of the set up.

The aim of this chapter is to investigate the conditions required to guarantee the existence
of an invariant measure for the solution to (4.1.1), which is a crucial step towards the study of
the ergodicity of the system. The existence of invariant measure under the setting of the entire
space R? has been much less studied. In addition to Tessitore and Zabczyk [TZ98], with which
we will follow closely in this chapter, a few other papers that consider the whole space include
[AMO3; MSY?20; MSY16]. One thing to note is that the just mentioned papers use the theory
of the stochastic integral developed by Daprato et al [DZ14] while we use the theory developed

by Walsh [Wal86]. As far as we know, this is the first work which handles proving the existence
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of an invariant measure using Walsh’s theory. Lastly, since the space R? is not compact, one

needs to work on a weighted space as in [TZ98]:

Definition 4.1.1. p : R? — R is called an admissible weight if p is a strictly positive, bounded

and continuous function in L'(R?) such that for 7' > 0, there exists a constant C,,(T) such that
(G(t,) = p(-))(z) < Cp(T)p(zx) forallte[0,T]and z e R™ (4.1.6)

Let p be an admissible weight function. Then we may introduce the Hilbert space H :=
L2(RY) with (f,g), := §za f( )p(x) dz and ||f|\ = (g f( ) dz. A continued
discussion about the weight function can be found in Section 4.2.1. Let B (H ) be the space of
all bounded Borel functions on /. Following [DZ14], a probability measure 7 on the Borel

o-field B(H) is said to be invariant for (4.1.1) if
= f L(u(t,;¢))(A) n(d¢), forallt>0and Ae B(H), (4.1.7)
H

where we use the notation u(t, x; ¢) with a third argument to emphasize its dependence on the

initial condition u(0, -) = ¢ and Z(u(t, -; {))(A) denotes the law of the solution:
Lu(t,;O))A) =PlweQ:ult,;()(w)e Al, AeB(H).

Due the Krylov-Bogoliubov theorem (see, e.g., [DZ14, Theorem 11.7]), once the tightness of

{L(u(t,; 1) }i>t, for some ¢y = 0 is established, one can construct the invariant measure via
1 Tn+to
o) = i o [ 2l s ) (At 4.18)
t

for some sequence {7},},>1 with T, T co. A critical step in obtaining tightness is to show that

the following moment is uniformly bounded in time:

supE (Hu(t, )Hi) < . (4.1.9)

t>0
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Note that the uniqueness of the invariant measure is a much harder question; see, e.g., [HMO06].

It is known that the solution to (4.1.1) is usually intermittent, namely, the probability
moments to (4.1.1) have a certain exponential growth in ¢; see, e.g., [CM94; FK09]. In [AMO3;
MSY20; MSY16], a drift (or reaction-diffusion) term f(z,w) is included in (4.1.1) in a crucial
way to help cancel the otherwise exponential growing moments. The absence of such a drift
term in this chapter makes the problem more challenging. In order to have moments bounded
in time, as required in (4.1.9), one has to first identify the exact conditions, under which the
moments to (4.1.1) do not possess exponential growth. This question has been answered in
[CK19, Theorem 1.3 and Lemma 2.5], where necessary and sufficient conditions are given.
More precisely, for bounded second moments, one has to have the spatial dimension d > 3,
and in addition, the spectral measure, f , and Lipschitz constant, L, (the Lyapunov exponent of

b) in (4.1.3) have to satisfy the following two conditions:

T(0) := (2m) ™ o (4.1.10a)
re [€?

and 64L; < (4.1.10b)

1
27(0)

Note that condition (4.1.10a) is a strengthened version of Dalang’s condition:

fdg)

— (97)
T(B) : (2 ) R ,B—f— |€|2 )

for some (and hence) all 5 > 0. “4.1.11)

Recall that in order to obtain the Holder continuity of the solution, one needs to strengthen

(4.1.11) in a different way. Indeed, what is required is that for some « € (0, 1],

~

Ta(8) = (o [ L

—————— < o for some (hence all) 3 > 0; (4.1.12)
re (8 + ¢

see Theorem 1.8 of [CH19] or [SS02]. Similarly, one can further strengthen condition (4.1.12)

to

£(d¢)
a |20

< oo for some a € (0, 1]. (4.1.13)

La(0)= 20)" |

R
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We use the convention that when o = 0, we simply drop it from the expression Y, (3), i.e.,

T(8) = To(B). The relations of these conditions are shown in Figure 4.1.

1 T(5) < «© é To(8) <
p>0 Dalang’s condition (4.1.11) Condition (4.1.12)
B=0- T0) < o T,(0) < o

Condition (4.1.10a) Condition (4.1.13)
% %
a=0 ae (0,1]

Figure 4.1: Relations among conditions (4.1.11), (4.1.12), (4.1.13) and (4.1.10a). Check also
Lemma 4.4.5 for the relation between Y (0) < o0 and Y, (0) < oo.

Note that the two conditions in (4.1.10) guarantee the existence of the following non-

empty open interval:
(27L;Y(0),1) # &. (4.1.14)

Now we are ready to state our two main results of this chapter.
Theorem 4.1.2. Let u(t, z; i) be the solution to (4.1.1) starting from pi. Assume that
(i) p: R — R, is a nonnegative L'(R?) function;

(ii) the initial condition y satisfies
G,(t; ) = J Je(t,w; 1+ |p]) p(z) do < o forall t > 0; (4.1.15)
R4

(iii) the spectral measure f and the Lipschitz constant Ly, satisfy the two conditions in (4.1.10).

Then there exists an unique L*(S))-continuous solution u(t,z) such that for some constant

C > 0, which does not depend on t, the following holds:

E (Hu(t, ;muf)) < CG,(tp) <o, foranyt > 0. (4.1.16)
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This theorem will be proved in Section 4.3.

Theorem 4.1.3. Let u(t, z) be the solution to (4.1.1) starting from 1 and let p be an admissible

weight function. Assume that

(i) there exists another admissible weight p such that

J PT) 4y o 4.1.17)
ra P(T)

(ii) the weight function p and the initial condition satisfy the following condition:

limsup G;(t; 1) < o0; (4.1.18)

t>0

(iii) the spectral measure fand the Lipschitz constant Ly, satisfy the two conditions in (4.1.10);

(iv) for some o € (27T (0)L2, 1) (see (4.1.14)), the spectral measure fsatisﬁes (4.1.13).
Then we have that

(a) for any T > 0, the sequence of laws of {Lu(t,; pu)}i>, is tight, i.e., for any € € (0,1),

there exists a compact set & < L2(R?) such that

Lu(t, ;1) (K) =P (ult,;pn) e X ) =1—c¢, forallt =1 > 0; (4.1.19)

(b) there exists an invariant measure for the laws {Lu(t, -; 1) }i=0 in Li(Rd).

This theorem will be proved in Section 4.5.

The work by Tessitore and Zabczyk [TZ98] has a strong influence in the current work. We
formulate and solve the problem using the random field language with some state-of-the-art

moment estimates. The improvements over [ TZ98] consist of the following aspects:

1. Results in [TZ98] allow essentially all bounded functions as the initial conditions, though

Theorem 3.3 (ibid.) was proved only for the constant one initial condition. Here we give
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precise conditions on the initial condition, namely, (4.1.18), which allows a much wider
class of initial conditions, including unbounded functions and measures such as the Dirac
delta measure; see Examples 4.2.4 and 4.2.5. We emphasize that the Dirac delta initial
measure plays a very prominent role in the study of the stochastic heat equation; see, e.g.,

[ACQIT1].

2. We give a more easily verifiable condition in (4.1.10a) on the spectral density f and
provide examples of suitable f in Section 4.2.3. Recall that due to the difficult nature
of the condition (3.4) in [TZ98], no specific spectral densities were given. We further

discuss this in Section 4.2.4.

This chapter is organized as follows: In Section 4.2, we will further discuss our main
results and provide some examples. In particular, in Section 4.2.1 we make some comments on
the weight function and in Section 4.2.2 we show that our results could include a wider class
of initial conditions. Finally, the two main Theorems 4.1.2 and 4.1.3 will be proved in Sections

4.3 and 4.5, respectively.

We end this section by introducing some notation and formulas that we use throughout the
paper. We will use | X[, to denote the LP(£2) norm, namely, (E(|X P))17. We will also use the

following factorization property of the heat kernel

ts sk +ty
t+s t+s

G(t,z)G(s,y) =G ( ) G(t+s,z—vy), (4.1.20)

which can be easily verified. Next, we remind the reader of the following spherical coordinate

integration formula

[ #tes = ot [ ptan

which we will use often and where o(S*!) = 2(7)%2/I'(d/2). The convention of Fourier
transform is given in Remark 4.2.10 below. Lastly, I'(z) will be used to denote the Gamma

function.
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4.2 Discussions and Examples

4.2.1 Weight functions

Here are several examples of admissible weights (see Example in Section 2 of [TZ98])

p(x) = exp(—alz|), a>0 and
4.2.1)

p(z) =1+ 2|, a>d

Remark 4.2.1. The smaller the weight function p(-) (not necessarily admissible) is, the larger
the space L%(]Rd) is. For example, one may choose p to be either a nonnegative function with
compact support or the heat kernel itself G(1, -). In both cases, p is smaller than those in (4.2.1)
(up to a constant). However, one can easily check that the admissible condition (4.1.6) excludes
these two cases. Lastly, we should mention that numerical results will lead one to believe that

the following functions are not admissible:
p(z) = exp (—alz|’), zeR? witha>0andbe (1,2) fixed,

but a proof of this has not yet been given.
The admissible condition 4.1.6 is needed in this chapter due to the following result:

Proposition 4.2.2 (Proposition 2.1 of [TZ98]). For any admissible weight p, the operators on
L2(R?) defined by ¢ — (G(t,-) = ¢(-))(x) can be extended to a Cy — semigroup on L2

Moreover, if p is another admissible weight such that

Ld %dx < o0,

then for any t > 0, the operators defined above are compact from L%(R?) to L2(R?).

4.2.2 Various initial conditions

Example 4.2.3 (L (R?) initial condition). We emphasize that if the initial condition y is deter-

ministic and is such that y(dz) = p(x)dz with p € L*(R?), then all conditions related to G, (+)
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in both Theorems 4.1.2 and 4.1.3 are trivially satisfied. To be more precise, both conditions

(4.1.15) and (4.1.18) hold because
G,(t; ) < ngHiw(Rd) Ipll 1 (gay < o0 uniformly forall ¢ > 0.

Example 4.2.4 (Delta initial condition). In this example, we study the case when the initial
condition f is the Dirac delta measure at zero, namely, &y. Let p be a nonnegative L!(R?)

function. Since

G,(t;00) = f G(t,z)’p(z)dz < G(t,0)? |pll 11 (gay, forallt >0,

Rd

we see that both conditions (4.1.15) and (4.1.18) are satisfied. In particular, lim sup,., G,(t; dp) =

0.

Example 4.2.5 (More initial conditions not in Lf)(Rd)). In this example, we study the case
when p(dz) = |z[~*dz for some o € (0,d). It is clear that when a € (d/2,d), . ¢ L3(RY).

However, in this case, we have

Jo(t,x) = (G(t, ) = [ |7%) (2) < (G(t, ) = | - [7) (0).

On the other hand, Hence,

G(t,)=|-]7*) (0 ——QWd/Q ort) =42 e —atd—1q, _ (1 4—o/2
((t7)*|| )()_F(d/Q)X(ﬂ—t) Oeztr r = *t ,

with C, = 27T ((d — «)/2) /T'(d/2), which implies that

G, (11 1) = [ B0 = C2 gl Forall e = 0.
R

Therefore, we see that both conditions (4.1.15) and (4.1.18) are satisfied.

The following proposition shows that for initial conditions with unbounded tails, condition

(4.1.15) may hold while condition (4.1.18) may fail.
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Proposition 4.2.6. Suppose that p = exp(—|z

), which is an admissible weight function. Let

the initial condition | be given as
p(dz) = |z|*dx with o > 0.
Then for some constants C, C' > 0 that depend on d and «, it holds that
C'(1+1t*) < G,(t;u) < C(1+1t%), forallt > 0. (4.2.2)

In particular, this implies that condition (4.1.15) is satisfied, but condition (4.1.18) fails.

Proof. Notice that by scaling arguments,

Gt = | ( | o= y>|y|ady)2 elda

JR4

2
x
= ( e G(1,—=—z]|z1%dz ) e lldx
JRrd (L@ ( Vit )|| >

2
e ( f G(1,6—2)|Z|ad2) e Vikldg,
R4

JR4

In the following, let Cy, C, Cy,, Cy 4 and C}, ; be generic constants that may depend on «v and

d and may change their value at each appearance.

Upper bound: Because

f G(1,2) ¢ - 2°dz < Cy f G (1,2) (1€ + 2*) dz < O (1 + €]
R4 Rd

we see that

G,(t; 1) < CQJ ot/ (1 +1€*) e Vil qe

R4

0
= Ca’dj potd/2 (1+7r°) e Virpd-lqy
0

= Coq (t°T'(d) + I'(d + 2c))
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Hence, this proves the upper bound in (4.2.2).

Lower bound: Now we prove the lower bound in (4.2.2). Indeed,

| cual-sra= [ G-
R4 Rd
= Cdj H§| — x|a6_§xd_ldx
0

2
> CdJ €] — 2| da
1

Cq

= =8,

where, by considering three cases, we have

)
(2—r) = (1—r)**t if0<r <1,
() =4 @2 =m0t + (r = 1) ifl1<r<?

?

(r—1)t — (r—2)2 ifr > 2,

\

=sgn(2 —r)|r — 2|onrl + sgn(r — 1)|r — 1|°‘+1.
We claim that

inf > (.

Y
r20 /1 4 2@

With (4.2.3), we have that

f G (1,2)[¢ = 2z > Coan/1 + [€[>*.
Rd

(4.2.3)

Then, by the same arguments as above for the upper bound, we obtain the lower bound in

(4.2.2). It remains to prove (4.2.3), which will be proved in three cases.

When r > 2, we see that

o), =1 = o)
s> e Ltr)e
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(r—=1)%r—-1)—@r—-10)%r-2)
> Ca (1+7r)>

r—1\° 2 @ 2\ ¢
= = — 2 o —_ = .
O"<1+r> Ca <1 1+r> ¢ (1 3)

Note that in the first inequality above, we have considered two cases: 2a > 1 and 2a < 1.

When 2a < 1, we have used the concavity of z2%, namely, (1 + r?*)%*/2 < ((1 + r)/2)%;

when 2a > 1, we have used the super-additiity of z2%: namely, that for a, b > 0 that (a+b)** >

+ b%®, This shows that inf > 0.

r>2 \/7

When 7 € (1, 2], elementary calculations show that the minimum of (r) is achieved at

r = 3/2. Hence,

) b
re(1,2] 4/1 + r2a ~ 4/1 + 4«

Similarly, when r € (0, 1], by differentiation, one finds that the function ¢ (r) is nonin-

creasing. Hence, the minimum is achieved at r = 1:

o) v

inf > > 0.
re(0,1] A/1 + r2a V2

Combing the above three cases proves (4.2.3). This completes the proof of Proposition

4.2.6. []

4.2.3 Bessel kernel and Matérn class of correlation functions

Example 4.2.7 (Bessel kernel as a correlation function). Let f; denote the Bessel kernel with

a strictly positive parameter s > 0. It is known that (see, e.g., Section 1.2.2 of [Gral4])
1. fo(z) > 0forall z € R and | f.] 11 ga) = 1

2. there exists a constant C'(s, d) > 0 such that

fs(z) < C(s,d)exp(—|z|/2) for |z|=>2
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3. there exists a constant c(s, d) > 0 such that

1 fs(z) .
< < ,d) fi < 2, th

D) S () c(s,d) for |x| wi

|z|*7% + 1+ O(|z|*9%2) for0 < s < d,

Hy(z) = | log<2) +1+0(z]*) fors=d,

||

1+ O(|z]*~9) for s > d;

4. the Fourier transform of f; is strictly positive:

1

T e (424

Ff(&) =

Note that one can use (4.2.4) as the definition of the Bessel kernel. Properties 1 and 4 ensure that
fs 1s a nonnegative and nonnegative-definite tempered measure for all s > 0. From Property 4,

we see that
T0) <o <<= s>d-—2.

In the following, we will assume that s > d — 2 and d > 3.

Example 4.2.8 (Matérn class of correlation functions). The Matérn class of correlation func-
tions has been widely used in spatial statistics; one may check the recent work [LSW21] for

references. Following Section 2.10 of [Ste99], this class of correlation functions is given by
K(z) = ¢ (a|z]))"K, (a|z]), forxeR*with¢ >0,a > 0,v >0, (4.2.5)

where K, (+) is the modified Bessel function of second type, and « and v refer to the scaling
and smoothness parameters respectively. From the inversion formula (see p. 46 ibid.), one sees

that

2790 (v + d/2) o

w92 (@2 + [€P) T

FK(§) = @n)'FK(€) = 2m)'f(€]) with  f(€) e R
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Comparing the above expression with (4.2.4), we see that the class of Bessel kernels f, with
s > d—2and d > 3, includes the Matérn class (4.2.5) as a special case under the following

choice of parameters:

a=1, v=_(s—d)/2, and ¢=20"192z=42D(5/2)7L,

Note that the requirement of the smoothness parameter v > 0 for the Matérn class corresponds

to the case of the Bessel kernel with s > d.

For o € (0,1/2), we introduce the following quantity which will now be needed through-

out this article:

t
Ho(t) = J dr r—zaf f(dg) exp(—r|¢?) (4.2.6)
0 R
Proposition 4.2.9. For the Bessel kernel f,(-) with s > 0 defined in Example 4.2.7, it holds
that
F(¢-1+a)P (552 +1-0)
T,(0) = —2 = —2(1 - 2
«(0) ST (d2) T (5)2) foralls >d—2(1—a)>0andd > 2,
(4.2.7)
and in particular when o = 0, (4.2.7) simplifies to the following:
r (2+s—d)
T(0) = 2 : 4.2.
(0) 24=1md/2(d — 2)T'(s/2) (4.2.8)
In addition,
1 d—
Ho(t) <0 V>0 < O<a<§—% and s>d—-2>0, (4.2.9)
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where a, := max(a,0). Moreover, for a € (0,1/2), we have the following asymptotic behavior

of Ho(t) att — 0:

r 2T ((d — 5)/2) {(s=d)/2+1-20
((s —d)/2 +1—2a)[(d/2)
d—2<s<d
7T ((s — d)/2) 1-2a
(1 -2a)T(s/2) and (4.2.10-a)
LR VPR
1O (t(sfd)/2+2(1fa)) , a < 5 4( s
i 1-2a 1
raras e ()
+7Tal/2 (1—(1—2a)[(d/2) + 2*)/])t1_2a
Ha(t) = < (1 —2a)2T' (d/2) s=d (4.2.10-b)
+0 (*log(t))
7Td/2F ((S — d)/2) Z51—20¢ + O (t(s—d)/2+1—2a) d<s<d+?2 (4 ) 10-C)
(1 —=2a)(s/2) ’ e
" 172 + O (#2079 log(t)) s=d+2 (4.2.10-d)
(1—2a)T (d/2 + 1) ) 2.
e 1720+ O (207) s>d+2 (4.2.10-e)
(1 —2a)T (d/2 + 1) ’ 2

(4.2.10)

where )(z) = L log I'(z) refers to the digamma function and  ~ 0.57721 to Euler’s constant;

see, e.g., 5.2.2 and 5.2.3 on p. 136 of [ARI0].

Proof. By the spherical coordinate integration formula and (4.2.4), for all « € [0, 1),

T, (0) = (27r)_dJ dg = Uude JOO =1

S/2d7’,
R [€207) (1 + [€]?) o r2=e) (14 172)
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where Cy := lg(ﬂTd//;). Now by the change of variables z = r?/(1+1?), we can evaluate the above

integral explicitly by transforming it to the Beta integral:

e 7ndfl 1 1

o r20-) (14 r2)? 2 J,
CT(d2-1+a)T((s—d)/2+1-aq)
B 2T (s/2) ’

which is finite provided that s > d —2(1 — «) > 0. This proves (4.2.7) and from this, we easily
deduce (4.2.8) by letting o = 0 in (4.2.7) and by applying the formula I'(z + 1) = 2I'(z), which
holds for z € C such that ®(z) > 0.

It remains to prove (4.2.10), which then implies (4.2.9). From (4.2.6) and by the spherical

coordinate integration formula, for all £ > 0,

[ exp(rle)
Ha() = f drr f CA 1 iep)n

t 0 a2
_c, f dp =20 f £ SPEre) g
0 0 (14 22)s/2

Cd t 0
i) dr 2@ J du exp(—ru)(1 + u)~¥?u??*1
0 0

T 2 t t
=: Cal' (d/2) éd/ ) J dr r™2*I(r) = Wd/zj dr r=2*1(r).
0 0

By [01d10, 13.4.4 on p.326], I(r) is equal to the confluent hypergeometric function:

d 2+d—s
[ :‘ —_— —— .
(r) (2’ 2 ’T)
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By 18.2.18 — 13.2.22 on p. 323 ibid., we see that

F((d—5)/2) (—aye , T'((s—d)/2) s—d)/2+1
WT( )/ +W+O(r< D2+1) d—2<s<d 18218,

_F(;/2) (log(r) +1(d/2) + 27v) + O (rlog(r)) s=d 18.2.19,
d<s<d+2 18220,

O (rlog(r)) s=d+2 18221,

s>d+2 18.2.22.

[ T(s/2)

Then integrating the right-hand side of the above expressions against 7%2r=2*dr over [0, ¢]

gives the five cases in (4.2.10). This completes the proof of Proposition 4.2.9. ]

4.2.4 A discussion on Tessitore and Zabczyk’s condition

Under the setting of the whole space, R, Tessitore and Zabczyk [TZ98] prove the existence
of an invariant measure for (4.1.1) in Li(Rd) under the assumption that there exists a ¢ €
2 (Tod 2 (Td -1 1(Tpd : : . .
LI(RY) n L3(R?) where p(p)~" € L'(R?) and the solution starting from ¢ is bounded in
probability in L%(]Rd) and also that the spectral density f satisfies

d—2 1

< —
p

ferr (R%)  where

: (4.2.11)

see Hypothesis 2.1 (ibid.). However as was illustrated in [TZ98, Theorem 3.3], in order to
apply this theorem to a specific initial condition in Li (or to have moments uniformly bounded

in time), the following additional assumptions were imposed:

i3 and L2 Y 2(2;)12)5(1/2_2 JR d (’]—" <\/fT )

*

F (V1)) @i

(4.2.12)
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where the convention of the Fourier transform is given in Remark 4.2.10. With these assump-
tions, they were able to prove that (4.1.1) starting from the constant 1 satisfies (4.1.9) and thus
is bounded in probability, verifying the existence of an invariant measure. Moreover, the mea-
sure takes the form of (4.1.8) above with ¢ = 1. Lastly we mention that due to its difficult

nature, (4.2.12) was not calculated for a specific f(see Examples 4.2.11 and 4.2.12 below).

Remark 4.2.10. The Fourier transform may be defined differently depending how to handle

the 27 constant. In this chapter (as in [CK19; CH19]), we use the convention that

B(€) = Fo(£) = fRde‘”'%(w)dﬁ and F '¢(x) := (27r)‘df erp(&)de. (4.2.13)

Rd
Hence, Plancherel’s theorem takes the form of

| V@s@)ds = 2m)7 | D(E©oE)de. (4.2.14)

Note that the authors in [TZ98] did not explicitly mention their convention of the Fourier trans-
form. However, the proof of Theorem 3.3 (ibid.) suggests that the following convention has

been used:

06) = Fo(€) = (2m) % [ e oa)da and Fpta) = )R | enue)de

R4

Hence, Plancherel’s theorem takes the form, (., ¢ (z)¢(x)dz = §, nes )%df , without the
additional factor (27)~. In particular, the spectral density 7 (ibid.) corresponds to (27)” %> F
in this chapter. Our equation (4.2.12), which is condition (3.4) [TZ98], takes into account this
difference therefore explaining the slightly different factor in front of the integral in (4.2.12)

from that in (3.4) (ibid.).

Recall the definition of 7! in (4.2.13) above. We may rewrite the integral in the second

condition of (4.2.12) as follows:

w7 ()
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We now consider a couple of situations and give two examples that illustrate some of the diffi-

culties that may arise.

CaseI: If both 7! [ f()] (€) and f are strictly positive for all ¢ € R, which is not a trivial
assumption (see Example 4.2.11 below), then there is no ambiguity when taking the square root

and one can remove the absolute value to see that

-2 [ (F0 (VF) 7 (VF) ) oler-ac

- e |, Flowiac - en* 1),

where we have applied Plancherel’s theorem (see (4.2.14)) and the Fourier transform for Riesz

kernel (in the generalized sense):

|-« _ qd2 oL ((d=a)/2) —(d—a) or & an d
F(-17() 2 TR H , forae (0,d)and £ € R

Hence, the second condition in (4.2.12) can be equivalently written as L, > > (2m)%27(0).

Comparing this with (4.1.10b), namely, Lb’2 > 1287(0), our condition is sharper when d >

14log(2)
A1) ~ 5.28.

Example 4.2.11. One should note that the assumption that F ! (\/}A) (x) is nonnegative,

or equivalently that \/} is non-negative definite, is quite strong and may not be true even if

~

f is non-negative and non-negative definite. Indeed, suppose that f was such that f(§) =

272max{2 — |¢],0}. Then f is non-negative and non-negative definite, which is shown in

~

Example 4.2.12 below. We will now show that in this case, F ! (\/}) (¢) takes on both

positive and negative values. Since 4/ f(é ) = 271 /max{2 — |¢[, 0} is even, the inverse Fourier

transform takes the following form:

Fl (ﬁ) (z) =2 f 2714/2 — ycos(y z)dy.
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Figure 4.2: A plot of F~! (\/}) (z) for f(&) = 272 max{2 — |¢],0} with —8 < z < 8.

For simplicity, we will only consider the case ¢ > 0 and real. Therefore

P (V7)1 =2 [ et

0
V2 V2

y? cos(zy?)dy + 2sin(27) f y? sin(xy?)dy.
0

— 2cos(2x) J

0

Where in the first equality we used the change of variables, ' = 4/2 —y. We now do an

integration by parts to see that

F! (ﬁ) (z) = — cos(2) fﬁ Mdy + sin(2z) f " %y%)dy,

0 T 0

and lastly we apply the change of variables ¢y’ = y/2x/7 too see

o (\/?) @) = N (— cos(2x)S (%2 + sin(2x)C <%5))’

where S and C are the Fresnel integrals (see [Olv+10, 7.2 (iii)]):
¥4 t2 z t2
S(z) = J sin (W—> dt and C(z) = J cos <7T—) dt.
0 2 0 2
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Thus even if f is both non-negative and non-negative definite, we may still have problems with

removing the absolute value sign.

~

Case II: Suppose f() is not strictly positive, but only nonnegative, namely, f(£) = 0 for some
¢ € R?. Then removing the absolute value in (4.2.12) becomes tricky, which will be illustrated

in the following example.

Example 4.2.12. Let d = 1 and g(z) = 11[_1,1)(x). It is clear that §(§) = £ *sin(€). Now
set f(z) = (g*g)(x) = 272max(2 — |z|,0). It is clear that f is nonnegative. It is also
nonnegative-definite because f(g) = §(&)? = ¢ %sin*(¢) = 0. But in this case, f() is
only nonnegative (not strictly positive) with infinitely many zeros. Hence, when taking the

square root of f(¢) as in (4.2.12), one needs to wisely choose the correct positive and negative

branches:

1. Clearly, the signed version «/f(f) = & 1sin(€) is preferable since its inverse Fourier
transform can be easily computed, which is equal to g(z). Moreover, because this inverse
Fourier transform ¢(z) is clearly nonnegative, the absolute value signs in (4.2.12) do not

pose any additional restrictions.

2. However, if one chooses the positive branches, namely, \/% = [£71sin(€)], then
it is not clear how to compute its Fourier transform. In general, some bad choices of
the positive/negative branches may make the conditions in (4.2.12) fail. For example,
such choice may turn f(f ) into a distribution, and then taking the absolute value of a
distribution (unless it is a measure) may be problematic. Another issue that may arise is
when f (&) is a well-defined function, taking on both positive and negative values and

after taking the absolute value, the integral in (4.2.12) may blow up.

4.3 Moment Estimates — Proof of Theorem 4.1.2

We first state some known results and prove a moment bound in Corollary 4.3.3.

Theorem 4.3.1 (Theorem 1.2 [CH19]). Suppose that
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(i) the initial deterministic measure | satisfies the following integrability condition:

j exp (—alz|?) |u|(dz) < o foralla >0, (4.3.1)
Rd

(ii) the spectral measure f satisfies Dalang’s condition (4.1.11),

Then (4.1.1) has a unique random field solution starting from p. Moreover, the solution is

L*(QY) continuous and is adapted to the filtration {F;};>0.
Theorem 4.3.2 (Theorem 1.7 [CH19]). Under the assumptions of Theorem 4.3.1, for any t > 0,
r e RYand p = 2, the solution to (4.1.1), u(t, ), given by (4.1.4) is in LP(2) and

lut,z)], < [¢+ V2(G(t,) = |ul) (@) ] H (t: )", (4.32)
where § = Ly/Ly, v, = 32pL? (see (4.1.3) for Ly and L) and the function H(t;7,) is nonde-
creasing int (see [CHI19] for the expression of the function H ).
Corollary 4.3.3. Under the same setting as Theorem 4.3.2, if the two conditions in (4.1.10)
hold (see also (4.1.14)), then

lu(t, z)], < C, (1 + (G(t,-) * |u|)(m)), for all p such that 1/p € (64L;Y(0),1), (4.3.3)

where C,, = (v/2 v §) sup;og H (t;7,)'? < 0.

Proof. Lemma 2.5 of [CK19] gives one sufficient condition, namely, 27,1 (0) < 1, under
which the function H ((¢;,) is bounded in ¢. Therefore, by taking into account the expression

of 7, in Theorem 4.3.2, we see that as a direct consequence of (4.3.2), whenever

32pL; < (4.3.4)

1
27(0)’
we have the p-th moment bounded as given in (4.3.3). [l

Now we are ready to prove Theorem 4.1.2.
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Proof of Theorem 4.1.2. Under condition (ii1), we can apply Fubini’s Theorem and the moment
bound (4.3.3) below to see that for some constant C' > 0 independent of ¢, which may vary

from line to line, that

E (Jult, < )l}) < CE

Ld0+%G@»*mmm)3@m4

=CLE<@w%ﬂHWM®1WMx

=CG,(t;p) < 0.

This proves Theorem 4.1.2. [

Remark 4.3.4 (Restarted SHE). Recall that the Markov property of the solution to (4.1.1)

implies that for any ¢ > ¢, > 0,
u(t + to, ;1) £ (t, x;u (to, 5 ) =: v(t, x), (4.3.5)

where L refers to the equality in law and we have used v(¢, z) to simplify the notation. It is

known that v satisfies the following restarted SPDE:

1 .
@(t,x) — —Av(t,z) = b(z,v(t,x) )W, (t,z) xeR?, t>0,
ot 2 (4.3.6)
0(0,) = ulto, 7 ) re R,

where W, (¢, ) := W (t + to, x) denotes the time shifted noise, i.e.,

t t+to
f Wy, (ds, dy) = f W (ds,dy). (4.3.7)
to R4

0 JRd

Under the conditions in (4.1.10), Theorem 4.3.2 and (4.3.5) imply immediately that

||U(t,$)”q = |u(t + to,x;u)Hq < C, <1 + (G(t + to, ") * |M|)(:1c)) = Cydo(t + to, z; 1 + |p]),

(4.3.8)
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for all ¢ > 2 and ¢ > 0, where the constant C;; does not depend on ¢. Moreover, under the

assumptions of Theorem 4.1.2, we have v(0, -) € L2(R?) a.s. and
E (ot 2)l}) = E (Jult +to.z:p)}) < CGt +toip) <o (439)

4.4 A Factorization Lemma

In this section, we establish a factorization lemma with corresponding moment estimates; see
Lemmas 4.4.2 and 4.4.4 below. This factorization lemma was first discovered in [DKZ87];

check also Section 5.3.1 of [DZ14]. For a € (0,1),t > 0 and = € R¢, define formally

(Fof) (t,z) = Jf s)* IG(t — s,x —y)f(s,y) dsdy and
R (4.4.1)

o) (00 = [ [ (6=9)70G( = o= ) )W (s ).

For F,, the first step of the proof of [TZ98, Theorem 3.1] showed the following proposi-

tion:

Proposition 4.4.1. Let p and p be given as in condition (i) of Theorem 4.1.3 (see (4.1.17)). For
any q> 2,1ty > 0and a € (¢~',27"), the operator F, as an operator from L((0,t,); L2(R?))

to L2(RY), is compact.

As for Y, we have the following two lemmas, which hold for both the non-restarted SHE

(to = 0) and the restarted SHE (¢y > 0).

Lemma 4.4.2. Suppose that ;. — the initial condition for u — satisfies (4.3.1) and that fA
satisfies Dalang’s condition (4.1.11). Suppose that (4.2.6) is satisfied for some o € (0,1/2),

lLe.,

Ho(t) = ft dr r—2@ fRd ]?(dﬁ) exp (—r|§|2) <o forallt>0.

0
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Fix an arbitrary ty = 0. Let v(t, x) be the solution to the restarted SHE (4.3.6) and Wto be the

time-shifted noise (see (4.3.7)) when tq > 0 and let v = uw when ty = 0. Then

Yo(s,1) = [Yab (0, 0(,0))] (s, 1) = fo fRd@ )G (s — vy — 2)b(z, v(r, 2)) Wi (dr, dz)

(4.4.2)
has the following properties:
(1) forallq =2, 5s>0,yeR?
1Yo(s,9) |2 < H (s +to;32qL3) J3(s + to, ys 1) Hals) < o, (4.4.3)

where i* = 1 + |u| and we refer to Theorem 4.3.2 for the function H (t;~);

(2) under the two conditions in (4.1.10), if the integral in (4.2.6) is finite for some o €
(64L2Y(0), 1/2), then for any q with 1/q € (64L2Y(0), «), the function H (t; 32qL?) in

(4.4.3) is uniformly bounded int > 0, i.e., sup,~ H (t;32qL;) < ;

(3) under the two conditions in (4.1.10), if the integral in (4.2.6) is finite for some o €
(64127 (0), 1/2), then for any q with 1/q € (64L2Y(0), ) and for any nonnegative and
LY(RY)-function p, there exists a constant © = O (q, Ly, Ly, ), which does not depend

on t, such that fort > 0,

t t
E (f 1Y, (s, -)st) < @f (G (s + to; 11) Ha(s)]¥? ds, (4.4.4)
0

0

which is finite provided that

¢
J [G,o(s + to; ) Ho(s)]7*ds < . (4.4.5)
0

Remark 4.4.3. Condition (4.4.5) is true for ¢, > 0 because G,(t; 1) is a continuous function
for t > 0 and H,(s) is continuous and bounded for s € [0, ¢] thanks to (4.2.6). However, when

to = 0, the situation is much more trickier. For example, when the initial condition is the delta
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initial condition, we have that

Git:8) - |

Rd

G(t,z)*p(z)dxr = G(2t, O)J G(t/2,z)p(x)dz < 0,

R4

where one can obtain the second equality via (4.1.20). Hence, when s — 0, G;(s;dy) blows
up with a rate s~%2. On the other hand, H,(s) goes to zero with a different rate. One needs
to combine these two rates to check if condition (4.4.5) holds. By introducing ¢, and restarting

the heat equation, one can avoid this issue, that being the potential singularity of G; at s = 0.

Proof. In the proof, we use C' to denote a generic constant that may change its value at each

appearance.

(1) We first prove (4.4.3). By the Burkholder-Davis-Gundy inequality and Minkowski’s integral

inequality, we see that

Vs, <€ | dris =) [[daadea G5 = riy = 20) b ol 20
0 R2d
< f(z1 = 22)G(s =1,y — 22) [b (22, v(r, 22)) |, -
Note that for the Lipschitz condition in (4.1.3), we have that
1b(x,v)] < [b(z,v) —b(x,0)] + |b(x,0)] < Lp|v|+ Lo < C(1 + |v]), C:=Lyv Ly.

We apply this and the moment bound (4.3.2) to [|b(z;, v(r, z;)) |, above to see that

oz, v(r, ), < € (1+ o 29)1,)
=C (1 + Ju(r + to, zz)Hq)
<CH (r + to; 32ng) Jo (1 + to, zi; 1)

< CH (s +to;32¢L3) Jo (r + to, z;; 1), i=1,2, 7€ (0,s), (4.4.6)
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where in the last step, we have used the fact that H(¢;) is a nondecreasing function; see

Lemma 2.6 of [CK19]. Therefore, by denoting C := H (s + to; 32qL§),

2

[Ya(s.9)|2 < OC, fo dr (s —r) 2 ﬂ dzrdzs f(5— 2) [ | (G(s vy — 2)do (r + to, 5 u*))

=1

R2d
= CC4 f dr (s —r)"2 ff ¥ (doy)p*(dos) Jf dzydzsy
0 R2d R2d

2

x flz1—2) ] | <G(s — 1y —2)G(r +to, 2 — a,;))

i=1

_ oo, j dr (s — )2 f f 1 (don ) (dom) Gs + to,y — 01)G (s + fo,y — )
0
RQd

X ffdzld@f(zl—ZQ)ﬁG((T+t0)(s_r),zi—a-r+to - s_ry)

) i S+t0 lS—f—tO S+t0
R2

< C’C’S(Qﬂ)_2dJ dr (s — 7)™ Jf w*(doy)p*(dog) G(s + to,y — 01)G(s + to,y — 02)
0
R2d

o Flagesp (- g

8—|—t0

where we have applied (4.1.20) and Plancherel’s theorem. Hence,

S

Ya(s, 9)|2 < CCL(2m) 272 (5 + to, y: ") f

0

s [ Fage (=T g,

s+ 1o

Because the function

r+t s—r
ty — 01— fort0>0,
S+t0 8+t0

is nondecreasing in ¢, whenever s > r > 0, we can replace the two appearances of ¢, in the

exponent of the above inequality by zero to see that

s r(s—r)

s [ fagen (=)

IValo )2 < CCu2m) (s + to,in”) | :
(4.4.7)

0
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Furthermore, by symmetry of r(s — r)/s and the fact that r(s — r)/s = r/2 for all r € [0, s/2],

we see that the above double integral is bounded by

<2 fsp dr 2@ fRd J?(dﬁ) exp (‘%‘512)

s/ ~
| S |, Fag)exp (=rieP)

0

<200 [Larrm || fag)em (i)

= 22179 (s).
Plugging the above bound back to (4.4.7) proves (4.4.3).

(2-3) Part (2) is a direct consequence of Theorem 4.3.2. It remains to prove (4.4.4). An

application of Minkowski’s inequality shows that

/2

5 (o tt) = [ vl < ([ menioma)” @

q
q/2

By the definition of G,(¢; 1) in (4.1.15) and by (4.4.3), we see that

| Wt ooy < € Gyl + tos ).

Plugging the above expression to the far right-hand side of (4.4.8) proves (4.4.4). Finally, the
finiteness of the upper bound in (4.4.4) is guaranteed by condition (4.4.5). This completes the

proof of Lemma 4.4.2. [

Lemma 4.4.4 (Factorization lemma). Suppose that j. — the initial condition for u — satisfies
(4.3.1) and f satisfies Dalang’s condition (4.1.11). Assume that condition (4.2.6) is satisfied
for some o € (0,1/2). Fix an arbitrary ty = 0. Let v(t, x) be the solution to the restarted SHE
(4.3.6) and Wto be the time-shifted noise (see (4.3.7)) when ty > 0 and let v = u when tq = 0.

Then the following factorization holds

sin(a)

f (t—s)* L [G(t — s,-) * Yy(s,)] (v)ds = fo fRd G(t—r,xz—2z)b(z,v(r, 2)) W, (dr, dz),

™ 0
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forallt > 0 and x € R?. As a consequence,

sin(a)

v(t,x) = [G(t,-) = u(te, ; u)] (x) + [F.Y,](t,x), forallt>0andxe R

™

(4.4.9)

Proof. The lemma is straightforward provided that one can switch the orders of stochastic and

ordinary integrals:

J(“‘$“1K%t—&J*YM&JH¢MS

0

:Jtds(t—s)a_lfRddyG(t—S,f—y)

0

‘ L ) fRd (5= 1G5 — 1y — 2)b(z, v(r, 2)) Wi (dr, d)

= Jt ds (t —s)>* f fRd (s — 1) *G(t —r,x — 2)b(2,v(r, 2)) Wy, (dr,dz) (4.4.10)

J » W(dr,dz)G(t —r,x — 2)b(z, v(r, z))J ds (s —7)"*(t —s)*! (4.4.11)

T

~sin(a f Ld — 2)b(z, v(r, 2)) Wy, (dr, dz),

where the last step is the Beta integral which requires that « € (0,1). It remains to justify
the two applications of the stochastic Fubini’s theorem (see Theorem 5.30 of Chapter one in
[Dal+09], or also [Wal86] or Theorem 4.33 of [DZ14]) in (4.4.10) and (4.4.11) in the following

two steps.

Step 1. In this step, we justify the change of orders in (4.4.10). Note that ¢, x and s are fixed.

It suffices to prove the following condition:

L :zf dy G(t—s,x—y)f dr (s — 7)™ dezldzg
Rd 0

R2d

21 - ZQ (HG Zz)) E (1_[ b(zi,v(r, ZZ)))
- J Ay G(t = 5,2~ ) [V (s. )l

< + 00.
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But this follows immediately from (4.4.3). Indeed

Jd dy G(t — s,x — y) HYU(s,y)Hg <Cfd dy G(t — s,z — y)Jg(s +to, s 1) Ha(s)
R R

=CHa(s) f dy G(t — s,z —y) Jf w*(dzy)p* (dze)
Re R2d
X G(s+ty,y—21)G(s+ty,y— 22) .

Now we bound the three heat kernels using (4.1.20) as follows:

2
G(t—s,x—y HGs—i—to, i)
i=1

G(2(t—s),x y2 2
= G A —5.0) HG s +to,y — 2i)
G2(t—s),z—y)’

<2 G-

2
HG 25 + Zto, )
=1

_ 21_[{(} 25 + 2to,y Z)G(Z(t—S),x—y)]

1=

_ gy _ gy [ 2t + to) m—@G(ﬂpﬁx&wa—s+%@—%0]

t+to

mn[ e w0 (2SN o)

t+ %o

CtstOHG t—|—t0 Zz)

Therefore, I} < Cy 4y Hal(s) J3(2( + to), z; u*) < 0

Step 2. Similarly, as for (4.4.11), we need to show that

t s
I, = f ds (t —s)** f dr (s —r)~2 Jj dzidz
0 0

R2d

o) (n(;t_m ) (Hm, ) .
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By the Cauchy Schwartz inequality, (4.4.6) and because « € (0,1/2),

2

t S
I <C’f ds (t —s)** f dr (s — 7)™ ff dz1dzg f(21 — 29) H (G(t —rx— z)Jo (r+ to, 2i; ,u*))
0 0 i=1
R2d

2

e f dr (t — r)~ H dzrdz f(5— )] | (G(t vz — 22) o (1 + to, 25 1) >

0 i=1

Now by the same arguments as those leading to (4.4.3) (with 2« there replaced by «), we see

that

L< R ) [ arre [ fagen (-H ).

which is finite by (4.2.6) where we replace o with «/2 and repeat the same steps right after

(4.4.77). This completes the proof of Lemma 4.4.4. ]
Finally, we characterize conditions (4.1.13) and (4.2.6) in the following lemma:
Lemma 4.4.5. For all o € (0,1/2], we have the following properties:

(1) (27) " Ho(t) < T (1 = 20) Yoa(0) for all t > 0 and hence

YTou(0) <0 = Ho(t) <o forallt>0; (4.4.12)

(2) Timy_o (27) P Ho(t) = T (1 — 20) Tau(0);
(3) if Y(0) < oo, then the reverse implication of (4.4.12) holds.

Proof. We only need to consider the case when o > 0. It is clear that the function H,(t) is

nondecreasing. Hence, (2) implies (1). As for (2), by Fubini’s theorem, we see that

~

lim H, (1) = JOO drr 2 | f(dE)e " = T(1 - 2a) J Lﬁ)) = CY54(0), (4.4.13)

£ 0 R4 ga [€[20-22

118



with C := ['(1 — 2a)(27)4. As for (3), for any ¢t > 0 we split the dr integral of (4.4.13) into

two parts and see that

Notice that

T8 g oo [ 116 _ )

0
I,(t) < t—zaf dr | f(dg)e TP = g2
t R4

R |5‘2 = R ‘512 20
Therefore,
Halt) T(0)
Yo, (0 , forallt >0,
2(0) S Goir —2a) T T — 20y <~ Torallt>
which proves (3). O

4.5 Tightness and Construction — Proof of Theorem 4.1.3
4.5.1 Proof of part (a) of Theorem 4.1.3
We are now ready to prove part (a) of Theorem 4.1.3.

Proof of Theorem 4.1.3 (a). In this proof, u(t, x) refers to u(t, z; u). Fix 7 > 0 and let ty =
7/2. Throughout the proof, we have ¢t > 7. Let v be the solution to (4.3.6) that is restarted from

t — to. Then (see Figure 4.3 for an illustration)

vy (8, ) £ u(s,x;u(t —tg,;u)) fors>=0andt > 4.5.1)

According to Assumption (i), we can choose and fix some admissible weight function p

such that (4.1.17) is satisfied. Hence, by Proposition 4.2.2, the following set

~<A} with A > 0

HN) = { (Glto, )+ y()) (@)
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0 to T t—to t t—t0+5
u(t —to+ s,x; 1)

u (s, z;u(t —to, s 1))
Figure 4.3: An illustration for the restarted SHE in (4.5.1).

is relatively compact in L2(R?).

Assumption (iii), i.e., (4.1.10), implies that the interval (64L7Y(0),1/2) is not empty.
Moreover, Assumption (iv), i.e., (4.1.13), guarantees that there exists a constant « in this in-
terval, namely, 64L2Y(0) < a < 1/2, such that (4.1.13) holds with « replaced by 2q, i.e.,
T5,(0) < oo. Now we can apply part (3) of Lemma 4.4.5, thanks to (4.1.10a), to see that
T5,(0) < oo if and only if (4.2.6) holds. Therefore, both Lemmas 4.4.2 and 4.4.4 (more pre-
cisely part (3) of Lemma 4.4.2) are applicable. In particular, Lemma 4.4.4 ensures that the

following factorization is well defined:

sin(a)

v(ty, ) = <G(t0, Y e u(t —to, -)) (z) + [E.Y,] (to, 7). 45.2)

™

Part (3) of Lemma 4.4.2 shows that for any ¢ in the following range,

1

1 1
G4L;Y(0) < - <a < = (or equivalently 2 < — <gq
o
we can apply Proposition 4.4.1 to see that the following set

Hy(A) = {(Fah)(to, 7) ¢ 10l o (o opezzean) < A} with A > 0
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is relatively compact in L?(R?). Now for any A > 0, define the set #"(A) as

H(N) = 2 (A) + Ao (A)

. {(G(to, Y y()) (@) + (Fah)(to, ) = [yl

N

A}.

ﬁgA and Hh||Lq((o,to);L§(Rd))

Notice that from the factorization formula (4.5.2),

|ﬁ>A]

B sin(ar)

P[U(to,')¢%(A)]<P[<foYv(&')”% i) s ]w[m(t_to,.)

= Il + ]2.

By Chebyshev’s inequality and (4.1.16), we see that

1

1
Iy < B (Jut =10, )13) < 5595 (¢ — tos ).

Because G;(t; 1) is a continuous function for ¢ > 0, and because it is also bounded at infinity,

thanks to Assumption (ii) (see (4.1.18)), we have that

G5 (t —to; ) < sup G (t — to; ) = supGj (t; p) < 0. (4.5.4)

t>7 t>to

Therefore, we can bound /5 from above with a constant that does not depend on ¢ > 7, namely,

1
Ih < —supG; (t; pu) < oo.
2 A2t>£gl)< M)

As for [;, with the choice of « and ¢ in (4.5.3), one can apply Chebyshev’s inequality and

part (3) of Lemma 4.4.2 to see that

4 to 0 q to
hoe 2 [y 2 ds < 2200 [ (Gys + 0t ) M) .
0

mIN9 mIAd 0

where the constant © does not depend on ¢. As we have seen from above, since Y5, (0) < 00, we

can apply Lemma 4.4.5 to bound H,, (s) from above by the finite bound: (277)* I'(1—2a) Y2, (0).
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Hence, together with (4.5.4), we obtain the following upper bound for /; that is uniform in

t>T:

_ sin?(am)©(2m)%/%, <

a/2
T T (1-20)"? A b 7 (t;u)) Y40

t=to

Combining these two upper bounds, we see that

Plo(to,-) ¢ ()] <

sin?(am)©(2m)%/%t, (

q/2
1
T (1— 20)72 7ahs \ron, 95 (t?“)> T5(0) + 125w G (i) < 0,

t=to t=to

with the upper bound holding uniformly for all £ > 7. Hence, for any € > 0, by choosing A > 0

big enough such that

sin?(am)©(2m)%/%, (

q/2
1
I (1 — 20)"2 7aAs S“Pgﬁ“;ﬂ)) T3(0) + 13 sup G (1) < e,

t=to t=to

we can ensure that
P(u(t,-) e H(N) =P (v(ty,:) € #(N)) =1—¢, forallt=>r,
which proves part (a) of Theorem 4.1.3. ]

4.5.2 Proof of part (b) of Theorem 4.1.3
Proof. Fix an arbitrary 7 > 0 and denote

U(T) = —JTJrTﬁ(u(t,-;,u)) d, T>0.

T

We claim that the family of laws U (7', -) for T' > 0 is tight in L?(R?). Indeed, for any € € (0, 1),

by part (a), there exists a compact set C € LZ (RY) such that (4.1.19) holds. This implies that

1 T+7 1 T+t
Ul (K) == Z(u(t, ;) (K) dt}TJ (1—€e)dt=1—¢, foralT > 0.

T T
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Let {7}, },en be any deterministic sequence such that 7}, 1 oo. Since {U(T},)},,, is a tight
sequence of measures, then there exists a subsequence {U (7},,,)}m>1 that converges weakly
to a measure, 77, on L%(Rd) (e.g. see [Bil99, Theorem 5.1]). Then one can apply the Krylov-
Bogoliubov existence theorem (see, e.g., [DZ14, Theorem 11.7]) to conclude that the measure
7 is an invariant measure for .2 (u(t, -; u)), t = 7. Finally, since 7 can be arbitrarily close to

zero, one can conclude part (b) of Theorem 4.1.3. O]
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