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Abstract

This thesis will consist of two main projects, Chapters 2 and 4, and a smaller project in

Chapter 3. We will be studying a general space-time fractional stochastic partial differential

equation in Chapters 2 and 3 and the stochastic heat equation in Chapter 4, which is a special

case of the just mentioned space-time fractional equation. The aim of this thesis is to handle

the following: solvability of the equations, deriving exact moment asymptotics and proving the

existence of an invariant measure.

In Chapter 2, we study a class of space-time fractional stochastic partial differential equa-

tions subject to some time-independent multiplicative Gaussian noise. We derive sharp con-

ditions, under which a unique global LppΩq-solution exists for all p ě 2. In this case, we

derive exact moment asymptotics following the same strategy as that in a recent work by Balan

et al [BCC22]. In the case when there exists only a local solution, we determine the precise

deterministic time, T2, before which a unique L2pΩq-solution exists, but after which the series

corresponding to the L2pΩq moment of the solution blows up. By properly choosing the pa-

rameters, results in this chapter interpolate the known results for both stochastic heat and wave

equations.

In Chapter 3, we will again be studying the space-time fractional equation but driven by a

space-time white noise. The goal of this project is to show the global existence of the solution

when the diffusion term has super-linear growth. The work follows closely a recent work by

Millet and Sanz-Solé [MS21].

Chapter 4 deals with the long term behavior of the solution to the nonlinear stochastic

heat equation with no drift term that is driven by a Gaussian noise that is white in time and

colored in space. Using the theory of the stochastic integral laid out by John Walsh, we provide

conditions which will guarantee the existence of an invariant measure for a broad range of

initial conditions, which includes bounded L2
ρ functions as well as the Dirac delta distribution

δ0.
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Chapter 1

Introduction

The field of stochastic partial differential equations (SPDEs) is a relatively new field that has

proven to be extremely useful. In the 1960’s a Japanese mathematician named Kyosi Ito pio-

neered what would later be referred to as Ito calculus. This new and innovative material would

then inspire other mathematicians, such as J. Walsh and R. Dalang, to set the framework for

stochastic partial differential equations. Today, SPDEs is as active as ever and the field has

even seen a Field’s medal winner, Martin Hairer [Hai13], and several Nobel Memorial Prize in

Economics winners, Myron Scholes and Robert Merton 1 [BS73].

Let’s consider one application that will lead us to the first project presented in Chapter

2. Consider the situation where an infinitesimally thin piece of wire is initially heated. Also

suppose that there is no external source of heat. Can we model the temperature of the wire as

a function of position and time? In other words, does there exist a function, upt, xq, such that

upt, xq gives the temperature of the wire at a position x and at a time t? The answer is yes, and

this scenario can be modeled by the well known heat equation:

$

’

’

&

’

’

%

Bu

Bt
pt, xq “

B2u

Bx2
pt, xq t ě 0, x P R,

up0, xq “ ζpxq x P R,

where ζpxq describes the initial temperature at a position x.

However, the above system is completely deterministic in the sense that there is no ran-

domness involved. In other words, every single simulation of modeling the evolution of heat

starting from ζpxq will be the same. In practice this is unrealistic and for sure there will be

1Fischer Black would have also been Awarded the Nobel Memorial Prize in Economics but he passed away
prior to the presentation of the award.
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some randomness involved that will affect the evolution of the temperature. The need to model

this randomness is the motivation behind the field of stochastic partial differential equations.

We will use a centerd, or 0-mean, Gaussian noise, which we denote as 9W , to introduce

randomness into our system. The noise will always be uniquely defined by associating it with

an appropriate positive-definite covariance functional of the following form:

E
”

9W pψq 9W pϕq

ı

“

ż 8

0

ds

ż

Rd

Γpdxqpψps, ¨q ˚ rϕps, ¨qqpxq, (1.0.1)

where ψ and ϕ are Schwartz functions, rϕps, ¨qqpxq “ ϕps,´xq and 1˚1 denotes the spatial

convolution. We will always assume that Γpdxq “ fpxqdx is a non-negative and non-negative

definite tempered measure and we will refer to f as the correlation function and its Fourier

transform, pfpξq “
ş

Rd expp´ix ¨ ξqfpxqdx, will be denoted as the spectral density.

Definition 1.0.1. The noise 9W has the following names under the following scenarios.

1. Space-time white : fpxq “ δ0pxq where δ0 is the Dirac delta distribution,

2. White in time and colored in space : When fpxq is a non-negative and nonnegative

definite function. For example, f may take the form of any of the following well known

kernels: Riesz kernel, Poisson kernel, Ornstein-Uhlenbeck kernel, or Bessel kernel.

3. Time-independent : When the integral in (1.0.1) is indepnedent of s, in other words,

E
”

9W pψq 9W pϕq

ı

“

ż

Rd

Γpdxqpψp¨q ˚ rϕp¨qqpxq,

and Γpdxq can be as in either of the two cases above.

Following Walsh [Wal86], we incorporate the noise into our system in the following way:

$

’

’

&

’

’

%

Bu

Bt
pt, xq ´

B2u

Bx2
pt, x “ bpupt, xqq 9W pt, xq t ě 0, x P Rd

up0, xq “ ζpxq x P Rd,

(1.0.2)

where we assume the diffusion term, b, to be Lipschitz continuous with Lipschitz constant Lb.

The above equation is purely notational and can be legitimately interpreted as the following

2



(a) λ “ 0 (b) λ “ 1

(c) λ “ 1.8 (d) λ “ 2

Figure 1.1: Simulations of Equation (1.0.2) with d “ 1, ζp¨q “ δ0p¨q and bpuq “ λu.

stochastic integral equation:

upt, xq “

ż

Rd

Gpt, x ´ yqζpyqdy `

ż t

0

ż

Rd

Gpt ´ s, x ´ yqbpups, yqqW pds, dyq, (1.0.3)

where the stochastic integral above is the Walsh integral andGpt, xq is the Gaussian heat kernel

Gpt, xq “

exp
´

´
|x|2

2t

¯

?
2πt

, t ą 0, x P Rd.

3



Equation 1.0.2 is referred to as the stochastic heat equation (SHE) and is a widely studied

stochastic partial differential equation, see for example [Kho14; Wal86; CD13; CD14; CM94;

HHN16; BC18] and also Chapter 4 below, where we prove the existence of an invariant measure

for the stochastic heat equation.

The noise term, 9W , brings fundamental changes to the solution upt, xq which can be seen

from the simulations in Figure 1.1. In particular, one can notice that as we increase λ, or the

level of noise that we allow in our system, then the formation of taller and taller peaks begin to

form. This phenomena is referred to as intermittency, see [CK19; KK15; CM95]. This concept

will be one of the main focuses of Chapter 2, which I will now introduce.

1.0.1 A brief overview of Chapter 2

In the following chapter we will study the a space-time fractional stochastic partial differen-

tial equation driven by a time-independent noise, 9W pxq. The equation interpolates both the

stochastic heat and wave equations and has the following form:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

`

Bbt ` ν
2
p´∆qa{2

˘

upt, xq “ Irt

”?
θ upt, xq 9W pxq

ı

x P Rd, t ą 0,

up0, ¨q “ 1 b P p0, 1s,

up0, ¨q “ 1, Btup0, ¨q “ 0 b P p1, 2q,

(1.0.4)

where Bbt is the Caputo derivative, p´∆qa{2 is the fractional Laplacian and Irt is the Riemann-

Liouville fractional integral. Similar to the stochastic heat equation above, (1.0.4) is understood

through the following stochastic integral equation:

upt, xq “ 1 `
?
θ

ż t

0

ˆ
ż

Rd

Gpt ´ s, x ´ yqups, yqW pδyq

˙

ds, (1.0.5)

where, because of the choice of noise, the stochastic integral above is the Skorohod integral

[NN18] and here G “ Ga,b,r,ν,d is the fundamental solution which is given through the Fox H-

function (see Figures 1.2 and 1.3 and [CHN19, Theorem 4.1]). One can see that when a “ 2,

4



(a) b = .5 (b) b = 1 (c) b = 1.9

Figure 1.2: Some plots of G2,b,0,2,1pt, xq with ´4 ď x ď 4 and 1 ď t ď 4.

b “ 1 and r “ 0 then (1.0.4) reduces to the stochastic heat equation and when a “ b “ 2 and

r “ 0 then it reduces to the stochastic wave equation.

An important key feature of the solution, which is due to the choice of noise and simplified

initial conditions, is the following Wiener Chaos expansion of the solution:

upt, xq “ 1 `

8
ÿ

k“1

θk{2Ikpfkp¨, x, tqq, (1.0.6)

where Ik denotes the kth order Skorohod integral and the kernels fk are calculated through a

standard Picard iteration procedure (see the discussion after Definition 2.3.1 below). Because

of an orthogonality result that is exhibited by the integrals Ik (e.g. [NN18, Equation 4.1]),

one may deduce the following useful expression for the second moment of the solution (see

Theorem 2.3.3 below):

E
`

|upt, xq|
2
˘

“
ÿ

ně0

θnn!
›

›

›

rfnp¨, x, tq
›

›

›

2

Hbn
for all pt, xq P p0, T q ˆ Rd.

The main goals will be to prove existence and uniqueness of the solution (Theorem 2.1.6)

and to calculate the following limits:

lim
tÑ8

t´β logE p|upt, xq|
p
q and lim

pÑ8
p´β logE p|upt, xq|

p
q ,

5



Figure 1.3: Cross sections of G2,b,0,2,1pt, xq with ´4 ď x ď 4 and t “ 1.

where β is a constant that is to be determined (see Theorem 2.1.7 and Corollary 2.1.8). One

should note that both the positivity and the finiteness of the above limits imply that the following

functions exhibit exponential growth:

t ÞÑ E p|upt, xq|
p
q and p ÞÑ E p|upt, xq|

p
q .

The calculation of these limits is a very long and lengthly process so we hold any further

discussion until Chapter 2.

However, as for the solvability of (1.0.4), we prove that the solution may uniquely exist

either globally or locally. We say a global solution exists if for all p ě 2, x P Rd and t ą 0,

the pth moment, }upt, xq}p, exists. On the other hand, we say that a local solution exists when

there exists two times T1,p ă T2,p such that for all p ě 2 and x P Rd, the pth moment exists for

t ă T1,p and blows up for t ą T2,p. We prove that T1,2 “ T2,2 and in addition, for all p ě 2,

we calculate T1,p and give precise conditions on when a solution will be global or local. It is

worth mentioning that the calculation of the cutoff time, T1,p, is only possible due to our ability

to express the solution in terms of its Wiener Chaos expansion as in (1.0.6).

6



1.0.2 A brief overview of Chapter 3

In this chapter we will study the same space-time fractional SPDE as in the previous chapter,

however, in this case we will assume the noise is space-time white and that the diffusion term

exhibits the following super-linear growth property as |x|, |z| Ñ 8:

|σpxq ´ σpzq| ď σ2|x ´ z|rln`p|x ´ z|qs
δ,

where σ2, δ ą 0 and ln`pzq :“ lnpz_ eq for z ą 0. Moreover, we consider more general initial

data, u0 and v0, than from the equation studied in Chapter 2. More precisely, we allow for any

Borel-measurable initial conditions which satisfy for all T ą 0 the following:

sup
px,yqPr0,T sˆRd

|J0pt, xq| ă 8,

where J0 is the solution to the homogeneous equation (see (1.0.8) below). With these slight

changes, the equation takes the following form:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

`

Bbt ` ν
2
p´∆qa{2

˘

upt, xq “ Irt

”

σpupt, xqq 9W pt, xq

ı

x P Rd, t ą 0,

up0, ¨q “ u0p¨q b P p0, 1s,

up0, ¨q “ u0p¨q, Btup0, ¨q “ v0p¨q b P p1, 2q.

(1.0.7)

As before, this is purely notational, and Equation (1.0.7) is legitimately viewed as the

following stochastic integral equation:

upt, xq “ J0pt, xq ` Ipt, xq, (1.0.8)

where

J0pt, xq “

$

’

’

&

’

’

%

rZpt, ¨q ˚ u0spxq β P p0, 1s

rZpt, ¨q ˚ v0spxq ` rZ˚pt, ¨q ˚ u0spxq β P p1, 2q

7



and

Ipt, xq “

ż t

0

ż

Rd

Y pt ´ s, x ´ yqσpups, yqqW pds, dyq.

The goal of this chapter is to prove the existence and uniqueness of a global solution

to (1.0.7) (see Theorem 3.1.2 below). The work is highly motivated by the recent work by

Millet and Sanz-Solé [MS21]. It is a well studied phenomena that either a super-linear drift

or diffusion term may cause blow-up of the solution. As for the stochastic heat equation, we

direct the reader to [FN21; MS93; DKZ19; BG09]. On the other hand, the only other work that

we are aware of that is dedicated to proving some non-existence results of (1.0.7) is [AMN20].

So, to the best of our knowledge, this is the first work on proving the global existence of a

solution to (1.0.7) with a super-linear diffusion term. However, as we will see, the calculations

given below are essentially identical to those performed in [MS21], which is the cause for our

motivation.

We will end this section with some comments on trying to prove Theorem 3.1.2 below

but for a noise that is white in time and colored in space. This problem was answered in

[MS21, Theorem 4.13] for the stochastic wave equation where global existence and uniqueness

is proven. The challenge with applying their techniques to the space-time fractional equation,

as in (1.0.7), comes from the increased complexity of the fundamental solutions. In particu-

lar, proving corresponding upper bounds for R1, ¨ ¨ ¨ , R4 from the proof of Theorem 4.10 ibid

becomes less clear and will be saved for a future project.

1.0.3 A brief overview of Chapter 4

In the final chapter, we will turn our focus towards proving the existence of an invariant measure

for the stochastic heat equation (1.0.2) on the whole space Rd. Equations such as the SHE can

be used by researchers to describe dynamical systems. Moreover, there often is a strong need to

know the ergodic behavior of the dynamical system and no ergodic behavior can exist without

an invariant measure. Hence proving the existence of such a measure is a crucial starting point.

Since we work on the whole space, one needs to introduce a positive, bounded and contin-

uous weight ρ P L1pRdq and the corresponding ρ-weighted space of square integrable functions

8



L2
ρpRdq (see Section 4.2.1). We will see below in Theorem 4.1.2, that the solution starting from

the initial condition µ, which we denote as upt, ¨;µq, is almost surely in this weighted space

for a broad range of initial conditions, which includes all bounded functions, some unbounded

functions such as |x|´α with 0 ă α ă d{2 and even some measures such as the Dirac delta

measure.

A crucial property of the system that must be exhibited for an invariant measure to exist

is the Markov property. Essentially this means that one must be able to stop and restart their

system whenever they choose and that the system then must act the same as it would if it were

allowed to run uninterrupted. It makes sense that the SHE would satisfy this property since

heat always moves from hot to cold. Thus no matter when we restart our system, the transfer

of heat will just continue as if nothing happened.

However, this restart property is not always satisfied. Consider the situation where we

pull back a string that is tightly secured at both end points. When we release the string, it

will vibrate back and fourth until it loses its momentum and ends back at rest. The problem

that presents itself here is that two vibrating strings could have the same position but different

velocities (see Figure 1.4).

Figure 1.4: A still shot of two vibrating strings at the same position but moving in opposite
directions.

For example, suppose we froze both strings illustrated above. When we initiate the restart, both

stings will not continue as they were prior to the restart. What will happen is that they both will

start moving in the direction of least resistance (see Figure 1.5). Thus the system will appear

differently as it would if it were never restarted at all. This heuristically shows us that this

system can not satisfy the Markov property and therefore an invariant measure will not exist in

this setting.

9



Figure 1.5: Direction of movement when re-releasing the string, regardless of the prior velocity.

We define the probability laws of the solution as

L pupt, ¨; ζqqpAq “ P rω P Ω : upt, ¨; ζqpωq P As , A P BpL2
ρpRd

qq,

where BpL2
ρpRdqq denotes the Borel subsets ofL2

ρpRdq and ζ is the initial condition. Because of

the Markov property of the solution, the laws form a family of Markovian transition functions,

Ptpζ, Aq :“ L pupt, ¨; ζqqpAq, for ζ P L2
ρpRdq. Moreover, the transition functions form a

transition semi-group defined as follows:

Ptφpxq “

ż

L2
ρpRdq

Ptpx, dyqφpyq, φ P BpL2
ρpRd

qq,

where BpL2
ρpRdqq denotes the bounded Borel measurable functions on L2

ρpRdq.

With this said, we say that a probability measure, η, on BpL2
ρpRdqq is invariant for (1.0.2)

when the following holds:

ż

L2
ρpRdq

Ptφpxqηpdxq “

ż

L2
ρpRdq

φpxqηpdxq, for all t ě 0 and φ P BpL2
ρqpRd

q . (1.0.9)

Recall that by definition P0φpxq “ φpxq and so (1.0.9) is essentially saying that the transition

semi-group is time-invariant with respect to the invariant measure η. We mention that this is a

key feature of ergodicity.

We should also mention now that there is an equivalent way that one can define the invari-

ant measure, and in fact it is the definition that we will choose to use for the remainder of this

thesis. Any probability measure, η, on the Borel σ-field BpL2
ρpRdqq is said to also be invariant

10



for (1.0.2) if

ηpAq “

ż

L2
ρpRdq

L pupt, ¨; ζqqpAq ηpdζq, for all t ě 0 and A P BpL2
ρqpRd

q. (1.0.10)

For more on these equivilent definitions, we direct the reader to [DZ14, Section 11.1].

Tessitore and Zabczyk laid forth a schematic to prove the existence of an invariant measure

in their paper [TZ98], which revolves around showing the following:

1. the probability laws of the solution form a family of Markovian transition functions,

2. the solution, upt, x;µq, satisfies a boundedness in probability condition.

Moreover, when one verifies the above steps, then by applying the Krylov–Bogoliubov exis-

tence theorem ([DZ14, Theorem 11.7]), it can be shown that the invariant measure, η, takes the

following form for any t0 ą 0:

ηpAq “ lim
nÑ8

1

Tn

ż Tn`t0

t0

L pupt, ¨;µqqpAqdt, A Ă BpL2
ρpRd

qq, (1.0.11)

where tTnuně1 is an appropriately chosen sequence with Tn Ò 8 (see Theorem 4.1.3 below).

Note that we already discussed that item 1 above is satisfied in our setting. On the other

hand, the second item will require some effort to show. A sufficient condition that is more

easily verified which implies this boundedness condition is the following:

sup
tą0

E
´

}upt, ¨q}
2
ρ

¯

ă 8. (1.0.12)

We remind the reader that for the SHE, moments usually grow exponentially in time (e.g.

see [CK19, Theorem 1.3]), and so for the above finiteness to occur, we will need additional

assumptions (e.g. see (4.1.10) below).

In fact, in order for Tessitore and Zabczyk to provide a specific scenario where an in-

variant measure exists (e.g. [TZ98, Theorem 3.3]), they had to significantly strengthen their

11



assumptions and require the following:

d ě 3 and L´2
b ą

Γpd{2 ´ 1q2d{2´2

p2πq2d

ż

Rd

ˆ
ˇ

ˇ

ˇ

ˇ

F
ˆ
b

pf

˙
ˇ

ˇ

ˇ

ˇ

˚

ˇ

ˇ

ˇ

ˇ

F
ˆ
b

pf

˙
ˇ

ˇ

ˇ

ˇ

˙

pζq|ζ|
2´ddζ,

(1.0.13)

where Lb is the Lipschitz constant of the diffusion term and f̂ is the spectral density of the

noise (see Section 4.2.4 below). Moreover, under this strengthened assumption, they proved

that there exists an invariant measure for the SHE starting from the constant 1 initial condition

(e.g. (1.0.2) with ζpxq “ 1). However, due to its complexity, (1.0.13) was not calculated for

any specific pf and without being able to do so, one may not apply this result for a specific noise.

This is clearly a huge set back as picking the noise of your system is the main reason one would

want to study a SPDE.

Our results vastly improve on this as we provide much simpler and more easily verifiable

conditions in our Theorem 4.1.3 below that will guarantee the existence of an invariant measure.

Moreover in Section 4.2.3, we are able to give specific examples of spectral densities, pf , that

satisfy the conditions of our Theorem 4.1.3. In addition, in Section 4.2.2 we enlarge the space

of allowable initial conditions to include all bounded functions, some unbounded functions and

even some measures such as the Dirac delta measure.
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Chapter 2

Exact Moment Asymptotics for the Interpolated Stochastic Heat and Wave Equation

2.1 Introduction and main results

In this chapter we study the following stochastic partial differential equation (SPDE) with

fractional differential operators:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

`

Bbt ` ν
2
p´∆qa{2

˘

upt, xq “ Irt

”?
θ upt, xq 9W pxq

ı

x P Rd, t ą 0,

up0, ¨q “ 1 b P p0, 1s,

up0, ¨q “ 1, Btup0, ¨q “ 0 b P p1, 2q,

(2.1.1)

where a P p0, 2s, b P p0, 2q, r ě 0, ν ą 0 and θ ą 0. Here the noiseW “
␣

W pϕq : ϕ P DpRdq
(

is a centered and time-independent Gaussian process, defined on a complete probability space

pΩ,F , P q, with mean zero and covariance

E rW pϕqW pψqs “

ż

Rd

FϕpξqFψpξqµpdξq “: xϕ, ψyH,

where µ refers to the spectral measure, which is assumed to be a nonnegative and nonnegative

definite tempered measure on Rd. Let γ be the Fourier transform of µ (see Section 2.3.1), which

is also a nonnegative and nonnegative definite measure on Rd thanks to Bochner’s theorem.

Throughout this chapter, we will use Fϕpξq “
ş

Rd expp´ixξqϕpxqdx to denote the Fourier

transform of a test function ϕ.
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In (2.1.1), p´∆qa{2 refers to the fractional Laplacian of order a, Bbt denotes the Caputo

fractional differential operator

B
b
tfptq :“

$

’

’

’

’

&

’

’

’

’

%

1

Γpm ´ bq

şt

0
dτ

f pmqpτq

pt ´ τqb`1´m
if m ´ 1 ă b ă m,

dm

dtm
fptq if b “ m,

where m is an integer, and Irt refers to the Riemann-Liouville fractional integral of order r ą 0

Irt fptq :“
1

Γprq

ż t

0

pt ´ sqr´1fpsqds, for t ą 0,

with the convention that when r “ 0, I0t “ Id reduces to the identity operator. The fundamental

solution to (2.1.1) is expressed explicitly in terms of the Fox H-function, Hm,n
p,q pzq, which is

much more complicated than the Green’s function for either the heat or wave equation. We

denote the fundamental solution as

Gpt, xq :“ Ga,b,r,ν,dpt, xq, (2.1.2)

where

Ga,b,r,ν,dpt, xq “ π´d{2
|x|

´dtb`r´1H2,1
2,3

¨

˚

˝

|x|a

2a´1νtb

ˇ

ˇ

ˇ

ˇ

ˇ

p1, 1q, pb ` r, bq

pd{2, a{2q, p1, 1q, p1, a{2q

˛

‹

‚

.

We direct the reader to Theorem 4.11 of [CHN19] for more details. Since we are interested in

the constant one initial condition (and zero initial velocity when b ą 1), Theorem 4.1 (ibid.)

implies that the corresponding solution to the homogeneous equation (i.e. the solution when

there is no driving source) is equal to the constant one. Hence through superposition, (2.1.1)

can be written as the following stochastic integral equation:

upt, xq “ 1 `
?
θ

ż t

0

ˆ
ż

Rd

Gpt ´ s, x ´ yqups, yqW pδyq

˙

ds, (2.1.3)

1Gpt, xq corresponds to Ya,b,r,ν,dpt, xq from [CHN19].
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where the stochastic integral is in the Skorohod sense; see Definition 2.3.1 below. In the fol-

lowing, the fundamental solution will exclusively refer to Gpt, xq, which is indeed a smooth

function for x ‰ 0. Our results rely on the following assumption for the nonnegativity of

Gpt, xq:

Assumption 2.1.1 (Nonnegativity). Assume that the fundamental solution Gpt, xq is nonnega-

tive for all t ą 0 and x P Rd.

Remark 2.1.2. Thanks to Theorem 4.6 of [CHN19] (see also Theorem 3.1 of [Che+17] for the

case when r “ 0), we have the following four groups of sufficient conditions 2, under either

group of which Gpt, ¨q is nonnegative (see Figure 2.1 for an illustration) :

1. d ě 1, b P p0, 1s, a P p0, 2s, r ě 0;

2. 1 ď d ď 3, 1 ă b ă a ď 2, r ą 0;

3. 1 ď d ď 3, 1 ă b “ a ă 2, r ą
d ` 3

2
´ b.

a

b

1 2

1

2

1
ď
d

ď
3

d
ě

1

r
ě
0

r ě 0

r
ą

d`
3

2

´
b

Figure 2.1: Illustration of the sufficient conditions (Remark 2.1.2) forGpt, ¨q to be nonnegative.

Regarding the noise, we formulate the following assumption in order to cover the Riesz

kernel case, the fractional noise and a mixture of them:
2Note that when d ě 1, b “ 1 and a P p0, 2s, part (1) of [CHN19, Theorem 4.6] says that the fundamental

solution Y , which is the fundamental solution G in this chapter, is nonnegative provided r “ 0 or r ą 1. Indeed,
because in this case Z is always nonnegative, for r ą 0, Y as a fractional integral of Z (see (4.5), ibid.), Y , or our
G, should also be nonnegative. We thank Guannan Hu who pointed out to us this observation.
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Assumption 2.1.3 (Noise). Let k P t1, ¨ ¨ ¨ , du and partition the d-coordinates of x “ px1, ¨ ¨ ¨ , xdq

into k distinct groups of size di so that d1 ` ¨ ¨ ¨ ` dk “ d. Denote xpiq “ pxi1 , ¨ ¨ ¨ , xidi q to be

the coordinates in the ith partition. Assume that the correlation function of the Gaussian noise

is given by

γpxq “

k
ź

i“1

ˇ

ˇxpiq

ˇ

ˇ

´αi with αi P p0, diq. (2.1.4)

Define α :“
řk
i“1 αi.

Remark 2.1.4 (Spectral density and decomposition). Recall that the spectral density of γ from

(2.1.4), which by definition is Fγ, takes the following form:

µpdξq “ φpξqdξ with φpξq “

k
ź

i“1

Cαi,di |ξpiq|
´pdi´αiq. (2.1.5)

Moreover, in the derivations below, we need to find a nonnegative and nonnegative definite K

such that γ “ K ˚ K where ‘˚’ denotes the spatial convolution. Indeed, one can choose

Kpxq “

k
ź

i“1

βαi,di

ˇ

ˇxpiq

ˇ

ˇ

´pdi`αiq{2
. (2.1.6)

The two constants in both (2.1.5) and (2.1.6) are defined as

Cα,d “ π´d{22´αΓppd ´ αq{2q

Γpα{2q
and βα,d “ π´d{4Γppd ` αq{4q

Γppd ´ αq{4q

d

Γppd ´ αq{2q

Γpα{2q
. (2.1.7)

Example 2.1.5 (Noises). We have the following special cases: (1) Setting k “ 1 in (2.1.4) and

(2.1.5) recovers the Riesz kernel case. In this case,

γpxq “ |x|
´α, φpxq “ Cα,d|x|

´pd´αq and Kpxq “ βα,d|x|
´pd`αq{2. (2.1.8)

(2) Setting k “ d in (2.1.4) and (2.1.5) recovers the time-independent fractional noise. The cor-

responding SHE with such noise was earlier studied by Hu come back to this citation [Hu01].
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For this noise, we have that

γpxq “

d
ź

i“1

|xi|
´αi , φpξq “

d
ź

i“1

Cαi,1|ξi|
´p1´αiq and Kpxq “

d
ź

i“1

βαi,1|xi|
´p1`αiq{2.

(2.1.9)

In a recent work by Balan et al [BCC22], the same equation as (2.1.1), but exclusively

for the stochastic wave equation (SWE), namely, the case when a “ b “ ν “ 2 and r “ 0,

has been studied, where both the well-posedness and the exact moment asymptotics have been

obtained. The corresponding stochastic heat equation (SHE), namely, the case when a “ 2,

b “ ν “ 1 and r “ 0, has been earlier studied by Hu [Hu01], but only for the well-posedness

and exclusively for the fractional noise (2.1.9). The corresponding moment asymptotics have

been obtained by X. Chen [Che17b] as a special case by setting α0 “ 0. One may check

Remark 1.9 of Balan et al [BCC22] for the explicit expressions in terms of notation of the

current thesis. In this chapter, by working on a more general class of SPDEs, we are able to

interpolate the asymptotics for both SWE and SHE; see Section 2.2.2 below for more details.

Moreover, we give the sharp conditions under which there exists only a local L2pΩq solution.

The moment asymptotics obtained by X. Chen, such as those in [Che17b; Che19], rely

crucially on the Feynman-Kac representation of the moments of the solution. However, when-

ever b ‰ 1, especially for the case when b P p1, 2q, we are not aware of any such Feynman-Kac

formula for the moments. Instead, in the recent work by Balan et al [BCC22], this difficulty

has been overcome by studying the Wiener chaos expansion of the solution. In this chapter, we

follow the same strategy laid out by Balan et al (ibid.). The challenge comes from the much

more involved parametric form of the fundamental solution.

Now let us state the main results of this chapter. The first main result deals with the well-

posedness of the SPDE (2.1.1) (or (2.1.3)) as stated in the following theorem. For this, we need

to introduce the following variational constant (see Section 2.3.2 for more details):

Ma,d pfq :“ sup
gPFa

"

@

g2 ˚ g2, f
D1{2

L2pRdq
´

1

2
Eapg, gq

*

. (2.1.10)
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We use the convention that Ma pfq :“ Ma,d pfq when the dimension is clear from the context,

and Ma :“ Mapγq, where γ is defined in (2.1.4). It is important to note that by Theorem 2.3.5,

stated and proven below, that Ma ă 8.

Theorem 2.1.6 (Solvability). Assume that both Assumptions 2.1.1 and 2.1.3 hold.

(1) (2.1.1) has a unique (global) solution upt, xq in LppΩq for all p ě 2, t ą 0, and x P Rd

provided that

0 ă α ă min
´a

b
r2pb ` rq ´ 1s , 2a, d

¯

. (2.1.11)

(2) Otherwise, if

r P r0, 1{2q and 0 ă α “
a

b
r2pb ` rq ´ 1s ď d, (2.1.12)

then (2.1.1) has a local solution in the sense that

(2-i) For any p ě 2, (2.1.1) has a unique solution upt, xq in LppΩq for all p ě 2 and x P Rd,

but only for t P p0, Tpq where

Tp :“
να{a

2θpp ´ 1qMp2a´αq{a
a

. (2.1.13)

(2-ii) For any t ą T2, the series (2.3.9) below diverges, that is, the L2pΩq-solution upt, xq to

(2.1.1) does not exist whenever t ą T2.

The second main result of this chapter is about the moment asymptotics. We use }¨}p to

denote the LppΩq moments.

Theorem 2.1.7. Under Assumptions 2.1.1 and 2.1.3, if condition (2.1.11) holds, then we have

that

lim
tpÑ8

t´βp log }upt, xq}p “

ˆ

1

2

˙ˆ

2a

2apb ` rq ´ bα

˙β

ˆ

´

θν´α{aM
2a´α

a
a

¯

a
2apb`rq´bα´a

ˆ

2pb ` rq ´
bα

a
´ 1

˙

,

(2.1.14)
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where

β :“
2pb ` rq ´

bα

a

2pb ` rq ´
bα

a
´ 1

and tp :“ pp ´ 1q
1´1{β t. (2.1.15)

Proof. We prove the matching upper bound (2.5.1) and the lower bound (2.6.1) of (2.1.14) at

the end of Sections 2.5 and 2.6 below, respectively, which together prove (2.1.14).

As a direct consequence of (2.1.14), one can send either t or p to infinity as follows:

Corollary 2.1.8. Under both Assumptions 2.1.1 and 2.1.3, if condition (2.1.11) holds, then

(1) For all p ě 2 fixed, it holds that

lim
tÑ8

t´β logE p|upt, xq|
p
q “ppp ´ 1q

1

2pb`rq´ bα
a ´1

ˆ

1

2

˙ˆ

2a

2apb ` rq ´ bα

˙β

ˆ

´

θν´α{aM
2a´α

a
a

¯

a
2apb`rq´bα´a

ˆ

2pb ` rq ´
bα

a
´ 1

˙

;

(2.1.16)

(2) For all t ą 0 fixed, it holds that

lim
pÑ8

p´β logE p|upt, xq|
p
q “tβ

ˆ

1

2

˙ˆ

2a

2apb ` rq ´ bα

˙β

ˆ

´

θν´α{aM
2a´α

a
a

¯

a
2apb`rq´bα´a

ˆ

2pb ` rq ´
bα

a
´ 1

˙

.

(2.1.17)

This chapter is organized as follows. In Section 2.2, we first give some concrete examples,

where one can find many explicit formulas for either moment asymptotics in the case of global

solutions or the expressions for the critical time Tp in the case of local solutions. Then in

Section 2.3, we present some preliminaries, including the Skorohod integral, definition of the

mild solution, and some asymptotics with corresponding variational constants. We prove part

(1) and part (2) of Theorem 2.1.6 in Sections 2.4 and 2.5, respectively. The upper bound and
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lower bounds for (2.1.14) are established in Sections 2.5 and 2.6, respectively. Finally, in the

appendix — Section 2.7, we list a few proofs of results that will be used.

2.2 Examples on solvability and asymptotics

In this section, we will give various examples to illustrate our main results. The cases with

b “ 1 and r “ 0 are mostly known, which will be pointed out in the example below and will be

used as test examples for our results. To the best of our knowledge, all results in this chapter

for either b ‰ 1, 2 or r ą 0 should be new.

2.2.1 Examples on solvability

In this part, we list some concrete examples regarding the solvability — Theorem 2.1.6.

Example 2.2.1 (SHE). By setting a “ 2, b “ 1 and r “ 0 in (2.1.12), we obtain the following

condition for the SHE under which there only exists a local solution:

α “ 2 ď d. (2.2.1)

Clearly, the fundamental solutions in this case are nonnegative for all d ě 1. Hence, the

picture is slightly more complicated since we need to check all possible dimensions d ě 1. We

illustrate possible cases in Figure 2.2. In particular, let us explain a few cases:

(a) When d “ 2, condition (2.2.1) says that the 2-dimensional SHE driven by white noise

has only a local LppΩq solution. By applying (2.1.13) to this case, the critical time Tp

becomes

Tp “
ν

2θpp ´ 1qM2,2pδ0q
, p ě 2. (2.2.2)

Note that in part 2) of Theorem 4.1 of Hu [Hu02], some lower and upper bounds for T2

were obtained. More precisely, by setting additionally that θ “ 1 and ν “ 1, Hu (ibid.)

proved that when t ă 2, an L2pΩq solution exists but when t ą 2π, the second moment
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of the solution blows up. It is an interesting exercise to show that

2 ď T2 “
1

2M2,2pδ0q
ď 2π, where d “ 2.

This case is covered as a special time-independent case (i.e., H0 “ 1) by Chen et al

[Che+21, Theorem 3.4 and Remark 3.13].

(b) Recall that the white noise driven SHE corresponds to when α “ d. Therefore by exam-

ining (2.1.11) and (2.1.12), we see that when d ě 3, the SHE driven by white noise no

longer has any L2pΩq-solution. In addition, local solutions exist only when α “ 2 and

the noise is not white. This is illustrated in Figure 2.2 below. In addition, the critical time

Tp takes the same expression as (2.2.2) but one needs to replace δ0 by γ.

Remark 2.2.2. Note that we use the Skorohod integral to interpret the multiplication of the

solution with the noise in (2.1.1). Multiplication interpreted in this way is traditionally called

the Wick product which is consistent with the Itô or Walsh integral (see, e.g., [Dal+09]) when

the noise is white in time. One can also interpret this product as the usual product. In order

to handle the singularities caused by this multiplication, one needs to carry out certain renor-

malization processes. In fact, for the standard SHE with white noise in Rd (i.e., a “ 2, b “ 1,

α “ d and r “ 0), Hairer and Labbé constructed pathwise solutions using the regularity struc-

ture for both cases d “ 2, 3 in [HL15] and [HL18], respectively. The relation between these

two types of solution is left for future work.

Example 2.2.3 (SWE). By setting a “ 2 and formally setting b “ 2 in (2.1.12), we obtain

the following condition for the stochastic wave equation under which there only exists a local

solution:

α “ 3 ` 2r ď d and r P r0, 1{2s. (2.2.3)

We recall that results in Balan et al [BCC22] require d ď 3, and likewise, Assumption 2.1.1 and

all known sufficient conditions for the nonnegativity of the fundamental solution (see Remark
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r “ 0

α

d

1

1

2

2

3

3

4

4

5

5 Global LppΩq-solution

Local LppΩq-solution

No L2pΩq-solution

White noise

Figure 2.2: Solvability for the stochastic heat equation (i.e., a “ 2, b “ 1 and r “ 0) with
p ě 2.

2.1.2) also require d ď 3 in case of b P p1, 2q. With this restriction, conditions (2.2.3) reduce to

α “ 3 “ d and r “ 0,

which says that at dimension d “ 3, when 9W is a white noise, there exists only a local LppΩq

solution for all p ě 2. See Figure 2.3 for an illustration. Moreover, one can check easily that

the expression for the critical time Tp in (2.1.13) in this case reduces to

Tp “
ν3{2

2θpp ´ 1q
a

M2,3pδ0q
, p ě 2, (2.2.4)

which is identical to (1.12) (ibid.) when setting ν “ 2.

Example 2.2.4 (Fractional SPDEs with r “ rbs ´ b and a “ 2). For the fractional SDPEs with

b ‰ 1, many known works focus on the case when r “ rbs´b, where rbs is the ceiling function;

see, e,g., [Che17a; MN15]. To facilitate the discussions here, we will only focus on the case

when a “ 2. In particular, by setting r “ rbs ´ b and a “ 2, conditions in (2.1.12) become

$

’

’

’

&

’

’

’

%

α “
2

b
ď d and b P r1{2, 1s,

α “
6

b
ď d and b P r3{2, 2q.

(2.2.5)
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r “ 0

α

d

1

1

2

2

3

3

4

4

5

5 Unknown

Figure 2.3: Solvability for the stochastic wave equation (i.e., a “ b “ 2 and r “ 0). See Figure
2.2 for an additional legend.

When b “ 1, we have r “ 0 and the fundamental solution is the standard heat kernel. Hence,

Assumption 2.1.1 is satisfied for all d ě 1. When b ă 1, sufficient conditions in Remark 2.1.2

guarantees Assumption 2.1.1 for all d ě 1. However, when b ą 1 and a “ 2, from Remark

2.1.2 we see that the fundamental solution is nonnegative only for d ď 3. The solvability for

this case is illustrated in Figure 2.4 and the critical time Tp in case of local solution (hence,

only for the case when b P r1{2, 1s) is equal to

Tp “
να{2

2θpp ´ 1qM2´α{2
2,d

. (2.2.6)

Example 2.2.5 (Fractional SPDEs with r “ 0 and a “ 2). In this example, we study the

special case of the fractional SPDEs when r “ 0. The choice of r “ 0 has been used in, e.g.,

[Che+17]. We will only consider the case a “ 2 for simplicity. Now by setting r “ 0 and

a “ 2 and restricting b ď 1, conditions in (2.1.12) become

α “ 4 ´
2

b
ď d and b P p0, 1s. (2.2.7)

As discussed in Example 2.2.4, Assumption 2.1.1 is satisfied for all d ě 1 when b ď 1 but only

for d ď 3 when b ą 1. The solvability for this case is illustrated in Figure 2.5 with Tp given in

(2.2.6). In particular, for the example in the second figure in Figure 2.5, namely, when b “ 2{3

23
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Figure 2.4: Solvability for the fractional SPDEs in case of a “ 2 and r “ rbs ´ b. See Figures
2.2 and 2.3 for the legend.
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and α “ d “ 1, the white noise driven SHE has a local solution with

Tp “
25{2

?
ν

3pp ´ 1qθ
, for all p ě 2, (2.2.8)

where we have applied (2.2.6) and the relation (2.3.22).

More examples regarding the solvability can be studied in a similar way, which are left to

the interested readers.
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b “ 2{3

α
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b “ 4{7
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3

3

4
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5
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Figure 2.5: Solvability for the fractional SPDEs in case of a “ 2 and r “ 0. See Figures 2.2
and 2.3 for the legend.

Example 2.2.6 (SHE with fractional Laplacian). The stochastic heat equation with fractional

Laplacian (i.e., the case when b “ 1, r “ 0 and a P p0, 2s) has been widely studied in the liter-

ature, but possibly with different noises. In this case, the fundamental solutions are transition
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densities for the alpha-stable jump processes, which are necessarily to be nonnegative. This

is also consistent with the sufficient conditions for nonnegativity in Remark 2.1.2. By setting

b “ 1 and r “ 0 in (2.1.12), we have the following condition:

α “ a ď d

The solvability for this case is illustrated in Figure 2.6.

a “ 1{2
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Figure 2.6: Solvability for the stochastic heat equation with fractional Laplacian, i.e, the case
when b “ 1 and r “ 0. See Figures 2.2 and 2.3 for the legend.
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2.2.2 Examples on asymptotics

In this part, we list several examples for the asymptotics when global solutions exist. In par-

ticular, we will show that the asymptotics in (2.1.14) interpolates the corresponding results for

both stochastic wave and heat equations.

Example 2.2.7 (Asymptotics for SWE). Even though our results requires b to be strictly less

than 2, but by formally setting

a “ b “ ν “ 2 and r “ 0,

we have that

β “
4 ´ α

3 ´ α
and tp “ pp ´ 1q

1{p4´αqt,

and results in (2.1.14), (2.1.16), and (2.1.17) recover the corresponding results for the stochastic

wave equation, namely, (1.9), (1.10), and (1.11) of [BCC22], respectively. Due to the impor-

tance of white noise and for the future references, here we list two special cases regarding white

noise:

(1) The SWE with white noise in R: By further setting d “ α “ 1, we see that

lim
tÑ8

logE r|upt, xq|ps

t3{2
“
ppp ´ 1q1{2

?
θ

3p2νq1{4
and lim

pÑ8

logE r|upt, xq|ps

p3{2
“

t3{2
?
θ

3p2νq1{4
, (2.2.9)

where we have applied (2.3.22).

(2) The SWE with white noise in R2: Similarly, by setting d “ α “ 2, we see that

lim
tÑ8

logE r|upt, xq|ps

t2
“
ppp ´ 1qθM2,2pδ0q

2ν
and lim

pÑ8

logE r|upt, xq|ps

p2
“
t2θM2,2pδ0q

2ν
.

(2.2.10)
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Example 2.2.8 (Asymptotics for SHE). As for the stochastic heat equation case, by setting

a “ 2, b “ ν “ 1 and r “ 0,

we have that

β “
4 ´ α

2 ´ α
and tp “ pp ´ 1q

2{p4´αqt,

and results in (2.1.14) and (2.1.16) recover the corresponding conjectured results for SHE,

namely, (1.16) and (1.17) of Balan et al [BCC22], respectively, which are equivalent to Theo-

rem 1.1 and 1.2 of X. Chen [Che17b] when setting α0 “ 0 and using [Che+15, Lemma A.2] to

rewrite the constant E in [Che17b] in terms of Ma. Due to the importance of the white noise

case, we list the corresponding asymptotics here. When α “ d “ 1,

lim
tÑ8

logE p|upt, xq|pq

t3
“
ppp ´ 1q2θ2

24ν
and lim

pÑ8

logE p|upt, xq|pq

p3
“
t3θ2

24ν
, (2.2.11)

where we have applied (2.3.22). Note that some upper and lower bounds for the first limit in

(2.2.11) in case of p “ 2 were earlier obtained by Hu [Hu02, part 1) of Theorem 4.1].

Example 2.2.9 (Asymptotics for SHE with fractional Laplacian). In this example we restrict

ourselves to the case when b “ 1, a P p0, 2s, α ă d, and r “ 0, which is the 1-dimensional

SHE with fractional Laplace. With this set up we have

β “
2a ´ α

a ´ α
and tp “ pp ´ 1q

a
2a´α t,

and by Corollary 2.1.8,

lim
tÑ8

logE p|upt, xq|pq

t
2a´α
a´α

“ ppp ´ 1q
a

a´α

ˆ

1

2

˙ˆ

2a

2a ´ α

˙
2a´α
a´α ”

θν´α{aM
2a´α

a
a,d

ı

a
a´α

´a ´ α

a

¯

(2.2.12)

28



and

lim
pÑ8

logE p|upt, xq|pq

p
2a´α
a´α

“ t
2a´α
a´α

ˆ

1

2

˙ˆ

2a

2a ´ α

˙
2a´α
a´α ”

θν´α{aM
2a´α

a
a,d

ı

a
a´α

´a ´ α

a

¯

. (2.2.13)

this setup has been studied in [Che+18] for the case of a time-dependent noise where the co-

variance function is given by

Er 9W pr, xq 9W ps, yqs “ |r ´ s|´α0γpx ´ yq

and γpxq is defined to be either of the following:

γpxq :“

$

’

’

&

’

’

%

|x|´α where α P p0, dq or

śd
j“1 |xj|

αj where αj P p0, 1q.

(2.2.14)

They proved that for α ă minta, du and let p ě 2,

lim
tÑ8

t´
2a´α´αα0

a´α logEr|upt, xq|
p
s “ ppp ´ 1q

a
a´α Mpa, α0, d, γq, (2.2.15)

where the variational constant is given by

Mpa, α0, d, γq “ sup
gPAa,d

"

1

2

ż 1

0

ż 1

0

ż

R2d

γpx ´ yq

|r ´ s|α0
g2ps, xqg2pr, yqdxdydrds

´ p2πq
´d

ż 1

0

ż

Rd

|x|
a
|Fgps, ξq|

2dξds

*

with3

Aa,d :“

"

gps, xq :

ż

Rd

g2ps, xqdx “ 1, @s P r0, 1s and p2πq
´d

ż 1

0

ż

Rd

|x|
a
|Fgps, ξq|

2dξds ă 8

*

.

By setting α0 “ 0 and letting gps, xq “ gpxq P Fa be independent in s, which is the time-

independent setup, then Equation (2.2.12) and Lemma 2.3.9 together recover (2.2.15). Indeed,

3Note that the Fourier transform is defined differently in [Che+18].
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by observing (2.3.29) and (2.3.33), we see that

Mpa, α0, d, γq “ Ea,d

ˆ

1

2
γ, 2

˙

“ 2
´a
a´α

´a ´ α

a

¯

ˆ

2a

2a ´ α

˙
2a´α
a´α

Ma,d pγ, 1q
2a´α
a´α (2.2.16)

and by rewriting (2.2.15) with (2.2.16) yields (2.2.12). Finally, we note that condition (2.2.14)

can be relaxed to allow white noise in one dimensional case, namely, α “ d “ 1. In this case,

one can simply replace α and d in both (2.2.12) and (2.2.20) by 1 and in addition replace Ma,d

by Ma,1pδ0q.

Example 2.2.10 (Asymptotics for SPDEs with r “ rbs ´ b and white noise). In this example,

we consider the case when a “ 2, d “ α “ 1 (white noise), and r “ rbs ´ b. As seen in

Example 2.2.4, there exists a global solution. In this case,

β “
4 rbs ´ b

4 rbs ´ b ´ 2
and tp “ pp ´ 1q

2
4rbs´b t,

and by (2.3.22) and Corollary 2.1.8,

lim
tÑ8

logE p|upt, xq|pq

t
4rbs´b

4rbs´b´2

“ppp ´ 1q
2

4rbs´b´2

ˆ

ˆ

9θ2

8ν

˙
1

4rbs´b´2

p4 rbs ´ b ´ 2q p4 rbs ´ bq´
4rbs´b

4rbs´b´2 ,

(2.2.17)

and

lim
pÑ8

logE p|upt, xq|pq

p
4rbs´b

4rbs´b´2

“ t
4rbs´b

4rbs´b´2

ˆ

9θ2

8ν

˙
1

4rbs´b´2

p4 rbs ´ b ´ 2q p4 rbs ´ bq´
4rbs´b

4rbs´b´2 . (2.2.18)

Example 2.2.11 (Asymptotics for SPDEs with r “ 0 and white noise). From Example 2.2.5,

we see that when a “ 2, r “ 0, d “ α “ 1 (white noise), the global solution exists when

b P p2{3, 2q. In this case, we have that

β “
3b

3b ´ 2
and tp “ pp ´ 1q

2{p3bq t,
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and by (2.3.22) and Corollary 2.1.8,

lim
tÑ8

logE p|upt, xq|pq

t3b{p3b´2q
“ ppp ´ 1q

2
3b

ˆ

b ´
2

3

˙

b´ 3b
3b´2

ˆ

θ2

8ν

˙
1

3b´2

and (2.2.19)

lim
pÑ8

logE p|upt, xq|pq

p3b{p3b´2q
“ t

3b
3b´2

ˆ

b ´
2

3

˙

b´ 3b
3b´2

ˆ

θ2

8ν

˙
1

3b´2

. (2.2.20)

2.3 Some preliminaries

2.3.1 Skorohod integral and mild solution

We start with a nonnegative and nonnegative definite tempered measure Γ with density γ in the

sense that Γpdxq “ γpxqdx and

ż

Rd

Γpdxqpϕ ˚ rϕqpxq ě 0 for all ϕ P S pRd
q

where rϕpxq :“ ϕp´xq. According to the Bochner theorem, there exists a nonnegative and

nonnegative definite measure µ, often referred as the spectral measure on Rd whose Fourier

transform (in the weak sense) is Γ, namely, that for any ϕ P DpRdq (the space of test functions),

ż

Rd

Γpdxqϕpxq “

ż

Rd

µpdξqFϕpξq.

Since µ is nonnegative definite, the following functional

Cpϕ, ψq “

ż

R
FϕpξqFψpξqµpdξq, for all ϕ, ψ P DpRd

q (2.3.1)

is nonnegative-definite and thus one can associate it with a zero-mean Gaussian processes,

W :“
␣

W pϕq : ϕ P DpRdq
(

, with the covariance functional of W given by (2.3.1). In other

words,

E pW pϕqW pψqq “

ż

R
FϕpξqFψpξqµpdξq “: xϕ, ψyH.
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Let H be the completion of DpRdq with respect to x¨, ¨yH and thus we see ϕ ÞÑ W pϕq is an

isometry from DpRdq to L2pΩq, that is, E pW pϕq2q “ }ϕ}
2
H for ϕ P DpRdq. One can extend this

isometry from DpRdq to H. We refer the interested readers to [Dal+09] and references therein.

We denote δ the Skorohod integral with respect to W and denote its domain by Dompδq.

u is called Skorohod integrable if u P Dompδq, in which case we write δpuq “
ş

Rd upxqW pδxq

and by isometry, E pδpuq2q “ Ep}u}
2
Hq. For a complete treatment of the Skorohod integral, see

Nualart et al [NN18].

Definition 2.3.1 (Mild, local and global solutions). (1) For T P p0,8s, a random field u “

␣

upt, xq : t P p0, T q, x P Rd
(

is called a mild solution to the equation (2.1.1) if for all x P Rd

and s, t fixed with 0 ă s ď t ă T , y Ñ Gpt ´ s, x ´ yqups, yq is Skorohod integrable and the

following stochastic integral equation holds almost surely

upt, xq “ 1 `
?
θ

ż t

0

ˆ
ż

Rd

Gpt ´ s, x ´ yqups, yqW pδyq

˙

ds. (2.3.2)

(2) Let upt, xq be a mild solution to (2.1.1) (or (2.3.2)) and fix p ě 1. We call upt, xq a global

LppΩq-solution, or simply an LppΩq-solution if

}upt, xq}p ă 8 for all t ą 0 and x P Rd. (2.3.3)

(3) If there exist 0 ă T1 ď T2 ă 8 such that }upt, xq}p is finite for all t P p0, T1q and x P Rd,

but }upt, xq}p diverges to infinity whenever t ą T2, the mild solution upt, xq in this case is

called a local LppΩq-solution.

Note that through construction of the Skorohod integral δ, a mild solution is necessarily to

be an L2pΩq-solution. For more details, one may check, e.g., Nualart [NN18, Chapter 3].
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Through the standard Picard iteration scheme, the solution can be expressed by the fol-

lowing Wiener chaos expansion 4:

upt, xq “ 1 `

8
ÿ

k“1

θk{2Ikpfkp¨, x, tqq, (2.3.4)

where Ik : Hbk
`

pRdqk
˘

Ñ Hk is the kth order Skorohod integral and Hk is the kth Wiener

chaos space and the kernels fkp¨, x, tq, obtained through the iteration, are equal to

fnpx1, ..., xk;x, tq “

ż t

0

ż tn

0

¨ ¨ ¨

ż t2

0

Gpt ´ tn, x ´ xnq ¨ ¨ ¨Gpt2 ´ t1, x2 ´ x1qdt1 ¨ ¨ ¨ dtn

“

ż t

0

ż tn

0

¨ ¨ ¨

ż t2

0

Gpt1, x ´ xnq ¨ ¨ ¨Gptn ´ tn´1, x2 ´ x1qdt1 ¨ ¨ ¨ dtn.

For ease of notation, throughout this article, we may write the above integrals as

fnpx1, ..., xn;x, tq “

ż

r0,tsnă

Gpt ´ tn, x ´ xnq ¨ ¨ ¨Gpt2 ´ t1, x2 ´ x1qdt⃗

“

ż

r0,tsnă

Gpt1, x ´ xnq ¨ ¨ ¨Gptn ´ tn´1, x2 ´ x1qdt⃗,

where r0, tsnă :“ tpt1, ¨ ¨ ¨ , tnq P r0, tsn : t1 ă ¨ ¨ ¨ ă tnu. As usual, we use rfnp¨, x, tq to denote

the symmetrization of fnp¨, x, tq:

rfnp¨;x, tq “
1

n!

ÿ

ρPΣn

fn
`

xρp1q, ¨ ¨ ¨ , xρpnq

˘

“
1

n!

ÿ

ρPΣn

ż

r0,tsnă

G
`

t ´ tn, x ´ xρpnq

˘

¨ ¨ ¨G
`

t2 ´ t1, xρp2q ´ xρp1q

˘

dt⃗,

where Σn is the set of all permutations of t1, ¨ ¨ ¨ , nu. By setting tn`1 “ t, the Fourier transform

of the kernels, fn, is given by

Ffnp¨;x, tqpξ1, ..., ξnq “ e´ip
řn

j“1 ξjq¨x

ż

r0,tsnă

n
ź

k“1

FGptk`1 ´ tk, ¨q

˜

k
ÿ

j“1

ξj

¸

dt⃗. (2.3.5)

4Wiener chaos expansion has been widely to solve the linear stochastic partial differential equations. We direct
interested readers to [BS17, Section 5] for a presentation of this procedure.
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Recall the notation above in (2.1.2) that Gpt, xq “ Ga,b,r,dpt, xq. The following scaling

properties for both FGpt, ¨qpξq and
›

›

›

rfnp¨, x, tq
›

›

›

Hbn
play an important role in this work.

Lemma 2.3.2. For any c, t ą 0, n ě 1, ξ, ξ1, ¨ ¨ ¨ , ξn P Rd, the following scaling properties

hold:

FGpt, ¨qpcξq “ c´a
b

pb`r´1qFG
`

c
a
b t, ¨

˘

pξq and FGpct, ¨qpξq “ cb`r´1FGpt, ¨qpcb{aξq,

(2.3.6)

F rfnp¨, 0, ctqpξ1, ¨ ¨ ¨ , ξnq “ cnpb`rqF rfnp¨, 0, tqpcb{aξ1, ¨ ¨ ¨ , cb{aξnq, (2.3.7)
›

›

›

rfnp¨, 0, tq
›

›

›

2

Hbn
“ tr2pb`rq´bα{asn

›

›

›

rfnp¨, 0, 1q

›

›

›

2

Hbn
. (2.3.8)

Proof. The scaling properties in (2.3.6) are direct consequences of the explicit expression of

FGpt, ¨qpξq as in [CHN19, (4.8)]. Property (2.3.7) is an easy exercise of change of variables

on (2.3.5). Property (2.3.8) is a direct consequence of (2.3.6), (2.3.7), and the scaling property

of the spectral measure µ. We leave the details for the interested readers.

Finally, let us recall the following standard result about the existence and uniqueness of

the solution to (2.1.1) (or (2.3.2)) when it can be written as the Wiener chaos expansion (2.3.4).

Theorem 2.3.3. Fix any T P p0,8s. Suppose that fnp¨, x, tq P Hbn for any t P p0, T q, x P Rd

and n ě 1. Then (2.1.1) (or (2.3.2)) has a unique L2pΩq-solution on p0, T q ˆ Rd if and only

if the series (2.3.4) converges in L2pΩq for any pt, xq P p0, T q ˆ Rd, which is equivalent to the

convergence of the series (2.3.9). In this case, the solution is given by (2.3.4) with the second

moment given by

E
`

upt, xq
2
˘

“
ÿ

ně0

θnn!
›

›

›

rfnp¨, x, tq
›

›

›

2

Hbn
for all pt, xq P p0, T q ˆ Rd. (2.3.9)
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2.3.2 Some asymptotics and variational constants

Recall that the correlation function γ satisfies Assumption 2.1.3 and that the corresponding

spectral measure is µ; see Remark 2.1.4. Define

ρν,apγq “ sup
}f}

L2pRdq
“1

ż

Rd

«

ż

Rd

fpx ` yqfpyq
a

1 ` ν
2
|x ` y|a

a

1 ` ν
2
|y|a

dy

ff2

µpdxq (2.3.10)

and

Ma,dpγ, θq :“ sup
gPFa

$

’

&

’

%

¨

˝

ĳ

R2d

g2pxqg2pyqγpx ` yqdxdy

˛

‚

1{2

´
θ

2
Eapg, gq

,

/

.

/

-

“ sup
gPFa

"

@

g2 ˚ g2, γ
D1{2

L2pRdq
´
θ

2
Eapg, gq

*

,

(2.3.11)

where

Eapg, gq :“ p2πq
´d

ż

Rd

|ξ|
a
|Fgpξq|

2dξ and (2.3.12)

Fa :“
!

f P L2
pRd

q : }f}L2pRdq
“ 1, Eapf, fq ă 8

)

. (2.3.13)

We often omit the dimension d in Ma,d when it is clear from context. We use the convention

that Mapfq :“ Mapf, 1q to be consistent with notation (2.1.10). By a similar argument as the

proof of [BCC22, Lemma 2.3], one can show that

MapΘγ, θq “ Θ
a

2a´α θ´ α
2a´αMapγ, 1q, for all θ and Θ ą 0. (2.3.14)

For the Riesz kernel case (see Example 2.1.5), Bass, Chen and Rosen [BCR09] established

that when a P p0, 2s, ν “ 2 and α ă mint2a, du,

lim
nÑ8

1

n
log

»

–

1

pn!q2

ż

pRdqn

˜

ÿ

σPΣn

n
ź

k“1

1

1 ` |
řn
j“k ξσpjq|

a

¸2

µpdξ⃗ q

fi

fl “ log
`

ρ2,a
`

| ¨ |
´α
˘˘

,

(2.3.15)
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and 5

ρ2,a
`

| ¨ |
´α
˘

“ M2´pα{aq
a

`

| ¨ |
´α, 2

˘

, (2.3.16)

where

µpdξ⃗ q “

n
ź

j“1

µpdξjq “

n
ź

j“1

φpξjqdξj. (2.3.17)

We first apply some scaling arguments to accommodate the parameter ν in both (2.3.15) and

(2.3.16), the proof of which can be found in Appendix:

Lemma 2.3.4 (The Riesz kernel case). If γpxq “ |x|´α for some α P p0, dq, then for any ν ą 0

and a P p0, 2s,

ρν,a
`

| ¨ |
´α
˘

“

´ν

2

¯´α{a

M2´pα{aq
a

`

| ¨ |
´α, 2

˘

“ ν´α{aM2´pα{aq
a p| ¨ |

´α
q, (2.3.18)

and

lim
nÑ8

1

n
log

»

–

1

pn!q2

ż

pRdqn

˜

ÿ

σPΣn

n
ź

k“1

1

1 ` ν
2
|
řn
j“k ξσpjq|

a

¸2

µpdξ⃗ q

fi

fl “ log
`

ρν,a
`

| ¨ |
´α
˘˘

.

(2.3.19)

More generally we have the following theorem:

Theorem 2.3.5. Suppose that the correlation function γ satisfies Assumption 2.1.3 and is such

that α ă mint2a, du. Then both (2.3.18) and (2.3.19) hold with | ¨ |´α and µ replaced by γ and

µ as in (2.1.5), respectively. More precisely, it holds that

ρν,apγq “ ν´α{aM2´pα{aq
a pγq ă 8, (2.3.20)

and

lim
nÑ8

1

n
log

»

–

1

pn!q2

ż

pRdqn

˜

ÿ

σPΣn

n
ź

k“1

1

1 ` ν
2
|
řn
j“k ξσpjq|

a

¸2

µpdξ⃗ q

fi

fl “ log pρν,a pγqq . (2.3.21)

5In Theorem 1.5 or eq. (1.20) of Bass et al [BCR09], the factor p2πq´d should not be present.
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Remark 2.3.6. It is often very difficult to obtain the exact value for the variational constant

Ma,dpγq. To the best of our knowledge, only in case of a “ 2 and α “ d “ 1 (white noise),

one can compute explicitly that

M2,1pδ0q “ p3{4qp1{6q
1{3, (2.3.22)

which is a consequence of Chen and Li [CL04, Lemma .2] with p “ 2. When d ě 2, the value

of M2,dpδ0q can be expressed using the best constant for the classical Gagliardo-Nirenberg

inequality; see Remark 3.13 of Chen et al [Che+21] for more details.

Sketch of the proof of Theorem 2.3.5. The proof of this theorem follows essentially the identi-

cal proof as Bass et al [BCR09], which is exclusively for the Riesz kernel. One simplification

is that we only need to handle the case p “ 2 thanks to the hypercontractivity property. For our

slight extension to the noise given in Assumption 2.1.3, there is no need to repeat their paper.

Instead we will only point out the differences and necessary changes. For your convenience,

the correspondence of parameters between Bass et al [BCR09] and the current chapter is listed

in the following Table 2.1.

Table 2.1: Notation correspondence.

Laplace Noise Moment Variational Const.
Bass et al [BCR09] β 2 σ | ¨ |´σ φd´σ p Λσ

Current chapter a ν α γp¨q φ 2 Ma p| ¨ |´α, 2q

Theorem 2.3.5 is proven by showing the following claims: for γ given in Assumption

2.1.3,

(i) ρν,apγq ă 8;

(ii) lim infnÑ8
1
n
log

„

1
pn!q2

ş

pRdqn

´

ř

σPΣn

śn
k“1

1
1` ν

2
|
řn

j“k ξσpjq|a

¯2

µpdξ⃗ q

ȷ

ě log pρν,a pγqq;

(iii) lim supnÑ8
1
n
log

„

1
pn!q2

ş

pRdqn

´

ř

σPΣn

śn
k“1

1
1` ν

2
|
řn

j“k ξσpjq|a

¯2

µpdξ⃗ q

ȷ

ď log pρν,a pγqq;

(iv) Mapγq ă 8;

(v) ρν,apγq “ ν´α{aM2´pα{aq
a pγq.
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Part (i) which corresponds to Lemma 1.6 (ibid.) is established by Lemma 2.3.7 below.

Following exactly the same arguments as those in Section 3 (ibid.) with φd´σ (ibid.)

replaced by our φ as in (2.1.5), one can prove part (ii) for ν “ 2. Then an application of the

scaling property as the proof of Lemma 2.3.4 shows the general case ν ą 0.

The proof of the upper bound, namely part (iii), is more challenging. This part corresponds

to Sections 5 and 6 (ibid.). By examining these two sections carefully, we need to make some

changes in Section 5 (ibid.), where as the arguments in Section 6 (ibid.) follow unchanged. For

Section 5 (ibid.), we need to use the following decomposition of φ as opposed to (5.4) (ibid.):

φpξq “

k
ź

i“1

Cαi,di |ξpiq|
´pdi´αiq “

k
ź

i“1

Cαi,dipPi ˚ Piq
`

ξpiq

˘

,

with

Pi
`

ξpiq

˘

“ βdi´αi,di

ˇ

ˇξpiq

ˇ

ˇ

´pdi´αi{2q
;

see (2.1.7) for the constants. Or equivalently,

φpξq “ pP ˚ Pq pξq with Ppξq :“
k
ź

i“1

a

Cαi,di βdi´αi,di

ˇ

ˇξpiq

ˇ

ˇ

´pdi´αi{2q
.

Now (5.5) (ibid.) should be written as

Pβ,ϵpξq “ ĥpϵξq

k
ź

i“1

a

Cαi,di βdi´αi,di

β `
ˇ

ˇξpiq

ˇ

ˇ

´pdi´αi{2q
, for all β, ϵ ě 0,

where hp¨q is defined in (5.2) (ibid.). So Ppξq “ P0,0pξq and

pPβ,ϵ ˚ Pβ,ϵq pξq ď pPβ,0 ˚ Pβ,0q pξq ď pP0,0 ˚ P0,0q pξq “ φpξq;

see (5.6) (ibid.). With these changes, one can update accordingly the proof of Lemma 5.1 (ibid.)

without any difficulty. Then the rest of Section 5 (ibid.) follows unchanged. In this way, we
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establish part (iii) for ν “ 2. Finally, a scaling argument as in part (ii) proves part (iii) for all

ν ą 0.

Parts (iv) and (v) correspond to Section 7 (ibid.). In particular, part (iv) corresponds to

Lemma 7.1 (ibid.). Note that we only need to study the case p “ 2. By (2.3.24) with φpx ´ yq

replaced by γpx ´ yq, we see that

ż

pRdq2

g2pxqg2p´yqγpx ´ yqdxdy ď C
›

›g̃2
›

›

L2d{p2d´αqpRdq

›

›g2
›

›

L2d{p2d´αqpRdq

“ C }g}
4
L4d{p2d´αqpRdq

,

(2.3.23)

where g̃2pxq “ gp´xq. Note that we must have α ă 2a to ensure that the right hand side of the

above is finite. This is seen by applying h “ γ in Lemma 2.3.7. Thus equation (7.1) (ibid.) can

be applied in our setting . The rest of the proof of Lemma 7.1 (ibid.) remains unchanged.

It remains to update the proof of Theorem 1.5 in Section 7 (ibid.). For this, one needs only

to update the four appearances of 1{p| ¨ |σq in (7.15), (7.22) and (7.23) (ibid.) to γp¨q. Note that

the factor p2πq´dpp`1q in the first equation of (7.22) (ibid.) should be p2πq´dp. With this, we

complete the sketch proof of Theorem 2.3.5.

Note that the proof of [BCR09, Lemma 1.6] relies on inequality (1.27) on p. 630 (ibid.),

which was a consequence of Sobolev’s inequality. For the more general noises studied in this

chapter, we can no longer apply this inequality. Instead, we prove the following lemma using

the weak Young’s inequality (see, e.g., [LL97, p.107]) as a generalization of Lemma 1.6 (ibid.).

Even though we only need the case p “ 2, the following lemma is proven for all p ě 2.

Lemma 2.3.7. For any f, g, h with h ě 0, for φ given as in (2.1.5) (see also Assumption 2.1.3),

and for all p ě 2, it holds that

˜

ż

Rd

«

ż

Rd

|fpx ` yqgpyq|
a

hpx ` yq
a

hpyq
dy

ffp

φpxqdx

¸1{p

ď C }f}L2pRdq
}g}L2pRdq

›

›h´1
›

›

Lpd{αpRdq
.

Proof. By observing the proof of Lemma 1.6 of [BCR09], we only need to prove that

ż

Rd

ż

Rd

F pyqGpxqφ px ´ yq dydx ď C }F }L2d{pd`αqpRdq
}G}L2d{pd`αqpRdq

, (2.3.24)
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where

F pxq “
|fpxq|

phpxqqp{2
and Gpxq “

|gpxq|

phpxqqp{2
.

Note that when φpxq “ C|x|´pd´αq, (2.3.24) is nothing but (1.27) (ibid.). Here we need to

handle more general φ as given in (2.1.5). To prove (2.3.24), we need to apply the weak version

of Young’s inequality (see, e.g., [LL97, eq. (7) on p. 107]), which says that for all p, q, r ą 1

with 1{p ` 1{q ` 1{r “ 2, it holds that

ˇ

ˇ

ˇ

ˇ

ż

Rd

ż

Rd

apxqbpx ´ yqcpyqdxdy

ˇ

ˇ

ˇ

ˇ

ď Kp,q,r,d }a}LppRdq
}b}q,w }c}LrpRdq

, (2.3.25)

where

}b}q,w :“ sup
A

|A|
´1{q1

ż

A

|bpxq|dx, with 1{q ` 1{pq1
q “ 1,

and A is an arbitrary Borel set of finite measure |A| ă 8. Now we apply (2.3.25) with

a “ F, c “ G, b “ φ, p “ r “ 2d{pd ` αq, and q “
d

d ´
řd
j“1 αj

“ d{pd ´ αq.

By (2.3.25) above, it suffices to prove that }φ}q,w is finite with q “ d{pd ´ αq and 1{q1 “

1 ´ 1{q “ α{d.

Recall that according to Assumption 2.1.3, the d coordinates are partitioned into k groups.

Define AR :“ A1 ˆ ¨ ¨ ¨ ˆAk where Ai “ BR,dip0q is the ball in Rdi centered at the origin with

radius R. With this we have that

ż

Ai

|xpiq|
´pdi´αiqdxpiq “ |Sdi´1

|
Rαi

αi
, (2.3.26)

where we have used polar coordinated to calculate the integral and
ˇ

ˇSdi´1
ˇ

ˇ “ 2πdi{2{Γpdi{2q is

the surface area of the unit sphere in Rdi (clearly, when di “ 1, |S0| “ 2). Moreover, by the

40



formula for the volume of balls in Rdi , we see that

|Ai| “
πdi{2

Γ
`

1 `
di
2

˘Rdi “ |Sdi´1
|
Rdi

di
. (2.3.27)

Recall that 1{q1 “ α{d. Then a combination of (2.3.26), (2.3.27) and (2.1.5) shows that

|AR|
´1{q1

ż

AR

φpxqdx “

k
ź

i“1

Cαi,di |Ai|
´1{q1

ż

Ai

|xpiq|
´pdi´αiqdxpiq

“

k
ź

i“1

Cαi,diα
´1
i |Sdi´1

|
1´α{dRαi´

di
d
αd

α{d
i

“

k
ź

i“1

Cαi,diα
´1
i |Sdi´1

|
1´α{dd

α{d
i “: K,

where the constants Cαi,di are defined in (2.1.7) and the final constant K does not depend on

R. Finally, by symmetry of φ, we have that

}φ}q,w “ sup
Rą0

|AR|
´1{q1

ż

AR

φpxqdx “ K ă 8. (2.3.28)

Hence, φ P Lq,wpRdq with q “ d{pd ´ αq. This completes the proof of Lemma 2.3.7.

Remark 2.3.8. Note that when there is only one partition (i.e., k “ 1), or equivalently when γ

itself is the Riesz kernel, by [LL97, (6) on p. 107], we see that

›

›| ¨ |
´pd´αq

›

›

d
d´α

,w
“ α´1

|Sd´1
|
1´α{ddα{d,

which is consistent with the norm we find in (2.3.28) up to a constant Cα,d.

In order to compare our results with known results (see, e.g., Example 2.2.9), let us intro-

duce another commonly used variational constant

Ea,dpγ, θq :“ sup
gPFa

$

&

%

ĳ

R2d

g2pxqg2pyqγpx ` yqdxdy ´
θ

2
Eapg, gq

,

.

-

“ sup
gPFa

"

@

g2 ˚ g2, γ
D

L2pRdq
´
θ

2
Eapg, gq

*

.

(2.3.29)
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By using the same techniques used to derive (2.3.14), one can show that for any Θ ą 0 and

θ ą 0 that

Ea,dpΘγ, θq “ Θ
a

a´α θ´ α
a´αEa,dpγ, 1q. (2.3.30)

The relation between Ea,dpγ, θq and Ma,dpγ, θq can be established in a similar way as [Che+15,

Lemma A.2], which is stated in the following lemma:

Lemma 2.3.9. Under Assumption 2.1.3 and assuming α ă minta, du, the following three

expressions hold:

Ea,dpΘγ, θq “ Θ
a

a´α θ´ α
a´α

ˆ

2α

a

˙α{pa´αq
a ´ α

a
σpa, d, αq

a{pa´αq, (2.3.31)

Ma,dpΘγ, θq “ Θ
a

2a´α θ´ α
2a´α

´α

a

¯α{p2a´αq 2a ´ α

2a
σpa, d, αq

a{p2a´αq, (2.3.32)

Ea,dpΘγ, θq “

´a ´ α

a

¯

2α{pa´αq

ˆ

2a ´ α

2a

˙´p2a´αq{pa´αq

Ma,dpΘγ, θq
2a´α
a´α (2.3.33)

where σpa, d, αq is defined in the following Lemma.

We need to prove two lemmas in order to prove Lemma 2.3.9.

Lemma 2.3.10. Under Assumption 2.1.3, for any f P L2pRdq with Eapf, fq ă 8, it holds that

ż

Rd

f 2
pxqγpxqdx ď C }f}

2´p2α{aq

2 Eapf, fq
α{a, (2.3.34)

where the constant C only depends on a, d and α with α ă minta, du. Denote the best constant

in (2.3.34) by σpa, d, αq.

Proof. The proof of this result follows the scheme laid out in the proof of [Che12, Lemma

A.3]. By the same techniques presented above in Lemma 2.3.5, one can show the following

quantity is finite:

Λ :“ sup
hPFa

"
ż

Rd

h2pxqγpxqdx ´
1

2
p2πq

´d

ż

Rd

|x|
a
|Fhpxq|

2dx

*

“ sup
hPFa

"
ż

Rd

h2pxqγpxqdx ´
1

2
Eaph, hq

*

ă 8.
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Fix an arbitrary f P Fa. Clearly, }f}2 “ 1 and Eapf, fq ă 8. Let Cf be the constant such that

ż

Rd

f 2
pxqγpxqdx “ CfEapf, fq

α{a.

Now for gpxq :“ td{2fptxq, it is easy to see that }g}2 “ 1 and

Eapg, gq “ taEapf, fq and
ż

Rd

g2pxqγpxqdx “ tα
ż

Rd

f 2
pxqγpxqdx.

From this we can deduce that

ż

Rd

g2pxqγpxqdx “ CfEapg, gq
α{a.

Next we note that

Λ ě

ż

Rd

g2pxqγpxqdx ´
1

2
Eapg, gq

“ tα
ż

Rd

f 2
pxqγpxqdx ´

1

2
taEapf, fq

“ Cf t
αEapf, fq

α{a
´

1

2
taEapf, fq

“ Cf
`

tEapf, fq
1{a

˘α
´

1

2

`

tEapf, fq
1{a

˘a
.

Since t ą 0, then tEapf, fq1{a runs through all of R` and thus we have that

Λ ě sup
xą0

"

Cfx
α

´
1

2
xa
*

“
a ´ α

a
C
a{pa´αq

f

ˆ

2α

a

˙α{pa´αq

.

Note that this reduces to the equation present in the proof of Lemma A.3 [Che12] when a “ 2.

By taking the sup over all f P Fa we see that

8 ą Λ ě
a ´ α

a
σpa, d, αq

a{pa´αq

ˆ

2α

a

˙α{pa´αq

.
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where

sup
fPFa

Cf “ σpa, d, αq

and finally we conclude that for any f P Fa

ż

Rd

f 2
pxqγpxqdx ď σpa, d, αqEapf, fq

α{a
ă 8. (2.3.35)

For arbitrary f P L2pR2q with Eapf, fq ă 8 we apply (2.3.35) to f{ }f}2 and see that

ż

Rd

f 2
pxqγpxqdx ď σpa, d, αq }f}

2´p2α{aq

2 Eapf, fq
α{a

which again reduces to the equation A.4 [Che12] when a “ 2.

Lemma 2.3.11. For any f P Fa and for α ă minta, du we have

ż

R2d

γpx ` yqf 2
pxqf 2

pyqdxdy ď σpa, d, αqEapf, fq
α{a (2.3.36)

and σpa, d, αq is the sharpest such constant.

Proof. Suppose that f P L2pRdq and suppose that Eapf, fq ă 8 and let y P Rd be arbitrary.

Recall the translation property of the Fourier transform

|Ffp¨qpξq| “ |Ffp¨ ´ yqpξq|.

Then by applying a change of variables and recalling (2.3.34) we see that

ż

Rd

f 2
pxqγpx ` yqdx “

ż

Rd

f 2
px ´ yqγpxqdx

ď σpa, d, αq }fp¨ ´ yq}
2´p2α{aq

2 Ea
`

fp¨ ´ yq, fp¨ ´ yq
˘α{a

“ σpa, d, αq }f}
2´p2α{aq

2 Ea
`

f, f
˘α{a

,
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and in return,

sup
yPRd

ż

Rd

f 2
pxqγpx ` yq ď σpa, d, αq }f}

2´p2α{aq

2 Eapf, fq
α{a.

Next, notice that

ż

R2d

f 2
pxqf 2

pyqγpx ` yqdxdy “

ż

Rd

dxf 2
pxq

ż

Rd

dyf 2
pyqγpx ` yq

ď σpa, d, αq }f}
4´p2α{aq

2 Eapf, fq
α{a

and when f P Fa, and thus }f}2 “ 1, we see that this reduces to

ż

R2d

γpx ` yqf 2
pxqf 2

pyqdxdy ď σpa, d, αqEapf, fq
α{a.

We note that the sharpness of σpa, d, αq follows immediately from Lemma 2.3.10. In addition,

this reduces to equation (A.1) [Che+15] for the time independent case when a “ 2.

Proof of Lemma 2.3.9. We only prove the case of Θ “ θ “ 1, the general case can be proven

by applying the scaling properties (2.3.14) and (2.3.30).

We have that

Ea,dpγ, 1q ď sup
gPFa

"

σpa, d, αqEapg, gq
α{a

´
1

2
pEapg, gq

1{a
q
a

*

ď sup
xą0

"

σpa, d, αqxα ´
1

2
xa
*

“

ˆ

2α

a

˙α{pa´αq
a ´ α

a
σpa, d, αq

a{pa´αq (2.3.37)

and similarly

Ma,dpγ, 1q ď sup
xą0

"

σpa, d, αq
1{2xα{2

´
1

2
xa
*

“

´α

a

¯α{p2a´αq 2a ´ α

2a
σpa, d, αq

a{p2a´αq. (2.3.38)
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Recalling Lemma 2.3.11 above, one can choose 0 ă ϵ ă σpa, d, αq and f P Fa such that

ż

R2d

γpx ` yqf 2
pxqf 2

pyqdxdy ě pσpa, d, αq ´ ϵqEapf, fq
α{a.

Now define

gpxq “ td{2fptxq.

Notice that

Ea,dpγ, 1q ě

ż

R2d

g2pxqg2pyqγpx ´ yqdxdy ´
1

2
Eapg, gq

“ tα
ż

R2d

γpx ´ yqf 2
pxqf 2

pyq ´
1

2
taEapf, fq

ě pσpa, d, αq ´ ϵqtαEapf, fq
α{a

´
1

2
taEapf, fq

and this is true for all t ą 0 so we can say that

Ea,dpγ, 1q ě sup
xą0

"

pσpa, d, αq ´ ϵqxα ´
1

2
xa
*

“

ˆ

2α

a

˙α{pa´αq
a ´ α

a
pσpa, d, αq ´ ϵqa{pa´αq

and be letting ϵ Ñ 0 gives us

Ea,dpγ, 1q ě

ˆ

2α

a

˙α{pa´αq
a ´ α

a
σpa, d, αq

a{pa´αq (2.3.39)

and if we combine this with (2.3.37) then we see that

Ea,dpγ, 1q “

ˆ

2α

a

˙α{pa´αq
a ´ α

a
σpa, d, αq

a{pa´αq. (2.3.40)

Similarly we show that

Ma,dpγ, 1q “

´α

a

¯α{p2a´αq 2a ´ α

2a
σpa, d, αq

a{p2a´αq. (2.3.41)
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Lastly, by combining (2.3.40) and (2.3.41), we see that

Ea,dpγ, 1q “

´a ´ α

a

¯

p2q
α{pa´αq

ˆ

2a ´ α

2a

˙´p2a´αq{pa´αq

Ma,dpγ, 1q
p2a´αq{pa´αq. (2.3.42)

Equations (2.3.41), (2.3.40) and (2.3.42) recover equations (A.2), (A.3) and (A.4) of [Che+15]

respectively when a “ 2.

2.4 Existence and uniqueness of the solution

In this section, we will prove part (1) of Theorem 2.1.6. The proof will need the following

lemma:

Lemma 2.4.1 (Lemma 3.5 of [BCC22]). If H : r0,8q Ñ r0,8q is a non-decreasing function,

then

2

ż 8

0

e´2tH2
ptqdt ď

ˆ
ż 8

0

e´tHptqdt

˙2

. (2.4.1)

The proof of Theorem 2.1.6 follows the same strategy as [BCC22, Section 3] with minor

changes such as

1

1 ` |ξ|2
replaced by

1

1 ` ν
2
|ξ|a

. (2.4.2)

Nevertheless, for completeness, here we streamline and reorganize this proof as follows.

Proof of Theorem 2.1.6. We first introduce some notation. Let Lpxq be the Laplace transform

of Gp¨, xq evaluated at one and calculate its Fourier transform FLpξq as follows:

Lpxq “

ż 8

0

e´tGpt, xqdt and FLpξq “

ż 8

0

e´tFGpt, ¨qpξqdt “
1

1 ` ν
2
|ξ|a

; (2.4.3)

see the proof of Theorem 4.1 of [CHN19] for the last equality. Similarly, let Lnpy⃗q to be the

Laplace transform of rfnpy⃗, 0, ¨q evaluated at one, namely,

Lnpy⃗q :“ n!

ż 8

0

e´t
rfnpy⃗; 0, tqdt
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“
ÿ

σPΣn

ż 8

0

e´t

ż

r0,tsnă

n
ź

k“1

Gpsk ´ sk´1, yσpkq ´ yσpk´1qqds⃗dt

with the convention that s0 “ 0 and yσp0q “ 0. By the relation of convolution and the Laplace

transform (or through a change of variables), we see that

Lnpy⃗q “
ÿ

σPΣn

L
`

yσp1q

˘

L
`

yσp2q ´ yσp1q

˘

¨ ¨ ¨L
`

yσpnq ´ yσpn´1q

˘

. (2.4.4)

Hence, from (2.4.3),

FLnpξ⃗q “
ÿ

σPΣn

n
ź

k“1

1

1 ` ν
2

ˇ

ˇ

ˇ

řn
j“k ξσpjq

ˇ

ˇ

ˇ

a . (2.4.5)

Moreover, define

Hnpt, x⃗q “ n!

ż

pRdqn

n
ź

k“1

Kpxk ´ ykq rfnpy⃗; 0, tqdy⃗

“
ÿ

σPΣn

ż

r0,tsnă

ż

pRdqn

n
ź

k“1

Kpxk ´ ykq

n
ź

k“1

Gpsk ´ sk´1, yσpkq ´ yσpk´1qqdy⃗ds⃗, (2.4.6)

where recall that K is defined in (2.1.6). Under the nonnegativity assumption — Assumption

2.1.1, we see that for any x⃗ P Rnd fixed, the function t Ñ Hn pt, x⃗q is a non-decreasing function

for t ě 0. For this function, we are about to apply Lemma 2.4.1.

Step 1. We first compute the corresponding part to the right-hand side of (2.4.1). By Fubini’s

theorem,

ż 8

0

e´tHnpt, x⃗qdt

“
ÿ

σPΣn

ż 8

0

e´t

ż

r0,tsnă

ż

pRdqn

n
ź

k“1

Kpxk ´ ykq

n
ź

k“1

Gpsk ´ sk´1, yσpkq ´ yσpk´1qqdy⃗ds⃗dt

“

ż

Rdn

n
ź

k“1

Kpxk ´ ykqLn py⃗q dy⃗.

Then an application of the Plancherel’s theorem and the fact that K ˚ K “ γ shows that

ż

pRdqn

„
ż 8

0

e´tHnpt, x⃗qdt

ȷ2

dx⃗ “

ż

pRdqn

|FLnpξ⃗q|
2µpdξ⃗ q. (2.4.7)
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One may check the proof of Lemma 3.3 of [BCC22] for more details.

Step 2. Now we compute the corresponding part to the left-hand side of (2.4.1). First, using

the fact that K ˚ K “ γ, we see that

›

›

›

rfnp¨, 0; tq
›

›

›

2

Hbn
“

1

pn!q2

ż

pRdqn

H2
npt, x⃗qdx⃗; (2.4.8)

one may check the proof of Lemma 3.4 of [BCC22] for more details. By the scaling property

for F rfn in (2.3.7), one can show that

ż 8

0

e´t
›

›

›

rfnp¨, 0, tq
›

›

›

2

Hbn
dt “

2np2pb`rq´bα{aq

pn!q2

ż 8

0

2e´2t

ż

Rnd

Hnpt, x⃗q
2dx⃗dt; (2.4.9)

see Appendix for the proof.

Step 3. Now we can apply Fubini’s theorem and Lemma 2.4.1 to the function t Ñ Hnpt, x⃗q to

see that

ż 8

0

2e´2t

ż

Rnd

Hnpt, x⃗q
2dx⃗dt ď

ż

Rnd

„
ż 8

0

e´tHnpt, x⃗qdt

ȷ2

dx⃗. (2.4.10)

Therefore, combining (2.4.7), (2.4.8), and (2.4.10) shows that

ż 8

0

e´t
›

›

›

rfnp¨, 0, tq
›

›

›

2

Hbn
dt ď

2np2pb`rq´bα{aq

pn!q2

ż

pRdqn

|FLnpξ⃗q|
2µpdξ⃗ q

“:
2np2pb`rq´bα{aq

pn!q2
Tnpν, aq,

(2.4.11)

where

Tnpν, aq “

ż

pRdqn

»

–

ÿ

σPΣn

n
ź

k“1

1

1 ` ν
2

ˇ

ˇ

ˇ

řn
j“k ξσpjq

ˇ

ˇ

ˇ

a

fi

fl

2

µpdξ⃗ q. (2.4.12)

By the same arguments as those of Lemma 3.6 of [BCC22] with the replacement (2.4.2), we

see that

Tnpν, aq ď pn!q2Cn
µ pν, aq with Cµpν, aq :“

ż

pRdq

ˆ

1

1 ` ν
2
|ξ|a

˙2

µpdξq. (2.4.13)
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Notice that

ż

pRdq

ˆ

1

1 ` |ξ|a

˙2

µpdξq “ C

ż 8

0

ρα´1

p1 ` ρaq2
dρ ă 8 ðñ 2a ´ α ` 1 ą 1. (2.4.14)

Therefore, conditions in (2.1.11) imply that Cµpν, aq ă 8. Combining (2.4.11) and (2.4.13)

gives that

ż 8

0

e´t
›

›

›

rfnp¨, 0; tq
›

›

›

2

Hbn
dt ď 2nr2pb`rq´ bα

a sCn
µ pν, aq ă `8. (2.4.15)

Step 4. From the scaling property (2.3.8) we see that

ż 8

0

e´t
›

›

›

rfn p¨, 0, tq
›

›

›

2

Hbn
dt “

›

›

›

rfnp¨, 0, 1q

›

›

›

2

Hbn

ż 8

0

e´ttr2pb`rq´ bα
a sndt

“

›

›

›

rfnp¨, 0, 1q

›

›

›

2

Hbn
Γ

ˆ„

2pb ` rq ´
bα

a

ȷ

n ` 1

˙

, (2.4.16)

which entails another part of the conditions in (2.1.11):

2pb ` rq ´
bα

a
ą 0. (2.4.17)

From (2.4.15) and (2.4.16), we deduce that

›

›

›

rfnp¨, 0, 1q

›

›

›

2

Hbn
“

1

Γ
`“

2pb ` rq ´ bα
a

‰

n ` 1
˘

ż 8

0

e´t
›

›

›

rfnp¨, 0, tq
›

›

›

2

Hbn
dt

ď

´

2r2pb`rq´ bα
a sCµpν, aq

¯n

Γ
`“

2pb ` rq ´ bα
a

‰

n ` 1
˘ ď Cn

´

2r2pb`rq´ bα
a sCµpν, aq

¯n

pn!q2pb`rq´bα{a
,

where the constant C depends only on the value of 2pb ` rq ´ bα{a and the last inequality is

due to Stirling’s formula (see (2.5.2) below).

Because of the constant one initial condition, }upt, xq}2 “ }upt, 0q}2 for all x P Rd and

t ą 0. Therefore, by (2.3.9), (2.3.8), and the above inequality,

}upt, xq}
2
2 “

ÿ

ně0

θnn! tr2pb`rq´bα{asn
›

›

›

rfnp¨, 0, 1q

›

›

›

2

Hbn

50



ď
ÿ

ně0

θnCntr2pb`rq´bα{asn

´

2r2pb`rq´ bα
a sCµpν, aq

¯n

pn!q2pb`rq´1´bα{a
, (2.4.18)

which is finite provided that (see (2.1.11))

2pb ` rq ´ 1 ´ bα{a ą 0. (2.4.19)

Finally, an application of the Minkowski inequality and the hypercontractivity (see [BCC22,

Theorem B.1] or [Lê16] for the case of the SHE) shows that for all p ě 2,

}upt, xq}p ď
ÿ

ně0

θn{2
pp ´ 1q

n{2
?
n!
›

›

›

rfnp¨, 0, tq
›

›

›

Hbn

ď
ÿ

ně0

θn{2Cn{2
pp ´ 1q

n{2tr2pb`rq´bα{asn{2

´

2r2pb`rq´ bα
a sCµpν, aq

¯n{2

pn!q
1
2

r2pb`rq´1´bα{as
ă 8. (2.4.20)

Therefore, under condition (2.1.11), (2.1.1) has an unique LppΩq-solution upt, xq for all p ě 2,

t ą 0 and x P Rd. This proves part (1) of Theorem 2.1.6.

Step 5. The proof of part (2) of Theorem 2.1.6 will be postponed to part (ii) of Lemma 2.5.1

below.

2.5 Upper bound of the asymptotics

In this section, we will give the proof of part 2 of Theorem 2.1.6 and establish the upper bound

of (2.1.14) (under Assumptions 2.1.1 and 2.1.3, and condition (2.1.11)), namely,

lim sup
tpÑ8

t´βp log }upt, xq}p ď

ˆ

1

2

˙ˆ

2a

2apb ` rq ´ bα

˙β

ˆ

´

θν´α{aM
2a´α

a
a

¯

a
2apb`rq´bα´a

ˆ

2pb ` rq ´
bα

a
´ 1

˙

.

(2.5.1)

As for the upper bound, we will first establish the corresponding result for p “ 2 in Lemma

2.5.2 and then apply the hypercontractivity property given by Theorem B.1 in [BCC22] to

obtain the general case for p ě 2. To prove the next lemma, we will need the following
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equality

lim
nÑ8

1

n
log

ˆ

Γpan ` 1q

pn!qa

˙

“ a logpaq, for all a ą 0, (2.5.2)

which is a direct consequence of Stirling’s formula.

Lemma 2.5.1. Assume Assumptions 2.1.1 and 2.1.3 hold and in addition that α ă mint2a, du.

Let ρ be the constant defined in (2.3.10). Then the following identities hold true:

lim
nÑ8

1

n
log

ˆ

›

›

›

rfnp¨, 0, 1q

›

›

›

2

Hbn
Γ

ˆ„

2pb ` rq ´
bα

a

ȷ

n ` 1

˙˙

“ log
´

22pb`rq´ bα
a ρ

¯

and

(2.5.3)

lim
nÑ8

1

n
log

ˆ

pn!q2pb`rq´ bα
a

›

›

›

rfnp¨, 0, 1q

›

›

›

2

Hbn

˙

“ log

¨

˝

˜

2

2pb ` rq ´ bα
a

¸2pb`rq´ bα
a

˛

‚` log ρ.

(2.5.4)

Proof. The proof follows the same arguments as those of [BCC22, Lemma 4.3]. Nevertheless,

we sketch the proof here for completeness. Recall the definition of Tnpν, aq defined in (2.4.12).

From (2.3.21), we see that

lim
nÑ8

1

n
log

„

Tnpν, aq

pn!q2

ȷ

“ log pρν,aq . (2.5.5)

As a consequence of (2.4.11) and (2.4.16) in the proof of Theorem 2.1.6, we see that

›

›

›

rfnp¨, 0, 1q

›

›

›

2

Hbn
Γ

ˆ„

2pb ` rq ´
bα

a

ȷ

n ` 1

˙

ď
2nr2pb`rq´ bα

a s

pn!q2
Tnpν, aq.

Combining this and (2.3.21) we see that

lim sup
nÑ8

1

n
log

„

›

›

›

rfnp¨, 0, 1q

›

›

›

2

Hbn
Γ

ˆ„

2pb ` rq ´
bα

a

ȷ

n ` 1

˙ȷ

ď log
´

2r2pb`rq´ bα
a s
¯

` lim
nÑ8

1

n
log

ˆ

Tnpν, aq

pn!q2

˙
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“ log
´

2r2pb`rq´ bα
a s
¯

` logpρν,aq,

which proves the upper bound for (2.5.3).

Now we prove the lower bound for (2.5.3). Let τ and rτ be independent exponential random

variables with mean one. In the following, we will compute ErJnpτ, rτqs in two ways, where

Jnpt, t1q :“

ż

Rnd

Hnpt, xqHnpt1, xqdx, t, t1 ą 0;

see (4.2.6) for the definition of the function Hn. Notice that using the above notation, (2.4.8)

can be rewritten as

›

›

›

rfnp¨, 0; tq
›

›

›

2

Hbn
“

1

pn!q2

ż

pRdqn

Hnpt, x⃗q
2dx⃗ “

1

pn!q2
Jnpt, tq.

On the one hand, the Cauchy-Schwartz inequality implies that

Jnpt, t1q ď Jnpt, tq1{2Jnpt1, t1q1{2
“ tr2pb`rq´bα{asn{2

pt1qr2pb`rq´bα{asn{2Jnp1, 1q.

where we have used the scaling property of Jnpt, tq inherited from that of
›

›

›

rfnp¨, 0; tq
›

›

›

Hbn
as in

(2.3.8). Hence,

ErJnpτ, rτqs ď E
“

τ r2pb`rq´bα{asn{2
‰

E
“

rτ r2pb`rq´bα{asn{2
‰

Jnp1, 1q

“ Γ

ˆ

r2pb ` rq ´ bα{asn

2
` 1

˙2

pn!q2
›

›

›

rfnp¨, 0; 1q

›

›

›

2

Hbn
.

On the other hand, by (2.4.7) and (2.4.12), we see that

ErJnpτ, rτqs “

ż 8

0

ż 8

0

e´te´rtJnpt,rtqdtdrt “

ż

Rdn

„
ż 8

0

e´tHnpt, xqdt

ȷ2

dx “ Tn pν, aq .

Therefore,

Tnpν, aq

pn!q2
ď Γ

ˆ

r2pb ` rq ´ bα{asn

2
` 1

˙2
›

›

›

rfnp¨, 0; 1q

›

›

›

2

Hbn
. (2.5.6)
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Now, an application of Stirling’s formula as in (2.5.2) to see that, as n Ñ 8,

Γ

ˆ

r2pb ` rq ´ bα{asn

2
` 1

˙2

„ Γ pr2pb ` rq ´ bα{asn ` 1q 2´r2pb`rq´bα{asnCn, (2.5.7)

where Cn “ 2´1r2pb`rq´bα{as1{2p2πnq1{2. Then an application of (2.5.5), (2.5.6) and (2.5.7)

proves the lower bound of (2.5.3). Lastly, (2.5.4) follows from (2.5.3) and the limit (2.5.2). This

proves Lemma 2.5.1.

Now we are ready to prove part (2) of Theorem 2.1.6.

Proof of part (2) of Theorem 2.1.6. The critical case happens when the exponent of n! in (2.4.20)

vanishes, namely,

α “
a

b
r2pb ` rq ´ 1s .

Among the three inequalities in (2.1.11), we also need to make sure that the minimum is

achieved by a
b

r2pb ` rq ´ 1s, for which, we need to additionally require a
b

r2pb ` rq ´ 1s ď d

and

a

b
r2pb ` rq ´ 1s ă 2a ðñ r P r0, 1{2q.

The reason for having a strict inequality above is our need to apply (2.5.4) and Theorem 2.3.5

later on in this proof. Putting these conditions together gives the conditions stated in (2.1.12).

We start by proving part (2-i). Let uλ for λ ą 0 be the solution of the SPDE (2.1.1) with

θ replaced with λ and u “ uθ. By the hypercontractivity property (see [BCC22, Lemma B.1]),

we have that

}upt, xq}p ď
›

›upp´1qθpt, xq
›

›

2
, for all p ě 2, t ą 0 and x P Rd. (2.5.8)
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Now by recalling Theorem 2.3.3 and by applying α “ a
b

r2pb ` rq ´ 1s and the scaling property

(2.3.8), we see that

›

›upp´1qθpt, xq
›

›

2

2
“

ÿ

ně0

rθpp ´ 1qs
n n!

›

›

›
f̃np¨, 0; tq

›

›

›

2

Hbn

“
ÿ

ně0

rtθpp ´ 1qs
n n!

›

›

›
f̃np¨, 0; 1q

›

›

›

2

Hbn

“:
ÿ

ně0

rtθpp ´ 1qs
nRn,

with Rn “ n!
›

›

›
f̃np¨, 0; 1q

›

›

›

2

Hbn
. By the Cauchy-Hadamard theorem, this series converges for

θtpp ´ 1q ă lim supnÑ8 |Rn|´1{n. However, by (2.5.4) and Theorem 2.3.5, we see that

lim
nÑ8

1

n
logp|Rn|q “ log p2ρq “ log

`

2ν´α{aMp2a´αq{a
a

˘

.

Therefore, lim supnÑ8 |Rn|´1{n “ p2ν´α{aMp2a´αq{a
a q´1 and }upt, xq}p converges for

t ă
1

2θpp ´ 1qν´α{aMp2a´αq{a
a

“: Tp ; see (2.1.13).

To show part (2-ii), we use the Cauchy-Hadamard theorem and the same techniques above

to see that the radius of convergence of the series

}upt, xq}
2
2 “

ÿ

ně0

θnn!
›

›

›
f̃np¨, 0; tq

›

›

›

2

Hbn
,

is precisely T2. This completes the proof of part (2) of Theorem 2.1.6.

Lemma 2.5.2. Assume Assumptions 2.1.1 and 2.1.3 hold. Let ρ be the constant defined in

(2.3.10). Under condition (2.1.11), we have that

lim
tÑ8

1

tβ
logEp|upt, xq|

2
q “

ˆ

2a

2apb ` rq ´ bα

˙β

pθρq
a

2apb`rq´bα´a

ˆ

2pb ` rq ´
bα

a
´ 1

˙

.
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Proof. By part (1) of Theorem 2.1.6, there is an L2pΩq solution upt, xq. By the scaling property

(2.3.8),

Ep|upt, xq|
2
q “

ÿ

ně0

θnpn!q
›

›

›

rfnp¨, 0, tq
›

›

›

2

Hbn
“

ÿ

ně0

θnpn!qtp2pb`rq´bα{aqn
›

›

›

rfnp¨, 0, 1q

›

›

›

2

Hbn

“
ÿ

ně0

znRnt
p2pb`rq´bα{aqn

where

Rn “ pn!q2pb`rq´bα{a
›

›

›

rfnp¨, 0, 1q

›

›

›

2

Hbn
and zn “

θn

pn!q2pb`rq´pbα{aq´1
.

Notice that (2.5.4) above says that

1

n
logpRnq Ñ log

¨

˝

˜

2

2pb ` rq ´ bα
a

¸2pb`rq´ bα
a

ρ

˛

‚ as n Ñ 8.

Now define R to be

R “

˜

2

2pb ` rq ´ bα
a

¸2pb`rq´ bα
a

ρ.

We want to find a β and A so that

lim
tÑ8

1

tβ
log

ÿ

ně0

znR
n
`

tp2pb`rq´bα{aq
˘n

“ A.

Indeed, by the following limit (see [BCC22, Lemma A.3]),

lim
tÑ8

t´1{γ log
ÿ

ně0

pn!q´γtn “ γ, for all γ ą 0,

we see that

lim
tÑ8

„

1

pθRqt2pb`rq´bα{a

ȷ
1

2pb`rq´pbα{aq´1

log
ÿ

ně0

“

pθRqt2pb`rq´bα{a
‰n

pn!q2pb`rq´pbα{aq´1
“ 2pb ` rq ´ pbα{aq ´ 1,
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which, by an easy algebraic manipulation, is equivalent to

lim
tÑ8

„

1

t2pb`rq´bα{a

ȷ
1

2pb`rq´pbα{aq´1

log
ÿ

ně0

“

pθRqt2pb`rq´bα{a
‰n

pn!q2pb`rq´pbα{aq´1

“ r2pb ` rq ´ pbα{aq ´ 1spθRq
1

2pb`rq´pbα{aq´1 .

Hence,

β “
2apb ` rq ´ bα

2apb ` rq ´ pbαq ´ a
and A “ r2pb ` rq ´ pbα{aq ´ 1spθRq

a
2apb`rq´bα´a .

Finally, an application of [BCC22, Lemma A.2] shows that

lim
tÑ8

1

tβ
logEp|upt, xq|

2
q

“ θ
a

2apb`rq´bα´a

ˆ

2a

2apb ` rq ´ bα

˙β

ρ
a

2apb`rq´bα´a

ˆ

2pb ` rq ´
bα

a
´ 1

˙

,

which proves Lemma 2.5.2.

Now we are ready to prove (2.5.1).

Proof of (2.5.1). By the hypercontractivity (2.5.8) and the scaling property (2.3.8), we see that

for all p ě 2,

}upt, 0q}
2
p ď

›

›upp´1qθpt, 0q
›

›

2

2
“

ÿ

ně0

pn!qnθnpp ´ 1q
n
›

›

›

rfnp¨, 0, tq
›

›

›

2

Hbn

“
ÿ

ně0

pn!qnθn
›

›

›

rfn

´

¨, 0, tpp ´ 1q
1

2pb`rq´bα{a

¯
›

›

›

2

Hbn

“

›

›

›
u
´

tpp ´ 1q
1

2pb`rq´bα{a , 0
¯
›

›

›

2

2
.

Hence,

}upt, 0q}p ď

›

›

›
u
´

tpp ´ 1q
1

2pb`rq´bα{a , 0
¯›

›

›

2
“: }uptp, 0q}2 , (2.5.9)

where tp is defined in (2.1.15). Finally, an application of Lemma 2.5.2 proves (2.5.1).
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2.6 Lower bound of the asymptotics

In this section, we will prove the lower bound of (2.1.14), namely,

lim inf
tpÑ8

t´βp log }upt, xq}p ě

ˆ

1

2

˙ˆ

2a

2apb ` rq ´ bα

˙β

ˆ

´

θν´α{aM
2a´α

a
a

¯

a
2apb`rq´bα´a

ˆ

2pb ` rq ´
bα

a
´ 1

˙

.

(2.6.1)

Through out this section, we assume that Assumptions 2.1.1 and 2.1.3, and condition (2.1.11)

hold.

We start by defining the function Wnpt, ϕq on p0,8q ˆ L2
Cpµq by

Wnpt, ϕq :“

ż

r0,tsnă

ż

pRdqn

n
ź

k“1

ϕpξkq
ź

k“1

FGpsk ´ sk´1, ¨qpξk ` ¨ ¨ ¨ ` ξnqµpdξ1q ¨ ¨ ¨µpdξnqds.

(2.6.2)

with s0 “ 0. We now give conditions under which Wn is well defined.

Lemma 2.6.1. If the measure µ satisfies the relation in (2.4.13), then Wnpt, ϕq is well defined

and for any d ě 1, t ą 0 and ϕ P L2
Cpµq. Moreover,

ż 8

0

e´tWnpt, ϕqdt “

ż

pRdqn

n
ź

k“1

ϕpξkq

n
ź

k“1

1

1 ` ν
2
|ξk ` ¨ ¨ ¨ ` ξn|a

µpdξq ¨ ¨ ¨µpdξnq. (2.6.3)

Proof. The proof follows the exact arguments as those in the proof of Lemma 6.2 of [BCC22]

except that one needs to use the following Laplace transform:

ż 8

0

e´tFGpt, ¨qpξq dt “
1

1 ` ν
2
|ξ|a

;

see the second equation in (2.4.3).

The next proposition is a restatement of Proposition 6.3 of [BCC22]. The proof follows

the same proof as that of Proposition 6.3 of [BCC22]. We will not repeat it here.
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Proposition 2.6.2. For f P H, t ą 0, and p, q ą 1 with p´1 ` q´1 “ 1, it holds that

}upt, 0q}p ě exp

"

´
1

2
pq ´ 1q }f}

2
H

*

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ně0

θn{2Wnpt,Ffq

ˇ

ˇ

ˇ

ˇ

ˇ

(2.6.4)

and as a consequence, the series
ˇ

ˇ

ř

ně0 θ
n{2Wnpt,Ffq

ˇ

ˇ converges provided that }upt, 0q}p ă

8, which is the case under Theorem 2.1.6.

Now we are going to apply a scaling argument to (2.6.4) in order to put t and p together,

from which we can determine the constants tp and β defined in (2.1.15).

Proposition 2.6.3. For p, q ą 1, p´1 ` q´1 “ 1 and for any f P H,

}upt, 0q}p ě exp

"

´
1

2
tβp }f}

2
H

*

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ně0

θn{2Wn

`

tβp ,Ff
˘

ˇ

ˇ

ˇ

ˇ

ˇ

, (2.6.5)

where the constants β and tp are defined in (2.1.15).

Proof. From Proposition 2.6.2, we see that for any f P H, the inequality (2.6.4) holds. For

some constants V,W ą 0, which will be determined in this proof, let fτ pxq :“ τV fpτWxq be

a scaled version of f . It is clear that fτ P H. By some elementary scaling arguments (see the

proof of the Lemma 6.4 of [BCC22]), one can show that

}fτ}
2
H “ τ 2pV ´dW q`Wα

}f}
2
H and (2.6.6)

Wn pt,Ffτ q “ τnrV ´Wppd´αq`a
b

pb`rqqsWn

`

tτ
a
b
W ,Ff

˘

. (2.6.7)

Hence, an application of Proposition 2.6.2 to fτ shows that

}upt, 0q}p ě exp

"

´
1

2
pq ´ 1q }fτ}

2
H

*

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ně0

θn{2Wnpt,Ffτ q

ˇ

ˇ

ˇ

ˇ

ˇ

“ exp

"

´
1

2
pq ´ 1qτ 2pV ´dW q`Wα

}f}
2
H

*

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ně0

θn{2τnrV ´Wppd´αq`a
b

pb`rqqsWn

`

tτ
a
b
W ,Ff

˘

ˇ

ˇ

ˇ

ˇ

ˇ

.
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Comparing the above lower bound with that in (2.6.5), we obtain the following two relations

with three unknowns W , V and τ :

V ´ W
´

pd ´ αq `
a

b
pb ` rq

¯

“ 0, (2.6.8)

pp ´ 1q
´1τ 2pV ´dW q`Wα

“ tτ
a
b
W . (2.6.9)

Since (2.6.9) should hold for all t ą 0 and p ě 2, one can choose τ “ pp ´ 1qt to reduce the

relation (2.6.9) to

τ 2pV ´dW q`Wα
“ τ

a
b
W`1,

which then gives the following equation

2pV ´ dW q ` Wα “ 1 `
a

b
W. (2.6.10)

Now solve the linear equations (2.6.8) and (2.6.10) for W and V to see that

$

’

’

’

&

’

’

’

%

W “
b

a
pβ ´ 1q ,

V “

´a

b
pb ` rq ´ α ` d

¯ b

a
pβ ´ 1q,

with β :“
2pb ` rq ´

bα

a

2pb ` rq ´
bα

a
´ 1

.

Therefore, the scaling fτ and tβp should be

fτ pxq “ τpa
b

pb`rq´α`dq b
a

pβ´1qf
´

τ
b
a

pβ´1qx
¯

and tβp :“ tτ
a
b
W

“ pp ´ 1q
β´1tβ,

respectively. This completes the proof of Proposition 2.6.3.

To remove the absolute value sign in Proposition 2.6.3, we want to identify all the f P H

for which Wnpt,Ffq is nonnegative. In fact, if we consider the space

H` “ tf P H : f is nonnegative and nonnegative definiteu ,
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then by Plancherel’s theorem, for f P H`,

Wnpt,Ffq “

ż

r0,tsnă

ż

Rnd

n
ź

k“1

pf ˚ γqpxkq
ź

k“1

Gpsk ´ sk´1, xk ´ xk´1qdx⃗ds⃗ “: Unpt, fq ě 0

with the convention that s0 “ 0 and x0 “ 0, where we have used the fact that the fundamental

solution Gpt, xq is nonnegative (under Assumption 2.1.1). Now define

Wnptq :“ sup
fPH, }f}H“1

Wnpt,Fpfqq and Unptq :“ sup
fPH`,}f}H“1

Unpt, fq.

It is clear that Wnptq ě Unptq ě 0.

Proposition 2.6.4. If τ is an exponential random variable with mean one, then

lim inf
nÑ8

1

n
logEpUnpτqq ě logpρ1{2

q,

where ρ is the constant defined in (2.3.10).

Proof. We start by letting τ be an exponential random variable with mean one. With this,

E pUnpτqq “

ż 8

0

e´tUnptqdt ě sup
fPH`, }f}H“1

ż 8

0

e´tUnpt, fqdt.

For any f P H` with }f}H “ 1, by Bochner’s theorem, Ff is nonnegative and nonnegative

definite, which further implies that Ff is even. In addition, Lemma 2.6.1 gives us that

ż 8

0

e´tUnpt, fqdt “

ż 8

0

e´tWnpt,Ffqdt

“

ż

Rdn

n
ź

k“1

Ffpξkq

n
ź

k“1

1

1 ` ν
2
|ξk ` ¨ ¨ ¨ ` ξn|a

µpdξ1q ¨ ¨ ¨µpdξnq.

Notice that the right hand side of the above equation takes the form as [BCR09, Equation (3.3)].

By the same arguments that follow in the proof of Theorem 2.3 ibid with the replacement

(2.4.2), we have that

lim inf
nÑ8

1

n
log

ż

Rdn

n
ź

k“1

pFfqpξkq

n
ź

k“1

1

1 ` ν
2
|ξk ` ¨ ¨ ¨ ` ξn|a

µpdξ1q ¨ ¨ ¨µpdξnq ě log ρpFfq,
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where ρp¨q (check (2.3.10) for a comparison) is defined as,

ρpgq :“ sup
}h}

L2pRdq
“1

ż

Rd

gpξq

«

ż

Rd

hpξ ` ηqhpηq
a

1 ` ν
2
|ξ ` η|a

a

1 ` ν
2
|η|a

dη

ff

µpdξq, (2.6.11)

for all nonnegative and nonnegative-definite functions g P L2 pµpdξqq. Before we proceed, we

first make a few comments:

(1) g P L2 pµ pdξqq if and only if F´1g P H. Moreover, }g}L2pµq
“ }F´1g}H.

(2) For g P L2 pµ pdξqq, g is nonnegative definite if and only if F´1g P H`.

(3) For g P L2 pµ pdξqq, g is nonnegative if and only if F´1g is nonnegative definite.

(4) Finding the best nonnegative and nonnegative-definite function g with }g}L2pµq
“ 1 to

maximize ρpgq is equivalent to finding the best nonnegative and nonnegative-definite f P H`

with }f}H “ 1 to maximize ρ pFfq.

(5) ρpgq is well defined (i.e., finite) because for any h P L2pRdq with }h}L2pRdq
“ 1,

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rd

gpξq

«

ż

Rd

hpξ ` ηqhpηq
a

1 ` ν
2
|ξ ` η|a

a

1 ` ν
2
|η|a

dη

ff

µpdξq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ
ż

Rd

gpξq
2µpdξq

˙1{2

¨

˝

ż

Rd

«

ż

Rd

hpξ ` ηqhpηq
a

1 ` ν
2
|ξ ` η|a

a

1 ` ν
2
|η|a

dη

ff2

µpdξq

˛

‚

1{2

ď }Fg}H
?
ρν,a ă 8,

where the upper bound does not depends on h, and ρν,a is the constant defined in (2.3.10) which

is finite due to Theorem 2.3.5 (see (2.3.20)).

Note that since both µ and g are nonnegative in (2.6.11), the supremum in (2.6.11) has to

be achieved by some nonnegative function h. Hence, we may assume h is also nonnegative for

the remainder of this proof. With this being said, we see that for any f P H` with }f}H “ 1,

lim inf
nÑ8

1

n
logEpUnpτqq ě log ρpFfq.
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We now need to calculate

sup
fPH`, }f}H“1

ρ pFfq .

Consider a nonnegative function h P L2pRdq. The function hp¨q{
a

1 ` ν
2
| ¨ |a P L2pRdq so that

ghpxq :“ p2πqd{2F´1

ˆ

hp¨q?
1` ν

2
|¨|a

˙

pxq is well defined. Under these conditions, gh P W 1,apRdq

with

}gh}W 1,apRdq
“

1

p2πqd

ż

Rd

p1 ` |ξ|
a
q|Fghpξq|

2dξ “

ż

Rd

1 ` |ξ|a

1 ` ν
2
|ξ|a

|hpξq|
2dξ ď Cν }h}

2
L2pRdq

ă 8.

Notice that

ż

Rd

hpξ ` ηqhpηq
a

1 ` ν
2
|ξ ` η|a

a

1 ` ν
2
|η|a

dη “ p2πq
´d

ż

Rd

Fghpξ ´ ηqFghp´ηqdη

“ p2πq
´d

pFgh ˚ ĄFghqpξq,

where we have used the notation that rhpxq “ hp´xq. Since hp¨q is real valued, we see that

ĄFgh “ F ḡh “ F ḡh. Using this and the fact that Fpfgq “ p2πq´dFpfq ˚ Fpgq, we see

that p2πq´dpFgh ˚ ĄFghqpξq “ F r|gh|2s pξq. Hence, from (2.3.20), we see that Fgh ˚ ĄFgh P

L2 pµpdξqq or equivalently |gh|2 P H. Then,

ρpFfq “ sup
}h}

L2pRdq
“1

p2πq
´d

ż

Rd

FfpξqpFgh ˚ ĄFghqpξqµpdξq

“ sup
}h}

L2pRdq
“1

ż

Rd

FfpξqFr|gh|
2
spξqµpdξq

“ sup
}h}

L2pRdq
“1

xf, |gh|
2
yH.

With this we see that

sup
fPH,}f}H“1

ρpFfq “ sup
fPH,}f}H“1

sup
}h}L2“1

xf, |gh|
2
yH “ sup

}h}L2“1

x|gh|
2, |gh|

2
y
1{2
H (2.6.12)
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where the optimal f is chosen to be |gh|2{ }|gh|2}H. Now we claim that

|gh|
2

P H`, (2.6.13)

which implies that the supremum in (2.6.12) can be restricted to H` and

sup
fPH, }f}H“1

ρpFfq “ sup
fPH`, }f}H“1

ρpFfq “ sup
}h}L2“1

@

|gh|
2, |gh|

2
D1{2

H .

Then notice that

Fp|gh|
2
qpξq “ p2πq

´d
pFgh ˚ ĄFghqpξq “

ż

Rd

hpξ ` ηqhpηq
a

1 ` ν
2
|ξ ` η|a

a

1 ` ν
2
|η|a

dη. (2.6.14)

Hence, from (2.3.10) and (2.6.14), we see that

sup
}h}

L2pRdq
“1

@

|gh|
2, |gh|

2
D

H “ sup
}h}

L2pRdq
“1

ż

Rd

ˇ

ˇFp|gh|
2
qpξq

ˇ

ˇ

2
µpdξq “ ρν,a

which then leads us to the lower bound:

lim inf
nÑ8

1

n
logEpUnpτqq ě log

`

ρ1{2
ν,a

˘

.

Therefore, it remains to proving (2.6.13). First notice that from the above we see that

ż

Rd

ˇ

ˇF
`

|gh|
2
˘

pξq
ˇ

ˇ

2
µpdξq ď ρν,a ă 8 ùñ |ghp¨q|

2
P H.

Moreover, since h is nonnegative, from (2.6.14), we see that F p|gh|2q p¨q is also nonnegative.

The Bochner-Schwarz theorem then implies that |ghp¨q|2 is nonnegative definite. It is clear that

|ghp¨q|2 is nonnegative. This shows that |ghp¨q|2 P H`. This completes the whole proof of

Proposition 2.6.4.
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Lemma 2.6.5. It holds that

lim inf
nÑ8

1

n
log

”

pn!q
b
a

pa´α
2

`a
b
rqUnp1q

ı

ě log

¨

˝

ρ
1{2
ν,a

`

b
a
ra ´ α

2
` a

b
rs
˘

b
a

pa´α
2

`a
b
rq

˛

‚. (2.6.15)

Proof. Let τ be an exponential random variable with mean one. Notice that by some elemen-

tary scaling arguments, we have that for all t ą 0,

Wnptq “ tn
b
apa´α

2
`a

b
rqWnp1q and Unptq “ tn

b
apa´α

2
`a

b
rqUnp1q, (2.6.16)

which then imply that

E rUnpτqs “ E
´

τn
b
a

pa´α
2

`a
b
rq
¯

Unp1q “ Γ

ˆ

n
b

a

´

a ´
α

2
`
a

b
r
¯

` 1

˙

Unp1q.

Then by Proposition 2.6.4,

lim inf
nÑ8

1

n
log

„

Γ

ˆ

n
b

a

´

a ´
α

2
`
a

b
r
¯

` 1

˙

Unp1q

ȷ

ě log
`

ρ1{2
ν,a

˘

. (2.6.17)

Therefore, (2.6.15) is proven by noticing that, thanks to (2.5.2),

lim inf
nÑ8

1

n
log

˜

Γ
`

n b
a

`

a ´ α
2

` a
b
r
˘

` 1
˘

pn!q
b
apa´α

2
`a

b
rq

¸

“
b

a

´

a ´
α

2
`
a

b
r
¯

log

ˆ

b

a

´

a ´
α

2
`
a

b
r
¯

˙

,

where the condition b
a

`

a ´ α
2

` a
b
r
˘

ą 0 is guaranteed by (2.4.19) (or (2.1.11)).

We need one last lemma before the proof of the lower bound:

Lemma 2.6.6. For any k, θ ą 0, there exists a constant c1 “ c1pα,M, k, θq ą 0 such that, by

setting nt “ rc1ts, it holds that

lim inf
tÑ8

1

t
logpkntθnt{2Untptqq ě

´

k
?
θ
¯

2a
2ab´αb`2ar `

ρ1{2
ν,a

˘

2a
2ab´αb`2ar . (2.6.18)
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Proof. Fix an arbitrary ϵ ą 0. Lemma 2.6.5 guarantees the existence of an Nϵ ą 0 so for all

n ą Nϵ

pn!q
b
apa´α

2
`a

b
rqUnp1q ě exp pnplogpRq ´ ϵqq “ Rne´nϵ (2.6.19)

where

R “ ρ1{2
ν,a

ˆ

b

a

”

a ´
α

2
`
a

b
r
ı

˙´ b
apa´α

2
`a

b
rq

.

Now fix a c ą 0 and let nt :“ rcts. Notice that nt ě Nϵ for any t ą tϵ :“ pNϵ ` 1q{c. For

t ą tϵ, from (2.6.19), we have

kntθnt{2Untptq “ kntθnt{2t
b
apa´α

2
`a

b
rqntUntp1q ě

kntθnt{2t
b
apa´α

2
`a

b
rqnt

pnt!q
b
apa´α

2
`a

b
rq

Rnte´ntϵ. (2.6.20)

Notice that rcts{t Ñ c as t Ñ 8 which means that nt{t Ñ c as t Ñ 8. With this we can say

lim inf
tÑ8

1

t
log

`

kntθnt{2Untptq
˘

“ c lim inf
tÑ8

1

nt
log

`

kntθnt{2Untptq
˘

“: Ipntq.

Now, by (2.6.20), we have that

Ipntq ě c lim inf
tÑ8

1

nt
log

˜

pkR
?
θq
nt

t
b
apa´α

2
`a

b
rqnt

pnt!q
b
apa´α

2
`a

b
rq

¸

´ cϵ

“ c logpk
?
θRq ` c lim inf

tÑ8

1

nt
log

»

–

ˆ

t

nt

˙
b
apa´α

2
`a

b
rqnt n

b
apa´α

2
`a

b
rqnt

t

pnt!q
b
apa´α

2
`a

b
rq

fi

fl ´ cϵ

“ c logpk
?
θRq ´ c

b

a

´

a ´
α

2
`
a

b
r
¯

logpcq ` c
b

a

´

a ´
α

2
`
a

b
r
¯

lim inf
tÑ8

1

nt
log

ˆ

nnt
t

pntq!

˙

´ cϵ

“ c logpk
?
θRq ´ c

b

a

´

a ´
α

2
`
a

b
r
¯

logpcq ` c
b

a

´

a ´
α

2
`
a

b
r
¯

´ cϵ

and letting ϵ tend to 0 we see that

Ipntq ě c

„

logpk
?
θRq ´

b

a

´

a ´
α

2
`
a

b
r
¯

logpcq `
b

a

´

a ´
α

2
`
a

b
r
¯

ȷ

“: hpcq.
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In order to maximize hpcq, notice that

h1
pcq “ 0 ðñ c˚

“ pk
?
θRq

a

bpa´ α
2 ` a

b
rq .

After plugging c˚ and replacing R we arrive at the following inequality

Ipntq ě pk
?
θq

a

bpa´ α
2 ` a

b
rq pρ1{2

ν,aq

a

bpa´ α
2 ` a

b
rq ,

which proves (2.6.18) after some simplification.

We are now ready to prove (2.6.1).

Proof of (2.6.1). By proposition 2.6.3, for and p, q ą 0 with p´1 ` q´1 “ 1 we have that

}upt, 0q}p ě exp

"

´
1

2
tβp }f}

2
H

*

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ně0

θn{2Wnptβp ,Ffq

ˇ

ˇ

ˇ

ˇ

ˇ

.

We now take the supremum over all f P H` with }f}H “ k ą 0. Recall that Wnpt, ϕq “

knWnpt, ϕ{kq for ϕ P L2pµq and the non-negativity of Wnpt, ¨q on H`. Let c ą 0.

}upt, 0q}p ě exp

"

´
1

2
tβpk

2

*

sup
fPH` }f}H“k

ÿ

ně0

θn{2Wnptβp ,Ffq

“ exp

"

´
1

2
tβpk

2

*

sup
fPH` }f}H“1

ÿ

ně0

knθn{2Wnptβp ,Ffq

ě exp

"

´
1

2
tβpk

2

*

sup
fPH` }f}H“1

kntθnt{2Untpt
β
p , fq

where nt “ rctβp s. Now by choosing c as in Lemma 2.6.6 we get that

lim inf
tpÑ8

t´βp log }upt, xq}p ě lim inf
tpÑ8

˜

´1
2
tβpk

2

tβp
`

1

tβp
log

«

sup
fPH` }f}H“1

kntθnt{2Untpt
β
p , fq

ff¸

“ ´
1

2
k2 ` k

2a
2ab´αb`2ar pρθq

a
2ab´αb`2ar “: hpkq.
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By maximizing h for k ą 0, we see that h is maximized at the point

k˚
“

ˆ

2ab ´ αb ` 2ar

2aB

˙
2ab´αb`2ar

2a´2r2ab´αb`2ars

with B “ pθρq
a

2ab´αb`2ar .

Inserting k˚ into h gives us that

hpk˚
q “ Bβ

ˆ

2a

2ab ´ αb ` 2ar

˙β ˆ
2ab ´ αb ` 2ar ´ a

2a

˙

and plugging in the value for B proves (2.6.1).

2.7 Appendix

Proof of Lemma 2.3.4. In this proof, µpdxq “ φpxqdx “ Cα,d|x|´pd´αqdx. By the change of

variables x1 “ pν{2q
1{a x and y1 “ pν{2q

1{a y, we see that

ρν,a
`

| ¨ |
´α
˘

“ sup
}f}

L2pRdq
“1

ż

Rd

«

ż

Rd

fpx ` yqfpyq
a

1 ` ν
2
|x ` y|a

a

1 ` ν
2
|y|a

dy

ff2

µpdxq

“

´ν

2

¯´α{a

sup
}f}

L2pRdq
“1

ż

Rd

»

–

ż

Rd

f
´

`

ν
2

˘´1{a
px ` yq

¯

f
´

`

ν
2

˘´1{a
y
¯

a

1 ` |x ` y|a
a

1 ` |y|a

´ν

2

¯´d{a

dy

fi

fl

2

φpxqdx.

By setting f˚pxq “ pν{2q
´d{p2aq f

´

pν{2q
´1{a x

¯

, we see that

ρν,a
`

| ¨ |
´α
˘

“

´ν

2

¯´α{a

sup
}f}

L2pRdq
“1

ż

Rd

«

ż

Rd

f˚ px ` yq f˚ pyq
a

1 ` |x ` y|a
a

1 ` |y|a
dy

ff2

φpxqdx

“

´ν

2

¯´α{a

sup
}f˚}2“1

ż

Rd

«

ż

Rd

f˚ px ` yq f˚ pyq
a

1 ` |x ` y|a
a

1 ` |y|a
dy

ff2

φpxqdx

“

´ν

2

¯´α{a

ρ2,a
`

| ¨ |
´α
˘

,

where the second equality is due to the fact that
ş

Rd fpxq2dx “
ş

Rd f
˚pxq2dx. Then an appli-

cation of (2.3.16) proves (2.3.18).
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Similarly, for (2.3.21), by change of variables ξ1
σpjq

“ pν{2q
1{a ξσpjq, we see that

lim
nÑ8

1

n
log

»

–

1

pn!q2

ż

pRdqn

˜

ÿ

σPΣn

n
ź

k“1

1

1 ` ν
2
|
řn
j“k ξσpjq|

a

¸2

µpdξ⃗ q

fi

fl

“ lim
nÑ8

1

n
log

»

–

1

pn!q2

´ν

2

¯´nα{a
ż

pRdqn

»

–

ÿ

σPΣn

n
ź

k“1

1

1 `

ˇ

ˇ

ˇ

řn
j“k ξσpjq

ˇ

ˇ

ˇ

a

fi

fl

2

µpdξ⃗q

fi

fl

“ log

„

´ν

2

¯´α{a
ȷ

` lim
nÑ8

1

n
log

»

–

1

pn!q2

ż

pRdqn

»

–

ÿ

σPΣn

n
ź

k“1

1

1 `

ˇ

ˇ

ˇ

řn
j“k ξσpjq

ˇ

ˇ

ˇ

a

fi

fl

2

µpdξ⃗q

fi

fl

“ log

ˆ

´ν

2

¯´α{a
˙

` log
`

ρ2,a
`

| ¨ |
´α
˘˘

“ log
`

ρν,a
`

| ¨ |
´α
˘˘

,

where we have applied (2.3.15) and (2.3.18). This completes the proof of Lemma 2.3.4.

Proof of (2.4.9). Starting from (2.3.5), by the change of variables t1i “ ti{c and the scaling

property in (2.3.7), we have that

Ffnp¨, 0, ctqpξ1, ¨ ¨ ¨ , ξnq “

ż

r0,ctsnă

n
ź

k“1

FGptk`1 ´ tk, ¨q

˜

k
ÿ

j“1

ξj

¸

dt⃗

“

ż

r0,tsnă

n
ź

k“1

FG pcptk`1 ´ tkq, ¨q

˜

k
ÿ

j“1

ξj

¸

cndt⃗

“

ż

r0,tsnă

n
ź

k“1

cb`r´1FG ptk`1 ´ tk, ¨q

˜

cb{a
k
ÿ

j“1

ξj

¸

cndt⃗

where in the last line we applied (2.3.6). Now,

Ffnp¨, 0, ctqpξ1, ¨ ¨ ¨ , ξnq “

ż

r0,tsnă

n
ź

k“1

cb`r´1FG ptk`1 ´ tk, ¨q

˜

cb{a
k
ÿ

j“1

ξj

¸

cndt⃗

“ cnpb`rqFfn p¨, 0, tq
`

cb{aξ1, ¨ ¨ ¨ , cb{aξn
˘

,

from which we see that

ż 8

0

e´t
›

›

›

rfnp¨, 0, tq
›

›

›

2

Hbn
dt “

ż 8

0

e´t

ż

Rnd

ˇ

ˇ

ˇ
F rfnp¨, 0; tqpξ1, ¨ ¨ ¨ , ξnq

ˇ

ˇ

ˇ

2

µpdξ⃗ qdt
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“

ż 8

0

e´2t

ż

Rnd

ˇ

ˇ

ˇ
F rfnp¨, 0; 2tqpξ1, ¨ ¨ ¨ , ξnq

ˇ

ˇ

ˇ

2

µpdξ⃗ q 2 dt

“ 22npb`rq

ż 8

0

2e´2t

ż

Rnd

ˇ

ˇ

ˇ
F rfnp¨, 0, tqp2b{aξ1, ¨ ¨ ¨ , 2b{aξnq

ˇ

ˇ

ˇ

2

µpdξ⃗ qdt

where in the last line we have applied (2.3.7). Now,

ż 8

0

e´t
›

›

›

rfnp¨, 0, tq
›

›

›

2

Hbn
dt “ 22npb`rq

ż 8

0

2e´2t

ż

Rnd

ˇ

ˇ

ˇ
F rfnp¨, 0, tqp2b{aξ1, ¨ ¨ ¨ , 2b{aξnq

ˇ

ˇ

ˇ

2

µpdξ⃗ qdt

“ 22npb`rq

ż 8

0

2e´2t

ż

Rnd

ˇ

ˇ

ˇ
F rfnp¨, 0; tqpξ1, ¨ ¨ ¨ , ξnq

ˇ

ˇ

ˇ

2

2
´nbd

a 2
nbpd´αq

a µpdξ⃗ qdt

where the last line follows from a change of variables and recalling that µpdξ⃗ q in (2.3.17).

Lastly,

ż 8

0

e´t
›

›

›

rfnp¨, 0, tq
›

›

›

2

Hbn
dt “ 22npb`rq

ż 8

0

2e´2t

ż

Rnd

ˇ

ˇ

ˇ
F rfnp¨, 0; tqpξ1, ¨ ¨ ¨ , ξnq

ˇ

ˇ

ˇ

2

2
´nbd

a 2
nbpd´αq

a µpdξ⃗ qdt

“ 2np2pb`rq´bα{aq

ż 8

0

2e´2t

ż

Rnd

ˇ

ˇ

ˇ
F rfnp¨, 0; tqpξ1, ¨ ¨ ¨ , ξnq

ˇ

ˇ

ˇ

2

µpdξ⃗ qdt

“
2np2pb`rq´bα{aq

pn!q2

ż 8

0

2e´2t

ż

Rnd

Hnpt, x⃗q
2dx⃗dt,

which proves (2.4.9).
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Chapter 3

Global Solutions of the Interpolated Stochastic Heat and Wave Equation with a Super-linear
Diffusion Term

3.1 Introduction and main result

In this chapter, we study the interpolated stochastic heat and wave equation (ISHWE) on the

whole space Rd,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´

B
β
t ` ν

2
p´∆qα{2

¯

upt, xq “ Iγt

”

σpupt, xqq 9W pt, xq

ı

x P Rd, t ą 0

up0, ¨q “ u0pxq β P p0, 1s

up0, ¨q “ u0pxq, Btup0, ¨q “ v0pxq β P p1, 2q,

(3.1.1)

where the fractional differential operators B
β
t , p´∆qα{2 and Iγt respectively denote the Caputo

derivative, the fractional Laplacian and the Riemann-Liouville fractional integral operator.

The noise, 9W , is a centered Gaussian noise that is taken to be white in time and colored in

space. In other words, W is a 0-mean Gaussian processes on the space of Schwartz functions,

S pRd`1q, with the following covariance functional:

E pW pϕqW pψqq “

ż 8

0

ds

ż

R2d

dxdy ϕpxqψpyqδ0px ´ yq, ϕ, ψ P S pRd`1
q,

where δ0 denotes the Dirac delta distribution.
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The initial data, u0 and v0, are assumed to be Borel measurable functions which are

Bounded on Rd. The nonlinearity, σ, is locally Lipschitz in the sense that the following asymp-

totic relation holds as |x|, |z| Ñ 8:

|σpxq ´ σpzq| ď σ2|x ´ z|rln`p|x ´ z|qs
δ, (3.1.2)

where σ2, δ ą 0 and ln`pzq :“ lnpz _ eq for z ą 0. Further, this implies that as |x| Ñ 8,

|σpxq| ď σ1 ` σ2|x|rln`p|x|qs
δ, (3.1.3)

where σ1 “ σp0q.

For any T ą 0, with t P r0, T s and x P Rd, the solution to (3.1.1) is understood in the mild

sense as the solution to the following stochastic integral equation:

upt, xq “ J0pt, xq ` Ipt, xq,

where

J0pt, xq “

$

’

’

&

’

’

%

rZpt, ¨q ˚ u0spxq β P p0, 1s

rZpt, ¨q ˚ v0spxq ` rZ˚pt, ¨q ˚ u0spxq β P p1, 2q

and

Ipt, xq “

ż t

0

ż

Rd

Y pt ´ s, x ´ yqσpups, yqqW pds, dyq.

The stochastic integral above is a Walsh integral (e.g. see [Wal86]) and the fundamental

solution consists of a triple, tZ,Z˚, Y u, and each member of the triple is defined through Fox-

H functions, however, one can more compactly define them through their Fourier transforms

[CHN19, Theorem 4.1]:

FZpt, ¨qpξq “ trβs´1Eβ,rβs

`

´2´1νtβ|ξ|
α
˘

,

FZ˚
pt, ¨qpξq “ Eβ,1

`

´2´1νtβ|ξ|
α
˘

,

FY pt, ¨qpξq “ tβ`γ´1Eβ.β`γ

`

´2´1νtβ|ξ|
α
˘

,
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where we use Ffpξq “
ş

Rd expp´ix¨ξqfpxqdx to denote the Fourier transform,Ea,bpzq denotes

the two-parameter Mittag-Leffler function [Pod99]:

Ea,bpzq :“
8
ÿ

k“0

zk

Γpak ` bq
, a ą 0, b ą 0, z P C,

and Γp¨q is the standard Gamma function.

Remark 3.1.1. We mention that under the special case where α P p1, 2q, β P p0, 1s and

γ “ 1 ´ β, that Z “ Z˚ “ Y , which is easily seen from their Fourier transforms given

above. Because of these equalities, we simply let Y denote the fundamental solution under this

situation. Moreover, under this case there is a probabilistic representation for Y which is used

by the authors in [FLN19; FN17; MN15; FLO17; MN16]. Indeed, let Xt denote a symmetric

α-stable process with density ppt, xq. Let D “ tDr, r ě 0u denote a β-stable subordinator and

Et its first passage time. Then it is known that the density of the time changed processes XEt

is given by Y pt, xq and we have that

Y pt, xq “

ż 8

0

pps, xqfEtpsq ds,

where

fEtpsq “ tβ´1x´1´1{βgβ
`

tx´1{β
˘

,

where gβp¨q is the density function of D1 and is smooth on the real line with gβpxq “ 0 for

x ď 0.

The goal of this paper is to prove the existence and uniqueness of a global solution to

(3.1.1). The work is highly motivated by the recent work by Millet and Sanz-Solé [MS21]. It is

a well studied phenomena that either a super-linear drift or diffusion term may cause blow-up of

the solution. As for the stochastic heat equation, we direct the reader to [FN21; MS93; DKZ19;

BG09]. On the other hand, the only other work that we are aware of that is dedicated to proving

some non-existence results of (3.1.1) is [AMN20]. So, to the best of our knowledge, this is the

first work on proving the global existence of a solution to (3.1.1) with a super-linear diffusion
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term (see Theorem 3.1.2 below). However, as we will see, the calculations given below are

essentially identical to those performed in [MS21] which is the cause for our motivation.

Here is the main result of this chapter. The proof will be postponed until Section 3.3

below.

Theorem 3.1.2. Suppose that σ satisfies (3.1.2) and the initial data, u0 and v0, are Borel

measurable functions and satisfy for all T ą 0,

sup
pt,xqPr0,T sˆRd

|J0pt, xq| ă 8,

which is true if u0 and v0 are bounded. Then for any R ą 0 and pt, xq P r0, T s ˆ B̄Rp0q, where

B̄Rp0q denotes the closed d-dimensional ball centered around the origin, there exists a random

field solution to (3.1.1) denoted as pupt, xq : pt, xq P r0, T s ˆ B̄Rp0qq. This solution is unique

and satisfies

sup
tPr0,T s, |x|ďR

|upt, xq| ă 8, almost surely. (3.1.4)

The proof of Theorem 3.1.2 uses a standard stopping time argument along with a series of

truncations of the super-linear term, σ, in order to construct a solution of (3.1.1). Indeed, we

define for N ą 0,

σNpxq “ σpxq1t|x|ďNu ` σpNq1txąNu ` σp´Nq1txă´Nu.

Then we associate for eachN ą 0, the corresponding global solution to (3.1.1) with σ replaced

my σN as uNpt, xq, whose existence follows due to Theorem 3.2.1 below. We then define the

stopping time τN as follows:

τN :“ inf

#

t ą 0 : sup
|x|ďR

|uNpt, xq| ě N

+

^ T,

and prove that tt ă τNu Ò Ω and then show that the solution to (3.1.1) exists pathwise for

ω P Ω. We remind the reader that in the case of a globally Lipschitz diffusion term, one usually

proves that the solution exists as a limit inL2pΩq. However, the stopping-time argument applied
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here will no longer guarantee the L2pΩq existence of the solution. Moreover, because L2pΩq

existence is no longer guaranteed, the solution may no longer satisfy the standard Itô isometry.

3.2 Preliminary results for a globally Lipschitz drift term

In this section, we assume that the coefficient σ is globally Lipschitz and therefore satisfies the

following inequality:

|σpxq| ď cpσq ` Lpσq|x|, (3.2.1)

where cpσq “ |σp0q| and Lpσq is the Lipschitz constant of σ and we assume that Lpσq ą 0.

The equation (3.1.1) under the assumption that σ satisfies (3.2.1) has been studied in [CHN19]

where they establish in Theorem 4.1 ibid the existence and uniqueness of global random field

solutions. In order to do so, one needs to show Dalang’s condition:

ż t

0

ds

ż

Rd

dy|Y ps, yq|
2

ă 8, for all t ą 0, (3.2.2)

which is equivalent to (e.g. see Lemma 5.3 ibid)

d ă 2α `
α

β
mint2γ ´ 1, 0u “: Θ, (3.2.3)

which is further equivalent to

ρpdq ą 0 and d ă 2α, (3.2.4)

where

ρpxq :“ 2β ` 2γ ´ 1 ´ βx{α. (3.2.5)

We now state the existence and uniqueness result proven in [CHN19].

Theorem 3.2.1. [CHN19, Theorem 4.1] Under (3.2.2), the SPDE (3.1.1) has a unique (in the

sense of versions) random field solution tupt, xq : pt, xq P p0,8q ˆ Rdu if the initial data are

such that

pCT :“ sup
tPr0,T s, xPRd

|J0pt, xq| ă 8. (3.2.6)
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We now state a lemma proven in [CHN19] that calculates the L1pRdq and L2pRdq norms

of the fundamental solutions. The lemma will be needed below in some of our calculations.

Lemma 3.2.2. [CHN19, Theorem 4.1 and Lemma 5.5] Assume that d ă 2α, β P p0, 2q, and

γ ě 0. Then
ż

Rd

Y pt, xqdx “ tβ`γ´1 and
ż

Rd

Zpt, xqdx “ trβs´1

and
ż

Rd

Y 2
pt, xqdx “ C#t

2pβ`γ´1q´dβ{α
“ C#t

ρ´1,

for all t ą 0, where ρ “ ρpdq and

C# :“
2

Γpd{2qp4πqd{2

ż 8

0

ud´1E2
β,β`γp´uαqdu.

Moreover, when β P p1, 2q,
ż

Rd

Z˚
pt, xqdx “ 1.

Remark 3.2.3. When α “ β “ 2, γ “ 0 and d “ 1 then Lemma 3.2.2 gives us that
ş

R Y
2pt, xqdx “ t{2 which coincides with the L2pRq norm of the wave kernel.

3.2.1 Some moment bounds

In this section, we will prove some moment bounds and a continuity result for the solution

with a globally Lipschitz diffusion term. In the proof of the next proposition, we will use the

following two facts:

sup
tě0

tke´at
“ kkpeaq

´k for k ą 0 and sup
tě0

ż t

0

se´asds “ a´2 for a ą 0. (3.2.7)

Proposition 3.2.4. [MS21, Proposition 3.2] Let u0 and v0 be Borel functions satisfying }u0}8
`

}v0}8
ă 8. Suppose that d ă 2α and ρ “ ρpdq ą 0, where ρpxq is defined in (3.2.5). Then

there exists a universal constant K :“ Kpα, β, γ, dq ą 0 such that for any

a ą
`

8L2
pσqK2

˘1{ρ and p P

„

2,
aρ

4L2pσqK2

ȷ

,
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we have that

Na,ppuq ď 2T0 `
cpσq

Lpσq
, (3.2.8)

where

T0 “ T0pa, β, u0, v0q :“

$

’

’

&

’

’

%

}u0}8
β P p0, 1s

peaq´1 }v0}8
` }u0}

8
β P p1, 2q.

Moreover, for all T ą 0,

sup
pt,xqPr0,T sˆRd

Ep|upt, xq|
p
q ď exp paptq

„

2T0 `
cpσq

Lpσq

ȷp

. (3.2.9)

Proof. First we fix an a ą 0 and p P r2,8q. Using Lemma 3.2.2 we see that,

|J0pt, xq| “

$

’

’

&

’

’

%

|pZpt, ¨q ˚ u0qpxq| β P p0, 1s

|pZpt, ¨q ˚ v0qpxq ` pZ˚pt, ¨q ˚ u0qpxq| β P p1, 2q

ď

$

’

’

&

’

’

%

}u0}8
β P p0, 1s

t }v0}8
` }u0}8

β P p1, 2q.

Now using (3.2.7), we see that

Na,ppJ0q ď

$

’

’

’

&

’

’

’

%

sup
tą0, xPRd

}u0}
8
e´at β P p0, 1s

sup
tą0, xPRd

pt }v0}
8

` }u0}8
q e´at β P p1, 2q

“

$

’

’

&

’

’

%

}u0}8
β P p0, 1s

peaq´1 }v0}8
` }u0}8

β P p1, 2q

“ T0. (3.2.10)
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Now we find an upper bound for Na,ppIq. By simultaneously applying the Burkholder-

Davies-Gundy inequality and triangle inequality, we get that

}Ipt, xq}
2
p ď 4p

›

›

›

›

ż t

0

ds

ż

Rd

dy Y 2
pt ´ s, x ´ yqσ2

pups, yqq

›

›

›

›

p{2

ď 4p

ż t

0

ds

ż

Rd

dy Y 2
pt ´ s, x ´ yq

›

›σ2
pups, yqq

›

›

p{2
.

Now by applying Lemma 3.2.2 and the Lipschitz property of σ we get that

}Ipt, xq}
2
p ď 8pc2pσqC#

ż t

0

pt ´ sqρ´1ds ` 8pL2
pσqN2

a,ppuq

ż t

0

ds

ż

Rd

dy e2asY 2
pt ´ s, x ´ yq.

Now under Dalang’s condition (3.2.4), the first integral above can be calculated as

ż t

0

pt ´ sqρ´1ds “
tρ

ρ
.

By applying Lemma 3.2.2, we can calculate the second integral as

ż t

0

ds

ż

Rd

dy e2asY 2
pt ´ s, x ´ yq “ C#

ż t

0

ds e2aspt ´ sqρ´1.

Putting this together gives us that

}Ipt, xq}
2
p ď 8pc2pσqC#

tρ

ρ
` 8pL2

pσqN2
a,ppuqC#

ż t

0

ds e2aspt ´ sqρ´1.

Now by multiplying both sides by e´2at, we see that

}Ipt, xq}
2
p e

´2at
ď

8pc2pσqC#

ρ
tρe´2at

` 8pL2
pσqN2

a,ppuqC#

ż t

0

ds e´2apt´sq
pt ´ sqρ´1.
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We now do a change of variables and again recall the definition of the Gamma function to see

that

}Ipt, xq}
2
p e

´2at
ď

8pc2pσqC#

ρ
tρe´2at

` 8pL2
pσqN2

a,ppuqC#

ż 8

0

du e´2auuρ´1

“
8pc2pσqC#

ρ
tρe´2at

` 8pL2
pσqN2

a,ppuq
C#Γ pρq

p2aqρ
,

where the last line is true if Dalang’s condition (3.2.4) holds. If we now apply (3.2.7) and also

recall the subadditivity of the square root, namely
?
a ` b ď

?
a`

?
b for all a, b ě 0, then we

see that

Na,ppIq ď cpσq

d

8pC#

ρ

´ ρ

2ea

¯ρ{2

` LpσqNa,ppuq

d

8pC#Γ pρq

p2aqρ
. (3.2.11)

To simplify things, we now let

K :“ max

#

d

8C#

ρ

´ ρ

2e

¯ρ{2

,

c

8C#Γ pρq

2ρ

+

.

Then we may bound Na,ppIq by the following:

Na,ppIq ď
K

?
p

aρ{2
pcpσq ` LpσqNa,ppuqq . (3.2.12)

Now by combining (3.2.10) and (3.2.12), we see that

Na,ppuq ď T0 ` K

?
pcpσq

aρ{2
` K

?
pLpσq

aρ{2
Na,ppuq. (3.2.13)

Note that if we now restrict ourselves to the case of α “ β “ 2, d “ 1 and γ “ 0, then (3.2.11)

and (3.2.13) recover [MS21, (3.9) and (3.10)] respectively. Now choose a ą 0 such that

a ą
`

8L2
pσqK2

˘1{ρ
.
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This implies that the following interval is nonempty:

„

2,
aρ

4L2pσqK2

ȷ

.

In addition, for any p in this interval, we have that

?
pLpσqK

aρ{2
ď

1

2
and

?
p

aρ{2
ď

1

2KLpσq
.

This along with (3.2.13) implies that

Na,ppuq ď 2T0 `
cpσq

Lpσq

and this is precisely (3.2.8). Note that (3.2.9) follows immediately from (3.2.8).

We will need to recall the following result proved in [CHN19] in order to prove Proposition

3.2.6 below.

Proposition 3.2.5. [CH21, Propositions 2.1 and 2.2] Suppose that α P p0, 2s, β P p0, 2q, γ ą 0,

and (3.2.3) holds. Consider ρ “ ρpdq which is defined above in (3.2.5). Then Y pt, xq satisfies

the following:

1. Suppose that 0 ă θ ă pΘ ´ dq ^ 2 where Θ is given in (3.2.3), 0 ă t, r ď T for some

T ą 0, β ď 1 and γ ď rβs ´ β. Then there exists some C :“ Cpα, β, γ, ν, d, θ, T q such

that

ż T

0

ds

ż

Rd

dy|Y pt ´ s, x ´ yq ´ Y pr ´ s, z ´ yq|
2

ď C
`

|t ´ r|ρ ` |x ´ z|
θ
˘

.

2. If we only assume that α P p0, 2s, β P p0, 2q, γ ą 0, 0 ă t, r ď T for some T ą 0 and that

(3.2.3) holds, then for 0 ă θ ă pΘ´ dq ^ 2, there exists some C :“ Cpα, β, γ, ν, d, θ, T q

such that

ż T

0

ds

ż

Rd

dy|Y pt ´ s, x ´ yq ´ Y pr ´ s, z ´ yq|
2

ď C
`

|t ´ r|q ` |x ´ z|
θ
˘

,
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where

0 ă q ă ρ.

We now state and prove a proposition that will be used to prove the Hölder continuity of

the stochastic integral, Ipt, xq.

Proposition 3.2.6. Suppose that 0 ă θ ă pΘ´dq^2 and ρ “ ρpdq ą 0. Then for all x, z P Rd,

a ą 0, p ě 2 and for all T ą 0 with t P r0, T s, the stochastic integral, Ipt, xq, satisfies the

following:
}Ipt, xq ´ Ipr, zq}p

p|t ´ r|q ` |x ´ z|θq
1{2

ď Cpp, θ, T q
“

M1 ` M2e
aTNa,ppuq

‰

, (3.2.14)

where

M1 “
?
pcpσq and M2 “

?
pLpσq,

and q P p0, ρs (resp. q P p0, ρq) under Case 1 (resp. Case 2) of Proposition 3.2.5. Moreover, if

we consider the case when

a ą
`

8L2
pσqK2

˘1{ρ and p P

„

2,
aρ

4L2pσqK2

ȷ

,

then we have that

}Ipt, xq ´ Ipr, zq}p

p|t ´ r|q ` |x ´ z|θq
1{2

ď Cpp, θ, T q

„

M1 ` M2e
aT

ˆ

2 `
cpσq

Lpσq

˙ȷ

. (3.2.15)

Proof. We apply the Burkholder-Davies-Gundy inequality along with the triangle inequality,

as was done in the proof of Proposition 3.2.4, to see that

}Ipt, xq ´ Ipr, zq}
2
p ď 4p

›

›

›

›

ż T

0

ds

ż

Rd

dy |Y pt ´ s, x ´ yq ´ Y pr ´ s, z ´ yq|
2 σ2

pups, yqq

›

›

›

›

p{2

ď 4p

ż T

0

ds

ż

Rd

dy |Y pt ´ s, x ´ yq ´ Y pr ´ s, z ´ yq|
2
›

›σ2
pups, yqq

›

›

p{2
.

Now by applying the Lipchitz condition on σ gives us that

}Ipt, xq ´ Ipr, zq}
2
p ď 8p

ż T

0

ds

ż

Rd

dy |Y pt ´ s, x ´ yq ´ Y pr ´ s, z ´ yq|
2
´

c2pσq ` L2
pσq }ups, yq}

2
p

¯
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ď 8p

«

c2pσq

ż T

0

ds

ż

Rd

dy |Y pt ´ s, x ´ yq ´ Y pr ´ s, z ´ yq|
2

` L2
pσq

ż T

0

ds

ż

Rd

dy |Y pt ´ s, x ´ yq ´ Y pr ´ s, z ´ yq|
2 exp p2asqN2

a,ppuq

ff

ď 8p

«

c2pσq

ż T

0

ds

ż

Rd

dy |Y pt ´ s, x ´ yq ´ Y pr ´ s, z ´ yq|
2

` L2
pσq exp p2aT qN2

a,ppuq

ż T

0

ds

ż

Rd

dy |Y pt ´ s, x ´ yq ´ Y pr ´ s, z ´ yq|
2

ff

.

We now apply Proposition 3.2.5 to see that

}Ipt, xq ´ Ipr, zq}
2
p ď 8p

„

c2pσqCpθ, T q
`

|t ´ r|q ` |x ´ z|
θ
˘

` L2
pσq exp p2aT qN2

a,ppuqCpθ, T q
`

|t ´ r|q ` |x ´ z|
θ
˘

ȷ

,

where Cpθ, T q is as in Proposition 3.2.5. Now by taking the square root of both sides and

applying the identity
?
x ` y ď

?
x `

?
y, we see that

}Ipt, xq ´ Ipr, zq}p ď 2
a

2Cpθ, T qp
”

cpσq ` Lpσq exp paT qNa,ppuq

ı

`

|t ´ r|q ` |x ´ z|
θ
˘1{2

.

This proves (3.2.14). It is clear that (3.2.15) follows directly from (3.2.14) and Proposition

3.2.4.

Proposition 3.2.7. The stochastic integral, I , has a version, still denoted by I that is η1-Hölder

continuous in time and η2-Hölder continuous in space with 0 ă η1 ă q{2 and 0 ă η2 ă θ{2

where 0 ă θ ă pΘ ´ dq ^ 2 and q P p0, ρs (resp. q P p0, ρq) under Case 1 (resp. Case 2) of

Proposition 3.2.5. Moreover, if we consider the case when

a ą
`

8L2
pσqK2

˘1{ρ and p P

„

2,
aρ

4L2pσqK2

ȷ

,

where K is the constant from Proposition 3.2.4, then

E

«

sup
tPr0,T s, |x|ďR

|upt, xq|
p

ff

ď 2p´1
pCp
T ` Cpp, θ, T, Rq

„

Mp
1 ` Mp

2e
apT

ˆ

2 `
cpσq

Lpσq

˙pȷ

,
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where pCT is defined in (3.2.6).

Proof. Proposition 3.2.6 implies that

}Ipt, xq ´ Ipr, zq}p ď Cpp, θ, T q
“

M1 ` M2e
aTNa,ppuq

‰ `

|t ´ r|q ` |x ´ z|
θ
˘1{2

. (3.2.16)

By Kolmogorov’s continuity theorem, there exists a version of I , which we denote by I , that is

η1-Hölder continuous in time and η2-Hölder continuous in space with with 0 ă η1 ă q{2 and

0 ă η2 ă θ{2.

Next, note that by triangle inequality,

|upt, xq|
p

ď 2p´1
p}J0p¨, ˝q}

p
8

` |upt, xq ´ J0pt, xq|
p
q

ď 2p´1

˜

pCp
T ` sup

tPr0,T s, |x|ďR

|Ipt, xq|
p

¸

“ 2p´1

˜

pCp
T ` sup

tPr0,T s, |x|ďR

|Ipt, xq|
p

¸

,

where we recall that pCT defined in (3.2.6). Due to the continuity of I on the compact set

r0, T s ˆ B̄Rp0q, there exists a point pt0, x0q P r0, T s ˆ B̄Rp0q such that

sup
tPr0,T s, |x|ďR

|Ipt, xq|
p

“ |Ipt0, x0q|
p.

Thus, for any pt, xq P r0, T s ˆ B̄Rp0q,

|upt, xq|
p

ď 2p´1
´

pCp
T ` |Ipt0, x0q|

p
¯

,

which in return implies that

sup
tPr0,T s, |x|ďR

|upt, xq|
p

ď 2p´1
´

pCp
T ` |Ipt0, x0q|

p
¯

.
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Now by taking the expectation of both sides and applying Proposition 3.2.6 gives us

E

«

sup
tPr0,T s, |x|ďR

|upt, xq|
p

ff

ď 2p´1
pCp
T ` 2p´1Cpp, θ, T q

p
`

p2T q
q{2

` p2Rq
θ{2
˘p “M1 ` M2e

aTNa,ppuq
‰p

“ 2p´1
pCp
T ` Cpp, θ, T, Rq

“

Mp
1 ` Mp

2e
apTNa,ppuq

p
‰

.

Now if we consider

a ą
`

8L2
pσqK2

˘1{ρ and p P

„

2,
aρ

4L2pσqK2

ȷ

,

then by Proposition 3.2.4, we have that

E

«

sup
tPr0,T s, |x|ďR

|upt, xq|
p

ff

ď 2p´1
pCp
T ` Cpp, θ, T, Rq

„

Mp
1 ` Mp

2e
apT

ˆ

2 `
cpσq

Lpσq

˙pȷ

.

Remark 3.2.8. The Hölder continuity in time proven above in Proposition 3.2.7 recovers the

result proven by Foondun and Nane in [FN17, Theorem 1.9] if we restrict ourself to the case

where β P p0, 1q and γ “ 1 ´ β.

3.3 Proof of Theorem 3.1.2

Proof. We first solve a truncated version of (3.1.1). By this, we mean (3.1.1) with σ replaced

by σN where for any N ą 0,

σNpxq “ σpxq1|x|ďN ` σpNq1xąN ` σp´Nq1xă´N .

Note that since σ satisfies (3.1.2), then σN is Lipschitz continuous with Lipschitz constant

LpσNq :“ σ2 lnp2Nqδ. In other words,

|σNpxq| ď σ1 ` σ2 lnp2Nq
δ
|x|,
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where σ1 is chosen so that

sup
|x|ďN

|σpxq| ď σ1 ă 8.

Hence we can apply Theorem 3.2.1 and see that there exists an unique solution of the truncated

version of (3.1.1), which we denote by uN :“
␣

uNpt, xq : pt, xq P r0, T s ˆ Rd
(

. In addition,

Proposition 3.2.7 implies that the solution has a version, still denoted by uN , which is η1-Hölder

continuous in time and η2-Hölder continuous in space with 0 ă η1 ă q{2 and 0 ă η2 ă θ{2.

We will now apply Proposition 3.2.7 to find an upper bound on the p-norm of uN . For this,

consider

a ą
`

8L2
pσNqK2

˘1{ρ and p P

„

2,
aρ

4L2pσNqK2

ȷ

.

Then Proposition 3.2.7 implies that

E

˜

sup
tPr0,T s, |x|ďR

|uNpt, xq|
p

¸

ď 2p´1
`Cpp, θ, T, Rq

„

Mp
1 ` Mp

2pNq exppapT q

ˆ

2 `
σ1

LpσNq

˙ȷ

,

(3.3.1)

where we recall that

M1 “
?
pσ1 and M2pNq “

a

pLpσNq “
a

pσ2 lnp2Nqδ. (3.3.2)

We now use the above to prove the existence and uniqueness of (3.1.1) with superlinear σ

satisfying (3.1.2). For any T ą 0 and N ě 2 with N P N, we define the following stopping

time:

τN :“ inf

#

t ą 0 : sup
|x|ďR

|uNpt, xq| ě N

+

^ T. (3.3.3)

The uniqueness of the solution and the local property of the stochastic integral imply that on

tt ă τNu, uNpt, xq “ uN`kpt, xq for any k P N. Hence, pτNqNě2 is increasing and bounded

above by T .

We now momentarily assume that supN τN “ T , which would imply that tt ă τNu Ò Ω.

On each tt ă τNu, define pupt, xq : pt, xq P r0, T q ˆ Rdq by upt, xq “ uNpt, xq and hence
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upt, xq “ uN`kpt, xq for any k P N. This implies that on tt ă τNu

upt, xq “ J0pt, xq `

ż t

0

ds

ż

Rd

dy Y pt ´ s, x ´ yqσNpups, yqqW pds, dyq.

However, on tt ă τNu, we have that σNpuNpt, xqq “ σpupt, xqq and so u satisfies

upt, xq “ J0pt, xq `

ż t

0

ds

ż

Rd

dy Y pt ´ s, x ´ yqσpups, yqqW pds, dyq, tt ă τNu.

Lastly, since tt ă τNu Ò Ω, we conclude that

upt, xq “ J0pt, xq `

ż t

0

ds

ż

Rd

dy Y pt´ s, x´ yqσpups, yqqW pds, dyq, pt, xq P r0, T q ˆ Rd.

(3.3.4)

See the proof of [MS21, Theorem 3.5] for a comment pertaining to the issue that the solution

no longer exists in L2pΩq.

We now focus on proving that supN τN “ T , or equivalently that P pτN ă T q Ñ 0 as

N Ñ 8. To do this, note that by Chebychev’s inequality that

P pτN ă T q ď P

˜

sup
tPr0,T s, |x|ďR

|uNpt, xq| ě N

¸

ď N´pE

˜

sup
tPr0,T s, |x|ďR

|uNpt, xq|
p

¸

.

Then an application of (3.3.1) gives

N´pE

˜

sup
tPr0,T s, |x|ďR

|uNpt, xq|
p

¸

ď N´p

ˆ

2p´1
` Cpp, θ, T, Rq

„

Mp
1 ` M2pNq

p exptapT u

ˆ

2 `
σ1

LpσNq

˙pȷ˙

“
2p´1 ` Cpp, θ, T, RqMp

1

Np
`

Cpp, T,RqM2pNqp exptapT u

´

2 ` σ1
LpσN q

¯p

Np
.

The first term clearly converges to 0 as N Ñ 8. As for the second term, we expand using

(3.3.2) to see that

M2pNqp exptapT u

´

2 ` σ1
LpσN q

¯p

Np
“

´

a

pσ2 lnp2Nqδ
¯p

exptapT u

ˆ

2 ` σ1?
pσ2 lnp2Nqδ

˙p

Np
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„
lnp2Nqpδ{2

Np
Ñ 0,

where above we use the symbol „ to mean asymptotically equivalent as N Ñ 8. This com-

pletes the proof of Theorem 3.1.2.

87



Chapter 4

Invariant Measures for the Stochastic Heat Equation

4.1 Introduction and main results

In this chapter we consider the following stochastic heat equation (SHE):

$

’

’

&

’

’

%

Bu

Bt
pt, xq ´

1

2
∆upt, xq “ bpx, upt, xqq 9W pt, xq x P Rd, t ą 0,

up0, ¨q “ µp¨q.

(4.1.1)

The noise, 9W pt, xq, is a centered Gaussian noise that is white in time and homogeneously

colored in space defined on a probability space pΩ,F ,Pq with the natural filtration tFtutě0

generated by the noise. Its covariance structure, J , is defined as follows:

Jpψ, ϕq :“ E
”

9W pψq 9W pϕq

ı

“

ż 8

0

ds

ż

Rd

Γpdxqpψps, ¨q ˚ rϕps, ¨qqpxq, (4.1.2)

for all continuous and rapidly decreasing functions ψ and ϕ, where rϕpxq :“ ϕp´xq, “˚" refers

to the convolution in spatial variable, and Γ is a nonnegative and nonnegative definite tempered

measure on Rd that is commonly referred to as the correlation measure. The Fourier transform

of Γ (in the generalized sense) is also a nonnegative and nonnegative definite tempered measure,

which is usually called the spectral measure and is denoted by pfpdξq 1. Moreover, in the case

where Γ has density f , namely, Γpdxq “ fpxqdx, then pfpdξq “ pfpξqdξ. The initial condition

µ is a deterministic, locally finite, regular, signed Borel measure that satisfies the following

1See Remark 4.2.10 for the convention of Fourier transform that is used in this chapter.
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integrability condition at the infinity (see (4.3.1) below).

ż

Rd

exp
`

´a|x|
2
˘

|µ|pdxq ă 8 for all a ą 0,

where |µ| “ µ` ` µ´ and µ “ µ` ´ µ´ refers to the Hahn decomposition of the measure µ.

The function bpx, uq is uniformly bounded in the first variable and Lipschitz continuous in the

second variable, i.e., for some constants Lb ą 0 and L0 ě 0,

|bpx, uq ´ bpx, vq| ă Lb|u ´ v| and |bpx, 0q| ď L0 for all u, v P R, x P Rd. (4.1.3)

In particular, our assumption allows the linear case bpx, uq “ λu, which is usually referred to

as the parabolic Anderson model [CM94]. The SPDE (4.1.1) is understood in its mild form:

upt, xq “ J0pt, x;µq `

ż t

0

ż

Rd

bpy, ups, yqqGpt ´ s, x ´ yqW pds, dyq, (4.1.4)

where Gpt, xq “ p2πtq´d{2 exp
`

´ p2tq´1
|x|2

˘

is the heat kernel,

J0pt, xq “ J0pt, x;µq :“ pGpt, ¨q ˚ µqpxq “

ż

Rd

Gpt, x ´ yqµpdyq (4.1.5)

is the solution to the homogeneous equation, and the stochastic integral is the Walsh integral.

We refer the interested readers to [Wal86; Dal99; Dal+09; CK19] for more details of the set up.

The aim of this chapter is to investigate the conditions required to guarantee the existence

of an invariant measure for the solution to (4.1.1), which is a crucial step towards the study of

the ergodicity of the system. The existence of invariant measure under the setting of the entire

space Rd has been much less studied. In addition to Tessitore and Zabczyk [TZ98], with which

we will follow closely in this chapter, a few other papers that consider the whole space include

[AM03; MSY20; MSY16]. One thing to note is that the just mentioned papers use the theory

of the stochastic integral developed by Daprato et al [DZ14] while we use the theory developed

by Walsh [Wal86]. As far as we know, this is the first work which handles proving the existence
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of an invariant measure using Walsh’s theory. Lastly, since the space Rd is not compact, one

needs to work on a weighted space as in [TZ98]:

Definition 4.1.1. ρ : Rd ÞÑ R is called an admissible weight if ρ is a strictly positive, bounded

and continuous function in L1pRdq such that for T ą 0, there exists a constant CρpT q such that

`

Gpt, ¨q ˚ ρp¨q
˘

pxq ď CρpT qρpxq for all t P r0, T s and x P Rd. (4.1.6)

Let ρ be an admissible weight function. Then we may introduce the Hilbert space H :“

L2
ρpRdq with xf, gyρ :“

ş

Rd fpxqgpxqρpxq dx and }f}
2
ρ :“

ş

Rd fpxq2ρpxq dx. A continued

discussion about the weight function can be found in Section 4.2.1. Let BpHq be the space of

all bounded Borel functions on H . Following [DZ14], a probability measure η on the Borel

σ-field BpHq is said to be invariant for (4.1.1) if

ηpAq “

ż

H

L pupt, ¨; ζqqpAq ηpdζq, for all t ě 0 and A P BpHq, (4.1.7)

where we use the notation upt, x; ζq with a third argument to emphasize its dependence on the

initial condition up0, ¨q “ ζ and L pupt, ¨; ζqqpAq denotes the law of the solution:

L pupt, ¨; ζqqpAq “ P rω P Ω : upt, ¨; ζqpωq P As , A P BpHq.

Due the Krylov-Bogoliubov theorem (see, e.g., [DZ14, Theorem 11.7]), once the tightness of

tLpupt, ¨;µqutąt0 for some t0 ě 0 is established, one can construct the invariant measure via

ηpAq “ lim
nÑ8

1

Tn

ż Tn`t0

t0

L pupt, ¨;µqqpAqdt, (4.1.8)

for some sequence tTnuně1 with Tn Ò 8. A critical step in obtaining tightness is to show that

the following moment is uniformly bounded in time:

sup
tą0

E
´

}upt, ¨q}
2
ρ

¯

ă 8. (4.1.9)
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Note that the uniqueness of the invariant measure is a much harder question; see, e.g., [HM06].

It is known that the solution to (4.1.1) is usually intermittent, namely, the probability

moments to (4.1.1) have a certain exponential growth in t; see, e.g., [CM94; FK09]. In [AM03;

MSY20; MSY16], a drift (or reaction-diffusion) term fpx, uq is included in (4.1.1) in a crucial

way to help cancel the otherwise exponential growing moments. The absence of such a drift

term in this chapter makes the problem more challenging. In order to have moments bounded

in time, as required in (4.1.9), one has to first identify the exact conditions, under which the

moments to (4.1.1) do not possess exponential growth. This question has been answered in

[CK19, Theorem 1.3 and Lemma 2.5], where necessary and sufficient conditions are given.

More precisely, for bounded second moments, one has to have the spatial dimension d ě 3,

and in addition, the spectral measure, f̂ , and Lipschitz constant, Lb, (the Lyapunov exponent of

b) in (4.1.3) have to satisfy the following two conditions:

Υp0q :“ p2πq
´d

ż

Rd

f̂pdξq

|ξ|2
ă 8 (4.1.10a)

and 64L2
b ă

1

2Υp0q
. (4.1.10b)

Note that condition (4.1.10a) is a strengthened version of Dalang’s condition:

Υpβq :“ p2πq
´d

ż

Rd

f̂pdξq

β ` |ξ|2
ă 8, for some (and hence) all β ą 0. (4.1.11)

Recall that in order to obtain the Hölder continuity of the solution, one needs to strengthen

(4.1.11) in a different way. Indeed, what is required is that for some α P p0, 1s,

Υαpβq :“ p2πq
´d

ż

Rd

pfpdξq

pβ ` |ξ|2q
1´α ă 8 for some (hence all) β ą 0; (4.1.12)

see Theorem 1.8 of [CH19] or [SS02]. Similarly, one can further strengthen condition (4.1.12)

to

Υαp0q :“ p2πq
´d

ż

Rd

f̂pdξq

|ξ|2p1´αq
ă 8 for some α P p0, 1s. (4.1.13)
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We use the convention that when α “ 0, we simply drop it from the expression Υαpβq, i.e.,

Υpβq “ Υ0pβq. The relations of these conditions are shown in Figure 4.1.

α “ 0 α P p0, 1s

β “ 0

β ą 0
Υpβq ă 8

Dalang’s condition (4.1.11)

Υp0q ă 8

Condition (4.1.10a)
Υαp0q ă 8

Condition (4.1.13)

Υαpβq ă 8

Condition (4.1.12)

ò ò

ð

Figure 4.1: Relations among conditions (4.1.11), (4.1.12), (4.1.13) and (4.1.10a). Check also
Lemma 4.4.5 for the relation between Υp0q ă 8 and Υαp0q ă 8.

Note that the two conditions in (4.1.10) guarantee the existence of the following non-

empty open interval:

`

27L2
bΥp0q, 1

˘

‰ H. (4.1.14)

Now we are ready to state our two main results of this chapter.

Theorem 4.1.2. Let upt, x;µq be the solution to (4.1.1) starting from µ. Assume that

(i) ρ : Rd Ñ R` is a nonnegative L1pRdq function;

(ii) the initial condition µ satisfies

Gρpt;µq :“

ż

Rd

J2
0 pt, x; 1 ` |µ|q ρpxq dx ă 8 for all t ą 0; (4.1.15)

(iii) the spectral measure pf and the Lipschitz constantLb satisfy the two conditions in (4.1.10).

Then there exists an unique L2pΩq-continuous solution upt, xq such that for some constant

C ą 0, which does not depend on t, the following holds:

E
´

}upt, ¨;µq}
2
ρ

¯

ď CGρpt;µq ă 8, for any t ą 0. (4.1.16)
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This theorem will be proved in Section 4.3.

Theorem 4.1.3. Let upt, xq be the solution to (4.1.1) starting from µ and let ρ be an admissible

weight function. Assume that

(i) there exists another admissible weight ρ̃ such that

ż

Rd

ρpxq

ρ̃pxq
dx ă 8; (4.1.17)

(ii) the weight function ρ̃ and the initial condition satisfy the following condition:

lim sup
tą0

Gρ̃pt;µq ă 8; (4.1.18)

(iii) the spectral measure pf and the Lipschitz constantLb satisfy the two conditions in (4.1.10);

(iv) for some α P p27Υp0qL2
b , 1q (see (4.1.14)), the spectral measure pf satisfies (4.1.13).

Then we have that

(a) for any τ ą 0, the sequence of laws of tLupt, ¨;µqutěτ is tight, i.e., for any ϵ P p0, 1q,

there exists a compact set K Ă L2
ρpRdq such that

Lupt, ¨;µqpKq :“ P pupt, ¨;µq P K q ě 1 ´ ϵ, for all t ě τ ą 0; (4.1.19)

(b) there exists an invariant measure for the laws tLupt, ¨;µqutą0 in L2
ρpRdq.

This theorem will be proved in Section 4.5.

The work by Tessitore and Zabczyk [TZ98] has a strong influence in the current work. We

formulate and solve the problem using the random field language with some state-of-the-art

moment estimates. The improvements over [TZ98] consist of the following aspects:

1. Results in [TZ98] allow essentially all bounded functions as the initial conditions, though

Theorem 3.3 (ibid.) was proved only for the constant one initial condition. Here we give
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precise conditions on the initial condition, namely, (4.1.18), which allows a much wider

class of initial conditions, including unbounded functions and measures such as the Dirac

delta measure; see Examples 4.2.4 and 4.2.5. We emphasize that the Dirac delta initial

measure plays a very prominent role in the study of the stochastic heat equation; see, e.g.,

[ACQ11].

2. We give a more easily verifiable condition in (4.1.10a) on the spectral density f̂ and

provide examples of suitable f̂ in Section 4.2.3. Recall that due to the difficult nature

of the condition (3.4) in [TZ98], no specific spectral densities were given. We further

discuss this in Section 4.2.4.

This chapter is organized as follows: In Section 4.2, we will further discuss our main

results and provide some examples. In particular, in Section 4.2.1 we make some comments on

the weight function and in Section 4.2.2 we show that our results could include a wider class

of initial conditions. Finally, the two main Theorems 4.1.2 and 4.1.3 will be proved in Sections

4.3 and 4.5, respectively.

We end this section by introducing some notation and formulas that we use throughout the

paper. We will use }X}p to denote the LppΩq norm, namely, pEp|X|pqq
1{p. We will also use the

following factorization property of the heat kernel

Gpt, xqGps, yq “ G

ˆ

ts

t ` s
,
sx ` ty

t ` s

˙

G pt ` s, x ´ yq , (4.1.20)

which can be easily verified. Next, we remind the reader of the following spherical coordinate

integration formula
ż

Rd

fp|x|qdx “ σpSd´1
q

ż 8

0

fprqrd´1dr,

which we will use often and where σpSd´1q “ 2pπqd{2{Γpd{2q. The convention of Fourier

transform is given in Remark 4.2.10 below. Lastly, Γpzq will be used to denote the Gamma

function.
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4.2 Discussions and Examples

4.2.1 Weight functions

Here are several examples of admissible weights (see Example in Section 2 of [TZ98])

ρpxq “ expp´a|x|q, a ą 0 and

ρpxq “ p1 ` |x|
a
q

´1 , a ą d.

(4.2.1)

Remark 4.2.1. The smaller the weight function ρp¨q (not necessarily admissible) is, the larger

the space L2
ρpRdq is. For example, one may choose ρ to be either a nonnegative function with

compact support or the heat kernel itselfGp1, ¨q. In both cases, ρ is smaller than those in (4.2.1)

(up to a constant). However, one can easily check that the admissible condition (4.1.6) excludes

these two cases. Lastly, we should mention that numerical results will lead one to believe that

the following functions are not admissible:

ρpxq “ exp
`

´a|x|
b
˘

, x P Rd, with a ą 0 and b P p1, 2q fixed,

but a proof of this has not yet been given.

The admissible condition 4.1.6 is needed in this chapter due to the following result:

Proposition 4.2.2 (Proposition 2.1 of [TZ98]). For any admissible weight ρ, the operators on

L2
ρpRdq defined by φ ÞÑ

`

Gpt, ¨q ˚ φp¨q
˘

pxq can be extended to a C0 ´ semigroup on L2
ρ.

Moreover, if ρ̃ is another admissible weight such that

ż

Rd

ρpxq

ρ̃pxq
dx ă 8,

then for any t ą 0, the operators defined above are compact from L2
ρ̃pRdq to L2

ρpRdq.

4.2.2 Various initial conditions

Example 4.2.3 (L8pRdq initial condition). We emphasize that if the initial condition µ is deter-

ministic and is such that µpdxq “ φpxqdx with φ P L8pRdq, then all conditions related to Gρp¨q
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in both Theorems 4.1.2 and 4.1.3 are trivially satisfied. To be more precise, both conditions

(4.1.15) and (4.1.18) hold because

Gρpt;φq ď }φ}
2
L8pRdq

}ρ}L1pRdq
ă 8 uniformly for all t ě 0.

Example 4.2.4 (Delta initial condition). In this example, we study the case when the initial

condition µ is the Dirac delta measure at zero, namely, δ0. Let ρ be a nonnegative L1pRdq

function. Since

Gρpt; δ0q “

ż

Rd

Gpt, xq
2ρpxqdx ď Gpt, 0q

2
}ρ}L1pRdq

, for all t ą 0,

we see that both conditions (4.1.15) and (4.1.18) are satisfied. In particular, lim suptą0 Gρpt; δ0q “

0.

Example 4.2.5 (More initial conditions not in L2
ρpRdq). In this example, we study the case

when µpdxq “ |x|´αdx for some α P p0, dq. It is clear that when α P pd{2, dq, µ R L2
ρpRdq.

However, in this case, we have

J0pt, xq “
`

Gpt, ¨q ˚ | ¨ |
´α
˘

pxq ď
`

Gpt, ¨q ˚ | ¨ |
´α
˘

p0q.

On the other hand, Hence,

`

Gpt, ¨q ˚ | ¨ |
´α
˘

p0q “
2πd{2

Γpd{2q
ˆ p2πtq´d{2

ż 8

0

e´ r2

2t r´α`d´1dr “ C˚t
´α{2,

with C˚ “ 2´α{2Γ ppd ´ αq{2q {Γpd{2q, which implies that

Gρ
`

t; | ¨ |
´α
˘

ď

ż

Rd

J2
0 pt, 0qρpxqdx “ C2

˚t
´α

}ρ}L1pRdq
, for all t ą 0.

Therefore, we see that both conditions (4.1.15) and (4.1.18) are satisfied.

The following proposition shows that for initial conditions with unbounded tails, condition

(4.1.15) may hold while condition (4.1.18) may fail.
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Proposition 4.2.6. Suppose that ρ “ expp´|x|q, which is an admissible weight function. Let

the initial condition µ be given as

µpdxq “ |x|
αdx with α ą 0.

Then for some constants C,C 1 ą 0 that depend on d and α, it holds that

C 1
p1 ` tαq ď Gρpt;µq ď Cp1 ` tαq, for all t ą 0. (4.2.2)

In particular, this implies that condition (4.1.15) is satisfied, but condition (4.1.18) fails.

Proof. Notice that by scaling arguments,

Gρpt;µq “

ż

Rd

ˆ
ż

Rd

Gpt, x ´ yq|y|
αdy

˙2

e´|x|dx

“

ż

Rd

tα
ˆ
ż

Rd

G

ˆ

1,
x

?
t

´ z

˙

|z|
αdz

˙2

e´|x|dx

“

ż

Rd

tα`d{2

ˆ
ż

Rd

G p1, ξ ´ zq |z|
αdz

˙2

e´
?
t|ξ|dξ.

In the following, let Cd, Cα, C 1
α, Cα,d and C 1

α,d be generic constants that may depend on α and

d and may change their value at each appearance.

Upper bound: Because

ż

Rd

G p1, zq |ξ ´ z|
αdz ď Cα

ż

Rd

G p1, zq p|ξ|
α

` |z|
α
q dz ď C 1

α p1 ` |ξ|
α
q ,

we see that

Gρpt;µq ď Cα

ż

Rd

tα`d{2
`

1 ` |ξ|
2α
˘

e´
?
t|ξ|dξ

“ Cα,d

ż 8

0

tα`d{2
`

1 ` r2α
˘

e´
?
trrd´1dr

“ Cα,d ptαΓpdq ` Γpd ` 2αqq

“ C 1
α,dp1 ` tαq ă 8.
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Hence, this proves the upper bound in (4.2.2).

Lower bound: Now we prove the lower bound in (4.2.2). Indeed,

ż

Rd

G p1, zq |ξ ´ z|
αdz ě

ż

Rd

G p1, zq
ˇ

ˇ|ξ| ´ |z|
ˇ

ˇ

α
dz

ě Cd

ż 8

0

ˇ

ˇ|ξ| ´ x
ˇ

ˇ

α
e´x2

2 xd´1dx

ě Cd

ż 2

1

ˇ

ˇ|ξ| ´ x
ˇ

ˇ

α
dx

“
Cd

1 ` α
ψ p|ξ|q ,

where, by considering three cases, we have

ψprq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p2 ´ rqα`1 ´ p1 ´ rqα`1 if 0 ă r ă 1,

p2 ´ rqα`1 ` pr ´ 1qα`1 if 1 ď r ď 2,

pr ´ 1qα`1 ´ pr ´ 2qα`1 if r ą 2,

“ sgnp2 ´ rq|r ´ 2|
α`1

` sgnpr ´ 1q|r ´ 1|
α`1.

We claim that

inf
rě0

ψprq
?
1 ` r2α

ą 0. (4.2.3)

With (4.2.3), we have that

ż

Rd

G p1, zq |ξ ´ z|
αdz ě Cα,d

a

1 ` |ξ|2α.

Then, by the same arguments as above for the upper bound, we obtain the lower bound in

(4.2.2). It remains to prove (4.2.3), which will be proved in three cases.

When r ą 2, we see that

ψprq
?
1 ` r2α

ě Cα
pr ´ 1qα`1 ´ pr ´ 2qα`1

p1 ` rqα
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ě Cα
pr ´ 1qαpr ´ 1q ´ pr ´ 1qαpr ´ 2q

p1 ` rqα

“ Cα

ˆ

r ´ 1

1 ` r

˙α

“ Cα

ˆ

1 ´
2

1 ` r

˙α

ě Cα

ˆ

1 ´
2

3

˙α

.

Note that in the first inequality above, we have considered two cases: 2α ě 1 and 2α ă 1.

When 2α ă 1, we have used the concavity of x2α, namely, p1 ` r2αq2α{2 ď pp1 ` rq{2q2α;

when 2α ě 1, we have used the super-additiity of x2α: namely, that for a, b ą 0 that pa`bq2α ě

a2α ` b2α. This shows that infrą2
ψprq

?
1`r2α

ą 0.

When r P p1, 2s, elementary calculations show that the minimum of ψprq is achieved at

r “ 3{2. Hence,

inf
rPp1,2s

ψprq
?
1 ` r2α

ě
ψp3{2q

?
1 ` 4α

ą 0.

Similarly, when r P p0, 1s, by differentiation, one finds that the function ψprq is nonin-

creasing. Hence, the minimum is achieved at r “ 1:

inf
rPp0,1s

ψprq
?
1 ` r2α

ě
ψp1q
?
2

ą 0.

Combing the above three cases proves (4.2.3). This completes the proof of Proposition

4.2.6.

4.2.3 Bessel kernel and Matérn class of correlation functions

Example 4.2.7 (Bessel kernel as a correlation function). Let fs denote the Bessel kernel with

a strictly positive parameter s ą 0. It is known that (see, e.g., Section 1.2.2 of [Gra14])

1. fspxq ą 0 for all x P Rd and }fs}L1pRdq
“ 1;

2. there exists a constant Cps, dq ą 0 such that

fspxq ď Cps, dq expp´|x|{2q for |x| ě 2;
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3. there exists a constant cps, dq ą 0 such that

1

cps, dq
ď

fspxq

Hspxq
ď cps, dq for |x| ď 2, with

Hspxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

|x|s´d ` 1 ` Op|x|s´d`2q for 0 ă s ă d,

log
´

2
|x|

¯

` 1 ` Op|x|2q for s “ d,

1 ` Op|x|s´dq for s ą d;

4. the Fourier transform of fs is strictly positive:

Ffspξq “
1

p1 ` |ξ|2qs{2
. (4.2.4)

Note that one can use (4.2.4) as the definition of the Bessel kernel. Properties 1 and 4 ensure that

fs is a nonnegative and nonnegative-definite tempered measure for all s ą 0. From Property 4,

we see that

Υp0q ă 8 ðñ s ą d ´ 2.

In the following, we will assume that s ą d ´ 2 and d ě 3.

Example 4.2.8 (Matérn class of correlation functions). The Matérn class of correlation func-

tions has been widely used in spatial statistics; one may check the recent work [LSW21] for

references. Following Section 2.10 of [Ste99], this class of correlation functions is given by

Kpxq “ ϕ ¨ pα|x|q
νKν pα|x|q , for x P Rd with ϕ ą 0, α ą 0, ν ą 0, (4.2.5)

where Kνp¨q is the modified Bessel function of second type, and α and ν refer to the scaling

and smoothness parameters respectively. From the inversion formula (see p. 46 ibid.), one sees

that

FKpξq “ p2πq
dF´1Kpξq “ p2πq

dfp|ξ|q with fpξq “
2ν´1ϕΓ pν ` d{2qα2ν

πd{2 pα2 ` |ξ|2q
ν`d{2

, ξ P Rd.
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Comparing the above expression with (4.2.4), we see that the class of Bessel kernels fs, with

s ą d ´ 2 and d ě 3, includes the Matérn class (4.2.5) as a special case under the following

choice of parameters:

α “ 1, ν “ ps ´ dq{2, and ϕ “ 2p2´d´sq{2π´d{2Γps{2q
´1.

Note that the requirement of the smoothness parameter ν ą 0 for the Matérn class corresponds

to the case of the Bessel kernel with s ą d.

For α P p0, 1{2q, we introduce the following quantity which will now be needed through-

out this article:

Hαptq :“

ż t

0

dr r´2α

ż

Rd

f̂pdξq expp´r|ξ|
2
q (4.2.6)

Proposition 4.2.9. For the Bessel kernel fsp¨q with s ą 0 defined in Example 4.2.7, it holds

that

Υαp0q “
Γ
`

d
2

´ 1 ` α
˘

Γ
`

s´d
2

` 1 ´ α
˘

2dπd{2 Γpd{2q Γ ps{2q
for all s ą d ´ 2p1 ´ αq ą 0 and d ą 2,

(4.2.7)

and in particular when α “ 0, (4.2.7) simplifies to the following:

Υp0q “
Γ
`

2`s´d
2

˘

2d´1πd{2pd ´ 2qΓps{2q
. (4.2.8)

In addition,

Hαptq ă 8 @t ą 0 ðñ 0 ă α ă
1

2
´

pd ´ sq`

4
and s ą d ´ 2 ą 0, (4.2.9)
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where a` :“ maxpa, 0q. Moreover, for α P p0, 1{2q, we have the following asymptotic behavior

of Hαptq at t Ñ 0:

Hαptq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

πd{2Γ ppd ´ sq{2q

pps ´ dq{2 ` 1 ´ 2αqΓpd{2q
tps´dq{2`1´2α

´
πd{2Γ pps ´ dq{2q

p1 ´ 2αqΓps{2q
t1´2α

`O
`

tps´dq{2`2p1´αq
˘

,

d ´ 2 ă s ă d

and

α ă
1

2
´

1

4
pd ´ sq

(4.2.10-a)

πd{2

p1 ´ 2αqΓ pd{2q
t1´2α log

ˆ

1

t

˙

`
πd{2 p1 ´ p1 ´ 2αq rψpd{2q ` 2γsq

p1 ´ 2αq2Γ pd{2q
t1´2α

`O
`

t2 logptq
˘

,

s “ d (4.2.10-b)

πd{2Γ pps ´ dq{2q

p1 ´ 2αqΓps{2q
t1´2α ` O

`

tps´dq{2`1´2α
˘

, d ă s ă d ` 2 (4.2.10-c)

πd{2

p1 ´ 2αqΓ pd{2 ` 1q
t1´2α ` O

`

t2p1´αq logptq
˘

, s “ d ` 2 (4.2.10-d)

πd{2

p1 ´ 2αqΓ pd{2 ` 1q
t1´2α ` O

`

t2p1´αq
˘

, s ą d ` 2 (4.2.10-e)

(4.2.10)

where ψpxq “ d
dx

log Γpxq refers to the digamma function and γ « 0.57721 to Euler’s constant;

see, e.g., 5.2.2 and 5.2.3 on p. 136 of [AR10].

Proof. By the spherical coordinate integration formula and (4.2.4), for all α P r0, 1q,

Υαp0q “ p2πq
´d

ż

Rd

dξ

|ξ|2p1´αq p1 ` |ξ|2q
s{2

“ p2πq
´dCd

ż 8

0

rd´1

r2p1´αq p1 ` r2qs{2
dr,
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where Cd :“ 2πd{2

Γpd{2q
. Now by the change of variables z “ r2{p1`r2q, we can evaluate the above

integral explicitly by transforming it to the Beta integral:

ż 8

0

rd´1

r2p1´αq p1 ` r2qs{2
dr “

1

2

ż 1

0

zd{2`α´2
p1 ´ zq

ps´dq{2´αdz

“
Γ pd{2 ´ 1 ` αqΓ pps ´ dq{2 ` 1 ´ αq

2Γps{2q
,

which is finite provided that s ą d´2p1´αq ą 0. This proves (4.2.7) and from this, we easily

deduce (4.2.8) by letting α “ 0 in (4.2.7) and by applying the formula Γpz`1q “ zΓpzq, which

holds for z P C such that ℜpzq ą 0.

It remains to prove (4.2.10), which then implies (4.2.9). From (4.2.6) and by the spherical

coordinate integration formula, for all t ą 0,

Hαptq “

ż t

0

dr r´2α

ż

Rd

dξ
expp´r|ξ|2q

p1 ` |ξ|2qs{2

“ Cd

ż t

0

dr r´2α

ż 8

0

dz
expp´rz2q

p1 ` z2qs{2
zd´1

“
Cd
2

ż t

0

dr r´2α

ż 8

0

du expp´ruqp1 ` uq
´s{2ud{2´1

“:
CdΓ pd{2q

2

ż t

0

dr r´2αIprq “ πd{2

ż t

0

dr r´2αIprq.

By [Old10, 13.4.4 on p.326], Iprq is equal to the confluent hypergeometric function:

Iprq “ U

ˆ

d

2
,
2 ` d ´ s

2
, r

˙

.
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By 18.2.18 – 13.2.22 on p. 323 ibid., we see that

Iprq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Γ ppd ´ sq{2q

Γpd{2q
rps´dq{2 `

Γ pps ´ dq{2q

Γps{2q
` O

`

rps´dq{2`1
˘

d ´ 2 ă s ă d 18.2.18,

´
1

Γpd{2q
plogprq ` ψpd{2q ` 2γq ` O pr logprqq s “ d 18.2.19,

Γ pps ´ dq{2q

Γps{2q
` O

`

rps´dq{2
˘

d ă s ă d ` 2 18.2.20,

1

Γ pd{2 ` 1q
` O pr logprqq s “ d ` 2 18.2.21,

Γ pps ´ dq{2q

Γps{2q
` O prq s ą d ` 2 18.2.22.

Then integrating the right-hand side of the above expressions against πd{2r´2αdr over r0, ts

gives the five cases in (4.2.10). This completes the proof of Proposition 4.2.9.

4.2.4 A discussion on Tessitore and Zabczyk’s condition

Under the setting of the whole space, Rd, Tessitore and Zabczyk [TZ98] prove the existence

of an invariant measure for (4.1.1) in L2
ρpRdq under the assumption that there exists a φ P

L2
ρpRdq X L2

rρpRdq where ρprρq´1 P L1pRdq and the solution starting from φ is bounded in

probability in L2
rρpRdq and also that the spectral density f̂ satisfies

pf P LppRd
q where

d ´ 2

d
ă

1

p
; (4.2.11)

see Hypothesis 2.1 (ibid.). However as was illustrated in [TZ98, Theorem 3.3], in order to

apply this theorem to a specific initial condition in L2
ρ (or to have moments uniformly bounded

in time), the following additional assumptions were imposed:

d ě 3 and L´2
b ą

Γpd{2 ´ 1q2d{2´2

p2πq2d

ż

Rd

ˆ
ˇ

ˇ

ˇ

ˇ

F
ˆ
b

pf

˙
ˇ

ˇ

ˇ

ˇ

˚

ˇ

ˇ

ˇ

ˇ

F
ˆ
b

pf

˙
ˇ

ˇ

ˇ

ˇ

˙

pζq|ζ|
2´ddζ,

(4.2.12)
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where the convention of the Fourier transform is given in Remark 4.2.10. With these assump-

tions, they were able to prove that (4.1.1) starting from the constant 1 satisfies (4.1.9) and thus

is bounded in probability, verifying the existence of an invariant measure. Moreover, the mea-

sure takes the form of (4.1.8) above with φ “ 1. Lastly we mention that due to its difficult

nature, (4.2.12) was not calculated for a specific pf (see Examples 4.2.11 and 4.2.12 below).

Remark 4.2.10. The Fourier transform may be defined differently depending how to handle

the 2π constant. In this chapter (as in [CK19; CH19]), we use the convention that

pϕpξq “ Fϕpξq :“

ż

Rd

e´ix¨ξϕpxqdx and F´1ψpxq :“ p2πq
´d

ż

Rd

eix¨ξψpξqdξ. (4.2.13)

Hence, Plancherel’s theorem takes the form of

ż

Rd

ψpxqϕpxqdx “ p2πq
´d

ż

Rd

pψpξqpϕpξqdξ. (4.2.14)

Note that the authors in [TZ98] did not explicitly mention their convention of the Fourier trans-

form. However, the proof of Theorem 3.3 (ibid.) suggests that the following convention has

been used:

pϕpξq “ Fϕpξq :“ p2πq
´d{2

ż

Rd

e´ix¨ξϕpxqdx and F´1ψpxq :“ p2πq
´d{2

ż

Rd

eix¨ξψpξqdξ.

Hence, Plancherel’s theorem takes the form,
ş

Rd ψpxqϕpxqdx “
ş

Rd
pψpξqpϕpξqdξ, without the

additional factor p2πq´d. In particular, the spectral density γ (ibid.) corresponds to p2πq
´d{2

pf

in this chapter. Our equation (4.2.12), which is condition (3.4) [TZ98], takes into account this

difference therefore explaining the slightly different factor in front of the integral in (4.2.12)

from that in (3.4) (ibid.).

Recall the definition of F´1 in (4.2.13) above. We may rewrite the integral in the second

condition of (4.2.12) as follows:

Γpd{2 ´ 1q2d{2´2

ż

Rd

ˆˇ

ˇ

ˇ

ˇ

F´1

ˆ
b

pf

˙ˇ

ˇ

ˇ

ˇ

˚

ˇ

ˇ

ˇ

ˇ

F´1

ˆ
b

pf

˙ˇ

ˇ

ˇ

ˇ

˙

pζq|ζ|
2´ddζ.
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We now consider a couple of situations and give two examples that illustrate some of the diffi-

culties that may arise.

Case I: If both F´1

„

b

pfp¨q

ȷ

pξq and pf are strictly positive for all ζ P Rd, which is not a trivial

assumption (see Example 4.2.11 below), then there is no ambiguity when taking the square root

and one can remove the absolute value to see that

Γpd{2 ´ 1q2d{2´2

ż

Rd

ˆ

F´1

ˆ
b

pf

˙

˚ F´1

ˆ
b

pf

˙˙

pζq|ζ|
2´ddζ

“
1

p2πq3d{2

ż

Rd

pfpζq|ζ|
´2dζ “ p2πq

d{2Υp0q,

where we have applied Plancherel’s theorem (see (4.2.14)) and the Fourier transform for Riesz

kernel (in the generalized sense):

Fp| ¨ |
´α

qpξq “ π´d{22´αΓ ppd ´ αq{2q

Γpα{2q
|ξ|

´pd´αq, for α P p0, dq and ξ P Rd.

Hence, the second condition in (4.2.12) can be equivalently written as L´2
b ą p2πqd{2Υp0q.

Comparing this with (4.1.10b), namely, L´2
b ą 128Υp0q, our condition is sharper when d ą

14 logp2q

logp2πq
« 5.28.

Example 4.2.11. One should note that the assumption that F´1

ˆ

b

pf

˙

pxq is nonnegative,

or equivalently that
b

pf is non-negative definite, is quite strong and may not be true even if

f is non-negative and non-negative definite. Indeed, suppose that f was such that pfpξq “

2´2maxt2 ´ |ξ|, 0u. Then f is non-negative and non-negative definite, which is shown in

Example 4.2.12 below. We will now show that in this case, F´1

ˆ

b

pf

˙

pζq takes on both

positive and negative values. Since
b

pfpξq “ 2´1
a

maxt2 ´ |ξ|, 0u is even, the inverse Fourier

transform takes the following form:

F´1

ˆ
b

pf

˙

pxq “ 2

ż 2

0

2´1
a

2 ´ y cospy xqdy.
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Figure 4.2: A plot of F´1

ˆ

b

pf

˙

pxq for pfpξq “ 2´2maxt2 ´ |ξ|, 0u with ´8 ď x ď 8.

For simplicity, we will only consider the case ζ ą 0 and real. Therefore

F´1

ˆ
b

pf

˙

pxq “ 2

ż

?
2

0

y2 cosp2x ´ xy2qdy

“ 2 cosp2xq

ż

?
2

0

y2 cospxy2qdy ` 2 sinp2xq

ż

?
2

0

y2 sinpxy2qdy.

Where in the first equality we used the change of variables, y1 “
?
2 ´ y. We now do an

integration by parts to see that

F´1

ˆ
b

pf

˙

pxq “ ´ cosp2xq

ż

?
2

0

sinpy2xq

x
dy ` sinp2xq

ż

?
2

0

cospy2xq

x
dy,

and lastly we apply the change of variables y1 “ y
a

2x{π too see

F´1

ˆ
b

pf

˙

pxq “

a

π
2

´

´ cosp2xqS
´

2
?
x

?
π

¯

` sinp2xqC
´

2
?
x

?
π

¯¯

x3{2
,

where S and C are the Fresnel integrals (see [Olv+10, 7.2 (iii)]):

Spzq “

ż z

0

sin

ˆ

πt2

2

˙

dt and Cpzq “

ż z

0

cos

ˆ

πt2

2

˙

dt.
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Thus even if f is both non-negative and non-negative definite, we may still have problems with

removing the absolute value sign.

Case II: Suppose pfp¨q is not strictly positive, but only nonnegative, namely, pfpξq “ 0 for some

ξ P Rd. Then removing the absolute value in (4.2.12) becomes tricky, which will be illustrated

in the following example.

Example 4.2.12. Let d “ 1 and gpxq “ 1
2
1r´1,1spxq. It is clear that pgpξq “ ξ´1 sinpξq. Now

set fpxq “ pg ˚ gq pxq “ 2´2maxp2 ´ |x|, 0q. It is clear that f is nonnegative. It is also

nonnegative-definite because pfpξq “ pgpξq2 “ ξ´2 sin2pξq ě 0. But in this case, pfp¨q is

only nonnegative (not strictly positive) with infinitely many zeros. Hence, when taking the

square root of pfpξq as in (4.2.12), one needs to wisely choose the correct positive and negative

branches:

1. Clearly, the signed version
b

pfpξq “ ξ´1 sinpξq is preferable since its inverse Fourier

transform can be easily computed, which is equal to gpxq. Moreover, because this inverse

Fourier transform gpxq is clearly nonnegative, the absolute value signs in (4.2.12) do not

pose any additional restrictions.

2. However, if one chooses the positive branches, namely,
b

pfpξq “ |ξ´1 sinpξq|, then

it is not clear how to compute its Fourier transform. In general, some bad choices of

the positive/negative branches may make the conditions in (4.2.12) fail. For example,

such choice may turn
b

pfpξq into a distribution, and then taking the absolute value of a

distribution (unless it is a measure) may be problematic. Another issue that may arise is

when
b

pfpξq is a well-defined function, taking on both positive and negative values and

after taking the absolute value, the integral in (4.2.12) may blow up.

4.3 Moment Estimates – Proof of Theorem 4.1.2

We first state some known results and prove a moment bound in Corollary 4.3.3.

Theorem 4.3.1 (Theorem 1.2 [CH19]). Suppose that
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(i) the initial deterministic measure µ satisfies the following integrability condition:

ż

Rd

exp
`

´a|x|
2
˘

|µ|pdxq ă 8 for all a ą 0, (4.3.1)

(ii) the spectral measure pf satisfies Dalang’s condition (4.1.11),

Then (4.1.1) has a unique random field solution starting from µ. Moreover, the solution is

L2pΩq continuous and is adapted to the filtration tFtutě0.

Theorem 4.3.2 (Theorem 1.7 [CH19]). Under the assumptions of Theorem 4.3.1, for any t ą 0,

x P Rd and p ě 2, the solution to (4.1.1), upt, xq, given by (4.1.4) is in LppΩq and

}upt, xq}p ď
“

ς̄ `
?
2pGpt, ¨q ˚ |µ|qpxq

‰

Hpt; γpq
1{2, (4.3.2)

where ς̄ “ L0{Lb, γp “ 32pL2
b (see (4.1.3) for L0 and Lb) and the function Hpt; γpq is nonde-

creasing in t (see [CH19] for the expression of the function H).

Corollary 4.3.3. Under the same setting as Theorem 4.3.2, if the two conditions in (4.1.10)

hold (see also (4.1.14)), then

}upt, xq}p ď Cp

ˆ

1 ` pGpt, ¨q ˚ |µ|qpxq

˙

, for all p such that 1{p P
`

64L2
bΥp0q, 1

˘

, (4.3.3)

where Cp “
`?

2 _ ς
˘

suptě0Hpt; γpq
1{2 ă 8.

Proof. Lemma 2.5 of [CK19] gives one sufficient condition, namely, 2γpΥp0q ă 1, under

which the function Hppt; γpq is bounded in t. Therefore, by taking into account the expression

of γp in Theorem 4.3.2, we see that as a direct consequence of (4.3.2), whenever

32pL2
b ă

1

2Υp0q
, (4.3.4)

we have the p-th moment bounded as given in (4.3.3).

Now we are ready to prove Theorem 4.1.2.
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Proof of Theorem 4.1.2. Under condition (iii), we can apply Fubini’s Theorem and the moment

bound (4.3.3) below to see that for some constant C ą 0 independent of t, which may vary

from line to line, that

E
´

}upt, ¨;µq}
2
ρ

¯

ď C E

«

ż

Rd

ˆ

1 ` pGpt, ¨q ˚ |µ|qpxq

˙2

ρpxqdx

ff

“ C

ż

Rd

E

«

ˆ

´

Gpt, ¨q ˚ p1 ` |µ|q

¯

pxq

˙2
ff

ρpxqdx

“ C Gρpt;µq ă 8.

This proves Theorem 4.1.2.

Remark 4.3.4 (Restarted SHE). Recall that the Markov property of the solution to (4.1.1)

implies that for any t ě t0 ą 0,

upt ` t0, x;µq
L
“ u pt, x;u pt0, ¨;µqq “: vpt, xq, (4.3.5)

where L refers to the equality in law and we have used vpt, xq to simplify the notation. It is

known that v satisfies the following restarted SPDE:

$

’

’

&

’

’

%

Bv

Bt
pt, xq ´

1

2
∆vpt, xq “ bpx, vpt, xqq 9Wt0pt, xq x P Rd , t ą 0,

vp0, xq “ upt0, x;µq, x P Rd,

(4.3.6)

where 9Wt0pt, xq :“ 9W pt ` t0, xq denotes the time shifted noise, i.e.,

ż t

0

ż

Rd

Wt0pds, dyq “

ż t`t0

t0

ż

Rd

W pds, dyq. (4.3.7)

Under the conditions in (4.1.10), Theorem 4.3.2 and (4.3.5) imply immediately that

}vpt, xq}q “ }upt ` t0, x;µq}q ď Cq

ˆ

1 ` pGpt ` t0, ¨q ˚ |µ|qpxq

˙

“ CqJ0pt ` t0, x; 1 ` |µ|q,

(4.3.8)
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for all q ě 2 and t ą 0, where the constant Cq does not depend on t. Moreover, under the

assumptions of Theorem 4.1.2, we have vp0, ¨q P L2
ρpRdq a.s. and

E
´

}vpt, xq}
2
ρ

¯

“ E
´

}upt ` t0, x;µq}
2
ρ

¯

ď CGρpt ` t0;µq ă 8. (4.3.9)

4.4 A Factorization Lemma

In this section, we establish a factorization lemma with corresponding moment estimates; see

Lemmas 4.4.2 and 4.4.4 below. This factorization lemma was first discovered in [DKZ87];

check also Section 5.3.1 of [DZ14]. For α P p0, 1q, t ą 0 and x P Rd, define formally

pFαfq pt, xq :“

ż t

0

ż

Rd

pt ´ sqα´1Gpt ´ s, x ´ yqfps, yq dsdy and

pYαfq pt, xq :“

ż t

0

ż

Rd

pt ´ sq´αGpt ´ s, x ´ yqfps, yqW pds, dyq .

(4.4.1)

For Fα, the first step of the proof of [TZ98, Theorem 3.1] showed the following proposi-

tion:

Proposition 4.4.1. Let ρ and ρ̃ be given as in condition (i) of Theorem 4.1.3 (see (4.1.17)). For

any q ą 2, t0 ą 0 and α P pq´1, 2´1q, the operator Fα, as an operator from Lq
`

p0, t0q; L
2
ρ̃pRdq

˘

to L2
ρpRdq, is compact.

As for Yα, we have the following two lemmas, which hold for both the non-restarted SHE

(t0 “ 0) and the restarted SHE (t0 ą 0).

Lemma 4.4.2. Suppose that µ — the initial condition for u — satisfies (4.3.1) and that pf

satisfies Dalang’s condition (4.1.11). Suppose that (4.2.6) is satisfied for some α P p0, 1{2q,

i.e.,

Hαptq “

ż t

0

dr r´2α

ż

Rd

pfpdξq exp
`

´r|ξ|
2
˘

ă 8 for all t ą 0.
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Fix an arbitrary t0 ě 0. Let vpt, xq be the solution to the restarted SHE (4.3.6) and 9Wt0 be the

time-shifted noise (see (4.3.7)) when t0 ą 0 and let v “ u when t0 “ 0. Then

Yvps, yq :“ rYαb p˝, vp¨, ˝qqs ps, yq “

ż s

0

ż

Rd

ps ´ rq´αGps ´ r, y ´ zqbpz, vpr, zqqWt0pdr, dzq

(4.4.2)

has the following properties:

(1) for all q ě 2, s ą 0, y P Rd,

}Yvps, yq}
2
q ď H

`

s ` t0; 32qL
2
b

˘

J2
0 ps ` t0, y;µ

˚
q Hαpsq ă 8, (4.4.3)

where µ˚ “ 1 ` |µ| and we refer to Theorem 4.3.2 for the function H pt; γq;

(2) under the two conditions in (4.1.10), if the integral in (4.2.6) is finite for some α P

p64L2
bΥp0q, 1{2q, then for any q with 1{q P p64L2

bΥp0q, αq, the function H pt; 32qL2
bq in

(4.4.3) is uniformly bounded in t ě 0, i.e., suptě0H pt; 32qL2
bq ă 8;

(3) under the two conditions in (4.1.10), if the integral in (4.2.6) is finite for some α P

p64L2
bΥp0q, 1{2q, then for any q with 1{q P p64L2

bΥp0q, αq and for any nonnegative and

L1pRdq-function ρ, there exists a constant Θ “ Θ pq, Lb, L0, αq, which does not depend

on t, such that for t ą 0,

E
ˆ
ż t

0

}Yvps, ¨q}
q
ρ ds

˙

ď Θ

ż t

0

rGρps ` t0;µq Hαpsqs
q{2 ds, (4.4.4)

which is finite provided that

ż t

0

rGρps ` t0;µq Hαpsqs
q{2 ds ă 8. (4.4.5)

Remark 4.4.3. Condition (4.4.5) is true for t0 ą 0 because Gρpt;µq is a continuous function

for t ą 0 and Hαpsq is continuous and bounded for s P r0, ts thanks to (4.2.6). However, when

t0 “ 0, the situation is much more trickier. For example, when the initial condition is the delta
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initial condition, we have that

Gρ̃pt; δ0q “

ż

Rd

Gpt, xq
2ρpxqdx “ Gp2t, 0q

ż

Rd

Gpt{2, xqρpxqdx ă 8,

where one can obtain the second equality via (4.1.20). Hence, when s Ñ 0, Gρ̃ps; δ0q blows

up with a rate s´d{2. On the other hand, Hαpsq goes to zero with a different rate. One needs

to combine these two rates to check if condition (4.4.5) holds. By introducing t0 and restarting

the heat equation, one can avoid this issue, that being the potential singularity of Gρ̃ at s “ 0.

Proof. In the proof, we use C to denote a generic constant that may change its value at each

appearance.

(1) We first prove (4.4.3). By the Burkholder-Davis-Gundy inequality and Minkowski’s integral

inequality, we see that

}Yvps, yq}
2
q ď C

ż s

0

dr ps ´ rq´2α

ĳ

R2d

dz1dz2 Gps ´ r, y ´ z1q }b pz1, vpr, z1qq}q

ˆfpz1 ´ z2qGps ´ r, y ´ z2q }b pz2, vpr, z2qq}q .

Note that for the Lipschitz condition in (4.1.3), we have that

|b px, vq| ď |b px, vq ´ b px, 0q| ` |b px, 0q| ď Lb|v| ` L0 ď Cp1 ` |v|q, C :“ Lb _ L0.

We apply this and the moment bound (4.3.2) to }bpzi, vpr, ziqq}q above to see that

}bpzi, vpr, ziqq}q ď C
´

1 ` }vpr, ziq}q

¯

“ C
´

1 ` }upr ` t0, ziq}q

¯

ď CH
`

r ` t0; 32qL
2
b

˘

J0 pr ` t0, zi;µ
˚
q

ď CH
`

s ` t0; 32qL
2
b

˘

J0 pr ` t0, zi;µ
˚
q , i “ 1, 2, r P p0, sq, (4.4.6)
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where in the last step, we have used the fact that Hpt; γq is a nondecreasing function; see

Lemma 2.6 of [CK19]. Therefore, by denoting Cs :“ H ps ` t0; 32qL
2
bq,

}Yvps, yq}
2
q ď CCs

ż s

0

dr ps ´ rq´2α

ĳ

R2d

dz1dz2 fpz1 ´ z2q
2
ź

i“1

ˆ

Gps ´ r, y ´ ziqJ0 pr ` t0, zi;µ
˚
q

˙

“ CCs

ż s

0

dr ps ´ rq´2α

ĳ

R2d

µ˚
pdσ1qµ

˚
pdσ2q

ĳ

R2d

dz1dz2

ˆ fpz1 ´ z2q
2
ź

i“1

ˆ

Gps ´ r, y ´ ziqGpr ` t0, zi ´ σiq

˙

“ CCs

ż s

0

dr ps ´ rq´2α

ĳ

R2d

µ˚
pdσ1qµ

˚
pdσ2q Gps ` t0, y ´ σ1qGps ` t0, y ´ σ2q

ˆ

ĳ

R2d

dz1dz2fpz1 ´ z2q
2
ź

i“1

G

ˆ

pr ` t0qps ´ rq

s ` t0
, zi ´ σi

r ` t0
s ` t0

´
s ´ r

s ` t0
y

˙

ď CCsp2πq
´2d

ż s

0

dr ps ´ rq´2α

ĳ

R2d

µ˚
pdσ1qµ

˚
pdσ2q Gps ` t0, y ´ σ1qGps ` t0, y ´ σ2q

ˆ

ż

Rd

pfpdξq exp

ˆ

´
pr ` t0qps ´ rq

s ` t0
|ξ|

2

˙

,

where we have applied (4.1.20) and Plancherel’s theorem. Hence,

}Yvps, yq}
2
q ď CCsp2πq

´2dJ2
0 ps ` t0, y;µ

˚
q

ż s

0

dr ps ´ rq´2α

ż

Rd

pfpdξq exp

ˆ

´
pr ` t0qps ´ rq

s ` t0
|ξ|

2

˙

.

Because the function

t0 ÞÑ
r ` t0
s ` t0

“ 1 ´
s ´ r

s ` t0
for t0 ą 0,

is nondecreasing in t0 whenever s ą r ą 0, we can replace the two appearances of t0 in the

exponent of the above inequality by zero to see that

}Yvps, yq}
2
q ď CCsp2πq

´2dJ2
0 ps` t0, y;µ

˚
q

ż s

0

dr ps´ rq´2α

ż

Rd

pfpdξq exp

ˆ

´
rps ´ rq

s
|ξ|

2

˙

.

(4.4.7)
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Furthermore, by symmetry of rps´ rq{s and the fact that rps´ rq{s ě r{2 for all r P r0, s{2s,

we see that the above double integral is bounded by

ď 2

ż s{2

0

dr r´2α

ż

Rd

pfpdξq exp
´

´
r

2
|ξ|

2
¯

“ 22p1´αq

ż s{4

0

dr r´2α

ż

Rd

pfpdξq exp
`

´r|ξ|
2
˘

ď 22p1´αq

ż s

0

dr r´2α

ż

Rd

pfpdξq exp
`

´r|ξ|
2
˘

“ 22p1´αqHαpsq.

Plugging the above bound back to (4.4.7) proves (4.4.3).

(2–3) Part (2) is a direct consequence of Theorem 4.3.2. It remains to prove (4.4.4). An

application of Minkowski’s inequality shows that

E
´

}Yvps, ¨q}
q
ρ

¯

“

›

›

›

›

ż

Rd

Yvps, yq
2ρpyqdy

›

›

›

›

q{2

q{2

ď

ˆ
ż

Rd

}Yvps, yq}
2
q ρpyqdy

˙q{2

. (4.4.8)

By the definition of Gρpt;µq in (4.1.15) and by (4.4.3), we see that

ż

Rd

}Yvps, yq}
2
q ρpyqdy ď C Gρps ` t0;µqHαpsq.

Plugging the above expression to the far right-hand side of (4.4.8) proves (4.4.4). Finally, the

finiteness of the upper bound in (4.4.4) is guaranteed by condition (4.4.5). This completes the

proof of Lemma 4.4.2.

Lemma 4.4.4 (Factorization lemma). Suppose that µ — the initial condition for u — satisfies

(4.3.1) and pf satisfies Dalang’s condition (4.1.11). Assume that condition (4.2.6) is satisfied

for some α P p0, 1{2q. Fix an arbitrary t0 ě 0. Let vpt, xq be the solution to the restarted SHE

(4.3.6) and 9Wt0 be the time-shifted noise (see (4.3.7)) when t0 ą 0 and let v “ u when t0 “ 0.

Then the following factorization holds

sinpαπq

π

ż t

0

pt´sqα´1
rGpt ´ s, ¨q ˚ Yvps, ¨qs pxqds “

ż t

0

ż

Rd

Gpt´r, x´zqbpz, vpr, zqqWt0pdr, dzq,
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for all t ą 0 and x P Rd. As a consequence,

vpt, xq “ rGpt, ¨q ˚ upt0, ¨;µqs pxq `
sinpαπq

π
rFαYvs pt, xq, for all t ą 0 and x P Rd.

(4.4.9)

Proof. The lemma is straightforward provided that one can switch the orders of stochastic and

ordinary integrals:

ż t

0

pt ´ sqα´1
rGpt ´ s, ¨q ˚ Yvps, ¨qs pxqds

“

ż t

0

ds pt ´ sqα´1

ż

Rd

dy Gpt ´ s, x ´ yq

ˆ

ż s

0

ż

Rd

ps ´ rq´αGps ´ r, y ´ zqbpz, vpr, zqqWt0pdr, dzq

“

ż t

0

ds pt ´ sqα´1

ż s

0

ż

Rd

ps ´ rq´αGpt ´ r, x ´ zqbpz, vpr, zqqWt0pdr, dzq (4.4.10)

“

ż t

0

ż

Rd

W pdr, dzqGpt ´ r, x ´ zqbpz, vpr, zqq

ż t

r

ds ps ´ rq´α
pt ´ sqα´1 (4.4.11)

“
π

sinpαπq

ż t

0

ż

Rd

Gpt ´ r, x ´ zqbpz, vpr, zqqWt0pdr, dzq,

where the last step is the Beta integral which requires that α P p0, 1q. It remains to justify

the two applications of the stochastic Fubini’s theorem (see Theorem 5.30 of Chapter one in

[Dal+09], or also [Wal86] or Theorem 4.33 of [DZ14]) in (4.4.10) and (4.4.11) in the following

two steps.

Step 1. In this step, we justify the change of orders in (4.4.10). Note that t, x and s are fixed.

It suffices to prove the following condition:

I1 :“

ż

Rd

dy Gpt ´ s, x ´ yq

ż s

0

dr ps ´ rq´2α

ĳ

R2d

dz1dz2

ˆ fpz1 ´ z2q

˜

2
ź

i“1

Gps ´ r, y ´ ziq

¸

E

˜

2
ź

i“1

bpzi, vpr, ziqq

¸

“

ż

Rd

dy Gpt ´ s, x ´ yq }Yvps, yq}
2
2

ă ` 8.
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But this follows immediately from (4.4.3). Indeed

ż

Rd

dy Gpt ´ s, x ´ yq }Yvps, yq}
2
2 ďC

ż

Rd

dy Gpt ´ s, x ´ yqJ2
0 ps ` t0, y;µ

˚
qHαpsq

“CHαpsq

ż

Rd

dy Gpt ´ s, x ´ yq

ĳ

R2d

µ˚
pdz1qµ

˚
pdz2q

ˆ G ps ` t0, y ´ z1qG ps ` t0, y ´ z2q .

Now we bound the three heat kernels using (4.1.20) as follows:

Gpt ´ s, x ´ yq

2
ź

i“1

Gps ` t0, y ´ ziq

“
G p2pt ´ sq, x ´ yq

2

G p4pt ´ s, 0q

2
ź

i“1

G ps ` t0, y ´ ziq

ď 2d
G p2pt ´ sq, x ´ yq

2

G p4pt ´ sq, 0q

2
ź

i“1

G p2s ` 2t0, y ´ ziq

“ 2dr4pt ´ sqs
d{2

2
ź

i“1

„

G p2s ` 2t0, y ´ ziqG p2pt ´ sq, x ´ yq

ȷ

“ 22dpt ´ sqd{2
2
ź

i“1

„

G p2pt ` t0q, x ´ ziqG

ˆ

2pt ´ sqps ` t0q

t ` t0
, y ´

s ` t0
t ` t0

px ´ ziq

˙ȷ

ď 22dpt ´ sqd{2
2
ź

i“1

„

G p2pt ` t0q, x ´ ziqG

ˆ

2pt ´ sqps ` t0q

t ` t0
, 0

˙ȷ

ď Ct,s,t0

2
ź

i“1

G p2pt ` t0q, x ´ ziq .

Therefore, I1 ď Ct,s,t0 Hαpsq J2
0 p2pt ` t0q, x;µ

˚q ă 8.

Step 2. Similarly, as for (4.4.11), we need to show that

I2 :“

ż t

0

ds pt ´ sqα´1

ż s

0

dr ps ´ rq´2α

ĳ

R2d

dz1dz2

ˆ fpz1 ´ z2q

˜

2
ź

i“1

Gpt ´ r, x ´ ziq

¸

E

˜

2
ź

i“1

bpzi, vpr, ziqq

¸

ă 8.
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By the Cauchy Schwartz inequality, (4.4.6) and because α P p0, 1{2q,

I2 ďC

ż t

0

ds pt ´ sqα´1

ż s

0

dr ps ´ rq´2α

ĳ

R2d

dz1dz2 fpz1 ´ z2q
2
ź

i“1

ˆ

Gpt ´ r, x ´ ziqJ0 pr ` t0, zi;µ
˚
q

˙

“C 1

ż t

0

dr pt ´ rq´α

ĳ

R2d

dz1dz2 fpz1 ´ z2q

2
ź

i“1

ˆ

Gpt ´ r, x ´ ziqJ0 pr ` t0, zi;µ
˚
q

˙

.

Now by the same arguments as those leading to (4.4.3) (with 2α there replaced by α), we see

that

I2 ď CJ2
0 pt, x;µ˚

q

ż t

0

dr r´α

ż

Rd

pfpdξq exp

ˆ

´
rpt ´ rq

t
|ξ|

2

˙

,

which is finite by (4.2.6) where we replace α with α{2 and repeat the same steps right after

(4.4.7). This completes the proof of Lemma 4.4.4.

Finally, we characterize conditions (4.1.13) and (4.2.6) in the following lemma:

Lemma 4.4.5. For all α P p0, 1{2s, we have the following properties:

(1) p2πq
´dHαptq ď Γ p1 ´ 2αqΥ2αp0q for all t ą 0 and hence

Υ2αp0q ă 8 ùñ Hαptq ă 8 for all t ą 0; (4.4.12)

(2) limtÑ8 p2πq
´dHαptq “ Γ p1 ´ 2αqΥ2αp0q;

(3) if Υp0q ă 8, then the reverse implication of (4.4.12) holds.

Proof. We only need to consider the case when α ą 0. It is clear that the function Hαptq is

nondecreasing. Hence, (2) implies (1). As for (2), by Fubini’s theorem, we see that

lim
tÑ8

Hαptq “

ż 8

0

dr r´2α

ż

Rd

pfpdξqe´r|ξ|2
“ Γp1 ´ 2αq

ż

Rd

pfpdξq

|ξ|2p1´2αq
“ CΥ2αp0q, (4.4.13)
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with C :“ Γp1 ´ 2αqp2πqd. As for (3), for any t ą 0 we split the dr integral of (4.4.13) into

two parts and see that

CΥ2αp0q “

ż 8

0

dr r´2α

ż

Rd

pfpdξq exp
`

´r|ξ|
2
˘

“ Hαptq ` Iαptq, with

Iαptq “

ż 8

t

dr r´2α

ż

Rd

pfpdξq exp
`

´r|ξ|
2
˘

.

Notice that

Iαptq ď t´2α

ż 8

t

dr

ż

Rd

pfpdξqe´r|ξ|2
“ t´2α

ż

Rd

pfpdξq

|ξ|2
e´t|ξ|2

ď t´2α

ż

Rd

pfpdξq

|ξ|2
“

p2πq
d

t2α
Υp0q.

Therefore,

Υ2αp0q ď
Hαptq

p2πqdΓp1 ´ 2αq
`

Υp0q

Γ p1 ´ 2αq t2α
ă 8, for all t ą 0,

which proves (3).

4.5 Tightness and Construction – Proof of Theorem 4.1.3

4.5.1 Proof of part (a) of Theorem 4.1.3

We are now ready to prove part (a) of Theorem 4.1.3.

Proof of Theorem 4.1.3 (a). In this proof, upt, xq refers to upt, x;µq. Fix τ ą 0 and let t0 “

τ{2. Throughout the proof, we have t ě τ . Let v be the solution to (4.3.6) that is restarted from

t ´ t0. Then (see Figure 4.3 for an illustration)

vt ps, xq
L
“ u ps, x;u pt ´ t0, ¨;µqq for s ě 0 and t ě τ . (4.5.1)

According to Assumption (i), we can choose and fix some admissible weight function ρ̃

such that (4.1.17) is satisfied. Hence, by Proposition 4.2.2, the following set

K1pΛq :“
!

`

Gpt0, ¨q ˚ yp¨q
˘

pxq : }y}ρ̃ ď Λ
)

with Λ ą 0
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s

0 t0 τ t ´ t0 t t ´ t0 ` s

upt ´ t0 ` s, x;µq

||

u ps, x;upt ´ t0, ¨;µqq

s
0 t0 s

vtps, xq

Figure 4.3: An illustration for the restarted SHE in (4.5.1).

is relatively compact in L2
ρpRdq.

Assumption (iii), i.e., (4.1.10), implies that the interval p64L2
bΥp0q, 1{2q is not empty.

Moreover, Assumption (iv), i.e., (4.1.13), guarantees that there exists a constant α in this in-

terval, namely, 64L2
bΥp0q ă α ă 1{2, such that (4.1.13) holds with α replaced by 2α, i.e.,

Υ2αp0q ă 8. Now we can apply part (3) of Lemma 4.4.5, thanks to (4.1.10a), to see that

Υ2αp0q ă 8 if and only if (4.2.6) holds. Therefore, both Lemmas 4.4.2 and 4.4.4 (more pre-

cisely part (3) of Lemma 4.4.2) are applicable. In particular, Lemma 4.4.4 ensures that the

following factorization is well defined:

vpt0, xq “

´

Gpt0, ¨q ˚ upt ´ t0, ¨q
¯

pxq `
sinpαπq

π
rFαYvs pt0, xq. (4.5.2)

Part (3) of Lemma 4.4.2 shows that for any q in the following range,

64L2
bΥp0q ă

1

q
ă α ă

1

2

ˆ

or equivalently 2 ă
1

α
ă q ă

1

64L2
bΥp0q

˙

, (4.5.3)

we can apply Proposition 4.4.1 to see that the following set

K2pΛq :“
!

pFαhqpt0, xq : }h}Lqpp0,t0q;L2
ρ̃pRdqq ď Λ

)

with Λ ą 0
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is relatively compact in L2
ρpRdq. Now for any Λ ą 0, define the set K pΛq as

K pΛq :“ K1pΛq ` K2pΛq

“

!

`

Gpt0, ¨q ˚ yp¨q
˘

pxq ` pFαhqpt0, xq : }y}ρ̃ ď Λ and }h}Lqpp0,t0q;L2
ρ̃pRdqq ď Λ

)

.

Notice that from the factorization formula (4.5.2),

P rvpt0, ¨q R K pΛqs ď P

«

ˆ
ż t0

0

}Yvps, ¨q}
q
ρ̃ ds

˙1{q

ą
πΛ

sinpαπq

ff

` P
”

}upt ´ t0, ¨q}ρ̃ ą Λ
ı

“: I1 ` I2.

By Chebyshev’s inequality and (4.1.16), we see that

I2 ď
1

Λ2
E
´

}upt ´ t0, ¨q}
2
ρ̃

¯

ď
1

Λ2
Gρ̃ pt ´ t0;µq .

Because Gρ̃pt;µq is a continuous function for t ą 0, and because it is also bounded at infinity,

thanks to Assumption (ii) (see (4.1.18)), we have that

Gρ̃ pt ´ t0;µq ď sup
těτ

Gρ̃ pt ´ t0;µq “ sup
tět0

Gρ̃ pt;µq ă 8. (4.5.4)

Therefore, we can bound I2 from above with a constant that does not depend on t ě τ , namely,

I2 ď
1

Λ2
sup
tět0

Gρ̃ pt;µq ă 8.

As for I1, with the choice of α and q in (4.5.3), one can apply Chebyshev’s inequality and

part (3) of Lemma 4.4.2 to see that

I1 ď
sinqpαπq

πqΛq
E
ż t0

0

}Yvps, ¨q}
q
ρ̃ ds ď

sinqpαπq

πqΛq
Θ

ż t0

0

pGρ̃ps ` t ´ t0;µqHαpsqq
q{2 ds,

where the constant Θ does not depend on t. As we have seen from above, since Υ2αp0q ă 8, we

can apply Lemma 4.4.5 to bound Hαpsq from above by the finite bound: p2πq
d Γp1´2αqΥ2αp0q.
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Hence, together with (4.5.4), we obtain the following upper bound for I1 that is uniform in

t ě τ :

I1 ď
sinqpαπqΘp2πqdq{2t0

Γ p1 ´ 2αq
q{2 πqΛq

ˆ

sup
tět0

Gρ̃ pt;µq

˙q{2

Υ
q{2
2α p0q.

Combining these two upper bounds, we see that

P rvpt0, ¨q R K pΛqs ď
sinqpαπqΘp2πqdq{2t0

Γ p1 ´ 2αq
q{2 πqΛq

ˆ

sup
tět0

Gρ̃ pt;µq

˙q{2

Υ
q{2
2α p0q `

1

Λ2
sup
tět0

Gρ̃ pt;µq ă 8,

with the upper bound holding uniformly for all t ě τ . Hence, for any ϵ ą 0, by choosing Λ ą 0

big enough such that

sinqpαπqΘp2πqdq{2t0

Γ p1 ´ 2αq
q{2 πqΛq

ˆ

sup
tět0

Gρ̃ pt;µq

˙q{2

Υ
q{2
2α p0q `

1

Λ2
sup
tět0

Gρ̃ pt;µq ă ϵ,

we can ensure that

P pupt, ¨q P K pΛqq “ P pvpt0, ¨q P K pΛqq ě 1 ´ ϵ, for all t ě τ ,

which proves part (a) of Theorem 4.1.3.

4.5.2 Proof of part (b) of Theorem 4.1.3

Proof. Fix an arbitrary τ ą 0 and denote

UpT q :“
1

T

ż T`τ

τ

L pupt, ¨;µqq dt, T ą 0.

We claim that the family of laws UpT, ¨q for T ą 0 is tight in L2
ρpRdq. Indeed, for any ϵ P p0, 1q,

by part (a), there exists a compact set K P L2
ρpRdq such that (4.1.19) holds. This implies that

UpT q pKq “
1

T

ż T`τ

τ

L pupt, ¨;µqq pKq dt ě
1

T

ż T`τ

τ

p1 ´ ϵq dt “ 1 ´ ϵ, for all T ą 0.
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Let tTnunPN be any deterministic sequence such that Tn Ò 8. Since tUpTnquně1 is a tight

sequence of measures, then there exists a subsequence tU pTnmqumě1 that converges weakly

to a measure, η, on L2
ρpRdq (e.g. see [Bil99, Theorem 5.1]). Then one can apply the Krylov-

Bogoliubov existence theorem (see, e.g., [DZ14, Theorem 11.7]) to conclude that the measure

η is an invariant measure for L pupt, ¨;µqq, t ě τ . Finally, since τ can be arbitrarily close to

zero, one can conclude part (b) of Theorem 4.1.3.

123



References

[ACQ11] Gideon Amir, Ivan Corwin, and Jeremy Quastel. “Probability distribution of the

free energy of the continuum directed random polymer in 1 ` 1 dimensions”. In:

Comm. Pure Appl. Math. 64.4 (2011), pp. 466–537 (cit. on p. 94).

[AR10] R. A. Askey and R. Roy. “Gamma function”. In: NIST handbook of mathematical

functions. 2010, pp. 135–147 (cit. on p. 102).

[AMN20] Sunday A. Asogwa, Jebessa B. Mijena, and Erkan Nane. “Blow-up results for

space-time fractional stochastic partial differential equations”. In: Potential Anal.

53.2 (2020), pp. 357–386 (cit. on pp. 8, 73).

[AM03] Sigurd Assing and Ralf Manthey. “Invariant measures for stochastic heat equations

with unbounded coefficients”. In: Stochastic Process. Appl. 103.2 (2003), pp. 237–

256 (cit. on pp. 89, 91).

[BC18] Raluca M. Balan and Le Chen. “Parabolic Anderson model with space-time homo-

geneous Gaussian noise and rough initial condition”. In: J. Theoret. Probab. 31.4

(2018), pp. 2216–2265 (cit. on p. 4).

[BCC22] Raluca M. Balan, Le Chen, and Xia Chen. “Exact asymptotics of the stochastic

wave equation with time-independent noise”. In: to appear in Ann. Inst. Henri

Poincaré Probab. Stat., preprint at arXiv:2007.10203 (2022) (cit. on pp. ii, 17, 21,

27, 28, 35, 47, 49, 51, 52, 54, 56–59).

[BS17] Raluca M. Balan and Jian Song. “Hyperbolic Anderson model with space-time

homogeneous Gaussian noise”. In: ALEA Lat. Am. J. Probab. Math. Stat. 14.2

(2017), pp. 799–849 (cit. on p. 33).

124



[BCR09] Richard Bass, Xia Chen, and Jay Rosen. “Large deviations for Riesz potentials

of additive processes”. In: Ann. Inst. Henri Poincaré Probab. Stat. 45.3 (2009),

pp. 626–666 (cit. on pp. 35–37, 39, 61).

[Bil99] Patrick Billingsley. Convergence of probability measures. Second. A Wiley-Interscience

Publication. John Wiley & Sons, Inc., New York, 1999, pp. x+277. ISBN: 0-471-

19745-9 (cit. on p. 123).

[BS73] Ficher Black and Myron Scholes. “The Pricing of Options and Corporate Liabili-

ties”. In: Journal of Political Economy 81.3 (1973), pp. 637–654 (cit. on p. 1).

[BG09] F. Bonder and P. Groisman. “Space time white noise eliminates and global solu-

tions in reaction diffusion equations”. In: Physica D 238 (2009), pp. 209–215 (cit.

on pp. 8, 73).

[CM95] R. A. Carmona and S. A. Molchanov. “Stationary parabolic Anderson model and

intermittency”. In: Probab. Theory Related Fields 102.4 (1995), pp. 433–453 (cit.

on p. 4).

[CM94] René A. Carmona and S. A. Molchanov. “Parabolic Anderson problem and inter-

mittency”. In: Mem. Amer. Math. Soc. 108.518 (1994), pp. viii+125 (cit. on pp. 4,

89, 91).

[Che17a] Le Chen. “Nonlinear stochastic time-fractional diffusion equations on R: moments,

Hölder regularity and intermittency”. In: Trans. Amer. Math. Soc. 369.12 (2017),

pp. 8497–8535 (cit. on p. 22).

[CD13] Le Chen and Robert C. Dalang. “Moments and growth indices for the nonlinear

stochastic heat equation with rough initial conditions”. In: Preprint arXiv:1307.0600

(2013) (cit. on p. 4).

[CD14] Le Chen and Robert C. Dalang. “Hölder-continuity for the nonlinear stochastic

heat equation with rough initial conditions”. In: Stoch. Partial Differ. Equ. Anal.

Comput. 2.3 (2014), pp. 316–352 (cit. on p. 4).

125



[CH21] Le Chen and Guannan Hu. “Hölder regularity of the nonlinear stochastic time-

fractional slow and fast diffusion equations on Rd”. In: Preprint arXiv:2105.00891

(2021) (cit. on p. 80).

[CHN19] Le Chen, Yaozhong Hu, and David Nualart. “Nonlinear stochastic time-fractional

slow and fast diffusion equations on Rd”. In: Stochastic Process. Appl. 129.12

(2019), pp. 5073–5112 (cit. on pp. 4, 14, 15, 34, 47, 72, 75, 76, 80).

[CH19] Le Chen and Jingyu Huang. “Comparison principle for stochastic heat equation on

Rd”. In: Ann. Probab. 47.2 (2019), pp. 989–1035 (cit. on pp. 91, 105, 108, 109).

[CK19] Le Chen and Kunwoo Kim. “Nonlinear stochastic heat equation driven by spatially

colored noise: moments and intermittency”. In: Acta Math. Sci. Ser. B (Engl. Ed.)

39.3 (2019), pp. 645–668 (cit. on pp. 4, 11, 89, 91, 105, 109, 114).

[Che+17] Le Chen et al. “Space-time fractional diffusions in Gaussian noisy environment”.

In: Stochastics 89.1 (2017), pp. 171–206 (cit. on pp. 15, 23).

[Che12] Xia Chen. “Quenched asymptotics for Brownian motion of renormalized Poisson

potential and for the related parabolic Anderson models”. In: Ann. Probab. 40.4

(2012), pp. 1436–1482 (cit. on pp. 42–44).

[Che17b] Xia Chen. “Moment asymptotics for parabolic Anderson equation with fractional

time-space noise: in Skorokhod regime”. In: Ann. Inst. Henri Poincaré Probab.

Stat. 53.2 (2017), pp. 819–841 (cit. on pp. 17, 28).

[Che19] Xia Chen. “Parabolic Anderson model with rough or critical Gaussian noise”. In:

Ann. Inst. Henri Poincaré Probab. Stat. 55.2 (2019), pp. 941–976 (cit. on p. 17).

[CL04] Xia Chen and Wenbo V. Li. “Large and moderate deviations for intersection lo-

cal times”. In: Probab. Theory Related Fields 128.2 (2004), pp. 213–254 (cit. on

p. 37).

[Che+15] Xia Chen et al. “Exponential asymptotics for time-space Hamiltonians”. In: Ann.

Inst. Henri Poincaré Probab. Stat. 51.4 (2015), pp. 1529–1561 (cit. on pp. 28, 42,

45, 47).

126



[Che+18] Xia Chen et al. “Temporal asymptotics for fractional parabolic Anderson model”.

In: Electron. J. Probab. 23 (2018), Paper No. 14, 39 (cit. on p. 29).

[Che+21] Xia Chen et al. “Moment estimates for some renormalized parabolic Anderson

models”. In: Ann. Probab. 49.5 (2021), pp. 2599–2636 (cit. on pp. 21, 37).
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