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Abstract   

 

  In the past, researchers chose models organisms to answer research questions based on 

their simplicity in morphology, domestication, and/or life history traits. Now, with high 

throughput sequencing (HTS) rapidly becoming cheaper, more investigations are tractable even 

with relatively small budgets. This is important because there are many complex and system-

specific questions about natural populations and natural phenomenon that cannot be answered 

with traditional model organisms. Further, we cannot refine our understanding of life and 

biodiversity in a small unrepresentative subset of model organisms. The goal of this work is the 

generation of omics and cell culture resources for research on Daphnia and Anolis genera, 

respectively. I discuss their applicability for investigations of natural populations in the context 

of conservation and organisms themselves. Chapters One & Two develop omics resources in 

Daphnia systems, which are highly tractable evolutionary and ecotoxicology models. Chapter 

One, a published manuscript in G3, describes the generation of reference-guided draft genome 

assemblies for two strains of D. pulicaria with differential responses to toxic algal blooms. 

These assemblies with a high-quality curation of genes can be used for several downstream 

investigations, including the exploration of differential gene expression in response to algal 

toxins and identification of sequence variants associated with toxin resistance. Chapter Two 

diverts focus to the technical side of omics investigations where I explore 18 different 

combinations of RNA-seq tools for DGE analysis using a computationally tractable caloric 

restriction data set from D. pulex. I discuss the variation in biological or functional results due to 

the different tool combinations and explore variation at each step of the pipelines. The work 

presented in this chapter is the basis for three manuscripts in development: (1) the current 

chapter to be expanded and contrasted across species; (2) the biological inferences from the 
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RNA-seq results in conjunction with phenotypic data; and (3) the code used for these 

comparisons as a detailed tutorial for instructors to teach these analyses using a non-model 

system.  My final chapter details the generation of cellular resources for testing in silico or omics 

generated functional predictions. I develop primary and early passage cells for > 100 lizards 

from the Anolis genus, providing methods for establishment and validation of reptile primary 

cells. I discuss their applicability in the context of studying protected and/or cryptic species in a 

dish!  
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INTRODUCTION  

  

1.1 Motivations to Study Phenotypic Variation  

The desire to understand the complexities of life have beckoned interest and efforts 

of researchers across the biological sciences before the time of Rosalind Franklin, Robert 

Hooke, or even Aristotle (Voultsiadou et al. 2017; Vucetich et al. 2021). With the 

contributions of these few individuals and the countless more that came before and after 

their time, we have learned that our world consists of a mind-blowing amount of variation 

and diversity at every level of the biological hierarchy, from gene to cell to organism 

phenotypes. We have explored many questions at these biological levels, whether those 

questions addressed the breadth of phenotypic variation on Earth (Gerovasileiou et al. 

2015; Anderson 2018),  how new phenotypes arise and disperse through populations (Orr 

1998; Fox et al. 2019; Card et al. 2019), or the mechanisms (i.e., ecological and/or 

molecular) underlying phenotypes (Christe et al. 2000; Schlichting and Smith 2002; 

Lomolino 2005; Schwander et al. 2014; Funk et al. 2016; Herrera-Álvarez et al. 2018; 

Benítez-López et al. 2021). Often these investigations, along with the progression of 

technology, have generated just as many new questions as they have answers! While 

there is still a plethora of questions in individual biological fields, what has fascinated me 

most are the questions that require integrative approaches across fields and biological 

hierarchy. These tantalizing questions and investigations can tell the intricate stories of 

life, representing both its connectivity and diversity.   
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Even with the incredible amount of variation in life, there are still many conserved or 

convergent biological systems across numerous, distinct groups of organisms. As an 

example, consider metabolic regulation in traditional model systems (yeast, fly, mouse, 

nematode) and other systems (cow, chicken, dogs, snakes). There is an overwhelming 

amount of evidence for the GH-IIS pathway as a conserved molecular system regulating 

this trait across these very different taxa (Barbieri et al. 2003; Metallo and Heiden 2013; 

Khan et al. 2014; Perry et al. 2019; Fujita et al. 2019; Chowański et al. 2021; Chatterjee 

and Perrimon 2021). Further, the GH-IIS regulates, in part, the confounded traits of 

growth, reproduction, and aging at the level of the cell and the organism (Barbieri et al. 

2003; Denley et al. 2005). For me, contemplating these ideas always brings me to the 

question “how does such extensive phenotypic diversity arise from seemingly constrained 

genetic sequences and molecular networks?”  

Understanding how evolutionary forces, like natural selection, acts across molecular 

networks may provide more comprehensive insight on the evolution of complex traits, or 

traits regulated and determined by multiple genes and environmental interactions, that are 

often regulated by these networks. The field has benefited from the many molecular 

evolution studies to date that endeavor to provide this insight, even though they mostly 

focus on a single to a few candidate genes (Hoekstra 2006; Hsu et al. 2008; Radwan and 

Babik 2012). While all efforts are integral to our understanding of how complex 

phenotypic traits evolve, the omission of environmental and multigenic interactions limits 

our detection of factors that contribute to the evolution of the novel phenotypes vital to 

Earth’s biodiversity. The relatively minor lag in omnigenic approaches to molecular 
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evolution studies in well-funded, established model organisms could be attributed to our 

limited ability to mathematically model these networks and the tractability of studying 

mendelian traits (Glazier et al. 2002; Belmont and Leal 2005; Mathieson 2021). 

However, in systems that deviate from the traditional models, this issue is compounded 

by a lack of resources to address questions in these less-developed systems.  

  

1.2 Motivations to Use Non-model Organisms  

Biological research is seemingly dominated by a few study systems, deemed model 

organisms. ‘Model organism” was a term originally reserved for taxa that had certain 

levels of tractability for scientific investigations (Müller and Grossniklaus 2010). 

Typically, this tractability was in the context of an organism’s reproductive rates, size, 

ease of genetic manipulation, and ease of obtainment or handling or culturing in 

laboratory settings. Today, “model organism” is used ubiquitously for taxa supported by 

extensive system knowledge and/or resources (standard methodology, databases, 

informatics) and they often address a specific biological process or phenomenon (Ankeny 

and Leonelli 2011). Model organisms provide an invaluable platform for scientific 

investigations. We frequently solve problems using reductionist methods, with the idea 

that removing complexities can provide more direct investigation of the problem at hand 

(i.e., modelling). This was one motivation of developing the bacteria Escherichia coli as a 

model organism. Prior to the 1950s emergence of molecular biology, E. coli were already 

being extensively used in viral and microbiological investigations. Following the 

emergence of molecular biology came foundational knowledge of DNA replication, gene 
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expression, and restriction enzymes, all initially generated in E. coli models (Blount 

2015). Many questions pertaining to eukaryotes, let alone vertebrates, could not be 

answered in this prokaryotic model. This required increasingly complex, diverse models 

like yeast, flies, and mice. These models have clarified and resolved many basic 

molecular biology questions about eukaryotes and have been extensively used as disease 

models in the biomedical sciences (Veldman and Lin 2008; Howe et al. 2013; Menezes et 

al. 2015; Blount 2015; Baldridge et al. 2021). While I cannot deny the indispensability of 

model organisms, we still cannot ignore how much they have contributed to investigative 

tunnel vision. Due to their tractability, more studies were performed in model organisms 

and concomitantly more resources were developed and optimized for these limited 

number of systems. This eventually created a culture of using these models to answer 

questions that they may not have been suitable for because there were adequate resources 

for them and an assumption that model organisms would be broadly representative across 

taxa (Leonelli and Ankeny 2013; Seifirad and Haghpanah 2019). Developing a model is 

not trivial, both in the context of effort and costs when you consider the need for 

characterization of an organism (i.e., anatomically, ecologically), molecular tools 

compatible with an organism (i.e., antibodies, biomaterials, standardized protocols), 

breeding/husbandry, and information infrastructure (i.e., databases, biological products, 

and molecular data). Yet, we are limited in the depth and scope of our investigations of 

biodiversity without adequate access to numerous, well-distributed representatives across 

the Tree of Life. In science, we base our understanding on the outcomes of observation 
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and experimentation, but how complete can our understanding of life actually be when 

we have a been focusing on a narrow collection of organisms?  

  

1.3 How Technology is Bringing Balance  

We are already seeing researchers step out of their comfort model organisms, 

developing new systems to answer questions about unique biological phenomena. This is 

largely due to the advent of massively paralleled or high throughput sequencing (HTS) 

technologies that has allowed large scale investigations of genes, proteins, metabolites, 

and other molecules of interest (Soon et al. 2013; Reuter et al. 2015). Advances in 

biotechnology and biochemistry have driven the cost of HTS lower and lower, opening 

the door for non-model investigations in the omics era (Ellegren 2014; Reuter et al. 2015; 

Muir et al. 2016). Omics refers to the global assessment of a particular set of molecules 

(i.e., genomics – DNA, transcriptomes – RNA, proteomics – Protein) in an organism (or 

tissue or single-cell) at the time of sampling. Personally, it is an exciting time to be an 

evolutionary biologist with the potential to apply comparative omics and cell biology to 

explore the mechanisms and evolution of regeneration or apply metagenomic sequencing 

to continuously resolve basal relationships on Tree of Life (Spang et al. 2017; Stockdale 

et al. 2018). Of course, model organisms were the first up for access to these technologies 

due to the existing infrastructure, which arguably made it more feasible to direct funding 

to these systems. Still, sequencing in non-model organisms have advanced studies 

focused on biodiversity (Bonasio 2015; Székely 2019; Burnett et al. 2020), aided in the 

progress of population genetics from a largely theoretical to an empirical field (Ellegren 
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2014), and assisted in uncovering taxa better suited than existing model organisms to 

address more central, longstanding biological questions (Russell et al. 2017).  With these 

successes comes new challenges of data analysis and testing these functional predictions 

and hypotheses experimentally. The access to developed molecular protocols, databases, 

and biomaterials is still a large hinderance in non-model systems, as is access to 

formalized computational biology, bioinformatic, and data management training 

necessary to analyze and handle modern biological data. This is compounded by an 

inability to escape our investigative tunnel vision, as several well-maintained 

bioinformatic programs, methods, and computations resources were developed for 

specific taxa (usually human) and are not well optimized for organisms with different 

genomic architectures (i.e., repetitive elements, ploidy).    

My dissertation reflects my desire to appreciate the development and evolution of 

complex traits through an understanding of underlying genetic network interactions and 

molecular constraints contributing to phenotypic variation. Along my journey, I have 

realized the dearth of optimized protocols and resources available for the systems in 

which I chose to address my evolutionary questions. This has promoted a pivot in my 

work to resource development and, as a secondary theme of my research, promoting the 

development of new models to study cellular physiology and functional genomics in the 

context of ecology, evolution, and ultimately biodiversity.  

 

1.4 Chapter Abstracts  
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In my first chapter, I generate genomic resources for the study of adaptive toxin 

resistance in water fleas! Daphnia species are well-suited for studying local adaptation 

and evolutionary responses to stress(ors) including those caused by algal blooms. Algal 

blooms, characterized by an overgrowth (bloom) of cyanobacteria, are detrimental to the 

health of aquatic and terrestrial members of freshwater ecosystems. Some strains of 

Daphnia pulicaria have demonstrated resistance to toxic algae and the ability to mitigate 

toxic algal blooms. Understanding the genetic mechanism associated with this toxin 

resistance requires adequate genomic resources. Using whole genome sequence data 

mapped to the Daphnia pulex reference genome (PA42), we present reference-guided 

draft assemblies from one tolerant and one sensitive strain of D. pulicaria, Wintergreen-6 

(WI-6) and Bassett-411 (BA-411), respectively. Assessment of the draft assemblies 

reveal low contamination levels, and high levels (95%) of genic content. Reference 

scaffolds had coverage breadths of 98.9% - 99.4%, and average depths of 33X and 29X 

for BA-411 and WI-6, respectively. Within, we discuss caveats and suggestions for 

improving these draft assemblies. These genomic resources are presented with a goal of 

contributing to the resources necessary to understanding the genetic mechanisms and 

associations of toxic prey resistance observed in this species.  

Chapter Two focuses on technical challenges of navigating the rapidly increasing 

number of computational and statistical tools used in transcriptomic and gene expression 

analyses. Here, I compare common tools used in the literature in different combinations 

to build 18 different RNAseq analysis pipelines. These types of studies have been 

previously done, but the majority make fewer comparisons or stop at differential gene 
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expression (DGE) analysis. I extend previous work to include functional gene set 

enrichment analysis (GSEA) from each of the pipeline to determine if there are changes 

in the biological interpretation of functional pathway enrichment results. The results 

confirm that while there is high similarity between mapping tools, there are significant 

effects of counting and DGE analysis methods on the number of differentially expressed 

genes (DEGs). Further, these differences carry over to functional pathway enrichment 

results, with the most noticeable effect of filtering choices on the ability to detect 

enriched gene sets at a reasonable FDR. Although there were limitations in enrichment 

detection due to annotation quality, several pipelines report enrichment of genes in the 

xenobiotic metabolism set. This finding was quite relevant to the caloric restriction data 

set used, as Daphnia metabolism and stress responses utilize the same receptors for both 

xenobiotic and endobiotic stimulants. These analyses have been performed in a 

reproducible manner, with tutorial-like scripts develop as a resource to learn how to 

perform DGE analysis across different common programs.    

Finally, in Chapter Three I develop methodology to build cellular models from non-

model organisms to circumvent conservation limitations in research, while adhering to 

the 3 tenets of animal research. Primary explant cell culture, growing cell monolayers 

from tissue sample, provides a method for studying cellular physiology and biochemical 

function. Primary cells have shorter replicative lifespans compared to immortalized cell 

lines, but they retain features programmed by the in vivo background, proving cell culture 

useful for testing cellular responses, and interpreting organismal responses to stimuli.  

Published methods for cell culture in ectothermic vertebrates are limited, and even fewer 
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are specific to non-avian reptiles. I detail method used for establishing over 100 different 

primary and early passage cells from opportunistic collections of lizard tails across 

multiple Anolis genera. I also detail methods for validating these cells prior to their use as 

experimental resources and discuss the avenues in which cellular resources could 

contribute to non-model investigations.  Resources, including methodology, biomaterials, 

and expertise, are currently limiting factors for the broad inclusion of studies at the 

cellular level in evolutionary ecology research, making resources like the methods 

presented in this work critical to the field.  

My desire is for this work to be contributory in advancing investigations in non-

model systems to promote more integrative and comparative investigations of 

biodiversity and life itself.   
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INTRODUCTION  

  Over the past two decades, functional ecology research has focused on 

constructing a theoretical framework for eco-evolutionary dynamics, the bidirectional 

feedback between ecological and evolutionary processes of populations, communities, 

and ecosystems (Pelletier et al. 2009). An integral portion of this framework requires 

connecting genetic variation in species and the concomitant effects on ecological 

interactions across hierarchal levels (Brunner et al. 2019). Ideal species for studying this 

interplay of evolution and ecology possess high connectivity within their ecological 

communities (see Figure 2 in Miner et al. 2012), experimental flexibility and tractability 

(i.e., responds to a multitude of diverse stressors; ease of controlled maintenance and 

manipulation), and suitable genomic resources (Miner et al. 2012). Daphnia, commonly 

known as water fleas, satisfy these criteria. Daphnia are well-studied, widely employed 

models in ecology, evolution, and ecotoxicology (Shaw et al. 2007; Eads et al. 2008; 

Sarnelle et al. 2010; Miner et al. 2012; Nelson et al. 2018; Asselman et al. 2018; Becker 

et al. 2018), and have been utilized in Nobel prize-worthy discoveries (Nobel Media AB 

2021).  

   Daphnia species, with the appealing traits of short generation times and cyclic 

parthenogenesis, are well-suited for studying local adaptation and evolutionary responses 

to stress(ors) including those caused by global warming and anthropogenic eutrophication 

(Hairston et al. 2001; Ebert 2005; Asselman et al. 2014). Daphnia pulicaria, a lake-

dwelling herbivorous zooplankton in the genus, demonstrate evidence of local adaptation 
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to cyanobacteria in eutrophic lakes and significant genetic structure amongst populations 

(Sarnelle and Wilson 2005; Chislock et al. 2019a). Microcystis aeruginosa is a highly 

toxic species of cyanobacteria, abundant in harmful algal blooms, that may produce toxic 

metabolites, including a suite of hepatotoxins called microcystins (Paerl et al. 2001). 

Many methods for controlling these blooms have been proposed due to their adverse 

effects on human health, the economy, and ecological communities. One promising 

avenue for mediation is biomanipulation or manipulating trophic levels to control 

cyanobacterial overgrowth by introducing D. pulicaria exhibiting resistance to toxic 

cyanobacteria (Wilson and Chislock 2013; Chislock et al. 2019b). These findings have 

contributed to a strong, growing interest in using D. pulicaria to understand the 

mechanistic link between genetic trait variation and ecological community dynamics, 

which could aid in informing mitigation tactics for harmful algal blooms. However, such 

efforts require increasing the available genomic resources. 

  Currently, there are full genomes assemblies for four Daphnia species: D. pulex, 

TCO (Colbourne et al. 2011a) and PA42 (Ye et al. 2017); D. magna, KIT (Lee et al. 

2019) and XINB3 (Gilbert,D.G, unpublished [PRJNA298946]); D. carinata, WSL (Jia et 

al. 2020); and a D. galeata assembly [PRJEB42807] (Nickel et al. 2021). Published 

whole genome amplifications of single and pooled D. pulicaria adult and ephippia have 

been mapped to TCO, but the genomic resources presented here are the first genome 

assemblies for D. pulicaria assembled using the new and improved, PA42 reference 

genome (Lack et al. 2018). Here, we present two reference-guided assemblies from two 
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strains of D. pulicaria, one Microcystis-resistant strain, Wintergreen-6 (WI-6), and one 

Microcystis-sensitive strain, Bassett-411 (BA-411).   

  

MATERIALS & METHODS  

Samples   

Two strains of D. pulicaria, WI-6 and BA-411, were initiated from a single 

individual isolated from small glacial lakes in southern Michigan during autumn 2004 

and spring 2009, respectively (Chislock et al. 2019a, 2019b). Tolerant phenotypes were 

established by exposing neonates to toxic cyanobacterial diets where strains from highly 

eutrophic lakes, like WI-6, demonstrated reduced negative impacts on growth rates 

(Sarnelle and Wilson 2005). These strains have been maintained in clonal cultures in the 

freshwater ecology laboratory of Dr. Alan Wilson (AU) since isolation and were received 

from the Wilson Lab in December of 2018 for genome sequencing. For each strain, 

approximately 10-15 individuals were cultured in autoclaved 50 mL flasks loosely 

capped with foam stoppers and transferred to fresh food and water on a biweekly basis. 

Clonal populations for each strain were cultured at (23oC) room temperature in 

(autoclaved) water from a nearby, oligotrophic reservoir (Lake Martin, AL), and fed a 

nutritious alga, Ankistrodesmus falcatus, ad libitum. As populations reproduced, offspring 

were quantified and separated into new flasks on a weekly basis. Offspring were allowed 

to mature before being transferred into diethylpyrocarbonate (DEPC) treated water 
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[VWR, USA] with no food for two days in order to clear their guts. Post starvation, 20 

adults were pooled into 1.5 mL tubes in 1mL of a 1.5x DNA/RNA Shield  

[Zymogen, USA] and stored at 4oC. For each strain, we used three tubes of 20 adult 

Daphnia for DNA extractions for genome sequencing.  

  

DNA extraction  

DNA was extracted within 24 – 48 hours of DNA/RNA Shield storage using the 

QIAamp UCP DNA Micro kit [QIAGEN,Germany] per manual instructions, with some 

modifications. Briefly, DNA/RNA Shield was removed, 10mL of kit proteinase k (half 

the recommended amount) and two 2.0mm silicate beads were added before samples 

were homogenized on a TissueLyser II [QIAGEN] for 1 minute at a frequency of 30 

cycles(s-1). The remaining steps of the manufacture’s protocol were followed with DNA 

being eluted from the filter in a 20 mL volume. Independent DNA extractions from were 

performed over three weeks during March 2019 were frozen at -20oC. For each strain, the 

DNA from three samples were pooled and concentrated in preparation for genome 

sequencing, thus the genomic sequence represents approximately 60 individuals, that are 

presumed to be clonal. DNA was quantification using the Qubit dsDNA High Sensitivity  

Assay kit [Thermo Fisher, USA].   

  



28 

Validation of Strain via Genotyping PCR  

To validate that DNA samples were of the correct and single strain of origin, 

samples were PCR amplified for DP496, a microsatellite locus previously identified in 

Colbourne et al. (2004) and demonstrated to have discriminating allelic patterns between 

these two D. pulicaria strains (Wilson and Hay 2007; Chislock et al. 2019a). Primer 

sequences were obtained from the Daphnia Genomics Consortium, wfleabase 

(http://wfleabase.org/genomics/microsatellite/) (Colbourne et al. 2004, 2005). PCR 

reactions were carried out in 10mL volumes using 5mL of 2X GoTaq Green PCR Master 

Mix [Promega, USA], 0.3 mL of 10mM forward and reverse primers (0.3 mM final 

concentration), 3.65mL of water, and 0.75 mL of DNA (21 ng). The thermocycler 

program for the PCR began with a 2 min denaturation cycle at 95oC, followed by 35 

cycles of 20 sec at 95oC, 20 sec at 50oC, and 20 sec at 72oC, and a final extension cycle 

for 10 min at 72oC. DNA from a single individual of each strain was used as positive 

controls, and water instead of DNA was used as a no template control. Five mL of PCR 

products were visualized on a 3% agarose gel made with 0.5X TAE and 1mL of 

GelGreen Nucleic Acid Stain [Biotium, USA] to confirm that the allelic patterns for the 

genome samples were consistent with the positive controls for the target strains.   

  

Sequencing  

For each strain, approximately 0.8 mg (WI-6) and 1 mg (BA-411) of DNA were 

shipped to Novogene [China] for sequencing. Novogene performed library preparation 

http://wfleabase.org/genomics/microsatellite/
http://wfleabase.org/genomics/microsatellite/
http://wfleabase.org/genomics/microsatellite/
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using the Illumina TruSeqLibrary Construction Kit and sequencing on an Illumina 

Novoseq 6000, producing 8 Gbs (54.8 and 56.1 million reads for BA-411 and WI-6, 

respectively) of 150bp PE reads.   

  

Reference-Guided Assembly  

For each strain, we conducted reference-based assembly using the D. pulex PA42 

genome assembly. D. pulex was determined to be a suitable, high-quality reference, as it 

is closely related to D. pulicaria and, interestingly, the two commonly hybridize in 

ecological communities (Marková et al. 2013; Kake‐Guena et al. 2015).  Furthermore, 

the PA42 genome was produced from starved Daphnia treated with antibiotics to reduce 

diet and endosymbiotic contaminants, and post-assembly, scaffolds were filtered for 

bacterial contamination (Ye et al. 2017). Our assembly pipeline, described below, was 

run on Auburn University’s High-Performance Cluster, Hopper for 2 days using 20 cores 

and 100GB of memory.   

For each strain, we used the following pipeline. Quality assessment of raw data 

files was performed using FASTQC v0.11.5 (Andrews, Simon 2010). The assessment 

reported no adapter contamination and no regions where sequence quality dropped below 

Q-score of 25, therefore trimming was not applied to reduce unnecessary loss of data. D. 

pulicaria reads were mapped to PA42 using Burrows-Wheeler Aligner (BWA) v0.7.15 (Li 

and Durbin 2009). Genome Analysis Tool Kit (GATK) v3.6 was used for local 

realignment, insertion/deletion (INDEL) and single nucleotide polymorphism 
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identification, and separation and filtration of identified variants using GATK 

recommended hard-filtering parameters (McKenna et al. 2010; Auwera et al. 2013).  

SNPs were inserted into the original reference, creating a consensus sequence, using  

BCFTools ‘consensus’ (Li 2011). BEDTools ‘genomcov’ was used to create a BED file of 

regions lacking reference read coverage and ‘maskfasta’ was used to mask the zero 

coverage and INDEL regions in the consensus sequence with “N’s” (Quinlan and Hall 

2010).  This produced a reference-guided, draft genome assembly for each strain.  

  

Assembly Metrics and Assessments  

Although we starved the Daphnia before sequencing, it is likely there was still 

remnant algal cells and bacterial contaminates in our sequencing data. To identify these 

and any other contaminates, BlobTools (v 1.0) workflow A was used to quantify and 

visualize represented taxa, therefore identifying contamination from other phyla in the 

raw reads and the draft assemblies (Laetsch and Blaxter 2017). FastQ Screen was also 

used as a screening method for contaminants by mapping a subset of read libraries to a 

search library with bowtie2 (Langmead and Salzberg 2012; Wingett and Andrews 2018). 

The search library genomes included with the program were used and genomes for PA42, 

the D. pulex mitochondria (PRJNA11866), and the green algae Monoraphidium 

neglectum (PRJNA293989), a close relative of the food source for Daphnia, were added 

(Crease 1999; Bogen et al. 2013). Assembly completeness was estimated with  
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Benchmarking Universal Single-Copy Orthologs (BUSCO) v4.0.6 analysis using both the 

eukaryote_odb10 and arthropoda_odb10 databases (Simão et al. 2015; Waterhouse et al. 

2018). BEDTools ‘coverage’ was also used to determine depth of coverage at genes 

annotated in PA42. Sourmash v4 uses a MinHash derived algorithm to estimate similarity 

of genomic sequences and was used here to make pairwise comparisons between draft 

and reference assemblies (Brown and Irber 2016). Sourmash was used to create DNA 

sketches, or hash sketches, from both the assemblies and the merged raw reads. These 

reduced sequence data representations can be rapidly compared for overlapping k-mer 

sized read content (overlapping k-mer space) using a Jaccard similarity coefficient, 

however it does not give information about genomic contiguity or structure. Based on 

recommendations in sourmash documentation, signatures were computed for k-mer sizes 

of 21,31, and 51 bp, to minimize false positives and maximize matches. The distance 

measure output from this method is highly correlated with the frequently used genetic 

distance measurement, average nucleotide identity (ANI) (Ondov et al. 2016).   

  

Data Availability  

Supplemental files can be found on GSA figshare  

(https://figshare.com/s/28a738d36fc93b619109). File S1 is a figure from FastQ Screen 

analysis. File S2 is a tarball containing the reference-guided assemblies for BA_411 and  

WI_6. Assembly files with “clean” appended to the name have been filtered for scaffolds 

without reference coverage. File S3 is a tarball containing Blobtools output. File S4 is a 

https://figshare.com/s/28a738d36fc93b619109
https://figshare.com/s/28a738d36fc93b619109
https://figshare.com/s/28a738d36fc93b619109


32 

tarball containing BUSCO outputs. All sequence data are available under the NCBI 

BioProject Accession PRJNA702463. Code used to perform the data analyses for this 

work can be found on GitHub (https://doi.org/10.5281/zenodo.4635402).   

  

RESULTS & DISCUSSION  

Assemblies  

  PA42 is a quality D. pulex genome consisting of approximately 156 megabase 

pairs (8.6% gaps) organized into 1822 scaffolds. The BA-411 sequencing library 

produced 54.8 million reads with 24.9% duplication, and the WI-6 library produced 56.1 

million reads with 21.7% duplication. Using BWA, BA-411 and WI-6 reads were 

mapped to PA42 resulting in approximately 86% and 75% successfully mapped reads, 

respectively. Of the 1822 scaffolds making up the PA42 assembly, 21 (1.15%) and 12 

(0.66%) reference scaffolds had no sequence coverage for BA-411 and WI-6, with 

average coverage depths of ~33X and ~29X, respectively for the rest of the assembly. 

Assembly metrics are compared in Table 1. Although D. pulex and D. pulicaria are 

closely related, the assemblies presented herein are reference-guided and regions of the 

genomes that are not truly syntenic between the species will be incorrect in these BA-411 

and WI-6 draft assemblies.   

  Approximately 97% of genes annotated in PA42 had coverage from mapped BA- 

411 and WI-6 reads. The percentage of PA42 genes with coverage is represented by the  

https://doi.org/10.5281/zenodo.4635402
https://doi.org/10.5281/zenodo.4635402
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“Total” category in Figure 1.1. The percentage of PA42 genes with 5, 10, 15, and 20X 

average depth are also found in this figure. Interestingly, BA and WI-6 have a similar 

number of genes with coverage, but WI-6 has consistently fewer genes covered at 

average depths of 10x or higher.   

 

  

Figure 1.1. Percent of PA42 Genes for Different Average Depths of Coverage. The 

left and right panels represent BA-411 and WI-6, respectively. “Total” is the number of 

genes with 1x average depth. The percentage of genes covered at average depths of 5, 

10,15, and 20x are included.  
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Assessments  

To further assess the completeness of BA-411 and WI-6 assemblies, a BUSCO 

analysis was run using both the arthropod and eukaryote databases. Over 95% of the 

universal single-copy orthologs searched from both databases were found to be complete 

in both draft assemblies, with a minor difference in fragmented orthologs (0.1%; Figure 

1.2A). The Venn diagram of missing BUSCOs in Figure 1.2B indicate that there are 

seven missing across all assemblies, corresponding to what is missing in the reference, 

and six BUSCOs that are missing in D. pulicaria only, with three species-specific 

orthologs missing in both strains and three strain-specific orthologs missing from each 

strain. These data indicate high contiguity in many genic regions for these draft 

assemblies.   

Assemblies were assessed for contamination with BlobTools. We had an 

expectation of bacterial and algal contamination in the read data considering the 

microenvironment and diet of Daphnia, but because we used a reference sequence where 

great measures were taken to remove contaminants, we expected that a vast majority of 

contaminants would be filtered out during mapping. Based on the blob plots (Figure 1.3), 

both drafts genome assemblies had low levels of contaminant sequences, with 0.22% of 

BA-411 and 0.13% of WI-6 mapped reads hitting to phyla outside of Arthropoda. 

Supplementary data includes BlobTools output to further explore or remove contaminant 

regions.   
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Figure 1.2. BUSCO Analysis for D. pulicaria Genome Assemblies Indicate High Levels of 

Gene Content in Draft Assemblies.  A. BUSCO analysis for draft assemblies, BA-411 and WI-

6, and the reference genome, PA42, against the eukaryote and arthropod databases. Colors 

indicate status of ortholog in the assembly. B. Venn diagram of missing arthropod BUSCOs for 

three Daphnia assemblies. Seven of the 13 missing BUSCOs in D. pulicaria assemblies were not 

present in the PA42 reference genome used for assembly. 
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Figure 1.3: BlobPlots Indicate Low Levels of Contaminant Phyla in BA411 and WI6 Draft Reference-Guided 

Assemblies. Coverage by GC content scatterplots (BlobPlot) accompanied by read coverage plots for A. BA-411 

and B. WI-6 draft assemblies. BlobPlots: The circles are the sequences, with sequence length proportional to circle 

diameter. The legend indicates each phyla represented with count, total span and N50 for each taxonomic rank in 

parentheses. Only a small number of sequences used in BLASTx analysis against the NCBI non-redundant protein 

database hit to phyla (19) other than the target Arthropoda. BarPlots: The grey bars represent the proportion of 

unmapped and mapped reads from libraries. Color bars represent the mapped proportion by taxonomic rank (phyla); 

an inset is included for viewing taxa present at low proportions. 
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FastQ Screen results (Supplementary Figure 1.1) corroborate the BlobTools 

analysis with a majority of the read subset mapping to the PA42 library. A portion of the 

read subsets (19-30%) mapped at low, non-specific levels or did not map at all to the 

other species and sequences included in the search library. This suggest that the 

appropriate search genome was not included, and it is likely that these reads may be 

unique to D. pulicaria or that a completely unexpected contaminate is present.  

To gain a preliminary perspective on genetic distance between the two draft 

assemblies and the PA42 reference, we used sourmash. Distance estimates range from 

zero, being completely divergent to one, being completely identical. The assemblies from 

the D. pulicaria strains BA-411 and WI-6 had a computed distance of 0.90. This result is 

intuitive, as these are two strains of the same Daphnia species. BA-411 and WI-6 had 

very similar distance estimates for PA42 comparisons, with estimates of 0.73 for BA-411 

and 0.74 for WI-6 (Supplementary Figure 1.2). These results corroborate the slight 

increase in gene content and PA42 scaffold coverage obtained from BUSCO analysis and 

mapping statistics for WI-6.   

  

CONCLUSION 

Daphnia species have long been studied in the context of ecology, evolution, and 

applied research. Here we present draft genome assemblies for two strains of Daphnia 

that vary in their tolerance to cyanobacteria. Algal blooms, characterized by an 

overgrowth (bloom) of cyanobacteria, are detrimental to the health of aquatic and 

terrestrial members of freshwater ecosystems. Population expansion of cyanobacteria is 
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caused by eutrophication, or the overloading of nutrients (e.g., phosphorus and nitrogen) 

in lakes, ponds and rivers, and is accelerated by increasing temperatures (Carpenter 2005; 

Schmale et al. 2019).  From an economic perspective, algal blooms decrease water 

quality due to decreases in available oxygen and increases in toxic metabolites produced 

by cyanobacteria that result in product losses in fisheries, and toxification of water 

sources used by wild, domestic, and human populations for consumption and aquatic 

recreation (Anderson et al. 2002; Schmale et al. 2019). Microcystis aeruginosa is a 

highly toxic, cosmopolitan species of cyanobacteria that may produce metabolites called 

microcystins, compounds demonstrated to have significant hepatotoxic and tumorigenic 

effects (Paerl et al. 2001). Keeping levels of these damaging algal blooms in check is a 

particularly important and active branch of ecological research. Methods proposed for 

managing cyanobacteria include reducing the introduction of extraneous nutrients often 

from human runoff, the introduction of herbicide, and biomanipulation, or the 

manipulation of trophic levels to control cyanobacteria populations. Introducing toxin-

tolerant Daphnia pulicaria has been shown to repeatedly lead to significant reductions of 

total algal biomass, including cyanobacteria, in limnocorral experiments (Wilson and 

Chislock 2013; Chislock et al. 2019a, 2019b).  

 In addition to understanding D. pulicaria’s top-down regulation of algal biomass 

through mesocosm experiments, we are building resources to understand the genetic 

mechanisms and associations of toxic prey resistance observed in this species with these 

draft assemblies. Genomic resources are key components to deepening our understanding 

of the contributions of genetic background on strain-specific responses to toxic algal 
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blooms and other environmental stressors. These resources can be used for understanding 

the transcriptomic responses to toxins (Asselman et al. 2012; Orsini et al. 2016; Giraudo 

et al. 2017), identifying sequence variants under positive selection across the genome 

(Bourgeois et al. 2017; Schwarzenberger et al. 2020), and comparative analysis across 

other Daphnia species (Ravindran et al. 2019). In this way, these genomic resources 

provide a promising avenue for future research as the effects of urbanization and global 

climate change continue to exacerbate the severity of these toxic algal blooms over time  

(Carpenter 2005; Schmale et al. 2019).  

These are reference-based D. pulicaria draft genome assemblies. In this study, 

14–25% of the reads did not map to D. pulex PA42 genome assembly in our mapping. 

Similar to the read mapping percentages reported here (75–86%), Lack et al. (2018) 

produced sequencing libraries for pooled and individual D. pulicaria adults and ephippia 

and reported an average of ∼72% mapping success to the TCO reference genome across 

11 libraries (Lack et al. 2018). This indicates room for improvement in our assemblies. 

The data presented here are short-read sequences (150 bp paired-end). Future analyses 

should include long-read sequence data appropriate for de novo assembly that could 

recover the unmapped regions, improve scaffolds presented here, identify novel D. 

pulicaria scaffolds and chromosomal rearrangements to resolve conflicts in genetic 

structure between D. pulex and D. pulicaria genomes. Even with the aforementioned 

caveats of the two D. pulicaria genome assemblies we present, these assemblies contain 

very low levels of contamination, and high levels of genic content with more than 95% of 

complete universal arthropod and eukaryote orthologs found in these assemblies. This 
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work contributes quality reference-guided assemblies for two strains, one tolerant and one 

sensitive, of D. pulicaria that can be useful resources in linking candidate genes involved 

in ecologically relevant trait divergence, such as the evolution of dietary tolerance to 

toxic cyanobacteria, that impact freshwater communities and ecosystems. 
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Table 1.1. A table of statistics from reference-guided assemblies for Daphnia pulicaria. Mapping and base calling statistics for D. pulicaria 

sequencing libraries from this study.  

 

LOCATION LIBRARY 

GDNA 

CONC. 

[ng/ml] 

READS 

GENERATED  

READS 

MAPPED 

% READS 

MAPPED  

MEAN 

DEPTH  

CALLED 

SITES N’s  

PA42 Mb 

COVERED  

SRA 

ACCESSION 

Bassett Lake USD16091408 28 54849146  47627534  86.83  33.55  2923235 28692854 140 SRR14023941 

Wintergreen Lake USD16091409 21.6 56113536  42293065  75.37  29.46  3070431  27250307 141 SRR14023940 

 

https://www.ncbi.nlm.nih.gov/sra/?term=SRR14023941
https://www.ncbi.nlm.nih.gov/sra/?term=SRR14023940
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Comparison of 18 common RNA-seq pipelines for differential gene expression analysis:   

from mapping to functional pathway enrichment  
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INTRODUCTION 

Characterizing transcriptional profiles generated in response to a range of 

conditions, treatments, timepoints, and other biologically relevant states by sequencing 

cDNA reverse transcribed from mRNA (RNA-sequencing or RNA-seq) is now a standard 

molecular practice. Often the end goal for generating transcriptional profiles across these 

states is to test for differential gene expression among groups (e.g. drug treatments, 

environmental stressors, disease states, etc.) to understand the biological functions that 

underly the phenotypic differences between the groups. Concomitant with the steady 

decrease in costs of high throughput sequencing, we have increasingly generated 

observations of the nature of RNA-seq data across the Tree of Life and we have 

developed a variety of methods to handle the complex nature of these multi-dimensional 

data (Conesa et al. 2016; Koch et al. 2018). This creates a challenge in understanding 

which methods to use for analysis, the degree to which these choices matter for biological 

interpretation, and how to train students to effectively conduct these analyses.  

The classic RNA-seq analysis for the purpose of testing for differential gene 

expression consists of the steps outlined in Figure 2.1. Briefly, raw sequencing reads are 

aligned (mapped) to targeted genomic loci, most often genome assemblies and/or 

transcripts, to obtain the number of reads sequenced (counts) from mRNA that were 

transcribed from those loci, followed by gene-wise tests for statistically differential gene 

expression between samples structured by groups of comparative interest and normalized 

for technical and inherent biological variation. Frequently in the absence of a priori 

expectations of which genes will be differentially expressed, the next step is testing for 
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the enrichment of functional pathways amongst the top differentially expressed genes 

(Kukurba and Montgomery 2015; Stark et al. 2019). Although RNA-seq methods have 

become a standard practice for quantifying gene expression, analysis of these data is 

considerably variable, with new programs continually being developed to improve read 

mapping and counting, statistical models, and model assumptions employed during 

differential gene expression (DGE) analysis. Mixing and matching the programs across 

these steps can produce hundreds of potential pipelines. This leaves researchers a plethora 

of decisions to make about the appropriate programs for their dataset at each step of the 

analysis and, importantly, the degree to which the choice of the programs at each of steps 

matters in the context of the biological interpretation of the experiment.   

Systematic comparisons of programs at individual steps have been carried out by 

several other researchers and the authors creating them, with the purpose of 

benchmarking their new algorithms with existing ones as a demonstration of similar or 

better performance (Engström et al. 2013; Soneson and Delorenzi 2013; Love et al. 2014; 

Seyednasrollah et al. 2015; Baruzzo et al. 2017; Abrams et al. 2019). Srivastava et al 

(2020) recently compared alignment-based and alignment-free methods using mouse data 

to understand variation in tools aligning to the genome, the transcriptome or 

pseudoaligning to the transcriptome. Their work also identified shortcomings with using 

simulated data in benchmarking RNA-seq pipeline tools. Simulated reads lack natural 

variation that exists between a transcriptome and the reads aligned to that transcriptome 

during quantification. They also lack the of complexities of real read libraries which have 

more variation in composition (e.g., alternative splicing, intronic or intergenic 

sequences). Previous studies with simulated data were not able to fully capture some of 
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the impactful effects of spurious mappings produced by different alignment methods that 

propagated to downstream quantification and detection of differentially expressed genes 

(DEGs) (Srivastava et al. 2020). RNA-seq analysis pipeline comparisons at the step of 

alignment programs have also been made using a highly polymorphic species. 

Schaarschmidt et al. (2021) compared two accessions of the plant model, Arabidopsis 

thalania, in ambient (20oC) and cold (4oC) conditions and found small differences in 

mappability across aligners, high similarity in raw read counts across all aligners & 

pseudoaligners (Schaarschmidt et al. 2020).  There was more variability (92 – 98%) in 

similarity between programs used in the detection of differentially expressed genes 

(DEGs), specifically when comparing DEG results between the program DESeq2 (Love 

et al. 2014) and CLC (Qiagen). More complex, multi-step comparisons of full pipelines, 

from aligners to DGE programs, have been done with cancer cell line responses to two 

different therapeutic drugs in Corchete et al. (2020). Their work tested all possible 

combinations of 3 trimmers, 5 aligners, 6 counters, 3 pseudoaligners, 8 normalization 

methods, and 17 DGE programs for the best ranked pipelines. This ranking was based on 

a combination of precision and accuracy relative to gold-standard qRT-PCR expression 

data (Ct) for a subset of genes ubiquitously expressed across healthy, control samples. 

While their work found variation in precision and accuracy across methods at each step 

of analysis, the largest, statistically significant differences were found in counting and 

normalization methods (Corchete et al. 2020).   

These invaluable studies have aided in our understanding of the effects of 

different algorithms and assumptions implemented in programs used at different steps of 

RNA-seq analysis, with some estimations of accuracy and precision when qRT-PCR data 
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could be generated. Still, there have been limited comparisons that span alignment to 

functional pathway enrichment for biological interpretation to determine if, at the end of 

the analyses, there would be similar (or very different) biological conclusions based on 

which turn in the pipeline maze an investigator has made. In the interest of bringing these 

underlying technical conclusions about variation in pipeline tools back to the ultimate 

perspective of biological interpretation, we quantify similarities in functional enrichment, 

mapping, counting, and DGE results from combinations of 2 aligners, 2 counters, 2 

pseudoaligners, 3 DGE normalization and detection programs, and one final program for 

functional enrichment, for a total of 18 bioinformatics pipelines.  

 In contrasting these 18 bioinformatics pipelines for similarities in biological 

interpretation, we are also addressing a fundamentally important biological question on 

how caloric restriction extends lifespan using a non-model organism relevant in 

ecotoxicology and evolution, Daphnia pulex. Caloric restriction has been shown to 

increase lifespan across the animal kingdom, from yeast to rodents (Osborne et al. 1917; 

Anderson and Weindruch 2010). We propose Daphnia as a complementary model for 

understanding variation in lifespan due to caloric restriction from both an evolutionary 

perspective and in its ability to translate results from laboratory and natural populations. 

Daphnia are short lived (median 1 mo.) and have a similar mortality curve as mammals 

(Jones et al. 2014). Their genome is stable due to their clonality, and their relatively small 

genomes are more similar to humans than Drosophila or Xenopus (Colbourne et al. 

2011b). 

Thus, the goals of this chapter are 3-fold. We aim to answer the following 

questions: (1) How do different pipelines vary in the final functional/biological 
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interpretations made? (2) What biological pathways are affected by caloric restriction in 

Daphnia pulex? Lastly, we aim to develop reproducible, open-source code available via 

GitHub along with tutorials for instructors that will be used for teaching RNA-seq 

analysis. 

  

MATERIALS & METHODS   

The phenotypic experiment and resulting RNA-sequencing was conducted by Tonia 

Schwartz at University of Alabama at Birmingham in 2014 and will briefly be described 

here to provide the appropriate background information for the RNA-seq analysis herein. 

The RNA-seq data analysis and biological interpretation was conducted by Amanda 

Clark at Auburn University.   

Caloric Restriction Experiment 

The experiment that generated these RNA-seq data was performed in 2014 and 

used a strain of Daphnia pulex maintained in Dr. Julia Gohlke’s laboratory at University 

of Alabama at Birmingham since 2011. Daphnia were maintained in COMBO media and 

fed RGcomplete [Reed Mariculture], which is a blend of four microalgae (1.5 – 15 µc). 

The diet treatments and media used in this experiment were defined in Schwartz et al. 

(2016):  C-treatment represents the caloric restriction treatment with 98 µl of 

RGcomplete per liter of COMBO media, and the E-treatment represents the ad libitum 

treatment with 300 µl of algae per liter of COMBO media. Populations were maintained 

at the high food concentration (E treatment) for two generations prior to the third 
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generation of neonates being randomly assigned into either C or E populations. Each 

treatment had eight populations (1 liter beaker) of 20 individuals with 50 ml of 

media/individual.  

To provide insight into the gene regulatory mechanisms associated with the 

extension of lifespan in response to caloric restriction in Daphnia, animals were collected 

from C and E populations at 23 days of age for transcriptomic analysis using RNA-seq. 

For each diet treatment, 5 populations were randomly sampled for 3 individuals.  The 

five samples from each treatment were dissected to remove offspring from their brooding 

pouches and immersed in RNAlater [Qiagen] for two days at 4oC before RNA isolation 

(n=10 samples each with 3 individuals).  Daphnia were removed from the RNAlater, 

quickly rinsed in water, and snap frozen in liquid nitrogen in a 1.5ml tube for 

homogenization by pestle. Total RNA was isolated using the RNeasy Mini Kit [Qiagen] 

with DNA digestion on the membrane. 

Library Preparation and RNA-seq Sequencing  

RNA samples were sent to the Heflin Genomic Center at University of Alabama 

for sequencing using the Illumina HiSeq2500 (Illumina, San Diego, CA) and the Agilent 

SureSelect Stranded library preparation kit (Agilent Technologies, Santa Clara, CA). 

Quality and quantity of RNA were determined on the Bioanalyzer. 100ng of total RNA 

was subjected to two rounds of poly A+ selection using oligo dT magnetic beads. 

Following purification, the mRNA was randomly fragmented, and first strand cDNA 

synthesis was done in the presence of random hexamers and 2.4ng/μL (final 

concentration) of Actinomycin D using standard techniques. First strand cDNA was 
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purified by magnetic bead (Omega Bio-Tek, Norcross, GA) prior to second strand 

synthesis. After second strand synthesis was complete the cDNA was adenylated and 

used in a ligation reaction to add primary adaptors. Final libraries were purified by 

magnetic beads, quantitated using the KAPA SYBR FAST qPCR kit (KapaBiosystems, 

Woburn, MA) on the Roche LightCycler 480 (Roche, Indianapolis, IN) and assessed for 

quality on the High Sensitivity DNA chip for the Agilent BioAnalyzer (Agilent 

Technologies, Santa Clara, CA). Sequencing libraries were mixed to equal molar 

amounts and run on the HiSeq2500 using a Rapid Run flow cell with paired end 100bp 

sequencing reads. Following completion of the run the .bcl files were converted to  

FASTQ file format using BCL2FASTQ 1.8.4 from Illumina. Libraries were sequenced 

(100 bp paired-end) on a single rapid run flow cell on the Illumina HiSeq 2500, with the 

10 libraries split among two lanes (5 libraries multiplexed per lane). Data were submitted 

to NCBI SRA database under Bioproject PRJNA437447. 

RNA‑seq Analysis Tools by Step  

Here we briefly describe the tools being compared at each step in a typical RNA-

seq analysis pipeline. The tools are illustrated in Figure 2.1 and descriptions, versions, 

and associated parameters used in the bioinformatic pipelines are listed in Table 2.1. 

Quality Assessment & Trimming  

For these analyses, raw reads were downloaded with SRA Toolkit (SRA Toolkit 

Development Team) from NCBI (bioproject number: PRJNA437447). Quality of the 

reads were assessed using FastQC (Babraham Bioinformatics) (Andrews, Simon 2010). 
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Reads were trimmed and filtered using paired-end parameters in Trimmomatic (Bolger et 

al. 2014). The first ten base pairs and reads with a quality cutoff of below 30 were 

removed. Reads below the minimum length of 36 base pairs were removed and quality 

was assessed again using FastQC. Around 10% of reads were removed from the raw data 

and high quality was reported across the samples.  

Alignment Programs 

Two genome-based alignment methods, Hisat2 (Kim et al. 2019) and STAR 

(Dobin et al. 2013) were used to map trimmed reads to the PA42 Daphnia pulex genome 

as a reference genome (Ye et al. 2017). Annotation information (GTF) was provided to 

both aligners during index generation to take advantage of spliced aligners for mapping to 

a genome. Parameter specifics and tool descriptions are outlined in Table 2.1.  

Pseudoalignment Programs 

Recently, tools have been developed for rapid quantification of transcripts that do 

not generate full read alignments and combines mapping, counting, and normalization 

steps in a single program. Here we use two well-known quasi-mapping RNA-seq 

quantification programs, Salmon (Patro et al. 2017) and Kallisto (Bray et al. 2016). 

Parameter specifics and tool descriptions are outlined in Table 2.1.   

Counting & Gene-Level Count Estimation Programs 

For pipelines starting with traditional aligners, two programs, StringTie (Pertea et 

al. 2015) and HTSeq (Anders et al. 2015), were used to quantify reads overlapping 

targeted genomic loci, specifically genes. HTSeq-count automatically generates gene-
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level abundance estimates by counting reads assigned to a feature. Pseudoaligners and 

pipelines using StringTie estimate individual transcript abundance, therefore the R 

package tximport (Soneson et al. 2016) was used to estimate gene-level abundance from 

transcript abundance. Parameter specifics and tool descriptions are outlined in Table 2.1.  

All remaining analyses were carried out in R, where packages were obtained 

from CRAN unless specified as Bioconductor packages. 

Pre-filtering Low and No-Expression Genes  

In the interest of maintaining our systematic approach to pipeline comparison, we 

pre-filtered genes based on having low gene-level count estimates from all pipelines and 

disabled any downstream filtering within individual DGE analysis programs. Three 

filtering approaches were used to remove no and low count genes with the intent of 

increasing power to detect DEGs by reducing the number of statistical tests (Bourgon et 

al. 2010). First, counts from each pipeline were filtered individually, removing any gene 

with zero counts in 6 or more of the 10 samples and any gene with less than 21 counts 

across all samples. These datasets were labeled “pipeline_filtered.” The other two 

filtering methods standardize the number of genes going into downstream analyses while 

using the previous filtering logic. Specifically, genes that would be filtered from any of 

the pipelines were removed from all pipelines (compilation), and generated datasets 

labeled “hard_filtered” or genes that would be filtered from all pipelines (intersection) 

were removed from all pipelines and generated datasets labeled “soft_filtered.” We report 

results across filtering methods for select analyses, and others we prioritize the results 

from a single method for more relevant interpretation and application.   
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Differential Gene Expression (DGE) Programs  

We use three different programs for DGE analysis with different methods of 

normalization and modeling approaches. We outline parameters and commands used 

during analyses for each program below but see Table 2.1 for parameter specifics and 

tool descriptions not discussed herein.   

DESeq2  

All default parameters were used apart from the parameters to filter lowly 

expressed genes, which were not used. minReplicatesForReplace, this parameter is used 

to denote the minimum number of replicates required to replace outliers in a sample 

which was set to “Inf” to never replace outliers. independentFiltering, DESeq2 package 

performs independent filtering of count data by default using mean of normalized counts.  

Since our gene count data was prefiltered we disabled this option (independentFiltering, = 

FALSE). “cooksCutoff” is used to set threshold to define outlier to be replaced. DESeq2 

automatically flags the genes which have Cook’s distance above a cutoff for samples that 

have 2 or more replicates. Since our data was prefiltered we disabled this option 

(cooksCutoff  = FALSE).   

EdgeR  

We created a DGEList object to store gene-level counts and hold associated 

metadata using EdgeR (Robinson et al. 2010), grouping our gene count data based on 

treatment. We then normalized within/between samples using the (default) trimmed mean 

of M-values (TMM) method within the function “calcNormFactors.” Next, we estimated 
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tagwise dispersion using “estimateTagwis eDisp” and performed an exact test to compare 

the ad lib and caloric restricted groups using default settings. Finally, we extracted 

significantly differentially expressed genes using the “topTags” function, keeping only 

the genes with FDR below 0.05. We did not perform any additional filtering using 

EdgeR.  

Limma-Voom  

We created a DGEList object to store gene-level counts and hold associated 

metadata using EdgeR, grouping our gene count data based on treatment. We then 

calculated normalization factors using the function calcNormFactors(DGEList, 

method=”TMM”) as with the EdgeR analysis. We specified the model using treatment as 

the predictor variable. Using the model residuals, voom (Law et al. 2014) estimates 

variance weights on a per observation basis (gene and sample-wise) using transformed 

counts with the normalization factors calculated in EdgeR. These variance weights are 

used with transformed counts in the standard linear models in Limma (Ritchie et al. 

2015).   

Pathway Analysis Program 

Gene Set Enrichment Analysis (GSEA) was implemented in the fgsea package 

using pre-ranked gene generated for all pipelines (Korotkevich et al. 2021). Output tables 

from all DE programs included (1) p-values from t-tests of differential expression 

between treatments, (2) effects sizes and direction reported in log fold-change, and (3) 

adjusted p-values estimated using Benjamini-Hochberg false-discovery rate correction for 

multiple hypothesis testing across genes for each gene ID. Gene ranks were calculated as 
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the signed log10 p-value (sign of the effect size * - log10 of the p-value) before use in 

fgsea, where sign indicated upregulation (+) or downregulation (-) in the caloric 

restriction group relative to the ad lib fed group (Plaisier et al. 2010; Reimand et al. 

2019). The hallmark gene sets from the Molecular Signatures Database (MSigDB) were 

used in these analyses (Liberzon et al. 2015). An FDR for significant enrichment of a 

gene set was set to 0.25 to identify pathways that would be of interest from a “discovery” 

approach.   

Pipeline Contrasts and Statistical Tests   

We compare pipelines in multiple ways to understand the relative contributions of 

each program to the variance between analysis results. We compare the amount of 

uniquely mapped and unmapped reads between aligners for all samples to estimate the 

mappability of each read library. We estimate the similarity of raw count matrices 

(capturing variation due to aligner/counter combinations) using Spearman correlations in 

scatter matrices per sample using the GGally package. Rv coefficients, which are 

Pearson’s correlations generalized for matrices (Josse and Holmes 2016), were calculated 

for transformed, raw and soft_filtered count matrices in pairwise pipeline combinations 

using FactoMineR and visualized with a heatmap generated with the Bioconductor 

package ComplexHeatmap. 

We assessed the relative contribution to variance in the number of biologically 

and statistically relevant DEGs for different steps of RNA-seq analysis using two linear 

models. We specify the response variable as the number of DEGs that had an FDR less 

than 0.05 (statistical relevance) and had log2 fold change greater than or equal to an 
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absolute value of 2 (biological relevance). Our models tested whether, quantification 

(aligner and counter) and/or DGE program predicted our response variable. Described 

here is our final model, however we validated the superior fit of the model over 

generalized linear models (Poisson and negative binomial distributions) using Akaike’s 

Information Criterion (AIC) comparison. For each model, variance partitioning was 

performed using the Anova function in the car package. Estimated marginal means and 

contrasts for post hoc analyses (tukey’s adjustment) were performed using the emmeans 

package, but the marginal effects were visualized using the ggeffects package. In our first 

model, we explore the predictors of DGE program and the combination of aligner & 

counter programs as a single, second variable. This allows for the comparison of 

pseudoaligners, which perform both steps, with the other quantification combinations of 

aligners and counters. Our second model uses aligners, counters, and DGE programs as 

predictor variables, and excludes data from pseudoaligners so that we can estimate the 

effects of aligner and counter, separately. We estimate the similarity of biologically and 

statistically significant DEG lists across pipelines visualizing gene set intersections with 

upset plots using UpsetR.  

We planned to assess these same effects at the level of functional enrichment 

analyses with the number of statistically significant (FDR less than 25%) enriched gene 

sets as the response variable. Upon completing GSEA, 78% of the pipelines (across 

filtering methods) did not return any pathway that fit our criteria. This was likely not 

driven by the gene expression data, but more by the completeness of our annotation, so 

we did not model these data.  
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RESULTS & DISCUSSION   

RNA‑seq workflow:  

We compare results from 18 RNA-seq pipelines using data generated from Daphnia in 

caloric restricted or ad lib diet treatments. We use 6 combinations of different programs 

for alignment and counting. We also tested 3 programs for DGE combined with the 

normalization procedures available in their respective packages (Fig. 2.1).  
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Figure 2.1: RNA-seq Pipelines for Differential Gene Expression Analysis Compared.  

General RNA-seq analysis steps are on the left. At each step, the programs compared are in the center 

boxes. Small arrows are indicative of possible paths through these analysis programs. Single programs 

were used for Quality Assessment,  Cleaning, and Functional Enrichment steps. Yellow and orange 

boxes at the alignment step differentiate traditional aligners and pseudoaligners, respectively. This 

figure was created with BioRender.com. 
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Aligners  

Mapping percentages averaged across all samples for Hisat2 (58.4%) were lower than 

mapping percentages in STAR (67.97%) (Figure 2.2). These results are consistent with 

previous findings from other researchers that report higher mapping percentages in 

comparisons between these two alignment algorithms (Schaarschmidt et al. 2020; Musich 

et al. 2021). Interestingly, when averaging across biological replicates for treatment 

groups we see higher mapper percentages in control replicates (Hisat2 - 61.51%; STAR – 

72.29%) than in diet restricted replicates (Hisat2 – 55.29%; STAR – 63.66%) across both 

alignment algorithms. This could indicate differential isoform usage in response to the 

caloric restriction treatment that is not annotated in our reference genome. This would not 

be a farfetched conclusion as the current annotation has one representative transcript for 

each gene feature.  
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Figure 2.2: Mapping Statistics for Hisat2 and STAR aligners across samples. 

Alignment data for the number of read pairs across alignment algorithms. This plot is faceted by 

the statistic (total number, uniquely mapped, and unmapped reads). “Total” is the total number of 

paired reads. “UniqueMap” are the number of read pairs that mapped to a single region of the 

genome. “Unmapped” are reads pairs that did not map to a region of the genome. “ID” are 

sample ideas from the caloric restriction experiment. IDs that begin with C are caloric restriction 

replications. IDs that begin with E are ad lib replicates. 
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Counting & Gene-Level Quantification  

When contrasting aligners, we only compare Hisat2 and STAR because the two 

pseudoaligners do not produce mapping statistics. Although you can get “pseudobams” 

from Kallisto or use a different aligner prior to quantification in Salmon, we felt it would 

not provide clean or independent comparisons of these tools with true alignment 

algorithms. Considering this, we made comparisons at the level of quantification using 6 

aligner/counter combinations. We find high correlations coefficients (0.946 – 0.982, all 

p-values < 0.001) across the pipelines at this level of comparison (Figure 2.3). 

Unsurprisingly, the lowest correlation coefficient of 0.946 was between a pseudoaligner 

(Kallisto) and traditional aligner/counter (Hisat2-StringTie). The second lowest 

correlation coefficient (0.948) was observed in the comparison between Hisat2-StringTie 

and STAR-HTSeq combinations where both the aligner and counter varied.  

At the upper range of the correlation coefficients, 0.982 (both aligners + StringTie), 0.981 

(both aligners + Hisat2), and 0.970 (both pseudoaligners), we see that correlation 

estimates are highest when the methods for counting are held constant.   
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Figure 2.3: Raw count distributions (diagonal) and correlations across quantification methods 

for 2 samples.  

Scatter matrices for transformed raw counts (log2(raw counts +1)) for two samples (one from each 

treatment) to visualize count distributions generated by these tools and correlation metrics. K and S 

refer to the pseudoaligners Kallisto and Salmon. HS and HH refer to Hisat2 aligner and either 

StringTie (HS) or HTSeq (HH) counters. SS and SH refer to STAR aligner and either StringTie (SS) or 

HTSeq (SH) counters. The top triangle of the matrix are Spearman correlation estimates. *** indicate 

p-values < 0.0001. Orange lines are loess fits to the scatter matrices in the lower triangle. 
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These results were extended to a more quantitative comparison by calculating Rv 

coefficients for count matrices between the 6 aligner/counter combinations. Rv 

coefficients are metrics of similarity for matrices, where values of 0 indicates two 

matrices are completely different and values of 1 indicate two matrices are the exact same 

(Smilde et al. 2009). The Rv coefficients for the unfiltered data demonstrate high 

similarity in our comparison across pipelines (aligner/counter combinations) with values 

ranging from 0.907 – 0.977 (Figure 2.4). The high level of similarity, and the individual 

relationships discussed in the scatter matrices are well-supported by these analyses and 

extend relationships identified across all samples.    

Differential Gene Expression  

Count matrices from all 6 aligner/counter combinations were run in DESeq2, 

EdgeR, and Limma-Voom for DGE detection in a comparison between caloric restricted 

and ad lib treatment groups. Across the three approaches of pre-filtering low and no 

expression genes, we see the same general pattern in the percent of statistically 

significant DEGs (no Fold Change cut-off) detected for each pipeline. DESeq2 always 

detects the highest amount (30.94 – 40.88%) of DEGs, followed by Limma-Voom (24.75 

– 30.17%), and lastly, the most stringent detection method, EdgeR (11.69 – 16.28%). We 

added an additional filter for biologically significant changes in expression values by 

filtering for DEGs with a log2 fold change of the absolute value of 2 or more. These data 

were used in the remaining analyses and are referred to as significant DEGs.  
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Figure 2.4: High similarity between quantification methods across samples based on 

Rv coefficients. 

A heatmap of Rv coefficients indicating the level of similarity between raw count matrices 

across samples. Colors correspond to the color legend on the top right, where 1 indicates 

the matrices are the same, and zero (not shown) indicates matrices are completely 

different. K and S refer to the pseudoaligners Kallisto and Salmon, HS and HH refer to 

Hisat2 aligner and either StringTie (HS) or HTSeq (HH) counters, SS and SH refer to 

STAR aligner and either StringTie (SS) or HTSeq (SH) counters. P-values of zero from 

1000 permutations were reported for these values. 
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We used a general linear model (lm) to test the relative effects of each step on the 

number of significant DEGs. Although our response variable was count data, a lm 

provided the best fit for our data compared to other count-based models.  

Model 1: Effects of quantification and DGE programs on number of significant DEGs 

Data for model 1 was analyzed separately for each pre-filtering method to avoid 

committing pseudoreplication with data that naturally precedes filtering steps (i.e., 

quantification). Here, we summarize across models, but predominantly present figures 

and tables from pipeline-specific filtering results in the main text and other methods in 

the supplementary material (Appendix 1).  A majority of the total variance (total sum of 

squares, TSS) is explained by DGE program (73 – 83%; F 78.46 – 271.28; p < 0.001), 

with another 15 - 22% (F 9.40 – 29.94; p < 0.001) being explained by quantification 

method (aligner/counter) and the remaining 2 or 5% residual error (Table2.2).  

Focusing on data generated with pipeline-specific filtering, we see the largest 

(statistically significant) deviations from the grand mean due to quantification method 

includes (i) Hisat2 or STAR with HTSeq pipelines exceeding the mean, and (ii) Hisat2 

with StringTie pipelines being lower than the grand mean. Sum coded model summaries 

with these results are displayed in Table 2.3 and plotted in Figure 2.5 and should be 

interpreted as deviations from the grand mean of filtered DEG (intercept). This coding 

seemed more intuitive to interpret the effects of the predictors, than comparing each level 

of a predictor to the alphanumeric reference for that predictor. DESeq2 and EdgeR 

pipelines had 76 and 21 fewer DEG than the grand mean, respectively. Limma-Voom 

pipelines exceeded the grand mean with an average of 97 more DEG (not shown). 

Although DESeq2 had the highest amount of DEG when filtering for statistical  
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Figure 2.5. Plotted linear model 1 summaries from Table 2.3.  

Model estimates are on the x-axis for three models (one from each pre-filtering approach). Shapes are 

coefficient estimates for predictor variables (quantification and DGE programs) interpreted as average 

differences from the grand mean, where values close to zero are close to the grand mean. Normal 

distributions represent theoretical values around the mean estimates for each program or combination 

of programs to visualize uncertainty. Hi & Sr are aligners Hisat2 and STAR. Ht & St are counters 

HTSeq and StringTie. K & S are pseudoaligners Kallisto and Salmon; The added number 2 were for 

coding purposes to indicate alignment and counting steps were carried out by the same program.   
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significance only, adding a filter for differentially expressed genes with large 

changes puts this pipeline in last place. In proportion to the larger number of significant 

DEGs detected, DESeq2 has the lowest amount of DEGs with large fold changes (~ 1/5 

of DEGs at an FDR of 5%), which could be effect of this program’s dispersion estimation 

and shrinkage methods, relative to EdgeR and Limma-Voom (Soneson and Delorenzi 

2013). Lastly, pipelines with pseudomappers did not have statistically significant 

deviations from the mean (Salmon -1.33 ; Kallisto 15; SE 6.90). Post hoc analysis with 

emmeans identified 112 statistically significant (Tukey’s adjusted) pairwise mean 

comparisons between combination of quantification and DGE programs that can be 

explored in Table S2.1 for pipeline-specific filtered data (other filter methods can be 

found in Tables S2.2 & S2.3). Overall patterns from these estimates demonstrate the 

highest mean differences in number of predicted DEGs for pipelines being contrasted 

with Limma-Voom and HTSeq pipelines which can be best visualized with plotted 

adjusted predictions in Figure 2.6. These analyses demonstrate that a combination of 

STAR and HTSeq with Limma-Voom for DGE detection report the most statistically 

significant DEGs with moderate to high fold changes. While we see a larger proportion of 

the variation in our sample being explained by DGE programs, we were not able to fully 

decompose variation for both quantification steps (alignment and counting) and didn’t 

have enough degrees of freedom to test for interactions with these data. Our second 

model was generated to investigate this relationship and test for interactions between our 

predictor variables.  
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Figure 2.6: HTSeq and Limma-Voom increase the number of significant DEGs detected 

across pre-filtering methods. 

Plotted predicted (estimated marginal) means for Model 1 faceted by DGE detection method. 

Coefficient estimates from Figure 2.5 added to the grand mean produce predicted mean number of 

DEGs for each combination of RNA-seq analysis programs. Lines extending from points represent 

confidence intervals around the estimates. Results are paneled by pre-filtering approaches. See 

Table 2.1 for program abbreviations; the added number 2 were for coding purposes to indicate 

alignment and counting steps were carried out by the same program.   
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Model 2: Effects of aligner, counter, and DGE programs on filtered DEGs 

We exclude pseudoaligner pipelines from model 2 data, as discussed in the 

methodology. Filtering methods were also analyzed separately for these data, and as with 

previous results, we discuss broad summaries about all three methods and pipeline-

specific filtering results for relevance and applicability. Across pre-filtering methods, we 

find that the variation due to quantification steps is largely attributed to the choice of 

counter (18.6 – 31.41%; F 157.79 – 4349.92; p < 0.001), while aligner explains ~ 1% of 

the variation in our sample (F 10.02 – 180.56; p < 0.025 or less). The ANOVA (Table 

S2.2) recapitulated the importance of DGE program (62.99 – 77.5%; F 328.48 – 6117.31; 

p < 0.001) and reported a significant interaction between counter and DGE programs 

accounting for 1.5 – 4% of the total variation (F 8.95 – 125.12; p < 0.025). Model 

summaries visualized in Figure 2.7 (see Table S2.3 for tabular output) recapitulate 

relationships in our previous model for DGE programs where DESeq2 and EdgeR 

pipelines had significant negative deviations from the overall mean and Limma-Voom 

pipelines exceeding that of the mean across pipelines. Aligner choices cause an average 

mean deviation of +/- 9 genes for STAR and Hisat2 pipelines, respectively. Counter 

choice causes deviations from the mean by a magnitude of ~ 45, meaning the mean of 

HTSeq pipelines exceed the grand mean by 45 DEGs. The positive deviation from the 

mean when combining HTSeq with DESeq2 was statistically significant, but the mean 

deviation for combinations of HTSeq with Limma-Voom detecting ~133 more DEGs 

than the overall mean was the largest deviation observed. These linear models provide 

insight for how the number of significant genes with moderate to large expression change 
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is influenced by different steps of DGE analysis, but it would be helpful to also look at 

the overlap of these list to understand difference in DEG content. 

 

  

Figure 2.7. Plotted linear model 2 summaries from Table S2.3 

Model estimates are on the x-axis for three models (one from each pre-filtering approach). Shapes are coefficient 

estimates for predictor variables (quantification and DGE programs) interpreted as average differences from the 

grand mean, where values close to zero are close to the grand mean. Normal distributions represent theoretical values 

around the mean estimates for each program or combination of programs. Hi & Sr are aligners Hisat2 and STAR. Ht 

& St are counters HTSeq and StringTie. K & S are pseudoaligners Kallisto and Salmon; The added number 2 were 

for coding purposes to indicate alignment and counting steps were carried out by the same program.   
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The highest levels of similarity was seen between pipelines containing EdgeR or 

DESeq2, particularly when the same quantification steps were used. Limma-Voom 

pipelines had moderate to high levels of similarity with each other and lower levels with 

other DGE programs, but this could be an artifact of large differences in gene set sizes for 

other pipelines relative to Limma-Voom. Upset plots show~85% of the possible overlap 

(size of the smallest set in the comparisons) is shared within DESeq2 and EdgeR 

pipelines and 84% between them. Limma-Voom had just as much overlap within 

pipelines as there was between pipelines using the other two methods. The higher levels 

of variation within Limma-Voom pipelines could be an indication of the robustness of 

this model across quantification methods, particularly the interaction with the counter 

algorithm preceding it. These visualizations also reflect our model where pipelines with 

Limma-Voom consistently produce more filtered DEGs relative to the mean (gene set 

size in Upset plots – Figure 2.8; Tables 2.3 & S2.3). DESeq2 and EdgeR pipelines both 

shared a 71% overlap with Limma-Voom pipelines with 172 or 148 Limma-Voom 

specific genes, respectively. In DESeq2 and EdgeR comparisons, unique genes were few 

(12 in EdgeR) to non-existent, further highlighting the similarity between these two 

methods. These relationships are maintained across filtering methods (Figure 2.8; Figures 

S2.5 – S2.6). 
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Figure 2.8. High overlap between DGE programs, particularly those using Negative Binomial Models 

Upset plots of DEGs for pipeline-specific filtering. DEG intersections for pipelines including (A) EdgeR or 

DESeq2 and (B) EdgeR or Limma-Voom. Horizontal bars represent the total number of DEGs for a pipeline. 

Filled circles indicate the specific pipelines being intersected and the vertical bars are the number of DEGs in 

that intersection.  
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Together, these analyses explore the variation in the number of significant, 

moderate to large effect DEGs (fold change of 4; FDR 5%) due to the analysis steps used 

to produce them. Overall, we find high similarity among quantification methods with 

similarity estimates at 91% or higher across methods. This agrees with previous work 

done in Schaarschmidt et al. (2021) who found high levels of similarity across 7 aligners 

and in Corchete et al. (2021) (Schaarschmidt et al. 2020; Corchete et al. 2020). The 

effects of these programs are dependent upon the type of RNA-analysis being performed. 

Work done by Wu et al. (2018) aligns with the relationships identified here and in other 

comparisons, but only in longer RNA molecules. Kallisto and Salmon performed poorly 

for  lowly expressed and small genes due to SNPs (Wu et al. 2018). This work is one of 

many that highlights the importance of context in expression analysis as performance 

results may not hold for all types of RNA-seq analyses or at all levels of expression. Our 

findings were all in the context of gene-level expression analyses, and seemingly do not 

agree with Srivastava et al. (2020) who found more variability between traditional 

aligners and alignment free methods in transcript-level expression analyses (Srivastava et 

al. 2020).  DGE and counting programs were the largest sources of variation and they 

interacted strongly with each other. The mean number of DEG for Limma-Voom 

pipelines had the most extensive differences, greatly exceeding the mean across all 

pipelines, and had the lowest levels of similarity when compared to pipelines with 

DESeq2 or EdgeR. In contrast, DESeq2 and EdgeR pipelines were usually below the 

overall mean, but these differences were lower for EdgeR and were much closer to the 

overall mean. The high levels of similarity between DESeq2 and EdgeR were quite clear 
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across data analyses, corroborating previous findings,  due to the shared underlying count 

model between these methods (Soneson and Delorenzi 2013; Seyednasrollah et al. 2015). 

Normalization, parameter shrinking, and count modeling methods are the main 

components of DGE programs. These steps are performed similarly in DESeq2 and 

EdgeR, but very differently in Limma-Voom. Limma-Voom uses a log-normal 

distribution to model counts and makes calculations using geometric means, while the 

other two algorithms use a negative binomial distribution to model counts and performs 

calculations with raw (normalized) counts (Robinson et al. 2010; Law et al. 2014; Love 

et al. 2014). Negative bionomial models are generally better suited for modeling count 

data and are easier to interpret contextually, but often come with higher Type I error 

rates. Many statisticians advise researchers to prioritize the model that best fit the data 

and worry about things that can be corrected (i.e., false positives) secondarily. Yet they 

still circle back to the fact that all models are incorrect and linear models have their 

benefits (i.e., robust, good false positive control) particularly in statistically complex 

model (Warton et al. 2016). While it is pertinent to understand the effects of the 

underlying algorithms used, it is important to discuss these differences in terms of the 

interpretations made from them. Although there were significant differences in means for 

many pipeline combinations, exploring DEG list content across pipelines revealed a 

minimum of 71% overlap (Limma-Voom with other DGE programs) and a maximum of 

84% overlap (EdgeR with DESeq2). The list contents were largely shared across all 

pipelines intersected, suggesting that overall differences of analysis steps are mitigated 

and balance out to produce highly similar DEG lists. Studies that could estimate 

precision and accuracy report Limma-Voom DEGs in high agreement qRT-PCR 
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expression analyses. This contrasts with DESeq2 and the most basic EdgeR model, 

which fall close to the bottom of the ranking (Corchete et al. 2020). While we do not 

explore these metrics here, we do find the largest set of hypotheses generating DEGs 

with Limma-Voom pipelines. Next, we explore how the variation in filtered DEGs from 

our pipelines influence biological conclusions drawn from gene set enrichment analyses.   

Pathway Analysis  

After DGE analysis, we analyzed our 18 pipelines in the R package fgsea for 

functional gene set enrichment analysis. Across pre-filtering methods, over half of the 

pipelines (78%) have no statistically significant enriched gene sets. While we have 

previously reported results primarily in the context of pipeline-specific filtered data, we 

will focus on hard filtered data. Of the 16,612 genes in our annotation, only ~4,000  gene 

names map the gene IDs, which is necessary for gene set enrichment analyses. FDR was 

set at 25%, as suggested by the GSEA documentation for hypothesis generating 

exploration of the data set. The pipelines that report a statistically significant enriched 

gene set are those using EdgeR or Limma-Voom for DGE detection. All report the same 

result hallmark gene set as being overrepresented by genes upregulated in the food 

restricted group, Xenobiotic Metabolism.  

Xenobiotic metabolism refers to the detection and breakdown of exogenous 

chemicals (i.e., plant compounds, drug, cosmetics) that may or may not be considered 

toxins but are metabolized and excreted from the body (Johnson et al. 2012). 

Interestingly, the same nuclear receptors that respond to xenobiotic compounds also 

respond to endobiotic compounds, particularly lipids. This has been documented in 
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humans, flies, and several other arthropods including our organism of interest, D. pulex. 

Specifically, HR96, a xeno- and endobiotic nuclear receptor, and its orthologs are 

involved in toxicant response and cholesterol homeostasis. Unsaturated fatty acids are 

also common regulators (mostly activators) of receptor genes in xenobiotic metabolism. 

Xenobiotic metabolism genes also regulate stress responses including responses to 

starvation (Karimullina et al. 2012). Daphnia tend to maintain higher levels of 

unsaturated fatty acids relative to the content in their diet and will sequester these lipids 

when they are starving, or their food quality is poor (Brett et al. 2006). This is a 

confirmatory result of the caloric restriction treatment and may indicate that Daphnia 

metabolize stored unsaturated fatty acids during periods of food restriction or poor diet. A 

quick look at the leading-edge genes supporting this pathway as enriched include genes 

related to transcription factors involve in lipid metabolism and toxicity (ABCD2) and 

genes that are recognized from cellular metabolism pathways (FBP1, IDH1, MTHFD1). 

The lipid metabolism pathways are documented to be active during periods of acute 

starvation after carbohydrate stores are depleted (Campos et al. 2021). Lipids are more 

slowly metabolized, balanced by the metabolism of intermediates such as glycerol (from 

lipolysis) and acetyl-CoA (from glycolysis) for energy generation (Klumpen et al. 2021). 

These mechanisms are less understood in the context of chronic starvation stress induced 

in our experiment. These results should be interpreted gingerly because 75% of gene IDs 

in our annotation lack gene names and restricts GSEA analyses to a much smaller gene 

subset to make interpretations from.  

 

FUTURE DIRECTIONS & CONCLUSIONS  



 85 

 Annotation quality and completeness is extremely important in RNA-seq analyses 

to infer the biological pathways that are being affected by treatments, as we can see from 

the limitations in GSEA applied to these data. This resource is also important to the 

overall DGE analysis procedures because the annotation is responsible for identifying 

features that reads are mapping to. This highlights the need for the ecological and 

evolutionary biology communities to “take a page from the book of model organism 

research” and begin building infrastructure for non-model omics resources widely 

available to the community that represents the biodiversity we love and explore in our 

research.  In future analyses, we will explore the consensus of biological interpretation 

across DGE pipelines in different non-model data sets with more complete, higher quality 

genome annotations used by our lab group (e.g., garter snake, fence lizard (Westfall et al. 

2021)). We use the default models and procedures for these comparisons, but the DGE 

programs we applied all have different normalization and modeling methods that have 

been added to accommodate other RNA-seq data profiles. Many of these modifications 

do require the user to have a strong understanding of the underlying models, the 

parameters, and how to assess model fit, which is not an inherent skillset for many 

biologist and budding researchers interested in applying these methods in their 

investigations. As more RNA-seq data is produced across more systems, we expect that 

analysis algorithms will develop that are more robust and generalizable across 

experimental designs and species.  

 Our analyses were designed from the perspective of biologists with limited 

experience with statistical modeling and omics data to understand how the decisions (i.e., 
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analysis program choice, filtering methods) and resources (i.e., annotation) involved in 

DGE analysis change the overall biological interpretations that are driving the 

investigations. We recapitulate findings from previous researchers on the relatively 

miniscule importance of mapping strategy, moderate importance of counter choice, and 

high importance of normalization and count modeling methods in DGE analysis. Yet, we 

find that even considering these effects, and the caveats of our data, we recover the same 

pathways across pipelines (even ones that lack statistical significance) with a treatment 

relevant pathway at the top of these lists, suggesting the specific choice of the programs 

at any one of these steps may not matter as much in the context of the biological 

interpretations of the experiment. We did not test precision and accuracy for these data, 

so our conclusions are not in the context of the best model and pipelines to use. We do 

conclude that researchers interested in obtaining the maximum number of significant 

DEGs should use a combination of STAR for alignment, HTSeq for counting, and 

Limma-Voom for DGE analysis. We would like to remind individuals that these 

pipelines are not “black box” solutions to RNA-seq analyses but are starting places to 

learn how to perform classic control-treatment RNA-seq and DGE analyses. Users are 

advised to explore other settings, parameters, and programs that are best for their data set.  

 Finally, we aim for the code generated to test these pipelines to be useful for 

instructors to teach upper-level undergraduate and graduate students to perform RNA-seq 

analysis. We intend for this code to allow users to focus more on the conceptual 

background and biological interpretation for these types of data and less on how to script 

it. We make this code available on GitHub in a modular format with the appropriate 
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background information and helpful online resources to enrich learning. These code 

products are useful as a self-paced tutorial, or modules incorporated into genetics or 

functional genomics curriculum. As an example, these resources will be integrated into 

the Functional Genomics course at Auburn University in the format of a course-based 

research experience (CRE) that allow students a hands-on learning experience with a 

computationally tractable, publicly available dataset. Students will have the opportunity 

to contrast methodologies, while working together to complete RNA-seq analysis from 

alignment to biological interpretation. These analyses are relatively fast and can be easily 

used with other publicly available datasets with control-treatment designs. We hope that 

the computational biology and bioinformatics learning community and other readers find 

these resources beneficial and informative.  

Data Availability  

All sequence data are available under the NCBI BioProject Accession PRJNA437447. 

Code used to perform the data analyses for this work can be found on GitHub 

(https://github.com/Schwartz-Lab-at-Auburn/18_RNA-seq_Pipelines).   
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Table 2.1: Pipeline Programs – Descriptions and Parameters Used Programs used throughout these analyses with their abbreviations when applicable, 

a description provided by the program, the version used, and any parameters that deviated from the default/required  parameters.  

Program Abbreviation Description (Author Sourced) Version Parameters (Deviation from Defaults) 

Aligners 

Hisat2 Hi “HISAT2 is a fast and sensitive alignment program for 

mapping next-generation sequencing reads (both DNA and 

RNA) to a population of human genomes as well as to a 

single reference genome. Based on an extension of BWT for 

graphs, we designed and implemented a graph FM index 

(GFM), an original approach and its first implementation.” 

2.2.1 --rna-strandness RF  [strandeness] 

 

 

STAR Sr “Spliced Transcripts Alignment to  a  Reference (STAR) 

software based on a previously undescribed RNA-seq 

alignment algorithm that uses sequential maximum 

mappable seed search in uncompressed suffix arrays 

followed by seed clustering and stitching procedure.”   

2.7.5 --genomeSAindexNbases 12 [Index 

string size adjusted for reference 

genome size] 

 

--outStd SAM [output SAM to standard 

out] 

--readFilesCommand gunzip -c [read 

compressed input] 
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Counters 

HTSeq Ht “HTSeq is a Python package for analysis of high-throughput 

sequencing data. Given a file with aligned sequencing reads 

and a list of genomic features, a common task is to count 

how many reads map to each feature.” 

0.9.1 -s reverse [strandeness] 

-m intersection-nonempty [the 

intersection of all non-empty overlap 

between a gene and a unique read] 

StringTie St “StringTie is a fast and highly efficient assembler of RNA-

Seq alignments into potential transcripts. It uses a novel 

network flow algorithm as well as an optional de novo 

assembly step to assemble and quantitate full-length 

transcripts representing multiple splice variants for each 

gene locus. Its input can include not only alignments of short 

reads that can also be used by other transcript assemblers, 

but also alignments of longer sequences that have been 

assembled from those reads” 

2.1.6 --rf [strandedness] 

-e [prevent novel transcripts] 

-G [annotation] 

-B [ballgown style output] 

 

Pseudoaligners 

Kallisto K (K2) “A tool to quantify RNA-seq data. The kallisto algorithm 

uses a pseudo alignment approach to speed up the alignment 

procedure. The "pseudo alignment" approach can quantify 

1.5.1 --rf-stranded [strandedness] 
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reads without making actual alignments. Kallisto can handle 

paired-end and single-end reads. It reports transcripts per 

million mapped reads (TPM).” 

Salmon Sl (Sl2) “Salmon is a tool for quantifying the expression of 

transcripts using RNA-seq data. Salmon uses new algorithms 

(specifically, coupling the concept of quasi-mapping with a 

two-phase inference procedure) to provide accurate 

expression estimates very quickly (i.e. wicked-fast) and 

while using little memory.” 

0.46.2 -l A[automatic library type detection; 

detect strandedness] 

DGE Detection 

DESeq2  “Estimate variance-mean dependence in count data from 

high-throughput sequencing assays and test for differential 

expression based on model using the negative binomial 

distribution.” 

1.36.0 contrast = c("Treat", "Restricted", 

"AdLib") [set contrast] 

pAdjustMethod = "fdr" [use FDR 

correction] 

EdgeR  “Differential expression analysis of RNA-seq expression 

profiles with biological replication. Implements a range of 

statistical methodology based on the negative binomial 

distributions, including empirical Bayes estimation, exact 

3.38.1 topTags(n = 

nrow(exacttest_output)) [get all 

records] 
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tests, generalized linear models and quasi-likelihood tests. 

As well as RNA-seq, it be applied to differential signal 

analysis of other types of genomic data that produce read 

counts, including ChIP-seq, ATAC-seq, Bisulfite-seq, SAGE 

and CAGE.” 

Limma-Voom  “Limma is a library for the analysis of gene expression 

microarray data, especially the use of linear models for 

analysing designed experiments and the assessment of 

differential expression. The linear model and differential 

expression functions apply to all gene expression 

technologies, including microarrays, RNA-seq and 

quantitative PCR.” 

3.52.2 topTable(sort.by = "P", n = Inf) [get all 

record] 

Functional Enrichment 

fgsea  “The package implements an algorithm for fast gene set 

enrichment analysis. Using the fast algorithm allows to make 

more permutations and get more fine-grained p-values, 

which allows to use accurate standard approaches to multiple 

hypothesis correction.” 

1.22.0 defaults 
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Other 

SRA Toolkit  “The SRA Toolkit and SDK from NCBI is a collection of 

tools and libraries for using data in the INSDC Sequence 

Read Archives.” 

2.11.0 See GitHub repository for additional 

details (https://github.com/Schwartz-

Lab-at-Auburn/18_RNA-seq_Pipelines) 

 FastQC  “FastQC aims to provide a simple way to do some quality 

control checks on raw sequence data coming from high 

throughput sequencing pipelines. It provides a modular set 

of analyses which you can use to give a quick impression of 

whether your data has any problems of which you should be 

aware before doing any further analysis.” 

0.11.9 

Trimmomatic  “Trimmomatic is a fast, multithreaded command line tool 

that can be used to trim and crop Illumina (FASTQ) data as 

well as to remove adapters. These adapters can pose a real 

problem depending on the library preparation and 

downstream application.” 

0.39 

tximport  “Imports transcript-level abundance, estimated counts and 

transcript lengths, and summarizes into matrices for use with 

downstream gene-level analysis packages.” 

1.24.0 

https://github.com/Schwartz-Lab-at-Auburn/18_RNA-seq_Pipelines
https://github.com/Schwartz-Lab-at-Auburn/18_RNA-seq_Pipelines
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GGally  “The R package 'ggplot2' is a plotting system based on the 

grammar of graphics. 'GGally' extends 'ggplot2' by adding 

several functions 

    to reduce the complexity of combining geometric objects 

with transformed data.” 

2.1.2 

FactoMineR  “Exploratory data analysis methods to summarize, visualize 

and describe datasets. The main principal component 

methods are available, those with the largest potential in 

terms of applications: principal component analysis (PCA) 

when variables are quantitative, correspondence analysis 

(CA) and multiple correspondence analysis (MCA) when 

variables are categorical, Multiple Factor Analysis when 

variables are structured in groups, etc. and hierarchical 

cluster analysis.” 

2.4 

ComplexHeatmap  “Complex heatmaps are efficient to visualize associations 

between different sources of data sets and reveal potential 

patterns.” 

2.12.0 

car  “An R Companion to Applied Regression.” 3.1-0 
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emmeans  “Obtain estimated marginal means (EMMs) for many linear, 

generalized linear, and mixed models. Compute contrasts or 

linear functions of EMMs, trends, and comparisons of 

slopes. Plots and other displays.” 

1.7.5 

ggeffects  “Compute marginal effects and adjusted predictions from 

statistical models and returns the result as tidy data frames. 

These data frames are ready to use with the 'ggplot2'-

package. Effects and predictions can be calculated for many 

different models. Interaction terms, splines and polynomial 

terms are also supported.” 

1.1.2 

UpsetR  “Creates visualizations of intersecting sets using a novel 

matrix design, along with visualizations of several common 

set, element and attribute related tasks.”  

1.4.0 
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Table 2.2: Analysis of Variance (ANOVA) summaries of model 1 for each filtering method. Sum of 

Squares values were used to calculate percent variability explained by the predictors that are reported in the 

text.  

 

 Sum Sq Df F value Pr (>F) 

Soft Filtered 

Quantification 13706.67 5 14.24069 0.0002825 

DGE Program 75144.33 2 195.18009 0.0000000 

Residuals 1925.00 10   

Hard Filtered 

Quantification 17271.333 5 9.39766 0.00154 

DGE Program 57693.000 2 78.47964 0.0000008 

Residuals 3675.667 10   

Pipeline-Specific Filtered 

Quantification 25681.333 5 29.94326 0.0000104 

DGE Program 93065.333 2 271.27478 0.0000000 

Residuals 1715.333 10   
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Table 2.3: Linear model 1 summaries for each filtering method. Estimates are mean differences in the 

number of significant DEGs from the grand mean or intercept averaged over all other predictors (i.e., 

Hi_Ht estimate is the average number of significant DEGs for all 3 DGE programs when quantifying with 

Hisat2 & HTSeq, minus the grand mean). Values below estimates in parentheses are standard error 

estimates. Intercept is the grand mean; see Table 2.1 for program abbreviations. 

 

 

 

  
 Soft Hard Pipeline 

(Intercept) 1065.00 *** 959.33 *** 1045.67 *** 

 (3.27)    (4.52)    (3.09)    

Hi_Ht 27.00 **  43.00 **  33.33 *** 

 (7.31)    (10.10)    (6.90)    

Hi_St -48.00 *** -34.67 **  -58.33 *** 

 (7.31)    (10.10)    (6.90)    

K_K2 6.00     5.33     15.00     

 (7.31)    (10.10)    (6.90)    

Sl_Sl2 3.67     6.67     -1.33     

 (7.31)    (10.10)    (6.90)    

Sr_Ht 32.33 **  24.67 *   49.00 *** 

 (7.31)    (10.10)    (6.90)    

DESeq2 -70.67 *** -57.50 *** -75.67 *** 

 (4.62)    (6.39)    (4.37)    

EdgeR -14.83 **  -19.50 *   -21.00 *** 

 (4.62)    (6.39)    (4.37)    

N 18        18        18        

R2 0.98     0.95     0.99     

 *** p < 0.001;  ** p < 0.01;  * p < 0.05. 
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INTRODUCTION  

  

Primary culture, the outgrowth of cell populations from animal tissue biopsies, 

has perpetually advanced basic and applied fields of biology since Harrison’s 

demonstration of cellular outgrowth from frog embryo nerve fibers in 1907 (Keshishian 

2004). Forty-five years later, this process of subculture generated the first human cell 

line, HeLa, was established from a cervical carcinoma sample (Landry et al. 2013).  

Fundamental molecular biology knowledge generated and deepened by cell culture 

methodology include, but are not limited to, studies of intercellular interaction (Saunders 

and D’Amore 1992), intracellular signaling (Sastry and Burridge 2000; Hartford Svoboda 

and Reenstra 2002), and cellular differentiation and development (Fox et al. 1967; Keller 

2005; Myhre and Pilgrim 2010). Biomedical sciences have also made significant strides 

by applying cell culture techniques in pharmacology and toxicology, testing drug and 

ligand receptor interactions (Pramanik 2004; Montet et al. 2006; Guryanov et al. 2016; 

Riesenberg et al. 2020), and tissue engineering, modeling cells-specific diseases toward 

the goal of transplantation of healthy cells (Soto-Gutierrez et al. 2010).   

The surmounting usefulness of cell culture has led to the mass collection and 

biobanking of cell lines from a variety of species, tissues, and disease states. The National 

Institute of General Medical Sciences (NIGMS) hosts a repository of over 11,000 cell 

lines; however, these are predominantly for studies in human medicine. The American 

Type Culture Collection (ATCC) is a global leader in the preservation, validation, and 

distribution of a wide range of biological materials, including over 4,000 primary and 
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continuous cell lines, but only an underwhelming 1% (58) of cell lines are from non-

model organisms (ATCC). Although primary culture methods provide an avenue to 

advance the fields of molecular and evolutionary ecology, these methods have yet to be 

sufficiently expanded and integrated into the study of natural populations and non-model 

organism.    

Just as the biomedical community is guided by translational research practices, 

extending basic molecular findings to population-level medicine (Seals 2013; Segeritz 

and Vallier 2017), evolutionary ecology can exploit this bidirectional research process to 

extend our molecular knowledge of natural populations to viable population management 

and conservation practices. Le Pennec & Le Pennec (2007) developed a primary culture 

model from the commercially relevant scallop Pecten maximus, establishing pancreatic 

acinar cells in vitro, for ecotoxicology research focused on the effects of marine 

pollutants like polycyclic aromatic hydrocarbons (PAHs) from oils and burned carbon 

(Le Pennec and Le Pennec 2001). Recently, a review and case study of coral cell culture 

called for more work to be done in characterizing and optimizing in vitro culture of coral 

cells to study bleaching, disease, and toxicity in these complex culture systems. The study 

established cultures from the coral species, Pocillopora acuta, and isolated several host 

and symbiont cells as well as nematocysts (Roger et al. 2021). Moreover, increasingly 

available cellular resources from natural populations provide a much-needed expansion 

of the available comparative research models currently used to understand evolutionary 

and physiological processes and human medicine. There is an established and growing 

body of research using amphibian and reptile cell models to study regeneration with goals 

of understanding wound healing in medical research (Lévesque et al. 2007; Yokoyama et 
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al. 2018; Franchini 2019). Aging and cancer research has also branched out from the 

typical biomedical models (Hoekstra et al. 2020). Primary fibroblasts have been 

established from a long-lived and tumor resistant non-model rodent, the naked mole rat 

(Heterocephalus glaber). Evdokimov et al. (2018) used naked mole rat cells and mouse 

cells in a comparative study of the cellular, transcriptional, and protein modification 

activity associated with base (BER) and nucleotide (NER) excision repair after exposure 

to DNA-damaging radiation. The authors found that heightened sensitivity to DNA 

damage concomitant with higher BER, NER, and poly(ADP-ribose)polymerase (PARP) 

activity, which correlates with mammalian  

lifespan (Evdokimov et al. 2018).  

When considering the benefits of cellular models in the context of animal welfare 

in research, cell culture embodies the animal research tenet, the “Three R’s”, - 

refinement, reduction, and replacement (Fenwick et al. 2009). Tissue biopsies for cell 

culture are relatively small (i.e., ~ 8mm), and can be obtained virtually non-invasively 

and opportunistically (i.e., obtainment via catch and release sampling, natural autotomy, 

or postmortem), further refining experimental animal and sample procurement. Primary 

cell culture can be used to supplement whole organisms in studies, with appropriate 

research hypotheses, and can reduce the sample sizes and number of studies requiring the 

use of whole organisms (Nowotny et al. 2021).  

To successfully integrate primary culture methodology into ecological and 

evolutionary research, standardized establishment protocols and validated, cryo-banked 

cell samples are critical. Biopreservation and biobanking of cells from a diversity of 
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organisms and tissues offers a virtually infinite resources of biomaterials to the scientific 

community when properly maintained, sub-cultured and published or banked. Expanding 

cell culture methods used in evolutionary ecology research also benefits related fields of 

cytotechnology, biotechnology, and omics by providing a sustainable source of cells for 

the extraction of chromosome-length DNA and high-quality RNA for the preparation of 

multiple sequencing libraries. Ryder and Onuma (2018) reviewed the applications of cell 

culture in the characterization and conservation of biodiversity. The authors provide 

historical and methodological culture information, and they describe the potential for 

using methods already implemented in model organisms, such karyotyping, genome and 

phenome sequencing, genetic rescue, and induced pluripotent stem cell (iPSC) generation 

from in vitro culture biomaterials (Ryder and Onuma 2018). The lag in development and 

publication of these resources for non-model systems is likely due to the extensive time 

and expertise required for establishing and maintaining primary cells, cell lines, and cell 

banks or repositories. In addition to trained personnel, the initial cost of establishment 

and expansion of cell culture resources can easily overwhelm the finances of a laboratory, 

and funding for the development of these types of resources are often prioritized for 

medically related research. Towards the goal of promoting primary culture methodology 

in ecological research, we present methods for the establishment and validation of 

primary fibroblast cultures from reptiles — multiple lizard species in the Anolis genus 

that is rich with prominent evolutionary and ecological models.  

The Anolis genus is a well-studied animal system, with well-documented 

embryonic development (Sanger, Losos, & Gibson-Brown, 2008) and life history 

knowledge (Lovern et al. 2004; Warner and Shine 2008; Warner and Lovern 2014), 
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evolutionary models for island radiations and niche partitioning (Losos et al. 1998; Losos 

2011; Angetter et al. 2011; Huie et al. 2021), and selection for limb size (Sanger et al. 

2012; Hagey et al. 2017). Additionally, there are publicly available genomic and 

transcriptomic resources available for the brown anole (Anolis sagrei) (Geneva et al 

2021) and green anole (Anolis carolinensis) (Alföldi et al., 2011; Eckalbar et al., 2013). 

Recently, brown anoles (A. sagrei) have been pushed to the forefront as a reptile model 

for gene editing (Rasys et al., 2019). We detail the establishment primary and early 

passage cells use with six reptile species, the brown anole (A. sagrei; Figure 3.1), green 

anole (A. carolinensis), knight anole (A. equestris), large-headed anole (A. cybotes), 

Hispaniolan green anole (A. chlorocyanus), and bark anole (A. distichus). Details on 

primary cell validation applies to brown anole cells. These resources and protocols will 

further endorse anoles as model organisms beyond ecology and evolutionary biology, and 

ultimately bolster the integration of evolutionary, molecular ecology and biomedical 

research.    

  

MATERIALS & METHODS  

Establishment of Primary and Early Passage Cells from Lizard Tails  

Culture protocols are briefly outlined below, but more detailed protocols, recipes, and 

reagent lists will be published with protocols.io. These methods were developed and 

optimized through the establishment of ~250 primary cells from 9 lizard species; 123 of 
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these cells are from the Anolis genus (Table S3.1).  Here we only present establishment 

protocols for 5 anole species and validation data from brown anole (Anolis sagrei) cells. 

 

Animals and Sample Collection  

All primary cells were developed from tail tissues. Anoles, like many lizards, can 

autotomize and regenerate their tails so establishment can be non-lethal, but all tails used 

in this study were taken post-mortem. The brown anole (Bahama source population) tails 

were collected and shipped from The Cox Laboratory (University of Virginia, UVA). 10 

minutes after euthanasia via decapitation, tails were severed below the cloaca (~12 - 

25mm for female and male, respectively) using a sterile scalpel. The tails were wiped 

against the scales with an alcohol prep pad or 95% ethanol, before being submerged in 

70% ethanol for 5 minutes. Tails were stored in 15 mL conical tubes with Collection 

media DMEM (4.5g/L glucose; L-glutamine; sodium pyruvate) [VWR], 0.5% 

Gentamicin (10 mg/mL) [MP Biomedicals], 0.2% Kanamycin (50 mg/mL) [VWR], 0.8% 

Penicillin/Streptomycin/Amphotericin B 100x mix (10,000 units/mL pen, 10 mg/ml 

strep, and 25 μg/mL amphoB) [Hyclone] supplemented with 17% 1M HEPES [Hyclone].  

Tails from UVA were stored at 4oC up to 2 days before overnight shipment to Auburn 

University on wet ice. Tails from the green anole, knight anole, and broad-headed anole 

species were collected from The Warner Laboratory (Auburn University, AU) under 

IACUC protocol #2021-3875. Tails were collected opportunistically from laboratory 

colonies during scheduled euthanasia using the protocol describe above except animals 

were euthanized using MS222, and tails were not shipped. Details on the species, 
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provenance, and demographics for each individual cells were isolated from are found in 

Table S3.1.  

 

Explant Methodology  

  Tails received were stored at 4oC for 24 -48 hrs. prior to establishment. Cells were 

established using standard explant culture methods (Polazzi and Alibardi 2011; Freshney 

2016) optimized for lizard tissues.  

Tails were removed from collection media and submerged in 100% original Listerine 

[Johnson & Johnson] for 15 – 30 minutes, where the soak time increased with the size of 

the tail. Tails were transferred to 1X DPBS [VWR] for 2 minutes, prior to removing all 

scales, bone, cartilage, and adipose tissues with a sterile scalpel. When possible, a portion 

of the tail was retained and snap frozen for DNA extractions or diced and cryopreserved 

for future establishment. On a petri dish, the remaining tissue was diced into pieces (~ 10 

mm2) in a small amount of DPBS and collected with sterile forceps into a 1.5mL tube 

with 700 L of DPBS. This was lightly vortexed to wash the tissue pieces and reduce the 

likelihood of transferring contaminants to the establishment plates. This step is most 

useful for samples that could not be collected aseptically (i.e., in the field).  Tissue pieces 

were transferred to 3 wells of a 6 well plate [VWR] with 500 L of establishment media 

(DMEM/F12 1:1(4.5g/L glucose; L-glutamine; sodium pyruvate; HEPES) [Lonza], 16% 

Fetal Bovine Serum (FBS) [VWR], 3% Chicken Serum (CS) [Equitech-Bio], 1% Non-

essential Amino Acids (NEAA) [Hyclone, GE Healthcare], 0.5% Gentamicin, 0.17%, 

Kanamycin (Optional), 0.8% Penicillin/Streptomycin/AmphotericinB 100X mix) and 
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diced into pieces > 5mm2. A small volume of establishment media (< 300 L) was added 

to prevent drying out tissue pieces. Establishment plates were incubated at 30oC with 5% 

CO2 in an air or water-jacketed CO2 incubator [VWR].   

  

Subculturing Methodology  

Once a culture reached ~70% confluency, the percentage of surface area covered by cells, 

media was aspirated from culture dishes and cells were lifted from the dish using 4% 

trypsin EDTA [Corning] for 3-5 minutes (volume dependent on surface area of dish). 

Enzymatic activity was neutralized by adding culturing media (DMEM/F12 1:1(4.5g/L 

glucose; L-glutamine; sodium pyruvate; HEPES), 12% FBS, 3 % CS, 0.5% Gentamicin 

(Optional), 0.17% Kanamycin (Optional), 0.8% Penicillin/Streptomycin/AmphotericinB 

mix (Optional) to the dish and using the cell suspension to gently wash any remaining 

adherent cells from the plate with a 10mL pipette [Thermo Scientific] and electronic 

pipetman [Argos]. Cell suspension was collected in a conical tube and gently inverted 2 – 

3 times before desired volumes of the cell suspension were divided into new culture 

dishes that already contained the accurate amount of fresh culturing media to bring the 

total volume with cell suspension to 10mL (appropriate volume for 10 cm dishes).   

 

Cryofreezing and Preservation Methodology  

For cryopreservation, media was aspirated from culture dishes and cells were lifted from 

the dish using 4% trypsin EDTA for 3 -5 minutes. Enzymatic activity was neutralized by 



 117 

adding media to the dish and using the cell suspension to gently wash any adherent cells 

from the plate. The cell suspension was collected, and the number of cells was estimated 

using an EVE automated cell counter [Nanotek]. Cells were pelleted via centrifugation 

for 5 minutes at 200 xG and culturing media was removed. Freezing media (DMEM/F12 

1:1(4.5g/L glucose; L-glutamine; sodium pyruvate), 45% FBS, 5% CS, 10%  

dimethyl sulfoxide (DMSO) [VWR]) was used to resuspend the cell pellet at a density of 

2 million cells per mL. One mL of cells was aliquoted into a 2mL cryotube [Simport] and 

stored at -80oC in a ‘Mr. Frosty’ Cryo 1oC Freezing Container [Nalgene] that cools at a 

controlled rate of –1°C/minute for 24 – 48 hrs before long-term storage in vapor phase 

liquid nitrogen.   

  

Cell Validation & Characterization  

Contamination and Mycoplasma Screening  

  For studies using cell culture systems, validating the health and identity of the 

cells is imperative to substantiating the validity of the study and findings (Yung 2012). 

To ensure that all cell cultures were healthy, cultures were visually assessed for cell 

morphology, growth, and any microbial contaminants using an EVOS XL imaging 

system [Invitrogen]. Mycoplasma species, bacteria that are common culprits of unhealthy 

cultures, are not visible using light-field microscopy. To screen cultures for the presence 

of Mycoplasma infection, cell supernatant must be lysed, and the resulting solution tested 

for the DNA of common Mycoplasma contaminants. Mycoplasma Detection Kit 
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[Southern Biotechnology], with a detection limit of 2-5 femtograms/100l supernatant, 

was used to test for the presence of 19 species from three genera, following the 

manufacturer’s protocol. After cells had been growing successfully in normal growth 

media, it was supplied with antibiotic-free media and allowed to grow for three to six 

days and before expended media was collected (1mL). The cell supernatant was 

centrifuged to lyse any cells, and 100L were sampled to test for Mycoplasma 

contaminants using PCR-based detection in duplicate reactions. The kit includes a 

positive control and water was used as a negative control. The reactions were run on a 

thermal cycler [BioRad T100] using the following program: 95 C for 5 min, followed by 

29 cycles of 95 C for 30s, 54 C for 30s, 72 C for 45s, 60 C for 30m, and a 12 C hold. 

PCR product was visualized using gel electrophoresis on a 0.8% agarose gel in a 50 ml 

volume with 1.5 µl of GelGreen DNA staining dye [Biotium, USA, Cat. #41005]. 

Samples were run alongside a 1kb [New England BioLabs, #N0468] and 250 bp [New 

England BioLabs, #N0557] DNA ladder run at 90V for 45 minutes. The presence of 

Mycoplasma infections is detected by banding between ~448 bp to ~611 bp that matches 

one of the known amplicon lengths.  

 

Short Tandem Repeat (STR) Profiling for Single Individual Culture Validation  

To validate that the established cells were still the identity of the source and not 

contaminated by another individual we validated the brown anole cells using STR 

profiling of both the cell pellets and either the tissue or blood taken from the individual at 

dissection. For each individual, DNA was isolated from the cell pellets and tail tissue or 5 
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l of red blood cells taken at euthanization using the PureGeneKit [Qiagen] using the 

"Cultured Cell Protocol” provided by the manufacture for both the cell pellet and the red 

blood cells. We used a multiplex PCR to amplify of 5 loci: AAAG-61 (VIC), AAAG-77 

(PET), AAAG-91 (FAM), and AAAG-94 (FAM) from Bardeleben et al (2004), and 

Acar23 (PET) from Wordly et al (2011). The forward primers were ordered with 

florescent labels as indicated (Integrated DNA Technologies). PCR reactions were 

conducted in 10 l volume using forward and reverse primers at a final concentration of 

0.5 nM for AAAG-61 and Acar23, 0.075 nM for AAAG-94 and AAAG-77 primers, 0.1 

nM for AAAG-91, final concentration of 1X Multiplex PCR master [Qiagen], and 20-50 

ng of DNA. The reactions were run on a thermal cycler [BioRad T100] using the 

following program: 95 C for 5 min; followed by 29 cycles of 95 C for 30s, 54 C for 

30s, 72 C for 45s; a final extension at 60 C for 30m, and a 12 C hold. A subsample of 

the PCR products was run on an 3% agarose gel at 120 voltage for 120 minutes to 

confirm the amplification of the microsatellites. PCR products were diluted 1:10 and 

shipped to GeneWiz for fragment analysis on the ABI3730xl. Genotypes were scored 

using the Microsatellite plugin in the Geneious software v11.1.4 (Kearse et al., 2012), 

and compared between cell pellets and the blood from the same individuals to verify they 

match and thereby were not contaminated with cells from other individuals.  

 

Growth curve analysis for growth characterization  

  To understand the replicative capacity of anole primary fibroblast, two brown 

anole lines chosen randomly throughout establishment periods were used to calculate 
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population doubling time. Cells were seeded onto 24 well plates at a density of 1x104 

cell/mL and were collected and counted in triplicate for 4 days. Growth curves and 

calculations for population doubling time were determined using the R package 

growthcurver.  This package fits the data using a standard logistic equation used in 

population genetics regarding population growth.  

  

RESULTS & DISCUSSION  

Here we present optimized protocols for the establishment of reptile primary cells, 

particularly lizards. Although we only present Anolis primary cells here, earlier versions 

of these methods have also been used to establish primary cell cultures from three 

additional lizard species (whiptails (Aspidoscelis spp.), Elgaria multicarinata, Sceloporus 

undulatus; data not included).  

Primary cultures are naturally heterogenous populations of cells, with other cell 

types frequently present early in culture (i.e., keratinocytes, epithelial cells). Medium 

composition and subculture are both agents of selection for specific cell types. The 

protocols used for this work were built from published protocols confirmed to be 

selective for fibroblast cells (Li et al. 2016). Microscopy (unstained; brightfield) was 

used to visually assess cell morphology. Figure 3.1C & D display unstained cells from 

select sub-confluent and confluent cultures. These fibroblast-like cells have the 

characteristic bi- and multi-polar morphology seen in sub-confluent fibroblasts, and at 

confluency, the cells are the expected spindle-like, bipolar shape and organized in whorls. 
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Figure 3.1: Anole cells at different stages of establishment and culture.  

Anoles are established evolutionary ecology models. Some species, like the (A) pictured brown anole 

(Anolis sagrei) are being developed to address questions in other fields. Tails are used in (B) explant 

culture to develop primary and early passage cells. Cells are shown in (C) sub-confluent and (D) 

confluent states. Cell images were all taken at 4x magnification using an EVOS XL Imaging System by 

Invitrogen. Photo credit for the anole is to Jeffrey Pippen. 

https://www.jeffpippen.com/herps/brownanole.htm
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 Historically, the misidentification and misrepresentation of cell line identities has 

resulted in severely conflicting scientific findings, invalidating results generated using 

cell lines (Horbach and Halffman 2017). The scientific community responded by creating 

a database of misidentified cell lines and setting a standard for cell culture validation, to 

ensure that experimental cells are free from microbial, cross-species, and cross-individual 

contamination (Hughes et al. 2007). Along these lines, we tested all cultures for 

Mycoplasma contamination, a common and fatal culture contaminant, with PCR 

methods. Mycoplasma PCR assays were performed prior to cryopreservation. Gel 

electrophoresis confirmed (1) the expected positive control bands at ~500 bp (M. orale) 

and ~300 bp (internal control), (2) the expected negative control bands at ~300 bp 

(internal control) and > 75 bp (unused PCR components), and (3) the expected sample 

bands matching the negative control results, indicating Mycoplasma-free cells. 

Mycoplasma tests should be performed routinely and can be performed using these 

methods and/or with Hoechst staining.   

  The identity of all brown anole cultures was validated with genetic data. STR loci 

previously published and commonly used in brown anole parentage assays were PCR 

amplified and genotyped for STR profiling. These data were scored based on the 

genotypes obtained from independent tissue samples that match the origin of the cell 

sample. Figure 3.2 provides selected scoring data to demonstrate single individual 

validation. All primary cells successfully profiled demonstrated single individual cultures 

that matched donor profiles generated from independently sourced DNA, with one 

exception that was removed from our stocks.    
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Figure 3.2: Example of Short Tandem Repeat (STR) profiles generated from cell and tail DNA 

from the same individual match.  

Five microsatellite loci (STR) were amplified in a multiplexed PCR using fluorescently labeled 

primers, and genotyped (blue, red, and green peaks). Orange peaks are internal size ladders. The track 

in the top panel was generating using DNA extracted from the tail of individual 129 and the bottom 

panel uses DNA extracted from established cells for the same individual, illustrating matching profiles 

that indicate the cell culture is representative of the explanted individual. 
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Growth curve analysis for two primary cells indicate a population doubling time 

of ~2. 4 days (58 hrs) for brown anole cells. Growth curves in Figure 3.3 demonstrate lag 

(the time between seeding and the exponential growth phase) times of ~ 2 days. These 

metrics are important for characterizing and confirming expected growth patterns brown 

anole cell populations and they demonstrate canonical growth patterns expected for 

primary cells (Freshney 2016). Finite cells, such as primary and early passage cells 

typically have longer lag times, relative to continuous cell lines, and population doubling 

times of 60 – 72 hrs (Freshney 2005). Values estimated from these curves provide a base 

line expectation to use for detecting changes in growth due to changes in conditions (i.e., 

responses to different media or other treatments) or cell health (i.e., detect declines in 

growth due to replicative senescence).   
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Figure 3.3: Anole primary cells have population doubling times of ~2.4 days. 

Cells spend ~ 2 days in the lag phase, prior to exponential growth. Growthcurver fits the data 

using a common logistics equation. Brown anole cells were plated in 24 well plates at a 

seeding density of 1x104 cells per well on day 0 and collected for the next four days. Curves 

are from the 1st and 22nd brown anole cells established. 
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FUTURE DIRECTIONS & CONCLUSIONS  

Fibroblasts are cosmopolitan structural cells important for the formation of the 

extracellular matrix and wound healing and are relatively easy to select for in culture 

(Gomes et al. 2021). It is important to note the cells isolated here were fibroblast-like but 

included other cell types at these early culturing stages. In vitro, other cell types can also 

display hallmark fibroblast morphologies, depending on confluency and culturing 

conditions. Beyond morphological identification, cell type identities should be confirmed 

using other methods, like staining for cell surface markers. Unfortunately, there are no 

cell markers exclusively expressed on the surface of fibroblasts across culturing 

conditions and cell preparations,  but probing for vimentin expression and other markers 

specific to other morphologically similar cell types that can be co-expressed with 

vimentin (exclusion staining) is common practice for confirming successful isolation of 

fibroblasts (Goodpaster et al. 2008). Although the media preparations presented here are 

selective for fibroblasts and lack additional factors necessary to support other cell types, 

these cultures would require molecular cell type characterization and single-clone 

selection to isolate fibroblasts. It would behoove researchers using these or other methods 

to identify and or validate cell types in the populations, prior to using primary cells in 

downstream experiments.  

Resources, including methodology, biomaterials, and expertise, are currently 

limiting factors for the broad inclusion of studies at the cellular level in evolutionary 

ecology research, making resources like these protocols presented here critical to the 

field. Culturing costs can also be burdensome for laboratories that don’t have existing 
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equipment, particularly the high initial costs of obtaining CO2 incubators, biosafety 

cabinets, and appropriate liquid nitrogen/extremely low temperature storage solutions. 

Maintenance and consumables costs will vary depending on the scale of the culture 

system, but a common consumable, fetal bovine serum, cost an average of $400 per 500 

mL bottle.  

The disparity in available resources for non-model cell culture systems is circular. 

Specifically, many of the assays used in cellular biology methodologies have been 

developed using species that are mammalian or tolerant to mammalian culturing 

conditions, increasing difficulties and efforts to apply them to species outside of these 

systems. As an example, many protocols that use extended incubation measurements 

contain enzymes that work optimally at mammalian culturing temperature (37oC). If 

researchers are using cells that grow at lower temperatures (i.e., reptiles at 28-30oC), they 

are faced with a decision to culture cells at temperatures that may induce abnormal cell 

behavior, or to use enzymes at sub-optimal temperatures that may increase assay times or 

chances of assay failure. As the number and diversity of culture systems developed 

increases, we can expect more existing resources being optimized or new resources being 

generated to support non-model cell culture systems. 

Researchers new to cellular resources may be curious about the applicability of 

primary culture methods. Below are two planned uses of the primary cells developed in 

this work.  

1. The role of insulin-like signaling in sex-specific aging using brown anoles 

Brown anole lizards have an average lifespan of 2-4 years (in natural 

populations)  (Reinke et al. 2022) and demonstrate consistency in patterns of 
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gene expression of insulin-like growth factors (IGF1 and IGF2) and sex-specific 

variation in the context of human aging and longevity (Cox et al. 2017; Beatty 

and Schwartz 2020). Interestingly, these aging and longevity patterns are not 

consistent in the current vertebrate aging model, the mouse (Soares et al. 1985; 

Stylianopoulou et al. 1988). These cells lines will allow us to investigate how the 

internal sex-specific environments influence patterns of cellular senescence.  

2. Evolution of the insulin-like signaling network across anoles 

Anoles have a considerable amount of variation in several members of the Insulin and 

Insulin-like Signaling network (McGaugh et al. 2015).  Specifically, in regions integral 

to hormone – receptor binding relationships between the hormones IGF1 and IGF2 and 

their receptors IGF1R and INSR. These primary cells will allow us to test bioinformatic 

predictions about how the binding affinity relationships have evolved across these 

species.  

An additional purpose for my development of reptile cell culture methods was to conduct 

common garden cell culture experiments from mainland and endemic island populations 

of alligator lizards (Elgaria) to address questions on the evolution of body size and for 

conservation management. The utility of primary cultures in this way exemplifies the 

importance of non-model cell culture in conservation efforts. Lastly, fibroblast also can 

be epigenetically reprogrammed into a progenitor cell type called induced pluripotent 

stem cells (IPSCs). IPSCs are an extremely valuable resource due to their ability to be 

differentiated into many different cell types, including cardiomyocytes (Li et al. 2019), 
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neurons (Paşca et al. 2011), and primordial germ cells (Mitsunaga et al. 2019) that can be 

used to address tissue-specific effects from organisms that have already been sampled. 

Incorporating studies at the cellular level can provide foundational, mechanistic 

knowledge translatable to our understandings of organismal physiology and ecology, and 

further, of populations and their responses to global change. I intend for this 

methodology to be applied and improved upon to expand investigations of natural 

populations to the biological hierarchy of the cell, contributing to our understanding of 

biodiversity using the smallest unit of life. 
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CONCLUSION 

   Across this body of work, and my other contributions in Appendix 2, I develop 

resources for key facets of biological research toward the advancement of knowledge 

across the fields of ecology, evolutionary biology, and conservation. The collective 

knowledge from these and adjacent fields contribute to our understanding of the natural 

world and biodiversity. Biodiversity is extremely important for sustaining our planet and 

the species that inhabit it. Particularly, we as humans benefit from the services that 

ecosystems provide us, deemed Nature’s Contributions to People (NCP). A subdivision 

of the UN performed a global assessment and developed 18 categories of NCPs that make 

it overwhelmingly clear how much we depend on biodiversity, from our food and water 

sources to our infrastructure and cultural practices (Stange et al. 2021). We have gained a 

plethora of biological knowledge from laboratory and agricultural systems, but their 

inbred traits or lack of environmental context limits the questions they can answer about 

natural systems, like how levels of genetic variation in integral or keystone species alters 

entire ecosystems. Further, traditional model organisms don’t fully capture the 

complexities of life or cannot explain the bounty of Earth’s biodiversity. Traditional 

model organisms are also limited in the biomedical questions they can address. As an 

example, current vertebrate model organisms completely lack or have limited 

regenerative capabilities, but several other organisms have full or partial regenerative 

capabilities throughout their lifespan including amphibians (limbs) and cave fish (heart) 

(Russell et al. 2017; Price et al. 2019). Building resources for these taxa can further our 

understanding of wound healing and improve quality of life for many. Technological 
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advances are bringing us closer to investigating life in the context of internal (molecular 

interactions) and external (environmental interactions) complexities, but these efforts 

need many more resources for generating knowledge, experimental validation, and 

training investigators in the skills needed for these approaches. My work addresses these 

gaps by generating resources (methodology, experimental systems, and omics) in 

multiple non-model organisms for investigations of biodiversity at the genetic level.  

More ecological and evolutionary investigations need complementary genetics 

and omics support. In last 5 years, we have seen increasing numbers of genomes being 

sequenced for investigating alleles segregating in natural populations of taxa (Unamba et 

al. 2015; Burnett et al. 2020). These data have helped us understand several aspects of 

populations, including how levels of genetic diversity help sustain populations and how 

they respond to different evolutionary forces. Transcriptomics has bolstered 

investigations of molecular responses to environmentally relevant conditions, with the 

option to apply these tools in studies that lack reference genomes suitable for the taxon of 

interest. New taxa are being discovered using metagenomics, restructuring basal 

relationships on the Tree of Life (Spang et al. 2017). There are still many taxa that are 

underrepresented in omics data for a variety of reasons, including the sheer volume of 

currently identified species. I have made genomic contributions, specifically reference 

genomes for two reptile species (fence lizard, gopher snake) and an aquatic crustacean 

(water flea; Chapter 1). I have also made contributions in transcriptomics in water fleas 

(Chapter 2).  These resources are important for investigating genetic diversity underlying 

biodiversity, such as their applications in (1) evolutionary and conservation investigations 
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of island dwarf gopher snakes and (2) longevity and aquatic ecosystem investigations 

using water fleas. Biodiversity investigations need expansive resources to support more 

research that is integrative, holistic, and representative of intricacies of nature. Lowering 

sequencing costs will continue to make these techniques available to more researchers, 

extending our investigations to be representative of the diversity of taxa and integrating 

data from entire communities.  

The advances in biodiversity research through omics applications can be 

overshadowed by gaps in biology education necessary to support the application of these 

tools and investigating biodiversity. This starts in early life education, with building a 

sense of stewardship for biodiversity and an understanding of how human life depends 

on it. I think it is important to foster these relationships in safe, interactive, and fun ways. 

I do so through outdoor ecology education with the non-profit Fresh Air Family. The 

mission of the organization is getting families and children outdoors for enjoyable 

experiences and learning opportunities. During my time at Auburn, I have had the 

opportunity to provide biodiversity education to children in the Auburn community 

through summer programs. I also shared this opportunity with Auburn graduate and 

undergraduate students, training and supporting in teaching of biodiversity to the 

community. Fostering understanding of and appreciation for biodiversity in the next 

generation of investigators, policy makers, and entrepreneurs will ensure its perpetuity. 

Unfortunately, there are also computational and technological hurdles that future and 

current investigators must face. One of my favorite perspective articles stresses the point 

that today, all biology is computational biology (Markowetz 2017). The volume of data 
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and statistical frameworks used to generate hypotheses and make interpretations by 

coalescing individual insights across biology often require extensive computational skills 

that are not a part of traditional biology curricula. I have contributed to publicly available 

educational resources useful in learning R for biologists that is available via GitHub. 

Chapter 2 addresses two gaps in bioinformatics training resources needed to investigate 

biodiversity: (1) technical guidance of bioinformatic tools for biologists interpreting gene 

expression analyses (2) guidance on training investigators (particularly graduate and 

undergraduate level) to perform RNA-seq analyses for understanding gene expression 

underlying phenotypes. RNA-seq analyses are informative of the mechanistic 

underpinnings of phenotypes driving the biological curiosity of several researchers. 

There are 100’s of program options for performing various steps of RNA-seq analyses 

and making decisions about which combinations of appropriate programs would yield the 

best results is an important question in the field of bioinformatics and all other fields that 

apply these techniques. While there have been investigations of different RNA-seq 

pipelines, my contributions take these analyses a step further into functional pathway 

enrichment to see how the differences in program choice effect the overall biological 

interpretations. Understanding the effect of analyses at the level of biological 

interpretation is the end goal for research questions. Biological research employing 

omics data has exploded, but there is still a large bottleneck at the point of data 

management and analysis due to a lack of training or access to that training for most 

investigators. Demonstrating what parameters truly contribute to differences in final 

interpretations are important for researchers that are not versed in the many programs 

available to them. Now, more than ever, it is important that resources like those I have 
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developed are available to the research community to shrink (or at least help train 

researchers to jump) the inherent hurdles of working with omics data (Burnett et al. 

2020). These resources are being prepared to be disseminated via GitHub as a companion 

to a manuscript submission to a refereed educational resource journal that details how to 

teach these pipelines as Course-based Research Experiences (CRE). Lowering this 

barrier, by understanding the variation that contributes to biological interpretations in 

RNA-seq analyses and by increasing training opportunities, will empower researchers 

and decrease the time to knowledge dissemination for scientific advancement and 

inspiration.  

More ecological and evolutionary systems need conservation-minded 

experimental systems. There have been notable successes in establishing cellular 

resources in non-model organisms, but the skills and facilities necessary to do this work 

is limited across researchers (Polazzi and Alibardi 2011; Xu et al. 2018; Yohe et al. 

2019; Nowotny et al. 2021). There have also been even fewer investigations using these 

experimental systems, which could be due to a lack of access to cells, methods, or 

knowledge of their general applicability (Jimenez et al. 2013, 2014; Roger et al. 2021). 

One of the listed requirements of being a model organism from the National Institutes of 

Health (NIH) is having a cell model. My message is not one of making every system fit 

the NIH standards for model organisms, but instead for researchers in ecology and 

evolution to take largely whole-organism studies, bioinformatic predictions, and 

theoretical knowledge into tractable, experimental cellular systems. I generate 

methodology for developing primary cell culture systems in non-model organisms in 
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Chapter 3. Primary cell culture systems allow us to test our theoretical and in silico 

predictions with conservation-friendly methods. Cellular studies cannot completely 

replace whole-organism studies for many questions, but they can reduce the number of 

organisms needed to confirm findings in more complex settings and guide the 

experimental design and parameters of those studies. In future work these resources could 

provide a vital system to investigate species with limitations to traditional whole-

organism investigations that require capture and transplantation. As an example, I have 

contributed to investigations of dwarfism in reptiles on the Channel Islands in California. 

In addition to the reduction in body size, we documented decreased blood glucose 

measured at initial capture for island organisms relative to mainland (Sparkman et al. 

2018). While it would be logical to perform a common garden experiment to understand 

test for genotype by environment interactions, these are protected organisms that cannot 

be transplanted. What if we could perform that common garden experiment at the cellular 

level? We can use cells from programmed resource environments (predictions of high 

resources on the mainland, and low resources on the islands based on blood glucose 

setpoints) and culture them in both environments to address our questions without 

moving a single animal.  Molecular ecology research is still in need of other biomaterials 

like antibodies optimized for non-model molecular investigations and biological assays 

designed for organisms with different physiologies relative to traditional model 

organisms. Still, with the protocols I have developed, these types of experiments are now 

possible and answers to the types of questions like in the previous example are within 

reach! 
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My dissertation aims to aid in bridging the gap in resources for fields and research 

that do not strictly address biomedical inquiries but are instead interested in the larger 

context of biodiversity. Our continuous investigative efforts have revealed network-like 

structure in the context of ecological and molecular interactions (Han 2008; Lau et al. 

2017; Bruder et al. 2019; Bechtel 2020). A host of interactions between genes within an 

organism influence one or more traits. These traits interact with an organism’s 

environment as well as the other individuals and species that share this environment. 

This means that genetic variation in one population of a species can have significant 

effects on a population of a different species they share habitat with. Genetic variation 

across species can interact in both cascade and network-like fashion that shape 

biodiversity directly and indirectly. Investigating genetic diversity in the context of this 

high connectivity between life in shared environments is the future direction of research. 

These systems are what we as humans depend on to sustain our own lives and species 

(Stange et al. 2021). Prior to the expansive and expanding technology and information at 

the molecular level we have access to now, it made sense to parse out systems to the 

smallest, controlled questions. Biodiversity research traditionally investigates one focal 

species, even though the traits and systems present in an environment may be a result of 

multispecies interactions influencing one another. Building resources like those 

generated in my work are vital for truly diving into investigation of community 

genomics, the interaction of genomes through interacting species. Now, we have the 

technology and background knowledge for many systems we can begin scaffolding 

information across populations and species to truly investigate mechanisms driving the 
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interactions, effects, and relationships that shape ecosystems, the benefits we gain from 

nature, and ultimately biodiversity. 
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APPENDIX 1: Supplementary Material 

Chapter 1 

 

 

 

  

Figure S1.1: FastQC Screen Analysis Indicates the Expected Composition of Reads Based on Screened 

Genomes. Read subsets from each D. pulicaria library were mapped against several common and selected 

sequencing contaminants using bowtie2. Plots indicate that majority of the reads are mapping uniquely to the 

bait genome PA42 (“Daphnia”), as expected. For other genomes in the search library, the reads did not map 

uniquely and likely represent low-complexity regions. There is a significant proportion of the read subset that 

does not map to any represented sequences represented with grey bars. 
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Figure S1.2: Sourmash Distance Estimates Indicate Higher Similarity Between D. pulicaria 

Strains (BA411 & WI6), Relative to the D. pulex (PA42) Reference.  Dendrograms on the top and 

left recapitulate the relationship between samples in the distance analysis that is also visualized by the 

matrix. The color gradient indicates the sourmash distance estimate, where darker colors indicate 

high similarity between samples and lighter colors indicate more divergent samples. The D. pulicaria 

assemblies only vary by 0.1 when compared to each other. 
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Chapter 2 

Table S2.1 Contrast between pipelines from emmeans for Model 1. Pairwise contrasts between each pipeline. Estimates are differences between 

predicted (estimated marginal) means for pipeline comparisons. Contrasts have been filtered for significant values less than or equal to 0.05 to reduce table 

sizes. SE – standard error; see Table 2.1 for program abbreviations. 

 

Model 1 (Soft Filtered):  

 

contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Hi_St DESeq2 - Hi_Ht DESeq2 -75.000 11.328 10 -125.777 -24.222 -6.620 0.003 

K_K2 DESeq2 - Hi_St DESeq2 54 11.328 10 3.222 104.777 4.766 0.034 

Sl_Sl2 DESeq2 - Hi_St DESeq2 51.666 11.328 10 0.889 102.443 4.560 0.045 

Sr_Ht DESeq2 - Hi_St DESeq2 80.333 11.328 10 29.556 131.110 7.091 0.001 

Sr_St DESeq2 - Sr_Ht DESeq2 -53.333 11.328 10 -104.110 -2.556 -4.707 0.036 

Hi_Ht edgeR - Hi_Ht DESeq2 55.833 8.010 10 19.928 91.738 6.970 0.002 

Hi_Ht edgeR - Hi_St DESeq2 130.833 13.874 10 68.644 193.022 9.429 0.000 

Hi_Ht edgeR - K_K2 DESeq2 76.833 13.874 10 14.644 139.022 5.537 0.012 

Hi_Ht edgeR - Sl_Sl2 DESeq2 79.166 13.874 10 16.977 141.355 5.705 0.010 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Hi_Ht edgeR - Sr_St DESeq2 103.833 13.874 10 41.644 166.022 7.483 0.001 

Hi_St edgeR - Hi_St DESeq2 55.833 8.010 10 19.928 91.738 6.970 0.002 

Hi_St edgeR - Hi_Ht edgeR -75.000 11.328 10 -125.777 -24.222 -6.620 0.003 

K_K2 edgeR - Hi_St DESeq2 109.833 13.874 10 47.644 172.022 7.916 0.000 

K_K2 edgeR - K_K2 DESeq2 55.833 8.010 10 19.928 91.738 6.970 0.002 

K_K2 edgeR - Sr_St DESeq2 82.833 13.874 10 20.644 145.022 5.970 0.007 

K_K2 edgeR - Hi_St edgeR 54 11.328 10 3.222 104.777 4.766 0.034 

Sl_Sl2 edgeR - Hi_St DESeq2 107.5 13.874 10 45.310 169.689 7.748 0.000 

Sl_Sl2 edgeR - Sl_Sl2 DESeq2 55.833 8.010 10 19.928 91.738 6.970 0.002 

Sl_Sl2 edgeR - Sr_St DESeq2 80.499 13.874 10 18.310 142.689 5.802 0.008 

Sl_Sl2 edgeR - Hi_St edgeR 51.666 11.328 10 0.889 102.443 4.560 0.045 

Sr_Ht edgeR - Hi_St DESeq2 136.166 13.874 10 73.977 198.355 9.814 0.000 

Sr_Ht edgeR - K_K2 DESeq2 82.166 13.874 10 19.977 144.355 5.922 0.007 

Sr_Ht edgeR - Sl_Sl2 DESeq2 84.499 13.874 10 22.310 146.689 6.090 0.006 

Sr_Ht edgeR - Sr_Ht DESeq2 55.833 8.010 10 19.928 91.738 6.970 0.002 

Sr_Ht edgeR - Sr_St DESeq2 109.166 13.874 10 46.977 171.355 7.868 0.000 

Sr_Ht edgeR - Hi_St edgeR 80.333 11.328 10 29.556 131.110 7.091 0.001 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sr_St edgeR - Hi_St DESeq2 82.833 13.874 10 20.644 145.022 5.970 0.007 

Sr_St edgeR - Sr_St DESeq2 55.833 8.010 10 19.928 91.738 6.970 0.002 

Sr_St edgeR - Sr_Ht edgeR -53.333 11.328 10 -104.110 -2.556 -4.707 0.036 

Hi_Ht LimmaVoom - Hi_Ht DESeq2 156.166 8.010 10 120.261 192.071 19.495 2.249e-07 

Hi_Ht LimmaVoom - Hi_St DESeq2 231.166 13.874 10 168.977 293.355 16.661 8.800e-07 

Hi_Ht LimmaVoom - K_K2 DESeq2 177.166 13.874 10 114.977 239.355 12.769 1.061e-05 

Hi_Ht LimmaVoom - Sl_Sl2 DESeq2 179.5 13.874 10 117.310 241.689 12.937 9.361e-06 

Hi_Ht LimmaVoom - Sr_Ht DESeq2 150.833 13.874 10 88.644 213.022 10.871 4.730e-05 

Hi_Ht LimmaVoom - Sr_St DESeq2 204.166 13.874 10 141.977 266.355 14.715 2.684e-06 

Hi_Ht LimmaVoom - Hi_Ht edgeR 100.333 8.010 10 64.428 136.238 12.525 1.276e-05 

Hi_Ht LimmaVoom - Hi_St edgeR 175.333 13.874 10 113.144 237.522 12.637 1.172e-05 

Hi_Ht LimmaVoom - K_K2 edgeR 121.333 13.874 10 59.144 183.522 8.745 0.000 

Hi_Ht LimmaVoom - Sl_Sl2 edgeR 123.666 13.874 10 61.477 185.855 8.913 0.000 

Hi_Ht LimmaVoom - Sr_Ht edgeR 95.000 13.874 10 32.810 157.189 6.847 0.002 

Hi_Ht LimmaVoom - Sr_St edgeR 148.333 13.874 10 86.144 210.522 10.691 5.502e-05 

Hi_St LimmaVoom - Hi_Ht DESeq2 81.166 13.874 10 18.977 143.355 5.850 0.008 

Hi_St LimmaVoom - Hi_St DESeq2 156.166 8.010 10 120.261 192.071 19.495 2.249e-07 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Hi_St LimmaVoom - K_K2 DESeq2 102.166 13.874 10 39.977 164.355 7.363 0.001 

Hi_St LimmaVoom - Sl_Sl2 DESeq2 104.5 13.874 10 42.310 166.689 7.531 0.001 

Hi_St LimmaVoom - Sr_Ht DESeq2 75.833 13.874 10 13.644 138.022 5.465 0.013 

Hi_St LimmaVoom - Sr_St DESeq2 129.166 13.874 10 66.977 191.355 9.309 0.000 

Hi_St LimmaVoom - Hi_St edgeR 100.333 8.010 10 64.428 136.238 12.525 1.276e-05 

Hi_St LimmaVoom - Sr_St edgeR 73.333 13.874 10 11.144 135.522 5.285 0.017 

Hi_St LimmaVoom - Hi_Ht LimmaVoom -75.000 11.328 10 -125.777 -24.222 -6.620 0.003 

K_K2 LimmaVoom - Hi_Ht DESeq2 135.166 13.874 10 72.977 197.355 9.742 0.000 

K_K2 LimmaVoom - Hi_St DESeq2 210.166 13.874 10 147.977 272.355 15.147 2.043e-06 

K_K2 LimmaVoom - K_K2 DESeq2 156.166 8.010 10 120.261 192.071 19.495 2.249e-07 

K_K2 LimmaVoom - Sl_Sl2 DESeq2 158.5 13.874 10 96.310 220.689 11.423 3.011e-05 

K_K2 LimmaVoom - Sr_Ht DESeq2 129.833 13.874 10 67.644 192.022 9.357 0.000 

K_K2 LimmaVoom - Sr_St DESeq2 183.166 13.874 10 120.977 245.355 13.201 7.699e-06 

K_K2 LimmaVoom - Hi_Ht edgeR 79.333 13.874 10 17.144 141.522 5.717 0.009 

K_K2 LimmaVoom - Hi_St edgeR 154.333 13.874 10 92.144 216.522 11.123 3.840e-05 

K_K2 LimmaVoom - K_K2 edgeR 100.333 8.010 10 64.428 136.238 12.525 1.276e-05 

K_K2 LimmaVoom - Sl_Sl2 edgeR 102.666 13.874 10 40.477 164.855 7.399 0.001 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

K_K2 LimmaVoom - Sr_Ht edgeR 74 13.874 10 11.810 136.189 5.333 0.016 

K_K2 LimmaVoom - Sr_St edgeR 127.333 13.874 10 65.144 189.522 9.177 0.000 

K_K2 LimmaVoom - Hi_St LimmaVoom 54 11.328 10 3.222 104.777 4.766 0.034 

Sl_Sl2 LimmaVoom - Hi_Ht DESeq2 132.833 13.874 10 70.644 195.022 9.573 0.000 

Sl_Sl2 LimmaVoom - Hi_St DESeq2 207.833 13.874 10 145.644 270.022 14.979 2.268e-06 

Sl_Sl2 LimmaVoom - K_K2 DESeq2 153.833 13.874 10 91.644 216.022 11.087 3.955e-05 

Sl_Sl2 LimmaVoom - Sl_Sl2 DESeq2 156.166 8.010 10 120.261 192.071 19.495 2.249e-07 

Sl_Sl2 LimmaVoom - Sr_Ht DESeq2 127.5 13.874 10 65.310 189.689 9.189 0.000 

Sl_Sl2 LimmaVoom - Sr_St DESeq2 180.833 13.874 10 118.644 243.022 13.033 8.716e-06 

Sl_Sl2 LimmaVoom - Hi_Ht edgeR 76.999 13.874 10 14.810 139.189 5.549 0.012 

Sl_Sl2 LimmaVoom - Hi_St edgeR 152 13.874 10 89.810 214.189 10.955 4.411e-05 

Sl_Sl2 LimmaVoom - K_K2 edgeR 98 13.874 10 35.810 160.189 7.063 0.001 

Sl_Sl2 LimmaVoom - Sl_Sl2 edgeR 100.333 8.010 10 64.428 136.238 12.525 1.276e-05 

Sl_Sl2 LimmaVoom - Sr_Ht edgeR 71.666 13.874 10 9.477 133.855 5.165 0.020 

Sl_Sl2 LimmaVoom - Sr_St edgeR 125 13.874 10 62.810 187.189 9.009 0.000 

Sl_Sl2 LimmaVoom - Hi_St LimmaVoom 51.666 11.328 10 0.889 102.443 4.560 0.045 

Sr_Ht LimmaVoom - Hi_Ht DESeq2 161.5 13.874 10 99.310 223.689 11.640 2.534e-05 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sr_Ht LimmaVoom - Hi_St DESeq2 236.5 13.874 10 174.310 298.689 17.045 7.267e-07 

Sr_Ht LimmaVoom - K_K2 DESeq2 182.5 13.874 10 120.310 244.689 13.153 7.976e-06 

Sr_Ht LimmaVoom - Sl_Sl2 DESeq2 184.833 13.874 10 122.644 247.022 13.321 7.051e-06 

Sr_Ht LimmaVoom - Sr_Ht DESeq2 156.166 8.010 10 120.261 192.071 19.495 2.249e-07 

Sr_Ht LimmaVoom - Sr_St DESeq2 209.5 13.874 10 147.310 271.689 15.099 2.104e-06 

Sr_Ht LimmaVoom - Hi_Ht edgeR 105.666 13.874 10 43.477 167.855 7.615 0.001 

Sr_Ht LimmaVoom - Hi_St edgeR 180.666 13.874 10 118.477 242.855 13.021 8.794e-06 

Sr_Ht LimmaVoom - K_K2 edgeR 126.666 13.874 10 64.477 188.855 9.129 0.000 

Sr_Ht LimmaVoom - Sl_Sl2 edgeR 129 13.874 10 66.810 191.189 9.297 0.000 

Sr_Ht LimmaVoom - Sr_Ht edgeR 100.333 8.010 10 64.428 136.238 12.525 1.276e-05 

Sr_Ht LimmaVoom - Sr_St edgeR 153.666 13.874 10 91.477 215.855 11.075 3.995e-05 

Sr_Ht LimmaVoom - Hi_St LimmaVoom 80.333 11.328 10 29.556 131.110 7.091 0.001 

Sr_St LimmaVoom - Hi_Ht DESeq2 108.166 13.874 10 45.977 170.355 7.796 0.000 

Sr_St LimmaVoom - Hi_St DESeq2 183.166 13.874 10 120.977 245.355 13.201 7.699e-06 

Sr_St LimmaVoom - K_K2 DESeq2 129.166 13.874 10 66.977 191.355 9.309 0.000 

Sr_St LimmaVoom - Sl_Sl2 DESeq2 131.5 13.874 10 69.310 193.689 9.477 0.000 

Sr_St LimmaVoom - Sr_Ht DESeq2 102.833 13.874 10 40.644 165.022 7.411 0.001 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sr_St LimmaVoom - Sr_St DESeq2 156.166 8.010 10 120.261 192.071 19.495 2.249e-07 

Sr_St LimmaVoom - Hi_St edgeR 127.333 13.874 10 65.144 189.522 9.177 0.000 

Sr_St LimmaVoom - K_K2 edgeR 73.333 13.874 10 11.144 135.522 5.285 0.017 

Sr_St LimmaVoom - Sl_Sl2 edgeR 75.666 13.874 10 13.477 137.855 5.453 0.013 

Sr_St LimmaVoom - Sr_St edgeR 100.333 8.010 10 64.428 136.238 12.525 1.276e-05 

Sr_St LimmaVoom - Sr_Ht LimmaVoom -53.333 11.328 10 -104.110 -2.556 -4.707 0.036 

  

  

Model 1 (Hard Filtered):  

 

contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Hi_St DESeq2 - Hi_Ht DESeq2 -77.666 15.653 10 -147.831 -7.501 -4.961 0.026 

Sr_St DESeq2 - Hi_Ht DESeq2 -88.000 15.653 10 -158.165 -17.834 -5.621 0.011 

Hi_Ht edgeR - Hi_St DESeq2 115.666 19.172 10 29.732 201.601 6.033 0.006 

Hi_Ht edgeR - Sr_St DESeq2 126 19.172 10 40.065 211.934 6.572 0.003 

Hi_St edgeR - Hi_Ht edgeR -77.666 15.653 10 -147.831 -7.501 -4.961 0.026 

K_K2 edgeR - Sr_St DESeq2 88.333 19.172 10 2.398 174.267 4.607 0.042 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sl_Sl2 edgeR - Sr_St DESeq2 89.666 19.172 10 3.732 175.601 4.676 0.038 

Sr_Ht edgeR - Hi_St DESeq2 97.333 19.172 10 11.398 183.267 5.076 0.022 

Sr_Ht edgeR - Sr_St DESeq2 107.666 19.172 10 21.732 193.601 5.615 0.011 

Sr_St edgeR - Hi_Ht edgeR -88.000 15.653 10 -158.165 -17.834 -5.621 0.011 

Hi_Ht LimmaVoom - Hi_Ht DESeq2 134.5 11.068 10 84.885 184.114 12.151 1.699e-05 

Hi_Ht LimmaVoom - Hi_St DESeq2 212.166 19.172 10 126.232 298.101 11.066 4.024e-05 

Hi_Ht LimmaVoom - K_K2 DESeq2 172.166 19.172 10 86.232 258.101 8.980 0.000 

Hi_Ht LimmaVoom - Sl_Sl2 DESeq2 170.833 19.172 10 84.898 256.767 8.910 0.000 

Hi_Ht LimmaVoom - Sr_Ht DESeq2 152.833 19.172 10 66.898 238.767 7.971 0.000 

Hi_Ht LimmaVoom - Sr_St DESeq2 222.5 19.172 10 136.565 308.434 11.605 2.604e-05 

Hi_Ht LimmaVoom - Hi_Ht edgeR 96.5 11.068 10 46.885 146.114 8.718 0.000 

Hi_Ht LimmaVoom - Hi_St edgeR 174.166 19.172 10 88.232 260.101 9.084 0.000 

Hi_Ht LimmaVoom - K_K2 edgeR 134.166 19.172 10 48.232 220.101 6.998 0.002 

Hi_Ht LimmaVoom - Sl_Sl2 edgeR 132.833 19.172 10 46.898 218.767 6.928 0.002 

Hi_Ht LimmaVoom - Sr_Ht edgeR 114.833 19.172 10 28.898 200.767 5.989 0.007 

Hi_Ht LimmaVoom - Sr_St edgeR 184.500 19.172 10 98.565 270.434 9.623 0.000 

Hi_St LimmaVoom - Hi_St DESeq2 134.5 11.068 10 84.885 184.114 12.151 1.699e-05 



 163 

contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Hi_St LimmaVoom - K_K2 DESeq2 94.499 19.172 10 8.565 180.434 4.929 0.027 

Hi_St LimmaVoom - Sl_Sl2 DESeq2 93.166 19.172 10 7.232 179.101 4.859 0.030 

Hi_St LimmaVoom - Sr_St DESeq2 144.833 19.172 10 58.898 230.767 7.554 0.001 

Hi_St LimmaVoom - Hi_St edgeR 96.5 11.068 10 46.885 146.114 8.718 0.000 

Hi_St LimmaVoom - Sr_St edgeR 106.833 19.172 10 20.898 192.767 5.572 0.011 

Hi_St LimmaVoom - Hi_Ht LimmaVoom -77.666 15.653 10 -147.831 -7.501 -4.961 0.026 

K_K2 LimmaVoom - Hi_Ht DESeq2 96.833 19.172 10 10.898 182.767 5.050 0.023 

K_K2 LimmaVoom - Hi_St DESeq2 174.5 19.172 10 88.565 260.434 9.101 0.000 

K_K2 LimmaVoom - K_K2 DESeq2 134.5 11.068 10 84.885 184.114 12.151 1.699e-05 

K_K2 LimmaVoom - Sl_Sl2 DESeq2 133.166 19.172 10 47.232 219.101 6.945 0.002 

K_K2 LimmaVoom - Sr_Ht DESeq2 115.166 19.172 10 29.232 201.101 6.007 0.006 

K_K2 LimmaVoom - Sr_St DESeq2 184.833 19.172 10 98.898 270.767 9.640 0.000 

K_K2 LimmaVoom - Hi_St edgeR 136.5 19.172 10 50.565 222.434 7.119 0.001 

K_K2 LimmaVoom - K_K2 edgeR 96.5 11.068 10 46.885 146.114 8.718 0.000 

K_K2 LimmaVoom - Sl_Sl2 edgeR 95.166 19.172 10 9.232 181.101 4.963 0.026 

K_K2 LimmaVoom - Sr_St edgeR 146.833 19.172 10 60.898 232.767 7.658 0.001 

Sl_Sl2 LimmaVoom - Hi_Ht DESeq2 98.166 19.172 10 12.232 184.101 5.120 0.021 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sl_Sl2 LimmaVoom - Hi_St DESeq2 175.833 19.172 10 89.898 261.767 9.171 0.000 

Sl_Sl2 LimmaVoom - K_K2 DESeq2 135.833 19.172 10 49.898 221.767 7.084 0.001 

Sl_Sl2 LimmaVoom - Sl_Sl2 DESeq2 134.5 11.068 10 84.885 184.114 12.151 1.699e-05 

Sl_Sl2 LimmaVoom - Sr_Ht DESeq2 116.5 19.172 10 30.565 202.434 6.076 0.006 

Sl_Sl2 LimmaVoom - Sr_St DESeq2 186.166 19.172 10 100.232 272.101 9.710 0.000 

Sl_Sl2 LimmaVoom - Hi_St edgeR 137.833 19.172 10 51.898 223.767 7.189 0.001 

Sl_Sl2 LimmaVoom - K_K2 edgeR 97.833 19.172 10 11.898 183.767 5.102 0.021 

Sl_Sl2 LimmaVoom - Sl_Sl2 edgeR 96.5 11.068 10 46.885 146.114 8.718 0.000 

Sl_Sl2 LimmaVoom - Sr_St edgeR 148.166 19.172 10 62.232 234.101 7.728 0.000 

Sr_Ht LimmaVoom - Hi_Ht DESeq2 116.166 19.172 10 30.232 202.101 6.059 0.006 

Sr_Ht LimmaVoom - Hi_St DESeq2 193.833 19.172 10 107.898 279.767 10.110 9.090e-05 

Sr_Ht LimmaVoom - K_K2 DESeq2 153.833 19.172 10 67.898 239.767 8.023 0.000 

Sr_Ht LimmaVoom - Sl_Sl2 DESeq2 152.5 19.172 10 66.565 238.434 7.954 0.000 

Sr_Ht LimmaVoom - Sr_Ht DESeq2 134.5 11.068 10 84.885 184.114 12.151 1.699e-05 

Sr_Ht LimmaVoom - Sr_St DESeq2 204.166 19.172 10 118.232 290.101 10.649 5.700e-05 

Sr_Ht LimmaVoom - Hi_St edgeR 155.833 19.172 10 69.898 241.767 8.128 0.000 

Sr_Ht LimmaVoom - K_K2 edgeR 115.833 19.172 10 29.898 201.767 6.041 0.006 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sr_Ht LimmaVoom - Sl_Sl2 edgeR 114.5 19.172 10 28.565 200.434 5.972 0.007 

Sr_Ht LimmaVoom - Sr_Ht edgeR 96.5 11.068 10 46.885 146.114 8.718 0.000 

Sr_Ht LimmaVoom - Sr_St edgeR 166.166 19.172 10 80.232 252.101 8.667 0.000 

Sr_St LimmaVoom - Hi_St DESeq2 124.166 19.172 10 38.232 210.101 6.476 0.003 

Sr_St LimmaVoom - Sr_St DESeq2 134.5 11.068 10 84.885 184.114 12.151 1.699e-05 

Sr_St LimmaVoom - Hi_St edgeR 86.166 19.172 10 0.232 172.101 4.494 0.049 

Sr_St LimmaVoom - Sr_St edgeR 96.5 11.068 10 46.885 146.114 8.718 0.000 

Sr_St LimmaVoom - Hi_Ht LimmaVoom -88.000 15.653 10 -158.165 -17.834 -5.621 0.011 

  

  

Model 1 (Pipeline-Specific Filtered):  

 

contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Hi_St DESeq2 - Hi_Ht DESeq2 -91.666 10.693 10 -139.598 -43.734 -8.572 0.000 

K_K2 DESeq2 - Hi_St DESeq2 73.333 10.693 10 25.401 121.265 6.857 0.002 

Sl_Sl2 DESeq2 - Hi_St DESeq2 57 10.693 10 9.067 104.932 5.330 0.016 

Sr_Ht DESeq2 - Hi_St DESeq2 107.333 10.693 10 59.401 155.265 10.037 9.700e-05 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sr_Ht DESeq2 - Sl_Sl2 DESeq2 50.333 10.693 10 2.401 98.265 4.706 0.037 

Sr_St DESeq2 - Hi_Ht DESeq2 -71.000 10.693 10 -118.932 -23.067 -6.639 0.003 

Sr_St DESeq2 - K_K2 DESeq2 -52.666 10.693 10 -100.598 -4.734 -4.925 0.027 

Sr_St DESeq2 - Sr_Ht DESeq2 -86.666 10.693 10 -134.598 -38.734 -8.104 0.000 

Hi_Ht edgeR - Hi_Ht DESeq2 54.666 7.561 10 20.773 88.559 7.229 0.001 

Hi_Ht edgeR - Hi_St DESeq2 146.333 13.097 10 87.628 205.038 11.172 3.688e-05 

Hi_Ht edgeR - K_K2 DESeq2 73.000 13.097 10 14.295 131.704 5.573 0.011 

Hi_Ht edgeR - Sl_Sl2 DESeq2 89.333 13.097 10 30.628 148.038 6.820 0.002 

Hi_Ht edgeR - Sr_St DESeq2 125.666 13.097 10 66.961 184.371 9.595 0.000 

Hi_St edgeR - Hi_St DESeq2 54.666 7.561 10 20.773 88.559 7.229 0.001 

Hi_St edgeR - Hi_Ht edgeR -91.666 10.693 10 -139.598 -43.734 -8.572 0.000 

K_K2 edgeR - Hi_St DESeq2 128 13.097 10 69.295 186.704 9.773 0.000 

K_K2 edgeR - K_K2 DESeq2 54.666 7.561 10 20.773 88.559 7.229 0.001 

K_K2 edgeR - Sl_Sl2 DESeq2 70.999 13.097 10 12.295 129.704 5.421 0.014 

K_K2 edgeR - Sr_St DESeq2 107.333 13.097 10 48.628 166.038 8.195 0.000 

K_K2 edgeR - Hi_St edgeR 73.333 10.693 10 25.401 121.265 6.857 0.002 

Sl_Sl2 edgeR - Hi_St DESeq2 111.666 13.097 10 52.961 170.371 8.526 0.000 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sl_Sl2 edgeR - Sl_Sl2 DESeq2 54.666 7.561 10 20.773 88.559 7.229 0.001 

Sl_Sl2 edgeR - Sr_St DESeq2 90.999 13.097 10 32.295 149.704 6.948 0.002 

Sl_Sl2 edgeR - Hi_St edgeR 57 10.693 10 9.067 104.932 5.330 0.016 

Sr_Ht edgeR - Hi_Ht DESeq2 70.333 13.097 10 11.628 129.038 5.370 0.015 

Sr_Ht edgeR - Hi_St DESeq2 162 13.097 10 103.295 220.704 12.369 1.437e-05 

Sr_Ht edgeR - K_K2 DESeq2 88.666 13.097 10 29.961 147.371 6.769 0.002 

Sr_Ht edgeR - Sl_Sl2 DESeq2 105 13.097 10 46.295 163.704 8.017 0.000 

Sr_Ht edgeR - Sr_Ht DESeq2 54.666 7.561 10 20.773 88.559 7.229 0.001 

Sr_Ht edgeR - Sr_St DESeq2 141.333 13.097 10 82.628 200.038 10.791 5.057e-05 

Sr_Ht edgeR - Hi_St edgeR 107.333 10.693 10 59.401 155.265 10.037 9.700e-05 

Sr_Ht edgeR - Sl_Sl2 edgeR 50.333 10.693 10 2.401 98.265 4.706 0.037 

Sr_St edgeR - Hi_St DESeq2 75.333 13.097 10 16.628 134.038 5.751 0.009 

Sr_St edgeR - Sr_St DESeq2 54.666 7.561 10 20.773 88.559 7.229 0.001 

Sr_St edgeR - Hi_Ht edgeR -71.000 10.693 10 -118.932 -23.067 -6.639 0.003 

Sr_St edgeR - K_K2 edgeR -52.666 10.693 10 -100.598 -4.734 -4.925 0.027 

Sr_St edgeR - Sr_Ht edgeR -86.666 10.693 10 -134.598 -38.734 -8.104 0.000 

Hi_Ht LimmaVoom - Hi_Ht DESeq2 172.333 7.561 10 138.440 206.226 22.790 3.765e-08 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Hi_Ht LimmaVoom - Hi_St DESeq2 264 13.097 10 205.295 322.704 20.157 1.614e-07 

Hi_Ht LimmaVoom - K_K2 DESeq2 190.666 13.097 10 131.961 249.371 14.557 2.975e-06 

Hi_Ht LimmaVoom - Sl_Sl2 DESeq2 207 13.097 10 148.295 265.704 15.805 1.388e-06 

Hi_Ht LimmaVoom - Sr_Ht DESeq2 156.666 13.097 10 97.961 215.371 11.961 1.967e-05 

Hi_Ht LimmaVoom - Sr_St DESeq2 243.333 13.097 10 184.628 302.038 18.579 3.501e-07 

Hi_Ht LimmaVoom - Hi_Ht edgeR 117.666 7.561 10 83.773 151.559 15.561 1.596e-06 

Hi_Ht LimmaVoom - Hi_St edgeR 209.333 13.097 10 150.628 268.038 15.983 1.257e-06 

Hi_Ht LimmaVoom - K_K2 edgeR 136 13.097 10 77.295 194.704 10.383 7.154e-05 

Hi_Ht LimmaVoom - Sl_Sl2 edgeR 152.333 13.097 10 93.628 211.038 11.631 2.552e-05 

Hi_Ht LimmaVoom - Sr_Ht edgeR 102 13.097 10 43.295 160.704 7.787 0.000 

Hi_Ht LimmaVoom - Sr_St edgeR 188.666 13.097 10 129.961 247.371 14.405 3.294e-06 

Hi_St LimmaVoom - Hi_Ht DESeq2 80.666 13.097 10 21.961 139.371 6.159 0.005 

Hi_St LimmaVoom - Hi_St DESeq2 172.333 7.561 10 138.440 206.226 22.790 3.765e-08 

Hi_St LimmaVoom - K_K2 DESeq2 99 13.097 10 40.295 157.704 7.558 0.001 

Hi_St LimmaVoom - Sl_Sl2 DESeq2 115.333 13.097 10 56.628 174.038 8.806 0.000 

Hi_St LimmaVoom - Sr_Ht DESeq2 64.999 13.097 10 6.295 123.704 4.962 0.026 

Hi_St LimmaVoom - Sr_St DESeq2 151.666 13.097 10 92.961 210.371 11.580 2.657e-05 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Hi_St LimmaVoom - Hi_St edgeR 117.666 7.561 10 83.773 151.559 15.561 1.596e-06 

Hi_St LimmaVoom - Sl_Sl2 edgeR 60.666 13.097 10 1.961 119.371 4.632 0.040 

Hi_St LimmaVoom - Sr_St edgeR 97 13.097 10 38.295 155.704 7.406 0.001 

Hi_St LimmaVoom - Hi_Ht LimmaVoom -91.666 10.693 10 -139.598 -43.734 -8.572 0.000 

K_K2 LimmaVoom - Hi_Ht DESeq2 154 13.097 10 95.295 212.704 11.758 2.308e-05 

K_K2 LimmaVoom - Hi_St DESeq2 245.666 13.097 10 186.961 304.371 18.757 3.216e-07 

K_K2 LimmaVoom - K_K2 DESeq2 172.333 7.561 10 138.440 206.226 22.790 3.765e-08 

K_K2 LimmaVoom - Sl_Sl2 DESeq2 188.666 13.097 10 129.961 247.371 14.405 3.294e-06 

K_K2 LimmaVoom - Sr_Ht DESeq2 138.333 13.097 10 79.628 197.038 10.562 6.138e-05 

K_K2 LimmaVoom - Sr_St DESeq2 225 13.097 10 166.295 283.704 17.179 6.809e-07 

K_K2 LimmaVoom - Hi_Ht edgeR 99.333 13.097 10 40.628 158.038 7.584 0.001 

K_K2 LimmaVoom - Hi_St edgeR 191 13.097 10 132.295 249.704 14.583 2.926e-06 

K_K2 LimmaVoom - K_K2 edgeR 117.666 7.561 10 83.773 151.559 15.561 1.596e-06 

K_K2 LimmaVoom - Sl_Sl2 edgeR 134 13.097 10 75.295 192.704 10.231 8.171e-05 

K_K2 LimmaVoom - Sr_Ht edgeR 83.666 13.097 10 24.961 142.371 6.388 0.004 

K_K2 LimmaVoom - Sr_St edgeR 170.333 13.097 10 111.628 229.038 13.005 8.900e-06 

K_K2 LimmaVoom - Hi_St LimmaVoom 73.333 10.693 10 25.401 121.265 6.857 0.002 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sl_Sl2 LimmaVoom - Hi_Ht DESeq2 137.666 13.097 10 78.961 196.371 10.511 6.411e-05 

Sl_Sl2 LimmaVoom - Hi_St DESeq2 229.333 13.097 10 170.628 288.038 17.510 5.807e-07 

Sl_Sl2 LimmaVoom - K_K2 DESeq2 156 13.097 10 97.295 214.704 11.911 2.047e-05 

Sl_Sl2 LimmaVoom - Sl_Sl2 DESeq2 172.333 7.561 10 138.440 206.226 22.790 3.765e-08 

Sl_Sl2 LimmaVoom - Sr_Ht DESeq2 122 13.097 10 63.295 180.704 9.315 0.000 

Sl_Sl2 LimmaVoom - Sr_St DESeq2 208.666 13.097 10 149.961 267.371 15.932 1.293e-06 

Sl_Sl2 LimmaVoom - Hi_Ht edgeR 82.999 13.097 10 24.295 141.704 6.337 0.004 

Sl_Sl2 LimmaVoom - Hi_St edgeR 174.666 13.097 10 115.961 233.371 13.336 6.977e-06 

Sl_Sl2 LimmaVoom - K_K2 edgeR 101.333 13.097 10 42.628 160.038 7.737 0.000 

Sl_Sl2 LimmaVoom - Sl_Sl2 edgeR 117.666 7.561 10 83.773 151.559 15.561 1.596e-06 

Sl_Sl2 LimmaVoom - Sr_Ht edgeR 67.333 13.097 10 8.628 126.038 5.141 0.020 

Sl_Sl2 LimmaVoom - Sr_St edgeR 154 13.097 10 95.295 212.704 11.758 2.308e-05 

Sl_Sl2 LimmaVoom - Hi_St LimmaVoom 57 10.693 10 9.067 104.932 5.330 0.016 

Sr_Ht LimmaVoom - Hi_Ht DESeq2 188 13.097 10 129.295 246.704 14.354 3.408e-06 

Sr_Ht LimmaVoom - Hi_St DESeq2 279.666 13.097 10 220.961 338.371 21.353 8.557e-08 

Sr_Ht LimmaVoom - K_K2 DESeq2 206.333 13.097 10 147.628 265.038 15.754 1.429e-06 

Sr_Ht LimmaVoom - Sl_Sl2 DESeq2 222.666 13.097 10 163.961 281.371 17.001 7.428e-07 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sr_Ht LimmaVoom - Sr_Ht DESeq2 172.333 7.561 10 138.440 206.226 22.790 3.765e-08 

Sr_Ht LimmaVoom - Sr_St DESeq2 259 13.097 10 200.295 317.704 19.775 1.958e-07 

Sr_Ht LimmaVoom - Hi_Ht edgeR 133.333 13.097 10 74.628 192.038 10.180 8.544e-05 

Sr_Ht LimmaVoom - Hi_St edgeR 225 13.097 10 166.295 283.704 17.179 6.809e-07 

Sr_Ht LimmaVoom - K_K2 edgeR 151.666 13.097 10 92.961 210.371 11.580 2.657e-05 

Sr_Ht LimmaVoom - Sl_Sl2 edgeR 168 13.097 10 109.295 226.704 12.827 1.016e-05 

Sr_Ht LimmaVoom - Sr_Ht edgeR 117.666 7.561 10 83.773 151.559 15.561 1.596e-06 

Sr_Ht LimmaVoom - Sr_St edgeR 204.333 13.097 10 145.628 263.038 15.601 1.559e-06 

Sr_Ht LimmaVoom - Hi_St LimmaVoom 107.333 10.693 10 59.401 155.265 10.037 9.700e-05 

Sr_Ht LimmaVoom - Sl_Sl2 LimmaVoom 50.333 10.693 10 2.401 98.265 4.706 0.037 

Sr_St LimmaVoom - Hi_Ht DESeq2 101.333 13.097 10 42.628 160.038 7.737 0.000 

Sr_St LimmaVoom - Hi_St DESeq2 193 13.097 10 134.295 251.704 14.736 2.649e-06 

Sr_St LimmaVoom - K_K2 DESeq2 119.666 13.097 10 60.961 178.371 9.136 0.000 

Sr_St LimmaVoom - Sl_Sl2 DESeq2 136 13.097 10 77.295 194.704 10.383 7.154e-05 

Sr_St LimmaVoom - Sr_Ht DESeq2 85.666 13.097 10 26.961 144.371 6.540 0.003 

Sr_St LimmaVoom - Sr_St DESeq2 172.333 7.561 10 138.440 206.226 22.790 3.765e-08 

Sr_St LimmaVoom - Hi_St edgeR 138.333 13.097 10 79.628 197.038 10.562 6.138e-05 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sr_St LimmaVoom - K_K2 edgeR 65.000 13.097 10 6.295 123.704 4.962 0.026 

Sr_St LimmaVoom - Sl_Sl2 edgeR 81.333 13.097 10 22.628 140.038 6.210 0.005 

Sr_St LimmaVoom - Sr_St edgeR 117.666 7.561 10 83.773 151.559 15.561 1.596e-06 

Sr_St LimmaVoom - Hi_Ht LimmaVoom -71.000 10.693 10 -118.932 -23.067 -6.639 0.003 

Sr_St LimmaVoom - K_K2 LimmaVoom -52.666 10.693 10 -100.598 -4.734 -4.925 0.027 

Sr_St LimmaVoom - Sr_Ht LimmaVoom -86.666 10.693 10 -134.598 -38.734 -8.104 0.000 
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Table S2.2: Analysis of Variance (ANOVA) summaries of model 2 for each filtering method. Sum of 

Squares values were used to calculate percent variability explained by the predictors that are reported in the 

text.  

 

 Sum Sq Df F value Pr (>F) 

Soft Filtered 

Aligner 784 1 10.02 0. 0.025 

Counter 12352 1 157.79 0.000 

DGE Program 51430 2 328.49 0.000 

Counter:DGE 1401 2 8.95 0.022 

Residuals 391 5   

Hard Filtered 

Aligner 616 1 13.2 0.015 

Counter 16280 1 349.9 0.000 

DGE Program 32651 2 350.8 0.000 

Counter:DGE 2056 2 22.1 0.003 

Residuals 233 5   

Pipeline-Specific Filtered 

Aligner 990.1 1 181 0.000 

Counter 23852.1 1 4350 0.000 

DGE Program 67086.5 2 6117 0.000 

Counter:DGE 1372.2 2 125 0.000 

Residuals 27.4 5   
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Table S2.3: Linear model 2 summaries for each filtering method. Intercept is the grand mean. Estimates 

are mean differences in the number of significant DEGs from the grand mean or intercept averaged over all 

other predictors (i.e., Hisat2 estimate is the average number of significant DEGs across both counters and 

all 3 DGE programs when the aligner is Hisat2, minus the grand mean). R-squared values were rounded 

during export from R. Values below estimates in parentheses are standard error estimates.  

 Soft Hard Pipeline 

(Intercept) 1062.58 *** 956.33 *** 1042.25 *** 

 (2.55)    (1.97)    (0.68)    

Hisat2 -8.08 *   7.17 *   -9.08 *** 

 (2.55)    (1.97)    (0.68)    

HTSeq 32.08 *** 36.83 *** 44.58 *** 

 (2.55)    (1.97)    (0.68)    

DESeq2 -72.83 *** -55.33 *** -79.25 *** 

 (3.61)    (2.78)    (0.96)    

EdgeR -13.08 *   -14.58 **  -21.00 *** 

 (3.61)    (2.78)    (0.96)    

HTSeq:DESeq2 9.67 *   1.17     13.92 *** 

 (3.61)    (2.78)    (0.96)    

HTSeq:EdgeR -15.08 **  -16.58 **  -1.83     

 (3.61)    (2.78)    (0.96)    

N 12        12        12        

R2 0.99     1.00     1.00     

 *** p < 0.001;  ** p < 0.01;  * p < 0.05. 
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Table S2.4 Contrast between pipelines from emmeans for Model 2. Pairwise contrasts between each pipeline. Estimates are differences between 

predicted (estimated marginal) means for pipeline comparisons. Contrasts have been filtered for significant values less than or equal to 0.05 to reduce table 

sizes. SE – standard error. see Table 2.1 for program abbreviations. 

Model 2 (Soft Filtered):  

 

contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Hi St DESeq2 - Hi Ht DESeq2 -83.500 8.847 5 -129.317 -37.682 -9.437 0.003 

Hi St DESeq2 - Sr Ht DESeq2 -99.666 10.216 5 -152.572 -46.760 -9.755 0.003 

Sr St DESeq2 - Hi Ht DESeq2 -67.333 10.216 5 -120.239 -14.427 -6.590 0.018 

Sr St DESeq2 - Sr Ht DESeq2 -83.500 8.847 5 -129.317 -37.682 -9.437 0.003 

Hi Ht edgeR - Hi St DESeq2 118.5 8.847 5 72.682 164.317 13.393 0.000 

Hi Ht edgeR - Sr St DESeq2 102.333 10.216 5 49.427 155.239 10.016 0.002 

Sr Ht edgeR - Hi St DESeq2 134.666 10.216 5 81.760 187.572 13.181 0.000 

Sr Ht edgeR - Sr St DESeq2 118.5 8.847 5 72.682 164.317 13.393 0.000 

Hi St edgeR - Hi St DESeq2 84.5 8.847 5 38.682 130.317 9.550 0.003 

Hi St edgeR - Sr St DESeq2 68.333 10.216 5 15.427 121.239 6.688 0.017 

Sr St edgeR - Hi St DESeq2 100.666 10.216 5 47.760 153.572 9.853 0.002 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sr St edgeR - Sr St DESeq2 84.5 8.847 5 38.682 130.317 9.550 0.003 

Hi Ht LimmaVoom - Hi Ht DESeq2 154.5 8.847 5 108.682 200.317 17.461 0.000 

Hi Ht LimmaVoom - Sr Ht DESeq2 138.333 10.216 5 85.427 191.239 13.540 0.000 

Hi Ht LimmaVoom - Hi St DESeq2 238 8.847 5 192.182 283.817 26.899 2.871e-05 

Hi Ht LimmaVoom - Sr St DESeq2 221.833 10.216 5 168.927 274.739 21.713 5.148e-05 

Hi Ht LimmaVoom - Hi Ht edgeR 119.5 8.847 5 73.682 165.317 13.506 0.000 

Hi Ht LimmaVoom - Sr Ht edgeR 103.333 10.216 5 50.427 156.239 10.114 0.002 

Hi Ht LimmaVoom - Hi St edgeR 153.5 8.847 5 107.682 199.317 17.348 0.000 

Hi Ht LimmaVoom - Sr St edgeR 137.333 10.216 5 84.427 190.239 13.442 0.000 

Sr Ht LimmaVoom - Hi Ht DESeq2 170.666 10.216 5 117.760 223.572 16.704 0.000 

Sr Ht LimmaVoom - Sr Ht DESeq2 154.5 8.847 5 108.682 200.317 17.461 0.000 

Sr Ht LimmaVoom - Hi St DESeq2 254.166 10.216 5 201.260 307.072 24.877 3.376e-05 

Sr Ht LimmaVoom - Sr St DESeq2 238 8.847 5 192.182 283.817 26.899 2.871e-05 

Sr Ht LimmaVoom - Hi Ht edgeR 135.666 10.216 5 82.760 188.572 13.279 0.000 

Sr Ht LimmaVoom - Sr Ht edgeR 119.5 8.847 5 73.682 165.317 13.506 0.000 

Sr Ht LimmaVoom - Hi St edgeR 169.666 10.216 5 116.760 222.572 16.607 0.000 

Sr Ht LimmaVoom - Sr St edgeR 153.5 8.847 5 107.682 199.317 17.348 0.000 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Hi St LimmaVoom - Hi Ht DESeq2 79.499 8.847 5 33.682 125.317 8.985 0.004 

Hi St LimmaVoom - Sr Ht DESeq2 63.333 10.216 5 10.427 116.239 6.199 0.023 

Hi St LimmaVoom - Hi St DESeq2 163 8.847 5 117.182 208.817 18.422 0.000 

Hi St LimmaVoom - Sr St DESeq2 146.833 10.216 5 93.927 199.739 14.372 0.000 

Hi St LimmaVoom - Hi St edgeR 78.5 8.847 5 32.682 124.317 8.872 0.004 

Hi St LimmaVoom - Sr St edgeR 62.333 10.216 5 9.427 115.239 6.101 0.025 

Hi St LimmaVoom - Hi Ht LimmaVoom -75 8.847 5 -120.817 -29.182 -8.476 0.005 

Hi St LimmaVoom - Sr Ht LimmaVoom -91.166 10.216 5 -144.072 -38.260 -8.923 0.004 

Sr St LimmaVoom - Hi Ht DESeq2 95.666 10.216 5 42.760 148.572 9.363 0.003 

Sr St LimmaVoom - Sr Ht DESeq2 79.499 8.847 5 33.682 125.317 8.985 0.004 

Sr St LimmaVoom - Hi St DESeq2 179.166 10.216 5 126.260 232.072 17.536 0.000 

Sr St LimmaVoom - Sr St DESeq2 163 8.847 5 117.182 208.817 18.422 0.000 

Sr St LimmaVoom - Hi Ht edgeR 60.666 10.216 5 7.760 113.572 5.938 0.028 

Sr St LimmaVoom - Hi St edgeR 94.666 10.216 5 41.760 147.572 9.266 0.003 

Sr St LimmaVoom - Sr St edgeR 78.5 8.847 5 32.682 124.317 8.872 0.004 

Sr St LimmaVoom - Hi Ht LimmaVoom -58.833 10.216 5 -111.739 -5.927 -5.758 0.032 

Sr St LimmaVoom - Sr Ht LimmaVoom -75 8.847 5 -120.817 -29.182 -8.476 0.005 
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Model 2 (Hard Filtered):  

 

contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Hi St DESeq2 - Hi Ht DESeq2 -76.000 6.821 5 -111.324 -40.675 -11.141 0.001 

Hi St DESeq2 - Sr Ht DESeq2 -61.666 7.876 5 -102.456 -20.876 -7.828 0.008 

Sr St DESeq2 - Hi Ht DESeq2 -90.333 7.876 5 -131.123 -49.543 -11.468 0.001 

Sr St DESeq2 - Sr Ht DESeq2 -76.000 6.821 5 -111.324 -40.675 -11.141 0.001 

Hi Ht edgeR - Hi St DESeq2 99 6.821 5 63.675 134.324 14.512 0.000 

Hi Ht edgeR - Sr St DESeq2 113.333 7.876 5 72.543 154.123 14.388 0.000 

Sr Ht edgeR - Hi St DESeq2 84.666 7.876 5 43.876 125.456 10.748 0.001 

Sr Ht edgeR - Sr St DESeq2 99 6.821 5 63.675 134.324 14.512 0.000 

Hi St edgeR - Hi St DESeq2 58.5 6.821 5 23.175 93.824 8.575 0.005 

Hi St edgeR - Sr St DESeq2 72.833 7.876 5 32.043 113.623 9.246 0.003 

Hi St edgeR - Hi Ht edgeR -40.5 6.821 5 -75.824 -5.175 -5.937 0.028 

Sr St edgeR - Hi St DESeq2 44.166 7.876 5 3.376 84.956 5.607 0.036 

Sr St edgeR - Sr St DESeq2 58.5 6.821 5 23.175 93.824 8.575 0.005 



 179 

contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sr St edgeR - Hi Ht edgeR -54.833 7.876 5 -95.623 -14.043 -6.961 0.014 

Sr St edgeR - Sr Ht edgeR -40.5 6.821 5 -75.824 -5.175 -5.937 0.028 

Hi Ht LimmaVoom - Hi Ht DESeq2 139.5 6.821 5 104.175 174.824 20.449 6.911e-05 

Hi Ht LimmaVoom - Sr Ht DESeq2 153.833 7.876 5 113.043 194.623 19.529 8.996e-05 

Hi Ht LimmaVoom - Hi St DESeq2 215.5 6.821 5 180.175 250.824 31.591 1.883e-05 

Hi Ht LimmaVoom - Sr St DESeq2 229.833 7.876 5 189.043 270.623 29.178 2.384e-05 

Hi Ht LimmaVoom - Hi Ht edgeR 116.5 6.821 5 81.175 151.824 17.078 0.000 

Hi Ht LimmaVoom - Sr Ht edgeR 130.833 7.876 5 90.043 171.623 16.609 0.000 

Hi Ht LimmaVoom - Hi St edgeR 157 6.821 5 121.675 192.324 23.015 4.138e-05 

Hi Ht LimmaVoom - Sr St edgeR 171.333 7.876 5 130.543 212.123 21.751 5.109e-05 

Sr Ht LimmaVoom - Hi Ht DESeq2 125.166 7.876 5 84.376 165.956 15.890 0.000 

Sr Ht LimmaVoom - Sr Ht DESeq2 139.5 6.821 5 104.175 174.824 20.449 6.911e-05 

Sr Ht LimmaVoom - Hi St DESeq2 201.166 7.876 5 160.376 241.956 25.539 3.193e-05 

Sr Ht LimmaVoom - Sr St DESeq2 215.5 6.821 5 180.175 250.824 31.591 1.883e-05 

Sr Ht LimmaVoom - Hi Ht edgeR 102.166 7.876 5 61.376 142.956 12.970 0.000 

Sr Ht LimmaVoom - Sr Ht edgeR 116.5 6.821 5 81.175 151.824 17.078 0.000 

Sr Ht LimmaVoom - Hi St edgeR 142.666 7.876 5 101.876 183.456 18.112 0.000 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sr Ht LimmaVoom - Sr St edgeR 157 6.821 5 121.675 192.324 23.015 4.138e-05 

Hi St LimmaVoom - Sr Ht DESeq2 49.333 7.876 5 8.543 90.123 6.263 0.022 

Hi St LimmaVoom - Hi St DESeq2 111 6.821 5 75.675 146.324 16.271 0.000 

Hi St LimmaVoom - Sr St DESeq2 125.333 7.876 5 84.543 166.123 15.911 0.000 

Hi St LimmaVoom - Hi St edgeR 52.5 6.821 5 17.175 87.824 7.696 0.009 

Hi St LimmaVoom - Sr St edgeR 66.833 7.876 5 26.043 107.623 8.484 0.005 

Hi St LimmaVoom - Hi Ht LimmaVoom -104.5 6.821 5 -139.824 -69.175 -15.319 0.000 

Hi St LimmaVoom - Sr Ht LimmaVoom -90.166 7.876 5 -130.956 -49.376 -11.447 0.001 

Sr St LimmaVoom - Hi St DESeq2 96.666 7.876 5 55.876 137.456 12.272 0.001 

Sr St LimmaVoom - Sr St DESeq2 111 6.821 5 75.675 146.324 16.271 0.000 

Sr St LimmaVoom - Sr St edgeR 52.5 6.821 5 17.175 87.824 7.696 0.009 

Sr St LimmaVoom - Hi Ht LimmaVoom -118.833 7.876 5 -159.623 -78.043 -15.086 0.000 

Sr St LimmaVoom - Sr Ht LimmaVoom -104.5 6.821 5 -139.824 -69.175 -15.319 0.000 

  

  

Model 2 (Pipeline-Specific Filtered):  
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Sr Ht DESeq2 - Hi Ht DESeq2 18.166 1.351 5 11.165 25.167 13.437 0.000 

Hi St DESeq2 - Hi Ht DESeq2 -117.000 2.341 5 -129.126 -104.873 -49.964 1.074e-06 

Hi St DESeq2 - Sr Ht DESeq2 -135.166 2.703 5 -149.168 -121.164 -49.989 1.070e-06 

Sr St DESeq2 - Hi Ht DESeq2 -98.833 2.703 5 -112.835 -84.831 -36.552 9.966e-06 

Sr St DESeq2 - Sr Ht DESeq2 -117.000 2.341 5 -129.126 -104.873 -49.964 1.074e-06 

Sr St DESeq2 - Hi St DESeq2 18.166 1.351 5 11.165 25.167 13.437 0.000 

Hi Ht edgeR - Hi Ht DESeq2 42.499 2.341 5 30.373 54.626 18.149 0.000 

Hi Ht edgeR - Sr Ht DESeq2 24.333 2.703 5 10.331 38.335 8.999 0.004 

Hi Ht edgeR - Hi St DESeq2 159.5 2.341 5 147.373 171.626 68.114 5.154e-07 

Hi Ht edgeR - Sr St DESeq2 141.333 2.703 5 127.331 155.335 52.270 8.154e-07 

Sr Ht edgeR - Hi Ht DESeq2 60.666 2.703 5 46.664 74.668 22.436 4.515e-05 

Sr Ht edgeR - Sr Ht DESeq2 42.499 2.341 5 30.373 54.626 18.149 0.000 

Sr Ht edgeR - Hi St DESeq2 177.666 2.703 5 163.664 191.668 65.707 5.179e-07 

Sr Ht edgeR - Sr St DESeq2 159.5 2.341 5 147.373 171.626 68.114 5.154e-07 

Sr Ht edgeR - Hi Ht edgeR 18.166 1.351 5 11.165 25.167 13.437 0.000 

Hi St edgeR - Hi Ht DESeq2 -43.000 2.341 5 -55.126 -30.873 -18.363 0.000 

Hi St edgeR - Sr Ht DESeq2 -61.166 2.703 5 -75.168 -47.164 -22.621 4.384e-05 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Hi St edgeR - Hi St DESeq2 74 2.341 5 61.873 86.126 31.601 1.881e-05 

Hi St edgeR - Sr St DESeq2 55.833 2.703 5 41.831 69.835 20.649 6.561e-05 

Hi St edgeR - Hi Ht edgeR -85.5 2.341 5 -97.626 -73.373 -36.512 1.002e-05 

Hi St edgeR - Sr Ht edgeR -103.666 2.703 5 -117.668 -89.664 -38.339 7.568e-06 

Sr St edgeR - Hi Ht DESeq2 -24.833 2.703 5 -38.835 -10.831 -9.184 0.004 

Sr St edgeR - Sr Ht DESeq2 -43.000 2.341 5 -55.126 -30.873 -18.363 0.000 

Sr St edgeR - Hi St DESeq2 92.166 2.703 5 78.164 106.168 34.086 1.402e-05 

Sr St edgeR - Sr St DESeq2 74 2.341 5 61.873 86.126 31.601 1.881e-05 

Sr St edgeR - Hi Ht edgeR -67.333 2.703 5 -81.335 -53.331 -24.902 3.369e-05 

Sr St edgeR - Sr Ht edgeR -85.5 2.341 5 -97.626 -73.373 -36.512 1.002e-05 

Sr St edgeR - Hi St edgeR 18.166 1.351 5 11.165 25.167 13.437 0.000 

Hi Ht LimmaVoom - Hi Ht DESeq2 153.499 2.341 5 141.373 165.626 65.552 5.181e-07 

Hi Ht LimmaVoom - Sr Ht DESeq2 135.333 2.703 5 121.331 149.335 50.051 1.061e-06 

Hi Ht LimmaVoom - Hi St DESeq2 270.5 2.341 5 258.373 282.626 115.516 5.137e-07 

Hi Ht LimmaVoom - Sr St DESeq2 252.333 2.703 5 238.331 266.335 93.321 5.137e-07 

Hi Ht LimmaVoom - Hi Ht edgeR 111 2.341 5 98.873 123.126 47.402 1.582e-06 

Hi Ht LimmaVoom - Sr Ht edgeR 92.833 2.703 5 78.831 106.835 34.333 1.358e-05 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Hi Ht LimmaVoom - Hi St edgeR 196.5 2.341 5 184.373 208.626 83.915 5.137e-07 

Hi Ht LimmaVoom - Sr St edgeR 178.333 2.703 5 164.331 192.335 65.953 5.175e-07 

Sr Ht LimmaVoom - Hi Ht DESeq2 171.666 2.703 5 157.664 185.668 63.488 5.229e-07 

Sr Ht LimmaVoom - Sr Ht DESeq2 153.499 2.341 5 141.373 165.626 65.552 5.181e-07 

Sr Ht LimmaVoom - Hi St DESeq2 288.666 2.703 5 274.664 302.668 106.759 5.137e-07 

Sr Ht LimmaVoom - Sr St DESeq2 270.5 2.341 5 258.373 282.626 115.516 5.137e-07 

Sr Ht LimmaVoom - Hi Ht edgeR 129.166 2.703 5 115.164 143.168 47.770 1.490e-06 

Sr Ht LimmaVoom - Sr Ht edgeR 111 2.341 5 98.873 123.126 47.402 1.582e-06 

Sr Ht LimmaVoom - Hi St edgeR 214.666 2.703 5 200.664 228.668 79.391 5.137e-07 

Sr Ht LimmaVoom - Sr St edgeR 196.5 2.341 5 184.373 208.626 83.915 5.137e-07 

Sr Ht LimmaVoom - Hi Ht LimmaVoom 18.166 1.351 5 11.165 25.167 13.437 0.000 

Hi St LimmaVoom - Hi Ht DESeq2 88.499 2.341 5 76.373 100.626 37.793 8.250e-06 

Hi St LimmaVoom - Sr Ht DESeq2 70.333 2.703 5 56.331 84.335 26.011 3.075e-05 

Hi St LimmaVoom - Hi St DESeq2 205.5 2.341 5 193.373 217.626 87.758 5.137e-07 

Hi St LimmaVoom - Sr St DESeq2 187.333 2.703 5 173.331 201.335 69.282 5.148e-07 

Hi St LimmaVoom - Hi Ht edgeR 46 2.341 5 33.873 58.126 19.644 8.690e-05 

Hi St LimmaVoom - Sr Ht edgeR 27.833 2.703 5 13.831 41.835 10.293 0.002 
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contrast estimate SE df lower.CL upper.CL t.ratio p.value 

Hi St LimmaVoom - Hi St edgeR 131.5 2.341 5 119.373 143.626 56.156 6.118e-07 

Hi St LimmaVoom - Sr St edgeR 113.333 2.703 5 99.331 127.335 41.914 4.134e-06 

Hi St LimmaVoom - Hi Ht LimmaVoom -65.000 2.341 5 -77.126 -52.873 -27.758 2.685e-05 

Hi St LimmaVoom - Sr Ht LimmaVoom -83.166 2.703 5 -97.168 -69.164 -30.757 2.054e-05 

Sr St LimmaVoom - Hi Ht DESeq2 106.666 2.703 5 92.664 120.668 39.449 6.315e-06 

Sr St LimmaVoom - Sr Ht DESeq2 88.499 2.341 5 76.373 100.626 37.793 8.250e-06 

Sr St LimmaVoom - Hi St DESeq2 223.666 2.703 5 209.664 237.668 82.719 5.137e-07 

Sr St LimmaVoom - Sr St DESeq2 205.5 2.341 5 193.373 217.626 87.758 5.137e-07 

Sr St LimmaVoom - Hi Ht edgeR 64.166 2.703 5 50.164 78.168 23.731 3.784e-05 

Sr St LimmaVoom - Sr Ht edgeR 46 2.341 5 33.873 58.126 19.644 8.690e-05 

Sr St LimmaVoom - Hi St edgeR 149.666 2.703 5 135.664 163.668 55.352 6.385e-07 

Sr St LimmaVoom - Sr St edgeR 131.5 2.341 5 119.373 143.626 56.156 6.118e-07 

Sr St LimmaVoom - Hi Ht LimmaVoom -46.833 2.703 5 -60.835 -32.831 -17.320 0.000 

Sr St LimmaVoom - Sr Ht LimmaVoom -65.000 2.341 5 -77.126 -52.873 -27.758 2.685e-05 

Sr St LimmaVoom - Hi St LimmaVoom 18.166 1.351 5 11.165 25.167 13.437 0.000 
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Figure S2.2. High overlap between DGE programs, particularly those using Negative Binomial Models 

Upset plots of DEGs for soft filtering. DEG intersections for pipelines including (A) EdgeR or DESeq2 and (B) EdgeR or 

Limma-Voom. Horizontal bars represent the total number of DEGs for a pipeline. Filled circles indicate the specific 

pipelines being intersected and the vertical bars are the number of DEGs in that intersection.  

 

A B 
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Figure S2.3. High overlap between DGE programs, particularly those using Negative Binomial Models 

Upset plots of DEGs for hard filtering. DEG intersections for pipelines including (A) EdgeR or DESeq2 and (B) EdgeR 

or Limma-Voom. Horizontal bars represent the total number of DEGs for a pipeline. Filled circles indicate the specific 

pipelines being intersected and the vertical bars are the number of DEGs in that intersection.  

 

A B 



 187 

Chapter 3 

Table S3.1: Details of provenance and demographics of Anoles established using 

these methods. Reared category indicates whether an individual was caught in the wild 

or born in the lab. Y – year, M – month, D – Day are organism ages at the point of 

establishment. AD = reproductively mature adults, sampled at end of breeding season. 

 

 

 

Species Sex Origin Reared Age 

sagrei M Bahamas  Lab 3Y 

sagrei M Bahamas  Lab 3Y 

sagrei F Bahamas  Lab 3Y 

sagrei M Bahamas  Lab 3Y 

sagrei F Bahamas  Lab 3Y 

sagrei M Bahamas  Lab 3Y 

sagrei F Bahamas  Lab 3Y 

sagrei F Bahamas  Lab 3Y 

sagrei F Bahamas  Lab 3Y 

sagrei F Bahamas  Lab 2Y 

sagrei M Bahamas  Lab 4Y 

sagrei M Bahamas  Lab 4Y 

sagrei F Bahamas  Lab 4Y 

sagrei F Bahamas  Lab 4Y 

sagrei M Bahamas  Lab 4Y 

sagrei F Bahamas  Lab 4Y 

sagrei M Bahamas  Lab 4Y 

sagrei M Bahamas  Lab 4Y 

sagrei M Bahamas  Lab 4Y 

sagrei F Bahamas  Lab 4Y 

sagrei F Bahamas  Lab 4Y 

sagrei M Bahamas  Lab 4Y 

sagrei M Bahamas  Lab 4Y 

sagrei M Bahamas  Lab 4Y 

sagrei F Bahamas  Lab 4Y 

sagrei M Bahamas  Lab 1.5Y 

sagrei F Bahamas  Lab 1.5Y 

sagrei M Bahamas  Lab 1.5Y 
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sagrei F Bahamas  Lab 1.5Y 

sagrei F Bahamas  Lab 1.5Y 

sagrei F Bahamas  Lab 1.5Y 

sagrei M Bahamas  Lab 1.5Y 

sagrei M Bahamas  Lab 30D 

sagrei M Bahamas  Lab 30D 

sagrei M Bahamas  Lab 30D 

sagrei M Bahamas  Lab 30D 

sagrei M Bahamas  Lab 1.5Y 

sagrei M Bahamas  Lab 1.5Y 

sagrei F Bahamas  Lab 1.5Y 

sagrei F Bahamas  Lab 30D 

sagrei M Bahamas  Lab 30D 

sagrei F Bahamas  Lab 30D 

sagrei F Bahamas  Lab 30D 

sagrei F Bahamas  Lab 30D 

sagrei F Bahamas  Lab 30D 

sagrei F Bahamas  Lab 30D 

sagrei F Bahamas  Lab 30D 

sagrei F Bahamas  Lab 30D 

sagrei M Bahamas  Lab 30D 

sagrei M Bahamas  Lab 30D 

sagrei F Bahamas  Lab 30D 

sagrei F Bahamas  Lab 30D 

sagrei M Bahamas  Lab 30D 

sagrei F Bahamas  Lab 30D 

sagrei M Bahamas  Lab 30D 

sagrei M Bahamas  Lab 30D 

sagrei M Bahamas  Lab 30D 

sagrei M Bahamas  Lab 30D 

sagrei M Bahamas  Lab 30D 

sagrei F Bahamas  Lab 7M 

sagrei M Bahamas  Lab 7M 

sagrei M Bahamas  Lab 7M 

sagrei F Bahamas  Lab 7M 

sagrei F Bahamas  Lab 7M 

sagrei F Bahamas  Lab 7M 
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sagrei F Bahamas  Lab 7M 

sagrei F Bahamas  Lab 7M 

sagrei F Bahamas  Lab 7M 

sagrei M Bahamas  Lab 7M 

sagrei F Bahamas  Lab 7M 

sagrei F Bahamas  Lab 7M 

sagrei M Bahamas  Lab 7M 

sagrei M Bahamas  Lab 7M 

sagrei M Bahamas  Lab 5Y 

sagrei M Bahamas  Lab 5Y 

sagrei M Bahamas  Lab 5Y 

sagrei M Bahamas  Lab 7M 

sagrei F Bahamas  Lab 5Y 

sagrei F Bahamas  Lab 5Y 

sagrei F Bahamas  Lab 7M 

sagrei F Bahamas  Lab 5Y 

sagrei F Bahamas  Lab 7M 

sagrei F Bahamas  Lab 5Y 

sagrei F Bahamas  Lab 5Y 

sagrei M Bahamas  Lab 7M 

sagrei M Bahamas  Lab 7M 

sagrei F Bahamas  Lab 5Y 

sagrei F Bahamas  Lab 5Y 

sagrei F Bahamas  Lab 5Y 

sagrei F Bahamas  Lab 5Y 

carolinensis M Coral Gables, FL Wild AD 

carolinensis M Coral Gables, FL Wild AD 

carolinensis M Coral Gables, FL Wild AD 

carolinensis F Coral Gables, FL Wild AD 

carolinensis F Coral Gables, FL Wild AD 

carolinensis F Coral Gables, FL Wild AD 

carolinensis F Coral Gables, FL Wild AD 

carolinensis M Coral Gables, FL Wild AD 

equestris F Coral Gables, FL Wild AD 

equestris F Coral Gables, FL Wild AD 

equestris F Coral Gables, FL Wild AD 

equestris M Coral Gables, FL Wild AD 
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equestris F Coral Gables, FL Wild AD 

equestris M Coral Gables, FL Wild AD 

equestris M Coral Gables, FL Wild AD 

cybotes M Port Mayaca, FL Wild AD 

cybotes F Port Mayaca, FL Wild AD 

cybotes M Port Mayaca, FL Wild AD 

cybotes F Port Mayaca, FL Wild AD 

cybotes F Port Mayaca, FL Wild AD 

cybotes F Port Mayaca, FL Wild AD 

cybotes M Port Mayaca, FL Wild AD 

cybotes M Port Mayaca, FL Wild AD 

chlorocyanus F Parkland, FL Wild AD 

chlorocyanus M Parkland, FL Wild AD 

chlorocyanus M Parkland, FL Wild AD 

chlorocyanus M Parkland, FL Wild AD 

chlorocyanus M Parkland, FL Wild AD 

chlorocyanus F Parkland, FL Wild AD 

distichus F Coral Gables, FL Wild AD 

distichus F Coral Gables, FL Wild AD 

distichus F Coral Gables, FL Wild AD 

distichus F Coral Gables, FL Wild AD 
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APPENDIX 2: Abstracts of Additional Contributions 

Sparkman, A.M., A.D. Clark, L.J. Brummett, et al. “Convergence in reduced body size, 

head size, and blood glucose in three island reptiles,” Ecology & Evolution, 

2018;8:6169–6182. https://doi.org/10.1002/ece3.4171 

Many oceanic islands harbor diverse species that differ markedly from their 

mainland relatives with respect to morphology, behavior, and physiology. A particularly 

common morphological change exhibited by a wide range of species on islands 

worldwide involves either a reduction in body size, termed island dwarfism, or an 

increase in body size, termed island gigantism. While numerous instances of dwarfism 

and gigantism have been well documented, documentation of other morphological 

changes on islands remains limited. Furthermore, we lack a basic understanding of the 

physiological mechanisms that underlie these changes, and whether they are convergent. 

A major hypothesis for the repeated evolution of dwarfism posits selection for smaller, 

more efficient body sizes in the context of low resource availability. Under this 

hypothesis, we would expect the physiological mechanisms known to be downregulated 

in model organisms exhibiting small body sizes due to dietary restriction or artificial 

selection would also be downregulated in wild species exhibiting dwarfism on islands. 

We measured body size, relative head size, and circulating blood glucose in three species 

of reptiles—two snakes and one lizard—in the California Channel Islands relative to 

mainland populations. Collating data from 6 years of study, we found that relative to 

mainland population the island populations had smaller body size (i.e., island dwarfism), 

smaller head sizes relative to body size, and lower levels of blood glucose, although with 
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some variation by sex and year. These findings suggest that the island populations of 

these three species have independently evolved convergent physiological changes (lower 

glucose set point) corresponding to convergent changes in morphology that are consistent 

with a scenario of reduced resource availability and/or changes in prey size on the 

islands. This provides a powerful system to further investigate ecological, physiological, 

and genetic variables to elucidate the mechanisms underlying convergent changes in life 

history on islands. 

Westfall, A.K., R.S. Telemeco, M.B. Grizante, D.S. Waits, A.D. Clark, et al. “A 

chromosome-level genome assembly for the Eastern fence lizard (Sceloporus 

undulatus), a reptile model for physiological and evolutionary ecology,” 

GigaScience. 2021; https://doi.org/10.1093/gigascience/giab066   

 

High-quality genomic resources facilitate investigations into behavioral ecology, 

morphological and physiological adaptations, and the evolution of genomic architecture. 

Lizards in the genus Sceloporus have a long history as important ecological, 

evolutionary, and physiological models, making them a valuable target for the 

development of genomic resources. We present a high-quality chromosome-level 

reference genome assembly, SceUnd1.0 (using 10X Genomics Chromium, HiC, and 

Pacific Biosciences data), and tissue/developmental stage transcriptomes for the eastern 

fence lizard, Sceloporus undulatus. We performed synteny analysis with other snake and 

lizard assemblies to identify broad patterns of chromosome evolution including the fusion 

of micro- and macrochromosomes. We also used this new assembly to provide improved 
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reference-based genome assemblies for 34 additional Sceloporus species. Finally, we 

used RNAseq and whole-genome resequencing data to compare 3 assemblies, each 

representing an increased level of cost and effort: Supernova Assembly with data from 

10X Genomics Chromium, HiRise Assembly that added data from HiC, and PBJelly 

Assembly that added data from Pacific Biosciences sequencing. We found that the 

Supernova Assembly contained the full genome and was a suitable reference for RNAseq 

and single-nucleotide polymorphism calling, but the chromosome-level scaffolds 

provided by the addition of HiC data allowed synteny and whole-genome association 

mapping analyses. The subsequent addition of PacBio data doubled the contig N50 but 

provided negligible gains in scaffold length. These new genomic resources provide 

valuable tools for advanced molecular analysis of an organism that has become a model 

in physiology and evolutionary ecology. 

 

Clark, A.D. & L.S. Stevison. “Learning R for Biologists: a mini course grab-bag for 

instructors,” CourseSource, Accepted – In revisions May 2022 

As biology becomes more data driven, teaching students data literacy skills has become 

central to biology programs. Despite a wealth of online resources that teach researchers how to 

use R, there are few that offer practical laboratory-based exercises, with teaching resources such 

as keys, learning objectives, and assessment materials. Here, we present a modular set of lessons 

and lab activities to help teach R through the platform of R Studio. Both softwares are free and 

open source making this curriculum highly accessible across various institutions. This curriculum 

was developed over several years of teaching a graduate level computational biology course. In 

response to the pandemic, the class was shifted to be completely online. These resources were 
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then migrated to GitHub to make them broadly accessible to anyone wanting to learn R for the 

analysis of biological datasets. In the following year, these resources were used to teach the 

course in a flipped format, which is the lesson plan presented here. In general, students responded 

well to the flipped format, which used class time to conduct live coding demos and work through 

challenges with the instructor and teaching assistant. Overall, students were able to use these 

skills to analyze and interpret data, as well as produce publication quality graphics. While the 

modules presented range from very basic, doing simples summary statistics and plotting, to quite 

advanced, where R is integrated onto the command line, teachers should feel free to pick and 

choose which elements to incorporate into their own curriculum.  

 


	Draft genomes for one Microcystis-resistant and one Microcystis-sensitive strain of the water
	mapping to functional pathway enrichment .............................................................................. 51
	Primary culture in non-model organisms: the establishment and validation of Anolis lizard
	Draft genomes for one Microcystis-resistant and one Microcystis-sensitive strain of the water flea, Daphnia pulicaria
	Samples
	DNA extraction
	Validation of Strain via Genotyping PCR
	Sequencing
	Reference-Guided Assembly
	Assembly Metrics and Assessments
	Data Availability
	Assemblies
	Assessments
	CONCLUSION
	from mapping to functional pathway enrichment

	The phenotypic experiment and resulting RNA-sequencing was conducted by Tonia Schwartz at University of Alabama at Birmingham in 2014 and will briefly be described here to provide the appropriate background information for the RNA-seq analysis herein....
	Caloric Restriction Experiment
	Library Preparation and RNA-seq Sequencing
	RNA‑seq Analysis Tools by Step
	Quality Assessment & Trimming
	Alignment Programs
	Pseudoalignment Programs
	Counting & Gene-Level Count Estimation Programs
	Pre-filtering Low and No-Expression Genes
	Differential Gene Expression (DGE) Programs
	DESeq2
	EdgeR
	Limma-Voom

	Pathway Analysis Program

	Pipeline Contrasts and Statistical Tests
	Aligners
	Counting & Gene-Level Quantification
	Differential Gene Expression
	Pathway Analysis
	Data Availability
	lizard dermal cells

	Establishment of Primary and Early Passage Cells from Lizard Tails
	Animals and Sample Collection
	Explant Methodology
	Subculturing Methodology
	Cryofreezing and Preservation Methodology

	Cell Validation & Characterization
	Contamination and Mycoplasma Screening
	Short Tandem Repeat (STR) Profiling for Single Individual Culture Validation


