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Abstract

In the past, researchers chose models organisms to answer research questions based on
their simplicity in morphology, domestication, and/or life history traits. Now, with high
throughput sequencing (HTS) rapidly becoming cheaper, more investigations are tractable even
with relatively small budgets. This is important because there are many complex and system-
specific questions about natural populations and natural phenomenon that cannot be answered
with traditional model organisms. Further, we cannot refine our understanding of life and
biodiversity in a small unrepresentative subset of model organisms. The goal of this work is the
generation of omics and cell culture resources for research on Daphnia and Anolis genera,
respectively. I discuss their applicability for investigations of natural populations in the context
of conservation and organisms themselves. Chapters One & Two develop omics resources in
Daphnia systems, which are highly tractable evolutionary and ecotoxicology models. Chapter
One, a published manuscript in G3, describes the generation of reference-guided draft genome
assemblies for two strains of D. pulicaria with differential responses to toxic algal blooms.
These assemblies with a high-quality curation of genes can be used for several downstream
investigations, including the exploration of differential gene expression in response to algal
toxins and identification of sequence variants associated with toxin resistance. Chapter Two
diverts focus to the technical side of omics investigations where | explore 18 different
combinations of RNA-seq tools for DGE analysis using a computationally tractable caloric
restriction data set from D. pulex. I discuss the variation in biological or functional results due to
the different tool combinations and explore variation at each step of the pipelines. The work
presented in this chapter is the basis for three manuscripts in development: (1) the current

chapter to be expanded and contrasted across species; (2) the biological inferences from the



RNA-seq results in conjunction with phenotypic data; and (3) the code used for these
comparisons as a detailed tutorial for instructors to teach these analyses using a non-model
system. My final chapter details the generation of cellular resources for testing in silico or omics
generated functional predictions. | develop primary and early passage cells for > 100 lizards
from the Anolis genus, providing methods for establishment and validation of reptile primary
cells. I discuss their applicability in the context of studying protected and/or cryptic species in a

dish!
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INTRODUCTION

1.1 Motivations to Study Phenotypic Variation

The desire to understand the complexities of life have beckoned interest and efforts
of researchers across the biological sciences before the time of Rosalind Franklin, Robert
Hooke, or even Aristotle (Voultsiadou et al. 2017; Vucetich et al. 2021). With the
contributions of these few individuals and the countless more that came before and after
their time, we have learned that our world consists of a mind-blowing amount of variation
and diversity at every level of the biological hierarchy, from gene to cell to organism
phenotypes. We have explored many questions at these biological levels, whether those
questions addressed the breadth of phenotypic variation on Earth (Gerovasileiou et al.
2015; Anderson 2018), how new phenotypes arise and disperse through populations (Orr
1998; Fox et al. 2019; Card et al. 2019), or the mechanisms (i.e., ecological and/or
molecular) underlying phenotypes (Christe et al. 2000; Schlichting and Smith 2002;
Lomolino 2005; Schwander et al. 2014; Funk et al. 2016; Herrera-Alvarez et al. 2018;
Benitez-Lopez et al. 2021). Often these investigations, along with the progression of
technology, have generated just as many new questions as they have answers! While
there is still a plethora of questions in individual biological fields, what has fascinated me
most are the questions that require integrative approaches across fields and biological
hierarchy. These tantalizing questions and investigations can tell the intricate stories of

life, representing both its connectivity and diversity.
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Even with the incredible amount of variation in life, there are still many conserved or
convergent biological systems across humerous, distinct groups of organisms. As an
example, consider metabolic regulation in traditional model systems (yeast, fly, mouse,
nematode) and other systems (cow, chicken, dogs, snakes). There is an overwhelming
amount of evidence for the GH-1IS pathway as a conserved molecular system regulating
this trait across these very different taxa (Barbieri et al. 2003; Metallo and Heiden 2013;
Khan et al. 2014; Perry et al. 2019; Fujita et al. 2019; Chowanski et al. 2021; Chatterjee
and Perrimon 2021). Further, the GH-1IS regulates, in part, the confounded traits of
growth, reproduction, and aging at the level of the cell and the organism (Barbieri et al.
2003; Denley et al. 2005). For me, contemplating these ideas always brings me to the
question “how does such extensive phenotypic diversity arise from seemingly constrained
genetic sequences and molecular networks?”’

Understanding how evolutionary forces, like natural selection, acts across molecular
networks may provide more comprehensive insight on the evolution of complex traits, or
traits regulated and determined by multiple genes and environmental interactions, that are
often regulated by these networks. The field has benefited from the many molecular
evolution studies to date that endeavor to provide this insight, even though they mostly
focus on a single to a few candidate genes (Hoekstra 2006; Hsu et al. 2008; Radwan and
Babik 2012). While all efforts are integral to our understanding of how complex
phenotypic traits evolve, the omission of environmental and multigenic interactions limits
our detection of factors that contribute to the evolution of the novel phenotypes vital to

Earth’s biodiversity. The relatively minor lag in omnigenic approaches to molecular
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evolution studies in well-funded, established model organisms could be attributed to our
limited ability to mathematically model these networks and the tractability of studying
mendelian traits (Glazier et al. 2002; Belmont and Leal 2005; Mathieson 2021).
However, in systems that deviate from the traditional models, this issue is compounded

by a lack of resources to address questions in these less-developed systems.

1.2 Motivations to Use Non-model Organisms

Biological research is seemingly dominated by a few study systems, deemed model
organisms. ‘Model organism” was a term originally reserved for taxa that had certain
levels of tractability for scientific investigations (Muller and Grossniklaus 2010).
Typically, this tractability was in the context of an organism’s reproductive rates, size,
ease of genetic manipulation, and ease of obtainment or handling or culturing in
laboratory settings. Today, “model organism” is used ubiquitously for taxa supported by
extensive system knowledge and/or resources (standard methodology, databases,
informatics) and they often address a specific biological process or phenomenon (Ankeny
and Leonelli 2011). Model organisms provide an invaluable platform for scientific
investigations. We frequently solve problems using reductionist methods, with the idea
that removing complexities can provide more direct investigation of the problem at hand
(i.e., modelling). This was one motivation of developing the bacteria Escherichia coli as a
model organism. Prior to the 1950s emergence of molecular biology, E. coli were already
being extensively used in viral and microbiological investigations. Following the

emergence of molecular biology came foundational knowledge of DNA replication, gene
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expression, and restriction enzymes, all initially generated in E. coli models (Blount
2015). Many questions pertaining to eukaryotes, let alone vertebrates, could not be
answered in this prokaryotic model. This required increasingly complex, diverse models
like yeast, flies, and mice. These models have clarified and resolved many basic
molecular biology questions about eukaryotes and have been extensively used as disease
models in the biomedical sciences (Veldman and Lin 2008; Howe et al. 2013; Menezes et
al. 2015; Blount 2015; Baldridge et al. 2021). While | cannot deny the indispensability of
model organisms, we still cannot ignore how much they have contributed to investigative
tunnel vision. Due to their tractability, more studies were performed in model organisms
and concomitantly more resources were developed and optimized for these limited
number of systems. This eventually created a culture of using these models to answer
questions that they may not have been suitable for because there were adequate resources
for them and an assumption that model organisms would be broadly representative across
taxa (Leonelli and Ankeny 2013; Seifirad and Haghpanah 2019). Developing a model is
not trivial, both in the context of effort and costs when you consider the need for
characterization of an organism (i.e., anatomically, ecologically), molecular tools
compatible with an organism (i.e., antibodies, biomaterials, standardized protocols),
breeding/husbandry, and information infrastructure (i.e., databases, biological products,
and molecular data). Yet, we are limited in the depth and scope of our investigations of
biodiversity without adequate access to numerous, well-distributed representatives across

the Tree of Life. In science, we base our understanding on the outcomes of observation
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and experimentation, but how complete can our understanding of life actually be when

we have a been focusing on a narrow collection of organisms?

1.3 How Technology is Bringing Balance

We are already seeing researchers step out of their comfort model organisms,
developing new systems to answer questions about unique biological phenomena. This is
largely due to the advent of massively paralleled or high throughput sequencing (HTS)
technologies that has allowed large scale investigations of genes, proteins, metabolites,
and other molecules of interest (Soon et al. 2013; Reuter et al. 2015). Advances in
biotechnology and biochemistry have driven the cost of HTS lower and lower, opening
the door for non-model investigations in the omics era (Ellegren 2014; Reuter et al. 2015;
Muir et al. 2016). Omics refers to the global assessment of a particular set of molecules
(i.e., genomics — DNA, transcriptomes — RNA, proteomics — Protein) in an organism (or
tissue or single-cell) at the time of sampling. Personally, it is an exciting time to be an
evolutionary biologist with the potential to apply comparative omics and cell biology to
explore the mechanisms and evolution of regeneration or apply metagenomic sequencing
to continuously resolve basal relationships on Tree of Life (Spang et al. 2017; Stockdale
et al. 2018). Of course, model organisms were the first up for access to these technologies
due to the existing infrastructure, which arguably made it more feasible to direct funding
to these systems. Still, sequencing in non-model organisms have advanced studies
focused on biodiversity (Bonasio 2015; Székely 2019; Burnett et al. 2020), aided in the

progress of population genetics from a largely theoretical to an empirical field (Ellegren
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2014), and assisted in uncovering taxa better suited than existing model organisms to
address more central, longstanding biological questions (Russell et al. 2017). With these
successes comes new challenges of data analysis and testing these functional predictions
and hypotheses experimentally. The access to developed molecular protocols, databases,
and biomaterials is still a large hinderance in non-model systems, as is access to
formalized computational biology, bioinformatic, and data management training
necessary to analyze and handle modern biological data. This is compounded by an
inability to escape our investigative tunnel vision, as several well-maintained
bioinformatic programs, methods, and computations resources were developed for
specific taxa (usually human) and are not well optimized for organisms with different
genomic architectures (i.e., repetitive elements, ploidy).

My dissertation reflects my desire to appreciate the development and evolution of
complex traits through an understanding of underlying genetic network interactions and
molecular constraints contributing to phenotypic variation. Along my journey, | have
realized the dearth of optimized protocols and resources available for the systems in
which | chose to address my evolutionary questions. This has promoted a pivot in my
work to resource development and, as a secondary theme of my research, promoting the
development of new models to study cellular physiology and functional genomics in the

context of ecology, evolution, and ultimately biodiversity.

1.4 Chapter Abstracts
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In my first chapter, | generate genomic resources for the study of adaptive toxin
resistance in water fleas! Daphnia species are well-suited for studying local adaptation
and evolutionary responses to stress(ors) including those caused by algal blooms. Algal
blooms, characterized by an overgrowth (bloom) of cyanobacteria, are detrimental to the
health of aquatic and terrestrial members of freshwater ecosystems. Some strains of
Daphnia pulicaria have demonstrated resistance to toxic algae and the ability to mitigate
toxic algal blooms. Understanding the genetic mechanism associated with this toxin
resistance requires adequate genomic resources. Using whole genome sequence data
mapped to the Daphnia pulex reference genome (PA42), we present reference-guided
draft assemblies from one tolerant and one sensitive strain of D. pulicaria, Wintergreen-6
(WI-6) and Bassett-411 (BA-411), respectively. Assessment of the draft assemblies
reveal low contamination levels, and high levels (95%) of genic content. Reference
scaffolds had coverage breadths of 98.9% - 99.4%, and average depths of 33X and 29X
for BA-411 and WI-6, respectively. Within, we discuss caveats and suggestions for
improving these draft assemblies. These genomic resources are presented with a goal of
contributing to the resources necessary to understanding the genetic mechanisms and
associations of toxic prey resistance observed in this species.

Chapter Two focuses on technical challenges of navigating the rapidly increasing
number of computational and statistical tools used in transcriptomic and gene expression
analyses. Here, I compare common tools used in the literature in different combinations
to build 18 different RNAseq analysis pipelines. These types of studies have been

previously done, but the majority make fewer comparisons or stop at differential gene
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expression (DGE) analysis. | extend previous work to include functional gene set
enrichment analysis (GSEA) from each of the pipeline to determine if there are changes
in the biological interpretation of functional pathway enrichment results. The results
confirm that while there is high similarity between mapping tools, there are significant
effects of counting and DGE analysis methods on the number of differentially expressed
genes (DEGS). Further, these differences carry over to functional pathway enrichment
results, with the most noticeable effect of filtering choices on the ability to detect
enriched gene sets at a reasonable FDR. Although there were limitations in enrichment
detection due to annotation quality, several pipelines report enrichment of genes in the
xenobiotic metabolism set. This finding was quite relevant to the caloric restriction data
set used, as Daphnia metabolism and stress responses utilize the same receptors for both
xenobiotic and endobiotic stimulants. These analyses have been performed in a
reproducible manner, with tutorial-like scripts develop as a resource to learn how to
perform DGE analysis across different common programs.

Finally, in Chapter Three I develop methodology to build cellular models from non-
model organisms to circumvent conservation limitations in research, while adhering to
the 3 tenets of animal research. Primary explant cell culture, growing cell monolayers
from tissue sample, provides a method for studying cellular physiology and biochemical
function. Primary cells have shorter replicative lifespans compared to immortalized cell
lines, but they retain features programmed by the in vivo background, proving cell culture
useful for testing cellular responses, and interpreting organismal responses to stimuli.

Published methods for cell culture in ectothermic vertebrates are limited, and even fewer
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are specific to non-avian reptiles. | detail method used for establishing over 100 different
primary and early passage cells from opportunistic collections of lizard tails across
multiple Anolis genera. | also detail methods for validating these cells prior to their use as
experimental resources and discuss the avenues in which cellular resources could
contribute to non-model investigations. Resources, including methodology, biomaterials,
and expertise, are currently limiting factors for the broad inclusion of studies at the
cellular level in evolutionary ecology research, making resources like the methods
presented in this work critical to the field.

My desire is for this work to be contributory in advancing investigations in non-
model systems to promote more integrative and comparative investigations of

biodiversity and life itself.
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INTRODUCTION

Over the past two decades, functional ecology research has focused on
constructing a theoretical framework for eco-evolutionary dynamics, the bidirectional
feedback between ecological and evolutionary processes of populations, communities,
and ecosystems (Pelletier et al. 2009). An integral portion of this framework requires
connecting genetic variation in species and the concomitant effects on ecological
interactions across hierarchal levels (Brunner et al. 2019). Ideal species for studying this
interplay of evolution and ecology possess high connectivity within their ecological
communities (see Figure 2 in Miner et al. 2012), experimental flexibility and tractability
(i.e., responds to a multitude of diverse stressors; ease of controlled maintenance and
manipulation), and suitable genomic resources (Miner et al. 2012). Daphnia, commonly
known as water fleas, satisfy these criteria. Daphnia are well-studied, widely employed
models in ecology, evolution, and ecotoxicology (Shaw et al. 2007; Eads et al. 2008;
Sarnelle et al. 2010; Miner et al. 2012; Nelson et al. 2018; Asselman et al. 2018; Becker
et al. 2018), and have been utilized in Nobel prize-worthy discoveries (Nobel Media AB

2021).

Daphnia species, with the appealing traits of short generation times and cyclic
parthenogenesis, are well-suited for studying local adaptation and evolutionary responses
to stress(ors) including those caused by global warming and anthropogenic eutrophication
(Hairston et al. 2001; Ebert 2005; Asselman et al. 2014). Daphnia pulicaria, a lake-

dwelling herbivorous zooplankton in the genus, demonstrate evidence of local adaptation

24



to cyanobacteria in eutrophic lakes and significant genetic structure amongst populations
(Sarnelle and Wilson 2005; Chislock et al. 2019a). Microcystis aeruginosa is a highly
toxic species of cyanobacteria, abundant in harmful algal blooms, that may produce toxic
metabolites, including a suite of hepatotoxins called microcystins (Paerl et al. 2001).
Many methods for controlling these blooms have been proposed due to their adverse
effects on human health, the economy, and ecological communities. One promising
avenue for mediation is biomanipulation or manipulating trophic levels to control
cyanobacterial overgrowth by introducing D. pulicaria exhibiting resistance to toxic
cyanobacteria (Wilson and Chislock 2013; Chislock et al. 2019b). These findings have
contributed to a strong, growing interest in using D. pulicaria to understand the
mechanistic link between genetic trait variation and ecological community dynamics,
which could aid in informing mitigation tactics for harmful algal blooms. However, such

efforts require increasing the available genomic resources.

Currently, there are full genomes assemblies for four Daphnia species: D. pulex,
TCO (Colbourne et al. 2011a) and PA42 (Ye et al. 2017); D. magna, KIT (Lee et al.
2019) and XINB3 (Gilbert,D.G, unpublished [PRINA298946]); D. carinata, WSL (Jia et
al. 2020); and a D. galeata assembly [PRJEB42807] (Nickel et al. 2021). Published
whole genome amplifications of single and pooled D. pulicaria adult and ephippia have
been mapped to TCO, but the genomic resources presented here are the first genome
assemblies for D. pulicaria assembled using the new and improved, PA42 reference

genome (Lack et al. 2018). Here, we present two reference-guided assemblies from two
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strains of D. pulicaria, one Microcystis-resistant strain, Wintergreen-6 (WI-6), and one

Microcystis-sensitive strain, Bassett-411 (BA-411).

MATERIALS & METHODS

Samples

Two strains of D. pulicaria, WI-6 and BA-411, were initiated from a single
individual isolated from small glacial lakes in southern Michigan during autumn 2004
and spring 2009, respectively (Chislock et al. 2019a, 2019b). Tolerant phenotypes were
established by exposing neonates to toxic cyanobacterial diets where strains from highly
eutrophic lakes, like WI-6, demonstrated reduced negative impacts on growth rates
(Sarnelle and Wilson 2005). These strains have been maintained in clonal cultures in the
freshwater ecology laboratory of Dr. Alan Wilson (AU) since isolation and were received
from the Wilson Lab in December of 2018 for genome sequencing. For each strain,
approximately 10-15 individuals were cultured in autoclaved 50 mL flasks loosely
capped with foam stoppers and transferred to fresh food and water on a biweekly basis.
Clonal populations for each strain were cultured at (23°C) room temperature in
(autoclaved) water from a nearby, oligotrophic reservoir (Lake Martin, AL), and fed a
nutritious alga, Ankistrodesmus falcatus, ad libitum. As populations reproduced, offspring
were quantified and separated into new flasks on a weekly basis. Offspring were allowed

to mature before being transferred into diethylpyrocarbonate (DEPC) treated water
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[VWR, USA] with no food for two days in order to clear their guts. Post starvation, 20
adults were pooled into 1.5 mL tubes in 1mL of a 1.5x DNA/RNA Shield
[Zymogen, USA] and stored at 4°C. For each strain, we used three tubes of 20 adult

Daphnia for DNA extractions for genome sequencing.

DNA extraction

DNA was extracted within 24 — 48 hours of DNA/RNA Shield storage using the
QlAamp UCP DNA Micro kit [QIAGEN,Germany] per manual instructions, with some
modifications. Briefly, DNA/RNA Shield was removed, 10mL of kit proteinase k (half
the recommended amount) and two 2.0mm silicate beads were added before samples
were homogenized on a TissueLyser 11 [QIAGEN] for 1 minute at a frequency of 30
cycles(st). The remaining steps of the manufacture’s protocol were followed with DNA
being eluted from the filter in a 20 mL volume. Independent DNA extractions from were
performed over three weeks during March 2019 were frozen at -20°C. For each strain, the
DNA from three samples were pooled and concentrated in preparation for genome
sequencing, thus the genomic sequence represents approximately 60 individuals, that are
presumed to be clonal. DNA was quantification using the Qubit dsSDNA High Sensitivity

Assay kit [Thermo Fisher, USA].
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Validation of Strain via Genotyping PCR

To validate that DNA samples were of the correct and single strain of origin,
samples were PCR amplified for DP496, a microsatellite locus previously identified in
Colbourne et al. (2004) and demonstrated to have discriminating allelic patterns between
these two D. pulicaria strains (Wilson and Hay 2007; Chislock et al. 2019a). Primer
sequences were obtained from the Daphnia Genomics Consortium, wfleabase

(http://wfleabase.org/genomics/microsatellite/) (Colbourne et al. 2004, 2005). PCR

reactions were carried out in 20mL volumes using 5mL of 2X GoTaqg Green PCR Master
Mix [Promega, USA], 0.3 mL of 10mM forward and reverse primers (0.3 mM final
concentration), 3.65mL of water, and 0.75 mL of DNA (21 ng). The thermocycler
program for the PCR began with a 2 min denaturation cycle at 95°C, followed by 35
cycles of 20 sec at 95°C, 20 sec at 50°C, and 20 sec at 72°C, and a final extension cycle
for 10 min at 72°C. DNA from a single individual of each strain was used as positive
controls, and water instead of DNA was used as a no template control. Five mL of PCR
products were visualized on a 3% agarose gel made with 0.5X TAE and 1mL of
GelGreen Nucleic Acid Stain [Biotium, USA] to confirm that the allelic patterns for the

genome samples were consistent with the positive controls for the target strains.

Sequencing

For each strain, approximately 0.8 mg (WI-6) and 1 mg (BA-411) of DNA were

shipped to Novogene [China] for sequencing. Novogene performed library preparation
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using the Illumina TruSegLibrary Construction Kit and sequencing on an lllumina
Novoseq 6000, producing 8 Gbs (54.8 and 56.1 million reads for BA-411 and WI-6,

respectively) of 150bp PE reads.

Reference-Guided Assembly

For each strain, we conducted reference-based assembly using the D. pulex PA42
genome assembly. D. pulex was determined to be a suitable, high-quality reference, as it
is closely related to D. pulicaria and, interestingly, the two commonly hybridize in
ecological communities (Markova et al. 2013; Kake-Guena et al. 2015). Furthermore,
the PA42 genome was produced from starved Daphnia treated with antibiotics to reduce
diet and endosymbiotic contaminants, and post-assembly, scaffolds were filtered for
bacterial contamination (Ye et al. 2017). Our assembly pipeline, described below, was
run on Auburn University’s High-Performance Cluster, Hopper for 2 days using 20 cores
and 100GB of memory.

For each strain, we used the following pipeline. Quality assessment of raw data
files was performed using FASTQC v0.11.5 (Andrews, Simon 2010). The assessment
reported no adapter contamination and no regions where sequence quality dropped below
Q-score of 25, therefore trimming was not applied to reduce unnecessary loss of data. D.
pulicaria reads were mapped to PA42 using Burrows-Wheeler Aligner (BWA) v0.7.15 (Li
and Durbin 2009). Genome Analysis Tool Kit (GATK) v3.6 was used for local

realignment, insertion/deletion (INDEL) and single nucleotide polymorphism
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identification, and separation and filtration of identified variants using GATK
recommended hard-filtering parameters (McKenna et al. 2010; Auwera et al. 2013).

SNPs were inserted into the original reference, creating a consensus sequence, using

BCFTools ‘consensus’ (Li 2011). BEDTools ‘genomcov’ was used to create a BED file of
regions lacking reference read coverage and ‘maskfasta’ was used to mask the zero
coverage and INDEL regions in the consensus sequence with “N’s” (Quinlan and Hall

2010). This produced a reference-guided, draft genome assembly for each strain.

Assembly Metrics and Assessments

Although we starved the Daphnia before sequencing, it is likely there was still
remnant algal cells and bacterial contaminates in our sequencing data. To identify these
and any other contaminates, BlobTools (v 1.0) workflow A was used to quantify and
visualize represented taxa, therefore identifying contamination from other phyla in the
raw reads and the draft assemblies (Laetsch and Blaxter 2017). FastQ Screen was also
used as a screening method for contaminants by mapping a subset of read libraries to a
search library with bowtie2 (Langmead and Salzberg 2012; Wingett and Andrews 2018).
The search library genomes included with the program were used and genomes for PA42,
the D. pulex mitochondria (PRINA11866), and the green algae Monoraphidium
neglectum (PRINA293989), a close relative of the food source for Daphnia, were added

(Crease 1999; Bogen et al. 2013). Assembly completeness was estimated with
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Benchmarking Universal Single-Copy Orthologs (BUSCO) v4.0.6 analysis using both the
eukaryote_odb10 and arthropoda_odb10 databases (Siméo et al. 2015; Waterhouse et al.
2018). BEDTools ‘coverage’ was also used to determine depth of coverage at genes
annotated in PA42. Sourmash v4 uses a MinHash derived algorithm to estimate similarity
of genomic sequences and was used here to make pairwise comparisons between draft
and reference assemblies (Brown and Irber 2016). Sourmash was used to create DNA
sketches, or hash sketches, from both the assemblies and the merged raw reads. These
reduced sequence data representations can be rapidly compared for overlapping k-mer
sized read content (overlapping k-mer space) using a Jaccard similarity coefficient,
however it does not give information about genomic contiguity or structure. Based on
recommendations in sourmash documentation, signatures were computed for k-mer sizes
of 21,31, and 51 bp, to minimize false positives and maximize matches. The distance
measure output from this method is highly correlated with the frequently used genetic

distance measurement, average nucleotide identity (ANI) (Ondov et al. 2016).

Data Availability

Supplemental files can be found on GSA figshare

(https://figshare.com/s/28a738d36fc93b619109). File S1 is a figure from FastQ Screen

analysis. File S2 is a tarball containing the reference-guided assemblies for BA_411 and
WI 6. Assembly files with “clean” appended to the name have been filtered for scaffolds

without reference coverage. File S3 is a tarball containing Blobtools output. File S4 is a
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tarball containing BUSCO outputs. All sequence data are available under the NCBI
BioProject Accession PRINA702463. Code used to perform the data analyses for this

work can be found on GitHub (https://doi.org/10.5281/zenod0.4635402).

RESULTS & DISCUSSION

Assemblies

PA42 is a quality D. pulex genome consisting of approximately 156 megabase
pairs (8.6% gaps) organized into 1822 scaffolds. The BA-411 sequencing library
produced 54.8 million reads with 24.9% duplication, and the WI-6 library produced 56.1
million reads with 21.7% duplication. Using BWA, BA-411 and WI-6 reads were
mapped to PA42 resulting in approximately 86% and 75% successfully mapped reads,
respectively. Of the 1822 scaffolds making up the PA42 assembly, 21 (1.15%) and 12
(0.66%) reference scaffolds had no sequence coverage for BA-411 and WI-6, with
average coverage depths of ~33X and ~29X, respectively for the rest of the assembly.
Assembly metrics are compared in Table 1. Although D. pulex and D. pulicaria are
closely related, the assemblies presented herein are reference-guided and regions of the
genomes that are not truly syntenic between the species will be incorrect in these BA-411
and WI-6 draft assemblies.

Approximately 97% of genes annotated in PA42 had coverage from mapped BA-

411 and WI-6 reads. The percentage of PA42 genes with coverage is represented by the
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“Total” category in Figure 1.1. The percentage of PA42 genes with 5, 10, 15, and 20X
average depth are also found in this figure. Interestingly, BA and WI-6 have a similar
number of genes with coverage, but WI-6 has consistently fewer genes covered at

average depths of 10x or higher.

Percentage of PA42 Genes Covered by Depth

BA_411 WI_6

97.4837

97.3265

93.7148 -
,, 935195
% B o
3 87.13674 . 5x
ks
£ 85.5531 - B o
g 15x
P 79.192 20x

73.8286

41.2364 -

17.0174

Total 5x 10x 15x 20x Total 5x 10x 15x 20x
Depth

Figure 1.1. Percent of PA42 Genes for Different Average Depths of Coverage. The
left and right panels represent BA-411 and WI-6, respectively. “Total” is the number of
genes with 1x average depth. The percentage of genes covered at average depths of 5,

10,15, and 20x are included.
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Assessments

To further assess the completeness of BA-411 and WI-6 assemblies, a BUSCO
analysis was run using both the arthropod and eukaryote databases. Over 95% of the
universal single-copy orthologs searched from both databases were found to be complete
in both draft assemblies, with a minor difference in fragmented orthologs (0.1%; Figure
1.2A). The Venn diagram of missing BUSCOs in Figure 1.2B indicate that there are
seven missing across all assemblies, corresponding to what is missing in the reference,
and six BUSCOs that are missing in D. pulicaria only, with three species-specific
orthologs missing in both strains and three strain-specific orthologs missing from each
strain. These data indicate high contiguity in many genic regions for these draft
assemblies.

Assemblies were assessed for contamination with BlobTools. We had an
expectation of bacterial and algal contamination in the read data considering the
microenvironment and diet of Daphnia, but because we used a reference sequence where
great measures were taken to remove contaminants, we expected that a vast majority of
contaminants would be filtered out during mapping. Based on the blob plots (Figure 1.3),
both drafts genome assemblies had low levels of contaminant sequences, with 0.22% of
BA-411 and 0.13% of WI-6 mapped reads hitting to phyla outside of Arthropoda.
Supplementary data includes BlobTools output to further explore or remove contaminant

regions.
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A BUSCO Assessment Results
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Figure 1.2. BUSCO Analysis for D. pulicaria Genome Assemblies Indicate High Levels of
Gene Content in Draft Assemblies. A. BUSCO analysis for draft assemblies, BA-411 and WI-
6, and the reference genome, PA42, against the eukaryote and arthropod databases. Colors
indicate status of ortholog in the assembly. B. Venn diagram of missing arthropod BUSCOs for
three Daphnia assemblies. Seven of the 13 missing BUSCOs in D. pulicaria assemblies were not

present in the PA42 reference genome used for assembly.
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Figure 1.3: BlobPlots Indicate Low Levels of Contaminant Phyla in BA411 and W16 Draft Reference-Guided
Assemblies. Coverage by GC content scatterplots (BlobPlot) accompanied by read coverage plots for A. BA-411
and B. WI-6 draft assemblies. BlobPlots: The circles are the sequences, with sequence length proportional to circle
diameter. The legend indicates each phyla represented with count, total span and N50 for each taxonomic rank in
parentheses. Only a small number of sequences used in BLASTx analysis against the NCBI non-redundant protein
database hit to phyla (19) other than the target Arthropoda. BarPlots: The grey bars represent the proportion of
unmapped and mapped reads from libraries. Color bars represent the mapped proportion by taxonomic rank (phyla);

an inset is included for viewing taxa present at low proportions.
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FastQ Screen results (Supplementary Figure 1.1) corroborate the BlobTools
analysis with a majority of the read subset mapping to the PA42 library. A portion of the
read subsets (19-30%) mapped at low, non-specific levels or did not map at all to the
other species and sequences included in the search library. This suggest that the
appropriate search genome was not included, and it is likely that these reads may be
unique to D. pulicaria or that a completely unexpected contaminate is present.

To gain a preliminary perspective on genetic distance between the two draft
assemblies and the PA42 reference, we used sourmash. Distance estimates range from
zero, being completely divergent to one, being completely identical. The assemblies from
the D. pulicaria strains BA-411 and WI-6 had a computed distance of 0.90. This result is
intuitive, as these are two strains of the same Daphnia species. BA-411 and WI-6 had
very similar distance estimates for PA42 comparisons, with estimates of 0.73 for BA-411
and 0.74 for WI-6 (Supplementary Figure 1.2). These results corroborate the slight
increase in gene content and PA42 scaffold coverage obtained from BUSCO analysis and

mapping statistics for WI-6.

CONCLUSION

Daphnia species have long been studied in the context of ecology, evolution, and
applied research. Here we present draft genome assemblies for two strains of Daphnia
that vary in their tolerance to cyanobacteria. Algal blooms, characterized by an
overgrowth (bloom) of cyanobacteria, are detrimental to the health of aquatic and

terrestrial members of freshwater ecosystems. Population expansion of cyanobacteria is
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caused by eutrophication, or the overloading of nutrients (e.g., phosphorus and nitrogen)
in lakes, ponds and rivers, and is accelerated by increasing temperatures (Carpenter 2005;
Schmale et al. 2019). From an economic perspective, algal blooms decrease water
quality due to decreases in available oxygen and increases in toxic metabolites produced
by cyanobacteria that result in product losses in fisheries, and toxification of water
sources used by wild, domestic, and human populations for consumption and aquatic
recreation (Anderson et al. 2002; Schmale et al. 2019). Microcystis aeruginosa is a
highly toxic, cosmopolitan species of cyanobacteria that may produce metabolites called
microcystins, compounds demonstrated to have significant hepatotoxic and tumorigenic
effects (Paerl et al. 2001). Keeping levels of these damaging algal blooms in check is a
particularly important and active branch of ecological research. Methods proposed for
managing cyanobacteria include reducing the introduction of extraneous nutrients often
from human runoff, the introduction of herbicide, and biomanipulation, or the
manipulation of trophic levels to control cyanobacteria populations. Introducing toxin-
tolerant Daphnia pulicaria has been shown to repeatedly lead to significant reductions of
total algal biomass, including cyanobacteria, in limnocorral experiments (Wilson and
Chislock 2013; Chislock et al. 2019a, 2019b).

In addition to understanding D. pulicaria’s top-down regulation of algal biomass
through mesocosm experiments, we are building resources to understand the genetic
mechanisms and associations of toxic prey resistance observed in this species with these
draft assemblies. Genomic resources are key components to deepening our understanding

of the contributions of genetic background on strain-specific responses to toxic algal
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blooms and other environmental stressors. These resources can be used for understanding
the transcriptomic responses to toxins (Asselman et al. 2012; Orsini et al. 2016; Giraudo
et al. 2017), identifying sequence variants under positive selection across the genome
(Bourgeois et al. 2017; Schwarzenberger et al. 2020), and comparative analysis across
other Daphnia species (Ravindran et al. 2019). In this way, these genomic resources
provide a promising avenue for future research as the effects of urbanization and global
climate change continue to exacerbate the severity of these toxic algal blooms over time

(Carpenter 2005; Schmale et al. 2019).

These are reference-based D. pulicaria draft genome assemblies. In this study,
14-25% of the reads did not map to D. pulex PA42 genome assembly in our mapping.
Similar to the read mapping percentages reported here (75-86%), Lack et al. (2018)
produced sequencing libraries for pooled and individual D. pulicaria adults and ephippia
and reported an average of ~72% mapping success to the TCO reference genome across
11 libraries (Lack et al. 2018). This indicates room for improvement in our assemblies.
The data presented here are short-read sequences (150 bp paired-end). Future analyses
should include long-read sequence data appropriate for de novo assembly that could
recover the unmapped regions, improve scaffolds presented here, identify novel D.
pulicaria scaffolds and chromosomal rearrangements to resolve conflicts in genetic
structure between D. pulex and D. pulicaria genomes. Even with the aforementioned
caveats of the two D. pulicaria genome assemblies we present, these assemblies contain
very low levels of contamination, and high levels of genic content with more than 95% of

complete universal arthropod and eukaryote orthologs found in these assemblies. This
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work contributes quality reference-guided assemblies for two strains, one tolerant and one
sensitive, of D. pulicaria that can be useful resources in linking candidate genes involved
in ecologically relevant trait divergence, such as the evolution of dietary tolerance to

toxic cyanobacteria, that impact freshwater communities and ecosystems.
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Table 1.1. A table of statistics from reference-guided assemblies for Daphnia pulicaria. Mapping and base calling statistics for D. pulicaria

sequencing libraries from this study.

GDNA

CONC. READS READS % READS MEAN  CALLED PA42 Mb SRA
LOCATION LIBRARY [ng/ml] GENERATED  MAPPED MAPPED DEPTH SITES N’s COVERED  ACCESSION
Bassett Lake USD16091408 28 54849146 47627534 86.83 33.55 2923235 28692854 140 SRR14023941
Wintergreen Lake USD16091409 21.6 56113536 42293065 75.37 29.46 3070431 27250307 141 SRR14023940
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CHAPTER 2:

Comparison of 18 common RNA-seq pipelines for differential gene expression analysis:

from mapping to functional pathway enrichment

Keywords: RNA-Seq, Differentially expressed genes; Functional genomics,

This work will contribute to three manuscripts in preparation:

Clark, AD, S Seungyeon, M Khan, B Sipley, A Pokhrel, R Telemeco, D Waites, C
Ugochukwu, S Tansie, TS Schwartz. Comparison of 18 common RNA-seq pipelines
for differential gene expression analysis: from mapping to functional pathway

enrichment.

Schwartz, TS, AD Clark, P Pearson, J Roberts, J Dawson, DB Allison, J Gohlke. Genetic
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INTRODUCTION

Characterizing transcriptional profiles generated in response to a range of
conditions, treatments, timepoints, and other biologically relevant states by sequencing
cDNA reverse transcribed from mRNA (RNA-sequencing or RNA-seq) is now a standard
molecular practice. Often the end goal for generating transcriptional profiles across these
states is to test for differential gene expression among groups (e.g. drug treatments,
environmental stressors, disease states, etc.) to understand the biological functions that
underly the phenotypic differences between the groups. Concomitant with the steady
decrease in costs of high throughput sequencing, we have increasingly generated
observations of the nature of RNA-seq data across the Tree of Life and we have
developed a variety of methods to handle the complex nature of these multi-dimensional
data (Conesa et al. 2016; Koch et al. 2018). This creates a challenge in understanding
which methods to use for analysis, the degree to which these choices matter for biological
interpretation, and how to train students to effectively conduct these analyses.

The classic RNA-seq analysis for the purpose of testing for differential gene
expression consists of the steps outlined in Figure 2.1. Briefly, raw sequencing reads are
aligned (mapped) to targeted genomic loci, most often genome assemblies and/or
transcripts, to obtain the number of reads sequenced (counts) from mRNA that were
transcribed from those loci, followed by gene-wise tests for statistically differential gene
expression between samples structured by groups of comparative interest and normalized
for technical and inherent biological variation. Frequently in the absence of a priori

expectations of which genes will be differentially expressed, the next step is testing for
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the enrichment of functional pathways amongst the top differentially expressed genes
(Kukurba and Montgomery 2015; Stark et al. 2019). Although RNA-seq methods have
become a standard practice for quantifying gene expression, analysis of these data is
considerably variable, with new programs continually being developed to improve read
mapping and counting, statistical models, and model assumptions employed during
differential gene expression (DGE) analysis. Mixing and matching the programs across
these steps can produce hundreds of potential pipelines. This leaves researchers a plethora
of decisions to make about the appropriate programs for their dataset at each step of the
analysis and, importantly, the degree to which the choice of the programs at each of steps
matters in the context of the biological interpretation of the experiment.

Systematic comparisons of programs at individual steps have been carried out by
several other researchers and the authors creating them, with the purpose of
benchmarking their new algorithms with existing ones as a demonstration of similar or
better performance (Engstrom et al. 2013; Soneson and Delorenzi 2013; Love et al. 2014;
Seyednasrollah et al. 2015; Baruzzo et al. 2017; Abrams et al. 2019). Srivastava et al
(2020) recently compared alignment-based and alignment-free methods using mouse data
to understand variation in tools aligning to the genome, the transcriptome or
pseudoaligning to the transcriptome. Their work also identified shortcomings with using
simulated data in benchmarking RNA-seq pipeline tools. Simulated reads lack natural
variation that exists between a transcriptome and the reads aligned to that transcriptome
during quantification. They also lack the of complexities of real read libraries which have
more variation in composition (e.g., alternative splicing, intronic or intergenic

sequences). Previous studies with simulated data were not able to fully capture some of
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the impactful effects of spurious mappings produced by different alignment methods that
propagated to downstream quantification and detection of differentially expressed genes
(DEGs) (Srivastava et al. 2020). RNA-seq analysis pipeline comparisons at the step of
alignment programs have also been made using a highly polymorphic species.
Schaarschmidt et al. (2021) compared two accessions of the plant model, Arabidopsis
thalania, in ambient (20°C) and cold (4°C) conditions and found small differences in
mappability across aligners, high similarity in raw read counts across all aligners &
pseudoaligners (Schaarschmidt et al. 2020). There was more variability (92 — 98%) in
similarity between programs used in the detection of differentially expressed genes
(DEGS), specifically when comparing DEG results between the program DESeqg2 (Love
et al. 2014) and CLC (Qiagen). More complex, multi-step comparisons of full pipelines,
from aligners to DGE programs, have been done with cancer cell line responses to two
different therapeutic drugs in Corchete et al. (2020). Their work tested all possible
combinations of 3 trimmers, 5 aligners, 6 counters, 3 pseudoaligners, 8 normalization
methods, and 17 DGE programs for the best ranked pipelines. This ranking was based on
a combination of precision and accuracy relative to gold-standard gRT-PCR expression
data (Ct) for a subset of genes ubiquitously expressed across healthy, control samples.
While their work found variation in precision and accuracy across methods at each step
of analysis, the largest, statistically significant differences were found in counting and
normalization methods (Corchete et al. 2020).

These invaluable studies have aided in our understanding of the effects of
different algorithms and assumptions implemented in programs used at different steps of

RNA-seq analysis, with some estimations of accuracy and precision when gRT-PCR data
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could be generated. Still, there have been limited comparisons that span alignment to
functional pathway enrichment for biological interpretation to determine if, at the end of
the analyses, there would be similar (or very different) biological conclusions based on
which turn in the pipeline maze an investigator has made. In the interest of bringing these
underlying technical conclusions about variation in pipeline tools back to the ultimate
perspective of biological interpretation, we quantify similarities in functional enrichment,
mapping, counting, and DGE results from combinations of 2 aligners, 2 counters, 2
pseudoaligners, 3 DGE normalization and detection programs, and one final program for
functional enrichment, for a total of 18 bioinformatics pipelines.

In contrasting these 18 bioinformatics pipelines for similarities in biological
interpretation, we are also addressing a fundamentally important biological question on
how caloric restriction extends lifespan using a non-model organism relevant in
ecotoxicology and evolution, Daphnia pulex. Caloric restriction has been shown to
increase lifespan across the animal kingdom, from yeast to rodents (Osborne et al. 1917;
Anderson and Weindruch 2010). We propose Daphnia as a complementary model for
understanding variation in lifespan due to caloric restriction from both an evolutionary
perspective and in its ability to translate results from laboratory and natural populations.
Daphnia are short lived (median 1 mo.) and have a similar mortality curve as mammals
(Jones et al. 2014). Their genome is stable due to their clonality, and their relatively small
genomes are more similar to humans than Drosophila or Xenopus (Colbourne et al.
2011b).

Thus, the goals of this chapter are 3-fold. We aim to answer the following

questions: (1) How do different pipelines vary in the final functional/biological
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interpretations made? (2) What biological pathways are affected by caloric restriction in
Daphnia pulex? Lastly, we aim to develop reproducible, open-source code available via
GitHub along with tutorials for instructors that will be used for teaching RNA-seq

analysis.

MATERIALS & METHODS

The phenotypic experiment and resulting RNA-sequencing was conducted by Tonia
Schwartz at University of Alabama at Birmingham in 2014 and will briefly be described
here to provide the appropriate background information for the RNA-seq analysis herein.
The RNA-seq data analysis and biological interpretation was conducted by Amanda

Clark at Auburn University.

Caloric Restriction Experiment

The experiment that generated these RNA-seq data was performed in 2014 and
used a strain of Daphnia pulex maintained in Dr. Julia Gohlke’s laboratory at University
of Alabama at Birmingham since 2011. Daphnia were maintained in COMBO media and
fed RGcomplete [Reed Mariculture], which is a blend of four microalgae (1.5 — 15 pc).
The diet treatments and media used in this experiment were defined in Schwartz et al.
(2016): C-treatment represents the caloric restriction treatment with 98 ul of
RGcomplete per liter of COMBO media, and the E-treatment represents the ad libitum
treatment with 300 pl of algae per liter of COMBO media. Populations were maintained

at the high food concentration (E treatment) for two generations prior to the third
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generation of neonates being randomly assigned into either C or E populations. Each
treatment had eight populations (1 liter beaker) of 20 individuals with 50 ml of
media/individual.

To provide insight into the gene regulatory mechanisms associated with the
extension of lifespan in response to caloric restriction in Daphnia, animals were collected
from C and E populations at 23 days of age for transcriptomic analysis using RNA-seq.
For each diet treatment, 5 populations were randomly sampled for 3 individuals. The
five samples from each treatment were dissected to remove offspring from their brooding
pouches and immersed in RNAlater [Qiagen] for two days at 4°C before RNA isolation
(n=10 samples each with 3 individuals). Daphnia were removed from the RNAlater,
quickly rinsed in water, and snap frozen in liquid nitrogen in a 1.5ml tube for
homogenization by pestle. Total RNA was isolated using the RNeasy Mini Kit [Qiagen]
with DNA digestion on the membrane.

Library Preparation and RNA-seq Sequencing

RNA samples were sent to the Heflin Genomic Center at University of Alabama
for sequencing using the Illumina HiSeq2500 (Illumina, San Diego, CA) and the Agilent
SureSelect Stranded library preparation kit (Agilent Technologies, Santa Clara, CA).
Quality and quantity of RNA were determined on the Bioanalyzer. 100ng of total RNA
was subjected to two rounds of poly A+ selection using oligo dT magnetic beads.
Following purification, the mRNA was randomly fragmented, and first strand cDNA
synthesis was done in the presence of random hexamers and 2.4ng/uL (final

concentration) of Actinomycin D using standard techniques. First strand cDNA was
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purified by magnetic bead (Omega Bio-Tek, Norcross, GA) prior to second strand
synthesis. After second strand synthesis was complete the cDNA was adenylated and
used in a ligation reaction to add primary adaptors. Final libraries were purified by
magnetic beads, quantitated using the KAPA SYBR FAST gPCR kit (KapaBiosystems,
Woburn, MA) on the Roche LightCycler 480 (Roche, Indianapolis, IN) and assessed for
quality on the High Sensitivity DNA chip for the Agilent BioAnalyzer (Agilent
Technologies, Santa Clara, CA). Sequencing libraries were mixed to equal molar
amounts and run on the HiSeq2500 using a Rapid Run flow cell with paired end 100bp
sequencing reads. Following completion of the run the .bcl files were converted to
FASTQ file format using BCL2FASTQ 1.8.4 from Illumina. Libraries were sequenced
(100 bp paired-end) on a single rapid run flow cell on the Illumina HiSeq 2500, with the
10 libraries split among two lanes (5 libraries multiplexed per lane). Data were submitted

to NCBI SRA database under Bioproject PRINA437447.

RNA-seq Analysis Tools by Step

Here we briefly describe the tools being compared at each step in a typical RNA-
seq analysis pipeline. The tools are illustrated in Figure 2.1 and descriptions, versions,
and associated parameters used in the bioinformatic pipelines are listed in Table 2.1.

Quality Assessment & Trimming

For these analyses, raw reads were downloaded with SRA Toolkit (SRA Toolkit
Development Team) from NCBI (bioproject number: PRINA437447). Quality of the

reads were assessed using FastQC (Babraham Bioinformatics) (Andrews, Simon 2010).
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Reads were trimmed and filtered using paired-end parameters in Trimmomatic (Bolger et
al. 2014). The first ten base pairs and reads with a quality cutoff of below 30 were
removed. Reads below the minimum length of 36 base pairs were removed and quality
was assessed again using FastQC. Around 10% of reads were removed from the raw data
and high quality was reported across the samples.

Alignment Programs

Two genome-based alignment methods, Hisat2 (Kim et al. 2019) and STAR
(Dobin et al. 2013) were used to map trimmed reads to the PA42 Daphnia pulex genome
as a reference genome (Ye et al. 2017). Annotation information (GTF) was provided to
both aligners during index generation to take advantage of spliced aligners for mapping to
a genome. Parameter specifics and tool descriptions are outlined in Table 2.1.

Pseudoalignment Programs

Recently, tools have been developed for rapid quantification of transcripts that do
not generate full read alignments and combines mapping, counting, and normalization
steps in a single program. Here we use two well-known quasi-mapping RNA-seq
quantification programs, Salmon (Patro et al. 2017) and Kallisto (Bray et al. 2016).
Parameter specifics and tool descriptions are outlined in Table 2.1.

Counting & Gene-Level Count Estimation Programs

For pipelines starting with traditional aligners, two programs, StringTie (Pertea et
al. 2015) and HTSeq (Anders et al. 2015), were used to quantify reads overlapping

targeted genomic loci, specifically genes. HTSeq-count automatically generates gene-
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level abundance estimates by counting reads assigned to a feature. Pseudoaligners and
pipelines using StringTie estimate individual transcript abundance, therefore the R
package tximport (Soneson et al. 2016) was used to estimate gene-level abundance from
transcript abundance. Parameter specifics and tool descriptions are outlined in Table 2.1.

All remaining analyses were carried out in R, where packages were obtained
from CRAN unless specified as Bioconductor packages.

Pre-filtering Low and No-Expression Genes

In the interest of maintaining our systematic approach to pipeline comparison, we
pre-filtered genes based on having low gene-level count estimates from all pipelines and
disabled any downstream filtering within individual DGE analysis programs. Three
filtering approaches were used to remove no and low count genes with the intent of
increasing power to detect DEGs by reducing the number of statistical tests (Bourgon et
al. 2010). First, counts from each pipeline were filtered individually, removing any gene
with zero counts in 6 or more of the 10 samples and any gene with less than 21 counts
across all samples. These datasets were labeled “pipeline filtered.” The other two
filtering methods standardize the number of genes going into downstream analyses while
using the previous filtering logic. Specifically, genes that would be filtered from any of
the pipelines were removed from all pipelines (compilation), and generated datasets
labeled “hard filtered” or genes that would be filtered from all pipelines (intersection)
were removed from all pipelines and generated datasets labeled “soft_filtered.” We report
results across filtering methods for select analyses, and others we prioritize the results

from a single method for more relevant interpretation and application.
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Differential Gene Expression (DGE) Programs

We use three different programs for DGE analysis with different methods of
normalization and modeling approaches. We outline parameters and commands used
during analyses for each program below but see Table 2.1 for parameter specifics and
tool descriptions not discussed herein.

DESeqg2

All default parameters were used apart from the parameters to filter lowly

expressed genes, which were not used. minReplicatesForReplace, this parameter is used

to denote the minimum number of replicates required to replace outliers in a sample

which was set to “Inf” to never replace outliers. independentFiltering, DESeq2 package

performs independent filtering of count data by default using mean of normalized counts.

Since our gene count data was prefiltered we disabled this option (independentFiltering, =

FALSE). “cooksCutoff” is used to set threshold to define outlier to be replaced. DESeq2
automatically flags the genes which have Cook’s distance above a cutoff for samples that
have 2 or more replicates. Since our data was prefiltered we disabled this option

(cooksCutoff = FALSE).

EdgeR

We created a DGEL.ist object to store gene-level counts and hold associated
metadata using EdgeR (Robinson et al. 2010), grouping our gene count data based on
treatment. We then normalized within/between samples using the (default) trimmed mean

of M-values (TMM) method within the function “calcNormFactors.” Next, we estimated
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tagwise dispersion using “estimateTagwis eDisp” and performed an exact test to compare
the ad lib and caloric restricted groups using default settings. Finally, we extracted
significantly differentially expressed genes using the “topTags” function, keeping only
the genes with FDR below 0.05. We did not perform any additional filtering using
EdgeR.

Limma-Voom

We created a DGEL st object to store gene-level counts and hold associated
metadata using EdgeR, grouping our gene count data based on treatment. We then

calculated normalization factors using the function calcNormFactors(DGEL ist,

method="TMM”) as with the EdgeR analysis. We specified the model using treatment as

the predictor variable. Using the model residuals, voom (Law et al. 2014) estimates
variance weights on a per observation basis (gene and sample-wise) using transformed
counts with the normalization factors calculated in EdgeR. These variance weights are
used with transformed counts in the standard linear models in Limma (Ritchie et al.
2015).

Pathway Analysis Program

Gene Set Enrichment Analysis (GSEA) was implemented in the fgsea package
using pre-ranked gene generated for all pipelines (Korotkevich et al. 2021). Output tables
from all DE programs included (1) p-values from t-tests of differential expression
between treatments, (2) effects sizes and direction reported in log fold-change, and (3)
adjusted p-values estimated using Benjamini-Hochberg false-discovery rate correction for

multiple hypothesis testing across genes for each gene ID. Gene ranks were calculated as
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the signed logio p-value (sign of the effect size * - logio of the p-value) before use in
fgsea, where sign indicated upregulation (+) or downregulation (-) in the caloric
restriction group relative to the ad lib fed group (Plaisier et al. 2010; Reimand et al.
2019). The hallmark gene sets from the Molecular Signatures Database (MSigDB) were
used in these analyses (Liberzon et al. 2015). An FDR for significant enrichment of a
gene set was set to 0.25 to identify pathways that would be of interest from a “discovery”
approach.

Pipeline Contrasts and Statistical Tests

We compare pipelines in multiple ways to understand the relative contributions of
each program to the variance between analysis results. We compare the amount of
uniquely mapped and unmapped reads between aligners for all samples to estimate the
mappability of each read library. We estimate the similarity of raw count matrices
(capturing variation due to aligner/counter combinations) using Spearman correlations in
scatter matrices per sample using the GGally package. Rv coefficients, which are
Pearson’s correlations generalized for matrices (Josse and Holmes 2016), were calculated
for transformed, raw and soft_filtered count matrices in pairwise pipeline combinations
using FactoMineR and visualized with a heatmap generated with the Bioconductor
package ComplexHeatmap.

We assessed the relative contribution to variance in the number of biologically
and statistically relevant DEGs for different steps of RNA-seq analysis using two linear
models. We specify the response variable as the number of DEGs that had an FDR less

than 0.05 (statistical relevance) and had logz fold change greater than or equal to an
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absolute value of 2 (biological relevance). Our models tested whether, quantification
(aligner and counter) and/or DGE program predicted our response variable. Described
here is our final model, however we validated the superior fit of the model over
generalized linear models (Poisson and negative binomial distributions) using Akaike’s
Information Criterion (AIC) comparison. For each model, variance partitioning was
performed using the Anova function in the car package. Estimated marginal means and
contrasts for post hoc analyses (tukey’s adjustment) were performed using the emmeans
package, but the marginal effects were visualized using the ggeffects package. In our first
model, we explore the predictors of DGE program and the combination of aligner &
counter programs as a single, second variable. This allows for the comparison of
pseudoaligners, which perform both steps, with the other quantification combinations of
aligners and counters. Our second model uses aligners, counters, and DGE programs as
predictor variables, and excludes data from pseudoaligners so that we can estimate the
effects of aligner and counter, separately. We estimate the similarity of biologically and
statistically significant DEG lists across pipelines visualizing gene set intersections with
upset plots using UpsetR.

We planned to assess these same effects at the level of functional enrichment
analyses with the number of statistically significant (FDR less than 25%) enriched gene
sets as the response variable. Upon completing GSEA, 78% of the pipelines (across
filtering methods) did not return any pathway that fit our criteria. This was likely not
driven by the gene expression data, but more by the completeness of our annotation, so

we did not model these data.
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RESULTS & DISCUSSION

RNA-seq workflow:

We compare results from 18 RNA-seq pipelines using data generated from Daphnia in
caloric restricted or ad lib diet treatments. We use 6 combinations of different programs
for alignment and counting. We also tested 3 programs for DGE combined with the

normalization procedures available in their respective packages (Fig. 2.1).
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Figure 2.1: RNA-seq Pipelines for Differential Gene Expression Analysis Compared.

General RNA-seq analysis steps are on the left. At each step, the programs compared are in the center
boxes. Small arrows are indicative of possible paths through these analysis programs. Single programs
were used for Quality Assessment, Cleaning, and Functional Enrichment steps. Yellow and orange
boxes at the alignment step differentiate traditional aligners and pseudoaligners, respectively. This

figure was created with BioRender.com.
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Aligners

Mapping percentages averaged across all samples for Hisat2 (58.4%) were lower than
mapping percentages in STAR (67.97%) (Figure 2.2). These results are consistent with
previous findings from other researchers that report higher mapping percentages in
comparisons between these two alignment algorithms (Schaarschmidt et al. 2020; Musich
et al. 2021). Interestingly, when averaging across biological replicates for treatment
groups we see higher mapper percentages in control replicates (Hisat2 - 61.51%; STAR —
72.29%) than in diet restricted replicates (Hisat2 — 55.29%; STAR — 63.66%) across both
alignment algorithms. This could indicate differential isoform usage in response to the
caloric restriction treatment that is not annotated in our reference genome. This would not
be a farfetched conclusion as the current annotation has one representative transcript for

each gene feature.
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Figure 2.2: Mapping Statistics for Hisat2 and STAR aligners across samples.

Alignment data for the number of read pairs across alignment algorithms. This plot is faceted by
the statistic (total number, uniquely mapped, and unmapped reads). “Total” is the total number of
paired reads. “UniqueMap” are the number of read pairs that mapped to a single region of the
genome. “Unmapped” are reads pairs that did not map to a region of the genome. “ID” are
sample ideas from the caloric restriction experiment. IDs that begin with C are caloric restriction

replications. IDs that begin with E are ad lib replicates.
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Counting & Gene-Level Quantification

When contrasting aligners, we only compare Hisat2 and STAR because the two
pseudoaligners do not produce mapping statistics. Although you can get “pseudobams”
from Kallisto or use a different aligner prior to quantification in Salmon, we felt it would
not provide clean or independent comparisons of these tools with true alignment
algorithms. Considering this, we made comparisons at the level of quantification using 6
aligner/counter combinations. We find high correlations coefficients (0.946 — 0.982, all
p-values < 0.001) across the pipelines at this level of comparison (Figure 2.3).
Unsurprisingly, the lowest correlation coefficient of 0.946 was between a pseudoaligner
(Kallisto) and traditional aligner/counter (Hisat2-StringTie). The second lowest
correlation coefficient (0.948) was observed in the comparison between Hisat2-StringTie
and STAR-HTSeq combinations where both the aligner and counter varied.

At the upper range of the correlation coefficients, 0.982 (both aligners + StringTie), 0.981
(both aligners + Hisat2), and 0.970 (both pseudoaligners), we see that correlation

estimates are highest when the methods for counting are held constant.
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Figure 2.3: Raw count distributions (diagonal) and correlations across quantification methods
for 2 samples.

Scatter matrices for transformed raw counts (logz(raw counts +1)) for two samples (one from each
treatment) to visualize count distributions generated by these tools and correlation metrics. K and S
refer to the pseudoaligners Kallisto and Salmon. HS and HH refer to Hisat2 aligner and either
StringTie (HS) or HTSeq (HH) counters. SS and SH refer to STAR aligner and either StringTie (SS) or
HTSeq (SH) counters. The top triangle of the matrix are Spearman correlation estimates. *** indicate

p-values < 0.0001. Orange lines are loess fits to the scatter matrices in the lower triangle.
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These results were extended to a more quantitative comparison by calculating Rv
coefficients for count matrices between the 6 aligner/counter combinations. Rv
coefficients are metrics of similarity for matrices, where values of 0 indicates two
matrices are completely different and values of 1 indicate two matrices are the exact same
(Smilde et al. 2009). The Rv coefficients for the unfiltered data demonstrate high
similarity in our comparison across pipelines (aligner/counter combinations) with values
ranging from 0.907 — 0.977 (Figure 2.4). The high level of similarity, and the individual
relationships discussed in the scatter matrices are well-supported by these analyses and
extend relationships identified across all samples.

Differential Gene Expression

Count matrices from all 6 aligner/counter combinations were run in DESeq2,
EdgeR, and Limma-Voom for DGE detection in a comparison between caloric restricted
and ad lib treatment groups. Across the three approaches of pre-filtering low and no
expression genes, we see the same general pattern in the percent of statistically
significant DEGs (no Fold Change cut-off) detected for each pipeline. DESeq2 always
detects the highest amount (30.94 — 40.88%) of DEGs, followed by Limma-Voom (24.75
—30.17%), and lastly, the most stringent detection method, EdgeR (11.69 — 16.28%). We
added an additional filter for biologically significant changes in expression values by
filtering for DEGs with a logz fold change of the absolute value of 2 or more. These data

were used in the remaining analyses and are referred to as significant DEGs.
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Figure 2.4: High similarity between quantification methods across samples based on
Ry coefficients.

A heatmap of Ry coefficients indicating the level of similarity between raw count matrices
across samples. Colors correspond to the color legend on the top right, where 1 indicates
the matrices are the same, and zero (not shown) indicates matrices are completely
different. K and S refer to the pseudoaligners Kallisto and Salmon, HS and HH refer to
Hisat2 aligner and either StringTie (HS) or HTSeq (HH) counters, SS and SH refer to
STAR aligner and either StringTie (SS) or HTSeq (SH) counters. P-values of zero from

1000 permutations were reported for these values.
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We used a general linear model (Im) to test the relative effects of each step on the
number of significant DEGs. Although our response variable was count data, a Im
provided the best fit for our data compared to other count-based models.

Model 1: Effects of quantification and DGE programs on number of significant DEGs

Data for model 1 was analyzed separately for each pre-filtering method to avoid
committing pseudoreplication with data that naturally precedes filtering steps (i.e.,
quantification). Here, we summarize across models, but predominantly present figures
and tables from pipeline-specific filtering results in the main text and other methods in
the supplementary material (Appendix 1). A majority of the total variance (total sum of
squares, TSS) is explained by DGE program (73 — 83%; F 78.46 — 271.28; p < 0.001),
with another 15 - 22% (F 9.40 — 29.94; p < 0.001) being explained by quantification
method (aligner/counter) and the remaining 2 or 5% residual error (Table2.2).

Focusing on data generated with pipeline-specific filtering, we see the largest
(statistically significant) deviations from the grand mean due to quantification method
includes (i) Hisat2 or STAR with HTSeq pipelines exceeding the mean, and (ii) Hisat2
with StringTie pipelines being lower than the grand mean. Sum coded model summaries
with these results are displayed in Table 2.3 and plotted in Figure 2.5 and should be
interpreted as deviations from the grand mean of filtered DEG (intercept). This coding
seemed more intuitive to interpret the effects of the predictors, than comparing each level
of a predictor to the alphanumeric reference for that predictor. DESeg2 and EdgeR
pipelines had 76 and 21 fewer DEG than the grand mean, respectively. Limma-Voom
pipelines exceeded the grand mean with an average of 97 more DEG (not shown).

Although DESeq2 had the highest amount of DEG when filtering for statistical
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Figure 2.5. Plotted linear model 1 summaries from Table 2.3.

Model estimates are on the x-axis for three models (one from each pre-filtering approach). Shapes are
coefficient estimates for predictor variables (quantification and DGE programs) interpreted as average
differences from the grand mean, where values close to zero are close to the grand mean. Normal
distributions represent theoretical values around the mean estimates for each program or combination
of programs to visualize uncertainty. Hi & Sr are aligners Hisat2 and STAR. Ht & St are counters
HTSeq and StringTie. K & S are pseudoaligners Kallisto and Salmon; The added number 2 were for

coding purposes to indicate alignment and counting steps were carried out by the same program.
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significance only, adding a filter for differentially expressed genes with large
changes puts this pipeline in last place. In proportion to the larger number of significant
DEGs detected, DESeq?2 has the lowest amount of DEGs with large fold changes (~ 1/5
of DEGs at an FDR of 5%), which could be effect of this program’s dispersion estimation
and shrinkage methods, relative to EdgeR and Limma-Voom (Soneson and Delorenzi
2013). Lastly, pipelines with pseudomappers did not have statistically significant
deviations from the mean (Salmon -1.33 ; Kallisto 15; SE 6.90). Post hoc analysis with
emmeans identified 112 statistically significant (Tukey’s adjusted) pairwise mean
comparisons between combination of quantification and DGE programs that can be
explored in Table S2.1 for pipeline-specific filtered data (other filter methods can be
found in Tables S2.2 & S2.3). Overall patterns from these estimates demonstrate the
highest mean differences in number of predicted DEGs for pipelines being contrasted
with Limma-Voom and HTSeq pipelines which can be best visualized with plotted
adjusted predictions in Figure 2.6. These analyses demonstrate that a combination of
STAR and HTSeq with Limma-Voom for DGE detection report the most statistically
significant DEGs with moderate to high fold changes. While we see a larger proportion of
the variation in our sample being explained by DGE programs, we were not able to fully
decompose variation for both quantification steps (alignment and counting) and didn’t
have enough degrees of freedom to test for interactions with these data. Our second
model was generated to investigate this relationship and test for interactions between our

predictor variables.
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Figure 2.6: HTSeq and Limma-Voom increase the number of significant DEGs detected
across pre-filtering methods.

Plotted predicted (estimated marginal) means for Model 1 faceted by DGE detection method.
Coefficient estimates from Figure 2.5 added to the grand mean produce predicted mean humber of
DEGs for each combination of RNA-seq analysis programs. Lines extending from points represent
confidence intervals around the estimates. Results are paneled by pre-filtering approaches. See
Table 2.1 for program abbreviations; the added number 2 were for coding purposes to indicate

alignment and counting steps were carried out by the same program.
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Model 2: Effects of aligner, counter, and DGE programs on filtered DEGs

We exclude pseudoaligner pipelines from model 2 data, as discussed in the
methodology. Filtering methods were also analyzed separately for these data, and as with
previous results, we discuss broad summaries about all three methods and pipeline-
specific filtering results for relevance and applicability. Across pre-filtering methods, we
find that the variation due to quantification steps is largely attributed to the choice of
counter (18.6 — 31.41%; F 157.79 — 4349.92; p < 0.001), while aligner explains ~ 1% of
the variation in our sample (F 10.02 — 180.56; p < 0.025 or less). The ANOVA (Table
S2.2) recapitulated the importance of DGE program (62.99 — 77.5%; F 328.48 — 6117.31;
p < 0.001) and reported a significant interaction between counter and DGE programs
accounting for 1.5 — 4% of the total variation (F 8.95 — 125.12; p < 0.025). Model
summaries visualized in Figure 2.7 (see Table S2.3 for tabular output) recapitulate
relationships in our previous model for DGE programs where DESeg2 and EdgeR
pipelines had significant negative deviations from the overall mean and Limma-Voom
pipelines exceeding that of the mean across pipelines. Aligner choices cause an average
mean deviation of */- 9 genes for STAR and Hisat2 pipelines, respectively. Counter
choice causes deviations from the mean by a magnitude of ~ 45, meaning the mean of
HTSeq pipelines exceed the grand mean by 45 DEGSs. The positive deviation from the
mean when combining HTSeq with DESeq?2 was statistically significant, but the mean
deviation for combinations of HTSeq with Limma-Voom detecting ~133 more DEGs
than the overall mean was the largest deviation observed. These linear models provide

insight for how the number of significant genes with moderate to large expression change
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is influenced by different steps of DGE analysis, but it would be helpful to also look at

the overlap of these list to understand difference in DEG content.
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Figure 2.7. Plotted linear model 2 summaries from Table S2.3

Model estimates are on the x-axis for three models (one from each pre-filtering approach). Shapes are coefficient
estimates for predictor variables (quantification and DGE programs) interpreted as average differences from the
grand mean, where values close to zero are close to the grand mean. Normal distributions represent theoretical values
around the mean estimates for each program or combination of programs. Hi & Sr are aligners Hisat2 and STAR. Ht
& St are counters HTSeq and StringTie. K & S are pseudoaligners Kallisto and Salmon; The added number 2 were

for coding purposes to indicate alignment and counting steps were carried out by the same program.
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The highest levels of similarity was seen between pipelines containing EdgeR or
DESeq?2, particularly when the same quantification steps were used. Limma-\Voom
pipelines had moderate to high levels of similarity with each other and lower levels with
other DGE programs, but this could be an artifact of large differences in gene set sizes for
other pipelines relative to Limma-Voom. Upset plots show~85% of the possible overlap
(size of the smallest set in the comparisons) is shared within DESeqg2 and EdgeR
pipelines and 84% between them. Limma-Voom had just as much overlap within
pipelines as there was between pipelines using the other two methods. The higher levels
of variation within Limma-Voom pipelines could be an indication of the robustness of
this model across quantification methods, particularly the interaction with the counter
algorithm preceding it. These visualizations also reflect our model where pipelines with
Limma-Voom consistently produce more filtered DEGs relative to the mean (gene set
size in Upset plots — Figure 2.8; Tables 2.3 & S2.3). DESeq2 and EdgeR pipelines both
shared a 71% overlap with Limma-Voom pipelines with 172 or 148 Limma-Voom
specific genes, respectively. In DESeg2 and EdgeR comparisons, unique genes were few
(12 in EdgeR) to non-existent, further highlighting the similarity between these two
methods. These relationships are maintained across filtering methods (Figure 2.8; Figures

S2.5-S2.6).
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Together, these analyses explore the variation in the number of significant,
moderate to large effect DEGs (fold change of 4; FDR 5%) due to the analysis steps used
to produce them. Overall, we find high similarity among quantification methods with
similarity estimates at 91% or higher across methods. This agrees with previous work
done in Schaarschmidt et al. (2021) who found high levels of similarity across 7 aligners
and in Corchete et al. (2021) (Schaarschmidt et al. 2020; Corchete et al. 2020). The
effects of these programs are dependent upon the type of RNA-analysis being performed.
Work done by Wu et al. (2018) aligns with the relationships identified here and in other
comparisons, but only in longer RNA molecules. Kallisto and Salmon performed poorly
for lowly expressed and small genes due to SNPs (Wu et al. 2018). This work is one of
many that highlights the importance of context in expression analysis as performance
results may not hold for all types of RNA-seq analyses or at all levels of expression. Our
findings were all in the context of gene-level expression analyses, and seemingly do not
agree with Srivastava et al. (2020) who found more variability between traditional
aligners and alignment free methods in transcript-level expression analyses (Srivastava et
al. 2020). DGE and counting programs were the largest sources of variation and they
interacted strongly with each other. The mean number of DEG for Limma-Voom
pipelines had the most extensive differences, greatly exceeding the mean across all
pipelines, and had the lowest levels of similarity when compared to pipelines with
DESeq?2 or EdgeR. In contrast, DESeq2 and EdgeR pipelines were usually below the
overall mean, but these differences were lower for EdgeR and were much closer to the

overall mean. The high levels of similarity between DESeq2 and EdgeR were quite clear
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across data analyses, corroborating previous findings, due to the shared underlying count
model between these methods (Soneson and Delorenzi 2013; Seyednasrollah et al. 2015).

Normalization, parameter shrinking, and count modeling methods are the main
components of DGE programs. These steps are performed similarly in DESeg2 and
EdgeR, but very differently in Limma-Voom. Limma-Voom uses a log-normal
distribution to model counts and makes calculations using geometric means, while the
other two algorithms use a negative binomial distribution to model counts and performs
calculations with raw (normalized) counts (Robinson et al. 2010; Law et al. 2014; Love
et al. 2014). Negative bionomial models are generally better suited for modeling count
data and are easier to interpret contextually, but often come with higher Type | error
rates. Many statisticians advise researchers to prioritize the model that best fit the data
and worry about things that can be corrected (i.e., false positives) secondarily. Yet they
still circle back to the fact that all models are incorrect and linear models have their
benefits (i.e., robust, good false positive control) particularly in statistically complex
model (Warton et al. 2016). While it is pertinent to understand the effects of the
underlying algorithms used, it is important to discuss these differences in terms of the
interpretations made from them. Although there were significant differences in means for
many pipeline combinations, exploring DEG list content across pipelines revealed a
minimum of 71% overlap (Limma-Voom with other DGE programs) and a maximum of
84% overlap (EdgeR with DESeq2). The list contents were largely shared across all
pipelines intersected, suggesting that overall differences of analysis steps are mitigated
and balance out to produce highly similar DEG lists. Studies that could estimate

precision and accuracy report Limma-Voom DEGs in high agreement gRT-PCR
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expression analyses. This contrasts with DESeq2 and the most basic EdgeR model,
which fall close to the bottom of the ranking (Corchete et al. 2020). While we do not
explore these metrics here, we do find the largest set of hypotheses generating DEGs
with Limma-Voom pipelines. Next, we explore how the variation in filtered DEGs from
our pipelines influence biological conclusions drawn from gene set enrichment analyses.

Pathway Analysis

After DGE analysis, we analyzed our 18 pipelines in the R package fgsea for
functional gene set enrichment analysis. Across pre-filtering methods, over half of the
pipelines (78%) have no statistically significant enriched gene sets. While we have
previously reported results primarily in the context of pipeline-specific filtered data, we
will focus on hard filtered data. Of the 16,612 genes in our annotation, only ~4,000 gene
names map the gene IDs, which is necessary for gene set enrichment analyses. FDR was
set at 25%, as suggested by the GSEA documentation for hypothesis generating
exploration of the data set. The pipelines that report a statistically significant enriched
gene set are those using EdgeR or Limma-Voom for DGE detection. All report the same
result hallmark gene set as being overrepresented by genes upregulated in the food
restricted group, Xenobiotic Metabolism.

Xenobiotic metabolism refers to the detection and breakdown of exogenous
chemicals (i.e., plant compounds, drug, cosmetics) that may or may not be considered
toxins but are metabolized and excreted from the body (Johnson et al. 2012).
Interestingly, the same nuclear receptors that respond to xenobiotic compounds also

respond to endobiotic compounds, particularly lipids. This has been documented in
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humans, flies, and several other arthropods including our organism of interest, D. pulex.
Specifically, HR96, a xeno- and endobiotic nuclear receptor, and its orthologs are
involved in toxicant response and cholesterol homeostasis. Unsaturated fatty acids are
also common regulators (mostly activators) of receptor genes in xenobiotic metabolism.
Xenobiotic metabolism genes also regulate stress responses including responses to
starvation (Karimullina et al. 2012). Daphnia tend to maintain higher levels of
unsaturated fatty acids relative to the content in their diet and will sequester these lipids
when they are starving, or their food quality is poor (Brett et al. 2006). This is a
confirmatory result of the caloric restriction treatment and may indicate that Daphnia
metabolize stored unsaturated fatty acids during periods of food restriction or poor diet. A
quick look at the leading-edge genes supporting this pathway as enriched include genes
related to transcription factors involve in lipid metabolism and toxicity (ABCD2) and
genes that are recognized from cellular metabolism pathways (FBP1, IDH1, MTHFD1).
The lipid metabolism pathways are documented to be active during periods of acute
starvation after carbohydrate stores are depleted (Campos et al. 2021). Lipids are more
slowly metabolized, balanced by the metabolism of intermediates such as glycerol (from
lipolysis) and acetyl-CoA (from glycolysis) for energy generation (Klumpen et al. 2021).
These mechanisms are less understood in the context of chronic starvation stress induced
in our experiment. These results should be interpreted gingerly because 75% of gene IDs
in our annotation lack gene names and restricts GSEA analyses to a much smaller gene

subset to make interpretations from.

FUTURE DIRECTIONS & CONCLUSIONS
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Annotation quality and completeness is extremely important in RNA-seq analyses
to infer the biological pathways that are being affected by treatments, as we can see from
the limitations in GSEA applied to these data. This resource is also important to the
overall DGE analysis procedures because the annotation is responsible for identifying
features that reads are mapping to. This highlights the need for the ecological and
evolutionary biology communities to “take a page from the book of model organism
research” and begin building infrastructure for non-model omics resources widely
available to the community that represents the biodiversity we love and explore in our
research. In future analyses, we will explore the consensus of biological interpretation
across DGE pipelines in different non-model data sets with more complete, higher quality
genome annotations used by our lab group (e.g., garter snake, fence lizard (Westfall et al.
2021)). We use the default models and procedures for these comparisons, but the DGE
programs we applied all have different normalization and modeling methods that have
been added to accommodate other RNA-seq data profiles. Many of these modifications
do require the user to have a strong understanding of the underlying models, the
parameters, and how to assess model fit, which is not an inherent skillset for many
biologist and budding researchers interested in applying these methods in their
investigations. As more RNA-seq data is produced across more systems, we expect that
analysis algorithms will develop that are more robust and generalizable across

experimental designs and species.

Our analyses were designed from the perspective of biologists with limited

experience with statistical modeling and omics data to understand how the decisions (i.e.,
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analysis program choice, filtering methods) and resources (i.e., annotation) involved in
DGE analysis change the overall biological interpretations that are driving the
investigations. We recapitulate findings from previous researchers on the relatively
miniscule importance of mapping strategy, moderate importance of counter choice, and
high importance of normalization and count modeling methods in DGE analysis. Yet, we
find that even considering these effects, and the caveats of our data, we recover the same
pathways across pipelines (even ones that lack statistical significance) with a treatment
relevant pathway at the top of these lists, suggesting the specific choice of the programs
at any one of these steps may not matter as much in the context of the biological
interpretations of the experiment. We did not test precision and accuracy for these data,
so our conclusions are not in the context of the best model and pipelines to use. We do
conclude that researchers interested in obtaining the maximum number of significant
DEGs should use a combination of STAR for alignment, HTSeq for counting, and
Limma-Voom for DGE analysis. We would like to remind individuals that these
pipelines are not “black box” solutions to RNA-seq analyses but are starting places to
learn how to perform classic control-treatment RNA-seq and DGE analyses. Users are

advised to explore other settings, parameters, and programs that are best for their data set.

Finally, we aim for the code generated to test these pipelines to be useful for
instructors to teach upper-level undergraduate and graduate students to perform RNA-seq
analysis. We intend for this code to allow users to focus more on the conceptual
background and biological interpretation for these types of data and less on how to script

it. We make this code available on GitHub in a modular format with the appropriate
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background information and helpful online resources to enrich learning. These code
products are useful as a self-paced tutorial, or modules incorporated into genetics or
functional genomics curriculum. As an example, these resources will be integrated into
the Functional Genomics course at Auburn University in the format of a course-based
research experience (CRE) that allow students a hands-on learning experience with a
computationally tractable, publicly available dataset. Students will have the opportunity
to contrast methodologies, while working together to complete RNA-seq analysis from
alignment to biological interpretation. These analyses are relatively fast and can be easily
used with other publicly available datasets with control-treatment designs. We hope that
the computational biology and bioinformatics learning community and other readers find

these resources beneficial and informative.

Data Availability

All sequence data are available under the NCBI BioProject Accession PRINA437447.
Code used to perform the data analyses for this work can be found on GitHub
(https://github.com/Schwartz-Lab-at-Auburn/18_RNA-seq_Pipelines).
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Table 2.1: Pipeline Programs — Descriptions and Parameters Used Programs used throughout these analyses with their abbreviations when applicable,

a description provided by the program, the version used, and any parameters that deviated from the default/required parameters.

Program

Abbreviation

Description (Author Sourced)

Version

Parameters (Deviation from Defaults)

Aligners

Hisat2

Hi

“HISAT? is a fast and sensitive alignment program for
mapping next-generation sequencing reads (both DNA and
RNA) to a population of human genomes as well as to a
single reference genome. Based on an extension of BWT for
graphs, we designed and implemented a graph FM index

(GFM), an original approach and its first implementation.”

221

--rna-strandness RF [strandeness]

STAR

Sr

“Spliced Transcripts Alignment to a Reference (STAR)
software based on a previously undescribed RNA-seq
alignment algorithm that uses sequential maximum
mappable seed search in uncompressed suffix arrays

followed by seed clustering and stitching procedure.”

2.7.5

--genomeSAindexNbases 12 [Index
string size adjusted for reference

genome size]

--outStd SAM [output SAM to standard
out]
--readFilesCommand gunzip -c [read

compressed input]
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Counters

HTSeq Ht | “HTSeq is a Python package for analysis of high-throughput 0.9.1 | -s reverse [strandeness]
sequencing data. Given a file with aligned sequencing reads -m intersection-nonempty [the
and a list of genomic features, a common task is to count intersection of all non-empty overlap
how many reads map to each feature.” between a gene and a unique read]
StringTie St “StringTie is a fast and highly efficient assembler of RNA- 2.1.6 | --rf [strandedness]
Seq alignments into potential transcripts. It uses a novel -e [prevent novel transcripts]
network flow algorithm as well as an optional de novo -G [annotation]
assembly step to assemble and quantitate full-length -B [ballgown style output]
transcripts representing multiple splice variants for each
gene locus. Its input can include not only alignments of short
reads that can also be used by other transcript assemblers,
but also alignments of longer sequences that have been
assembled from those reads”
Pseudoaligners
Kallisto K (K2) “A tool to quantify RNA-seq data. The kallisto algorithm 1.5.1 | --rf-stranded [strandedness]

uses a pseudo alignment approach to speed up the alignment

procedure. The "pseudo alignment" approach can quantify
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reads without making actual alignments. Kallisto can handle
paired-end and single-end reads. It reports transcripts per

million mapped reads (TPM).”

Salmon SI (SI2) “Salmon is a tool for quantifying the expression of 0.46.2 | -1 Alautomatic library type detection;
transcripts using RNA-seq data. Salmon uses new algorithms detect strandedness]
(specifically, coupling the concept of quasi-mapping with a
tw