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Abstract 
 
 

Pathogen loading, specifically high Escherichia coli (E. coli) concentrations, is a major 
cause for poor surface water quality worldwide. Many rivers and streams are used recreationally, 
and contamination poses a communal health risk. This study focused on a mixed-use watershed 
with agricultural, urban, and rural areas that has a history of poor water quality in central 
Alabama. Our goal was to track fecal contamination within the watershed and determine if 
anthropogenic input played a significant role in E. coli loading. To test this, we collected water 
samples at nine sites and quantified E. coli, pharmaceutical and personal care products (PPCPs), 
major and minor metals, nutrients, and other water quality parameters over 6-months. We 
utilized the multi-proxy dataset with geospatial context to assess the relationships between land- 
use and water contamination. 

PPCPs were frequently detected over the recreational period, including acetaminophen 
(13% of samples), caffeine (50%), salicylic acid (25%), sucralose (38%), and Bisphenol A 
(13%). We found a strong, environmentally significant correlation between E. coli 
concentrations and the total concentration of all PPCPs (r = 0.5075; p-value = 0.0448) and the 
total number of compounds (r = 0.5339; p-value = 0.0331). Other significant variables that were 
correlated with E. coli included water temperature, pH, and average total phosphorous. Finally, 
the multiproxy data was interpreted in a geographic context to understand controls from land-use 
and the built environment. Sample sites were categorized into pristine, agricultural/rural 
development, and urban development and enrichment factors were calculated for each site. The 
agricultural/rural development sites had elevated total PPCP concentrations (3.58, 2.28, and 1.78 
ng/L) compared to the pristine site (1) which may be due to a high density of septic systems and 
low density of municipal sewer infrastructure in the region. Malfunctioning septic systems could 
contribute to the increased E. coli and PPCP in these areas and our combined results support that 
idea pointing to a significant anthropogenic loading of E. coli, particularly in agricultural/rural 
regions of the watershed. In a larger context, our results suggest that malfunctioning septic 
systems may play a largely unrecognized role in contamination of surface water in mixed land- 
use watersheds. 
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1. Introduction 
 

Fecal waste contamination is a threat to water quality and public health. Wastewater can 

include bacteria, protozoa, and viruses that could cause sickness (Naidoo and Olaniran, 2013). 

Diseases and sickness caused by fecal contamination is especially dangerous for young children, 

pregnant women, and the elderly. Frequently, fecal waste contamination is evaluated by measuring 

fecal indicator bacteria (FIB) like Escherichia coli (E. coli). E. coli ingestion can cause abdominal 

sepsis, septicemia, urinary tract infections, and newborn meningitis (Jang et al., 2017). 

As part of the Clean Water Act, state agencies like the Alabama Department of 

Environmental Management (ADEM) and the Environmental Protection Agency (EPA) set 

thresholds for the concentration E. coli in recreational water to be protective of human health. 

When a waterbody does not meet these criteria, steps are taken to reduce E. coli loading in the 

watershed. For example, if a surface waterbody routinely does not meet water quality criteria, then 

the waterbody is placed on the 303(d) list of impaired waterbodies and a Total Maximum Daily 

Load (TMDL) is developed to account for and manage pollutant loading. The TMDL allocates 

pollutant loading, for example E. coli, from point-sources (e.g., wastewater treatment plants, 

stormwater discharges, contained feeding operations) and non-point sources (e.g., agricultural or 

urban runoff). Based on the TMDL, strategies are developed and implemented to reduce pollutant 

loading from these sources. However, tracking the source of E. coli in water systems is difficult 

because it is not a source-specific marker for fecal waste. E. coli can originate from multiple point 

and non-point sources of pollution within a watershed. For example, human sources of E. coli 

include leaky sewer lines and/or malfunctioning septic tanks and wastewater treatment plants 

(Buerge et al., 2006; Cogger 1988; Paul et al., 2004; Richards et al., 2016; Watkinson et al., 2007). 

Wildlife, cattle and farm animals, and naturalized E. coli, or E. coli naturally occurring in the 
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sediment, also contribute to water contamination (An and Breindenbach, 2005; Coleman et al., 

2013; Hansen et al., 2020; Ishii 2006; Somarelli et al., 2007). Together, these factors make tracking 

wastewater input difficult using E. coli and other FIB. 

Chemical source tracking is an improved method to track the source of fecal waste in water 

(Staley et al., 2016). Chemical source tracking measures a suite of chemical compounds and relates 

them to FIB concentrations to understand sources of FIB in a watershed. Chemical tracers can 

include traditional water quality parameters such as dissolved oxygen, pH, conductivity, nitrate, 

and ammonium or more complex organic compounds like emerging contaminants (EC) that are 

highly source specific. There is strong evidence that these emerging contaminants including 

caffeine, ibuprofen, and acetaminophen, are reliable human proxies and can be used to distinguish 

sources of human versus animal waste (Buerge et al., 2006; Jones-Lepp, 2006; Kumar et al., 2019; 

Leal-Bautista et al., 2011; Luo et al., 2014). Other ECs include herbicides and pesticides like 

atrazine and metolachlor. These compounds are often detected in surface waters closely associated 

with agricultural lands (Brovini et al., 2021; Carazo-Rojas et al., 2018; de Souza et al., 2020; 

Glinski et al., 2018; Mukhopadhyay et al., 2022; Wilkinson et al., 2022). 

As discussed previously, establishing the source of E. coli in water bodies is especially 

important because it is often an indicator of sewage-impacted waters. When functioning properly, 

the infrastructure to manage sewage as wastewater collection systems (e.g., sewer pipelines), 

wastewater treatment plants (WWTPs) and onsite wastewater treatment systems, most frequently 

as septic systems, effectively transport and treat fecal waste. However, malfunctioning collection 

or treatment systems can be a source of untreated or undertreated water in the environment (Buerge 

et al., 2006; Cogger 1988; Paul et al., 2004; Richards et al., 2016; Watkinson et al., 2007). 
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Previous studies have attempted to establish markers for distinguishing different sources 

of human waste in surface water. The water quality of WWTP effluent is regulated through the 

National Point Discharge Elimination System (NPDES). The monthly discharge reports contain 

information about E. coli concentrations and other regulated water quality variables in the effluent. 

The concentration of ECs is not measured or reported in municipal discharge monitoring reports 

(City of Oxford DMR, 2021), but WWTPs process high volumes of wastewater that are laden with 

ECs. Several studies have evaluated the efficacy of WWTP processes in EC attenuation. For 

example, WWTPs eliminate ~99% of caffeine and acetaminophen, however, the influent 

concentrations are so high that these compounds are still detectable in the effluent in the ng/L to 

ug/L range (Buerge et al., 2006; Lin et al., 2010). This creates a spike in overall EC concentrations 

in the surface water to which the effluent is discharged (Tran et al., 2018). 

Untreated or undertreated human waste from a malfunctioning septic system, sewer 

overflows, or leaking sewer mains is more difficult to track. Septic systems are classified as a non- 

point source of pollution since they do not require a NPDES permit and are maintained and 

managed by the resident. The fate and transport of pollutants like microorganisms and ECs to 

surface water is subject to sorption and biodegradation, before eventual discharge to surface water 

(Sui et al., 2015). Even so, residential septic systems can have a unique chemical fingerprint 

(Richards et al., 2016; Richards et al., 2017). The anaerobic environment typically causes the 

bioconversion of nitrogen (N) to ammonium nitrogen (NH₄–N) (Lusk et al., 2018). High 

concentrations of phosphates in sewage are a result of household cleaners and fecal materials (Lusk 

et al., 2018). Similarly, septic systems are often treated with copper sulfate, a common pesticide, 

herbicide, and fungicide used to kill encroaching tree roots in septic systems. For these reasons, 

elevated E. coli concentration with elevated NH₄–N, phosphorous (P) and copper (Cu) in surface 
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water could indicate that the source is septic tank discharge, as they have been shown to be 

enriched in septic tank effluent (Richards et al., 2016). Other parameters including total suspended 

solids, turbidity, and artificial sweeteners like sucralose have also been shown to have high 

enrichment factors in septic tank effluent (Richards et al., 2017). 

Sewer collection systems can introduce pollutants to surface water through leaky pipes or 

sewer system overflows (SSOs). SSOs are the more apparent mechanism for water impairment, 

and these events are tracked and reported through state agencies like ADEM. Even so, the pollutant 

loading is poorly understood primarily due to the intermittent nature and sampling difficulties 

surrounding SSO events (Petrie, 2021). Leaking sewer systems are even more difficult to track, 

but the fate and transport considerations (sorption and biodegradation) mechanisms are similar to 

septic systems. In contrast, sewer collection systems carry much higher volumes of wastewater 

and therefore higher loading potentials compared to leaking septic systems. Therefore, leaking 

sewer mains likely create a diffuse source to the surface water through groundwater discharge 

(Tran et al., 2013). 

Variations in loading, fate, and transport create more difficulties in untangling the 

socioenvironmental and physiochemical controls on EC occurrence. ECs also transform in the 

surface waterbody through sorption, biodegradation and photodegradation in natural systems (Lin 

et al., 2010). However, the complexity and uniqueness of the socioenvironmental settings (e.g., 

water treatment technologies allowing for different degrees of attenuation, EC source variation 

and concentrations, fluctuations in seasonal sunlight that control photodegradation) make it 

difficult to model and extrapolate results from one study or study site to another. 

More recently, statistical models have been introduced to understand relationships between 

EC concentrations, FIB, and other socio-environmental factors controlling their occurrence. 
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ANOVA tests and Pearson/Spearman correlations can be used to define significant relationships 

between environmental factors, EC concentrations, and E. coli (Carpenter and Helbling, 2018; 

Zhang et al., 2022). Techniques like principal component analysis (PCA) reduces the complexity 

of variables while maintaining the variability within the dataset. PCA can reveal variables that 

covary (Karpuzcu et al., 2014, Zhang et al., 2022), pointing to site-specific or watershed level 

sources of water quality impairment. For example, Karpuzcu et al. (2014) showed that herbicides 

and pesticides may aggregate in one principal component indicating a strong, agricultural source 

signature, and pharmaceuticals may aggregate in another principal component indicating an urban 

wastewater signature. Another useful statistical technique is classification and regression tree 

(CART) analysis. CART relies on nonlinear modelling based on multiple predictor variables where 

dependent variables are split into categories based on their influence on the dependent variable. 

This model can elucidate multi-variable relationships between environmental factors, EC 

concentrations, and E. coli concentrations (Verhougstraete et al., 2015; Gregor et al., 2002). 

Overall, the statistical approach has become popular because it is not dependent on a fully formed 

fate and transport model for ECs. Instead, statistical models use empirical data to generate 

significant relationships that can then be applied to reduce pollutant loading for a specific 

watershed. 

This work examined a region with multiple potential point and non-point sources of surface 

water fecal pollution in a subtropical watershed in the Southeastern US. There were two research 

questions to be answered: 

Research Question (1) What is the relationship between human waste proxies and E. coli 
 
in Choccolocco Creek? 
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Research Question (2) Can certain proxies, in conjunction with spatial data, allow us to 

distinguish between E. coli from wastewater treatment plants and E. coli from onsite septic tank 

systems? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Map of Choccolocco Creek Watershed including sample sites. The blue line represents 
Choccolocco Creek which flows from the northeast (site 9) to the southwest (site 1) where it converges 
with the Coosa River. The black lines outline the grouped site watershed boundaries. The black triangles 
are the two wastewater treatment plants that discharge into the creek. 

 
 
Here, a multiproxy approach was taken to understand relationships between land use, water quality 

parameters, ECs, and E. coli. Correlations and PCA between human proxies and E. coli 

contamination were used to identify potential fecal waste sources. In this region, other studies have 

focused on quantifying ECs, but with no emphasis on ECs as human proxies for E. coli 

contamination (Okweye et al., 2021 and Bradley et al., 2019). Chemical source tracking across a 

watershed differentiates between potential sources of E. coli and these data serve as a model for 

pulling apart complexities in contaminant sources for future watershed health research. 

Grouped Site Watersheds  

Land Cover  
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2. Methodology 
 
2. 1 Study Site 

 
In Alabama, the total mileage of river impairment due to E. coli is greater than any other 

contaminant category including heavy metals, runoff nutrients, and toxic compounds (ADEM, 

2016). This study examines Choccolocco Creek, a river in northeastern Alabama (Figure 1) where 

several potential sources of pathogens have been documented. The Choccolocco Creek watershed 

can be found in the counties of Calhoun, Clay, Cleburne, and Talladega. The study region contains 

both a high density of residential septic tank systems that are susceptible to failure (Jordan, 2022) 

and two wastewater treatment plants (WWTP) in Anniston, AL and Oxford, AL that discharge 

effluent directly into Choccolocco Creek (NPDES PERMIT NO. AL0058408 & AL0022195). 

There is a third WWTP in Talladega County that discharges into one of Choccolocco Creek’s 

tributaries, Eastaboga Creek (NPDES PERMIT NO. AL0054658). Over 1,000 farms exist in the 

counties of Talladega and Calhoun (U.S. Census of Agriculture, 2017), and livestock on these 

farms is within the Choccolocco Creek Watershed and can contribute to the E. coli loading within 

the creek. The upper Choccolocco Creek lies in Calhoun County and estimates show that there are 

about 2 million chickens and about 20,000 cows in this region (U.S. Census of Agriculture, 2017). 

The lower Choccolocco lies in Talladega County with about 850,000 chickens and 13,500 cows 

(U.S. Census of Agriculture, 2017; USDA, 2020). 

2.2 Water sampling 
 

Nine sites were sampled monthly from April to September of 2021 (Figure 1, numbered 

circles) along Choccolocco Creek. Sample sites were selected based on accessibility and to 

achieve spatial distribution along the creek. Samples were collected following EPA guidelines 
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for surface water sampling to maintain sample integrity (U.S. Environmental Protection Agency, 

2007). Collection was made from the center of the creek using a Nasco Sampling Swing Sampler 

(Whirl-Pak, Madison, WI). The sampler cup was cleaned with bleach, DI water, and creek water 

between each site. Water was collected in amber glass gallon jugs that were stored in coolers on 

ice until they were transported back to the lab and stored at 4°C. 

2.3 Water Quality Parameters 
 

Water quality measurements including turbidity, pH, Oxidation Reduction Potential 

(ORP), dissolved oxygen, conductivity, and fluorescent Dissolved Organic Matter (fDOM) 

content were made at each site using a YSI and an EXO² sonde (Xylem, Yellow Springs, OH). 

All equipment was washed with DI water three times in between sample sites and gloves were 

worn during collection. Nitrate and ammonia concentrations were measured using an ion- 

selective electrodes (Hach, Loveland, CO). Calibrated ranges for the electrodes were 1 to 100 

mg/L ammonium-nitrogen and nitrate-nitrogen. Total nitrogen and total phosphorous 

concentrations were measured following the Boyd procedure (Gross and Boyd, 1998). 

2.4 Pathogens 
 

E. coli enumeration was performed using Coliscan Easygel® kits. At each site 2-mL of 

water from the collected sample was added to the Coliscan polymer, poured into the petri dish, 

and let incubate for 48 hours at 35°C before counting coliforms. Coliscan Easygel® kits have been 

shown to be accurate measures of colonies when compared to more advanced laboratory analysis 

(Stepenuck et al., 2011). Enumeration was performed in triplicate to ensure a representative count. 

The Alabama Department of Environmental Management (ADEM) sets water quality 

standard for E. coli in rivers. Choccolocco Creek is categorized by ADEM as a Public Water 

Supply (PWS) and Fish and Wildlife (F&W) waterbody (ADEM, 2020). For these classes of 
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stream, the geometric mean at least five samples during a 30-day period must not exceed 126 

cfu/100 mL and a single sample must not exceed 298 cfu/100 mL. In this study, the sampling 

scheme (single monthly samples) did not allow for calculating a 30-day geometric mean, and 

therefore, it is not possible to identify sites that violate that criterion. Instead, single sample 

threshold was used and the geometric mean over six months was calculated for the 126 cfu/100mL 

threshold. 

2.5 Trace Metals 
 

Trace metal concentrations including that of copper, beryllium, sodium, magnesium, 

aluminum, potassium, calcium, vanadium, chromium, manganese, iron, cobalt, nickel, zinc, 

arsenic, selenium, strontium, molybdenum, silver, cadmium, antimony, barium, titanium, lead, 

thorium, and uranium were measured for each water sample at the Auburn Geosciences ICPMS 

lab following a modified version of U.S. EPA method 6020. Approximately 60-mL of water was 

filtered and acidified to a pH of 2 using 1.0M hydrochloric acid. Samples were stored in 

polypropylene bottles for metals analysis. Total metal concentrations are presented in Appendix 

Table 3. 

2.6 Emerging Contaminants 
 

Caffeine and ibuprofen were analyzed in the Ojeda lab at Auburn (Appendix Table 1 & 

Table 2). These compounds were extracted from water samples using Sep-Pak® C18 Solid Phase 

Extraction (SPE) cartridges and then analyzed using an Agilent Gas Chromatography Mass 

Spectrometer (GC-MS, 8890 GC-5977 MSD). Samples were filtered using a 0.45 μm 

polyvinylidene difluoride filter for each sample and brought to a pH of 2 using 1.0M hydrochloric 

acid to provide the highest percentage recovery for target analytes (Togola et al., 2007). For SPE, 

the C18 cartridges were conditioned with 15mL of dichloromethane, 15mL of methanol, and 



18 

 

 

15mL of ultrapure water at a pH of 2. Next, one liter of each water sample was passed through 

the cartridge with the vacuum set to ~850mbar. The cartridge was then left to dry for about 60 

minutes. After drying, the target compounds were eluted with 7mL of dichloromethane in a test 

tube before being evaporated by a gentle stream of nitrogen gas. Samples were then reconstituted 

with 100 μl of dichloromethane, and polar functional groups were derivatized with 100 μl of N, 

O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) for 30 minutes at 60 °C. Finally, the sample 

solution was analyzed using the GC-MS following these parameters: capillary column an 

HP5/MS (30 m × 0.25 mm × 0.25 μm film thickness), 1 μl injection in splitless mode at 305 °C 

with ultrapure Helium at a constant flow of 1.4 mL/minute. Initially, the oven temperature was 

held at 100 °C for 1 minute. Then, at a rate of 4 °C /minute the temperature increased to 300 °C. 

Samples were analyzed using both a scan mode (50-550 total ion chromatogram) and a selected 

ion monitoring mode (SIM) to improve precision. SIM ions for ibuprofen include m/z 160, 73, 

206 and for caffeine include m/z 194, 109, 67. 

A calibration curve to quantify the concentration of pharmaceuticals in water samples has 

been completed using two methods: direct injection of the pharmaceutical stock solutions, and 

analysis after solid phase extraction and reconstitution. These calibration curves serve to constrain 

the analytical uncertainty as we can use their slope and standard error to assess the recovery of our 

extraction methods (Appendix Figure 1 & Figure 2). 

Four sets of samples from four sites (3, 4, 7, and 9) were sent to Eurofins Eaton Analytical 

laboratory for analysis using EPA methods 527, 539, and 542. One site from each of our defined 

geographic site groupings was included, along with our control site near the headwaters. Sites were 

selected based on high preliminary E. coli concentrations, and sent for testing for the months May, 

July, August, and September. Eurofins returned concentrations for over 90 human-specific 
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emerging contaminants (ECs) and serves as quality control for analysis done in the Ojeda Lab 

(Appendix Table 1 & Table 2). 

2.7 Statistical Analysis 
 

Statistical Analysis was done using GraphPad Prism (v9.2, San Diego, CA, USA) software. 

First, a D’Agostino-Pearson normality test was done on all variables to determine whether the data 

was normally distributed. This test computes skewness and kurtosis and then calculates how the 

dataset differs from a Gaussian distribution. Variables with normally distributed data were 

analyzed using Pearson correlation tests and non-normal variables in Spearman correlation tests. 

All correlations were performed in relation to E. coli and evaluated as significant at the α = 0.05 

level. 

Principal component analysis was utilized to detect variable relationships within the high- 

dimensional data that we collect from the water samples (Jollife et al., 2016). PCA uses linear 

combinations of the input data to generate principal components (Tabachnick and Fidell, 2007). 

The first principal component (i.e., PC1) is calculated so that it accounts for the most variance in 

the data set. The second principal component (i.e., PC2) is calculated similarly, but with the added 

mathematical condition that it is uncorrelated (orthogonal) to the first principal component. Then, 

the process continues until the number of principal components is equal to the original number of 

variables, and the sum of the variances of all of the principal components equals the sum of the 

variances of all of the variables. Interpretable results from PCA are: 1) the eigenvalues for each 

principal component as the variance explained by each principal component, 2) the loadings of 

each variable within each principal component which explains the variables that contribute most 

strongly to each principal component, and 3) aggregates of variables within a principal component 

biplot (e.g., PC1 versus PC2). The number of principal components selected for interpretation 
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often follows Kaiser’s rule so that eigenvalues are greater than 1. Tabachnick and Fidell (2007) 

suggest that loading cutoffs be classified as 0.32 (poor), 0.45 (fair), 0.55 (good), 0.63 (very good) 

or 0.71 (excellent). This study chose to use 0.50 as a loading threshold for meaningful 

interpretations. 

2.8 Geographic Data 
 

Septic system permit data was gathered for each county within the Choccolocco Creek 

watershed: Calhoun, Clay, Cleburne, and Talladega. Septic system location was provided by the 

Alabama Department of Public Health for all systems permitted from January 1, 2000, to August 

11, 2020. Some addresses included multiple permits; these addresses were assumed to only have 

one septic system. The newest approval/repair permits were appended to the septic system point 

data to have one point representing the system. 

Land use data was gathered from the United States Geological Survey 2019 National Land 

Cover Database. The percentage of urban, forested, and hay/cropland was calculated from cell 

count for each category using the Summarize Categorical Raster tool in ESRI ArcGIS Pro (v2.9, 

Redlands, CA). 

Sample point watersheds (SPW) were created with the ArcGIS Pro Hydrology toolkit. 

Flow accumulation and flow direction were calculated. Based on these measurements, pour points 

within 30-meter distances were used to delineate watershed boundaries for each sample point 

(Jordan, 2022). These individual SPWs were then combined to create grouped site watersheds 

(GSW). There are four total site groupings. First is site 9 acting as the control. The second group 

is comprised of sites 8, 7, and 6 as the Upper Choccolocco. The third group is the Middle 

Choccolocco made of sites 5 and 4, and finally site 3 and lower represent the Lower Choccolocco. 
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Heat maps were created in GraphPad Prism to evaluate changes in measurements across 
 

sites. Variable data was normalized using the standard equation: 𝑥𝑥 = 𝑥𝑥−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 . 𝑥𝑥, 𝑥𝑥 , and 
𝑛𝑛 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 −𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 

 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 were derived from average values across all sites in order to scale the data between 0 and 1. 
 
2.9 Weather Data 

 
Weather data was gathered from the PRISM Climate Group database (Northwest Alliance 

for Computational Science & Engineering, Corvallis, OR). Data included average daily 

temperature (°C) and precipitation (mm) on one day, three day, and seven day intervals before the 

sample collection date. One day indicates precipitation measured on the day of sampling, three 

day indicates the precipitation measured for the day of sampling plus the two days prior and so on 

for seven day. The data for each site was gathered from one of PRISM’s 4-kilometer grid cells 

using latitude and longitude measurements. 

 
3. Results 
3.1 Trends in E. coli Across the Watershed 

 
The mean of the triplicate measurements was taken to represent concentration for each 

sampling session. Of these concentrations, 17 samples (30%) exceeded 298 cfu/100 mL. Sites 8, 

5, and 4 had three exceedances followed by sites 7 and 3 with two exceedances, and finally 9, 6, 

2 and 1 with one each. The geometric mean was taken using the arithmetic mean calculations 

over the six-month sampling period. Of these values, sites 4 and 5 exceeded the monthly 

exceedance of 126 cfu/100 mL. These trends are illustrated in overall average concentrations of 

E. coli through the study as well (Figure 2). Site 8 and site 4 show higher average concentrations 

of E. coli compared to other sites with the lowest average at site 1 near the confluence of 

Choccolocco Creek and the Coosa River. Temporal trends in E. coli were highly variable across 

the watershed. Early spring months of April and May showed higher concentrations of E. coli 
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compared to the summer month of July and August (Appendix Table 3). Together, this data 

supports the ADEM 303(d) listing of Choccolocco Creek as an impaired waterbody for E. coli 

and provides a basis on which to use human proxies to delineate sources of E. coli in the 

watershed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. E. coli concentration box and whisker plot. The x-axis displays the site number, and the y- 
axis is E. coli concentration in cfu/100mL. The sites have been color coded throughout the results 
plots (upstream lightest blue and downstream darkest blue). This plot was created using E. coli 
averages for the months of April-September 2021. 

 
3.2 Correlations Between E. coli and Other Variables 

 
All measured variables were evaluated in relation to E. coli to determine correlative 

relationships. Statistically significant relationships (p<0.05) were recorded for seven of the 

variables measured (Table 1). For non-normal data distributions, Spearman correlations yielded 

two inverse relationships: one day precipitation and nitrate-nitrogen. These relationships were 
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inverse based on 54 pairs of datapoints. For normally distributed data, Pearson correlations yielded 

five significant relationships: pH, water temperature, average total phosphorous, total EC 

concentration, total number of EC compounds. Only water temperature and pH illustrate inverse 

relationships with E. coli within their respective ranges (17.39 – 33.55 °C and 6.10 – 9.22 pH). 
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Table 1. Pearson and Spearman correlative statistics between measured variables and E. coli. Each variable is reported with the number 
of pairs, r value, p value, average measurement, and range of measurements across the dataset. Asterisks indicate the significance of the 
relationship from most to least. *** P ≤ 0.001, ** P ≤ 0.01, * P ≤ 0.05 

Parameter # of 
pairs Spearman r P value Average Range 

One Day Precipitation (mm) 54 -0.3709 0.0058** 1.48 0 – 15.63 

NH3-N (mg/L) 54 -0.4117 0.0020** 0.0320 0 – 0.19 

Parameter # of 
pairs Pearson r P value Average Range 

Avg Total P (µg/L) 54 0.2729 0.0459* 57.1 16.99 – 210.2 
pH 54 -0.4391 0.0009*** 7.44 6.10 – 9.22 
Water Temp. (°C) 54 -0.3586 0.0077** 23.3 17.39 – 33.55 
Total EC concentration (ng/L) 16 0.5075 0.0448* 798 0 – 2784 
Total number of EC compounds 16 0.5339 0.0331* 6.81 0 – 15 
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3.3 Principal Component Analysis of All Data 
 

PCA of water quality variables and E. coli was calculated as shown in Table 2. The scores 

for PC1 and PC2 were significant following the Kaiser rule. PC1 had an eigen value of 3.30, PC2 

a value of 2.02, and PC3 with a value of 1.33. Of the 10 variables assessed in the PCA, only two 

did not meet the loading criteria within the first two principal components. Both DO% and Cu 

were only significant until the third principal component. PC2 had high negative loadings for E. 

coli and average total phosphorous. The rest of the variables had high negative loadings in PC1. 

Table 2. Principal component scores calculated from PCA of water quality variables. 
 

Variables PC1 (33.04%) PC2 (20.22%) PC3 (13.35%) 

Water Quality Parameters 

 E. coli 0.35 -0.63 0.36 
 pH -0.60 0.67 0.08 
 Water Temp. -0.72 0.15 -0.19 
 Conductivity (SPC) -0.79 -0.25 0.39 
 Dissolved Oxygen (DO%) -0.20 -0.40 0.54 

Species in Water 
 Nitrate – N (mg/L) -0.74 -0.14 0.24 
 Avg Total Nitrogen (µg/L) -0.72 -0.44 -0.11 
 Ammonium – N (mg/L) -0.65 0.14 0.00 
 Avg Total Phosphorus (µg/L) 0.00 -0.78 -0.36 
 Copper (ppb) -0.42 -0.30 -0.72 

 

PC1 accounts for 33.04% of variability in the dataset and PC2 for 20.22%. Combined, PC1 

and PC2 explain 53.26% of total variance in the dataset. Figure 3 illustrates the loading for the 

PCA. On the x-axis is PC1 and on the y-axis is PC2. The water quality variable loadings are shown 

in blue and E. coli loading in black. The criteria for variables to be included is a loading score with 
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an absolute value greater than 0.5. E. coli covaries weakly with total phosphorous. There is a group 

of variable loadings orthogonal (unrelated) to E. coli including nitrate, total nitrogen, and specific 

conductance. pH and E. coli meet at a large angle, indicating a negative correlation. 

 

Figure 3. PCA of E. coli with water quality variables. PC1 on the x-axis and PC2 on the y-axis. 
Both axes display the percent each principal component contributes to the variability of the 
dataset. 

 
 

Figure 4 shows the distribution of PC scores based on the PCA of the water quality 

variables. The scores are organized by site location across the six-month sampling period. The 

water quality/chemistry tends follow the sample site location along PC1 from site 9 (positive 

PC1) to downstream sites (more negative values of PC1). Sites 9, 8, 7, and 6 aggregate together 

in the PC scores, and moving downstream to sites 5 to 1 at the confluence of Choccolocco Creek 
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and the Coosa River, aggregation of sites is less apparent. This could be due to the mixing of 

source and dilution effects as river widens leading to greater variability in the water chemistry. 

 

Figure 4. PC scores of E. coli with water quality variables by site. The sites are plotted along 
PC1 and PC2 on the x and y axes. Both axes display the percent each principal component 
contributes to the variability of the dataset. 

 
 

A biplot was created overlay the variable loadings and the PC scores (Figure 5). In the 

negative PC1 positive PC2 quadrant, pH loads alongside the lower Choccolocco sites 1, 2, and 3. 

Temperature and ammonium nitrogen load in the same quadrant near the sites 1, 4, and 5. The 

aggregation of Lower Choccolocco sites lies opposite to the loading of E. coli in the positive 

PC1, negative PC2 direction. Nitrate-nitrogen, specific conductance, total nitrogen, and 

dissolved oxygen loadings are in the negative direction for PC1 and PC2. Sites 1 through 5 are 
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scattered in this quadrant as well. In the opposite quadrant of positive PC1 and PC2 there is an 

aggregation of sites 6 through 9. Total phosphorous loading lies directly in the negative PC2 

direction. 

 

Figure 5. PCA biplot of loadings and site scores. PC1 on the x-axis and PC2 on the y-axis. Both 
axes display the percent each principal component contributes to the variability of the dataset. 

 
 

3.4 Assessing Holistic Variable Dynamics Across Site Groupings 
 

Site location plays an integral role in the assessment of contamination source(s) in 

Choccolocco Creek. For each site, potential E. coli inputs were identified. For example, site 9 is 

in the Talladega National Forrest near the headwaters of the creek and served as a control site due 
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to the lack of septic tank systems and human influence. Land use for site 9 is 98% forested and 1% 

developed (Appendix Table 7), implying E. coli loading at this site could be from wild animal or 

naturalized sources. The rest of the sites and their watersheds were divided into three groups 

characterized by geographic location and land use. The sites 6-8 watershed is 79% forest, 12% 

hay/cropland, and 4% developed. They are downstream of the headwaters and were named the 

Upper Choccolocco group. Sites 4-5 have a watershed made of 55% forested, 29% developed, and 

9% hay/cropland. These sites are located just downstream of the two wastewater treatment plants 

and characterized by more development and were named the Middle Choccolocco group. The final 

grouping is sites 1-3 which have a watershed with 60% forested, 21% hay/cropland, and 10% 

developed. These sites are further downstream from the wastewater treatment outfalls and near the 

confluence with the Coosa River. They are characterized by the widest cross sections of the river 

and greatest volume of water resulting in a dilution of all upstream discharge, and they have been 

named the Lower Choccolocco group. 

A heat map was used to visualize changes of the measured variables across site groupings. 

Figure 6 illustrates the relative magnitude of each variable across the groups. There were strong 

correlations calculated in section 3.2 between E. coli and pH, water temperature, and the number 

and concentration of EC compounds. 

Site 9, near the creek headwaters, is shown to have a lower magnitude of all variables but 

DO%. Moving downstream, site 7 had increased concentrations of E. coli with moderately high 

water temperatures and conductivity. Further downstream at site 4, all variables are elevated. 

Notably, site 4 (a part of the Middle Choccolocco grouping) had the greatest magnitude for both 

number of EC compounds and total concentration of EC compounds along with high E. coli. 
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Finally, site 3 nearest the confluence showed a decrease in E. coli and elevated water temperatures, 

conductivity, and pH. 

 

 
Figure 6. Heat Map of E. coli, water parameters, and EC compound data across four groupings. Data has 

been normalized across all sites in order to scale the data between 0 and 1. 

The heat map provides a visualization of variables that tend to be elevated to certain 

geographic regions. Most notable is site 4, which is elevated in all water quality variables, E. coli, 

and ECs. To examine potential sources at a higher resolution, particularly around site 4, EC 

compounds were broken down into subcategories. 

3.5 Emerging Contaminants Classification 
 

The ECs originate from various sources including products in the home, at construction 

site, or in used in agricultural applications. The ECs were organized into three categories based on 

the intended use of the compound: pharmaceutical and personal care products (PPCP), 
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herbicides/pesticides, and industrial/home (Table 3). The PPCP category was further broken down 

into over the counter, prescription, and medical office subcategories to illustrate the accessibility 

and more specific source of the compounds. For example, caffeine, ibuprofen, and sucralose are 

more widely accessible and ingested than a prescription drug like primidone. Similarly, DEET and 

salicylic acid are personal care products some people use every day in their homes and outside, 

while iohexol is only used as an x-ray contrast agent in certain medical settings. By classifying 

these compounds, their abundance in each category can be used to identify trends in anthropogenic 

input across the watershed. 
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Table 3. Classification of the EC compounds based on sources and use. Three categories for EC include 
Pharmaceuticals and Personal Care Products (PPCP), herbicides/pesticides, and industrial/home. 
Classification Source Compound Definition/Use 

 
 
 
 
 
 
 
 
 
 

Pharmaceutical 
& Personal Care 

Products 

Over the counter 1,7-Dimethylxanthine Caffeine Degradate 
 Acetaminophen Analgesic 
 Caffeine Stimulant 
 Ibuprofen Analgesic 
 Lidocaine Analgesic 
 Naproxen Analgesic 
 Phenazone Analgesic 
 Sucralose Sugar Substitute 
 Theobromine Caffeine Degradate 
Prescription Atenolol Hypertension drug 

 Carbamazepine Anti-Convulsant 
 Estradiol Estrogenic Hormone 
 Flumequine Antibiotic 
  

Metformin 
Antihyperglycemic 
drug 

 Primidone Anti-Convulsant 
 Sulfamethoxazole Antibiotic 
 Theophylline (semi-quantitative) Anti-Asthmatic 
 Trimethoprim Antibiotic 
Personal Care DEET (Deethylatrazine) Insect repellent 

 Ethylparaben Preservative 
 Salicylic Acid Antiseptic 
Medical office Iohexol X-ray Contrast Agent 

 
 

Herbicide & 
Pesticides 

Herbicide Atrazine Weed killer 
 Bromacil Weed killer 
 DEA Atrazine degradate 
 DIA (Deisopropylatrazine) Atrazine degradate 
 Metolachlor Weed killer 
 OUST (Sulfometuron, methyl) Weed killer 
Pesticide Thiabendazole Controls disease 

Industrial & 
Home 

Manufacturing/Home BPA Plastics 
 TCEP Flame Retardant 
 TCPP Flame Retardant 

3.6 Detection Frequency 
 

The classifications from Table 3 help to understand the dominant sources of human 

contamination. For analysis and interpretations, parent and daughter compounds of atrazine 

(atrazine, DEA, and DIA) and caffeine (caffeine and theobromine) were summed. There was a 

total of 32 EC compounds detected in the water samples. Of those compounds, 14 of them were 
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detected 25% of the time (Figure 7). These frequently detected compounds included 9 compounds 

from the PPCP category, 3 compounds from herbicide/pesticide category, and 2 compounds from 

industrial/home category. The PPCP category also has some of the most frequently detected 

compounds with caffeine in 50% of samples, lidocaine in 44%, and sucralose and iohexol in 38%. 

Sucralose, iohexol, and salicylic acid also have the highest measured concentrations for a single 

sample in the dataset. Notably, atrazine is detected 44% of the time in the herbicide/pesticide 

category along with DEA 31% and Metolachlor 25% of the time. TCCP and TCEP are detected 

25% and 31% respectively within the industrial/home category. Detection frequency and 

concentration for all EC compounds can be found in Appendix Table 1. 

Water samples were collected for analysis in the Ojeda Lab. We prepared to measure 

ibuprofen and caffeine for every sample collected. This data was collected (Appendix Table 2), 

but it was omitted from data analysis. There are two primary reasons for its omittance. The first 

was that the detection limit for Ojeda lab samples was not low enough for water samples compared 

to those of Eurofins Analytical. Our minimum detection level using GC-MS methods was around 

15-20 ng/L while LC-MS methods for ECs commonly have detection limits ranging from 0.01 to 

10 ng/L (Boix et al., 2016; Valsecchi et al., 2015). The second is that we were only collecting data 

for two EC compounds (ibuprofen and caffeine) while Eurofins collects data for over 90 potential 

contaminants. The collection of just two compounds does not capture the variety of contaminants 

and their potential sources. For these reasons, the Ojeda lab EC data was excluded from analysis 

in favor of the Eurofins EC data. 
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Figure 7. A box and whisker plot of EC compounds and their detection frequencies from four 

sites (9, 7, 4, 3) across four months in 2021 (May, July, August, September) with a detection 

frequency of 25% or greater. PPCP are represented in blue, herbicides/pesticides in green, and 

industrial/home in yellow. 

3.7 Principal Component Analysis of Emerging Contaminants 

PCA for E. coli and EC compounds was calculated as shown in Table 4. The first PC 

accounts for 30.02% of total variability, while PC2 and PC3 account for 20.56% and 13.19%, 

respectively. These principal components met the criteria set by the Kaiser rule with eigen values 
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of 4.20, 2.88, and 1.85 for PC1, PC2, and PC3. 12 of the 14 variables assessed met the score 

criteria. Salicylic acid and metolachlor were the only two compounds with scores with an 

absolute value less than 0.5 for the first three PCs. 

 
 
 
 
 

Table 4. Principal component scores calculated from PCA of EC compounds. Variables are 
organized into five categories including water quality parameter, herbicide/pesticides, over the 
counter pharmaceuticals, prescription pharmaceuticals, and industrial/home. Scores that meet 
the criteria are bolded. 

 

Variables PC1 (30.02%) PC2 (20.56%) PC3 (13.19%) 

Water Quality Parameter 
 E. coli 0.587 -0.160 0.565 

Herbicide/Pesticides  

 Atrazine (+) 0.209 0.073 0.794 
 Metolachlor -0.142 -0.005 0.482 
 Thiabendazole 0.451 0.172 -0.208 

Over The Counter Pharmaceuticals  

 Caffeine (+) 0.630 0.637 -0.056 
 Lidocaine 0.598 0.179 -0.486 
 Salicylic Acid -0.022 -0.001 0.289 
 Sucralose 0.262 -0.839 -0.135 

Prescription Pharmaceuticals  

 Iohexol 0.459 -0.865 -0.023 
 Sulfamethoxazole 0.770 -0.040 -0.270 
 Theophylline 0.869 0.068 -0.134 
 Trimethoprim 0.496 -0.777 0.045 

Industrial/Home  

 TCEP 0.711 0.138 0.426 
 TCPP 0.675 0.546 0.063 
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The PCA of EC compounds and E. coli is illustrated in Figure 8. Once again, only 

variables with loading scores with an absolute value greater than or equal to 0.5 were included in 

the figure. All variable loadings go in the positive PC1 direction. E. coli covaries weakly with 

sulfamethoxazole. The rest of the EC compounds do not appear to aggregate within their 

respective categories. For example, the pharmaceuticals including ibuprofen, lidocaine, and 

trimethoprim would covary separately from the herbicides/pesticides like atrazine and bromacil. 

 
 

Figure 8 PCA loadings for E. coli and ECs. The x-axis is PC1 and the y-axis is PC2. Both axes display 
the percent each principal component contributes to the variability of the dataset. 
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The PC scores for EC were plotted in Figure 9. Sites 3 falls in the negative PC2 

direction. Sites 7 and 9 aggregate moderately in the negative PC1, positive PC2 direction. 

 
 

Figure 9 PCA scores of the sites along PC1(x-axis) and PC2 (y-axis). Both axes display the percent each 
principal component contributes to the variability of the dataset. 

Figure 10 shows the biplot of the loadings and the PC scores. Most of the loading vectors 

point away from the site scores on the biplot except for two very different site 4 scores. For the 

site 4 vector with a positive PC2 and PC1 score, caffeine and its degradants and TCPP contribute 

to its variability. Along these same vectors, there is a site 9 and site 7 score. The negative PC2 

score site 4 is influenced by iohexol and trimethoprim. 
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Figure 10. PCA biplot of loadings and site scores for E. coli and ECs. PC1 on the x-axis and PC2 
on the y-axis. Both axes display the percent each principal component contributes to the 
variability of the dataset. 

 
3.8 Heat Map of Source Specific Variables 

 
Figure 11 shows a heat map where the EC compounds organized into categories to focus 

on source specific markers and geographic distribution. E. coli, septic system density, total average 

nitrogen and phosphorous, copper, land cover percentage, and EC concentrations were used to 

evaluate water contamination and potential loading sources across the four groupings. Starting at 

the Headwaters of site 9, the percent forested land dominates with no other variables in high 
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magnitude. At the Upper Choccolocco group, site 7, there is elevated E. coli and 

herbicide/pesticide compounds along with moderate elevation for hay/cropland percentage. 

Middle Choccolocco (site 4) is a part of the urban group and once again is elevated in many of 

these variables. Notably, developed land percentage, E. coli, septic system density, copper, PPCP 

compounds, and industrial/home compounds all have high normalized values for this site. Finally, 

the Lower Choccolocco at site 3 furthest downstream shows elevated concentrations in nitrogen, 

copper, and percent hay/cropland. 
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Figure 11. Heat map of E. coli and source specific data across the four groups. Data has been normalized 

across all sites to scale the data between 0 and 1. 

 
4. Discussion 

 
4.1 Relationships between E. coli and Water Quality Parameters 

Data over a 6-month period shows E. coli had strong relationships with water quality and 

environmental variables. The correlations calculated (Table 1) correspond with past research that 

reported E. coli concentration was highly correlated to pH, turbidity, DO%, and temperature 

(Lawrence et al., 2012; Shamsudin et al, 2016, Vialle et al., 2011). This study’s correlation 
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calculations showed a strong negative relationship between pH and E. coli while Shamsudin et al., 

2016 and Vialle et al., 2011 found a positive relationship. The range of our pH data is 6.10 – 9.22 

which is relatively high maximum value for a river system compared to a relatively wider range 

of 5.5–7.0 in other studies. It should be noted that site 1 was the only site with consistently elevated 

pH measurements of 9.0 or above. Sites 3-9 fell within the average pH range for a river system. It 

has been reported that E. coli does not grow in wastewater with a pH greater than 9.2 (Parhad and 

Rao, 1974), suggesting that this dataset is near the upper limit of survivability of E. coli in the 

water. Contextualizing this relationship is necessary if pH is being used to understand E. coli in 

the environment. 

Lawrence et al. 2012 and Shamsudin et al. 2014 reported a significant positive relationship 

between water temperature and E. coli while this study showed a strong negative relationship. E. 

coli bacteria is a thermotolerant bacteria that can survive in a wide range of conditions (Petersen, 

2020). Lawrence et al., 2012 reported that E. coli densities during an eight-year study were higher 

during the warm season and suggested that colder months showed lower densities because lower 

water temperatures inactivate E. coli or inhibit its growth. In contrast, we suggest the negative 

relationship between E. coli and water temperature could be explained by solar ultra-violet (UV) 

light that inactivates E. coli (Barcina et al., 1986; Whitman et al., 2008). The influence of UV 

light in the creek can be controlled by environmental factors including stream width, tree cover, 

and cloud cover. Choccolocco Creek widens considerably from the headwater site to its confluence 

with a major drainage basin. There are no direct measurements of UV light for Choccolocco 

Watershed, but we observed decreased E. coli concentrations during the warmer months and 

generally lower concentrations in the wider regions of Choccolocco Creek (Appendix Table 3). 
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Overall, the relationship observed between E. coli and these variables are likely related to the 

survivability of bacteria in the stream. 

Weather variables like precipitation can control E. coli distributions. In a seven-year study, 

Tornevi et al. (2014) found that FIB increased exponentially two days after rainfall concomitant 

with increases in turbidity, suggesting that runoff as a result of heavy precipitation was a driver 

for elevated FIB. Similarly, Pandey et al. (2012) found that predictions of E. coli in streams 

improved when correlations to landcover were supplemented with 30-day rainfall data. Jardé et 

al., 2018 found that rainfall served as a mechanism of transport for contamination in soil to surface 

waters. In this study, cumulative precipitation one day, three days, and seven days prior to the 

sampling event was included as potential explanatory variables to evaluate the role of runoff that 

contribute to E. coli concentrations in the creek. Of these variables, the 1-day precipitation showed 

significant negative correlation to E. coli. Based on a hydrograph from USGS monitoring at site 

6, our sampling took place primarily during baseflow (Appendix Figure 5). This suggest that 

runoff due to precipitation is not significantly impacting the samples collected. 

4.2 Trends Across Watershed Groups 
 

There are trends between the source-specific variables and E. coli across the watershed. 

The heat maps show relative changes in the variables moving downstream (Figure 3 and Figure 

5). The headwaters (site 9) showed low contamination of ECs and other indicator species (e.g., 

nitrate, phosphorus) as well as low E. coli and EC concentrations. The headwaters are located in 

the Talladega National Forest, and therefore it is expected to be a relatively pristine control site. 

The Upper Choccolocco site has elevated concentrations of E. coli along with total nitrogen 

and industrial/home compound concentrations. It has the highest concentrations of 

herbicide/pesticide ECs and a high percentage of hay/cropland and forested land cover. This site 
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group is upstream of wastewater treatment outfall but there are septic systems located within the 

sites’ watersheds (Figures 1 & 11). One indication that septic systems may be contributing to the 

contamination is the elevated home/industrial compound concentrations, but there is not elevated 

PPCP concentrations or Cu which were previously observed in septic effluent (Richards et a. 

2016). Otherwise, there is a strong case for agricultural E. coli input in this region with elevated 

nitrogen and herbicide/pesticides with predominantly agricultural land cover. 

The Middle Choccolocco site has higher concentrations of E. coli as well as higher 

concentrations of total nitrogen and total phosphorus. This site group is downstream of the 

wastewater treatment outfalls, and therefore we presume that PCPP concentrations are likely to 

originate from WWTP effluents with additional inputs from other anthropogenic sources like 

leaking septic systems or leaking sewer mains. Indeed, this site group watershed has a high septic 

system density (Jordan, 2022 and Appendix Figure 4), but the extent and condition of the sewer 

collection system in the region was not assessed in this study. This site had the highest 

concentration of both PPCP and industrial/home compound concentrations along with elevated 

levels of Cu. Richards et al. 2015 suggested that Cu could be enriched in regions affected by septic 

effluent. The high concentrations of copper and septic density at could be seen as evidence of E. 

coli contamination with a septic system signature, but Cu is most elevated further downstream at 

site 3 where there is a lower septic density. The wastewater treatment plant outfall just upstream 

of site 4 could explain this increase in Cu and ECs at these sites. Additionally, Cu is not elevated 

in site 7 upstream of all wastewater treatment outfall, which has high septic density and high 

normalized values E. coli. Cu concentrations could be a result of septic input as previously 

discussed (copper sulfate and pipes), but there is the possibility of erosion of earth materials as 

well. Ore minerals including chalcopyrite, pyrrhotite, and sphalerite were historically mined in the 
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state of Alabama (Espenshade, 1963). These is an old copper mine approximately 20 miles 

southeast of site 8 in Choccolocco Creek. This mining region lies within the Mad Indian Group 

near Morrison Crossing. This geologic group contains schists mined for copper mineral ores. It is 

unlikely that this rock could erode into the river causing higher concentrations of copper as the 

watershed has a different bedrock composition. Choccolocco Creek watershed lies in the Valley 

and Ridge Province of Alabama and includes districts of the Coosa Valley and Weisner Frontal 

Ridges. The creek runs through areas of Cambrian to Ordovician aged rock including the Knox 

Group, Upper and Middle Cambrian Series, and the Lower Cambrian series (Geological Survey 

of Alabama, 2021). These groups are composed of dolomite, limestone, sandstones, and shales 

(Planert et al., 1989). 

The Lower Choccolocco shows decreased concentrations of E. Coli in comparison to 

Upper and Middle Choccolocco. This site is elevated in total nitrogen and phosphorous and PPCPs. 

It has the greatest agricultural land cover and highest copper concentrations. This site is 

downstream of two wastewater treatment outfalls and represents the widest parts of the creek. The 

location of the site and the mixed signal of both agricultural and human waste indicators, which 

creates a heterogeneous signature in the heat map. The normalized values are lower than site 4, 

which is likely the result of dilution downstream c (Figure 11). 

4.3 Potential Sources of E. coil 
 

Two potential sources, WWTPs and SSOs, can be eliminated as major drivers of E. coli 

within this dataset. There are no records of WWTP citations for exceeding E. coli thresholds for 

their respective NPDES permits from ADEM. Additionally, there were 4 SSO reports from April 

1, 2021, to October 1, 2021. However, the dates of the SSOs reported in the area do not align with 

the sampling dates for this study, and there was a minimum of seven days between the closest SSO 
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and sampling date. Therefore, the source(s) of E. coli over the sampling period in this watershed 

are likely to be diffuse. 

The heat map (Figures 6 & 11) and the correlative relationships (Table 1) have illustrated 

there is a strong link between E. coli and EC compounds. These relationships support our 

hypothesis and suggest that there is a human-component to E. coli concentrations in the 

Choccolocco Creek. 

The next step in the analysis was to discern patterns and relationships between the 

categories of ECs and E. coli that could lead to narrowing the potential diffuse source(s) of E. coli. 

PCA of ECs was calculated (Table 4) to connect land use and specific sources to contamination. 

PCA of the EC compounds in this study did not yield well defined variable loading aggregations 

related to compound class that indicate sources, nor were there clear site delineations when 

visualizing PC scores that indicate sites that experience similar profiles of ECs over the season. 

Karpuzcu et al, (2014) found that atrazine, metolachlor, and acetochlor covaried together in the 

PCA loading plots to create a distinct “agriculture” EC signature. Whereas in this study, loadings 

of herbicides and pesticides were distributed in different quadrants of the biplot and did not covary. 

This suggests that there is not a strong “agriculture” signature that is sustained throughout the 

watershed, and that there is potential mixing of these chemicals from various sources. One reason 

for this discrepancy is that the previous study included 120 samples in their PCA whereas we were 

only able to examine 16 samples. We would suggest any future research to focus on collecting 

more data over time, specifically EC and E. coli concentrations. This would likely lead to more 

accurate analysis and delineation of site characteristics based on sources. 
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4.4 Limitations 
 

The first and perhaps largest limitation of this study was the water sampling design. 

Samples were taken once a month for a six-month period at each of nine sites. Of these samples, 

only four samples from four sites were sent off for endocrine disruptor analysis at Eurofins 

Analysis, yielding 16 datapoints for EC analysis. The first PCA calculated using water quality data 

was able to examine 54 datapoints, but for PCA analysis of ECs, the number of pairs had to be 

reduced down to 16. While this is still a relatively large-scale study that examines an entire 

watershed compared to previous studies that examine between 2 and 5 sites (Richards et al., 2016 

and Jardé et al., 2018), previous research by Lawrence et al. (2009) and Karpuzcu et al. (2014) 

evaluated relationships among water quality variables and E. coli using hundreds or thousands of 

datapoints versus our 54 and 16 datapoints. 

Along with an increase of samples over time, it would have benefited our study to increase 

the samples geographically. For example, EC loading from septic systems in site 4 cannot be 

clearly distinguished from WWTP effluent nor leaking sewer lines. Investigating the tributaries to 

Choccolocco Creek within this portion of the watershed may have helped to delineate these 

sources. Still, this work guide future sampling efforts to this critical section of the Creek. 

Finally, this study relies on the assumption that the non-point sources of E. coli in this 

system are relatively uniform over space and time in the watershed. For example, this study did 

not account for changes in the naturalized E. coli community, nor evaluate how that community 

changed throughout the watershed. Additionally, there is also no way to ground-truth contributions 

from malfunctioned septic systems and leaky sewer lines in the region because this data does not 

exist. Future work should be directed at filling these data gaps to ensure watershed assessments of 

non-point sources of pollution are more accurately represented. 
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5. Conclusion 
 

The data in this study indicated there was a human component to E. coli contamination in 

Choccolocco Creek due to the significant relationship observed between E. coli and EC 

compounds. Further assessing ECs in their subcategories did not yield source delineation in the 

data that would point to specific source(s). Therefore, we cannot say with certainty whether 

contamination is coming from a predominantly septic source or wastewater treatment source. 

Further investigations that target Choccolocco Creek tributaries should be prioritized so that the 

WWTP influence can be delineated from septic influence, and therefore a more precise 

interpretation of EC and E. coli relationships can be made. 

Watersheds with a history of elevated E. coli measurements may be impacted by diffuse 

fecal contamination at a higher rate, but pinpointing the source of fecal contamination proves 

difficult. Assessing contamination takes an understanding of the total environment its 

multicollinear variables on a local scale. 
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Calibration Figures 
The data presented in Figures A1 and A2 represent our calibration curves for gas-chromatography 

mass spectrometry analysis of pharmaceuticals in the Ojeda Lab. This calibration was used to determine 
the concentration of pharmaceutical compounds in our water samples. 

 
Figure A1. The calibration curve for caffeine using six standards on the Ojeda Lab GC-MS. Calibration levels 
included 0.5, 1, 5, 10, 20, and 30 ng/mL of pure caffeine. The x-axis is concentration in ng/mL and the y-axis is the 
response. The linear equation to describe the calibration is y = 256551x – 452149. The R2 = 0.9709. 
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Figure A2. The calibration curve for ibuprofen using six standards on the Ojeda Lab GC-MS. Calibration levels 
included 0.5, 1, 5, 10, 20, and 30 ng/mL of pure ibuprofen. The x-axis is concentration in ng/mL and the y-axis is 
the response. The linear equation to describe the calibration is y = 89053x – 37582. The R2 = 0.9479. 
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Field and Lab Data 
This section includes all pertinent data collected in the field, in the lab, and from samples sent off for analysis. 

Table A1. Pharmaceutical Data: Eurofins 

Data reported by Eurofins Analytical Lab is organized by site. Sites 3, 4, 7, and 9 were analyzed during the months of May, June, August, 
and September 2021. In total, 32 EC compounds were detected in our 16 water samples over 4 months. Eurofins laboratories uses LC-MS 
techniques for their Endocrine Disruptor suite of chemical analysis. The concentrations reported below are in ng/L. 

 
 

 
Date 

Site 
# 

1,7- 
Dimethylxanthine 

 
Acetaminophen 

 
Atenolol 

 
Atrazine 

 
BPA 

 
Bromacil 

 
Caffeine 

 
Carbamazepine 

 
DEA 

 
DEET 

 
DIA 

5/27/2021 3 - - - 100 - - 20 5.2 9.6 37 5.4 

7/29/2021 3 - - - 28 - - 31 - 18 - - 

8/26/2021 3 - - - - - - - - - - - 

9/30/2021 3 - - - - - - - - - - - 

5/27/2021 4 - - 8.3 80 19 5.5 17 6 - 66 - 

7/29/2021 4 - - - 22 37 - - - - - - 

8/26/2021 4 - 14 6.4 - - - 53 - - - - 

9/30/2021 4 7.9 29 6.6 15 - 6.7 100 6.3 - - - 

5/27/2021 7    280 - - 180 - 5.1 10 - 

7/29/2021 7 - - - 70 - - - - 74 - - 

8/26/2021 7 - - - - - - - - - - - 

9/30/2021 7 - - - - - - - - - - - 

5/27/2021 9 - - - - - - - - - - - 

7/29/2021 9 - - - - - - - - 220 - - 

8/26/2021 9 - - - - - - 26 - - - - 

9/30/2021 9 12 - - - - - 31 - - - - 
 

Date 
Site 

# 
 

Estradiol 
 

Ethylparaben 
Flumeq 

uine 
Ibuprofe 

n 
Iohexo 

l 
 

Lidocaine 
 

Metformin 
 

Metolachlor 
 

Naproxen 
 

OUST 
 
Phenazone 

5/27/2021 3 - - - - 340 12 - 10 - - - 

7/29/2021 3 - 20 21  240 5 - 6 - - 41 

8/26/2021 3 - - - - 120 - - - - - - 
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9/30/2021 3 - - - - 98 - - - 26 - - 

5/27/2021 4 - - - - 1400 17 - - - - - 

7/29/2021 4 - - - - 590 15 - 12 - - - 

8/26/2021 4 - - - - - 12 - - - 6.9 - 

9/30/2021 4 - - - - - 26 - - - - - 

5/27/2021 7 14 26 - 28 - - - - - - - 

7/29/2021 7 14 - 28 - - - 22 72 - - 52 

8/26/2021 7 - - - - - - - - - - - 

9/30/2021 7 - - - - - - - - - - - 

5/27/2021 9 13 24 - - - - - - - - - 

7/29/2021 9 - - 26 - - - - - - - 230 

8/26/2021 9 - - - - - - - - - - - 

9/30/2021 9 - - - - - 60 - - - - 14 
 

Date 
Site 

# 
 

Primidone 
 

Salicylic Acid 
 

Sucralose 
 
Sulfamethoxazole 

 
TCEP 

 
TCPP 

 
Theobromine 

 
Theophylline 

 
Thiabendazole 

 
Trimethoprim 

5/27/2021 3 - 300 710 15 - - - 12 7 - 

7/29/2021 3 - - 460 - 11 - - - - - 

8/26/2021 3 - - 490 - - - - - - - 

9/30/2021 3 - - 590 - - - - - - - 

5/27/2021 4 - - 1100 29 12 - - 18 - 6.6 

7/29/2021 4 - 300 690 14 - 230 - - - - 

8/26/2021 4 - - - 20 - - 120 - - - 

9/30/2021 4 6.8 - - 49 22 400 130 17 5.2 - 

5/27/2021 7 - 270 - - 14 380 - 13 - - 

7/29/2021 7 - - - - 12 - - - - - 

8/26/2021 7 - - - - - - - - - - 

9/30/2021 7 - - - - - - - - - - 

5/27/2021 9 - 710 - - - - - - - - 

7/29/2021 9 - - - - - - - - - - 

8/26/2021 9 - - - - - - 50 - - - 

9/30/2021 9 - - - - - 260 74 24 - - 
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Table 2A. Pharmaceutical Data: Ojeda Lab 

Data collected from SPE and GC-MS analysis in the Ojeda Lab. The detection limit for these 
techniques is around 10-15ng/L and none of our data meets that limit. All values reported below are in 
ng/L. 

 

Date Site # Ibuprofen Caffeine 

4/29/2021 1 0.566385 0.113277 

4/29/2021 2 0.132962 0.026592 

4/29/2021 3 0.27401 0.054802 

4/29/2021 4 2.695519 0.539104 

4/29/2021 5 0.430209 0.086042 

4/29/2021 6 0.321569 0.064314 

4/29/2021 7 0.125593 0.025119 

4/29/2021 8 0.639399 0.12788 

4/29/2021 9 0.117555 0.023511 

5/27/2021 1 0.185283 0.037057 

5/27/2021 2 0.236582 0.047316 

5/27/2021 3 0.479278 0.095856 

5/27/2021 4 0.11281 0.022562 

5/27/2021 5 0.839793 0.167959 

5/27/2021 6 0.10831 0.021662 

5/27/2021 7 0.168269 0.033654 

5/27/2021 8 0.084666 0.016933 

5/27/2021 9 0.084415 0.016883 

6/24/2021 1 0.226191 0.045238 

6/24/2021 2 0.135098 0.02702 

6/24/2021 3 0.123449 0.02469 

6/24/2021 4 0.087926 0.017585 

6/24/2021 5 0.185176 0.037035 

6/24/2021 6 0.11941 0.023882 

6/24/2021 7 0.704915 0.140983 

6/24/2021 8 0.128604 0.025721 

6/24/2021 9 0.096776 0.019355 

7/29/2021 1 0.298734 0.059747 

7/29/2021 2 0.66983 0.133966 

7/29/2021 3 0.136434 0.027287 

7/29/2021 4 0.133214 0.026643 

7/29/2021 5 0.110862 0.022172 

7/29/2021 6 0.612446 0.122489 

7/29/2021 7 0.232941 0.046588 

7/29/2021 8 0.103461 0.020692 

7/29/2021 9 0.202816 0.040563 

8/26/2021 1 0.131366 0.026273 

8/26/2021 2 0.827805 0.165561 
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8/26/2021 3 0.528495 0.105699 

8/26/2021 4 2.166583 0.433317 

8/26/2021 5 0.371315 0.074263 

8/26/2021 6 1.444935 0.288987 

8/26/2021 7 0.193088 0.038618 

8/26/2021 8 0.531868 0.106374 

8/26/2021 9 0.71287 0.142574 

9/30/2021 1 0.136668 0.027334 

9/30/2021 2 0.117463 0.023493 

9/30/2021 3 0.121004 0.024201 

9/30/2021 4 0.14538 0.029076 

9/30/2021 5 0.719074 0.143815 

9/30/2021 6 0.730197 0.146039 

9/30/2021 7 0.14032 0.028064 

9/30/2021 8 0.193569 0.038714 

9/30/2021 9 0.136536 0.027307 
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Table A3. Field and Lab Data 

These table reports field and lab measurements. Table A3 includes conductivity, pH water temperature, and dissolved oxygen were measure in the field 
at each site using an EXO Sonde probe. E. coli enumeration, nitrate-nitrogen, and ammonium-nitrogen were measured in the Ojeda Lab. Average total nitrogen 
and phosphorous were measured in Dr. Wilson’s Lab at Auburn Fisheries. EC data was reported by Eurofins Analysis. * indicates no data was collected for the 
sample point. 

 
 
 

Date 

 
 

Site 
# 

 
 

E. 
coli 

 
 

pH 

 
 

Water 
Temp. (°C) 

 
 

Conductivit 
y (μS) 

 
 

Dissolved 
Oxygen % 

Nitrate- 
Nitroge 

n 
(mg/L) 

 
Ammonia 
-Nitrogen 

(mg/L) 

Avg. 
Total 

Nitrogen 
(µg/L) 

 
Avg. Total 

Phosphorous 
(µg/L) 

 
1-Day 

Precipitatio 
n (mm/day) 

 
Total EC 

concentration 
(ng/L) 

 
 

Number of EC 
compounds 

4/29/2021 1 200.0 7.37 24.25 161.0 211.8 0.407 0.0389 527.81 33.46 0.00 * * 

4/29/2021 2 166.7 6.7 21.53 167.0 138.4 0.686 0.0273 788.54 56.73 0.00 * * 

4/29/2021 3 300.0 6.55 21.46 163.0 140.2 0.652 0.0213 750.80 59.81 0.00 * * 

4/29/2021 4 500.0 6.54 20.91 143.0 166.4 0.697 0.0178 833.07 101.79 0.00 * * 

4/29/2021 5 833.3 6.3 20.53 118.0 154.7 0.581 0.0122 765.65 77.05 0.00 * * 

4/29/2021 6 33.3 6.69 20.41 92.0 140.7 0.371 0.0098 285.03 45.28 0.00 * * 

4/29/2021 7 633.3 6.41 19.90 98.0 135.5 0.315 0.0090 422.35 43.80 0.00 * * 

4/29/2021 8 666.7 6.91 19.35 85.0 120.5 0.265 0.0086 391.73 44.79 0.00 * * 

4/29/2021 9 50.0 6.78 17.39 33.0 145.5 0.136 0.0090 39.46 44.66 0.00 * * 

5/27/2021 1 0.0 7.67 28.42 182.0 142.1 0.298 0.1910 495.18 110.40 0.00 * * 

5/27/2021 2 0.0 6.93 27.34 203.0 145.4 0.538 0.0838 606.29 116.20 0.00 * * 

5/27/2021 3 150.0 6.24 23.77 198.0 120.3 0.578 0.0570 750.64 125.00 0.00 1583.2 14 

5/27/2021 4 450.0 6.73 23.03 164.0 132.9 0.684 0.0249 812.81 210.20 0.00 2784.4 14 

5/27/2021 5 400.0 6.54 23.16 149.0 115.4 0.616 0.0317 918.07 142.20 0.00 * * 

5/27/2021 6 450.0 6.63 22.92 101.2 101.2 0.307 0.0190 430.55 93.80 0.00 * * 

5/27/2021 7 483.3 6.42 21.71 116.0 92.7 0.314 0.0061 411.16 83.20 0.00 1220.1 11 

5/27/2021 8 433.3 6.58 21.27 100.0 102.8 0.277 0.0000 473.02 84.50 0.00 * * 

5/27/2021 9 350.0 6.1 18.17 36.0 114.1 0.000 0.0000 84.91 81.70 0.00 747 3 

6/24/2021 1 0.0 7.5 27.61 107.4 127.2 0.518 0.0304 529.12 72.93 0.00 * * 

6/24/2021 2 316.7 7.6 23.89 55.7 101.3 0.598 0.0154 504.45 64.47 0.00 * * 

6/24/2021 3 216.7 7.59 23.46 113.4 109.6 0.566 0.0114 529.36 92.97 0.00 * * 

6/24/2021 4 300.0 7.44 22.69 91.2 100.5 0.393 0.0080 381.44 74.17 0.00 * * 
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6/24/2021 5 300.0 7.31 22.06 79.1 116.0 0.380 0.0081 355.24 96.56 0.00 * * 

6/24/2021 6 133.3 7.25 22.07 58.3 88.9 0.252 0.0083 223.44 82.54 0.00 * * 

6/24/2021 7 216.7 7.22 21.73 60.8 101.3 0.203 0.0082 232.53 66.34 0.00 * * 
 
 

Date 

 
 

Site 
# 

 

E. 
coli 

 
 

pH 

 
 

Water Temp. 
(°C) 

 
 

Conducti 
vity (μS) 

 
 

Dissolved 
Oxygen % 

Nitrate- 
Nitroge 

n   
(mg/L) 

 
Ammonia 
-Nitrogen 

(mg/L) 

Avg. 
Total 

Nitrogen 
(µg/L) 

 
Avg .Total 

Phosphorous 
(µg/L) 

 
1-Day 

Precipitatio 
n (mm/day) 

 
Total EC 

concentration 
(ng/L) 

 
 

Number of EC 
compounds 

6/24/2021 8 50.0 7.24 21.16 53.2 101.8 0.180 0.0083 252.57 54.27 0.00 * * 

6/24/2021 9 200.0 6.95 18.00 32.6 113.8 0.752 0.0081 95.65 42.71 0.00 * * 

7/29/2021 1 33.3 9.22 33.55 144.5 162.4 0.445 0.0370 395.57 49.46 0.00 * * 

7/29/2021 2 50.0 7.76 27.67 122.3 99.5 0.523 0.0322 521.30 66.46 0.00 * * 

7/29/2021 3 316.7 7.76 25.78 124.3 103.1 0.508 0.0289 508.82 58.21 0.00 881 11 

7/29/2021 4 116.7 7.97 25.89 151.5 102.8 0.593 0.0265 720.65 64.98 0.00 1910 9 

7/29/2021 5 50.0 7.99 24.85 140.9 89.9 0.577 0.0266 770.26 69.17 0.00 * * 

7/29/2021 6 100.0 7.7 25.47 114.9 95.6 0.390 0.0251 467.33 45.64 0.00 * * 

7/29/2021 7 183.3 7.6 24.28 130.6 90.5 0.421 0.0240 494.16 61.29 0.00 344 8 

7/29/2021 8 250.0 7.6 24.05 118.1 91.6 0.427 0.0226 377.48 42.44 0.00 * * 

7/29/2021 9 133.3 7.41 21.93 45.1 97.9 0.181 0.0220 60.19 39.73 0.00 476 3 

8/26/2021 1 579.4 9.18 30.93 142.0 146.7 0.593 0.0365 532.28 42.53 9.72 * * 

8/26/2021 2 0.0 7.98 27.46 143.1 95.2 0.650 0.0355 677.56 37.22 10.27 * * 

8/26/2021 3 0.0 8.24 27.46 143.3 105.5 0.585 0.0353 743.20 50.75 7.51 610 2 

8/26/2021 4 178.5 7.96 26.56 125.4 97.2 0.576 0.0369 788.61 80.46 6.14 112.3 7 

8/26/2021 5 12.0 7.7 25.51 14.3 87.9 0.615 0.0306 1034.68 69.84 0.00 * * 

8/26/2021 6 0.0 7.68 24.61 84.5 91.5 0.341 0.0310 467.58 16.99 15.20 * * 

8/26/2021 7 1.0 7.69 23.84 98.9 89.0 0.322 0.0252 633.69 24.33 15.63 0 0 

8/26/2021 8 2.0 7.54 23.58 88.6 90.3 0.336 0.0247 597.61 16.99 10.51 * * 

8/26/2021 9 0.0 7.36 21.71 37.1 96.3 0.175 0.0257 299.90 28.37 4.78 76 2 

9/30/2021 1 33.3 9.17 26.7 145.7 150.8 0.765 0.0364 472.073 63.080 0.00 * * 

9/30/2021 2 16. 7 8.76 25.4 195.4 126.3 0.824 0.0672 541.632 48.310 0.00 * * 

9/30/2021 3 150 8.34 22.446 203.9 107.5 0.923 0.0647 676.193 57.420 0.00 714 3 

9/30/2021 4 216. 7 8.31 21.475 177.8 107.4 0.922 0.0637 848.724 124.390 0.00 827.5 15 

9/30/2021 5 83.3 7.88 21.392 157.8 94.3 0.929 0.0623 1079.271 114.410 0.00 * * 

9/30/2021 6 200 7.81 20.773 121.6 94.7 0.493 0.0584 285.873 30.210 0.00 * * 
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9/30/2021 7 233.3 7.75 19.993 130.2 91.1 0.523 0.0567 379.732 32.550 0.00 0 0 

9/30/2021 8 383.3 7.62 20.059 114.6 92.4 0.433 0.0558 356.951 36.370 0.00 * * 

9/30/2021 9 216. 7 7.45 17.598 44.2 95.9 0.365 0.0529 20.091 31.690 0.00 475 7 
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Table A4. Field and Lab Data 

Table A4 reports field measurements including precipitation, fDOM, turbidity, discharge, and gage height. 
* Indicates no data collection at this sample point 

 
 
 

Date 

 
 

Site # 

 
fDOM 
CFU 

 
fDOM 
QSU 

 
 

Turbidity 

 
 

Pressure 

USGS 
Mean 

Discharge 

 
Mean Gage 

Height 

 
3 day 
precp 

 
7 day 
precp 

4/29/2021 1 * * * * * * 0 43.22 

4/29/2021 2 * * * * * * 0 40.55 

4/29/2021 3 * * * * * * 0 41.09 

4/29/2021 4 * * * * * * 0 41.71 

4/29/2021 5 * * * * * * 0 39.39 

4/29/2021 6 * * * * 478 18.53 0 40.99 

4/29/2021 7 * * * * * * 0 40.95 

4/29/2021 8 * * * * * * 0 32.82 

4/29/2021 9 * * * * * * 0 35.39 

5/27/2021 1 * * * * * * 0 0 

5/27/2021 2 * * * * * * 0 0 

5/27/2021 3 * * * * * * 0 0 

5/27/2021 4 * * * * * * 0.63 0.63 

5/27/2021 5 * * * * * * 1.16 1.16 

5/27/2021 6 * * * * 425 18.41 0.01 0.01 

5/27/2021 7 * * * * * * 0.01 0.01 

5/27/2021 8 * * * * * * 0 0 

5/27/2021 9 * * * * * * 0 0 

6/24/2021 1 13.30 39.44 8.07 752.1 * * 14 124.4 

6/24/2021 2 10.92 32.36 14.58 752.3 * * 12.27 94.07 

6/24/2021 3 8.23 24.41 14.74 752.2 * * 13.19 81.49 

6/24/2021 4 10.67 31.62 22.21 750.6 * * 20.65 88.35 

6/24/2021 5 9.58 28.41 27.84 750.7 * * 25.28 87.65 

6/24/2021 6 10.42 30.89 19.44 750.3 1550 20.36 27.06 90.17 

6/24/2021 7 10.39 30.79 19.78 749.7 * * 26.66 90.16 

6/24/2021 8 9.53 28.26 15.85 748.8 * * 27.41 104.86 
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6/24/2021 9 5.23 15.49 1.67 743.6 * * 33.58 106.33 

7/29/2021 1 7.04 21.49 3.65 749.4 * * 4.53 27.61 

7/29/2021 2 14.62 44.34 11.49 749.9 * * 8.2 44.92 

7/29/2021 3 14.71 44.63 15.34 750.5 * * 10.72 52.07 

7/29/2021 4 9.74 29.62 9.50 748.8 * * 21.21 32.42 

7/29/2021 5 9.32 28.35 10.98 748.6 * * 22.64 32.55 

7/29/2021 6 8.12 24.73 9.59 747.5 237 4.51 23.52 25.87 

7/29/2021 7 7.97 24.27 5.51 746.5 * * 23.03 25.51 

7/29/2021 8 7.02 21.43 5.38 746.1 * * 7.66 22.2 

7/29/2021 9 5.06 15.51 1.98 740.5 * * 0.91 1.59 

8/26/2021 1 8.20 24.80 5.81 752.0 * * 9.72 27.95 

8/26/2021 2 8.84 26.74 4.96 752.2 * * 10.27 20.47 

8/26/2021 3 9.81 29.65 8.95 752.2 * * 7.51 15.03 

8/26/2021 4 12.21 36.85 9.81 750.9 * * 6.14 18.86 

8/26/2021 5 5.20 15.85 332.25 750.6 * * 5.65 20.11 

8/26/2021 6 9.99 30.19 11.97 749.8 267 4.63 15.2 32.39 

8/26/2021 7 7.67 23.25 10.05 749.3 * * 15.63 32.06 

8/26/2021 8 9.34 28.23 6.87 748.4 * * 10.51 39.3 

8/26/2021 9 9.57 28.94 0.84 742.5 * * 4.78 92.84 

9/30/2021 1 10.22 30.89 14.25 751.3 * * 0 0 

9/30/2021 2 5.47 16.65 4.76 751.3 * * 0 0 

9/30/2021 3 6.24 18.97 6.51 751.5 * * 0 0 

9/30/2021 4 9.83 29.71 2.45 749.7 * * 0 0 

9/30/2021 5 9.14 27.65 4.35 749.4 * * 0 0 

9/30/2021 6 7.37 22.36 2.29 748.8 180 3.92 0 0 

9/30/2021 7 7.23 21.92 4 748.1 * * 0 0 

9/30/2021 8 6.93 21.02 2.55 747.2 * * 0 0 

9/30/2021 9 5.83 17.72 6.25 741.3 * * 0 0 
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Table A5. Metals Data 

These table reports trace metal analysis data. This data was collected by Auburn Geoscience Department’s 
ICP-MS Lab. All metals measured in ppb. Headers display atomic numbers and type of gas used in analysis 

 
 

 
Date 

 
Site 

# 

63 
Cu 
He 

 
9 

Be 

 
23 Na 

He 

 
24 Mg 

He 

 
27 Al 

He 

 
 

39 K He 

 
40 Ca 

H2 

 
51 V 
He 

52 
Cr 
He 

55 
Mn 
He 

 
56 Fe 

He 

59 
Co 
He 

60 
Ni 
He 

4/29/2021 1 0.7 0.0 2579.9 8385.6 16.9 1333.8 16648.8 0.4 0.0 5.4 28.2 0.3 0.0 

4/29/2021 2 0.5 0.0 2935.0 8872.1 20.1 1236.3 16992.1 0.3 0.0 1.8 43.0 1.4 0.2 

4/29/2021 3 0.4 0.0 3019.1 8739.4 22.6 1222.1 16544.7 0.3 0.0 2.2 66.1 0.3 0.0 

4/29/2021 4 0.5 0.0 4329.7 6741.9 31.9 1516.6 13456.1 0.3 0.0 3.2 121.6 1.0 0.3 

4/29/2021 5 0.5 0.0 2673.0 5836.0 42.3 1279.7 11977.3 0.3 0.0 2.3 154.6 0.8 0.2 

4/29/2021 6 0.0 0.0 1708.3 4849.7 40.0 989.7 9389.2 0.0 0.0 3.5 197.2 0.2 0.0 

4/29/2021 7 0.0 0.0 1625.8 5314.9 47.3 1063.7 10222.0 0.2 0.0 2.2 175.0 0.0 0.0 

4/29/2021 8 0.0 0.0 1596.3 4602.1 45.3 1022.2 8903.3 0.0 0.0 2.3 159.5 0.8 0.0 

4/29/2021 9 0.0 0.0 2099.8 1251.2 23.6 565.0 3181.9 0.0 0.0 1.2 82.1 0.0 0.0 

5/27/2021 1 1.3 0.0 2833.4 9386.5 23.9 1225.1 18674.9 0.5 0.1 42.5 27.8 0.7 0.3 

5/27/2021 2 0.6 0.0 2921.5 11062.1 7.1 1144.0 20919.3 0.4 0.1 3.0 18.0 0.3 0.1 

5/27/2021 3 1.9 0.0 2987.5 10902.6 32.0 1165.8 20711.3 0.6 0.2 43.1 113.8 0.1 0.2 

5/27/2021 4 1.3 0.0 4075.4 8793.0 24.9 1683.4 16756.7 0.3 0.2 34.5 136.2 0.8 0.3 

5/27/2021 5 1.1 0.0 3263.2 7737.7 24.9 1519.5 14768.0 0.3 0.2 42.2 174.5 0.5 0.2 

5/27/2021 6 0.8 0.0 1817.7 6131.0 17.4 1103.1 11803.0 0.2 0.0 43.2 176.2 0.0 0.2 

5/27/2021 7 0.8 0.0 1740.7 6330.3 24.4 1163.0 12120.6 0.2 0.1 56.4 207.9 0.2 0.1 

5/27/2021 8 0.5 0.0 1697.9 5528.7 18.0 1086.2 10630.4 0.2 0.0 47.0 176.3 0.6 0.1 

5/27/2021 9 0.3 0.0 2304.2 1362.5 6.6 606.2 3431.9 0.1 0.0 4.4 61.5 0.2 0.1 

6/24/2021 1 0.8 0.0 3527.9 4831.9 66.0 11424.7 9949.2 0.4 0.2 7.2 119.2 0.8 0.0 

6/24/2021 2 0.8 0.0 1915.8 5283.2 104.2 724.4 10685.1 0.5 0.2 30.7 202.8 0.2 0.1 

6/24/2021 3 0.6 0.0 1995.3 5130.2 89.0 -675.7 10444.3 0.4 0.3 10.8 174.3 0.0 0.1 

6/24/2021 4 0.6 0.1 2072.2 3892.6 90.3 -2052.2 7893.9 0.4 0.2 4.7 193.5 0.1 0.2 

6/24/2021 5 0.6 0.0 1668.5 3417.8 68.9 -1166.9 7148.8 0.3 0.2 6.3 181.0 0.0 0.2 

6/24/2021 6 0.3 0.0 1519.6 2490.9 79.3 -1604.3 4810.4 0.3 0.1 6.1 195.8 0.1 0.1 

6/24/2021 7 0.2 0.0 1329.7 2592.6 72.4 -1412.8 5064.3 0.3 0.1 8.5 180.5 0.0 0.1 
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6/24/2021 8 0.1 0.0 1291.2 2182.5 48.1 -2554.1 4236.1 0.2 0.1 8.4 148.9 0.7 0.0 

6/24/2021 9 0.1 0.0 1743.1 963.3 29.2 -2060.4 2280.3 0.1 0.1 3.2 69.9 0.2 0.0 

7/29/2021 1 0.6 0.0 2181.6 6860.6 8.3 1748.6 14091.1 0.5 0.0 0.5 11.1 0.1 0.1 

7/29/2021 2 1.2 0.0 2189.7 5645.0 151.2 2447.1 11092.6 0.5 0.1 24.4 276.1 -0.3 0.3 

7/29/2021 3 0.6 0.0 2440.7 5920.8 142.5 1337.7 11518.0 0.5 0.1 18.0 264.6 -0.4 0.3 

7/29/2021 4 0.5 0.0 3533.9 6878.4 46.6 966.6 13556.5 0.3 0.2 11.1 214.7 0.1 0.3 

7/29/2021 5 0.5 0.0 2496.4 6561.0 39.7 -1110.9 13348.4 0.3 0.1 15.2 240.9 -0.1 0.2 

7/29/2021 6 0.2 0.0 2003.0 5436.8 29.8 -3102.7 10521.2 0.2 0.0 20.0 272.8 0.6 0.2 

7/29/2021 7 0.1 0.0 1870.3 6451.2 30.6 -817.4 12375.9 0.2 -0.1 40.1 276.8 -0.1 0.1 

7/29/2021 8 0.4 0.0 1894.4 5633.3 7.1 6056.5 10769.3 0.2 0.0 32.3 202.9 0.2 0.2 

7/29/2021 9 0.0 0.0 2666.6 1402.0 6.4 -2914.4 3654.8 0.1 -0.1 2.8 69.2 -0.3 0.1 

8/26/2021 1 0.6 0.0 3241.5 7589.5 15.0 1550.6 16906.6 0.7 0.1 0.8 4.1 0.9 0.1 

8/26/2021 2 0.5 0.0 2956.8 8098.6 38.0 1300.3 17021.9 0.4 0.2 24.2 116.5 0.2 0.2 

8/26/2021 3 0.6 0.0 2917.7 8213.3 34.8 1263.0 16512.8 0.4 0.1 20.3 107.4 0.9 0.1 

8/26/2021 4 0.6 0.0 4176.6 6623.4 46.2 1628.2 13307.9 0.4 0.3 11.0 174.9 0.1 0.2 

8/26/2021 5 3.4 0.0 2974.7 5723.2 48.2 1597.2 11197.8 0.4 0.2 10.6 198.5 0.2 0.3 

8/26/2021 6 0.5 0.0 2065.3 4530.1 39.2 1109.1 9152.2 0.2 0.1 22.2 243.6 0.1 0.1 

8/26/2021 7 0.2 0.0 1876.8 5526.8 36.4 1225.7 11639.2 0.3 0.1 27.9 227.0 0.0 0.1 

8/26/2021 8 0.5 0.0 1842.3 4838.7 29.7 1234.5 9752.8 0.2 0.1 29.2 207.8 0.4 0.1 

8/26/2021 9 1.3 0.0 2332.1 1289.5 14.0 647.9 3642.1 0.1 0.1 3.7 93.7 0.5 0.1 

9/30/2021 1 0.5 0.0 3001.2 6628.6 11.8 2008.3 15831.1 0.7 0.1 1.0 11.9 0.1 0.1 

9/30/2021 2 0.5 0.0 3175.7 10629.6 25.8 2147.3 20233.1 0.4 0.1 0.8 53.3 0.1 0.1 

9/30/2021 3 0.3 0.0 3344.2 11205.7 29.2 1370.8 21403.3 0.4 0.2 19.9 91.4 0.1 0.1 

9/30/2021 4 0.5 0.0 5286.9 8646.5 30.2 1995.4 17031.0 0.3 0.2 10.8 148.5 0.1 0.3 

9/30/2021 5 0.7 0.0 675.2 8042.5 24.6 1998.1 15093.1 0.3 0.2 16.5 178.3 0.1 0.2 

9/30/2021 6 0.6 0.0 2016.4 6579.9 27.1 1883.5 12318.3 0.2 0.1 21.1 223.5 0.0 0.1 

9/30/2021 7 0.6 0.0 1854.0 6451.3 27.6 1835.9 12073.2 0.2 0.1 21.0 222.8 0.0 0.1 

9/30/2021 8 0.4 0.0 1854.3 7028.1 29.5 1247.5 13467.1 0.2 0.1 29.0 223.3 0.1 0.0 

9/30/2021 9 0.6 0.0 2554.5 7057.8 31.2 1196.9 14024.8 0.2 0.1 28.6 222.5 0.1 0.0 
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Table A6. Metals Data 

This table reports trace metal analysis data. This data was collected by Auburn Geoscience Department’s ICP-MS 
Lab. All metals measured in ppb. Headers display atomic numbers and type of gas used in analysis. Values reported 
were adjusted using the blanks in each sample set. This resulted in some negative values displayed in red text. * 
Indicates no data collected for that sample point. 

 

 
Date 

 
Site 

# 

66 
Zn 
He 

75 
As 
He 

78 
Se 
He 

95 
Mo 
He 

107 
Ag 
He 

111 
Cd 
He 

121 
Sb 
He 

137 
Ba 
He 

 
205 
Tl 

 
208 
Pb 

 
232 
Th 

 
238 
U 

 
56 Fe 

H2 

 
88 
Sr 

88 
Sr 
He 

4/29/2021 1 0.3 0.4 0.0 0.6 0.0 0.0 0.3 16.1 0.0 0.0 0.0 0.0 29.8 32.5 31.7 

4/29/2021 2 0.5 0.4 0.0 0.6 0.0 0.0 0.3 16.8 0.0 0.0 0.0 0.0 43.0 33.5 33.3 

4/29/2021 3 0.4 0.4 0.0 0.5 0.0 0.0 0.3 16.4 0.0 0.0 0.0 0.0 64.6 33.3 33.2 

4/29/2021 4 0.9 0.4 0.0 0.6 0.0 0.0 0.6 16.8 0.0 0.0 0.0 0.0 127.9 35.0 34.3 

4/29/2021 5 0.5 0.3 0.0 0.4 0.0 0.0 0.0 18.7 0.0 0.0 0.0 0.0 160.6 36.5 35.3 

4/29/2021 6 0.4 0.3 0.0 0.0 0.0 0.0 0.0 15.2 0.0 0.0 0.0 0.0 197.4 32.0 31.9 

4/29/2021 7 0.2 0.3 0.0 0.0 0.0 0.0 0.0 16.7 0.0 0.0 0.0 0.0 178.6 34.3 34.2 

4/29/2021 8 0.0 0.2 0.0 0.0 0.0 0.0 0.0 16.0 0.0 0.0 0.0 0.0 157.6 33.0 33.1 

4/29/2021 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.8 0.0 0.0 0.0 0.0 80.8 26.2 25.9 

5/27/2021 1 4.3 0.6 0.1 0.3 0.0 0.0 0.3 22.0 0.0 0.1 0.0 0.1 27.3 36.3 36.5 

5/27/2021 2 0.0 0.4 0.1 0.4 0.0 0.0 0.3 18.6 0.0 0.0 0.0 0.2 17.7 38.2 37.9 

5/27/2021 3 3.5 0.4 0.1 0.4 0.0 0.0 0.3 20.4 0.0 0.4 0.1 0.2 116.6 38.6 37.7 

5/27/2021 4 7.0 0.4 0.1 0.5 0.0 0.0 0.3 22.0 0.0 0.2 0.0 0.1 136.9 40.5 40.5 

5/27/2021 5 6.8 0.4 0.1 0.3 0.0 0.0 0.0 22.5 0.0 0.3 0.0 0.1 180.2 42.0 41.3 

5/27/2021 6 3.6 0.3 0.1 0.0 0.0 0.0 0.0 19.5 0.0 0.1 0.0 0.1 178.8 36.4 35.9 

5/27/2021 7 4.8 0.2 0.1 0.0 0.0 0.0 0.0 22.0 0.0 0.2 0.0 0.1 212.0 38.3 37.9 

5/27/2021 8 3.1 0.2 0.1 0.0 0.0 0.0 0.0 19.8 0.0 0.1 0.0 0.1 181.1 37.2 36.6 

5/27/2021 9 4.2 0.2 0.1 0.0 0.0 0.0 0.0 8.9 0.0 0.0 0.0 0.0 63.4 27.0 26.6 

6/24/2021 1 0.2 0.6 0.1 0.3 3.1 0.0 0.1 17.0 0.0 0.1 0.0 0.0 124.9 22.4 22.0 

6/24/2021 2 1.2 0.5 0.1 0.3 -3.4 0.0 0.1 15.6 0.0 0.2 0.0 0.1 214.0 23.2 22.9 

6/24/2021 3 0.2 0.4 0.1 0.2 -4.1 0.0 0.2 14.6 0.0 0.2 0.0 0.1 202.2 22.6 21.5 

6/24/2021 4 0.1 0.4 0.1 0.2 -6.3 0.0 0.1 14.4 0.1 0.2 0.1 0.1 219.3 27.8 23.1 

6/24/2021 5 2.7 0.4 0.1 0.1 -5.8 0.0 0.0 14.0 0.0 0.2 0.0 0.0 198.3 21.3 20.6 

6/24/2021 6 0.9 0.3 0.0 0.1 -4.2 0.0 0.0 11.9 0.0 0.1 0.0 0.0 208.0 18.1 17.6 

6/24/2021 7 0.0 0.3 0.0 0.1 -4.7 0.0 0.0 12.1 0.0 0.1 0.0 0.0 204.8 19.1 18.2 
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6/24/2021 8 0.0 0.2 0.0 0.0 -5.6 0.0 0.0 11.0 0.0 0.1 0.0 0.0 161.1 17.9 16.9 

6/24/2021 9 1.0 0.2 0.1 0.1 -5.5 0.0 0.0 6.9 0.0 0.0 0.0 0.0 73.7 19.1 18.1 

7/29/2021 1 -2.6 0.6 0.1 0.4 -3.8 0.0 0.2 18.1 0.0 0.0 0.0 0.1 * * * 

7/29/2021 2 0.4 0.5 0.1 0.2 -1.3 0.0 0.2 16.3 0.0 0.2 0.0 0.1 * * * 

7/29/2021 3 0.0 0.5 0.1 0.2 -2.6 0.0 0.1 15.9 0.0 0.2 0.1 0.1 * * * 

7/29/2021 4 -1.1 0.5 0.1 0.3 -3.2 0.0 0.2 19.7 0.0 0.1 0.0 0.1 * * * 

7/29/2021 5 -0.6 0.5 0.1 0.2 -3.3 0.0 0.0 19.8 0.0 0.4 0.0 0.1 * * * 

7/29/2021 6 -1.5 0.4 0.0 0.0 -4.5 0.0 0.0 17.6 0.0 0.1 0.0 0.1 * * * 

7/29/2021 7 -2.0 0.3 0.0 0.0 -3.1 0.0 0.0 20.8 0.0 0.0 0.0 0.1 * * * 

7/29/2021 8 -0.3 0.3 0.0 0.0 -3.2 0.0 0.0 17.8 0.0 0.1 0.0 0.0 * * * 

7/29/2021 9 -2.2 0.2 0.0 0.0 -3.3 0.0 0.0 8.1 0.0 0.0 0.0 0.0 * * * 

8/26/2021 1 -0.3 0.8 0.1 0.5 0.0 0.0 0.3 18.8 0.0 0.0 0.0 0.1 * * * 

8/26/2021 2 0.2 0.5 0.1 0.4 0.0 0.0 0.3 16.7 0.0 0.1 0.0 0.1 * * * 

8/26/2021 3 0.3 0.5 0.1 0.5 0.0 0.0 0.3 15.5 0.0 0.2 0.0 0.1 * * * 

8/26/2021 4 0.4 0.5 0.1 0.6 0.0 0.0 0.4 17.9 0.0 0.1 0.0 0.1 * * * 

8/26/2021 5 4.8 0.5 0.1 0.4 0.0 0.0 0.0 17.1 0.0 0.1 0.0 0.1 * * * 

8/26/2021 6 0.8 0.4 0.0 0.1 0.0 0.0 0.0 14.3 0.0 0.1 0.0 0.0 * * * 

8/26/2021 7 0.0 0.4 0.1 0.1 0.1 0.0 0.0 17.6 0.0 0.1 0.0 0.1 * * * 

8/26/2021 8 -0.1 0.3 0.0 0.1 0.0 0.0 0.0 16.7 0.0 0.1 0.0 0.0 * * * 

8/26/2021 9 2.2 0.3 0.1 0.1 0.0 0.0 0.0 8.2 0.0 0.0 0.0 0.0 * * * 

9/30/2021 1 0.0 0.7 0.1 0.4 0.2 0.0 0.2 24.0 0.0 0.0 0.0 0.1 * * * 

9/30/2021 2 0.0 0.4 0.1 0.5 0.2 0.0 0.3 17.4 0.0 0.1 0.0 0.2 * * * 

9/30/2021 3 0.0 0.4 0.1 0.5 0.1 0.0 0.3 17.9 0.0 0.1 0.0 0.2 * * * 

9/30/2021 4 0.0 0.4 0.0 0.4 0.3 0.0 0.9 -5.3 0.0 0.1 0.0 0.1 * * * 

9/30/2021 5 0.7 0.4 0.0 0.0 0.1 0.0 0.0 1.7 0.0 0.1 0.0 0.1 * * * 

9/30/2021 6 2.2 0.3 0.0 -0.3 0.2 0.0 0.0 -0.5 0.0 0.1 0.0 0.1 * * * 

9/30/2021 7 2.4 0.3 0.1 -0.3 0.2 0.0 0.0 22.5 0.0 0.1 0.0 0.1 * * * 

9/30/2021 8 0.0 0.3 0.1 0.1 0.1 0.0 0.0 17.5 0.0 0.1 0.0 0.1 * * * 

9/30/2021 9 0.0 0.3 0.1 0.4 0.1 0.0 0.0 18.9 0.0 0.0 0.0 0.1 * * * 
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Table A7. Land Use Land Cover Data 

This table reports the cell count for each site by type of land use. These cell counts were used to calculate 
percent land use for categories including developed, forested, and agricultural for each sites pour-point 
watersheds. This data was collected in ArcPro using the Summarize Within Raster tool. 

 

 
Site 

# 

 
Open 
Water 

Developed 
Open 
Space 

Developed 
Low 

Intensity 

Developed 
Medium 
Intensity 

 
Developed 

High Intensity 

 
Deciduous 

Forest 

 
Evergreen 

Forest 

 
Mixed 
Forest 

1 0 179 0 0 0 9729 4209 1635 

2 2021 7676 438 199 81 157111 56676 25785 

3 257 6357 990 102 4 47013 13462 5939 

4 1047 4435 1111 106 0 69916 23345 7141 

5 637 35313 22448 10332 4567 61050 14026 7766 

6 368 22659 5511 2280 978 72313 32008 7916 

7 2645 34454 7927 4267 1691 172654 102024 23522 

8 298 3205 1077 371 151 11875 8784 3727 

9 15 47 24 5 0 59 82 11 

Site 
# 

Barren 
Land 

Shrub 
Scrub 

 
Herbaceous 

 
Hay Pasture 

Cultivated 
Crops 

Woody 
Wetlands 

Emergent Herbaceous 
Wetlands 

1 0 141 0 0 0 0 0  

2 111 7834 5724 24325 4521 471 113  

3 104 1600 2456 18500 1925 498 67  

4 137 453 1735 8821 1021 456 355  

5 594 2777 4576 18258 273 1087 112  

6 615 6147 4879 12611 2003 465 127  

7 795 16465 18608 78628 25077 5129 997  

8 101 1984 2259 8258 1812 961 68  

9 0 4 16 161 0 0 0  
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Pour Point Maps 
This section includes the watershed maps of the study area created in ArcPro. Each sample point has its 
own watershed boundaries created based on the pour points of the region. The Choccolocco Creek flows 
from the northeast to the southwest (site 9 is near the headwaters and site 1 is near the confluence with 
major drainage basin). 

Figure A3. Land use cover pour point map. Land use data collected from the National Land Cover 
Database. The sample points and wastewater treatment plants are illustrated. The black lines define the 
pour point watersheds for each sample point. 
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Figure A4. Septic system pour point map. The sample points, septic tank systems, and wastewater 
treatment plants are illustrated by circles, triangles, and dots, respectively. The black lines define the pour 
point watersheds for each sample point. 
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Hydrograph 
This section contains a hydrograph for Choccolocco Creek at site 6. 

Figure A5. This graph shows the USGS discharge data at site 6. The red arrows indicate when sampling took place. 
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