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Abstract 

 

 

 There still exist gaps in the literature regarding how intrinsic factors influence 

recruitment success and mate selectivity in white-tailed deer (Odocoileus virginianus). We 

examined a captive population of white-tailed deer from 2008 to 2019 to compare annual 

recruitment data to maternal age, body size, and past reproductive history. Our second objective 

examined characteristics of mated pairs that recruited fawns. Recruitment was significantly 

influenced by age, recruitment success the previous year, and an interaction between age and 

body size, indicating there are differences in quality of female deer and different reproductive 

strategies depending on age and body size. There were significant positive relationships for age 

and body size in mated pairs; however, large differences in age were still observed in some 

mated pairs. Furthermore, we documented positive assortative mating, but the mating system 

was dynamic, and selectivity likely changes with herd demographics. 
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Chapter 1: Influence of maternal characteristics and reproductive history on recruitment 

in an iteroparous ungulate  

Abstract 

In reproductive dynamics, recruitment is a critical biological process to ensure 

populations remain viable. While extrinsic factors such as predation and environmental factors 

have been found to strongly influence recruitment, there are still literature gaps on how maternal 

factors such as age, body size, and past reproductive history influence recruitment. We examined 

a captive population of white-tailed deer (Odocoileus virginianus) with a known pedigree 

exhibiting natural breeding behavior from 2008 to 2019, and compared annual recruitment data 

of individuals relative to maternal age, a lifetime body size percentile (LBP), and a mother’s past 

reproductive history. We found that recruitment success increased up to 6.5 years of age, at 

which it peaked, before declining in older age classes. We found that age and LBP had a 

significant interaction where large-bodied females had high recruitment success at younger ages 

and small-bodied females had high recruitment success at older ages. Interestingly, we observed 

that if a female successfully recruited a fawn the year prior, she recruited 1.46 times as many 

fawns then females that did not recruit a fawn the year prior (P = 0.035). We documented 40 

individuals (47% of mothers) that recruited fawns in consecutive years at least once in their 

lifetime, and those individuals recruited 75.3% of all fawns during the study. Our findings 

suggest that white-tailed deer vary in reproductive strategy, dependent on body size, and a 

minority of females in a population successfully recruit a majority of the fawns into the breeding 

population. 
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Introduction  

Recruitment is a highly important biological process in population dynamics of 

vertebrates. While its meaning depends on the context of the study, its broad definition is defined 

as the addition of new individuals to a population (Gaillard et al. 2008). Most research in 

mammalian ecology examines reproductive recruitment, which focuses on the addition of 

juveniles to the breeding portion of the population. Reproductive recruitment can have much 

more pronounced effects on population growth and stability than other measurable parameters 

such as adult mortality (Gaillard et al. 2000), with population declines or little to no growth in 

multiple mammalian taxa largely being attributed to low reproductive recruitment (Testa 1987; 

Festa-Bianchet et al. 1994; Unsworth et al. 1999; Wauters et al. 2004; Reed and Slade 2008).  

When examining influences on population dynamics, juvenile survival (e.g., recruitment) 

is often the most sensitive population parameter to extrinsic or intrinsic factors (Eberhardt 1977; 

Gaillard et al. 1998). In ungulates, numerous studies have examined how extrinsic factors like 

population density (Clutton-Brock et al. 1987; Festa-Bianchet and Jorgenson 1998; Gilbert and 

Raedeke 2004; Robinson et al. 2006), predation (Festa-Bianchet et al. 1994; Jarnemo and Liberg 

2005; Berger and Connor 2008; Creel et al. 2011), resource availability (Julander et al. 1961; 

Wilson et al. 2002; McDonald 2005; Monteith et al. 2014), anthropogenic habitat alteration 

(Nellemann and Cameron 1998; McLoughlin et al. 2003), and weather (Simpson et al. 2007; 

Shalmon et al. 2021) affect recruitment, while intrinsic factors such as maternal body weight or 

age have been examined as to how they affect fecundity (Schwartz and Hundertmark 1993; 
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Birgersson and Ekvall 1997; Weladji et al. 2003; Morin et al. 2016; Flajšman et al. 2017). 

Similarly, in white-tailed deer (Odocoileus virginianus) a plethora of studies have examined 

effects of maternal characteristics on ability of a female to produce fawns, and findings indicate 

fecundity is associated positively with maternal body size and age (Verme 1969; Roseberry and 

Klimstra 1970; Haugen 1975; Ozoga 1987; Green et al. 2017). However, few studies have 

examined how these maternal characteristics influence ability to successfully recruit fawns. It 

has been well documented that fawn recruitment can be negatively impacted by extrinsic factors 

such as predation (Nelson and Mech 1986; Kilgo et al. 2010; Jackson and Ditchkoff 2013; Fortin 

et al. 2015; Gulsby et al. 2015), insects (Bolte et al. 1970; Logan 1973; Allen et al. 1997), 

disease (Carroll and Brown 1977), population density (Dusek et al. 1989; Fryxell et al. 1991; 

Keyser et al. 2005), food restriction during gestation and lactation (Mech 2007; Therrien et al. 

2007; Aubin et al. 2022), landscape characteristics (Wright et al. 2019; Grovenburg et al. 2012), 

and environmental effects such as precipitation (Ginnett and Young 2000; Warbington et al. 

2017) and extreme temperatures (Grovenburg et al. 2012; Michel et al. 2018). But regarding 

intrinsic factors, few studies have been conducted and have primarily provided only descriptive 

information of recruitment rates comparing yearlings to adult females (Gavin 1979; Dusek et al. 

1989; Nixon and Etter 1995).  

Reproductive history of a female is another intrinsic factor to consider when assessing 

influences on recruitment; however, literature is generally lacking on its influence on subsequent 

reproduction in ungulates. It is well known that lactation is a costly component of reproduction 

in white-tailed deer (Oftedal 1985; Robbins 1993; Hewitt 2011) and other mammals, and 

successful rearing of a fawn can negatively impact condition of an individual going into the next 

breeding season (Therrien et al. 2007; Ayotte et al. 2019). While effects on ability to recruit 
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fawns during subsequent seasons have yet to be examined in white-tailed deer, several studies in 

other ungulate species have suggested that successful recruitment negatively impacts subsequent 

reproductive events (Clutton-Brock and Coulson 2002; Moyes et al. 2006; Martin and Festa-

Bianchet 2010; Rughetti et al. 2015).   

In this study, we examined reproductive patterns of adult, female white-tailed deer in a 

captive herd that exhibited natural breeding behavior and was exposed to conditions that would 

normally influence juvenile recruitment. Because of the captive aspect of the herd, we had access 

to detailed information concerning previous reproductive history, body measurements, and other 

intrinsic factors that could influence reproductive performance. Our specific objectives were to 

determine how maternal age, body size, and reproductive history influenced recruitment success, 

both individually, and in combination. We predicted female age and body size would both 

positively influence recruitment, while successfully recruiting a fawn would negatively influence 

subsequent ability to recruit fawns. 

Materials and Methods 

Study Area 

 The white-tailed deer examined in this study were from a captive herd at the Auburn 

Captive Facility (ACF) located in Camp Hill, Alabama. The facility was 174 ha and was 

surrounded by a 2.6 m fence. The population within ACF ranged annually from 71–139 

individuals, and all individuals were descendants of the wild herd that was in the area when the 

fence was constructed in 2007. No deer were introduced to the population, and the herd was not 

subjected to hunting. While fawn predation was not actively documented, coyotes (Canis 

latrans) and bobcat (Lynx rufus) were occasionally present within ACF.  
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 Land cover types within the facility consisted primarily of open fields (40%) for hay 

production and mixed forests (60%) with oak (Quercus spp.), sweetgum (Liquidambar 

styraciflua), hickory (Carya spp.), and loblolly pine (Pinus taeda) being the primary tree species 

found within the facility. Active habitat management was conducted using prescribed fire. 

Unburned areas contained naturally regenerated thickets consisting of blackberry (Rubus spp.), 

eastern red cedar (Juniperus virginiana), and Chinese privet (Ligustrum sinense). The 

predominant grass species in open fields of the facility was Bermuda grass (Cynodon dactlyon), 

but other grasses included several species of fescue (Festuca spp.), big bluestem (Andropogon 

gerardi), Johnson grass (Sorghum halepense), dallisgrass (Paspalum dilatatum), and bahia grass 

(P. notatum). The elevation within ACF ranged from 190–225 m above sea level, and the climate 

was classified as humid subtropical with a temperature throughout the year ranging from an 

average low of -0.5°C to an average high of 32.5°C, with annual precipitation around 137 cm 

(NOAA National Centers for Environmental information 2022). The facility had two creeks and 

natural springs that provided water. Supplemental feed and food plots were available within the 

fence. Three protein feeders were available ad libitum to deer all year and contained pellets that 

were 18% protein (Record Rack®, Nutrena Feeds; Minneapolis, MN). Food plots were planted 

with differing warm and cool season forages to supplement herd nutrition. Whole corn (Zea 

mays) was provided in the fall and winter through three timed feeders to attract deer for capture 

purposes (Newbolt et al. 2017).  

Capture Techniques  

From 2008 through 2013, deer were captured using two possible methods: a capture 

facility or cartridge-fired dart guns. The capture facility was 0.8 ha, allowed for capture of 

multiple individuals in one trapping effort, and is further described by Neuman et al. (2016).  
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Beginning in 2014, all deer were captured during mid-September to mid-March using dart guns 

over feeders. Dart guns were fitted with night vision scopes and fired telemetry darts using .22 

caliber blanks (Kilpatrick et al. 1996). Telemetry darts (2.0 cc, type C, Pneu-Dart Inc., 

Williamsport, PA) contained a mixture of Telazol® (at a concentration of 125mg/ml and given at 

a rate of 2.2mg/kg) and Xylazine® (at a concentration of 100mg/ml given at a rate of 2.2mg/kg; 

Miller et al. 2003). Deer were not darted until at least 6 months of age to ensure minimal chance 

of capture related mortality from the tranquilizer mixture and due to the research objectives of 

the study focusing only on deer that had reached recruitment age (6 months of age). If a fawn 

was accidentally darted and later determined to not have survived to recruitment age it was 

excluded from further analysis. 

 Once a deer was observed at a feeder, a dart was shot into the hindquarter to ensure a 

safe and effective intramuscular injection of the sedative mixture (Kilpatrick et al. 1996).  The 

dart was equipped with a transmitter that allowed for tracking of the immobilized deer using 

VHF radiotelemetry with a receiver and 3-element Yagi antenna (Kilpatrick et al. 1996). Once 

all samples and data were collected, Tolazoline® (1.5 mL/45.36 kg) was administered 

intramuscularly in the hindquarter and front shoulder to reverse sedation (Miller et al. 2004).  

Data Collection  

All deer were given a unique six-digit identification number and aged using the tooth 

replacement and wear technique (Severinghaus 1949). Deer aged 1.5 years old were considered 

to be known age because of the high accuracy of this technique with these age classes (Gee et al. 

2002). We measured three skeletal body size measurements using a flexible measuring tape. The 

measurements were body length (tip of the snout to the proximal end of the tail, following a 

straight line along the backbone), chest girth (circumference of the chest directly posterior of the 
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front legs), and hind foot length (measured from the tip of the hoof to the posterior end of the 

tuber calcis; Neuman et al. 2016). Ectoparasite counts (Ixodes scapularis, Amblyomma 

Americanum, A. maculatum, Rhipicephalus sanguineus, Dermacenter variabilis, Lipoptema 

mazamae) were conducted at six specific locations on sedated animals: left and right ear, left and 

right eye, a 10 x 10 cm location on the sternum, and the anus. Many individuals in the population 

were captured multiple times throughout their lifetime. This allowed for collection of up-to-date 

information and more accurate estimates of skeletal body size and ectoparasite counts over an 

individual’s lifetime. To obtain a tissue sample for genetic analysis we used a notching tool to 

remove a 1-cm2 tissue sample from the ear. Tissue samples were placed in a Cryule plastic 

cryogenic vial (Wheaton, Millville, NJ) and properly labeled for identification. All vials were 

then placed in a -80° C freezer for preservation as recommended by Shabihkhani et al. (2014) for 

long-term storage of protein and genetic samples. All animal handling and research in this study 

was approved by the Auburn University Institutional Animal Care and Use Committee (PRN 

2008-1417; PRN 2008-1421; PRN 2010-1785; PRN 2011-1971; PRN 2013-2372; PRN 2014-

2521; PRN 2016-2964; PRN 2016-2985; PRN 2019-3599; PRN 2019-3623).  

Microsatellite Analysis and Parentage Assignment  

Tissues samples were sent to DNA Solutions (Oklahoma City, OK) for microsatellite 

marker analysis of 18 loci (e.g., Cervid1, BM6506, BM6438, INRA011, OarFCB193, N, Q, D, 

K, O; Anderson et al. 2002). Each of the 18 loci were examined for every individual at ACF to 

determine allele composition. We used the software program Parentage 1.1d (Huang 2018) to 

estimate allelic richness (El Mousadik and Petit 1996), gene diversity (Nei 1987), and the 

inbreeding coefficient (Weir and Cockerham 1984). Based off genetic diversity estimates we 

detected significant departures from Hardy-Weinberg equilibrium at 2 of the 18 loci (Table 1.1); 
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however, we still included these loci in our parentage analysis due to Parentage 1.1d accounting 

for null alleles and inbreeding (Dakin and Avise 2004; Huang et al. 2018).  

We created an annual list of candidate parents for ACF from 2008 through 2019 to 

account for all possible parents within ACF during a given breeding season. All females 6 

months of age were considered candidate mothers for a year based off detection of their ear tag 

ID through extensive camera surveys or visual observation. Female fawns were considered 

candidate mothers due to prior studies documenting reproduction in fawns (Nixon 1971; Rhodes 

et al. 1986; Verme and Ullrey 1984; Karns et al. 2014; Neuman et al. 2016). If an individual was 

not detected on camera or through observation for two years, they were assumed to be deceased 

and removed from the candidate list. 

 We only assigned parentage to individuals initially captured at 1.5 years of age to 

ensure with high probability that individuals were aged correctly using the tooth replacement and 

wear technique (Gee et al. 2002). We determined parentage of each annual cohort of recruited 

fawns using the likelihood-ratio method in a parent-pair analysis in Parentage 1.1d (Jones and 

Arden 2003; Huang et al. 2018). Confidence levels were determined by Parentage 1.1d based off 

critical levels of the delta statistic after conducting simulations (i.e., 10,000 iterations) using our 

annual candidate parent lists, an inbreeding coefficient of 0.074, a loci mistype error rate of 0.01, 

and an assumption that 90% of our population was sampled. Maternity was only confirmed if at 

minimum the pair confidence level was 95%, based off similar methods in prior studies (Neuman 

et al. 2016; Newbolt et al. 2017; Gomes 2020; Ivy-Israel et al 2020).  

Statistical Analysis  

 We examined annual recruitment success for all candidate mothers in the population from 

2008 through 2019 relative to age, body size, and reproductive history. Due to our inability to 
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capture each deer annually and collect body measurements every year, we calculated a lifetime 

body percentile and used this statistic as a surrogate for skeletal body size. Similar to Neuman et 

al. (2016), we pooled all total body measurements (hind foot, chest girth, and body length 

combined) across years, by age group, and determined an individual’s ranking within that age 

group (e.g., an individual in the 75th percentile out of 48 individuals at 1.5 years of age). If an 

individual had at least two body percentiles available during its lifetime, we calculated the 

percentile mean to create the lifetime body percentile which was then used as the body size score 

for that individual’s lifetime during the study period. 

We used a generalized linear model with a Poisson distribution (package lme4) in the 

software program R (version 4.0.2; R Core Development Team 2022) to evaluate recruitment 

success. Reproductive data were longitudinal and, as a result, the life history of each female was 

examined on an annual scale (e.g., all breeding seasons a female was a candidate parent) from 

2008 through 2019. Annual recruitment success, based off litter size of recruited fawns ( e.g., 

0,1,2,3), was the response variable and the predictor variables were Age, lifetime body percentile 

(LBP), and prior reproductive history. For prior reproductive history, we created two separate 

categorical predictor variables; examining if a female recruited a fawn the prior year (PRS) and 

if a female recruited a fawn during each of the two prior years (PRS2). Due to the substantial 

resource requirements of twin or triplet litters, we created a categorical predictor variable to 

account for females that recruited litter of ≥2 fawns the year prior (PL). Since the data were 

longitudinal, we included individual (ID) as a random effect to account for repeated 

measurements and to avoid potential pseudo-replication (Hurlbert 1984; Machlis et al. 1985). We 

also included a random effect for breeding season (Bszn) to account for annual variation in 

environmental factors. Each random effect had a fixed slope but varying intercepts. When 
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examining our global model, we excluded the 2008 breeding season for females that were born 

in 2006 or before because of our inability to determine if that female recruited a fawn in 2007. 

Our continuous variables, Age and LBP, were standardized (i.e., subtracted mean and divided by 

the SD) through scaling and centering in the program R, and were examined with a partial 

likelihood ratio test to see if the inclusion of quadratic effects were appropriate (Murtaugh 2009). 

To examine the differences among age groups, we split age into three categorical groups: young 

(0.5 to 1.5 years of age), prime-age (2.5 to 6.5 years of age), and old (7.5 to 13.5 years of age) 

based off prior reports that prime reproductive age in female white-tailed deer is from 3–7 years 

of age (Verme and Ullrey 1984). We tested for collinearity by calculating variance inflation 

factors (VIF) and chose a maximum VIF threshold of 3 (Zuur et al. 2010). We checked for 

overdispersion in our models (package blemco) and tested for zero-inflation (package 

glmmTMB, package performance). We also tested for possible interaction terms for our 

predictors using a partial likelihood ratio test. When comparing life history traits and 

characteristics between groups of individuals we used Welch Two Sample t-tests and Two 

Sample z-tests. 

Results 

We documented 383 recruited fawns from 2008 through 2019. Because we only 

determined maternity for known-aged individuals (captured at ≤1.5 years of age), we were only 

able to determine parentage for 309 of the recruited fawns, and were able to determine maternity 

at the 95% confidence level for 260 of the fawns, which were used for the analysis in this study. 

There were 86 known mothers during the study period out of 156 candidate mothers for a total of 

668 breeding season observations. There were 14 cases where a female fawn successfully 

recruited offspring and 24 cases of females ≥8.5 years old recruiting fawns; one female recruited 
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a fawn at 12.5 years of age (Table 1.2). We documented 45 twin litters and 3 triplet litters, and 

average maternal age for twin or triplet litters was 4.92 years (SE = 0.29). We observed 12 cases 

of multiple paternity (i.e., ≥2 litter involves more than one sire) where the paternity of both 

males could be determined at a trio pair confidence level of 95%, with 6 additional cases where 

the trio confidence level did not meet our minimum threshold for paternity. The average 

maternal age during a multiple paternity event was 5.58 years (SE = 0.72).  

A partial likelihood ratio test determined it was appropriate to include a quadratic effect 

for age (P < 0.001), but not LBP (P = 0.193), in our global model. We also determined it was 

appropriate to include an interaction term between our Age variables and LBP (P = 0.016). There 

was no evidence of overdispersion in our data (Dispersion Value = 0.96), and no evidence to 

account for zero inflation (Zero Inflation Ratio = 1.02). Before standardizing variables, 

collinearity was only detected for linear and quadratic Age (VIF: Age = 14.17, Age2 = 13.76). 

However, we deemed this to not be a concern due to the nature of high collinearity being 

detected for predictor variables when quadratic effects are applied (Chatterjee and Olkin 2006). 

The random effect for breeding season (Bszn) was not significant and we excluded it from 

further analysis. The random effect for individual (ID) was also not significant but was retained 

in analysis due to repeated measurements.  

Because some individuals did not have a score for LBP, our global model had a reduced 

sample size of 249 breeding season observations from 37 individuals. We found no relationship 

between annual fawn recruitment and LBP (P = 0.348), PRS (P = 0.564), PRS2 (P = 0.621), or 

PL (P = 0.782; Table 1.3). However, we did find a significant relationship between annual fawn 

recruitment and linear (P = 0.045) and quadratic Age (P < 0.001). Examining our interaction 

terms, we found annual fawn recruitment had a significant relationship with our interaction term 
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between linear Age and LBP (P = 0.005), but not quadratic Age and LBP (P = 0.415). Running 

predictions based off significant terms, we found that individuals with a greater percentile score 

(larger body size) had greater recruitment success (predicted number of annual recruited 

offspring) at younger ages (0.5 to 4.5 years of age) compared to individuals with lesser percentile 

scores (Figure 1.1). However, we found that an inflection point occurred between 4.5 and 5.5 

years of age, where older individuals (5.5 to 12.5 years of age) with lesser percentile scores had 

greater recruitment success than individuals with greater percentile scores (Figure 1.1). Including 

the random effect ID did not show significant variation within the model (Variance < 0.001).  

To include individuals with no body size scores, we reran our analysis with a model 

excluding LBP, which resulted in 629 individual breeding season observations for 149 

individuals. We found no relationship between annual fawn recruitment and PRS2 (P = 0.948) or 

PL (P = 0.927, Table 1.4). PRS was found to have a near-significant positive trend (P = 0.063) in 

our model, and when PRS2 was excluded to increase sample size, we found PRS had a 

significant positive effect on recruitment success. If a female recruited a fawn the prior year, she 

recruited 1.46 times as many fawns then females who did not recruit a fawn the prior year (P = 

0.035). We also found a significant relationship between annual fawn recruitment and linear Age 

(P < 0.001) and quadratic Age (P < 0.001). As age increased, the annual predicted number of 

recruited fawns increased until it peaked at 5.5 to 6.5 years of age at 0.85 recruited fawns, then 

decreased (Figure 1.2). Including the random effect ID did not show significant variation within 

the model (Variance = 0.010).  

When rerunning our analysis with just our Age variables we had 668 individual breeding 

season observations for 156 individuals. Similar to our previous findings, both linear and 

quadratic Age were significant (P < 0.001), and our predicted peak annual recruitment occurred 
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from 5.5-6.5 years of age (Figure 1.2). When dividing Age into categorical groups, prime-age 

adults recruited 2.71 times as many fawns as young adults (P < 0.001), and old adults recruited 

2.17 times as many fawns as young adults (P < 0.001, Table 1.5). Changing the reference group 

to old adults we found prime-age adults recruited 1.25 times as many fawns as old adults; 

however, this relationship was not statistically significant (P = 0.192). Including the random 

effect ID did not show significant variation within the model (Variance = 0.10). 

Because PRS had a significant positive effect on annual fawn recruitment, we examined 

females who recruited fawns in consecutive seasons at least once in their lifetime (hereafter 

called consecutive recruiters). There were 40 known consecutive recruiters within ACF (46.5% 

of known mothers), with 19 of them consecutively recruiting fawns multiple times within their 

lifespan. Of 260 fawns, maternity of 75.3% (196 fawns) was assigned to mothers who recruited 

consecutively at least once in their life. Among the 36 females in ACF known to have twin or 

triplet litters, 28 (78%) were consecutive recruiters. Of the consecutive recruiters, 12 individuals 

consecutively recruited fawns at least 3 different times during their lifetime with 3 individuals 

recruiting at least one fawn for five straight years. There were some noteworthy individuals. 

Beginning at 2.5 years of age, one female recruited at least one fawn per reproductive season for 

7 consecutive seasons. Another females recruited a triplet litter at 6.5 years old, then recruited a 

twin litter the subsequent year. From the age of 2.5 to 10.5 one female recruited nine fawns. 

When comparing life history traits between consecutive recruiters and other females, we found 

consecutive recruiters lived 5.2 years longer (P < 0.001), recruited the first fawn of their 

reproductive lifespan 0.92 years earlier (P = 0.030), and recruited their last fawn 4.3 years later 

(P < 0.001) than females who never recruited fawns in consecutive years (Table 1.6). 

Furthermore, while not statistically significant, consecutive recruiters on average had a larger 
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LBP (P = 0.076) and a lower parasite count (P = 0.305) than other females. When examining 

known males that bred with both groups, we found that sires that bred with consecutive recruiters 

were on average 1-year younger than sires that bred with non-consecutive recruiters (P = 0.049), 

and there was no difference in male LBP (P = 0.913).  

Discussion  

The data did not fully support our original hypothesis that age would have a positive 

effect on recruitment success as age increased. Instead, our findings for age are consistent with 

other studies in mammals indicating that reproductive performance follows a parabolic 

curvature: increases with age, plateaus during prime age, and begins to decrease with advanced 

age with the onset of senescence (Gaillard et al. 2017). In white-tailed deer, reproductive 

performance has been found to increase with age (Mundinger 1981; Dusek et al. 1989; Neuman 

et al. 2016), likely due to improvement in physical capabilities of the female, fawning site 

selection, predator avoidance tactics (Ozoga and Verme 1986; Mech and McRoberts 1990), and 

a decreased likelihood of abandoning fawns during periods of stress (Langeau and Lerg 1976; 

Ozoga and Verme 1982; Ozoga et al. 1982; Smith 1987). Our observation that recruitment 

success began to decline at 7 years of age may provide evidence for the onset of reproductive 

senescence (Kirkwood and Austad 2000) in white-tailed deer from the standpoint of a decline in 

recruitment performance. Prior studies have yet to identify reproductive senescence in white-

tailed deer but have noted a decline in fecundity at 8–9 years of age (DelGiudice et al. 2007; 

Nixon and Mankin 2015; Ayotte et al. 2019). From the standpoint of observing different 

reproductive components regarding senescence, this may indicate that fertility persists longer 

than the ability to recruit fawns in white-tailed deer. Gaillard et al. (2017) noted several studies 

of mammalian taxa where reproductive declines occurred at different ages depending on what 
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aspect of reproduction was examined (e.g., pregnancy rate vs proportion of reared offspring). 

Declines in recruitment in accordance with age may be due to reduced litter size at advanced 

ages or reproductive pauses where recruitment success occurs in alternating years; a quality over 

quantity tactic similar to what Green and Rothstein (1991) observed in bison (Bison bison). Our 

evidence of the possible beginnings of senescence in white-tailed deer occurring around 7 years 

of age is similar to findings with other ungulates: 8 years of age in reindeer (Rangifer tarandus; 

Weladji et al. 2002), 8 years of age in soay sheep (Ovis aries; Robinson et al. 2006), 8 years in 

alpine chamois (Rupicapra rupicapra; Morin et al. 2016), 9 years in fallow deer (Dama dama; 

San José et al. 1999), 12 years of age in moose (Alces alces; Ericsson et al. 2001), and 9 years of 

age in red deer (Cervus elaphus; Nussey et al. 2006).  

Contrary to our original hypothesis, we did not find that body size had a significant 

positive effect on fawn recruitment. Instead, we found an interaction between age and LBP 

where larger body size had a positive impact on recruitment success at younger ages, with 

smaller individuals experiencing an increase in recruitment success at older ages. This suggests 

that white-tailed deer may undergo two separate life history strategies depending on body size, 

where smaller females delay reproduction to maximize skeletal growth during their first few 

years, whereas larger females maximize reproduction at younger ages. Attainment of maximum 

body size generally occurs in female white-tailed deer between 2.5 and 3.5 years of age 

(Ditchkoff et al. 1997, Strickland and Demarais 2000). Prior to that, a female undergoes a 

tradeoff: reproduce at the cost of somatic growth or delaying reproductive investment to ensure 

maximize growth and future residual reproductive value (Fisher 1930, Williams 1966; Pianka 

1976). In support of our findings, multiple studies in ungulates have found that increased body 

mass in young adult females resulted in increased reproduction due to an improved ability in 
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handling the costs of reproduction (Hewison 1996; Sand 1996; Monteith et al. 2014; Flajšman et 

al. 2017; Festa-Bianchet et al. 2019). Furthermore, in white-tailed deer, Michel et al. (2019) 

found that heavier primiparous mothers were able to allocate more resources towards 

reproduction through increased litter size and fawn weight relative to lighter primiparous 

mothers. Interestingly, we observed a decrease in recruitment success after 4.5 years of age in 

larger individuals. In iteroparous animals, high reproductive success at a young age may increase 

the onset of reproductive and survival senescence due to reduced subsequent body condition 

(Williams 1966; Stearns 1992) and accumulation of physiological damage and deterioration 

(Kirkwood 1977; Kirkwood and Rose 1991; McNamara et al. 2009). This follows a live fast, die 

young reproductive strategy (Bonduriansky et al. 2008), which in ungulates is more commonly 

described for males (Robinson et al. 2006; Lemaître et al. 2018; Gomes et al. 2021). Most 

evidence for decreased survival and an increased rate of reproductive senescence in females has 

been observed in birds (Gustafsson and Pärt 1990; Reid et al. 2003; Charmantier et al. 2006; 

Reed et al. 2008) and short-lived mammals (Descamps et al. 2006; Rubach et al. 2020) but 

several studies have observed this in iteroparous mammals (Reiter and Le Boeuf 1991; Hayward 

et al. 2014), including red deer (Nussey et al. 2006). Unfortunately, we did not measure body 

mass in our study and were unable to determine if there was a decline in condition past 4.5 years 

of age that may have contributed to decreased recruitment. 

Small-bodied individuals may undergo reproductive restraint (Curio 1983) at younger 

ages to ensure future reproductive value and their own survival while still undergoing somatic 

growth. Reproductive restraint follows a conservative strategy that has been observed in multiple 

ungulates through delaying age of primiparity or alternating years of reproductive success 

(Sæther and Haagenrud 1983; Green and Rothstein 1991; Kirkpatrick et al. 1993; Cameron 1994; 
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White et al. 1997). Therrien et al. (2007) found that female white-tailed deer with a restricted 

diet adopted a conservative strategy by favoring their own survival over that of their fawns. 

However, delaying age of primiparity to prolong body size growth has been found in other taxa 

to have a negative effect on lifetime reproductive success (Lindström 1999; Descamps et al. 

2006; Marcil-Ferland et al. 2013). As a result, once maximized body size is attained, smaller 

individuals need to attempt to maximize lifetime fitness through an increase in recruitment 

success.  

We observed that prior recruitment success (PRS) had a positive effect on subsequent 

recruitment, contrary to our original hypothesis. The nutritional demands and resource 

expenditure of rearing offspring is extremely high (Andersson et al. 1980; Clutton-Brock et al. 

1989), often leaving a female in suboptimal condition when entering the subsequent breeding 

season (Stearns 1992). Therrien et al. (2007) found that if a female white-tailed deer weaned a 

fawn the prior year, they gained less mass per day compared to females that did not, leading 

them to speculate that costs of prior reproduction could negatively impact subsequent 

reproduction. Similarly, reproductive declines have been observed after successfully rearing 

offspring the prior year in alpine ibex (Capra ibex; Rughetti et al. 2015), elk (Cervus elaphus; 

Morano et al. 2013), moose (Testa 2004), and red deer (Clutton-Brock and Coulson 2002; Moyes 

et al. 2006). However, similar to our findings, positive effects of prior reproduction have been 

observed in alpine chamois (Tettamanti et al. 2015), bighorn sheep (Ovis canadensis; Festa-

Bianchet 1989; Hamel et al. 2009a), mountain goat (Hamel et al. 2009a), northern elephant seal 

(Mirounga angustirostris; Le Boeuf et al. 2019), pronghorn (Antilocapra americana; Byers 

1997), reindeer (Weladji et al. 2008), roe deer (Capreolus capreolus; Hamel et al. 2009a), and 

soay sheep (Ovis aries; Clutton-Brock and Coulson 2002).  
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We believe that the ability to consecutively recruit offspring is due to individual 

differences in phenotypic quality. Hamel et al. (2009a) found in their multispecies study that 

high-quality individuals consistently had a greater likelihood of reproductive success in 

consecutive seasons while low-quality individuals continued to perform poorly. Our data 

indicates that our population contains high-quality and low-quality mothers, similar to findings 

in multiple taxa (Clutton-Brock 1988; McCleery et al. 2008; Moyes et al. 2009; Kennamer et al. 

2016). While we were unable to detect individual heterogeneity when using random effects, we 

observed significant differences in life history traits between groups; specifically, longevity and 

age of primiparity. The debate on what causes variation in individual fitness is still ongoing 

(Cam et al. 2016). Several studies in iteroparous mammals hypothesize that longevity brings 

maternal experience, in turn improving a mother’s quality (Byers 1997; Weladji et al. 2006; 

McLean et al. 2019); however, further research is warranted before any conclusion can be made 

on why we have high-quality individuals within our study population. We recommend future 

studies examine individual heterogeneity when examining lifetime reproductive success in 

regard to differences in life history traits, similar to methods in other studies (Hamel et al. 2009a; 

Hamel et al. 2009b; Desprez et al. 2018; McLean et al. 2019). 

An important consideration regarding our data is the ad libitum availability of 

supplemental feed in our study population, and the potential influence on body condition and 

recovery following successful recruitment of fawns. It is possible that the positive association 

between current and subsequent fawn recruitment was somewhat an artifact of the nutritional 

environment. For example, declines in fecundity and recruitment  the subsequent year have been 

observed in resource-limited populations of alpine ibex, caribou, and bighorn sheep (Cameron 

1994; Festa-Bianchet et al. 1998; Martin and Festa-Bianchet 2010; Rughetti et al. 2015). In 
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contrast, other populations of the same species that had access to adequate resources reported 

results similar to ours (Festa-Bianchet 1989; Toügo et al. 2002; Weladji et al. 2008; Hamel et al. 

2009a). Because the ability of a mother to overcome the challenges of consecutively recruiting 

offspring in successive years is likely positively influenced by availability of supplemental feed, 

we speculate that our ability to detect trends associated with the quality of a mother was 

magnified. We believe that quality differences among mothers becomes exaggerated in these 

situations. However, despite supplemental feed being available year-round to all the deer in our 

study, only <50% of mothers consecutively recruited fawns during their lifetime. This indicates 

to us that heterogeneity in quality among individuals is a real thing, and a subset of high-quality 

individuals in the population annually recruit a large majority of the fawns.  
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Table 1.1. Microsatellites used for parentage analysis for white-tailed deer 

from 2008 to 2019 at the Auburn Captive Facility, Camp Hill, Alabama. 

Locus Samples Allelic Richness Gene Diversityb FIS Pc 

Cervid1 468 14 0.87 0 1 

L 467 10 0.78 0.06 0.66 

BM6506 468 12 0.87 -0.01 1 

N 468 16 0.87 0.19 1 

INRA011 443 8 0.31 -0.06 1 

BM6438 468 10 0.78 0.01 1 

O 468 9 0.66 0 0.99 

BL25 467 5 0.48 0 0.94 

K 467 4 0.14 0.04 1 

Q 466 15 0.82 0.1 1 

D 465 10 0.72 0.18 0.6 

OAR 468 12 0.79 -0.01 1 

P 463 8 0.8 0.18 <0.001 

S 466 17 0.89 0.01 1 

RT5 352a 11 0.76 -0.04 1 

RT7 352a 13 0.85 0.02 1 

RT13 346a 12 0.81 0.32 <0.001 

BL42 332a 9 0.78 -0.06 0.92 

a Smaller sample size due to locus not being examined at ACF till 2014. 
b Based off the Polymorphic Information Content Value.  
c P value for Chi-Square test for deficit of homozygosity.   
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Table 1.2. Age-specific recruitment of fawns with maternal-known 

parentage at the Auburn Captive Facility from 2008 to 2019.  

Age Class Potential Mothersa Known Mothersb Recruited Fawns 

0.5 126 14 15 

1.5 107 28 29 

2.5 84 35 41 

3.5 77 34 43 

4.5 65 22 34 

5.5 56 23 30 

6.5 43 14 20 

7.5 35 15 20 

8.5 26 8 11 

9.5 21 10 11 

10.5 13 2 2 

11.5 9 3 3 

12.5 5 1 1 

13.5 1 0 0 

a Based off candidate mother lists for each year.  
b Based of Parentage 1.1d with a minimum confidence threshold of 95%. 
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Table 1.3. Generalized linear model results comparing annual recruitment 

success to lifetime body percentile (LBP), prior recruitment success for the past year 

(PRS) and past two years (PRS2), if the prior litter had >1 fawns (PL), linear and 

quadratic age, and a interaction term between lifetime body percentile and age 

(LBP:Age, LBP:Age2). Data obtained from white-tailed deer at the Auburn Captive 

Facility from 2008 to 2019.  

Parameter Valuea CIa N SE Z-Value P-Value 

Intercept 0.73 0.55-0.97 249 0.14 -2.15 0.032 

LBP 0.90 0.71-1.13 249 0.12 -0.94 0.348 

PRS 1.14 0.73-1.77 249 0.23 0.58 0.564 

PRS2 0.88 0.52-1.48 249 0.27 -0.49 0.621 

PL 1.08 0.63-1.84 249 0.27 0.28 0.782 

Age 1.27 1.01-1.61 249 0.12 2.01 0.045 

Age2 0.66 0.53-0.82 249 0.11 -3.73 <0.001 

LBP:Age 0.73 0.58-0.91 249 0.12 -2.80 0.005 

LBP:Age2 1.11 0.87-1.41 249 0.12 0.82 0.415 
a All betas and confidence intervals (CI) were exponentiated. 
2 Quadratic age. 
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Table 1.4. Generalized linear model results comparing annual recruitment  

success to prior recruitment success for the past year (PRS) and past two  

years (PRS2), if the prior litter had >1 fawns (PL), and linear and quadratic age.  

Data obtained from white-tailed deer at the Auburn Captive Facility from 2008 

to 2019. 

Parameter Valuea CIa N SE Z-Value P-Value 

Full Model       

    (Intercept) 0.43 0.35-0.53 629 0.10 -8.19 <0.001 

    PRS 1.42 0.98-2.06 629 0.19 1.86 0.063 

    PRS2 1.02 0.66-1.56 629 0.22 0.065 0.948 

    PL 1.02 0.63-1.65 629 0.24 0.092 0.927 

    Age 1.55 1.28-1.88 629 0.099 4.42 <0.001 

    Age2 0.72 0.62-0.84 629 0.078 -4.24 <0.001 

Model Excluding PRS2 

    (Intercept) 0.43 0.35-0.53 637 0.10 -8.23 <0.001 

    PRS 1.46 1.03-2.07 637 0.18 2.11 0.035 

    PL 1.03 0.65-1.63 637 0.24 0.11 0.914 

    Age 1.55 1.28-1.88 637 0.10 4.52 <0.001 

    Age2 0.72 0.62-0.84 637 0.077 -4.22 <0.001 

a All Betas and confidence intervals were exponentiated.   
2 Quadratic age.       
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Table 1.5. Generalized linear model results comparing annual recruitment 

success to female age groups: Young (0.5-1.5), Prime (2.5-6.5), and Old (7.5-12.5).  

Data obtained from white-tailed deer at the Auburn Captive Facility from 2008 to 

2019. 

Parameter Valuea CIa N SE Z-Value P-Value 

Young Age Group as Reference  

    Intercept 0.18 0.13-0.25 668 0.16 -10.92 <0.001 

    Age: Young-Old 2.17 1.41-3.32 668 0.22 3.54 <0.001 

    Age: Young-Prime 2.71 1.94-3.79 668 0.17 5.82 <0.001 

Old Age Group as Reference            

    Intercept 0.39 0.28-0.55 668 0.17 -5.51 <0.001 

    Age: Old-Prime 1.25 0.90-1.75 668 0.17 1.31 0.192 

    Age: Old-Young 0.46 0.30-0.71 668 0.22 -3.54 <0.001 
a All betas and confidence intervals (CI) were exponentiated.   
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Table 1.6. Characteristics of female white-tailed deer that were consecutive recruiters compared to non-consecutive recruiting females. 

And the characteristics of male white-tailed deer that successfully bred with each female group. All data obtained within the Auburn 

Captive Facility from 2008 to 2019. 

Parameter  Consecutive N Consecutive Avg. Non-consecutive Na Non-consecutive Avg. T-Valueb P-Value 

Female Characteristics  

    Longevity 15 9.33 30 4.10 5.19 <0.001 

    First Recruitment  28c 2.29 25 3.20 -2.26 0.030 

    Last Recruitment  15 7.73 11 3.45 3.87 <0.001 

    Parasite Loadd 17 3.51 4 11.29 -1.21 0.305 

    LBPe 24 57.14 9 36.94 1.94 0.076 

Male Characteristics 

    Sire Age 158 4.99 30 5.97 -1.96f 0.049 

    Sire LBPe 153 58.96 26 59.59 -0.11f 0.913 

a Excluded individuals where full life history unknown and unable to determine if consecutively recruited in lifetime.   
b Welch two sample t-test.       
c  Excluded consecutive recruiters where full reproductive history was unknown.    
d Average count of ectoparasites present on designated spots of sedated animal.    
e Lifetime body percentile.       
f Two sample z-test.       
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Figure 1.1. Predicted relationship of annual recruitment success of female white-

tailed deer in relation to maternal age, at specified lifetime body percentile scores 

(LBP), based off data at the Auburn Captive Facility from 2008 to 2019. Data were 

based off a model of 249 breeding season observations of 37 candidate mothers. 

Recruitment success was based off 260 parentage-known fawns and adjusted to 

account for a further 49 fawns where parentage was below the 95% confidence 

threshold.  
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Figure 1.2. Predicted relationship of annual recruitment success of female white-

tailed deer in relation to maternal age and prior year’s reproductive history based off 

data at the Auburn Captive Facility from 2008 to 2019. Curves were based off two 

models, one to account for Age and PRS with 637 breeding season observations of 

151 candidate mothers (Blue and Orange) and one to account for only age with 668 

breeding season observations of 156 individuals. For both models, recruitment 

success was based off 260 parentage-known fawns and adjusted to account for a 

further 49 fawns where parentage was below the 95% confidence threshold.  
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Chapter 2: Phenotypic characteristics of successful mated pairs in white-tailed deer 

(Odocoileus virginianus): Evidence of positive assortative mating.  

Abstract  

Based on principles of natural selection, high-quality individuals should select mates of 

similar phenotypic quality when given the opportunity; this follows the idea of positive 

assortative mating. In ungulates, the idea of mate selectivity is still highly debated, with few 

studies yet able to document direct evidence of positive assortative mating.  In white-tailed deer 

(Odocoileus virginianus), recent studies have suggested that mating is random, with minimal 

selectivity by individuals. However, it is unclear if these findings are because study populations 

are still undergoing demographic changes (e.g., age structure and sex ratio) that may not present 

opportunities for preferential mating. From 2008 to 2019 we studied a captive population of 

white-tailed deer to examine characteristics of 184 mated pairs that successfully recruited fawns, 

while the population underwent changes in age structure and sex ratio. We found verification of 

positive assortative mating in mated pairs. Specifically, for each 1-year increase in female age 

there was a 0.17-year increase in male age (P = 0.002) among mated pairs, and for every 1.00 cm 

increase in female skeletal body size there was a 0.44 cm increase in male skeletal body size (P = 

0.006). Furthermore, we observed no random mating within the population while also 

documenting a decrease in younger males breeding as the age structure matured. However, we 

still observed cases where there was a large difference in age between mates, indicating some 

plasticity with mating. Our results suggest that high-quality individuals will select individuals of 

a similar quality if provided the opportunity. However, choosiness appears dynamic, with a 

decrease in selectivity when preferential mates are limited due to young age structure or when 

mating opportunities decrease for poor competitors in a mature age structure.  
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Introduction 

Theories on sexual selection in mammals primarily state that mating systems are guided 

by females selecting males based off sexually selected traits that maximize offspring fitness 

(Darwin 1874; Fishers 1930; Trivers 1972). Following this, it is generally believed that older, 

socially dominant males of a larger body size, and elaborate ornamentation often have the 

greatest reproductive success because these characteristics are positively correlated with high 

fitness and provide an advantage in intrasexual competition (Darwin 1871; Zahavi 1975; Emlen 

and Oring 1977; Clutton-Brock 1989). This is especially true in ungulates, where mating systems 

are generally polygynous and there is pronounced sexual dimorphism (Jarman 1983).  It is 

generally believed that most, if not all, sexually mature females in a population are bred by a few 

dominant males (Alexander et al. 1979; Clutton-Brock 1989). While female ungulates are 

expected to be the choosier sex because of greater parental investment (Emlen and Oring 1977; 

Johnstone et al. 1996), both sexes may select for certain qualities when choosing mates (Zahavi 

1975; Dewsbury 1982; Andersson 1994; Jennions and Petrie 1997).  

There is considerable debate amongst scientists whether female mate choice in ungulates 

is driven by intrasexual competition, male coercion, or individuals undergoing active choice 

(Clutton-Brock and McAuliffe 2009). However, an increasing number of studies in ungulates are 

suggesting that males may be choosier when selecting potential mates than previously thought 

(Berger 1989; Preston et al. 2005), further complicating the current understanding of mate 

selectivity in polygynous ungulates.  For decades our understanding of mating systems in 
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ungulates was largely based off studies of polygynous species in open landscapes (Murie 1951; 

Bergerud 1974; Clutton-Brock et al. 1982; Byers 1997; Wolff 1998). While these studies were 

greatly informative, they were generally limited to harem breeding species and not necessarily 

reflective of breeding patterns and mate selectivity in ungulates inhabiting more forested 

landscapes. As a result, breeding systems and mate selection strategies for cryptic species such as 

white-tailed deer (Odocoileus virginianus) were poorly understood (Bowyer et al. 2020). For 

example, Hirth (1977) was only able to observe 4 confirmed copulations over a 2-year span, in 

what was considered for years to be the seminal work on reproductive patterns in the species.   

More recently, new tools and technologies have enabled us to better understand the 

mating systems of white-tailed deer. Studies using genetic techniques have revealed that 

monopolization by males is less common than expected, and males from multiple age classes 

successfully breed females (Sorin 2004; DeYoung et al. 2009). However, our understanding of 

the phenotypic characteristics of mated pairs is still poorly understood. Theory postulates that 

positive assortative mating (Burley 1983) should occur in a population where high-quality 

individuals are present, often resulting in high-quality individuals selecting for mates of a similar 

quality (Fawcett and Johnstone 2003). In white-tailed deer, Neuman et al. (2016) examined age 

and body size relationships of mated pairs using microsatellite analysis. They observed high 

plasticity in mating success regarding age and body size relationships, indicating random mating 

was occurring within the population with no evidence of positive assortative mating (Neuman et 

al. 2016). However, they believed this may have been observed due to a changing herd 

demographic during the study where the young male age structure and female skewed sex ratio 

allowed for increased breeding opportunity for males of varying sizes and ages (Neuman et al. 

2016). This begs the question if preferential mating by high-quality individuals (e.g., older, large 
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body size) occurs at a lesser frequency when the probability of finding a mate of similar 

phenotypic quality is poor.  

In this study, we examined mate selection and its influence on recruitment success in a 

captive population of white-tailed deer allowed to breed naturally. Our goal was to improve 

understanding of the characteristics of mated pairs that successfully recruited fawns. This study 

utilized the same population and incorporated some of the data as Neuman et al. (2016). Our 

specific objective was to evaluate age and body size characteristics of mated pairs within the 

population now that the male age structure was older and the sex ratio balanced. We 

hypothesized that we would find no evidence of random mating within the population and 

instead find evidence of positive assortative mating for age and body size in mated pairs.  

Material and Methods 

Study Area 

 This study examined a captive population of white-tailed deer at the Auburn Captive 

Facility (ACF) located in Camp Hill, Alabama. The facility was created in 2007 and was 174 ha 

surrounded by a 2.6 m fence. The population consisted of individuals and descendants of 

individuals who inhabited the area when the fence was installed in 2007. The population 

received no hunting pressure and fawn predation was not documented, but coyotes (Canis 

latrans) and bobcat (Lynx rufus) were occasionally observed within the facility.  

 The land cover types within the facility consisted primarily of actively managed hay 

fields (40%) and mixed forests (60%). The primary tree species within ACF included oak 

(Quercus spp.), sweetgum (Liquidambar styraciflua), hickory (Carya spp.), and loblolly pine 

(Pinus taeda) with naturally regenerated understory thickets of blackberry (Rubus spp.), eastern 

red cedar (Juniperus virginiana), and Chinese privet (Ligustrum sinense). Prescribed fire was 
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conducted sparsely throughout the property where applicable. The predominant grass species 

within ACF was Bermuda grass (Cynodon dactlyon), but fescue (Festuca sp.), big bluestem 

(Andropogon gerardi), Johnson grass (Sorghum halepense), dallisgrass (Paspalum dilatatum), 

and bahia grass (P. notatum) were also present. Several creeks flowed through ACF and served 

as a source of water. The climate of Camp Hill, Alabama was classified as humid subtropical 

with a temperature throughout the year ranging from an average low of -0.5°C in January to an 

average high of 32.5°C in August, with an average annual precipitation at 137 cm based off data 

from the nearest National Oceanic and Atmospheric Administration weather station (NOAA 

National Centers for Environmental information 2022). Elevation within the facility ranged from 

190–225 m above sea level. Herd nutrition was supplemented with food plots planted in warm 

and cool season forage and protein feeders. Protein was available ad libitum all year at feeders 

containing pellets that were 18% protein (Record Rack-®, Nutrena Feeds; Minneapolis, MN). 

For attracting deer for capture purposes, whole corn (Zea mays) was provided in the fall and 

winter at three timed feeders (Newbolt et al. 2017). 

Capture Techniques  

Deer were captured mid-September to mid-March annually from 2008 through 2019 

using two techniques. From 2008 through 2013, deer were captured using a capture facility or 

cartridge-fired dart guns. The capture facility was 0.8 ha and allowed for capture of multiple 

individuals in one trapping effort and is further described by Neuman et al. (2016). Beginning in 

2014, all deer were immobilized and captured only by darting. The dart guns fired telemetry 

darts using .22 caliber blanks and were fitted with night vision scopes (Kilpatrick et al. 1996). 

The telemetry darts (2.0 cc, type C, Pneu-Dart Inc., Williamsport, PA) held a mixture of 

Telazol® (at a concentration of 125mg/ml and given at a rate of 2.2mg/kg) and Xylazine® (at a 
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concentration of 100mg/ml given at a rate of 2.2mg/kg) (Kilpatrick et al. 1996). To ensure 

minimal chance of capture related mortality, deer were not darted until at least 6 months of age. 

If a fawn was captured and later determined to not have survived to recruitment age (6 months) it 

was excluded from further analysis due to our research objectives pertaining to mated pairs that 

successfully recruited fawns. Darters sat in elevated tree stands overlooking the feeders, 

previously mentioned, and shot deer in the hindquarter muscle mass to ensure a safe and 

effective intramuscular injection of the sedatives (Kilpatrick et al. 1996; Miller et al. 2003). 

Tracking of immobilized deer was done with VHF radiotelemetry with a receiver and 3-element 

Yagi antenna (Kilpatrick et al. 1996). Tolazoline® (1.5 mL/45.36 kg) was administered 

intramuscularly in the front shoulder and hindquarter to reverse sedation (Miller et al. 2004).  

Data Collection  

All deer were aged using the tooth replacement and wear technique (Severinghaus 1949) 

and given a unique six-digit identification number. We considered a deer known age if it was 

determined to be 1.5 years old at time of capture.  This was due to the high accuracy of this 

technique with these age classes (Gee et al. 2002). Three skeletal body size measurements were 

conducted using a flexible measuring tape. The measurements were body length (tip of the snout 

to the proximal end of the tail, following a straight line along the backbone), chest girth 

(circumference of the chest directly posterior of front legs), and hind foot length (measured from 

the tip of the hoof to the posterior end of the tuber calcis; Neuman et al. 2016). We attempted to 

capture individuals multiple times in their lifetime to get up-to-date information and accurate 

estimates of skeletal body size. We obtained a tissue sample from the ear for genetic analysis 

using a notching tool to remove a 1-cm2 piece of tissue. Samples were placed in a Cryule plastic 

cryogenic vial (Wheaton, Millville, NJ), properly labeled for identification, and then placed in a  
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-80° C freezer for preservation as recommended by Shabihkhani et al. (2014). All animal 

handling and research in this study was approved by the Auburn University Institutional Animal 

Care and Use Committee (PRN 2008-1417; PRN 2008-1421; PRN 2010-1785; PRN 2011-1971; 

PRN 2013-2372; PRN 2014-2521; PRN 2016-2964; PRN 2016-2985; PRN 2019-3599; PRN 

2019-3623).  

Microsatellite Analysis and Parentage Assignment  

All tissues samples were sent to DNA Solutions (Oklahoma City, OK) for microsatellite 

marker analysis of 18 loci (e.g., Cervid1, BM6506, BM6438, INRA011, OarFCB193, N, Q, D, 

K, O; Anderson et al. 2002). We used the software program Parentage 1.1d (Huang 2018) to 

determine allelic composition, allelic richness (El Mousadik and Petit 1996), gene diversity (Nei 

1987), and the inbreeding coefficient (Weir and Cockerham 1984). We detected significant 

departures from Hardy-Weinberg equilibrium at 2 of the 18 loci (Table 2.1); however, these loci 

were still included in our parentage assignment analysis due to Parentage 1.1d accounting for 

null alleles and inbreeding (Dakin and Avise 2004; Huang et al. 2018).  

From 2008 to 2019 we created an annual list of candidate parents for ACF. All 

individuals 6 months of age were listed as a candidate parent for a year if they were visually 

observed or detected during annual camera surveys. Fawns were added to a year’s list of 

candidate parents due to prior studies finding evidence of male and female fawns breeding 

(Nixon 1971; Rhodes et al. 1986; Schultz and Johnson 1992; Karns et al. 2014; Neuman et al. 

2016). An individual was removed from a candidate parent list and presumed deceased if not 

detected on camera or observed for two years. 

 We determined parentage of each annual cohort of recruited fawns using the likelihood-

ratio method in a parent-pair analysis in Parentage 1.1d (Jones and Arden 2003, Huang et al. 
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2018). Parentage 1.1d determined confidence levels using critical levels of the delta statistic after 

conducting simulations (i.e., 10,000 iterations) with our lists of annual candidate fathers and 

mothers, a loci mistype error rate of 0.01, an inbreeding coefficient of 0.074, and an assumption 

that 90% of the population in ACF was sampled. Parentage was only assigned to individuals 

initially captured at 1.5 years of age (known-aged individuals) to ensure with high probability 

that an individual was aged correctly using the tooth replacement and wear technique (Gee et al. 

2002). We only confirmed parentage if, at minimum, the trio pair confidence level was 95%, 

similar to methods used in prior studies at ACF (Neuman et al. 2016, Newbolt et al. 2017, 

Gomes 2020, Ivy-Israel et al. 2020).  

Statistical Analysis  

 We used three skeletal measurements (hind foot, body length, and chest girth) to 

represent body size and skeletal growth of an individual (Smart et al. 1973; Roseberry and 

Klimstra 1975; Bartareau 2019). To create one numeric value for skeletal body size, we added all 

three measurements together to create a total measurement in centimeters for the given year the 

measurements were taken (hereafter called body size), similar to prior studies at ACF (Neuman 

et al. 2016; Newbolt et al. 2017). Due to our inability to obtain measurements every year of an 

individual’s life, we created lifetime values to account for this. First, we used Welch two sample 

t-tests and two sampled z-tests to compare average body size between age groups for each sex. 

This allowed us to determine when cessation of skeletal growth occurred in each sex. In females, 

we detected no significant difference in body size between 3.5 and 4.5 years of age (P = 0.349), 

and there was no significant difference for males between 5.5 and 6.5 years of age (P = 0.891; 

Table 2.2). Based off these findings, we determined that maximized skeletal growth occurred by 

3.5 years of age in females and 5.5 years of age in males, similar to Ditchkoff et al. (1997). 
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Measurements collected at or after physical maturity in both sexes were determined to be mature 

skeletal measurements (hereafter termed maximized body measurement). If an individual was 

determined to have successfully mated after reaching this point, and they had at least one 

maximized body size measurement collected, we used that measurement for the year they were 

known to have successfully mated. For example, if it was determined a female was bred at 8.5 

years of age but a measurement hadn’t been obtained since 5.5 years of age, we used that body 

size measurement since maximized skeletal growth occurs in females at 3.5 years. We also 

calculated a lifetime body percentile (LBP) and used this statistic as a surrogate for skeletal body 

size, similar to Neuman et al. (2016). Specifically, we pooled body size measurements across all 

years to determine an individual’s size placement within each age group (e.g., an individual in 

the 25th percentile out of 65 individuals at 2.5 years of age). If an individual had at least two 

body percentiles calculated at different ages during its lifetime we calculated the average and 

used this mean as the individual’s lifetime body percentile. The lifetime body percentile could 

then be used as a body size score for years where an individual successfully mated but no 

measurements were collected. Using these measurements, we examined three separate 

relationships of mated pairs: when body size measurements were collected within a year of the 

breeding event, when individuals had body size measurements collected within the last year and 

including any maximized body size measurements, and when both individuals had a lifetime 

body percentile. All linear regression analyses for body size (package stats) were conducted in 

the software program R (version 4.0.2; R Core Development Team 2022). 

Using a chi-squared test, we compared the difference in age between individuals in mated 

pairs to the expected age difference between mated pairs assuming random mating within the 

population. Expected age differences were based off our annual candidate parent lists where we 
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examined all possible annual combinations from 2008 to 2019 in ACF. We examined age 

relationships using linear regression in the software program R. Furthermore, for age 

relationships we divided mated pairs into three categories: “Both Young Adults”, “One Young 

Adult”, and “Two Mature Adults”, to examine the proportion of each grouping observed in a 

breeding season over time. Using our findings for maximized skeletal size, we considered mature 

adults to be any female ≥3.5 years of age and any males ≥5.5 years of age. We examined this 

relationship using linear regression in the software program R. To compare between groups in 

cases of multiple paternity (e.g., litters >1 with more than one sire) we used a Welch two sample 

t-test in the software program R. Furthermore, when examining the annual frequency of multiple 

paternity events, we used a Fisher’s exact test to test for a significant association between type of 

litter event (Multiple Paternity or Non-Multiple Paternity) and segment of the study (2008 to 

2013 or 2014 to 2019) to account for a changing age structure.  

Results 

Based off annual camera surveys and capture and mortality records, we determined that 

the population of ACF ranged annually from 71 to 139 individuals from 2008 to 2019 (Table 

2.3). Generally, population density (including recruited fawns) increased from the beginning of 

the study until 2017, and the adult sex ratio was approximately equal throughout the course of 

the study. The male age structure matured during the course of the study: average age of 

candidate sires (including male fawns) in 2008 was 1.42 years (SE = 0.20; N = 25) and peaked in 

2018 at 4.38 years (SE = 0.40; N = 60; Figure 2.1). Similarly, the female age structure matured 

from 2.15 years of age (SE = 0.24; N = 46) in 2008 and peaked at 6.79 years (SE = 0.53; N = 42) 

in 2019. The proportion of breeding events where a male 3.5 years of age sired a fawn 

decreased over time as the proportion of males 4.5 years of age increased in the population 
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(Figure 2.2), with no documentation of sires 3.5 years of age in 2019 (Figure 2.3). We 

documented 383 recruited fawns during the study, and 309 were of known age. We were able to 

identify both parents at the 95% confidence level for 211 of these fawns, and they came from 

184 litters.  

The distribution of age differences between mated pairs was significantly different (χ2 = 

59.36; d.f. = 25; P < 0.001; Figure 2.4) than the distribution of age differences from a random 

assortment of mates. We found that cases where the male was 3 to 4 years older than the female 

had the greatest difference in observed frequency compared to the expected frequency. Our 

largest observed age difference was 9 years where a 9.5-year-old female bred with a male fawn. 

Our oldest female and male to successfully breed were 12.5 and 11.5 years old, respectively. We 

observed 16 mated pairs where at least one of the parents was a fawn, and one case where two 

fawns were observed to have successfully bred and recruited offspring. When examining age 

between males and females, we found a significant linear relationship where for every 1-year 

increase in female age we saw a 0.17-year increase in male age (t = 3.08, d.f. = 182, P = 0.002; 

Figure 2.5). As the age structure matured for both sexes, we observed an increase over time in 

the proportion of mature mated pairs. For every 1-year progression in the study the proportion of 

mature mated pairs increased by 7.77% (t = 7.0, d.f. = 10, P < 0.001), while pairings where both 

adults were young decreased by 4.30% (t = -5.18, d.f. = 10, P < 0.001; Figure 2.6).   

We observed no significant linear relationship between lifetime body percentiles of 108 

mated pairs (t = 1.12, d.f. = 106, P = 0.267; Figure 2.7). Furthermore, using skeletal body size 

measurements, we observed no significant linear relationship for body size when examining 24 

mated pairs where body size measurements were collected for both parents that year (t = 1.08, 

d.f. = 22, P = 0.292; Figure 2.8). We had 83 confirmed mated pairs with body size measurements 
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for both sexes when we accepted body size from that year, the previous year, or the animal was 

mature and we had a maximized body measurement. In this subset of our data, we found a 

positive relationship where male skeletal body size increased by 0.44 cm for every 1.00 cm 

increase in female skeletal body size (t = 2.81, d.f. = 81, P = 0.006; Figure 2.9).  

Of 38 litters with >1 fawn, we observed 12 cases of multiple paternity where the trio 

confidence level was at least 95%, and 6 additional cases where the trio confidence didn’t meet 

our minimum threshold; these 6 additional cases were excluded from further analysis. Out of our 

12 multiple paternity events, 10 (83.3%) occurred in 2013 or before (Figure 2.10). However, 

using a Fisher’s exact test we found no significance (P = 0.158) between the frequency of 

multiple paternity events and whether it was early or late in the study. The average age of 

females in non-multiple paternity events was 4.69 years (SE = 0.35, N = 26), but was 5.58 years 

(SE = 0.72, N = 12) in cases of multiple paternity; using a Welch two sample t-test we found no 

significant difference in age between groups (t = -1.11, P = 0.282). When a male was the sole 

sire of a litter, the average age of the male was 5.73 years (SE = 0.43, N = 26), but was 4.46 

years (SE = 0.44, N = 24) in cases of multiple paternity; using a Welch two sample t-test we 

found a significant difference in age between groups (t = 2.07, P = 0.044). The average age 

difference between a female and males during a multiple paternity event was 2.21 years of age 

(SE = 0.34, N = 24), and in 75% of cases the female was older than at least one of the males in 

the event. The average age difference between males during multiple paternity events was 1.92 

years (SE = 1.68, N = 12). Interestingly, all 4 cases of multiple paternity that occurred in 2013 or 

later involved males that were ≥4.5 years of age. Examining skeletal body size, the average body 

size of females during multiple paternity events was 249.5 cm (SE = 3.6, N = 10), and 253.2 cm 

(SE = 1.9, N = 24) during non-multiple paternity events; using a Welch two sample t-test we 
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found no significant difference in body size between groups (t = 0.90, P = 0.384). The average 

body size of males during multiple paternity events was 293.8 cm (SE = 2.6, N = 14), and 289.1 

cm (SE = 3.6, N = 21) for a male during non-multiple paternity events; using a Welch two 

sample t-test we found no significant difference in body size between groups (t = -1.06, P = 

0.299). The average skeletal body size difference between a female and males during a multiple 

paternity event was 39.0 cm (SE = 11.8, N = 11), and 37.9 cm (SE = 3.8, N = 17) between a 

female and male of a non-multiple paternity event; using a Welch two sample t-test we found no 

significant difference in the body size difference of mated pairs between groups (t = -0.21, P = 

0.834). The average skeletal body size difference between males of multiple paternity events was 

13.40 cm (SE = 4.68, N = 5).  

Discussion  

In support of our original hypothesis, we found evidence of positive assortative mating 

based on age in mated pairs. Evidence of age-based assortative mating in ungulates is limited, 

but has been observed in bison (Bison bison; Wolff 1988) and fallow deer (Dama dama; Farrell 

et al. 2011). We believe these findings indicate age may be an indicator of quality and speculate 

that high-quality individuals are selecting for other individuals of a similar quality (Fawcett and 

Johnstone 2003). In the current literature on ungulates, fitness is often found to improve with 

increasing age in both males and females (Clutton-Brock et al. 1982; Byers 1997; Weladji et al. 

2006; Vanpé et al. 2009b; Festa-Bianchet 2012) and evidence from our study population also 

supports this (Newbolt et al. 2017; see Chapter 1). Females, often being the choosier sex, likely 

select mature males due to age being highly correlated with larger body size, antler growth and 

symmetry, and dominance (Ditchkoff et al. 2001; Mysterud et al. 2004; Mainguy et al. 2008; 

Willisch et al. 2012; Morina et al. 2018). Furthermore, we observed a decrease over time in the 



67 

 

annual proportion of breeding events involving males ≤3.5 years of age. It is well documented in 

ungulates that as male age structure matures and the sex ratio becomes balanced, fewer males are 

able to participate in breeding (Bergerud 1974; Clutton-Brock et al. 1997; Røed et al. 2002; 

Mysterud et al. 2004; Markussen et al. 2019). As our study progressed and more mature males 

were present, competition for mating likely increased, making it more difficult for immature 

males to actively participate in courtship rituals without conspecific competition (Ozoga and 

Verme 1985). As mature adults selected for similar mates, young adults may have selected for 

other young adults due to fewer breeding opportunities available for each sex, similar to the 

findings of Farrell et al. (2011). When older males are present in a population, studies have 

documented older females actively avoiding yearling males that are attempting courtship in 

white-tailed deer (Ozoga and Verme 1985), reindeer (Rangifer tarandus; Bergerud 1974), bison 

(Wolff 1998), and fallow deer (Komers et al. 1999). Active male mate choice based off the 

perception of age is still obscure in ungulates, but recent evidence in mountain goats (Oreamnos 

americanus) suggests maternal experience may be a good indicator of fitness in females and 

have a positive influence on male mate preference (Mainguy et al. 2008).  

We found no evidence of random age-based mating within the population. This is 

contrary to Neuman et al. (2016) findings at ACF. However, they speculated that they may have 

observed random mating in their analysis due to the male age structure still changing within the 

population. Theory states that being choosy during mate selection is more common when 

attractive or high-quality individuals are abundant in an area: if availability is low then 

choosiness should decrease (Real 1990; Jennions and Petrie 1997). We observed an increase in 

mature pairings as the age structure increased for both sexes. Under a young male age structure, 

females may have fewer preferred males to choose from, and mate selectivity with regards to age 
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should show more variation. Several studies with white-tailed deer have documented that when 

females cannot be choosy (e.g., penned studies where they only have one male with which to 

mate), or are in a population with a very young male age structure, they choose to breed with a 

young male as opposed to foregoing reproduction (Haugen 1959; Ozoga and Verme 1985). 

However, Ozoga and Verme (1985) found that female tolerance of young courting males 

decreased once mature males were introduced to the population. Fertilization assurance may be a 

more common strategy by female white-tailed deer when potential mate quality is suboptimal.  

In support of our hypothesis, we found that there was positive assortative mating for 

skeletal body size. Assortative mating based off physical features has largely been observed in 

arthropods (Brown 1990; Jiang et al. 2013) and birds (Bortolotti and Iko 1992; Delestrade 2001; 

Jawor et al. 2003). However, in reindeer and soay sheep (Ovis aries) it has been found that 

individuals select mates of similar body size and weight (Røed et al. 2002; Preston et al. 2005). 

Multiple studies indicate females often choose larger males due to the perception of size 

(Bergerud et al. 1974; Robinson et al. 2006; Bowyer et al. 2007; Kie et al. 2013; Coombs et al. 

2022), or the high correlation body size has with dominance over conspecifics (Townsend and 

Bailey 1981; Geist 1982; McElligott et al. 2001), vocalization (Charlton et al. 2007; Lemasson et 

al. 2015), and physical ability in withstanding the demands of the rut (Byers et al. 1994; Byers 

and Waits 2006). Similarly, it is well established that body size has a strong positive influence on 

reproductive success in females (Clutton-Brock et al. 1982; White et al. 1997; Monteith et al. 

2014; Flajšman et al. 2017). Evidence that males select mates based on female body size is still 

limited, but several studies have suggested that larger, dominant males select larger females 

because they have greater ability to produce milk (Berger 1989; Røed et al. 2002; Preston et al. 

2005). The importance of body size during mate selection likely increases as the age structure of 
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the population increases. For example, Preston et al. (2005) found that larger male soay sheep 

preferred to mate with larger females, but this only occurred when there were multiple females in 

heat during a short period of time. We speculate that choosiness is dynamic during the breeding 

season, and there exists a situational tradeoff for males: when options are limited, as they are at 

the start and end of the breeding period, selectivity is low, but during the peak of the breeding 

season when multiple females may be available at one time, they should be choosy (Johnstone 

1997). Similarly, as the population size and age structure increased at ACF we speculate that 

selectivity likely increased due to a greater availability of preferential mates.  

Despite the lack of evidence for random mating in our population, we still observed cases 

of significant differences in age and body size of mated pairs, further documenting plasticity 

with mating within the population. This also provides further evidence that monopolization of 

females by several males is uncommon in the white-tailed deer mating system (Sorin 2004; 

DeYoung et al. 2009; Neuman et al. 2016), contrary to other polygynous ungulate mating 

systems (Clutton-Brock et al. 1982; Clutton-Brock et al. 1992; Asa 1999; Zeng et al. 2011; 

Willisch et al. 2012). The tending bond mating system involves a lengthy isolation period for a 

female and courting male (Hirth 1977, DeYoung and Miller 2011; Airst and Lingle 2019), often 

allowing a greater proportion of males to gain breeding opportunities with other receptive 

females (Jones et al. 2011). However, we observed a decrease in young males breeding over time 

while still observing plasticity in age differences of mated pairs. Interestingly, in the latter half of 

the study, a large majority of our observations of plasticity with age involved older males mating 

with younger females (e.g., 3.5-year-old female bred by a 9.5-year-old male). A wide variety of 

mature males in the population obtained breeding opportunities while effectively excluding 

younger age classes. However, with a mature male age structure, access to preferential females 
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in estrus may be limited for not only younger males, but also mature males that are lower in the 

dominance hierarchy or are poor competitors (Festa-Bianchet 2012; Martin et al. 2016; Pero et 

al. 2021). These lesser quality males may be less choosy and mate with a wider range of female 

age classes (Fawcett and Johnstone 2003).  

We documented 12 cases of multiple paternity during our study involving a wide range of 

male age classes that sired the fawns. Multiple copulations or multiple paternity have been 

observed in a variety of ungulates (Endo and Doi 2002; Carling et al. 2003; Briefer et al. 2013; 

Vanpé et al. 2009a; Coombs et al. 2022) including white-tailed deer (DeYoung et al. 2002; Sorin 

2004; DeYoung et al. 2006), but the debate in the literature is still ongoing why this phenomenon 

occurs (Wolff and Macdonald 2004). Alternative mating tactics (e.g., sneaky or opportunistic 

males) that are theorized to contribute to cases of multiple paternity have been found to be a 

common non-competitive strategy in younger and smaller male ungulates (Coltman et al. 2002; 

Willisch et al. 2012; Airst and Lingle 2020). Although these alternative mating strategies may be 

common in white-tailed deer and would explain some of our findings, they have yet to be 

documented in the field and reported in the literature. While the majority of our observed cases 

of multiple paternity occurred in the first 6 years of our study when the age structure was 

younger, there was no statistical support for this trend. We observed an average age difference of 

2 years between sires during these events and interestingly, just under half of our cases involved 

two sires that were 4.5 years of age or older. Sorin (2004) speculated that multiple paternity in 

white-tailed deer was likely occurring due to male displacement, where an older male displaced a 

younger male that successfully bred but failed to tend a female in estrus. However, we feel there 

exists an equally likely alternative explanation. It is entirely possible that multiple paternity also 

occurs when an older male successfully breeds a female but does not complete the tending 
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process, providing an opportunity for other males to also copulate with her. Further research is 

warranted to better understand factors that contribute to multiple paternity. 
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Table 2.1. Microsatellites used for parentage analysis for white-tailed deer 

from 2008 to 2019 at the Auburn Captive Facility, Camp Hill, Alabama.  

Locus Samples Allelic Richness Gene Diversityb FIS Pc 

Cervid1 468 14 0.87 0 1 

L 467 10 0.78 0.06 0.66 

BM6506 468 12 0.87 -0.01 1 

N 468 16 0.87 0.19 1 

INRA011 443 8 0.31 -0.06 1 

BM6438 468 10 0.78 0.01 1 

O 468 9 0.66 0 0.99 

BL25 467 5 0.48 0 0.94 

K 467 4 0.14 0.04 1 

Q 466 15 0.82 0.1 1 

D 465 10 0.72 0.18 0.6 

OAR 468 12 0.79 -0.01 1 

P 463 8 0.8 0.18 <0.001 

S 466 17 0.89 0.01 1 

RT5 352a 11 0.76 -0.04 1 

RT7 352a 13 0.85 0.02 1 

RT13 346a 12 0.81 0.32 <0.001 

BL42 332a 9 0.78 -0.06 0.92 

a Smaller sample size due to locus not being examined at ACF until 2014. 

b Based off the Polymorphic Information Content Value.  
c P value for Chi-Square test for deficit of homozygosity.    
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a Measurements in centimeters.  

 

Table 2.2. Statistical results from T-tests and Z-Tests examining difference in skeletal body size in 

relation to age for female and male white-tailed deer at the Auburn Captive Facility from 2008 to 

2019. 

Age Comparison 1st group Meana N 2nd group Meana N Test Value P Value 

Females 

0.5-1.5 205.0 46 234.2 59 Z-Test -14.90 <0.001 

1.5-2.5 234.2 59 243.4 50 Z-Test -5.03 <0.001 

2.5-3.5 243.4 50 249.9 20 Z-Test -3.39 <0.001 

3.5-4.5 249.9 20 252.6 18 T-Test -0.95 0.349 

4.5-5.5 252.6 18 254.1 9 T-Test -0.31 0.761 

5.5-6.5 254.1 9 246.3 7 Z-Test 1.52 0.151 

Males               

0.5-1.5 210.2 48 247.1 89 Z-Test -16.90 <0.001 

1.5-2.5 247.1 89 267.5 72 Z-Test -10.35 <0.001 

2.5-3.5 267.5 72 282.0 59 Z-Test -6.84 <0.001 

3.5-4.5 282.0 59 286.9 53 Z-Test -2.26 0.024 

4.5-5.5 286.9 53 292.6 33 Z-Test -2.18 0.029 

5.5-6.5 292.6 33 293.0 32 Z-Test -0.13 0.891 

6.5-7.5 293.0 32 292.3 18 Z-Test 0.23 0.824 

7.5-8.5 292.3 18 293.1 13 T-Test -0.2 0.846 

8.5-9.5 293.1 13 293.3 7 T-Test -0.038 0.970 
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Table 2.3. Population demographics of white-tailed deer at the Auburn Captive Facility from 2008 to 2019 based off age classes of each 

sex.     

Age 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Total Population 71a(35b) 87(52) 101(63) 127(90) 127(95) 127(99) 133(107) 128(98) 133(102) 139(115) 116(99) 86(74) 

Males 25(15) 40(29) 48(34) 63(50) 68(55) 67(56) 71(60) 70(56) 79(64) 75(64) 60(52) 44(39) 

0.5 11(9) 16(15) 14(11) 22(21) 16(15) 15(14) 18(18) 20(17) 14(12) 15(15) 6(6) 4(4) 

1.5 8(6) 10(8) 13(12) 11(8) 13(12) 12(11) 10(9) 11(11) 18(15) 11(9) 9(9) 2(2) 

2.5 3(0) 8(6) 9(7) 12(11) 11(8) 10(9) 9(8) 4(3) 10(10) 14(11) 8(6) 9(9) 

3.5 3(0) 3(0) 6(4) 8(6) 11(10) 9(6) 8(7) 5(4) 4(3) 8(8) 13(10) 7(5) 

4.5 0 3(0) 3(0) 6(4) 8(6) 8(8) 9(6) 8(7) 5(4) 3(2) 5(5) 12(10) 

5.5 0 0 3(0) 2(0) 6(4) 7(5) 6(6) 9(6) 7(7) 4(3) 3(2) 3(3) 

6.5 0 0 0 2(0) 2(0) 4(3) 6(4) 5(5) 9(6) 5(5) 2(2) 2(1) 

7.5 0 0 0 0 1(0) 1(0) 3(2) 5(3) 4(4) 6(5) 4(4) 2(2) 

8.5 0 0 0 0 0 1(0) 1(0) 1(0) 5(3) 4(4) 3(3) 2(2) 

9.5 0 0 0 0 0 0 1(0) 1(0) 1(0) 3(2) 3(3) 0 

10.5 0 0 0 0 0 0 0 1(0) 1(0) 1(0) 2(2) 1(1) 

11.5 0 0 0 0 0 0 0 0 1(0) 1(0) 1(0) 0 

12.5 0 0 0 0 0 0 0 0 0 0 1(0) 0 

13.5 0 0 0 0 0 0 0 0 0 0 0 0 

Females 46(20) 47(23) 53(29) 64(40) 59(40) 60(43) 62(47) 58(42) 54(38) 64(51) 56(47) 42(35) 

0.5 16(11) 8(7) 14(10) 13(12) 15(14) 11(11) 14(13) 4(2) 5(3) 16(16) 5(5) 3(3) 

1.5 8(6) 14(9) 5(4) 14(10) 11(10) 14(13) 8(8) 11(9) 3(1) 4(2) 13(13) 2(2) 

2.5 8(3) 6(4) 13(8) 5(4) 8(4) 8(7) 12(11) 6(6) 10(9) 3(1) 2(0) 3(3) 

3.5 8(0) 7(3) 6(4) 12(7) 3(3) 6(2) 5(5) 12(11) 6(6) 9(9) 2(1) 1(0) 

4.5 4(0) 6(0) 6(3) 6(4) 9(4) 2(2) 5(2) 4(4) 7(7) 6(6) 8(8) 1(1) 

5.5 1(0) 4(0) 5(0) 6(3) 5(3) 8(4) 2(2) 5(2) 3(3) 6(6) 4(4) 7(7) 

6.5 0 1(0) 2(0) 4(0) 5(2) 5(3) 6(2) 2(2) 5(2) 3(3) 6(6) 4(4) 

7.5 1(0) 0 1(0) 2(0) 2(0) 3(1) 5(3) 5(2) 2(2) 5(2) 3(3) 6(6) 

8.5 0 1(0) 0 1(0) 1(0) 2(0) 3(1) 4(3) 4(1) 2(2) 5(2) 3(3) 

9.5 0 0 1(0) 0 0 1(0) 1(0) 3(1) 4(3) 4(1) 2(2) 5(2) 

10.5 0 0 0 1(0) 0 0 1(0) 1(0) 3(1) 3(2) 2(1) 2(2) 

11.5 0 0 0 0 0 0 0 1(0) 1(0) 2(1) 3(2) 2(1) 

12.5 0 0 0 0 0 0 0 0 1(0) 1(0) 1(0) 2(1) 

13.5 0 0 0 0 0 0 0 0 0 0 0 1(0) 

Sex Ratio(M:F)c 1:2.14 1:1.63 1:1.15 1:1.24 1:0.85 1:0.94 1:0.91 1:1.1 1: 0.75 1:0.80 1:0.94 1:0.98 

Density (Deer/km2) 41 50 58 73 73 73 76 74 76 80 67 49 

a Estimates based off candidate parents list from camera surveys, visual observation, and collection of deceased individuals.  
b Number of individuals initially captured at 2.5 years of 

age or younger.         
c Sex ratio was calculated only with individuals  1.5 

years of age.         
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Figure 2.1. Average annual female (blue bar) and male age (orange bar) of white-

tailed deer from 2008 to 2019 at the Auburn Captive Facility (ACF). Data were based 

off candidate mother and father lists (including fawns).  
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Figure 2.2. Proportion of male white-tailed deer 3.5 years of age or younger that 

sired a recruited fawn (solid line) and the proportion of males 4.5 years of age or 

older present in the population (dashed line) at the Auburn Captive Facility from 

2008 to 2019.  
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Figure 2.3. Number of male white-tailed deer in each age group that sired recruited 

fawns during each breeding season at the Auburn Captive Facility from 2008 to 2019. 
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Figure 2.4. Observed age differences (black bars) of mated pairs of white-tailed deer 

compared to expected age differences assuming random mating (gray bars) at the 

Auburn Captive Facility from 2008 to 2019. Negative values represent when the male 

was older than the female and positive values represent when the female was older 

than the male. 
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Figure 2.5. Frequency based scatter plot of age relationships of mated pairs of white-

tailed deer at the Auburn Captive Facility from 2008 to 2019.  
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Figure 2.6. Annual proportion of mated pairs of white-tailed deer at the Auburn 

Captive Facility from 2008 to 2019 where both individuals were young adults 

(dashed black line), one individual was a young adult (dashed gray line), or both 

individuals were mature adults (solid black line). Males 5.5 and females 3.5 years 

of age were considered mature adults. 
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Figure 2.7. The relationship between lifetime body percentile of mated pairs of 

white-tailed deer at the Auburn Captive Facility from 2008 to 2019.  
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Figure 2.8. The relationship between skeletal body size of mated pairs of white-tailed 

deer at the Auburn Captive Facility from 2008 to 2019. Only including when 

measurement was collected year of.  
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Figure 2.9. The relationship between skeletal body size of mated pairs of white-tailed 

deer at the Auburn Captive Facility from 2008 to 2019. Including when measurement 

was collected year of the breeding event or when an individual was mature and had 

an adult mature body measurement collected during its lifetime. 
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Figure 2.10. Bar chart displaying frequency of 38 litters with >1 recruited fawn at the 

Auburn Captive Facility from 2008 to 2019. The data are divided into two litter 

types: multiple paternity events (black bars) and non-multiple paternity events (gray 

bars). 

 


