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Abstract

The Slow-Coloring Game is a game played on a graph G by two players which we will refer

to as Lister and Painter. In the ith round, Lister marks a nonempty subset M ⊆ V (G) of uncolored

vertices as eligible to receive color i, scoring |M | points. Painter then gives color i to a subset of

M that is independent in G. The game ends when all of the vertices of G are colored. Note that at

each stage the resulting coloring will be a proper coloring of V (G). Lister’s goal is to maximize

the total score while Painter seeks to minimize the total score. The sum-color cost of a graph

G, denoted s̊(G), is the best score each player can guarantee in the Slow-Coloring Game on G

regardless of the play strategy of the other. [1],[2]

Puleo and West [1] showed that for every tree T on n vertices,

n+
√
2n ≈ n+ un−1 = s̊(K1,n−1) ≤ s̊(T ) ≤ s̊(Pn) ≤

⌊3n
2

⌋

where ur =
⌊−1+

√
1+8r

2

⌋
. They also conjectured that this bound generalizes to k-trees. The k-tree

generalization of the star, or k-star, is Kk ⊠Kn−k, and the k-tree generalization of a path, or k-

path, is P k
n . Mahoney, Puleo, and West [2] showed that s̊(Ks ⊠Kr) = r +

(
s+1
2

)
+ sur. We show

that s̊(P k
n ) =

⌊
n

k+1

⌋̊
s(Kk+1) + s̊(Kr), where r ≡ n (mod k + 1) and 0 ≤ r < k + 1.
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Chapter 1

Introduction

1.1 Background on the Slow-Coloring Game

In this thesis we study the Slow-Coloring Game, which was first introduced in [2]. The Slow-

Coloring Game models the difficulty of producing a proper coloring of a graph G when it is not

known beforehand which vertices are allowed to have which colors. The Slow-Coloring Game is

a game played on a graph G by two players, which we will refer to as Lister and Painter. In the

ith round, Lister marks a nonempty subset M ⊆ V (G) of uncolored vertices as eligible to receive

color i, scoring |M | points. Painter then gives color i to a subset of M that is independent in G.

The game ends when all of the vertices of G are colored. Note that the resulting coloring will

be a proper coloring of V (G). Lister’s goal is to maximize the total score while Painter seeks to

minimize the total score. The sum-color cost of a graph G, denoted s̊(G), is the best score each

player can guarantee in the Slow-Coloring Game on G regardless of the play strategy of the other.

The Slow-Coloring Game was developed over successive generalizations of a classical Graph

Theory problem: proper vertex colorings of a graph. More formal definitions for the following can

be found at the end of this chapter. A proper vertex coloring of a graph G is an assignment of colors

to the vertices of G such that adjacent vertices receive different colors. Independently introduced

by Erdos-Rubin-Taylor [3] and Vizing [4], list coloring is a generalization of this classical problem.

In list coloring, each vertex v is assigned a set of available colors L(v), called its list. A graph

G is L-colorable if there is a proper coloring ϕ where ϕ(v) ∈ L(v) for all vertices v. Given

f : V (G) → N a graph G is said to be f -choosable if for all list assignments, L, G is L-colorable

whenever |L(v)| ≥ f(v) for all vertices v. The choice number of a graph G is the least such
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integer k such that G is f -choosable whenever f(v) ≥ k for all vertices v. A variation of choice

number first introduced by Isaak [5], is the sum-choosability denoted χSC . In sum-choosability,

we seek to minimize the sum or average of the list sizes. It is the minimum
∑

f(v) whenever G is

f -choosable.

Introducing an online variant for list coloring, where the lists of vertices are revealed a little

bit at a time, produces what is called the f -painting game. This game is also played by two players,

Lister and Painter. In each round i of the f -painting game, Lister marks a set M of vertices allowed

to receive color i, which can be viewed as revealing the set of vertices having color i in their lists.

Painter then chooses an independent subset of M to receive color i. Lister wins if some vertex is

marked more than f(v) times; Painter wins by successfully coloring all the vertices. The graph

is f -paintable if Painter has a winning strategy. Independently introduced by Schauz [6] and by

Zhu [7], and similar to choice number, the paint number or paintability of a graph G is the least k

such that G is f -paintable whenever f(v) ≥ k for all v ∈ V (G). The sum paintability of a graph

G, introduced by Carraher, Mahoney, Puleo, and West [8] and written χSP (G), is the minimum

of
∑

f(v) over all f such that G is f -paintable. Since the main concern in sum-paintability is the

number of times a vertex is marked and not the number of colors used, we can view this game

in a slightly different way. We instead say that f(v) is a collection of tokens available to v, and

whenever Lister marks v a token must be removed from its collection, and Lister wins when a

vertex with no tokens is marked.

The Slow-Coloring Game which was first introduced by Mahoney, Puleo, and West in [2], is

an online variant of the f -painting game. Just as with the online variant of List coloring, Painter

is able to reveal the tokens at each vertex as they are marked rather than assigning them according

to f(v). Which means that we can view the sum-color cost s̊(G) being the minimum number of

tokens Painter needs to guarantee a proper coloring [1]. Since Painter can always act as though the

tokens are assigned according to f(v) we have that s̊(G) ≤ χSP (G). The sum-color cost’s formula

can be easily described recursively, but in general its computation is not straightforward.

In [2] Mahoney, Puleo, and West gave us the sum-color cost formula which is:

2



Proposition 1.1.

s̊(G) = max
∅̸=M⊆V (G)

(
|M |+ min

independentI⊆M
s̊(G− I)

)
Proof. In response to the initial marked set M , Painter minimizes the additional score over colored

subsets I ⊆ M such that I is independent in G. Lister chooses M to maximize the resulting total

score.

The Slow-Coloring Game is fairly new and not widely studied. Several theorems about the

Slow-Coloring Game and several observations about strategies for Lister and Painter are given

below. These will be useful to our results in later chapters.

Observation 1.2. On any graph, there are optimal strategies for Lister and Painter such that

Lister always marks a set M inducing a connected subgraph, and Painter always colors a maximal

independent subset of M . [2]

Proof. A move in which Lister marks a disconnected set M can be replaced with successive moves

marking the vertex sets of the components of the subgraph induced by M . Also, coloring extra

vertices at no extra cost cannot hurt Painter.

Observation 1.3. If G1 and G2 are vertex disjoint subgraphs of G, then s̊(G) ≥ s̊(G1) + s̊(G2).

[2]

Proof. Lister can play an optimal strategy on G1 while ignoring the rest and then do the same on

G2, achieving the score s̊(G1) + s̊(G2).

Observation 1.4. s̊(Kr) =
(
r+1
2

)
. [2]

Proof. No matter the number of vertices Lister marks, Painter can only ever paint one vertex. Thus

it is optimal for Lister to always mark all remaining vertices.

3



Theorem 1.5. Among n-vertex trees, the value of s̊ is minimized by the star and maximized by the

path. Furthermore, with ur =
⌊−1+

√
1+8r

2

⌋
and T being an n-vertex tree, [1]

n+
√
2n ≈ n+ un−1 = s̊(K1,n−1) ≤ s̊(T ) ≤ s̊(Pn) =

⌊3n
2

⌋

Theorem 1.5 was proved by Puleo and West in [1], where they provide a linear time algorithm

to compute s̊ on trees, via a recursive formula.

In, [2], Mahoney, Puleo, and West posed the natural question: does this bound generalize to

k-trees? While this conjecture is not proved in this thesis, we state and prove the formula for the

k-path. We will define and discuss the k-path in greater detail in the next chapter.

1.2 Introductory Definitions

Definition 1.6. A graph, G, consists of a set V (G) of objects called vertices and a set E(G) of two

element subsets of V . Each element of E is called an edge and can be written as {x, y} or simply

xy for vertices x, y ∈ V (G). [9]

Definition 1.7. If xy ∈ E(G), then x and y are said to be adjacent vertices; otherwise, x and y are

nonadjacent vertices [9]

Definition 1.8. A subset of vertices of a graph G, S ⊆ V (G), is independent if no two vertices of

S are adjacent.

Definition 1.9. Any vertex adjacent to a vertex x is called a neighbor of x, and the set of neighbors

of x is the open neighborhood of x, denoted by NG(x). [9]

Definition 1.10. The number of neighbors of a vertex x in a graph G is the degree of x, and is

denoted by degG(x) or simply deg(x) or deg x if the graph G is clear. [9]

Definition 1.11. The maximum degree of a graph G is the maximum of the degrees of the vertices

of G and is denoted by ∆(G). Similarly the minimum degree of a graph G is the minimum of the

degrees of the vertices of G, and is denoted by δ(G). [9]

4



Definition 1.12. A proper coloring of a graph G is an assignment of colors to the vertices of G,

one color to each vertex of G such that adjacent vertices of G receive different colors. [9]

Definition 1.13. The Chromatic Number of a graph G denoted χ(G) is the smallest number of

colors needed to properly color the vertices of G. [9]

Definition 1.14. A list assignment for a graph, G, is a function L that assigns every vertex v a list

of colors L(v). [3, 4]

Definition 1.15. Given a graph G and list assignment L, G is L-colorable if it has a proper vertex

coloring using the colors from the lists assigned by L(v). [3, 4]

Definition 1.16. A graph is k-choosable if it it L-colorable whenever |L(v)| ≥ k for all vertices

of the graph. [3, 4]

Definition 1.17. The choice number, or list chromatic number, of a graph G, denoted χl(G) is the

least integer, k. such that G is k-choosable. [3, 4]

Definition 1.18. Given a function f : V (G) → N, we define the f -painting game as follows:

in each round, i, Lister marks a subset M of the vertices, M ⊆ V (G). Painter then selects an

independent subset of M to be deleted. If Painter can guarantee that no vertex v gets marked more

than f(v) times, then the graph is said to be f -paintable. [6, 7]

Definition 1.19. The paintability of a graph G is the smallest positive integer k such that G is

f -paintable whenever f(v) ≥ k. [6, 7]

Definition 1.20. The sum-paintability of G, denoted χSP (G), is the least value of
∑

(f(v)) such

that G is f -paintable. [6, 7]

5



Chapter 2

k-Tree Graphs

2.1 k-Tree Definitions

Definition 2.1. A k-tree is a graph that can be obtained from Kk by iteratively adding a vertex

whose neighborhood is a k-clique in the existing graph. [2]

Definition 2.2. The join, denoted G ⊠H , of graphs G and H is obtained from the disjoint union

G+H by making each vertex in G adjacent to each vertex in H . [2]

Definition 2.3. The rth power of G is the graph Gr with vertex set V (G) where vertices are

adjacent if and only if the distance between them in G is at most r. [2]

Definition 2.4. Kk ⊠Kn−k is the k-tree generalization of a star, or k-star. [2] See Figure 2.1.

Figure 2.1: Example of a k-star: K6 ⊠K4
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Definition 2.5. P k
n is the k-tree generalization of a path, or k-path. [2] More explicitly P k

n is a graph

whose vertices can be labeled v1, v2, . . . , vn such that vivj ∈ E(P k
n ) if and only if 0 < |i− j| ≤ k.

See Figure 2.2.

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

Figure 2.2: Example of a k-path: P 5
12

2.2 k-Path Properties

Property 2.6. ∆(P k
n ) ≤ 2k, with equality only when n ≥ 2k + 1.

Property 2.7. For any integer i, if all vertices vj with j ≡ i (mod k + 1) are removed from P k
n ,

then the resulting graph with be a (k − 1)-path graph.

2.3 A Strategy for Lister

A lower bound on the Slow-Coloring number for path power graphs, s̊(P k
n ), follows easily from

Observation 1.3. The proof of this lower bound yields a strategy for Lister to guarantee that this

score is achievable. We provide both below.

Theorem 2.8. s̊(P k
n ) ≥

⌊
n

k+1

⌋̊
s(Kk+1) + s̊(Kr) where r ≡ n (mod k + 1) and 0 ≤ r < k + 1.

Proof. P k
n contains

⌊ n

k + 1

⌋
disjoint copies of Kk+1 and one copy of Kr. Thus if Lister plays the

game on each of the disjoint Kk+1 and Kr subgraphs, Painter can do no better than
⌊

n
k+1

⌋̊
s(Kk+1)+

s̊(Kr).

7



Lister’s strategy to achieve this score is to break up the P k
n into exactly

⌊ n

k + 1

⌋
disjoint

copies of Kk+1 and one copy of Kr, and then play the game on each of the disjoint subgraphs

and add the resulting scores together. To find these disjoint subgraphs, Lister need only go in the

natural vertex ordering and greedily partition the vertices. See Figure 2.3 below.

K4 K4 K2

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

Figure 2.3: Natural Greedy Clique Partition of P 3
10

When k = 1, P k
n is the basic path graph and the above lower bound reduces to ⌊3n

2
⌋ = s̊(Pn).

This is the value of s̊(Pn) which was proved by Puleo and West in [1].

Providing a Painter strategy that results in no more than
⌊

n
k+1

⌋̊
s(Kk+1) + s̊(Kr) tokens being

used is not as simple, and thus it will be the main focus of Chapter 3.

8



Chapter 3

Main Result

We seek to show that
⌊

n
k+1

⌋̊
s(Kk+1)+s̊(Kr) is also an upper bound on s̊(P k

n ). In Theorem 3.14, we

show that regardless of the strategy Lister adopts, Painter will never pay more than
⌊

n
k+1

⌋̊
s(Kk+1)+

s̊(Kr) total tokens to Lister at the end of the game.

Let Q1, Q2, . . . , Qp be the natural greedy clique partition of P k
n , with p =

⌈ n

k + 1

⌉
, the same

partition as described in Lister’s strategy. For each clique, Qi, we go in the natural vertex ordering

assigning 1, 2, . . . , k+ 1 tokens on each vertex of the clique. See Figure 3.1 below. Note that each

vertex with equivalent subscripts modulo k + 1, will receive tokens equal to their remainder, of

course except for those vertices with subscripts equivalent to 0 (mod k + 1), those vertices will

receive k + 1 tokens.

Q1 Q2 Q3

1

v1

2

v2

3

v3

4

v4

1

v5

2

v6

3

v7

4

v8

1

v9

2

v10

Figure 3.1: Natural Greedy Clique Token Assignment of P 3
10
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In this assignment we assign
(
k+2
2

)
tokens to each of the Kk+1 cliques and

(
r+1
2

)
tokens

to the single Kr clique. Thus the total number of tokens assigned is
⌊ n

k + 1

⌋(
k+2
2

)
+
(
r+1
2

)
=⌊ n

k + 1

⌋̊
s(Kk+1) + s̊(Kr), which is exactly the upper bound value desired. See Figure 3.1.

Recall that in round i, Lister will mark a subset of vertices Mi ⊆ V (G). Our goal is to show

that there is a way for Painter to remove at least |Mi| tokens from the graph, in such a way that

(1) each vertex which is colored (deleted) has 0 tokens, (2) no uncolored (undeleted) vertex in Mi

ends up with a non-positive number of tokens, and (3) each non-zero token class in G remains an

independent set. We can assume that Mi is connected, otherwise, by Observation 1.3, marker does

no better than if they marked each disjoint subset of Mi one at a time.

In [2] Mahoney, Puleo, and West proved the k = 1 case, namely that s̊(Pn) =
⌊
3n
2

⌋
. We give

an alternate proof of this case, and then use the strategies developed there to extend the result to

higher powered path graphs.

Theorem 3.1. s̊(P 1
n) =

⌊3n
2

⌋
.

Proof. For P 1
n , the total amount of tokens assigned is

⌊
n

1+1

⌋(
1+2
2

)
+
(
r+1
2

)
= 3

⌊
n
2

⌋
+
(
r+1
2

)
. If n

is even then r = 0, and thus
⌊
3n
2

⌋
total tokens have been assigned. If n is odd then r = 1, and⌊

n
2

⌋(
3
2

)
+
(
2
2

)
= 3
(
n−1
2

)
+ 1 = 3n−1

2
=
⌊
3n
2

⌋
. So in either case, the total tokens assigned is

⌊
3n
2

⌋
.

In P 1
n , there are either 1-token or 2-token vertices, and, as previously mentioned, Painter can

assume that for each round, i, the marked set Mi will be connected. Thus the number of 1-token

and 2-token vertices will differ by at most one, and by assignment, the vertices of each token class

form an independent set. There are three possibilities for each Mi; both ends of Mi are 1-token

vertices, both ends of Mi are 2-token vertices, or one end of Mi is a 1-token vertex and the other

end is a 2-token vertex. See Figure 3.2.

If Mi is of the second or third type, then there are at least as many 2-token vertices as 1-token

vertices in Mi. Now Painter can delete all the 2-token vertices and use their tokens to pay Lister

|Mi| tokens. Painter has removed all the tokens from deleted vertices, and undeleted vertices were

unaffected so conditions (1) and (2) are satisfied. Painter has only deleted 2-token vertices, also

10



Type 1 1 2 1 2 . . . 2 1

Type 2 2 1 2 1 . . . 1 2

Type 3 1 2 1 2 . . . 1 2

Figure 3.2: Marked Set Possibilities for P 1
n

each non-zero token class is still independent, satisfying condition (3). Thus Painter has removed

at least |Mi| tokens from the graph, and all conditions remain satisfied.

On the other hand, if Mi is of the first type, then there are more 1-token vertices than 2-

token vertices. So if all 2-token vertices are deleted, the total number of tokens assigned to them

is insufficient to pay Lister |Mi| tokens. So instead Painter should remove all the tokens from

and delete all the 1-token vertices, and remove one token from each of the remaining marked 2-

token vertices. Since each vertex in Mi had exactly one token removed from it, we have certainly

removed at least |Mi| tokens from the graph. Each of the 1-token vertices, which get deleted, now

have no tokens, satisfying condition (1). Each of the 2-token vertices had one token removed thus

they now have 1 token, and all unmarked tokens are unaffected, thus condition (2) is satisfied.

Since the 2-token vertices were reduced in value we now need to check to make sure the new 1-

token class is independent. These newly added 1-token vertices were all interior vertices of Mi and

thus after deletion, they are now isolated vertices. Thus the new 1-token class is still independent,

satisfying condition (3). So again Painter has removed at least |Mi| tokens from the graph and all

conditions are still satisfied.

Painter can repeat the above process for each marked set Lister chooses, until all n vertices

have been deleted. Thus, since Painter started with
⌊
3n
2

⌋
tokens on the graph, and no vertex at any

point had negative tokens, Lister scored at most
⌊
3n
2

⌋
points.

11



To show how this proof idea extends to higher powered path graphs, we introduce some new

definitions. We will also assume from this point on that G = P k
n with positive integers n and k.

3.1 Definitions

Definition 3.2. Let v ∈ G. We define $(v) to be the number of tokens assigned to v.

Definition 3.3. Let v ∈ G and let M be a given marked set. We define Bi(v) to be the highest

number of tokens assigned to a vertex in NM(v), in round i, that is less than $(v). In other words,

among all the marked neighbors of v with fewer tokens than $(v), we define Bi(v) to be the highest

number of tokens assigned to such vertices. If there are no marked neighbors with fewer tokens

than $(v), then we define Bi(v) to be 0.

Definition 3.4. Let v ∈ G. We define v to be a reducible vertex if all w ∈ NG(v) satisfying

$(w) = Bi(v) are in the marked set Mi. Otherwise we say that v is a non-reducible vertex.

We will give some additional definitions later, but until they are needed.

3.2 Lemmas and Observations

Lemma 3.5. If v is a non-reducible vertex, then there are marked and unmarked vertices in NG(v)

with Bi(v) tokens.

Proof. Let v ∈ G be a non-reducible vertex. For any integer d and any neighbor of v, either all of

the d-token neighbors are marked, one is marked and one is unmarked, or none are marked. If none

are marked, then d ̸= Bi(v), since Bi(v) is defined to be the highest number of tokens assigned to

a marked neighbor. So we assume that d = Bi(v). If all d-token vertices in NG(v) get marked,

then v would be a reducible vertex. But, since v is a non-reducible vertex, there must be marked

and unmarked d-token vertices where d = Bi(v).

12



Again our goal is to show that in each round, i, there is a way for Painter to remove at least

|Mi,0| tokens from the graph, in such a way that (1) each vertex which is deleted (colored with color

i) has 0 tokens, (2) no undeleted vertex in Mi,0 ends up with a non-positive number of tokens, and

(3) each non-zero token class in G remains an independent set. With the definitions given, each

vertex will either be reducible or non-reducible. We will show that Painter has a way to reduce the

size of the original marked set, creating some new marked set Mi,j , while still satisfying all of the

above conditions, including removing the original |Mi,0| tokens, in such a way that all vertices in

Mi,j will be reducible vertices.

Definition 3.6. Let v ∈ V (G) and define the set Tv to be the set of vertices in G which are omitted

to make v a reducible vertex.

Painter can view these omitted vertices as being unmarked, meaning Painter is no longer al-

lowed to remove tokens from these omitted vertices. However, Painter cannot completely consider

them as unmarked since Lister marked them, and thus Lister will need to receive tokens for them.

Lemma 3.7. Let Mi,0 be the original marked set of G in round i. If Mi,0 has a non-reducible

vertex, then we claim that there exist subsets Mi,0 ⊇ Mi,1 ⊇ Mi,2 ⊇ · · · ⊇ Mi,j , where in Mi,j the

vertex v is reducible, and v is not reducible in Mi,k for any k < j.

Proof. Let Mi,0 be the original marked set of G in round i, and let v ∈ V (G) be a non-reducible

vertex in Mi,0. By Lemma 3.5 there exists a marked vertex, mi, and an unmarked vertex ui in

NG(v) such that $(mi) = $(ui) = Bi,0(v).

Painter cannot mark the unmarked vertex, ui, to make v a reducible vertex, so instead Painter

omits the marked vertex, mi, to obtain Mi,1 = Mi,0 \ {mi}. With Mi,1 so defined, note that

Bi,1(v) ̸= Bi,0(v) since Painter has omitted the only marked neighbor of v with Bi,0(v) tokens.

In particular, Bi,1(v) < Bi,0(v). In Mi,1, if v is a reducible vertex then j = 1 and we are done.

Otherwise v is still a non-reducible vertex and Painter repeats the above process obtaining subsets

Mi,2 ⊇ Mi,3 ⊇ · · · ⊇ Mi,j . Since |NMi,0
(v)| is finite, there are only a finite number of vertices
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which can be omitted, and thus this process will terminate with Mi,j and Bi,j(v) where v is a

reducible vertex in Mi,j .

Observation 3.8. If v is a non-reducible vertex, Painter could simply omit all the marked neighbors

of v and this would certainly make v a reducible vertex.

Painter, however, needs to keep in mind that they need to remove enough tokens from the

graph to pay for Lister’s original marked set. If Painter removed all the neighbors from every

vertex that was non-reducible this could result in too many vertices being removed, and thus not

enough tokens will be left on the remaining vertices to pay for Lister’s original marked set. For

example, in Figure 3.3, suppose Lister marks the four vertices Mi,0 = {a, b, c, v}. Vertex v is

non-reducible, and thus if Painter omits all of v’s neighbors (as denoted with arrows), v is certainly

a reducible vertex. However, the new marked set Mi,1 contains only v and there are only three

tokens assigned to v, but Painter needs four to pay for the original marked set Mi,0.

v is non-reducible

Mi,0 = {a, b, c, v}

Tv = ∅

1

a

2

b

3

v

1

c

2
v is reducible

Mi,1 = {v}

Tv = {a, b, c}

1

a

2

b

3

v

1

c

2

✓

Figure 3.3: Greedy Omission Example on P 2
5

If Painter follows the omission strategy as described in Lemma 3.7, then Painter is intention-

ally omitting only those vertices which make a vertex non-reducible and no more. This leaves

Painter with more vertices and thus more tokens to work with. Following the strategy of Lemma

3.7 and noticing that there are at most two neighbors of v with the same token assignment, thus

there are at most 2
(
$(v)− 1

)
neighbors of v with fewer than $(v) tokens.
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Observation 3.9. For any value, d less than $(v), if there are two d-token vertices in NMi,0
(v), then

there are at most
2
(
$(v)−1

)
−2

2
= $(v)−2 vertices in Tv, and so |Tv∪{v}| = |Tv|+1 ≤ $(v)−2+1 <

$(v). If there are no repeated values on NMi,0
(v), then there are at most

2
(
$(v)−1

)
2

= $(v) − 1

vertices in Tv, and so |Tv ∪ {v}| = |Tv|+ 1 ≤ $(v)− 1 + 1 = $(v).

Observation 3.9 shows that v has enough tokens assigned to it for Painter to use to pay for v

and Tv. This is important because it shows that there is a vertex which has enough tokens to pay

for those vertices it omitted while still also having enough tokens to pay for itself.

Observation 3.10. Lemma 3.7 states that for any v ∈ M Painter can alter the marked set M so

that v is a reducible vertex. However, when altering more than one vertex to make all marked

vertices reducible, the order in which we omit vertices matters.

If Painter alters the non-reducible vertices with fewer tokens first, and then works up to

the non-reducible vertices with the most tokens, Painter could end up in the situation where∑
v∈Mi,j

$(v) < |Mi,0|. In this case, the omissions leave Painter without enough tokens to pay for

Mi,0 even though Mi,j is a marked set in which all vertices are reducible.

For example, in Figure 3.4 suppose Lister chose as the original marked set, Mi,0 to be {a, b, c, d}.

Notice that in this case vertices b and c are both non-reducible.

|Mi,0| = 4

Mi,0 = {a, b, c, d}
1

a

2

e

3

b

1

f

2

c

3

g

1

d

Figure 3.4: Starting Example for P 2
7

If Painter alters the marked set beginning with vertex c, which has lower value than vertex b,

then to make c reducible, Painter looks at all the marked neighbors of vertex c with fewer tokens

than $(c). There is only one such vertex, vertex d. Since there are marked and unmarked neighbors
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of vertex c with 1 token on them, then Painter omits vertex d. Now Tc = {d}, and since vertex c

has no more marked neighbors with fewer tokens than $(c), vertex c is reducible. See Figure 3.5

below.

|Mi,1| = 3

Mi,1 = {a, b, c}
1

a

2

e

3

b

1

f

2

c

3

g

1

d✓

Figure 3.5: Lowest to Highest First Omission for P 2
7

Painter now moves to another non-reducible vertex. Vertex b is the only remaining non-

reducible vertex. Again Painter looks at all the marked neighbors of vertex b with fewer tokens

than $(b). There are two such vertices, a and c, so Painter looks at the one with more tokens, vertex

c. Since there are marked and unmarked neighbors of vertex b with 2 tokens on them, then Painter

omits vertex c. Now Tb = {c}, however vertex b is still non-reducible. See Figure 3.6 below.

|Mi,2| = 2

Mi,2 = {a, b}
1

a

2

e

3

b

1

f

2

c

3

g

1

d

Figure 3.6: Lowest to Highest Second Omission for P 2
7

Vertex b is still the only remaining non-reducible vertex, but there is only one marked neighbor

of vertex b with fewer tokens than $(b). Since there are marked and unmarked neighbors of vertex

b with 1 token on them, then Painter omits vertex a. Now Tb = {a, c} and vertex b has no more

marked neighbors with fewer tokens than $(b), so vertex b is reducible. See Figure 3.7 below.

16



|Mi,3| = 1

Mi,3 = {b}

1

a

2

e

3

b

1

f

2

c

3

g

1

d✓

Figure 3.7: Lowest to Highest Third Omission for P 2
7

Notice that if Painter alters the original marked set Mi,0 in this order,
∑

v∈Mi,3

$(v) = 3 < 4 =

|Mi,0|. In other words, Painter does not have enough remaining tokens to pay for the original

marked set. Furthermore, there is a vertex which is “paying for” vertices outside their neighbor-

hood. By Lemma 3.7 and Observation 3.9 we know that reducible vertices can “pay for” them-

selves and their strategically omitted neighbors, but no more. This example illustrates problems

that arise when Painter makes non-reducible vertices reducible without regard to the token assign-

ment of those non-reducible vertices. We will show that those problems do not exist if Painter

makes non-reducible vertices reducible starting with non-reducible vertices with the most tokens

and proceeding to subsequent non-reducible vertices − always choosing one with the most tokens.

If Painter had proceeded in this manner starting with the same graph and marked set as in

Figure 3.4, Painter would have begun making non-reducible vertices reducible starting with vertex

b, a non-reducible vertex with the most tokens. Painter looks at all the marked neighbors of vertex

b with fewer tokens than $(b). There are two such vertices, so Painter looks at the one with more

tokens, vertex c. Note that $(c) = 2, therefore Bi,0(v) = 2. Since there are marked and unmarked

neighbors of vertex b with 2 tokens on them, Painter omits vertex c from the marked set. Now

Tb = {c}, however vertex b is still non-reducible. See Figure 3.8 below.

Vertex b is still a non-reducible vertex with the most number of tokens, and there is only one

marked neighbor of vertex b, vertex a, with fewer tokens than $(b). Note that $(a) = 1, therefore

Bi,1(v) = 1. Since there are marked and unmarked neighbors of vertex b with 1 token, then Painter
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|Mi,1| = 3

Mi,1 = {a, b, d}
1

a

2

e

3

b

1

f

2

c

3

g

1

d

Figure 3.8: Highest First, First Omission for P 2
7

omits vertex a from the marked set. Now Tb = {a, c} and vertex b has no more marked neighbors

with fewer tokens than $(b), so vertex b is reducible. See Figure 3.9 below.

|Mi,2| = 2

Mi,2 = {b, d}
1

a

2

e

3

b

1

f

2

c

3

g

1

d✓

Figure 3.9: Highest First, First Omission for P 2
7

Notice that with this ordering, vertex c is omitted without being made reducible first, and thus

vertex d is not omitted. Vertex d has no neighbors with fewer tokens than $(d), so vertex d is

also reducible. Thus all vertices in Mi,2 are reducible and
∑

v∈Mi,2

$(v) = 4 = |Mi,0|, so Painter

has exactly enough tokens to pay Lister for the original marked set Mi,0. Vertices b and d are

independent of each other and thus they can both be deleted from the graph, i.e. colored with color

i.

Definition 3.11. Let Mi,0 be the original marked set of G for round i. In the Highest First Approach

Painter identifies a non-reducible vertex v with the most tokens, and omits from Mi,0 marked

neighbors of v resulting in a new marked set Mi,1. Painter repeats this process on subsequent
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vertices − always choosing a non-reducible vertex with the most tokens − until all remaining

marked vertices are reducible. The process will result in the final marked set for the round, Mi,j .

It is possible during the omitting process for vertex v, that the omission of a neighbor of v

causes another vertex with more tokens than $(v) to become non-reducible. Using the Highest

First Approach, any such newly non-reducible vertex − which has more tokens than $(v) − must

be made reducible before proceeding any other non-reducible vertices with fewer tokens.

Lemma 3.12. Using the Highest First Approach, if a vertex w is omitted to make vertex v reducible,

then Tw = ∅.

Proof. Let G = P k
n . At the beginning of some round i with marked set Mi,0, no vertex has been

omitted, thus we have that Tv = ∅ for all v ∈ Mi,0. If all vertices in Mi,0 are reducible then we are

done. So assume that there at least one marked vertex which is non-reducible. Among all the non-

reducible vertices, let h be the highest value of such a vertex, and let wh be a non-reducible vertex

with value h. Using the Highest First Approach, we now omit vertices from the neighborhood of

wh until wh is reducible. Thus |Twh
| > 0 and all other Tv ̸=wh

= ∅. Since we have deleted no

vertices at this step, all vertices of a given token value remain independent. Thus all the h-token

vertices form an independent set and since Painter can only omit vertices in the neighborhood of a

given vertex, no h-token vertex can omit another h-token vertex. So for all vertices xw, which are

omitted to make the h-token vertices reducible, Txw = ∅.

Now suppose that for some value a < h, all vertices of value greater than a are reducible,

and let ak be a vertex of value a which is not reducible. Vertex ak can only omit vertices of value

strictly less than a, and the only vertices with non-empty Tv sets are vertices of value strictly more

than a. So any vertex which is omitted to make ak reducible has value strictly less than a. So for

all vertices xa, which are omitted to make ak reducible, Txa = ∅.

After Painter has omitted these xa vertices, this may have caused higher valued vertices to

become non-reducible. If this is the case, then a highest valued vertex, say vertex m, which had

just been made non-reducible would be the next vertex to fix to be a reducible vertex. Since vertex
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m is non-reducible, then by Lemma 3.5 there is a marked and unmarked vertex of value Bi(m).

Since vertex m was previously reducible and is now non-reducible, then we know that value Bi(m)

appears on some xa vertex. So we also know there are no marked neighbors of vertex m of value

higher than Bi(m). Thus vertex m can only omit neighbors of value no greater than Bi(m), and

as previously stated the only vertices, v, with non-empty Tv sets are now vertex ak, and those

vertices of value strictly greater than a. However, all of these vertices have value strictly greater

than Bi(m), hence TxBi(m)
= ∅.

Using the Highest First approach avoids the problem shown in Figures 3.5, 3.6, and 3.7. This

approach also ensures that each vertex is only ever responsible for paying for itself and possibly

some its marked neighbors, but nothing outside of its closed neighborhood. Again by Observation

3.9, we know that each reducible vertex has enough tokens assigned to it to pay for itself and its

set of omitted neighbors, Tv.

By Lemma 3.7 we know that Painter can make each vertex a reducible vertex, and by Lemma

3.12 we know that there is a particular order in which Painter needs to omit vertices. It remains

to show that in each round i, there is a way for Painter to remove at least |Mi,0| tokens from

the graph, such that (1) each vertex which is deleted (colored with color i) has 0 tokens, (2) no

undeleted (uncolored) vertex in Mi,0 ends up with a non-positive number of tokens, and (3) each

non-zero token class in G remains an independent set.

Lemma 3.13. Let Mi,0 be the initial marked set of G for round i. If x1 and x2 are marked vertices

which are reducible in a subsequent marked set Mi,j , with Bi(x1) = Bi(x2), then x1 and x2 are

independent. Moreover, x1 (and by similar argument x2) will be independent of vertices that are

unmarked, uncolored, and have Bi(x1) tokens assigned.

Proof. Let Mi,0 be the initial marked set of G for round i, and let x1 and x2 be marked vertices

which are reducible in a subsequent marked set Mi,j with Bi(x1) = Bi(x2) = 0. Suppose for the

sake of contradiction that x1 and x2 are adjacent. Since we have assumed that the token classes for
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round i are independent, then $(x1) ̸= $(x2). Without loss of generality, assume $(x1) < $(x2).

Note that by assumption 0 = Bi(x2) = Bi(x1) < $(x1) < $(x2). Then x1 is a marked neighbor of

x2 with strictly fewer tokens than $(x2), and x1 has a non-zero number of tokens. Thus Bi(x2) ̸= 0,

a contradiction. Therefore all vertices with Bi(v) = 0 are independent. Moreover, there are

no vertices with 0 tokens that are unmarked and uncolored. All vertices with Bi(v) = 0 are

independent of unmarked, uncolored vertices with 0 tokens as well.

Now assume x1 and x2 are reducible vertices with Bi(x1) = Bi(x2) = d > 0. Again suppose

for sake of contradiction that x1 and x2 are adjacent. Since we have assumed that the token classes

for round i are independent, then $(x1) ̸= $(x2). Without loss of generality, assume $(x1) < $(x2).

Note that by assumption, 0 < Bi(x2) = Bi(x1) < $(x1) < $(x2). So x1 is a marked neighbor

of x2 with token value strictly between Bi(x2) and $(x2). This cannot happen because Bi(x2) is

defined to be the largest value of a marked neighbor of x2 whose value does not exceed $(x2).

Again since we have assumed x1 is reducible, then by definition of reducible all neighbors of

x1 with Bi(x1) tokens assigned to them are marked. So any unmarked vertex with Bi(x1) tokens

assigned to it will be independent of x1.

We now have all the tools needed to be able to prove the main Theorem, and provide a strategy

for Painter to achieve the upper bound, s̊(P k
n ) ≤

⌊
n

k+1

⌋̊
s(Kk+1) + s̊(Kr), regardless of Lister’s

strategy.

3.3 Painter’s Strategy and Proof of Main Theorem

For each round i, Painter assigns tokens to each vertex according to the Natural Greedy Clique

Token assignment. Then Painter will apply the Highest First Approach to Lister’s original marked

set Mi,0. This approach yields a new set Mi,j in which all vertices are reducible. Each surviving

v ∈ Mi,j will have a Bi(v) value, and Painter will remove tokens from each v ∈ Mi,j until the

number of tokens assigned to v is Bi(v), and vertices with 0 tokens assigned to them will be colored

with color i.
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Theorem 3.14. Using the Painter strategy provided above, Painter will never need to give Lister

more than
⌊

n
k+1

⌋̊
s(Kk+1)+s̊(Kr) where r ≡ n (mod k+1) tokens. Thus s̊(P k

n ) ≤
⌊

n
k+1

⌋̊
s(Kk+1)+

s̊(Kr) where r ≡ n (mod k + 1).

Proof. Let G = P k
n and assign tokens to each vertex as described in the Natural Greedy Clique

Token Assignment. For round i, let Mi,0 be the set originally marked by Lister. When Painter uses

the Highest First Approach, all the vertices in the resulting marked set Mi,j are reducible. Note

that at this stage each vertex will have some Bi(v) value associated with it, we will refer to this

value as Bi,j(v). By Lemma 3.12, we know that each vertex v ∈ Mi,j will only be responsible

for paying for itself and those vertices, Tv, which are omitted to make v reducible. Using the

Painter strategy above, Painter will remove tokens from each v ∈ Mi,j until the number of tokens

assigned to v is Bi,j(v). We now verify that the number of tokens removed from v are enough to

pay for v and each member of Tv, that is $(v) − Bi,j(v) ≥ |Tv ∪ {v}|. Recall that Bi,j(v) is the

highest number number of tokens assigned to a marked neighbor of v. The neighbors of v which

get added to Tv are those marked vertices with fewer tokens assigned to them than $(v) but more

than Bi,j(v). Because these vertices have more tokens assigned to them than Bi,j(v), then in some

previous marked set say Mi,k there were marked and unmarked neighbors of v with more tokens

than Bi,j(v) or there were no neighbors of v with Bi,j(v) tokens. Thus |Tv| ≤
(
$(v)−1

)
−Bi,j(v),

and so $(v)−Bi,j(v) ≥ |Tv|+ 1 = |Tv ∪ {v}|. Thus we have,

|Mi,0| = |Mi,j|+
∑

v∈Mi,j

|Tv|

=
∑

v∈Mi,j

(
|Tv|+ 1

)
≤
∑

v∈Mi,j

([
($(v)− 1)−Bi,j(v)

]
+ 1
)

=
∑

v∈Mi,j

(
$(v)−Bi,j(v)

)
.
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Thus following the Painter strategy provided, Painter will have enough tokens to pay for the

original marked set Mi,0. To continue this for round i + 1, we need to verify that the following

three conditions hold: (1) each vertex which is deleted (colored with color i) has 0 tokens assigned

to it, (2) no undeleted (uncolored) vertex in Mi,0 ends us with a non-positive number of tokens,

and (3) each non-zero token class in G remains independent.

By Lemma 3.13 we know that all v ∈ Mi,j with the same Bi,j(v) are independent of each

other and independent of unmarked vertices with Bi,j(v) tokens. Thus when Painter removes

tokens from the vertices in Mi,j these vertices will have Bi,j(v) tokens on them moving to round

i + 1. Thus at the beginning of round i + 1 the non-zero token classes are independent, and (3) is

satisfied.

At the beginning of round i each vertex had a positive number of tokens assigned to it. When

Painter removes tokens from each v ∈ Mi,j , each v now has Bi,j(v) tokens, which is non-negative.

Painter will delete (color with color i) those vertices for which Bi,j(v) = 0, and the remaining

vertices will have a positive number of tokens assigned to it. Thus (1) and (2) are also satisfied.

Now, since Painter assigned
⌊

n
k+1

⌋̊
s(Kk+1) + s̊(Kr) where r ≡ n (mod k + 1) tokens to the

graph and we have shown that the conditions hold. Painter removed no more than
⌊

n
k+1

⌋̊
s(Kk+1)+

s̊(Kr) where r ≡ n (mod k + 1) tokens to give to Lister. Thus s̊(P k
n ) ≤

⌊
n

k+1

⌋̊
s(Kk+1) + s̊(Kr)

where r ≡ n (mod k + 1).

3.4 Conclusion and Further Directions

Puleo and West [1] showed that for every tree T on n vertices,

n+
√
2n ≈ n+ un−1 = s̊(K1,n−1) ≤ s̊(T ) ≤ s̊(Pn) ≤

⌊3n
2

⌋
.

They then conjectured that this result extended to k-trees. That is, the Slow-Coloring number for

k-trees is bounded below by the k-star Kk ⊠Kn−k and bounded above by the k-path P k
n . Mahoney,

Puleo, and West [2] proved that s̊Kk ⊠Kn−k = r +
(
s+1
2

)
+ sur where ur =

⌊−1+
√
1+8r

2

⌋
. In this
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Thesis we have just proved that s̊(P k
n ) =

⌊
n

k+1

⌋̊
s(Kk+1) + s̊(Kr) where r ≡ n (mod k + 1). So

while the entire conjecture remains unproven, we now have an exact value for the conjectured

upper bound for the Slow-Coloring number of k-trees.
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