
Fingerprinting-based Indoor Localization with Deep Neural Networks

by

Xiangyu Wang

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 10, 2022

Keywords: Indoor localization, Fingerprinting, WiFi, RFID, Deep learning, Internet of Things

Copyright 2022 by Xiangyu Wang

Approved by

Shiwen Mao, Professor of Electrical and Computer Engineering
Thaddeus Roppel, Associate Professor of Electrical and Computer Engineering

Xiaowen Gong, Assistant Professor of Electrical and Computer Engineering
Mark Nelms, Professor and Chair of Electrical and Computer Engineering



Abstract

In recent years, more capabilities and applications have been added to existing wireless

communication systems due to the rapid development of the Internet of Things(IoT) [1–8].

WiFi and RFID exhibits tremendous potential in this industry due to their prevalence and low-

cost. Among the applications, indoor localization has been a popular field of research over the

years, since it plays a vital role in resolving position-related challenges such as gesture recog-

nition and human pose estimation. In the meantime, with the advancement of deep learning,

researchers are attempting to integrate deep networks into indoor localization systems to take

advantage of their superior ability to solve classification and regression problems. On the other

hand, the fingerprint method emerges with its convenience and effectiveness, which transfers

the localization problem into a feature matching to estimate the location of the signal. Thus,

deep learning technique is a great complement to fingerprinting-based indoor localization sys-

tems. However, numerous intrinsic difficulties of fingerprinting-based localization systems re-

main unresolved even though the performance of indoor localization systems keeps improving

with the iteration of deep networks. First, the distance between the stored fingerprints deter-

mines the minimum error of the fingerprinting-based localization system. To guarantee the

lower-bound of the localization accuracy, as many fingerprints as possible have to be collected,

which is laborious and time-consuming. Second, fingerprints are discrete signal space samples.

As a result of the elimination of ambiguity between fingerprints, deep neural networks may pro-

duce counterintuitive location estimations, contrary to our expectations. To address such issues,

the Deep Gaussian Process(DGP) is leveraged in this dissertation to generate a detailed radio

signal map using a limited number of fingerprints. Then, the uncertainty information from DGP

is adopted to train an LSTM model for enhancing the localization estimation by using the signal

sequence. Furthermore, a novel network input, the hologram tensor, is employed for reserving

the ambiguity between the fingerprints. In the last section, the threat of the adversarial attack

to the fingerprints is investigated to promote the robustness of the localization system.
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Chapter 1

Introduction

1.1 Background and Motivation

The growing use of Internet of Things (IoT) devices has heightened interest in indoor location-

based services. Relying on the progress of radio frequency communication systems [10–14],

an increasing number of emerging indoor localization systems adopt radio frequency(RF) sig-

nals, such as WiFi, RFID, and Bluetooth, as the observation for indoor localization. Among

the localization techniques, the fingerprinting method exhibits great performance with its con-

venience and effectiveness. The localization problem is recast as a feature matching problem.

The unknown location may be deduced intuitively once the signal feature matched with a fea-

ture stored in the fingerprint database. Thus, deep learning techniques join the field of indoor

localization with its outstanding performance in feature extraction and classification. However,

the several intrinsic issues related to the fingerprinting method are not alleviated by the intro-

duction of deep learning. First, high-accuracy fingerprinting-based localization relies on the

density of fingerprints. A wardriving would be essential to the fingerprint collection, which is

time-consuming and laborious. Second, the fingerprints, particularly those formed with angle

of arrival, lack interpretability. The ambiguity between fingerprints could not be reserved dur-

ing the generation of fingerprints. As a result, the transferability of the fingerprinting-based

localization system is hampered. Furthermore, to increase localization accuracy, fingerprinting

algorithms often focus on two angles: fingerprint and matching. Hence, position estimation

wastes peripheral information such as indoor layout and trajectory history. Finally, because

fingerprints are discrete signal samples from the signal space, most deep learning localization

models ignore signal uncertainty, which should have been beneficial in resolving fingerprint

1



updating concerns. In my dissertation, I would focus on these four aspects in order to improve

the current fingerprinting-based indoor localization systems. Because the fingerprint method

is strongly coupled with deep learning techniques in this dissertation, the threat of adversarial

assaults on the deep learning-based localization system is also investigated.

1.2 Summary of Contributions

1.2.1 DeepMap: Indoor radio map construction and localization with deep Gaussian pro-

cesses

DeepMap is a fingerprinting-based indoor localization system. Received signal strengths are

leveraged as fingerprints to estimate the indoor location. To decrease the dependence to dense

fingerprints and improve the distance resolution, a Deep Gaussian Process(DGP) is utilized

to generate the radio signal maps. The system is prototyped with the COTS WiFi devices

and evaluated in Auburn University Broun Hall. The experimental results demonstrate that a

detailed radio signal map can be established with a limited number of fingerprints successfully.

1.2.2 MapLoc: LSTM-based Indoor Location Estimation using Confidence Interval Maps

As a follow-up project of DeepMap,the DGP model in the MapLoc recovered the received

signal strengths of WiFi and the magnetic field strength and the corresponding uncertainty in-

formation. The collected fingerprints are augmented by sampling the distribution described

with the uncertainties. Thus, the signal reliability is learnt by the deep networks with fluctu-

ating signal measurements. To boost the localization accuracy, the trajectory information is

considered in the MapLoc. We use the physical constraints of the indoor environment and

the motion model to build the trajectory dataset. A LSTM model is trained to replace the tra-

ditional matching algorithm. With extensive experiments, a centimeter-level localization has

been demonstrated in MapLoc.
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1.2.3 MulTLoc: A Framework for Multiple RFID Tag localization Using RF Hologram Ten-

sors with Deep Neural Networks

All previous systems rely on received signal strengths as measurements for indoor localiza-

tion, whereas MulTLoc utilizes phase information collected from RFID systems to complete

centimeter-level localization. Compared with received signal strengths, phase information is

sensitive to the distance change between the receiver and transmitter. Thus, the received phase

values are usually noisy, including the offsets resulting from the multipath and phase wrap-

ping effects. To eliminate the offset and optimize the transferability of the localization system,

the RF hologram tensors are innovatively used as the fingerprints to estimate the target loca-

tion. Two representative deep networks are deployed in the proposed system to sanitize the

noisy hologram tensor for location prediction. In MulTLoc, we treat the location estimation

as a regression task, while the traditional fingerprint-based systems would solve the localiza-

tion estimation as a classification task. Thus, the interpretability of the system is enhanced

significantly.

1.2.4 AdvLoc: Adversarial Deep Learning for Indoor Localization

In the previous projects, the localization performance took advantage of improving with the

progress of the deep networks. However, some counter-intuitive properties of deep networks

have been exposed recently, which make networks vulnerable to adversarial attacks. In Ad-

vLoc, the effects of six types of common adversarial attacks are analyzed in both white-box

attack and black-box attack scenarios. The extensive experimental study exposed the threat of

adversarial attacks to indoor localization systems. Furthermore, adversarial training is lever-

aged in AdvLoc to defend against first-order adversarial attacks and promote the robustness of

localization systems.
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Chapter 2

DeepMap: Indoor radio map construction and localization with deep Gaussian processes

2.1 Introduction

Location-based service has collect significant attraction [15–19] due to the popularity of mo-

bile devices and wireless networks. However, the accurate location estimation for mobile de-

vices using radio frequency(RF) signals is still a challenging problem because the radio signal

propagate in indoor environments unpredictably (e.g. the multipath degrades the localization

precision of lots of indoor localization systems [20–23]). To address the accuracy degradation

resulted from the complex signal propagation, the fingerprinting-based localization approach

has been one of the hot topics. The basic idea about the fingerprinting-based localization ap-

proach consists of an offline stage and an online stage. Fingerprints are collected and stored

in the offline stage. They consist of exhaustive records for the surveillance area. In the on-

line stage, the location estimation is obtained by comparing the newly collected records to the

predefined fingerprints [24].

Owing to the low hardware requirement and the ubiquitousness, the received signal strength

(RSS) of WiFi signals is leveraged as fingerprints in many proposed localization systems.

It is in Radar that the RSS is utilized as fingerprints for the first time [25]. Moreover, Ho-

rus [26] leverages a probabilistic method to enhance the localization accuracy of a RSS based

fingerprinting system. After that, the channel sate information (CSI) attracts attention from re-

searchers because it includes fine-grained information estimated from each subcarrier [27–31].

However, the density of fingerprints is still the key factor that affects the accuracy of indoor
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localization significantly. To achieve high-accuracy localization, a wardrive is essential to the

fingerprint collection, which is time-consuming and laborious.

To get rid of the dependency on the war-driving, the radio map is constructed with dis-

crete training data in some proposed localization systems. The Gaussian process is a popular

method to build the radio map.In the area of cellular networks, it is in GPSS that Gaussian

process is used for generating radio maps for the first time. In GPSS, the distribution of signal

strengths is modeled by the Gaussian process and the unknown location is estimated by max-

imizing a joint likelihood [32]. Furthermore, Gaussian process regression is also utilized for

modelling the log-signal strengths in many types of wireless systems [33–38]. With the model

regressed by Gaussian process, the distance between the mobile devices to APs would be in-

ferred conveniently. Then the accurate location of mobile devices is obtained by triangulation

However, to locate the mobile devices, the accurate locations of access points (APs) would also

be necessary. In many practical scenarios, it is impossible to acquire the precise coordination

of APs.

The radio map construction problem in RSS fingerprinting based localization methods is

addressed in this chapter. First of all, the Gaussian process for radio map construction is in-

vestigated. The Gaussian process is capable of measuring the uncertainty in input RSS data

over a continuous space, and it is depicted with the mean and covariance function. Also, it

is a Bayesian nonparametric model. For the radio map construction problem, Gaussian pro-

cess could be leveraged to regress the relationship between RSS measurement values and their

corresponding locations. Furthermore, the Gaussian process shows an agreeable ability in rep-

resenting data when training data is adequate. However, such ability of Gaussian process de-

grades dramatically when RSS radio maps are generated with reduced training data. In fact,

Gaussian process is not effective for handling the non-stationary components of RSS values,

because of the lack of fusion of kernels in Gaussian process for complex input data [39]. Thus,

the Gaussian process leads to an unacceptable localization accuracy when it is trained with

reduced training data.

In this chapter, we propose DeepMap to solve this problem, which is a Deep Gaussian

process for indoor radio Map construction and location estimation. It is noteworthy that the
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method is not restricted to WiFi RSS values. The proposed method could also be applied in the

systems leveraging other wireless signals, such RFID and BLE. Like traditional fingerprinting

based localization methods, the DeepMap system includes an offline training stage and online

localization stage. In the offline stage, the RSS values labeled by corresponding coordinates

are passed into a two-layer deep Gaussian process model for modeling the relationship between

RSS values and coordinates in a continuous space. Also, we develop an offline Bayesian train-

ing method for maximizing the marginal distribution of the observed RSS values to compute

optimal hyperparameters, where a variational lower bound makes the problem tractable. Un-

like Gaussian process, deep Gaussian process is capable of constructing a precise radio map

with inadequate training data. The structural advantage of deep Gaussian process enhances the

learning capacity of training complicated datasets associated with abstract information [40].

Therefore, the distribution of a small dataset for radio map construction could be better de-

scribed with deep Gaussian process. In the online stage, a Bayesian method is leveraged to en-

hance localization precision. With radio maps generated by deep Gaussian process and newly

measured RSS values from all available APs, the location estimation is obtained with maximum

a posteriori (MAP) estimation.

The main contributions of this chapter includes:

• We propose DeepMap system, which first utilizes deep Gaussian process for radio map

construction and indoor localization. Deep Gaussian process effectively overcomes the

drawbacks of Gaussian process, which could not regenerate radio maps in detail with

limited numbers of training data.

• A two-layer deep Gaussian process model is designed to regress the relationship between

the RSS space and the location space; a Bayesian training method is deployed for opti-

mize model parameters; and a Bayesian fusion method is utilized to boost localization

performance.

• We validate the proposed DeepMap system in two indoor environments. Even though the

Gaussian process is comparable to deep Gaussian process when 100% training data are
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leveraged to train schemes, DeepMap outperforms the Gaussian process when moderate

training data is available.

In the remainder if the paper, the preliminaries and motivation is presented in Section 2.2.

The DeepMap system design is introduced in Section 2.3 and the performance evaluation is

covered in Section 2.4. Section 2.6 concludes this chapter.

2.2 Preliminaries and Motivation

As a kernel based Bayesian model, Gaussian process has been leveraged in regression and

classification successfully [39]. With the help of Gaussian process, the uncertainty in input data

distribution over a continuous space could be measured. Generally, a Gaussian process could

be delineated by its covariance and mean function, which is a generalization of a multivariate

Gaussian distribution.

For radio map construction problems, we could treat measured RSS values and corre-

sponding locations as a a Gaussian process regression model, that is

s = f(x) + ϵ, (2.1)

where s is the measured RSS at location x, f(x) represents the pure RSS at location x, and ϵ

is the observation noise, which follows an i.i.d. (independent, identically distributed) Gaussian

distribution with zero mean and variance σ2
n. The Gaussian process model assumes that the RSS

measurements sp and sq at two different positions xp and xq follow a joint Gaussian distribution

with covariance k(xp, xq), which is a kernel function for the two locations given by

k(xp, xq) = σ2
f exp

(
− 1

2l2
|xp − xq|2

)
, (2.2)

where σf and l are the hyper-parameters, σ2
f represents the variance and l is a length scale, both

of which describe the smoothness of the kernel function. The predicted RSS for an unknown
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position x∗ can be obtained by

Pr(f(x∗)|X,Z, x∗) = N(f(x∗);u∗, σ
2
∗) (2.3)

u∗ = kT∗ (K + σ2
nI)

−1Z (2.4)

σ2
∗ = k(x∗, x∗)− kT∗ (K + σ2

nI)
−1k∗, (2.5)

where k∗ is an n×1 vector of covariances between training locationsX and x∗,K is the covari-

ance matrix of training locations X , Z is the training observation values matrix. In addition,

the hyper-parameters σf and l can be estimated by a maximum likelihood approximation.

The RSS radio map in Fig. 2.1 is constructed with Gaussian process. As we can see,

all training data from Broun Hall dataset (see Section 2.4.1) are utilized to train the Gaussian

process. Obviously, the bell-shaped RSS radio map is consistent with most of the ground truth

RSS values. Thus, it verifies that Gaussian process could model the distribution of RSS values

in an indoor environment and regress the relationship with adequate training data. However,

the ability of Gaussian process in depicting RSS data distribution downgrades remarkably with

inadequate training data. Fig. 2.2 shows a RSS radio map constructed with 20% training data

by Gaussian process. We find that the RSS radio map in Fig. 2.2 tends to be a plain. Clearly,

most of rises and falls in Fig. 2.1 is lost in Fig. 2.2, even though the upper-right corner is still

the highest area in Fig. 2.2. In other words, the non-stationary components of RSS values are

lost in the radio map constructed by Gaussian process, because of the lack of fusion of kernels

in Gaussian process for complex input data. Therefore, this coarse RSS radio map resulted

from the deficiency of Gaussian process hampers the localization accuracy in the online stage.

To alleviate the problem, a DeepMap system is proposed for RSS radio map construction using

deep Gaussian process in the next section.
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Figure 2.1: The constructed RSS radio map using 100% training data with Gaussian process.
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Figure 2.2: The constructed RSS radio map using 20% training data with Gaussian process.

2.3 The DeepMap System

2.3.1 DeepMap System Architecture

Fig. 2.3 shows the architecture of the DeepMap system. The DeepMap system is a fingerprint-

ing based indoor localization method, which consists of two stages: the offline training stage
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Figure 2.3: The DeepMap system architecture.

and the online localization stage. In the offline stage, we labeled the RSS values from training

positions with corresponding coordinates. In each training location, RSS values are collected

from as many as possible available APs to enhance localization accuracy. To guarantee the RSS

records from all training locations are in the same size, we collect all potential RSS readings.

For some specific locations, the corresponding RSS readings are set to a -99 dBm when the

RSS values are unavailable. Therefore, a training dataset is generated with all the RSS records

and the corresponding location labels. To construct RSS radio maps of the indoor environ-

ment, we employ a deep Gaussian process for regressing the training dataset. The well-trained

model(reconstructed map) is saved in a database for future use, which describes the relationship

between RSS values and location labels in a continuous space.

In the online stage, we collect RSS values from unknown locations and contrast them with

the RSS values in the constructed radio maps. Then, the similarities between the measured RSS

values and the RSS values in the radio maps are calculated. By synthesizing the similarities
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obtained from the radio maps of APs, the location for corresponding RSS values could be

inferred using a Bayesian fusion method. Unlike the traditional fingerprinting methods which

save original RSS readings as fingerprints or the autoencoder based methods that leverage a

bunch of well-trained weights as fingerprints [27–29,41], the deepMap system has two different

storage strategies. Depending on the specification of user devices, users could store the well-

trained model to reconstruct radio maps in the online stage if the disk space is a limited resource

for user devices. Alternatively, the constructed radio maps could be saved in the disk directly to

accelerate the localization process. Furthermore, the resolution of the constructed radio maps

could be variable. In fact, a high-resolution map offers a higher localization precision at the cost

of localization speed, while a low-resolution map contributes to a coarse but fast localization.

In following sections, we will show that the agreeable localization results would be obtained

by the proposed DeepMap system even with a low-resolution map, compared to the Gaussian

process method.

2.3.2 Deep Gaussian Process for Radio Map Construction

We propose a deep Gaussian process for radio map construction with RSS values, which can

be represented by a graphical model with three different sets of nodes, including the leaf nodes,

the intermediate latent nodes, and the parent nodes [40]. For radio map construction, the leaf

nodes represent RSS values Y ∈ ℜN×D, where N and D are the number of training locations

and the number of APs, respectively. The intermediate latent nodes are defined as H ∈ ℜN×Q,

where Q is the size of the intermediate latent nodes in this layer. These latent nodes cannot be

observed in the training phase. For the DeepMap system, we consider one intermediate latent

layer to have a deep Guassian process. Let X ∈ ℜN×M denote the parent nodes, where M is

the input size. Parent nodes X represent the training locations.

It can be shown that the proposed deep Gaussian process for radio map construction is a

generative model for regression. This generative process can be formulated by

hnq = fH
q (xn) + ϵHnq, q = 1, 2, ..., Q, xn ∈ ℜM (2.6)

ynd = fY
d (hn) + ϵYnd, d = 1, 2, ..., D, hn ∈ ℜQ, (2.7)
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where fH ∼ GP(0, kH(X,X)) and fY ∼ GP(0, kY (H,H)) are Gaussian processes, and the

intermediate nodes H connect the two Gaussian processes. Note that these two Gaussian pro-

cesses only depend on the covariance function k for different inputs, where is chosen to be the

automatic relevance determination (ARD) covariance function k, that is

k(xi, xj) = σ2 exp

(
−1

2

Q∑

q=1

wq(xi,q − xj,q)
2

)
, (2.8)

where σ is the hyperparameter and wq is the weight for latent node q. Irrelevant dimensions

can be removed by setting their weights to zero.

2.3.3 Offline Bayesian Training

The objective of Bayesian training is to maximize the marginal distribution of observed RSS

values Y to determine optimal hyperparameters, which is formulated as

max log p(Y ) = log

∫

X,H

p(Y |H)p(H|X)p(X), (2.9)

Because of the nonlinear functions for H and Z, it is not easy to solve the integral in (2.9)

with the maximum likelihood method. In DeepMap, we apply Jensen’s inequality to achieve a

variational lower bound for the above marginal distribution L ≤ log p(Y ), given by

L =

∫

FY ,H,FH ,X

Q log

(
p(Y, F Y , H, FH , X)

Q

)
, (2.10)

where Q is the variational distribution, and the term p(Y, F Y , H, FH , X) is given by

p(Y, F Y , H, FH , X)

= p(Y |F Y )p(F Y |H)p(H|FH)p(FH |X)p(X). (2.11)

In fact, the above integral is still intractable due to the nonlinearity in both p(F Y |H) and

p(FH |X). Consider the probability space with K auxiliary pseudo-inputs H̄ ∈ ℜK×Q and

X̄ ∈ ℜK×M [42], whose function values are UY ∈ ℜK×D and UH ∈ ℜK×Q, respectively.
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Then, we can derive the augmented probability space, as

p(Y, F Y , H, FH , X, UY , UH , H̄, X̄)

= p(Y |F Y )p(F Y |UY , H)p(UY |H̄)

· p(H|FH)p(FH |UH , X)p(UH |X̄)p(X). (2.12)

To remove the nonlinear items p(F Y |UY , H) and p(FH |UH , X), the variational distribu-

tion Q is defined as

Q = p(F Y |UY , H)q(UY |H̄)q(H)

· p(FH |UH , X)q(UH |X̄)q(X), (2.13)

where q(UY |H̄) and q(UH |X̄) are free-form variational distributions, and q(H) and q(X) are

Gaussian.

According to (2.11) and (2.13), we can update the variational lower bound for (2.10), as

L =

∫
Q log

(
p(Y |F Y )p(UY |H̄)p(H|FH)p(UH |X̄)p(X)

q(UY |H̄)q(H)q(UH |X̄)q(X)

)
,

where the integration is with respect to {F Y , H , FH , X , UH , UY }. By grouping the variables

for Y and H , we can rewrite the variational lower bound as

L = sY + sH − q(H) log(q(H))− KL(q(X)||p(X)), (2.14)

where KL is the Kullback-Leibler divergence, sY is given by

sY = Ep(FY |UY ,H)q(UY |H̄)q(H)

(
log p(Y |F Y ) + log

p(UY |H̄)

q(UY |H̄)

)
,

and sH is given by

sH = Ep(FH |UH ,X)q(UH |X̄)q(X)

(
log p(H|FH) + log

p(UH |X̄)

q(UH |X̄)

)
.
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We can see that both sY and sX are Gaussian densities, which are thus tractable. In fact,

Bayesian training for deep Gaussian process can optimize the above variational lower bound

to seek the optimal hyerparameters for the deep Gaussian process, the inducing points (H̄ and

X̄), and the variational parameters [40].

The constructed RSS radio map shown in Fig. 2.4 is generated by deep Gaussian process

with 100% training data in the same Broun Hall dataset. Even though the similar bell-shape

surface is also created by Gaussian process, deep Gaussian process brings more details on the

bell-shape surface. For example, a slight fluctuation, which is closed to the coordinate origin,

is delineated by deep Gaussian process in Fig. 2.4, however the corresponding area in Fig. 2.1

tends to be a plain surface, which is constructed by Gaussian process. In the Fig. 2.5, the

RSS radio map is constructed by deep Gaussian process with 20% training data. Clearly, the

bell-shape outline is also retained from the radio map generated by 100% training data, even

though only 20% training data is utilized. Additionally, the surface contains most of the non-

linear characteristics. It is safe to say that deep Gaussian process can handle non-stationary

components comparing with the plain-like surface constructed by Gaussian process in Fig. 2.1.

Moreover, nonlinear characteristics are also reproduced with only a few training data, because

deep Gaussian process has a deep and heterogeneous nonlinear structure, which is more ef-

fective for complex training data. Thus, the radio map constructed by deep Gaussian process

captures more detailed information of the real RSS values distribution for indoor environments,

which contributes to improving localization precision considerably.

2.3.4 Online Phase

In the online localization stage, a Bayesian method is leveraged to estimate the location

of a mobile device the newly measured RSS values from D APs and the constructed radio

maps. We grid the RSS radio map to obtain T reference positions. The size of T is decided by

the resolution of the RSS radio map. The pseudocode for the online localization estimation is

presented in algorithm 1. The input to the algorithm 1 are the newly measured RSS values vj ,

the constructed radio map rj , the number of APs D and the number of reference points M . In

the DeepMap system, we assume that the likelihood function p(vj|li) is a Gaussian function.
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Figure 2.4: The constructed RSS radio map using 100% training data with deep Gaussian
process.
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Figure 2.5: The constructed RSS radio map using 20% training data with deep Gaussian pro-
cess.

Thus, the similarity between the measured RSS value vj and the discrete data rjli at location

li in the radio map from AP j is computed in step 6 [27]. Here, σ2 is the variance and λ is

the parameter of the variance of the input RSS values. Based on the likelihood function, the
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Algorithm 1 Pseudocode for Online Localization
Input: the measured RSS values vj , the constructed radio map rj , the number of APs D, and

the number of reference points M ;
Output: the estimated location l̂;

1: //j denotes the index of AP
2: //i represents the index of the reference points in the radio map rj

3: for j = 1 : D do
4: for i = 1 : T do
5: //compute the likelihood function p(vj|li)
6: p(vj|li) = exp

(
− 1

λσ2

∥∥vj − rjli
∥∥)

7: end for
8: //compute the posterior probability p(li|vj)
9: p(li|vj) = p(vj |li)∑T

i=1 p(vj |li)
10: end for
11: //derive the the location of the mobile device using MAP estimation
12: l̂ = argmaxli

(∏D
j=1 p(li|vj)

)

13: return l̂

posterior probability p(li|vj) for AP j could be obtained by

p(li|vj) =
p(li)p(vj|li)∑T
i=1 p(li)p(vj|li)

, (2.15)

where p(li) is the prior probability for the device to be placed at position li. Generally, p(li) is

assumed to have a uniform distribution. Therefore, the posterior probability p(li|vj) is obtained

in the step 9. Also we assume that the posterior probability p(li|vj) is independent for each AP;

hence we derive the the location of the mobile device using MAP estimation (step 12).

2.4 Experimental Study

2.4.1 Experiment Configuration

We implement DeepMap system with commodity WiFi devices to evaluate its localization per-

formance. Gaussian process for indoor localization is leveraged as benchmark [43] in this

section. To guarantee the fairness, both schemes are applied with the save datasets, the Broun

Hall dataset and the public dataset. The training data and test data for both schemes are iden-

tical. The same online localization algorithm presented in Section 2.3.4 is also used in both

schemes to ensure the fairness. First, the DeepMap performance is evaluated with the Broun
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Hall dataset, which is collected from the third floor of Broun Hall in the Auburn University. In

this scenario, we use Wi-Fi Scanner 3.4 to collect all RSS measurements in both offline stage

and online stage. The surveillance area is about 2300 m2. As seen in Fig. 2.6, 157 locations is

covered in the training data, which are represented by blue dots. The space between blue dots is

2m. The test data are gathered from 43 locations, which is represented by yellow squares. The

space between yellow squares is 4m. In this dataset, the RSS values are gathered from 433 APs,

which consists of both 5GHz APs and 2.4GHz APs from various manufacturers. Furthermore,

the RSS values for unavailable APs are assigned to -99 dBm as discussed.

We also deploy our DeepMap system on the public dataset to examine its performance.

The area is 860 m2 approximately, which includes eight classrooms, four offices and a main

hallway [44]. Also, all RSS values in the dataset are extracted from both 5GHz APs and 2.4GHz

APs. The training data are collected from 82 locations and the test dataset includes RSS values

from 34 locations. The distance between two adjacent locations is 2.6 m. The RSS values for

online localization phase are collected from each testing location twice, each of which faces a

different direction.

2.4.2 Accuracy of Location Estimation

First, we check the localization accuracy with the adequate training data. Fig. 2.7 illustrates the

cumulative distribution function (CDF) of localization errors for the proposed DeepMap and

Gaussian Process. In both schemes, all fingerprints collected from Broun Hall are leveraged

to train the models. For the DeepMap, the median localization error is about 1.3m. However,

Gaussian process obtains the median error of about 1.5m. The comparison shows that DeepMap

has a better accuracy than Gaussian process. In addition, only 60% localization errors for

Gaussian process could be lower than 2m, while 75% localization errors reach the same level

with DeepMap. We also find that the largest error for Gaussian processes is 6.182 m which

is greater than the largest errors for DeepMap, 5.207 m. Thus, DeepMap exceeds Gaussian

processes in localization accuracy when adequate fingerprints are available.

Similarly, Fig. 2.9 shows the localization performance of both schemes with the Public

dataset. When all training dataset is leveraged to train these two algorithms, the median errors
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Figure 2.6: Layout of the third floor of Broun Hall at Auburn University: training locations are
marked as blue dots and testing locations are marked as yellow squares.

for DeepMap and Gaussian process are 1.668 m and 2.2017 m, respectively, which proves

DeepMap shows a better performance in localization than Gaussian process. For DeepMap,

we also notice that more than 80% errors are under 2.8 m. However, only 65% test points for

Gaussian process could reach the same level. Thus, DeepMap outperforms Gaussian process

based on this public dataset, when the whole training dataset is available.

We also evaluate the performance of both scheme with deficient training data. With Borun

Hall dataset, the mean distance error is 1.569 m when all fingerprints are leveraged. However,

when 90% training data is used by DeepMap, the minimum mean distance error is reached,

which is 1.536 m. Besides, we also find that the distance errors are robust to the percentage

of fingerprints when more than 50% fingerprints are available to DeepMap. Gaussian process
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Figure 2.7: CDF of localization errors for the proposed DeepMap and Gaussian Process ap-
proaches using 100% Broun Hall dataset.
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Figure 2.8: Mean localization errors for the proposed DeepMap and Gaussian Process ap-
proaches using different percentages of fingerprints in the Broun Hall dataset.

achieves the best performance, 1.845m, when all training data are avaiable. However, it is still

greater than the lowest mean distance error for DeepMap. Even though Gaussian process also

shows robustness in mean distance errors when more than 60% fingerprints are available, the

distance error downgrades dramatically to 3.725m when 50% of fingerprints are leveraged in

19



0 2 4 6 8 10 12 14

Distance Error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F

DeepMap

Gaussian Process

Figure 2.9: CDF of localization errors for the proposed DeepMap and Gaussian Process ap-
proaches using 100% public dataset.
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Figure 2.10: Mean localization errors for the proposed DeepMap and Gaussian Process ap-
proaches using different percentages of fingerprints in the public dataset.

Gaussian Process. Then, the mean distance error for Gaussian process explosively increases to

8.3496m when 20% of fingerprints are used to train the model. However, the distance error for

DeepMap system does not change abruptly. The worst largest distance error for DeepMap is
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3.8447m when 20% of fingerprints are utilized to train the model. In Fig. 2.8 , we also note that

all errors obtained by DeepMap are always lower than the errors achieved by Gaussian process.

Furthermore, we investigate the effect of deficient data to localization errors with the pub-

lic dataset. In Fig. 2.10, the minimum distance errors with 2.12 m for DeepMap and with 2.489

m for Gaussian process are obtained when all training data are available. However, the dis-

tance error for Gaussian process increases dramatically with the decrease of the training data.

When only 20% training data are available for Gaussian process, the maximum distance error

is 11.67 m. Both methods show larger errors when the algorithms are trained with only 20%

training data even though the maximum error for DeepMap is about the half of the maximum

error for Gaussian process. However, the performance for the proposed DeepMap is improved

significantly, when 40% datasets are leveraged to train the algorithms. The mean distance error

for DeepMap is 3.892 m, which approximates to the performance of Gaussian process when

70% public dataset are used. Thus, DeepMap shows a more robust performance with a smaller

training dataset.

In conclusion, when the training data is adequate for training DeepMap and Gaussian

process, both of the schemes are able to regress the outline of the RSS surface. However, com-

paring with the Gaussian process, a more detailed map could be generated by DeepMap, which

leads to a more accurate localization precision. For the map constructed by Gaussian process,

it does not contains much detail, such as non-stationary components, thus the minimum error

is slightly greater than DeepMap. When only partial fingerprints are available, the localization

error of Gaussian process increases dramatically, while DeepMap exhibits the robustness to the

inadequate fingerprints. The nonlinear characteristics are captured by DeepMap even with a

few number of fingerprints, thus achieving a higher localization accuracy.

2.4.3 Impact of Various System Parameters

To investigate the impact of system parameters on the localization precision of our DeepMap

system, all of the fingerprints in the Broun Hall dataset are leveraged in the following ex-

periments. In each experiment, the training process repeats 5 times with identical parameter

settings. The average test result is recorded as the final result.
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Figure 2.11: Mean distance errors with different values of K.
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Figure 2.12: Mean training times with different values of K.

Impact of the number of the inducing points

In the DeepMap system, K represents the number of inducing points. Even though it could

be different for every layer of the overall structure, we keep the numbers of inducing points

the same in each layer to simplify the study. As is shown in Fig. 2.11, we compare the mean

22



1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

q

0

1

2

3

4

5

6

7

8

9

M
ea

n
 D

is
ta

n
ce

 E
rr

o
r 

(m
)

Figure 2.13: Mean distance errors with different values of q.

distance errors with the different values of K. According to Fig. 2.11, the mean distance error

decreases gradually with the increment of the value of K. After K is greater than 40, the

impact of K to the mean distance error reduces and the mean distance error converges to about

1.65m. Fig. 2.12 depicts the corresponding training times for different values of K. As we can

see, the mean training time goes up with the increase of K. Considering that the training time

would not jeopardize the user experience in the online stage, K is set to 48 for obtaining the

best localization performance in the following experiments.

Impact of the number of latent node

q appears as the number of latent nodes in the deep Gaussian process. Ideally, each latent

node could have its own weight wq. but the weight could also be removed by setting t zero. We

design a specific experiment to study the effect of q to the performance of our DeepMap system

and to optimize the value of q to achieve the best localization precision. In this experiment, the

value of K is set to 48 to eliminate the effect of K. 20 different values of q are introduced to

the DeepMap system to evaluate their effect on the performance of our system. For each q, the

training process is repeated 5 times to avoid the randomness of the results.
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Figure 2.14: Mean training times with different values of q.

Fig. 2.13 depicts the mean distance errors for increased q. As the number of latent nodes

raises from 1 to 9, the mean distance error declines from about 6m to about 2m rapidly. When

the value of q is in the range between 11 and 27, the mean distance error does not fluctuate

significantly. The lowest error happens when the value of q is in the range from 15 to 19. As

soon as q is greater than 27, it produces a sharp rise in the mean distance errors. As we can see,

the mean distance error increases from 1.77m to 8.4m. Therefore, we conclude that the local-

ization precision of our DeepMap system could be degraded by an oversized q, even though the

weight for the corresponding latent node could be eliminated. We also investigate the impact of

q to the mean training time. Similar with the impact of K to the mean training time, the mean

training time goes up gradually with the increasing q. To obtain the best localization precision,

the values of q is set to 17 in the following experiments. Fig. 2.14 illustrates that the training

time is only about 14 minutes when q is 17. It is noteworthy that all of the fingerprints in the

Broun Hall dataset are leveraged in this experiment. The training process would speed up if

fewer fingerprints are utilized in the training process. Thus, the DeepMap system could react to

the change of environment by updating the fingerprints and training the deep Gaussian process

in real-time.
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Figure 2.15: Mean distance errors with different numbers of iterations for initialising the vari-
ational distribution.

Impact of the number of the iteration for initialising the variational distribution

Fig. 2.15 plots the influence of the number of iterations performed for initializing the varia-

tional distribution on the localization precision of our system. As is shown in Fig. 2.15, the

mean distance error drops slightly when the initialization iteration increases from 100 to 200.

In the initialization iteration range between 200 and 500, the localization precision keeps stable

and the mean distance error is about 3m. To better look into the effect of the initialization

iteration to the localization precision, the initialization iteration gap between the rest of the

experiments is enlarged to 500. With 1000 initialization iterations, the localization precision

improves significantly. When the initialization iteration reaches to 1500, the mean distance er-

ror continues to decrease. However, the localization performance of our DeepMap system does

not keep enhancing, once the initialization iteration is greater than 1500. The mean distance

error stays at the level of about 1.6m.

Impact of the resolution of the constructed RSS radio map

Fig. 2.4 depicts the reconstructed RSS radio map, which is generated by 100% fingerprints in

the BrounHall dataset. In the Figure, the green dots represent the reconstructed RSS values
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Figure 2.16: Mean distance errors with different map resolution.

at the reference positions. The resolution of the reconstructed RSS radio map is decided by

the density of the reference points. To investigate the impact of the map resolution to the

performance of our DeepMap system, 15 maps with the different resolutions are generated

with the same well-trained deep Gaussian process. By observing from Fig. 2.16, we find that

the localization precision is not affected by the map resolution significantly when the map

resolution is lower than 200cm. Also, with the information from the table 2.1, we notice that

the size of the RSS radio map shrinks rapidly when the map resolution increases from 50cm

to 200cm. Thus, it is safe to say that a fine-grained RSS radio map is not essential to the

better performance for the DeepMap system. However, the mean distance error goes up if the

map resolution keeps increasing. The worst localization precision is obtained with the map

resolution of 400cm. According to the table 2.1, the map size and the time for construction

map are related to the map resolution inversely. Even though the mean distance error is about

1.5m when the map resolution is 50cm, the RSS radio map would be enormous, which costs

12.4 MB. Correspondingly, the testing time and the map construction time are also higher than

the other results obtained by lower resolution maps. Combining the results in the table 2.1 and

the mean distance error in 2.16, the best performance of DeepMap system is achieved when

the resolution of the RSS radio map is set as 200cm. With the resolution, the map construction
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Table 2.1: Map Construction Time, Testing Time, and Map Sizes with Different Map Resolu-
tion

Map Resolution (cm) 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Map Construction Time (s) 24.3 9.38 5.08 3.13 2.11 1.56 1.24 0.95 0.77 0.63 0.53 0.46 0.40 0.33 0.33
Testing Time (s) 0.91 0.46 0.27 0.20 0.15 0.12 0.11 0.09 0.09 0.08 0.07 0.04 0.04 0.03 0.03
Map Size (MB) 12.4 5.52 3.17 2.03 1.38 1.03 0.83 0.64 0.51 0.44 0.36 0.31 0.27 0.22 0.21

time and testing time reduces to 1.24 second and 0.11 second, respectively. With the help of

this shorter testing time, DeepMap system has the potential to provide the real-time localization

service. Also, because of the optimized resolution, the map size is only 0.83 MB, which is

friendly to most mobile devices.

2.5 Related Work

Indoor localization has drawn great attention with the proliferation of mobile devices. Recently,

variant indoor localization systems devote to promoting localization precision with advanced

methods and algorithms. In this section, we review the fingerprinting base indoor localization

system first. Then we mainly discuss two types of fingerpringitng based localization systems,

which are closely related to our DeepMap system, i.e., deep learning based localization system,

and radio map based localizaton system.

RADAR [25], the first Received Signal Strength(RSS)-based fingerprinting localization

system, localizes the target by comparing the fingerprints collected in the online stage with the

RSS fingerprints database with a deterministic method. To improve the localization precision,

Horus leverages a K-nearest-neighbor based probabilistic method, achieving a mean accuracy

of 0.6 meters. However, the nature of RSS restricts the performance of the RSS-based systems.

Firstly, the RSS values are influenced by the multipath and shadow fading significantly. Thus,

due to the diversity of RSS, two consecutive RSS readings, which are collected at the exact

same location, could be different. Secondly, the RSS value is the coarse information obtained

by averaging the amplitudes of all incoming signals. Comparing with the RSS, the channel

state information(CSI) is more fine-grained, which depicts the characteristic of each subcarrier.

FIFS [45] and PinLoc [46] utilize CSI to build fingerprints. The experimental results show

that both FIFS and PinLoc outperforms Horus significantly in the same testbed. Although all
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these fingerprinting base systems perform agreeably in localization precision, the enormous

fingerprinting database degrades their performance in mobile devices that have limited disk

space.

Deep learning-based indoor localization systems rely on deep networks to extract features

from CSI and leverage the features as fingerprints. DeepFi [47] is the first work to use au-

toencoder to extract features from CSI. It leverages the bias and weights from a well-trained

three-layers autoencoder as fingerprints. PhaseFi [41] and DFLAR [48] propose to train the au-

toencoder with the phase values and images generated by CSI respectively. Also, WiDeep [49]

improves the robustness of the localization by combining a stacked denoising autoencoders

deep learning model and a probabilistic framework. Furthermore, [50, 51] contribute to device

free indoor localization with deep auotoencoder networks. Due to the powerful abilities of the

Convolutional Neural Network (CNN) in the fields, such as computer vision, it also has been

used to promote the performance of the indoor localization system. A 6-layer CNN is employed

in CiFi [30]. In contrast to previous fingerprinting based systems, the CiFi system would not

use the fingerprinting database in the online stage. It only stores a set of weights and biases

to achieve localization. Besides, [52] promotes the localization precision by preventing the

overfitting problem with a limited training dataset. ResLoc [31] proposes to utilize a residual

network to obtain submeter level accuracy with a single access point.

However, because of the nature of fingerprinting based systems, the localization problem

is treated as a matching problem or multi-classification problem. Therefore, the density of fin-

gerprints is highly related to the performance of the fingerprinting based localization system.

To address such problem, Surecose [33] and [43] generates the radio map for an indoor en-

vironment with Gaussian process, which models the RSS values in a continuous space. With

the advantages of the interpretable radio map, researchers propose the solution for some ex-

isting problem about fingerprinting based localization. For example, WinIPS [53] leverages

the Gaussian Process Regression (GPR) with Polynomial Surface Fitting Mean to predict RSS

on virtual reference points (VRPs). It overcomes the laborious fingerprint collection in the of-

fline phase, and updates the radio map automatically in a dynamic environment. DncIPS [54]

presents FWA-GPR algorithm, which is based on the Gaussian Process Regression (GPR) with
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a fireworks algorithm (FWA). It is also robust to the change of the environment. However, the

location of APs is not essential in the DncIPS, which contributes to the improvement of the

flexibility of this system. Even though both WinIPS and DncIPS solve the problem of finger-

prints update in the dynamic environment, their localization precision could not be comparable

to the other deep learning-based localization systems.

2.6 Conclusions

In this chapter, we presented DeepMap, a deep Gaussian process for indoor radio map construc-

tion and location estimation system. Comparing with the traditional Gaussian process for radio

map construction, our DeepMap system consists of a two-layer deep Gaussian process model,

which is able to extract nonlinear characteristics from fingerprints. We propose a Bayesian

training method in the offline stage to optimize the model parameters and a Bayesian fusion

algorithm in the online stage. Moreover, extensive experiments are conducted to evaluate the

performance of our DeepMap system. The results indicate that the DeepMap system overper-

forms Gaussian process in both datasets, the Broun Hall dataset, and the public dataset. The

DeepMap system also shows its robustness with the deficient training data.
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Chapter 3

MapLoc: LSTM-based Indoor Location Estimation using Confidence Interval Maps

3.1 Introduction

Recently, With the rapid development of the Internet of Things (IoT), location based service

(LBS) has drawn increasing attention from various fields, such as robotics, retailing, man-

ufacturing, and smart buildings. Instead of using specifically designed sensors for location

estimation, radio frequency (RF) signals, e.g., WiFi, have been a popular choice for indoor

localization systems due to its wide deployment in indoor spaces. Fingerprinting is a popular

indoor localization method, which generally consists of two stages: offline fingerprint collec-

tion and online location estimation. In the offline stage, fingerprints in the form of, e.g., WiFi

received signal strength (RSS), are collected in the service area and labeled with the corre-

sponding coordinates. Then, in the online stage, the unknown location of a mobile device

will be estimated by matching the newly collected measurements with stored fingerprints. The

performance of fingerprinting is thus largely affected by both the fingerprints and the match-

ing method. Many prior works adopted various techniques in wireless communications, signal

processing, and machine learning through these two aspects.

Various observations of RF signals have been utilized as fingerprints. For example, RSS

was first used in [25]. Intuitively, RSS is negatively related to the distance between the trans-

mitter and receiver. By using an empirical signal propagation model, the unknown location

could be inferred roughly by triangulation. Even though RSS is resilient to slight environmen-

tal changes, it could not achieve fine-grained localization, especially when the number of APs

is limited. For environments with rich AP resources, AP selection emerged to filter out the
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less useful RSS readings for boosted localization accuracy [55–57], which, however, is still an

open problem. In addition, channel state information (CSI), as a fine-grained observation of the

orthogonal frequency-division multiplexing (OFDM) physical layer (PHY), has been adopted

as fingerprints in the past decade. It depicts how a signal propagates from the transmitter to

the receiver through each subcarrier. Due to the nature of CSI, it is more sensitive than RSS to

distance variations, and is also susceptible to the multipath effect and dynamic environments.

Thus, various signal processing techniques have been proposed for eliminating the offsets in-

troduced by the environment and hardware to enhance the quality of CSI fingerprints [29]. The

extra cost of signal processing may impede the prevalence of CSI-based localization systems

in mobile devices with limited hardware resources. Meanwhile, with the popularity of smart

devices, increasing types of signals, such as light and earth magnetic field intensity, have been

introduced as fingerprints [58]. It has been shown that such multi-modal fingerprints are com-

plementary to each other and can help to make the system more robust.

In addition to the quality, the density of fingerprints is also a key factor that affects the ac-

curacy of fingerprinting. To achieve high location accuracy, a site survey is needed to collection

fingerprints at densely marked locations, which is usually time-consuming and laborious. Fur-

thermore, such dense fingerprints are costly to update when the service environment is changed

(i.e., change of furniture placement). As a result, there is a trade-off between the location es-

timation accuracy and system deployment cost, which needs to be carefully balanced when

designing a fingerprinting system.

Another crucial factor to the success of fingerprinting is an effective and efficient location

estimation (i.e., matching) method. In recent indoor localization systems, machine learning

has been widely used as classifiers to estimate unknown locations in the online stage, such

as K-Nearest Neighbors (KNN), support vector machines (SVM), and random forest [25, 59,

60]. Recently, deep learning models, such as multilayer perceptrons (MLP), convolutional

neural networks (CNN), and recurrent neural networks (RNN), have been adopted for effective

multiclass classification [30, 31, 47, 61]. However, such methods are still focused on solving

the traditional fingerprint matching problem, which partitions the continuous service area into
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a discrete grid and is treated as a multiclass classification problem. This approach introduces a

built-in error, even though the error can be mitigated by probabilistic methods [47, 62].

In this paper, we propose MapLoc, an indoor fingerprinting system that utilizes Deep

Gaussian Process (DGP) to regress uncertainty maps and incorporates a Long Short-term Mem-

ory (LSTM) based method for location estimation. From the perspective of fingerprint quality,

both WiFi RSS and earth magnetic field intensity are utilized as fingerprints in MapLoc. Since

the magnetic sensors are available in many smart devices, the magnetic field intensity mea-

surements are readily available. Moreover, MapLoc utilizes the inferred confidence intervals

of the uncertainty maps to generate artificial trajectories of fingerprints, which are used in aux-

iliary learning to pre-train the location prediction model. By implementing a stacked LSTM

network as a backend, we design a location prediction model for regressing the signal maps.

And the estimated location will be inferred directly by the model. More specifically, a DGP is

first implemented for uncertainty estimation in the service area. Then the artificial signal mea-

surements are generated by sampling the distribution described with uncertainties. In addition,

geometry constraints and user movement patterns are considered in trajectory generation. The

generated signal measurements are used to compose signal sequences that supervise the pre-

training of the location prediction model. To better regress the signal strength, an auxiliary loss

is adopted in the training. Both location prediction and fingerprint estimation are used to cal-

culate the loss for weight updating. Finally, the pre-trained model is fine-tuned with real signal

sequence collected in the field. Fine-tuning forces the location prediction model to converge to

the real signal surface, thus eliminating the cumulative error of the DGP model. In the online

stage, the location of the target mobile device is readily predicted by the location prediction

model using its newly measured signals and past trajectory in a small sliding window.

The main contributions of this paper are summarized below.

• An innovative localization framework is proposed by leveraging the uncertainty estima-

tion capability of DGP. Continuous uncertainty maps are created by DGP using finger-

prints measured at gridpoint locations. The fingerprints are then augmented by sampling

the distribution described by the uncertainty maps. The generated signal measurements
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reflect their own stability, allowing deep learning models to learn the reliability of signals

and select the effective measurements for location estimation.

• By introducing geometric constraints of the service area and user movement trajectories,

the continuous nature of human mobility and the historical locations of the target device

within a small window are taken into account. Furthermore, fingerprinting is no longer

treated as a classification problem here. Rather, the location prediction model readily

produces the estimated location in the manner of regression, thus mitigating the built-in

error of the traditional approach.

• We leverage auxiliary learning in training the location prediction model. By introducing

the signal measurement loss as one of the components of the auxiliary loss in supervise

training, the LSTM-based location prediction model will be forced to learn the inherent

relationship in the sequences of measurements. Compared with the traditional training

approach that only uses isolated location as labels, signal sequences include much more

features to guide and accelerate the training process.

• Multimodal maps, created using WiFi RSS and earth magnetic field strengths, are utilized

in the MapLoc system. Such measurements are widely available and do not increase

the cost and affect the compatibility of the system. It is easy to extend the proposed

framework to include more types of measurements, such as light intensity, for future

improved performance.

• We verified the performance of the proposed MapLoc system with extensive experiments

in two representative indoor environments. The results demonstrate that MapLoc ad-

vances the the accuracy of location estimation by taking advantage of the uncertainty

estimation provided by DGP and the bi-modal fingerprints.

In the remainder of this paper, we present an overview of related work in Section 4.2.

The preliminaries and motivations are provided in Section 4.3. Section 4.4 presents the system

design. In Section 3.5, we evaluate our prototype system, and in Section 3.6, we wrap up this

paper.
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3.2 Related Work

With the rise of the wireless communication [63–68], indoor location-based services have

drawn a lot of attention from both academia and industry, due to their high social and eco-

nomic value. Unlike outdoor localization systems, such as the Global Positioning System

(GPS), which rely on the line-of-sight (LOS) reception of satellite signals, the performance

of indoor localization is hampered by scattered and reflected signals due to the clutter environ-

ment. Indoor localization is still an open problem without a universal solution, despite a variety

of techniques have been proposed in the literature.

3.2.1 Fingerprinting Approaches

Because of their adaptability and adequate accuracy, fingerprinting methods are commonly

used in localization systems. The features derived from the observations are adopted for pattern

matching in fingerprinting. RADAR [25] was one of the first attempts to use RF signals, where

RSS was used as fingerprints. Aside from RSS, various types of observations were leveraged in

prior works as well. CSI is a fine-grained observation from the PHY layer, which includes the

amplitude and phase of each subcarrier of the OFDM PHY. FILA [69] demonstrated that CSI

helps to improve localization accuracy and reduce latency. The quality of fingerprints, which

can be viewed as a discrete radio map, plays a critical role in such systems. A basic and effective

way to improve the quality of the radio map is to increase the number of fingerprints. However,

collecting fingerprints is usually time-consuming and laborious, and in some cases, impossible.

To minimize such effort, prior works [70–72] utilized Unmanned Aerial Vehicles (UAV) to

replace manual labor. DeepMap [62] constructed a radio map with DGP using only a limited

number of fingerprints. WiGAN [73] generated fingerprints for an unknown area with Gaussian

Process Regression conditioned least-squares Generative Adversarial Networks (GPR-GANs).

The authors in [74, 75] investigated the radio map adaptation and update problem to avoid

the cumbersome recollection of fingerprints in dynamic environments. On the other hand, the

quality of fingerprints keeps improving with the advance of technology, hence the evolution of

radio maps. Gu et al. [76] eliminated multipath interference in WiFi signals with the Sparsity
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Rank Singular Value Decomposition (SRSVD) method. Luo et al. [77] extracted nonlinear

features from RSS signals by implementing Kernel Principal Component Analysis (KPCA).

Furthermore, deep learning techniques have achieved an exceptional performance in feature

extraction as well. To extract nonlinear features from observations, deep autoencoders were

incorporated in [29,41,47,78], while [58,79,80] leveraged LSTM and its variants to evaluate the

correlation between received RF signals for optimizing the fingerprints. In [30,31,61,81], CNN

was used to extract fingerprints from multidimensional signal arrays for improved localization

accuracy.

3.2.2 Geometry-based Approaches

In addition to fingerprinting methods, geometric methods, such as multilateration and trian-

gulation, are widely used in indoor localization systems by exploiting the measurements for

fine-grained information. Among various measurements, Angle of Arrival (AoA) is commonly

employed in radar and acoustics systems. ArrayTrack [82] proposed a multipath suppression

algorithm for eliminating the reflection paths between transmitter and receiver. SparseTag [17]

proposed to use a spatial smoothing based method, which processed a sparse RFID tag ar-

ray and decreased the angle estimation error to 1.831◦. Time of Arrival (ToA) based systems

estimate the transmitter-receiver distance by measuring the traveling time of the signal. How-

ever, such systems require tightly synchronized clocks at the transmitter and receiver. Kang et

al. [83] mitigated the time synchronization error and the NLOS error by introducing an itera-

tive Time-of-arrival (iToA) algorithm incorporating a multivariate linear model. Also, Yuan et

al. [84] proposed a unified factor graph-based framework for ToA based localization in wire-

less sensor networks. The framework provided a unified treatment of the inaccurate positions

of transmitters and the asynchronous network. Even though the localization accuracy keeps

increasing with these approaches, their performance is still insufficient for practical indoor ser-

vices because of the required LOS signals and multipath-free environments.
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3.2.3 Other Approaches

In addition to RF signal-based techniques, vision-based techniques are also popular with the

emerging of robotics, autonomous vehicles, and Augmented Reality (AR) [85]. The localiza-

tion algorithms rely on the inputs from sensors, such as RGB-D cameras and infrared cam-

eras, to extract location information. The vision based techniques usually achieve centimeter

level accuracy in real-time, outperforming most of RF signal based techniques. For example,

MonoSLAM [86] is the first study to apply the simultaneous localization and mapping (SLAM)

approach with a single uncontrolled camera, with centimeter level accuracy at 30Hz real-time

performance. AprilTag [87] created a visual fiducial system that enables full six degrees-of-

freedom (6DOF) localization with a single image by using a 2D barcode tag as landmark.

However, the computational cost of vision-based approaches constraints their deployment on

IoT devices with limited computation power and short battery life [88]. Moreover, the visibility,

occlusion, and privacy related issues further constrain the usage of vision-based approaches.

Indoor localization also takes advantage of the development of visible light communica-

tions (VLC). By analyzing the modulated light signal transmitted in the form of visible LED

lights, many VLC signal-based localization techniques have been proposed. Because the dif-

fused components emerging from multipath scattering are substantially weaker than the LOS

component, the VLC-based localization system has a superior accuracy over RF signal based

system, which usually suffer from strong multipath interference [89–91].

Acoustic signals have also been employed in localization systems. It provides precise lo-

calization at a low cost due to readily accessible equipment such as speakers and microphones,

as well as excellent time-domain resolutions. For instance, EchoTrack [92] tracked hand trajec-

tory with a built-in speaker array and microphone on smart phones by leveraging two-channel

chirps to remove the multipath noise. Location estimation is enhanced by using the Doppler

shift compensation and roughness penalty smoothing method. Vernier [93] achieved accurate

motion tracking accuracy of less than 4 mm, by proposing a differentiated window based phase

change calculation (DW-PC) to minimize the computation overhead for real-time tracking.
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3.3 Preliminaries and Motivations

Gaussian process has been successfully applied for solving regression and probabilistic clas-

sification problems. A Gaussian process is described with its covariance matrix and mean

function. Since the prediction is also Gaussian, confidence intervals can be estimated to depict

the uncertainty of data distributed over a continuous space. Thus, a normalized signal strength

map for a service area can be conveniently reconstructed with measured signal strengths and

the corresponding coordinates by a Gaussian process regression model, which is give by

r(c) = f(c) + ϵ, (3.1)

where r(c) and f(c) represent the received signal strength and ideal signal strength for location

c, respectively, and ϵ is the observation noise, which follows an i.i.d. (independent identically

distributed) Gaussian distribution with zero mean and variance θ2n.

It is intuitive to assume that the received signal strengths ri and rj at coordinates ci and

cj , respectively, also follow a joint Gaussian distribution with covariance k(ci, cj), which is

usually described using a kernel function as

k(ci, cj) = ϕ2 exp

(
− 1

2l2
|ci − cj|2

)
, (3.2)

where ϕ and l are the hyper-parameters for depicting the signal variance and the smoothness

of the kernel function, both of which can be estimated by using a maximum likelihood approx-

imation method. Then the joint distribution of the estimated signal strength f∗ of location c∗

and the measured signal strengths r can be depicted as follows.

(
r

f∗

)
∼ N


0,




K K∗

KT
∗ K∗∗





 . (3.3)
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The signal strength f∗ can be inferred from the measured signal strength r by

Pr(f∗|c∗, c, r) = N (f∗|µ∗,Σ∗) (3.4)

u∗ = KT
∗ (K+ θ2nI)

−1r (3.5)

Σ∗ = K∗∗ −KT
∗ (K+ θ2nI)

−1K∗, (3.6)

where c ∈ RN×2, r ∈ RN , K∗∗ = [k(c∗, c∗)], N is the number of positions where the measure-

ments were taken, K is the covariance matrix of c with dimension N ×N , and K∗ is an N × 1

matrix of covariances between c and c∗.

Inspired by the Gaussian process based works, the DGP is leveraged in this paper to en-

hance the precision of the constructed map by recovering the non-stationary components of

signal measurements. In our prior work [62], a two-layer DGP model was leveraged to extract

nonlinear characteristics from RSS samples and construct radio maps. Compared with Gaus-

sian process, DGP is able to regress complex input data by taking advantage of the fusion of

kernels. Fig. 3.1 is a graphical representation of a DGP, which consists of three layers of nodes,

i.e., the parent nodes C, the leaf nodes R, and the latent nodes H , which include two sublay-

ers H1 and H2 [94]. For a 2D map generation problem, C is the set of training coordinates

with dimension N × 2, R denotes a signal measurement matrix of N × S, and H ∈ RN×Lsub .

Here, N , S and Lsub represent the number of measured coordinates, the number of sensors, and

the number of the intermediate latent dimensions in the sublayers, respectively. Therefore, the

generative process is given by

h1nl = fH
l (cn) + ϵHnl, l = 1, 2, ..., L1, cn ∈ R2 (3.7)

h2nl = fH∗

l (h1nl) + ϵH
∗

nl , l = 1, 2, ..., L2, h
1
nl ∈ RL1 (3.8)

rns = fR
s (h

2
nl) + ϵRns, s = 1, 2, ..., S, h2nl ∈ RL2 , (3.9)

where fH ∼ GP(0, kH(C,C)), fH∗ ∼ GP(0, kH∗
(H1, H1)), and fR ∼ GP(0, kR(H2, H2)) are

Gaussian processes, which connects the latent nodes H with parent nodes C, themselves, and

leaf nodes R, respectively. The automatic relevance determination (ARD) covariance functions
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Figure 3.1: The DGP model for signal map construction.

for the Gaussian Processes is defined as

kARD(ci, cj) = ϕ2
ARD exp

(
−1

2

L∑

l=1

wl(ci,l − cj,l)
2

)
, (3.10)

where wl is the weight for each latent dimension and ϕARD is a hyper-parameter. For different

inputs, the Gaussian processes, fH and fR, only be dependent on the covariance function kARD.

To find the optimal hyper-parameters, Bayesian training is leveraged to maximize the marginal

distribution of the observed signal measurement R, which is given by

max log p(R) = log

∫

C,H

p(R|H)p(H|C)p(C). (3.11)

The outstanding performance of DGP for generating a detail-rich signal map has been

demonstrated in [62]. With the deep and heterogeneous nonlinear structure, the DGP han-

dles the non-stationary components in complex signal measurements and extracts the detailed

information about the distribution of real WiFi RSS measurements in indoor environments.

Despite the fact that the detailed maps created by DGP improves localization accuracy,

the uncertainty information, which could also be retrieved using DGP, was largely ignored in

our prior work [62]. Indeed, the uncertainty information just happens to be a convenient tool

for evaluating the reliability of sampled signals. Fig. 3.2 illustrates a uncertainty radio map

constructed by DGP using the measured RSS data from a specific AP in a public dataset [95].
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The map includes three layers, a green layer representing the upper confidence bound of the

map, a blue mean layer, and a peach layer denoting the lower confidence bound of the map.

The confidence bound layers depict the 95% confidence interval of the signal distribution. The

position of the AP is implied in Fig. 3.2. At the top-left corner of the map, the signals are

the strongest and the most stable, because this area is close to the AP. When the distance is

increased, the signal strength decreases and fluctuates more considerably. For the locations

that are beyond the coverage of the AP, the signal strength drops to −100dBm and settles there.

The RSS data from this AP, obviously, would be more constructive in locating target devices

in the top-left region, while this AP would have a negative impact on locating targets in the

map’s central area because the RSS samples in the area would be highly random with large

fluctuations. Such a pattern of uncertainty indicates that the signal stability varies depending

on the location. And different patterns of uncertainty map would also be obtained for different

APs. Thus, in MapLoc, we can sample the Gaussian distribution that is defined by the mean and

confidence intervals in the uncertainty map to generate artificial measurements that depict the

stability of the signal. The following LSTM-based location prediction model will exploit such

fluctuations to distinguish the optimal signal measurements for location estimation. Moreover,

Fig. 3.3 plots the uncertainty map generated by DGP using earth magnetic field observations. It

follows a similar trend as in Fig. 3.2, in which the signal stability changes at different locations,

and is complementary to the RSS uncertainty map. Both RSS and magnetic field data will be

used in this effort to improve the accuracy of localization.

On the other hand, the proposed MapLoc system also takes into account the trajectory of

the target device in a sliding time window. The trajectories can be reasonably synthesized by

leveraging the movement pattern of target devices and geometry constraints (e.g., the shape of

the room or corridor). Using the uncertainty maps, artificial signal sequences can be generated

along such movement trajectories. The artificial signal sequences are used to pre-train the

LSTM-based location prediction model, which is then fine-tuned with real collected signals in

the field. The pre-training process guides the location prediction model by learning the signal

reliability, while fine-tuning mitigates the cumulative error introduced by imprecise uncertainty

maps.
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Figure 3.2: An RSS uncertainty map constructed by DGP.

Figure 3.3: An earth magnetic field intensity uncertainty map constructed by DGP.

3.4 system overview

Fig. 3.4 presents the system architecture of the MapLoc system, where the green and blue

blocks represent the components in the offline stage. More specifically, the green blocks are

related to collecting signal measurements and their corresponding coordinates, whereas the
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Figure 3.4: The MapLoc system architecture.

blue blocks are associated to the synthesized signal measurements and their coordinates. The

location prediction model is unique in that it is pre-trained with the synthesized RF data and

then fine-tuned with the collected RF data, which is why it is colored in gradients (from blue to

green). The yellow blocks in Fig. 3.4 represent the components in the online stage.

Similar to traditional fingerprinting systems, MapLoc also consists of two stages: an of-

fline stage for data collection and model training, and an online stage for location estimation. In

the offline stage, WiFi RSS measurements as well as magnetic field readings are collected with

the built-in sensors in the mobile device. The measurements comprising the collected bi-modal

sequences, which are tagged with the corresponding coordinates where the data was measured.

For each location, we collect RSS measurements from as many APs as possible. Since the set

of visible APs usually varies from location to location, we force the RSS measurements from

those inaccessible (i.e., out of coverage) APs to be -100 dBm to ensure consistency in measured

data.

Localization with MapLoc includes two parts as well. The collected bi-modal signal mea-

surements are first leveraged for training the DGP model to generate their uncertainty maps.

The uncertainty map includes the mean value and the upper and lower bounds of the 95%

confidence interval, as illustrated in Fig. 3.2. The uncertainty map will then be leveraged to
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synthesize artificial bi-model signal sequences for enhancing the training of the location pre-

diction model, which is introduced to consider the trajectory (or, historical) information of the

target device in location estimation. The model is first pre-trained with the artificial signal se-

quences synthesized by sampling the uncertainty maps, and then fine-tuned with the collected

bi-modal sequences to avoid the cumulative errors introduced by the DGP model. In the online

stage, the DGP model will not participate in location estimation. The estimated location will

be obtained by combining the previous trajectory information with a time window W with the

signal measurements from the current unknown location.

3.4.1 Offline Training

Offline training of the MapLoc system includes pre-training and fine-tuning. The DGP model is

first trained using the bi-modal signals that have been collected. The location prediction model

will first be trained using the artificial bi-modal sequences generated by the DGP model, and

then fine-tuned using the signal sequences composed of collected signal measurements from

the field to ensure that it converges to the real-world situation.

Pre-training

First, the collected signal measurements are used to train the DGP model. Because the DGP

model focuses primarily on the signal distribution, the temporal information in the signal se-

quence is neglected during the training. To improve the structure of the DGP model and op-

timize the related hyper-parameters, a simple approach is employed to assess the quality of

the uncertainty map generated by the DGP model. As shown in Algorithm 2, the constructed

uncertainty map M is a G × S × 3 matrix, which includes an upper confidence layer, a mean

layer, and a lower confidence layer. Here, G denotes the number of gridpoints in the map.

It has to be 100, 000 to reach a resolution of 0.01 m for an area of 10 m2. S represents the

number of available signals. For example, we have S = 10 if the WiFi RSS measurements

are collected from 7 APs, since each magnetic field reading is a vector with three elements

(magx,magy,magz), describing the magnetic field intensity for the north, east, and vertical

directions, respectively. The mean layer m is constructed to evaluate the overall quality of the
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Algorithm 2 Pseudocode for measuring the quality of the uncertainty map
Input: the measured verification sample rkj and the corresponding coordinate ck∗, the mean

layer of the uncertainty map mj for the jth signal, the number of gridpoints G in mj , the
number of available signals S, and the number of verification samples K ;

Output: the map quality Q ;
1: //i represents the index of gridpoints in map mj

2: //j denotes the index of signals
3: //k denotes the index of verification samples
4: //l denotes the coordinate of the gridpoints in map mj

5: for k = 1 : K do
6: for j = 1 : S do
7: for i = 1 : G do
8: //compute the likelihood function p(rkj |ci)
9: p(rkj |ci) = exp

(
− 1

λσ2

∥∥rkj −mci
j

∥∥) ;
10: end for
11: //compute the posterior probability p(li|rkj )
12: p(ci|rkj ) =

p(rkj |ci)∑G
d=1 p(r

k
j |cd)

;

13: end for
14: //use MAP estimation to infer location for the verification samples
15: ĉk = argmax{c1,c2,...,cG}

(∏S
j=1 p(ci|rkj )

)
;

16: end for
17: //compute map quality Q
18: Q = 1

exp( 1
2K

∑K
k=1(||ck∗−ĉk||)) ;

19: return Q ;

uncertainty map. K verification samples are collected from each gridpoint in the service area

and labelled with the corresponding coordinates. We calculate the likelihood function p(rkj |ci)

of the jth signal, which indicates the similarity between the kth verification sample rkj and the

signal measurement at ci in the uncertainty map mj with a Gaussian kernel, as presented in

Step 9. In MapLoc, the σ2 and λ are set to 0.35 and 2, respectively. Thus, the posterior prob-

ability p(ci|rkj ) is obtained conveniently by assuming the distribution over the G gridpoints is

uniform (see Step 12). The coordinate estimation of the kth sample is given by choosing the

gridpoint with the highest posterior probability. Eventually, the quality of the uncertainty map,

Q, is evaluated based on the errors of the coordinate estimation in Step 18.

Based on the well-trained DGP model, a movement model is introduced to produce trajec-

tories for generating artificial signal sequences. As shown in Algorithm 3, the stride length d is

considered in the movement model and is restricted to 0.6 m. The azimuth γ is determined by
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Algorithm 3 Pseudocode for artificial trajectory generation
Input: the length of the artificial trajectory L; the layout of the indoor environment O; the

stride length d ;
Output: the artificial trajectory C ;

1: //generate the coordinates c0 randomly in the environment O and initialize the trajectory C
2: C = {randomPosition(O)} ;
3: while C.length < L do
4: if C.length == 1 then
5: //γ is a random initial azimuth
6: //generate the coordinate c∗ with the distance d and the azimuth γ
7: //c0x and c0y are the x-axis and y-axis coordinates of c0, respectively
8: c∗ = [c0x + d ∗ cos(γ), c0y + d ∗ sin(γ)], γ ∼ U(−180◦, 180◦) ;
9: else

10: //update γ based on the previous azimuth
11: γ = γ + γt, γt ∼ U(−40◦, 40◦) ;
12: //c−1 is the last coordinate in trajectory C
13: c∗ = [c−1x + d ∗ cos(γ), c−1y + d ∗ sin(γ)] ;
14: end if
15: if c∗ in the environment O then
16: C.append(c∗) ;
17: end if
18: end while
19: return C ;

the previous azimuth with a random offset between −40◦ and 40◦. In Step 13, the coordinates

in trajectory C are generated sequentially based on the previous azimuth. And the layout of

the indoor environment is considered to eliminate the coordinates outside the service area (see

Steps 15-17).

As shown in Fig. 3.5, the well-trained DGP model is utilized to generate the artificial

signal rN for coordinate cN in trajectory C. According to trajectory C, the artificial signal

sequences are assembled using the signal measurements generated by sampling the distribu-

tion N (µN , σ
2
N) that is described by the mean µN and variance σN in the uncertainty map.

It is noteworthy that the distribution is sampled M times to ensure that the generated signal

measurements are able to represent the stability of signals. Furthermore, we employ a slid-

ing window with a length of W for adjusting the size of the artificial sequences for training

the LSTM based location prediction model. An artificial trajectory of length N will produce

N−W +1 training sequences. For each training sequence, the last signal measurement rmi+W−1

and the corresponding coordinate ci+W−1 will be extracted as label for supervise training.
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Figure 3.5: How to synthesize labeled signal sequences for pre-training the LSTM-based loca-
tion prediction model.

The forward propagation of the location prediction model is depicted in Fig. 3.6. The

backbone of the location prediction model is a stacked LSTM model, which is followed by a

DNN for signal estimation (termed DNNS) and a DNN for location estimation (termed DNNL).

To push the model to learn the signal map made by the DGP model and estimate location

using the map, auxiliary loss is used in training. The signal values rmi+W−1 in the label data

is processed and concatenate with the output of the LSTM network in the DNNL model for

predicting the unknown coordinate ĉ. Then the MSE loss is calculated by comparing the label

coordinate ci+W−1 and the location prediction ĉ by the DNNL. In parallel, a signal estimation

r̂ is given by the DNNS using the output of the previous LSTM model as well. As a result, the

loss function of the location prediction model is given by

L = (1− β)MSE(rmi+W−1, r̂) + βMSE(ci+W−1, ĉ) (3.12)

where β is a hyper parameter to adjust the influence of the two types of losses, while r̂ and ĉ

are the predicted signal by DNNS and the predicted coordinate by DNNL, respectively.
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Figure 3.6: The LSTM-based location prediction model in MapLoc.

Fine-tuning

After pre-training, the location prediction model will be fine-tuned with collected bi-modal se-

quences from the service area. The collected bi-modal sequences, like the artificial sequences,

are reorganized to form shorter training sequences using a sliding window of size W . The

last bi-modal measurement of each training sequence is also used as the sequence’s label to

complete the supervised training of the model.

3.4.2 Online Testing

In the online stage, only the stacked LSTM network and DNNL will participate in location es-

timation. The location prediction model operates in a similar manner to autoregression models.

The historical trajectory, including the received signal measurements and the corresponding

coordinates, is fed into the stacked LSTM network. By combining the output of the LSTM

network with the freshly collected signals from the current unknown location, the estimated lo-

cation is deduced readily with the well-trained DNNL model. Because the localization problem
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is addressed as a regression problem in MapLoc, the built-in error associated with the discrete

fingerprints can be avoided. Furthermore, since the estimated location is computed directly by

the location prediction model, the cumbersome localization strategies used in prior work [62]

are not needed anymore in MapLoc, which further reduces the computational cost, especially

for mobile devices with limited computation resources and power supplies.

3.5 Experimental Study

3.5.1 Experiment Configuration

To demonstrate the performance of the MapLoc system, we evaluate it in two typical environ-

ments. First, we conduct experiments on the fourth floor of Broun Hall in the Auburn University

Campus. In this scenario, we implement a prototype system using a Samsung Galaxy S7 Edge

smartphone, which is equipped with a dedicated application for collecting magnetic field inten-

sity data and WiFi RSS data simultaneously. As depicted in Fig. 3.7, the experiment covers an

area of approximately 270 m2. The black dots in Fig. 3.7 represent 255 sample locations (i.e.,

gridpoints) for training the DGP and the location prediction model. Except for some corner

gridpoints, the distance between two adjacent training locations is 90 cm. 80 testing locations

are randomly selected in the service area, which are not shown in Fig. 3.7. None of the testing

locations overlap with a training location in this scenario. Moreover, RSS readings are col-

lected from 224 APs, including all the available 2.4-GHz APs and 5-GHz APs from various

manufacturers. To make the data size consistent, the RSS values of out-of-range APs are set to

-100 dBm. The magnetic field strength is obtained from the on-device sensor directly, which is

a vector including the magnetic field intensity for the north, east, and vertical directions.

The performance of the MapLoc system is also evaluated using a public dataset [95].

Fig. 3.8 plots the detailed floor plan where the public dataset was collected. The dataset cov-

ers a floor of 185.12 m2, which includes three corridors and two offices. The fingerprints are

captured from 325 gridpoint locations, shown as black dots in Fig. 3.8. The distance between

two adjacent gridpoints is 60 cm. The data acquisition campaign was performed using a smart-

phone, SONY Xperia X2, and a smartwatch, LG W110G Watch R. We only utilize the data
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Figure 3.7: The floorplan for the Broun Hall dataset.

collected by the smartphone in this experimental study. The RSS data are captured from 132

unique APs, and the readings from an out-of-range AP are all set to −100 dBm. We only

leverage 75 APs in the following experiments because some AP signals are very weak across

the entire service area. Similar to the magnetic field intensity in the Broun Hall scenario, the

magnetic field readings of this scenario are also vectors with three elements. Since the data

acquisition campaign is conducted in this environment with the identical setting twice, we train

and then test the MapLoc system using the datasets from different campaigns for a fair and

realistic evaluation.

Identical settings of the location prediction model are deployed in both environments.

Nine LSTMs are stacked one above another to form a stacked LSTM as backbone of the loca-

tion prediction model. The number of features in the hidden state of LSTM is set to about 1.5

times of that of the input features, e.g., the number of features in the hidden state will be 150 if

the number of available AP is 95. Each magnetic field reading is a vector of size 3× 1 and the
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Figure 3.8: The floorplan where the public dataset was collected.

corresponding coordinates are in a 2D space. The hidden state of the last layer of the stacked

LSTM is passed into the two DNNs for location estimation and signal estimation, respectively.

DNNL is composed of 4 linear layers. The size of the input data rmi+W−1 is first adjusted to 16

by a layer in DNNL, while the size of the hidden state from the LSTM is squeezed to 32 by

another DNNL layer. By concatenating the outputs from the two layers, the estimated location

is obtained by the remaining 2 layers in DNNL, where the output feature numbers of the layers

are 16 and 2, respectively. The structure of DNNS is relatively simple. The hidden state from

the LSTM is compressed by 3 linear layers in DNNS sequentially, where the output feature

numbers of the layers are 256, 128, and the same as that of the input data rmi+W−1, respectively.

In both scenarios, the magnetic field intensity and WiFi RSS readings are min-max nor-

malized. Considering that pedestrians usually do not make abrupt changes in their movements

indoors, the stride length d is set to 0.6 m, and the azimuth offset γt is limited in the range

between −40◦ and 40◦. To accelerate the training process, a server with an Nvidia RTX 3090

GPU is leveraged for real-time trajectory generation and model training.

The following baselines are used in our comparison study:

• DeepMap: this is the scheme proposed in our prior work [62], where a Bayesian method

is used for location estimation without using the uncertainty maps.
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• LSTM: this scheme uses the same stacked LSTM network and DNNL to predict loca-

tion, where the input is the trajectory and the corresponding RSS sequences of the target

device. The LSTM model is trained with trajectory/RSS sequences sampled from the

collected fingerprints.

• LSTM+DeepMap: the same location prediction model, shown in Fig. 3.6, is used to

predict location, where the input is the trajectory/RSS sequences of the target device. The

model is trained with sampled trajectory/RSS from the map created by DeepMap [62]

without using the uncertainty maps.

3.5.2 Experimental Results and Analysis

Accuracy of Location Estimation

First, we evaluate the localization performance on the Broun Hall dataset. Fig. 3.9 illustrates

the cumulative distribution functions (CDF) of localization errors for the proposed MapLoc

system and the three baseline schemes. According to Fig. 3.9, it is obvious that MapLoc out-

performs the other methods on the Broun Hall dataset. Despite the fact that both MapLoc and

LSTM+DeepMap obtained a performance where 50% of the errors are less than 1 m, MapLoc

has a distinct advantage that approximately 75% of location estimation have errors less than

1.35m, whereas only 59% of location estimation obtained by LSTM+DeepMap accomplish the

similar accuracy. This demonstrates the improvement brought about by the samples from un-

certainty maps. In addition, Fig. 3.9 reveals the obvious deficiencies of LSTM and DeepMap

in localization accuracy. The maximum localization error, 6.41 m, is from LSTM. The compar-

ison demonstrates that the combination of LSTM and DeepMap contributes to higher precision

localization. In MapLoc, the augmented training data produced by the DGP model benefits the

location prediction model that uses LSTM as its backbone. By incorporating historical infor-

mation into location estimation via the LSTM model, the localization accuracy of the DeepMap

model is improved significantly as well. Based on the collaboration of DeepMap and LSTM,

our proposed MapLoc successfully improves the location estimation accuracy by taking into

account the uncertainties of different signals as well as historical information.
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Figure 3.9: CDF of localization errors on the Broun Hall dataset.

We also conduct an experiment using the public dataset to investigate the performance of

the proposed MapLoc system. The CDF of localization errors on the public dataset is displayed

in Fig. 3.10. The results on the public dataset are similar to those with the Broun Hall dataset.

MapLoc and LSTM+DeepMap keep the leading position in the comparison. Even though 50%

of location estimation errors are lower than 1.1 m with both MapLoc and LSTM+DeepMap,

the overall performance of MapLoc is superior to that of LSTM+DeepMap slightly. Because

the artificial signal measurements are sampled from the uncertainty maps, the distribution of

the generated measurements describes the measurement’s quality. As a result, the location

prediction model can learn the reliability of different types of signal measurement, the sets

of measurements from different APs, and thus improve the accuracy of location estimation.

Moreover, LSTM outperforms DeepMap in the public dataset scenario, although the maximum

localization error, 14.26 m, is obtained with the LSTM method.

The main results in Fig. 3.9 and Fig. 3.10 are summarized in Fig. 3.11. The height of

the bars represents mean error, whereas the black line in each bar represents median error.

The location prediction model of MapLoc, denoted as LSTM in Fig. 3.11, and DeepMap,

each only contribute to limited accuracy in location estimation. By combining these methods,

the localization accuracy is increased significantly. The mean and median error on the public
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Figure 3.10: CDF of localization errors on the public dataset.

dataset reach 1.342 m and 1.145 m, respectively, while the mean and median error on the Broun

Hall dataset are 1.374 m and 0.94 m, respectively. In MapLoc, the mean and median error are

further reduced by augmenting the training dataset with the artificial data generated by sampling

the uncertainty maps. In the public dataset scenario, the mean and median errors decrease to

1.234 m and 1.031 m, respectively. The mean error on the Broun Hall dataset reduces from

1.374 m to 1.211 m, whereas the median error reaches 0.9722 m.

Impact of Signal Selection

Previous results show that the Maploc system outperforms the systems that use LSTM and

DGP separately. By leveraging the samples sampled from the uncertainty maps to measure the

reliability of different signal sources (e.g., APs), the MapLoc system also beats the combination

of LSTM and DGP. To investigate how the reliability of signal measurements affects MapLoc’s

location prediction and how the location prediction model contributes to better performance,

we conduct experiments with both the Broun Hall dataset and the public dataset.

First, a random trajectory of each test datas zet is selected for the experiment. The cor-

responding signal distribution at the label coordinates is obtained with the DGP model in the

MapLoc system. The mean and variance of signal measurements from all available sources,
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Figure 3.11: Mean and median localization errors on the Broun Hall dataset and the public
dataset. The bars indicate mean error and the line within each bar indicates the corresponding
median error.
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Figure 3.12: Explaining the importance of different signal measurements to the location pre-
diction made by MapLoc system with the Broun hall dataset.

including magnetic field readings and WiFi RSSI, are represented by red circles and bars in

Fig. 3.12 and Fig. 3.13. It is intuitive to suppose that a lower variance represents a trustwor-

thy signal measurement, and signal measurements with higher mean values are more likely to

influence the location prediction. To endow the MapLoc system with the ability to choose the

signals intelligently, we sample the uncertainty maps to generate artificial signal measurements

that describe its own reliability. We hope our location prediction model is able to learn how to

recognize effective measurements from invalid and fluctuating signals. In the experiments, we

double the signal measurements of the testing data in sequence to explore the performance of

the location prediction model in signal selection.
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Figure 3.13: Explaining the importance of different signal measurements to the location pre-
diction made by MapLoc system with the public dataset.

As previously stated, the signal measurements in the Broun Hall dataset contain 3 mag-

netic field components as well as RSSI readings from 224 WiFi APs. The experiment is re-

peated 227 times with the selected trajectory. In each repetition, we doubled a signal measure-

ment individually. The blue line in Fig. 3.12 depicts the variations in distance errors caused by

the doubled signal measurement. By comparing with the signal distribution denoted by the red

circles and bars, it is clear that the location prediction model selects the optimal signal mea-

surements, and the location estimation is more sensitive to changes in those measurements. As

shown in Fig. 3.12, the first increment of the distance error happens at signal-2, which is the

magnetic field reading’s y-axis component. The signal measurement is much higher and more

stable than the nearby signals. The next distance error fluctuation occurs between signal-13 and

signal-18, where the mean signal values are higher than those on the right side and the signal

variances are smaller than those on their left side. With the drop of the mean values of the sig-

nals, the location estimation of the MapLoc system is not influenced by the weak signals. The

fluctuation in distance errors increase as the signals rise between signal-55 and signal-60, while

the increase in distance errors disappears between signal-61 and signal-117. Even though the

mean values of the signals between index-61 and index-117 are much higher than the rest of

the signals in Fig. 3.12, the location prediction model detects the large variances of the signals,

so the location estimation is not significantly affected by the signals. Another wild rise in lo-

cation estimation is associated with signals near index-125, where the signals remain high and

the variances remain stable. Furthermore, two distance error fluctuations occur at signal-161

and signal-227. It is clear that the signals remain stable, and they are stronger than the nearby

signals.
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Fig. 3.13 displays the signal measurements from the public dataset, which include RSSI

readings from 75 WiFi APs and magnetic field components from 3 different directions. Because

the number of signals in the public dataset is much smaller than that in the Broun Hall dataset,

the location prediction model in the public dataset scenario is more sensitive to the doubled

signal measurements. Fig. 3.13 shows the relationship between the distance error fluctuation

and the signal stability. As we can see, the largest peak in Fig. 3.13 is related to the y-axis

component of the magnetic field reading as well, because the signal component remains stable

in a high level status. We also discover distance error fluctuations at signal-6, signal-17, and

signal-62. Although these signals cause changes in the distance error with abrupt increases

in signal strength, comparable changes could also be introduced by stable signals with lower

signal strengths at index-10 and index-71. The location prediction model ignores changes in

signal measurements between signal-20 and signal-60. Some signals in this range are stable,

but the weak strength would not cause the degradation of the location estimation. Some signals

are strong, but the location prediction model discards them due to their poor reliability.

Based on Fig. 3.12 and Fig. 3.13, we could conclude that the proposed location prediction

model in the MapLoc system successfully extracts effective signal measurements from the

weak and fluctuating signals by learning the artificial signal measurements that describe its

own reliability. The selected signal is not only decided by the average signal strength but also

determined by the stability.

Impact of System Parameters

In the MapLoc system, the auxiliary loss is used to force the location prediction model to

acquire knowledge from the signal measurement generated by the DGP model and estimate

the unknown location with the knowledge. β is introduced into the auxiliary loss function

to balance the signal loss from DNNS and the location loss from DNNL. To optimize the

accuracy of the Maploc system, we investigate the effect of β on the performance of the location

estimation. Fig. 3.14 delineates the distance errors related to different values of β. In both

scenarios, the accuracy of location estimation progresses when β is set as 0.8. Even though the

mean distance error from the Broun Hall dataset is slightly decreased as β increases to 1.0, the
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Figure 3.14: Mean localization errors for different values of β.

overall performance of the MapLoc system does not enhance significantly with the increment

of β. Considering that signal estimation in the location prediction model is a supportive method

for accurate location estimation, we adopted a dynamic way to adjust β based on the number of

epochs. In the MapLoc system, the initial value of β is set as 0.6. When more than 200 epochs

are completed, β updates every 100 epochs by decreasing 0.1. Eventually, the auxiliary loss

would degenerate into a loss function determined by the location estimation error exclusively.

Fig. 3.14 exhibits the performance promotion contributed by the dynamic β update.

Given that the position prediction model in the MapLoc system relies on the stacked LSTM

network as its backbone, the window size W plays a crucial role in improving the accuracy of

location prediction. Intuitively, a longer data sequence would contain more useful information

to improve the precision of the location estimation; nevertheless, the longer sequence would

incur additional system costs, such as an extra time cost in data collection. To study the effect

of the sequence length on the accuracy of the location prediction, we conduct experiments with

different window sizes on both the public and the Broun Hall dataset. Fig. 3.15 illustrates

the distance errors resulted by different window sizes. Even though the distance error in the

Broun Hall scenario is more sensitive to the change of the window size, the distance errors drop

with the longer data sequence in both environments. When the window sizes are larger than 5,
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Figure 3.15: Localization errors effected by the size of the sliding window.
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Figure 3.16: Reductions in localization error achieved by utilizing the earth magnetic field
strength map.

the distance errors keep stable. The public dataset has the lowest location estimation error of

1.233m when the window size is 5, and the distance error is 1.234m when the window size is

6. Because we notice that the Broun Hall Dataset has the lowest distance error, 1.21m, when

the window size is 6, we set the window size to 6 in the MapLoc system to ease system setup.
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The MapLoc system uses multi-modal data to improve localization accuracy, as mentioned

in previous sections. With the least amount of data processing, different types of signal mea-

surements could be introduced into the system. In this prototype, magnetic field readings are

used as a part of the MapLoc system’s input data to improve the system’s localization accu-

racy. Magnetic field components from different directions are treated as novel features of the

input in our proposed MapLoc system after the max-min normalization. Fig. 3.16 illustrates

the advancement brought by the bimodal data, which is composed of magnetic field measure-

ments and WiFi RSSI measurements. The localization errors for the public dataset scenario

decline notably. The mean error drops from 1.577m to 1.234m when the magnetic filed read-

ings are taken into account, whereas the decline of median error reaches 0.327m. A similar

phenomenon happened to the broun hall dataset as well. Both mean error and median error are

reduced remarkably. A huge depreciation of the mean distance error appears with the contri-

bution of the magnetic field readings, where the mean distance error decreases from 1.719m to

1.211m.

Because the location prediction model is pre-trained with artificial data generated by the

uncertainty map, the DGP model is critical in the proposed MapLoc system. To assess the

impact of DGP model parameters on the quality of the uncertainty map, Q, we investigate

various combinations of latent dimension and number of inducing points in order to find the

best parameters.

The latent nodes in MapLoc include two sublayers, H1 and H2. Fig. 3.17 and Fig. 3.18

show how the maps’ qualityQ is affected by the latent dimensions of the two sublayers, denoted

by L1 and L2, respectively. The latent dimensions are tuned by gridpoint search in both sce-

narios. We first examine the effect of latent dimensions using the public dataset. Even though

the quality of the uncertainty map increases with larger dimensions of the first layer when the

second layer includes 6 or 8 latent dimensions, the relationship between the latent dimensions

and map qualities is ambiguous. As shown in Fig. 3.17, the uncertainty map reaches the highest

value when the latent dimension of the first layer is 7 and that of the second layer is 7. Also, two

similar Q are achieved when the latent dimension of the first layer is 8. Because all the three

Qs are close, there is no clear advantage to use different latent dimension settings. We try all
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Figure 3.17: Q values versus the number of latent dimensions in public dataset scenario.

Figure 3.18: Q values versus the number of latent dimensions in Broun Hall dataset scenario.

three settings in training the location prediction model of MapLoc. Since the lowest validation

error is reached when L1 = 8 and L2 = 6, we choose this setting for training the prototype of

MapLoc using the public dataset. And the previous MapLoc results are all obtained under this

setting.
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Table 3.1: Q Values Affected by the Number of Inducing Points
Public Dataset Broun Hall Dataset

Inducing Points 11 10 9 8 7 6 5 Inducing Points 16 15 14 13 12

Q 0.248 0.317 0.274 0.275 0.267 0.266 0.240 Q 0.248 0.317 0.274 0.275 0.267

On the other hand, Fig. 3.18 reveals that the quality of uncertainty maps, Q, improves with

increased latent dimensions of the second sublayer L2 on the Broun Hall dataset. However,

increasing the latent dimension of the first sublayer L1 does not imply improved map quality.

We find that increasing L2 significantly improves the map quality Q when the first sublayer of

the DGP model has 11 latent dimensions; whereas increasing L1 does not contribute to further

improvement of Q. According to Fig. 3.18, a gridpoint search yields the best map quality, i.e.,

Q = 0.42, for the Broun Hall dataset when L1 = 11 and L2 = 6.

Another key factor effecting the quality of the maps is the number of inducing points. For

the DGP model of the MapLoc system, we choose identical numbers of inducing points for

different layers to simplify the setting of the model. Similarly, we evaluate the effect of the

number of inducing points on the quality of the uncertainty maps with both datasets. Table 3.1

presents the map quality Q obtained by different numbers of inducing points with the public

dataset. According to the table, the worst map quality is acquired when each layer of DGP

model only includes 5 inducing points. Along with the increasing number of inducing points,

the map quality keeps enhancing. Even though the growth rate for the map quality is slow when

the number of inducing points is between 6 and 9, a notable promotion is observed when 10

inducing points of each layer are involved in the training of the DGP model. Thus, the number

of inducing points is set to 10 for the accurate location estimation in the public dataset scenario.

The map quality stops improving as the number of inducing number reaches 11, where the map

quality is close to that of the model with 5 inducing points in each layer.

In the Broun Hall dataset, Table 3.1 reveals a similar result regarding the number of in-

ducing points. When the number of inducing points is fewer than 16, the upward trend in the

map quality Q is conspicuous. The map quality progresses consistently with the increasing

number of inducing points utilized in the training of the DGP model. As is shown in Table 3.1,

the best map quality is achieved when the number of inducing points raise to 15. However, if
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the number of inducing points exceeds 16, the map quality drops considerably. Therefore, the

number of inducing points is set as 15 for the implementation of the MapLoc system in the

Broun Hall scenario.

3.6 Conclusions

In this paper, we proposed MapLoc, a bi-modal indoor localization system, to improve the lo-

cation estimation accuracy. First, the DGP is used to regress uncertainty maps describing the

signal distribution in the surveillance area. The artificial signal measurements that represent

their own reliability are generated by sampling the signal distribution described by the mean

and variance in the uncertainty map. In the artificial data generation, geometry constraints and

user motion patterns are also taken into account. We then present a location prediction model to

distinguish the effective signal measurements from the weak and fluctuating signals by learning

the artificial signal measurements. The location prediction model leverages a stacked LSTM

network as the backend. The auxiliary output is utilized to push the model to learn the signal

map in the supervised training. The experimental results demonstrate that the location predic-

tion model is able to choose the optimal signals among WiFi RSSI readings and geomagnetic

measurements intelligently. Benefiting from the novel data generation method and location

prediction model, the median error of the location estimation in both the public dataset and the

Brun Hall dataset reach in centimeter-level accuracy.
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Chapter 4

MulTLoc: A Framework for Multiple RFID Tag localization Using RF Hologram Tensors
with Deep Neural Networks

4.1 Introduction

Radio-frequency identification (RFID) is an automatic identification technology that can read

RFID tag data even when it is not in line of sight (LOS). It has been widely used in a vari-

ety of applications, including supply chain management, inventory tracking, access control,

toll collection, and animal management. Due to its widespread use and low-cost tags, RFID

technology has recently been expanded to fields such as healthcare monitoring and environ-

mental sensing, owing to the rapid development of the Internet of Things (IoT). By exploiting

the measurements in RFID readings, a rising variety of functions and applications are being

added to existing RFID systems. For example, the systems for localization [17], gesture recog-

nition [96], vital sign monitoring [97,98], pose estimation [99,100], temperature sensing [101],

and material recognition [102], have attracted great interest from both industry and academia.

Among these existing and emerging applications, indoor localization has remained a hot

research topic over the years, as it plays a critical role in solving position-related problems

such as gesture recognition and human pose estimation. The RFID-based localization system

is primarily based on two RFID measurements: the Received Signal Strength Indicator (RSSI)

and the phase angle. SpotOn [103] used RSSI along with a path loss model to perform trilat-

eration for indoor localization. LANDMARC [104] leveraged RSSI readings from reference

tags as fingerprints to estimate an unknown tag position via fingerprint matching. The RFID

phase angle is extremely sensitive to environmental changes as well, particularly variations in
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tag-antenna distance. Recent applications have achieved centimeter-level localization by pre-

dicting the direction of arrival (DoA) with the received RFID phase angle. SparseTag [17] used

a spatial smoothing based method with a novel sparse RFID tag array to predict angles. RF-

Wear [105] achieved a mean inaccuracy of 8-12◦ in tracking angles with a uniform linear array.

Moreover, RF-Kinect [106] added a body geometry model to the RF hologram to determine

limb orientation and human joint location.

On the other hand, deep neural networks have sparked a lot of interest and promise in do-

mains like computer vision(CV) and natural language processing(NLP). To take advantage of

the superior classification performance of deep networks, researchers integrate deep networks

into indoor localization systems that collaborate with the fingerprinting method. Deep autoen-

coders, for example, were used to extract WiFi CSI features as fingerprints of the localization

systems [28, 41, 47, 107]. With a deep residual sharing learning approach, ResLoc [108] en-

hanced localization accuracy. CiFi [109] was the first work to leverage a deep convolutional

neural network (DCNN) for indoor localization. The generated AoA image was utilized for

training a 6-layer DCNN.

Although the performance of such indoor localization systems improves with the iteration

of deep networks, numerous intrinsic difficulties of fingerprinting-based localization systems

remain unresolved. First, the minimum error of the fingerprinting-based localization system is

determined by the distance between the stored fingerprints. To reduce the inherent inaccuracy,

the number of fingerprints should be as large as possible. Apparently, it would be laborious or

even impossible for some cases. Second, the fingerprints utilized in the system are highly linked

to the equipment configuration. The AoA pictures utilized in the CiFi [109], for example, are

defined by the configuration and setup of the receivers. Once the network has been trained,

the receivers must be static. In other words, the network must be trained from scratch when

a different setup or equipment is deployed. As a result, the transferability of CiFi is nearly

zero. In this chapter, we try to decouple data creation from the hardware setup and to find a

deep network that can accept inputs from various RFID device configurations. The tag position

would be estimated with the deep network using inputs collected from any type of devices.
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Therefore, we propose MulTLoc, a framework for Multiple RFID Tag localization utiliz-

ing RF Hologram tensors with deep neural networks, to alleviate the fundamental difficulties

of the fingerprinting based method and to take advantage of deep neural networks. Radio

frequency (RF) hologram tensors are created using phase readings from antenna pairs in the

proposed framework. To generate ground truth tensors for supervised learning, a computer

vision sensor (e.g., a Kinect V2) is used. Based on the DCNN and Swin Transformer [110],

two representative hologram filter networks are investigated with the suggested framework to

clean noisy input hologram tensors using the spatial relationship between tags. An intuitive

peak detection technique will be used to infer the location of RFID tags.

The main contributions made in this chapter are summarized as follows.

• To the best of our knowledge, this is the first study to utilize RF hologram tensors to train

deep networks for three-dimensional localization. The use of the RF hologram tensor

renders deep networks independent of environmental changes, considerably improving

the robustness and transferability of the proposed system.

• We implemented two novel deep networks to clean up RF hologram tensors. In the

networks, the spatial information between multiple tags is leveraged to suppress the fake

peaks that exist in the original RF hologram tensors. We begin by introducing a DCNN-

based network for cleaning RF hologram tensors. A Swin Transformer based network

is also proposed to filter RF hologram tensors. In the Swin Transformer training, self-

supervised learning is utilized to extract general features from hologram tensors. Position

estimation is reduced to a simple peak detection problem that can be performed fast with

the sanitized hologram tensor.

• A prototype of the proposed MulTLoc framework is built using the commercial off-the-

shelf (COTS) RFID devices. With a multiple-joint localization experiment, the perfor-

mance of the proposed framework is evaluated. The experimental results show that the

MulTLoc framework is capable of simultaneously localizing multiple tags in three di-

mensions.
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The remainder of this chapter is organized as follows. We present an overview of related

work in Section 4.2. Section 4.3 introduces the preliminaries and motivation of our approach.

We present the MulTLoc design in Section 4.4 and our experimental study in Section 4.5. Then,

Section 4.6 concludes this chapter.

4.2 Related Work

Indoor localization is crucial in RF sensing for resolving position-related concerns. With the

development of mobile communication technology over the last decade, academia and industry

have paid close attention to location-based services. Signal processing has long been used to

determine the position of a signal source by estimating the Time-of-Flight, Angle-of-Arrival,

or a third signal parameter such as doppler shift and Angle-of-Departure [17, 23, 82, 111–113].

The accuracy of parameter estimate, however, is governed by the number of antennas (for AoA)

and the transmission frequency bandwidth (for ToF), which are often fixed in a certain wireless

communication system. As a result, the expense of improving parameter estimate would be

prohibitively expensive.

On the other hand, the fingerprinting method emerges with its convenience and effective-

ness, which transfers the localization problem into a feature matching to estimate the location

of the signal. Researchers are working on two tracks to increase the accuracy of fingerprint-

based localization. First, more and more powerful classification algorithms are introduced to

the fingerprinting-based localization. K-nearest neighbors algorithm (KNN) and its modifica-

tion are commonly leveraged in the indoor localization system [25, 114–116]. The machine

learning algorithms, such as Random forest [117,118] and AdaBoost [119,120], are often used

in promoting the performance of the classification as well. Another important aspect influenc-

ing the localization accuracy of the fingerprinting-based localization system is the quality of the

fingerprints. Principal component analysis (PCA) is a common tool to extract features from the

original fingerprints [121, 122] for enhancing the fingerprint quality. Recently, with the devel-

opment of deep learning, deep autoencoder has been implemented in the fingerprinting based

localization systems as feature extractors [29, 41]. Since deep networks show the superior per-

formance in the image classification task, the feature extraction and classification are unified
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in the fingerprinting based localization systems using deep neural networks. The features from

the AoA images are extracted and classified in CiFi [109] and ResLoc [123] with one effort.

Despite the fact that new techniques are always being developed to improve the performance of

fingerprinting-based localization systems, the inherent flaws of the fingerprinting method are

not avoided, where the localization accuracy is determined by the density of the fingerprints,

and any changes in fingerprints would trigger the update of the system. In this research, we

will attempt to present a novel framework for avoiding these fingerprint-related issues.

Deep neural network, as previously stated, has been frequently used in indoor localiza-

tion systems because of the excellent feature extraction and classification capabilities. It has

evolved over the last decade to meet the needs of various downstream jobs. Since the debut

of AlexNet [124], DCNN has become a superstar in computer vision. ResNet [125] constructs

a DCNN with hundreds of layers by utilizing shortcut connections. Hourglasss [126] and U-

Net [127] use an encoder-decoder design to keep the high-resolution representation of the im-

ages. To this day, CNN remains the key backbone for addressing computer vision challenges.

In the area of NLP, recurrent neural networks (RNN) were prominent for dealing with tempo-

ral sequences [128, 129]. Transformer [130] has recently emerged as a dominating successor

by using an attention method to construct global interdependence between input and output.

The transformer is also applied for the computer vision tasks. Vision Transformer(ViT), Swin

transformer, and their modifications [110, 131, 132] keep improving the state-of-the-art perfor-

mance in various CV tasks as backbones. Based on the proposed framework, we deployed two

representative networks, DCNN and swin transfomer, as the backbone for implementing the

hologram filter network.

4.3 Preliminaries and Motivation

4.3.1 RFID Phase Model

Sensitive and trustworthy measures should be taken from the original RFID readings in order to

locate RFID tags in real-time. In contrast to RSSI, the phase value is commonly used in many

RFID-based sensing applications [101, 133, 134]. As shown in (4.1), the phase reading θi,m is
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a periodic function with a period of 2π.

θi,m = mod

(
4π |TAm|

λi
+ θtag + θequipment, 2π

)
, (4.1)

where |TAm| denotes the distance between the tag T and the antenna Am; λi is determined by

the frequency of channel i; θtag and θequipment are the phase offsets caused by the RFID tag and

RFID hardware such as antenna and reader, respectively. θequipment is a constant for a given

RFID system; hence it could be removed conveniently.

4.3.2 Hologram Tensor

Tagoram [19] is the first to introduce the concept of an RF hologram for RFID indoor localiza-

tion. The primary concept underlying an RF hologram is to compute the similarities between

theoretical and measured phase values for each grid in the surveillance space. To eliminate the

tag-related phase offset, i.e., θtag in (4.1), we use the phase difference as the observation in

our system. The real phase difference obtained with the phases collected from an antenna pair

(m,n) on channel i is denoted as

pi,m,n = mod (θi,m − θi,n, 2π). (4.2)

When the coordinates of the two antennas are known, the theoretical phase difference

between antenna pair (m,n) on channel i can be determined. The theoretical phase difference

at the grid position Gx,y,z for the antenna pair (m,n) is shown as

qx,y,zi,m,n = mod

(
4π |Gx,y,zAm|

λi
− 4π |Gx,y,zAn|

λi
, 2π

)
. (4.3)
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With the real and theoretical phase differences, their similarity, Sx,y,z, is estimated as

follows.

Sx,y,z =
∑

(M,N)

∑

I

1

σ
√
2π

exp

(
−
(δx,y,zi,m,n)

2

2σ2

)

δx,y,zi,m,n = mod
(
pi,m,n − qx,y,zi,m,n, 2π

)
,

(4.4)

where (M,N) represents the set consisting of all available antenna pairs, I denotes the set of

all available channel indices. The hologram tensor, S, is constructed as

S =




S1,1,z S1,2,z · · · S1,y,z

S2,1,z S2,2,z · · · S2,y,z

...
... . . . ...

Sx,1,z Sx,2,z · · · Sx,y,z



, z = 1, 2, ..., Z, (4.5)

where each element is scaled to have a value in [0, 1] in the proposed system.

4.3.3 Motivation

MulTLoc is, to the best of our knowledge, the first effort to train deep learning models for

real-time three-dimensional localization using hologram tensors. Although some indoor local-

ization systems, e.g., [61, 109, 123], use radio frequency signals to produce images or tensors

for offline training, the generated data may lack a strong relationship between the observation

and the spatial location. In these applications, images and tensors are employed as fingerprints,

and deep networks are used as classifiers. The ambiguity between fingerprints may be lost

throughout the dataset construction process, restricting the transferability of the localization

model. In comparison to the images and tensors in the preceding studies, the hologram tensor

is interpretable. The hologram tensors represent the possibility of a tag being located at a grid

position in the surveillance space. The similarity S is directly connected to the distances be-

tween the tag and the antennas, and it is highly independent of the equipment used to generate

the tensor.
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A hologram matrix formed in a two-dimensional area is shown in Fig. 4.1. It displays

the two-dimensional projection of the hologram matrix. The exact location of the target tag is

indicated by the red pentagram. As can be seen, there is a peak near the position of the ground

truth. However, because of the multipath and phase wrapping effects, multiple fake peaks are

formed and distributed across the hologram. Some of the phony peaks have even greater simi-

larity values. To avoid such issues, data prepossessing has become a key component of many

RFID-based sensing systems. Some ways improve accuracy at the expense of real-time per-

formance. Channel selection [17] and phase sanitation [135], for example, are used to keep

systems away from phase readings tainted by the multipath effect. Such approaches, however,

may be impractical for real-time localization systems. This is because multiple-round interro-

gations are required, and the tag (or target) will not remain stationary until the system performs

a sufficient number of interrogations. Moreover, some applications rely on specific hardware

and deployment, such as the synthetic-aperture array [136] and multi-resolution filtering [137],

to mitigate the detrimental effect caused by the phase wrapping ambiguity. Despite the fact that

these technologies offer sufficient precision and real-time performance, the need for customized

hardware raises costs and limits the compatibility with COTS RFID systems. Furthermore, tag

localization in three dimensions is a more difficult challenge than in two dimensions. In this

chapter, we presents two unique neural network with the proposed framework to handle such

issues.

4.4 Overview of the MulTLoc System

In this chapter, we present MulTLoc, an RFID-based localization framework for estimating the

location of multiple tags simultaneously utilizing noisy hologram tensors. Despite the fact that

MulTLoc, like most previous deep learning-based localization systems, is trained with ground

truths provided by sensors such as an RGB-D camera, the localization problem is treated as re-

gression in this study. To estimate the coordinates of unknown sites, traditional fingerprinting

methods leverage deep neural networks to treat location estimation as a classification problem.

The size of the fingerprint database limits the accuracy of localization, and the granularity of the
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Figure 4.1: Hologram of a 2D scenario. The red pentagram denotes the ground truth.

fingerprints determines the inherent inaccuracy of the system. The network would not give lo-

cation estimation instantaneously in the MulTLoc framework. Instead, noisy hologram tensors

are regressed to single-peak hologram tensors, which are free from the fake peaks created by

the multipath and phase wrapping effects. A location estimate might be performed intuitively

using the sanitized hologram tensor.

4.4.1 MulTLoc System Architecture

Fig. 4.2 depicts the MulTLoc architecture. An RFID system collaborates with a vision-based

sensor to generate the hologram tensors and the accompanying ground truth tensors for training

the hologram filtering networks. Because the hologram tensors and ground truth coordinates

provided by the vision-based sensor are typically in distinct coordinate systems, our proposed

framework uses the Robot Operating System (ROS) to synchronize and unify the data acquired

from diverse hardware. Generally, any deep neural network that is capable of sanitizing noisy

hologram tensors would be compatible with the MulTLoc. We utilized two typical neural

networks in this chapter to evaluate the performance of the proposed framework. The final

position estimation would be induced conveniently using a simple peak detection algorithm

with the sanitized hologram tensors.
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Figure 4.2: The MulTLoc system architecture.

Based on the proposed framework, we deploy two representative deep network backbones

for creating hologram filter networks. First, a DCNN-based hologram filter network is designed

with the hourglass backbone to clean and compress the noisy hologram tensors. To recover the

original size of the hologram tensor, trilinear interpolation or equivalent approaches would be

used before the peak detection. Data augmentation is used to prevent overfitting in the training

of the DCNN-based hologram filter network. However, the DCNN network architecture in this

chapter is related to the channel of the input tensors. In Fig. 4.3, three residual units are used to

sanitize the hologram tensors from three tags, however additional residual units are required to

cope with more channels. To resolve the issue, another hologram filter network is also proposed

with the Swin Transformer for keeping architecture stable in taking care the tensors from more

tags. The output of the network keeps the original size of the input tensors, which would be

directly adopted for location prediction. Self-supervised learning is deployed in the training for

extracting latent features from noisy hologram tensors. Once the networks have been properly

trained, the vision-based sensor will no longer be required for location estimation.

72



4.4.2 Training Dataset Generation

The hologram tensor must be labeled with the relevant ground truth tensor in order to train the

networks successfully. However, the ground truth coordinates and hologram tensors are ac-

quired by different sensors with distinct coordinate systems. The reported coordinates for most

vision-based sensors are normally determined by the coordinate origin of the sensor space. For

example, the center of the depth sensor is the origin of the coordinates for Kinect V2, whereas

the surveillance space determines the coordinates of the antennae in MulTLoc. ROS is used in

MulTLoc to integrate the hologram tensors from the RFID system and the coordinates from the

vision-based sensor to label hologram tensors with accurate ground truth tensors. We transfer

all coordinates from the vision-based sensor into the frames of the hologram tensors depending

on the sensor pose and position in the surveillance space. Meanwhile, for synchronization,

timestamps are appended to both the hologram tensors and the ground truth coordinates. An

RF hologram tensor will be assigned to the coordinates with the most recent timestamp.

The ground truth tensor, K, is constructed using a gaussian kernel. Based on the synchro-

nized ground truth coordinates by measuring the Euclidean distance |Gx,y,zH| between the gird

location Gx,y,z and the ground truth location H , the ground truth tensor, K, is formulated as

K =




K1,1,z K1,2,z · · · K1,y,z

K2,1,z K2,2,z · · · K2,y,z

...
... . . . ...

Kx,1,z Kx,2,z · · · Kx,y,z



, z = 1, 2, ..., Z, (4.6)

where each element of K is given by

Kx,y,z =
1

ϵ
√
2π

exp

(
−|Gx,y,zH|2

2ϵ2

)
. (4.7)
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Figure 4.3: Architecture of the DCNN based hologram filter network.

where ϵ controls the radius of the ground truth peak. In the MulTLoc framework, K supervises

the training of hologram filter networks. To coordinate the compressed output of the DCNN-

based hologram filter network, the ground truth tensor K is downsampled. Since the hologram

tensor is interpretable spatially, our training dataset is augmented by the flipping and rotating

operations in the training of the DCNN based hologram filter network.

4.4.3 Design of DCNN for Filtering Hologram Tensors

As shown in Fig. 4.3, a DCNN-based hologram filter network is introduced to remove the

fake peaks from the hologram tensors. In contrast to the changing settings that compromise

the efficacy of fingerprinting-based localization systems, the positional connection between

tags is relatively constant, particularly for passive tags attached to items. The hologram filter

network is intended to learn the spatial connection between tags in order to differentiate the

real peaks in the RF hologram tensors. We downsample the hologram tensors from n tags

and concatenate them into an n-channel tensor using residual units to reduce the amount of

weights in the proposed network and accelerate training. The newly created n-channel tensor

retains the detailed information in the original hologram tensors while also including a coherent

understanding among the tags. In our following experiments, n is set to three to locate three

tags at the same time.

The residual unit of the hologram filter network consists of two residual blocks [9]. In each

block, two three-dimensional convolutional layers are included. The hourglass blocks [126]
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(a) (b) (c)

Figure 4.4: (a) The original hologram tensors. (b) The filtered hologram tensor. (c) The full-
size ground truth tensor.

are arranged end-to-end following the residual blocks as the backbone of the hologram filter

network to extract features in the n-channel tensor at different sizes. The design of the hourglass

unit is comparable to that of an encoder-decoder network, as seen in Fig. 4.3. The input tensor

is first compressed and then upscaled in the unit. Each purple cube in the hourglass unit is made

up of three residual blocks, each of which has three three-dimensional convolutional layers. To

maintain spatial information at different resolutions, the skip connection is used between blocks

of the same size. The bottom-up, top-down inference is repeated by stacking the hourglass

units. By computing the loss between the ground truth tensors and the output tensors, the

deep network is optimized with the Adam algorithm. We would discuss the selection of loss

function in the following section. For accelerating training, intermediate supervision is applied

at each hourglass unit in the DCNN-based hologram filter network. The hologram filter network

produces a low resolution, n-channel tensor (i.e., the LR Tensor), which is divided into n low

resolution hologram tensors for location estimation.

Fig. 4.4(a) and Fig. 4.4(b) display the input and output of the hologram filter network,

respectively. Lower similarity values are shown as bluish pixels in the figures. The RF holo-

gram tensor is produced using the phases gathered from our testbed, which covers a region of

dimension 1.5m×1.5m×1.5m (see Section 4.5.1 for details). The fake peaks spread out in the

hologram tensor, similar to the hologram matrix in the two-dimensional case. Despite the fact

that the space has four bands with greater similarity values, no clear peak can be recognized.

The hologram filter network generates the sanitized hologram tensor, shown in Fig. 4.4(b), by

mixing the holograms from three tags. The majority of the fake peaks in the input tensor has
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Figure 4.5: Architecture of the Swin transformer based hologram filter network.

now been muted. The single bright spot is in the center of the filtered hologram tensor, which

is similar to the ground truth tensor in Fig. 4.4(c). The spatial connection among the tags has

now retrieved the location information concealed under fake peaks.

4.4.4 Design of Swin Transformers for Filtering Hologram Tensors

However, the cleaned tensor is compressed by the DCNN based network in Fig. 4.4(b). Because

the input of our networks is a 4D tensor, for example it consisting of 150× 150× 150× 3

pixels in the following experiment, and the number of parameters escalates with the use of

3D convolution, the output size is reduced to save memory while utilizing the DCNN as the

backbone. Data compression appears to be at the expense of location estimation accuracy.

Furthermore, the number of input channels determines the architecture of the DCNN network.

For dealing with the tensors from three tags, three residual units are included. More residual

units must be added to the network if the network is used to localize more tags. Thus, the

framework’s compatibility is still limited by the DCNN backbone.

To address the issue, a Swin Transformer based network is used to sanitize the noisy

hologram tensors. In our framework, it is equivalent to the DCNN-based network. The Swin

Transformer backbone is not only robust to the different size of the input tensor but also has

the output with same size as the input tensor. The architecture of the Swin Transformer based

hologram filter network is depicted in Fig. 4.5. The network is a 3D variation of the U-Net [127]

with a Swin Transformer backend. The input tensor is first split into non-overlapping 3D tokens
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Figure 4.6: Swin transformer blocks.

for feeding into the Swin Transformer blocks. Our implementation sets the patch size to 2×2×2.

It consists of a raw feature dimension of 2×2×2×3 associated with the multi-tag hologram

tensor with 3 channels. The raw features are projected into a 48-dimensional space using

a linear embedding layer, which is consistent with the traditional Swin Transformer. Then,

the processed tokens are applied with Swin Transformer blocks. Fig. 4.6 exhibits the shifted

window based self-attention in the Swin Transformer blocks, where W-MSA and SW-MSA

represent the regular window based multi-head self-attention (MSA) and shifted window based

MSA, respectively. A LayerNorm(LN) layer is adopted before each MSA and MLP. The tokens

are first partitioned into small cubes in the Swin Transformer block. For example, the token of

H×W×D would be divided in to H
M
×W

M
×D

M
cubes with a window ofM×M×M . In the following

block, the window would shift (M
2
, M

2
, M

2
) pixels, so that the connection between neighboring

non-overlapping windows in the previous block would be introduced in the network. With the

approach, the output of two consecutive Swin Transformer blocks is computed as,
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ŝl = W-MSA(LN(sl−1)) + sl−1

sl = MLP(LN(ŝl)) + ŝl

ŝl+1 = SW-MSA(LN(sl)) + sl

sl+1 = MLP(LN(ŝl+1)) + ŝl+1 (4.8)

The self-attention is given as

Attention(Q,K, V ) = SoftMax(
QKT

√
d

+B)V (4.9)

where Q,K, V stand for queries, keys, and values, respectively. d is the scale-down factor, and

B is the relative position bias. A patch merging layer always follows the Swin Transformer

blocks for shrinking the size of the features by a factor of 2 in each stage. The output of each

stage would not only be passed on to the subsequent stage, but also be fed to DCNN-based

decoders to regenerate the filtered hologram tensor.

The feature representation from the Swin Transformer backbone is first adjusted with a

convolutional encoder before it is concatenated with the features from the decoder of the lower

layer. The convolutional decoder processes the merged features, and the output returns to the

higher layer. In our implementation, the filtered hologram tensor is obtained directly with the

convolutional decoder from the top layer. To supervise the training of the network, a mixed

loss function is formulated as,

Lmix = αLMS-SSIM + (1− α)× Lℓ1 (4.10)

where LMS-SSIM is the multiscale structural similarity index, Lℓ1 represent ℓ1 loss, α is a hyper-

parameter [138].
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Figure 4.8: (a) A slice of the input tensor. (b) A slice of the ground truth tensor. (c) A slice
of the sanitized tensor using self-supervised pre-train. (d) A slice of the sanitized tensor using
supervised learning.(e) A slice of the sanitized tensor obtained with DCNN-based network

4.4.5 Self-supervised Pre-training of Swin Transformers

Self-supervised pre-training has made a significant contribution to the development of cutting-

edge models for a wide range of NLP tasks. Recent research has revealed numerous self-

supervised ways for enhancing the capacity of deep neural networks to learn feature repre-

sentations in vision tasks as well [139, 140]. In this chapter, the self-supervised pre-training

is leveraged with the Swin Transformer based hologram filter network to promote the perfor-

mance of sanitizing noisy tensors in the proposed framework.

According to Fig. 4.7, we adopted three pretext loss for learning a good data representation

in the self-supervised pre-training, which are inspired by the prior work for medical image anal-

ysis [141]. The input hologram tensor S is first cropped and rotated to generate sub-volumes
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randomly. Using the Swin Transformer backbone, the feature representation is extracted from

the sub-volumes, and three different projection heads are leveraged to achieve the correspond-

ing pretext tasks. The first task is to predict the angle rotation of the sub-volumes in 6 classes

including 90◦,−90◦ along with x-axis, y-axis, and z-axis respectively. The cross-entropy loss

is utilized as below

Lrot = −
6∑

m=1

rmlog(r̂m) (4.11)

where r̂m is the softmax result from the rotation head, rm is the ground truth.

Tensor recover task is also a part of the self-supervised pre-training. We mask out a por-

tion of pixels in the sub-volumes with a ratio s. The sub-pixel convolution in the recover head

regenerates the masked pixels with the feature representation from the Swin Transformer back-

bone. The MSE loss Lrec is leveraged to measure the difference between the ground truth

sub-volume Ssub and the recovered sub-volume Ŝsub, which is given as,

Lrec =
1

P

∑
(Ssub − Ŝsub)

2 (4.12)

where P is the number of pixels in the sub-volume.

Contrastive learning [139] is also a part of the self-supervised training in the proposed

framework. We leverage a simple instance discrimination task as the pretext task. Two corre-

lated sub-volumes of the input hologram tensor, s and s+, are generated with the tensor rotation

and cutout at first. With the Swin Transformer backbone and the contrastive head, the feature

representations are extracted from s and s+ and denoted as q and k0. For a minibatch of N

tensors, only the feature representation from the same input tensor is treated as positive pair,

while the feature representation {k1, k2, · · · kN−1} from the rest N − 1 tensors are the negative

examples. Apparently, the instance discrimination task is actually a N-way classification prob-

lem, which tries to class q as k0. Thus, the contrastive loss function, called InfoNCE [142], is
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defined as

Lcontrast = −log
exp(q ·k0/α)∑N−1

m=0 exp(q ·km/α)
(4.13)

where the dot product is implemented to measure the similarity between the feature represen-

tation, α is a temperature hyper-parameter.

Finally, the Swin Transformer backbone is self-supervised by minimizing the complex

loss function as follow:

L = Lrot + Lrec + Lcontrast (4.14)

Our Swin Transformer based hologram filter network is fine-tuned using regular super-

vised learning after self-supervised pre-training. Fig.4.8 depicts the progress brought by self-

supervised pre-training. Fig.4.8(a) and Fig.4.8(b) show a noisy hologram tensor slice and the

corresponding ground truth slice. In Fig.4.8(c), a sanitized slice of the hologram tensor is gen-

erated using the pre-trained weight, while Fig.4.8(d) shows the slice sanitized by the network

without the self-supervised pre-training. By comparing Fig.4.8(a) and Fig.4.8(c), we notice

that the band pattern in the Fig.4.8(a) is extracted and recovered in Fig.4.8(c). The peak spot

locates at one of the bands in the slice, which meets our observation in Fig.4.1. The band pat-

tern, however, vanishes in Fig.4.8(d). Instead, the shadow area in Fig.4.8(d) is consistent with

the blur area in Fig.4.8(a). It appears that the network learns how to sanitize the tensor via a

”shortcut”, which is not our expectation. Furthermore, the area of the peak spot in Fig.4.8(c) is

significantly denser than those in Fig.4.8(d). It reveals that self-supervised pre-training is able

to improve location estimation by extracting detailed and interpretative feature representations

from noisy tensor inputs. Furthermore, Fig.4.8(e) displays a slice of the sanitized tensor from

the DCNN-based hologram filter network. Compared to the previous slices, Fig.4.8(e) is almost

identical to the ground truth slice in Fig.4.8(b). Even though the slice is much cleaner than the

slices from the Swin Transformers, the details from the original input tensors are eliminated

through the DCNN-based network. It is difficult for us to discover how the network cleans
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up the tensor in the forward propagation. The phenomenon exhibits the difference between

the DCNN backbone and the Swin Transformer backbone. The Swin Transformer has a larger

representation capacity, e.g. the effective features are kept in Fig.4.8(c). However, it usually

suffers from data shortage because of the lack of the typical convolutional inductive bias. On

the other hand, the DCNN backbone performs well even with a dataset of limited size. The

detailed comparison between the two backbones will be presented in the following chapter.

4.4.6 Location Estimation

The tag location could be inferred easily using a simple peak detection algorithm with the

sanitized hologram tensors. Because the sanitized tensor from the DCNN-based hologram filter

network is compressed, we employ trilinear interpolation to recover its size. The estimation

location Ĝ is computed as follows.

Ĝ = {G|f(SR, G) = max(SR)} , (4.15)

where f(·) extracts the similarity value at the grid location G from the sanitized hologram

tensor SR.

4.5 Experimental Study

4.5.1 Testbed Configuration

To evaluate the performance of the proposed framework, we built a prototype using a Zebra

FX9600 reader and eight Zebra AN720 antennas. Three UPM Raflatac Frog 3D tags are utilized

as localization targets. In the experiment, we assess the performance of the proposed framework

by concurrently localizing the tags affixed to the human body. A Kinect V2 device collaborates

with a three-dimensional human position estimation algorithm [143] to produce ground truth

coordinates for supervised learning. For dataset creation and tag position estimation, the target

tags are mounted to the shoulders and neck. ROS Kinetic Kame is utilized to synchronize

and unify the coordinates and tensors from the Kinect V2 and the RFID reader. We adjust

the requirement for hologram tensor creation to ensure real-time performance of the proposed
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Figure 4.9: The MulTLoc testbed setup.

framework. When five antenna pairs are available, the phases from seven channels will be used

to construct the hologram tensors. The yellow lines in Fig. 4.9 outline the surveillance space

of the prototype, which covers a space of dimension 1.5m × 1.5m × 1.5m at 0.5m above the

ground. The grid size is set at 1cm. Furthermore, the similarities at each grid position in the

surveillance space are computed in parallel using CUDA GPU programming to speed up the

construction of hologram and ground truth tensors.

Table 4.1 and Table 4.2 illustrate the backbone detail of two hologram filter networks. For

the DCNN-based hologram filter network, each residual unit includes two ResUnit block. The

downsampled tensors are concatenated as a multi-channel tensor (green cubes in Fig. 4.3) and

then processed by a convolutional layer (conv2 in Table 4.1). The hourglass units are stacked

end-to-end for filtering noisy hologram tensors. Multiple hourglass units could be leveraged in

the DCNN-based hologram filter network. The number of hourglass units would not affect the

utilization of Hourglass input and Hourglass output in the network. An extensive discussion

about the effect of the number of hourglass units on the location estimation will be given in the
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layer name output size kernel size

conv1 (80× 80× 80)
[
3× 3× 3

]

ResUnit block1 (80× 80× 80)
[
3× 3× 3

]
× 2

ResUnit block2 (40× 40× 40)
[
3× 3× 3

]
× 2

concat (40× 40× 40) Null

conv2 (40× 40× 40)
[
3× 3× 3

]

Hourglass input (40× 40× 40)



1× 1× 1
3× 3× 3
1× 1× 1




Hourglass (40× 40× 40)



1× 1× 1
3× 3× 3
1× 1× 1


× 4∗

Hourglass output (40× 40× 40)



1× 1× 1
3× 3× 3
1× 1× 1


× 4

Table 4.1: The detail of DCNN-based hologram filter network. (Each purple cube, representing
the feature tensor, is processed with the displayed kernel. Downsampling and upsampling
layers are not shown in the table.)

Stage-1 Stage-2 Stage-3 Stage-4

Layer Size
[

win. sz. 7×7×7
dim 48, head 3

]
× 2

[
win. sz. 7×7×7

dim 48×2, head 6

]
× 2

[
win. sz. 7×7×7

dim 48×4, head 12

]
× 2

[
win. sz. 7×7×7

dim 48×8, head 24

]
× 2

Output Size (24×24×24) (12×12×12) (6×6×6) (3×3×3)

Table 4.2: The detail of Swin Transformer backbone.

rest of the paper. The detailed information about the Swin Transformer backbone is presented in

Table 4.2. As is shown in Fig. 4.5, four stages are included in the Swin Transformer backbone.

The feature dimension and number of attention heads would increase by a factor of two in each

stage. With the patch merging, the output size from stages is shrunk by a factor of two. Two

blocks are included in each stage by default. We will discuss the effect of feature dimension and

the number of blocks on the performance of location estimation in the following paragraphs.

To train the deep networks in the MulTLoc framework, we collect tensors and related

coordinates from several volunteers who are attached with three tags and move randomly in the

surveillance space. Three hundred groups of data are included in the dataset. In each group,

two tensors are from the shoulder tags and one tensor is from the neck tag. The acquired data

divided randomly for training, validation, and testing. 80% percent of the tensor groups are
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Figure 4.10: CDFs of location estimation errors with different hologram filter networks

used to train deep neural networks. The training dataset includes seven hundred and twenty

RF hologram tensors in total, while the remaining sixty tensor groups are evenly sperated for

validation and testing. Furthermore, an Nvidia RTX3090 GPU and an RTX A6000 GPU are

utilized to accelerate the computation of the two deep networks.

4.5.2 Experiment Results and Discussions

Fig. 4.10 presents the cumulative distribution function (CDF) of localization errors, which

exhibits the overall localization precision brought by different network configurations. The

best localization performance is achieved by the DCNN backbone cooperating with the MSS-

SIM loss function, which has a mean error of 0.0558m. When the L2 loss is leveraged in

the DCNN training, the mean localization error increases to 0.0688m. For the Swin Trans-

former based network, a mean error of 0.0961m is achieved when self-supervised learning is

leveraged in training, whereas the mean error is 0.1041m without the self-supervised training.

Even though a precision improvement in location estimation is brought by the self-supervised

training, DCNN-based hologram filter networks, in general, outperform the Swin Transformer

based networks. This result is not unexpected. In [131], a large vision transformer underper-

forms models with ResNet backbone when a small dataset is utilized in training. Due to the
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Figure 4.11: Location estimation for tags

fact that our dataset for indoor localization only has three hundred groups of input tensors, it

is acceptable for us to achieve comparable location precision with a Swin Transformer based

network. Furthermore, the interpretable filtered result is the main reason for us to investigate

the Swin Transformer based network. In accordance with our observation in Fig.4.1 that peaks

would always locate on a highlight band, Fig.4.8(c) recovers the real peak based on the band

pattern in Fig.4.8(a), which meets our expectation in location estimation. Additionally, large

vision transformer models overtakes ResNet based model as the dataset grows in the computer

vision tasks. It shows us the potential of Swin Transformer based hologram filter network.

Fig. 4.11 depicts the mean distance errors for tags as well as the overall average errors of

various network configurations. Apparently, the DCNN-based hologram filter network beats

the network with a Swin Transformer backbone in terms of accuracy. The distance error ob-

tained from the left shoulder with the Swin Transformer backbone is approximately 0.103m,

which doubles the error achieved with the DCNN backbone of 0.053m. The lowest error is ob-

tained from the neck in both networks, where the network with the DCNN backbone achieves

0.0525m and a error of 0.0916m is acquired by the Swin Transformer based network. In

Fig. 4.11, the mean distance errors for various systems are also outlined with dashed lines. The

blue and red lines show the overall distance errors for networks using the Swin Transformer
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Figure 4.12: Location estimation effected by different loss function

and DCNN backbones, respectively. Because RF-Kinect [106] also performed an experiment

in a 1.5m × 1.5m scanning region, its average distance error of 0.0512m is displayed with

a green line for comparison with our proposed approaches. As illustrated in Fig. 4.11, even

though RF-Kinect exhibits a small improvement in localization accuracy when compared to

the DCNN-based network, the extended version of the DCNN-based hologram filter network,

denoted as Hourglass×5, achieves an error of 0.0489m, outperforming all other methods. The

network extension would be discussed in the following paragraphs.

Two representative deep neural networks are used as backbones in this chapter to sanitize

the noisy hologram tensors. First, the framework employs a 3D variant of the U-Net with a Swin

Transformer backbone. This type of network is proposed in [144] for semantic segmentation.

However, the purpose of semantic segmentation is to label each pixel in the image with the right

label, which does not match our task of tensor sanitizing. Labels will not present in our task.

The pixels are filtered with the network to produce a smooth and continuous sanitized tensor.

Tensor sanitizing, from this perspective, is similar to image restoration and denoising. The

fake peaks related to phase wrapping and multipath could be treated as blur and noisy in the

hologram tensor. Therefore, two loss function in image restoration, L1 loss and MSSSIM loss

[138], are introduced to the Swin Transformer based network for enhancing the performance
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Figure 4.13: Location estimation effected by α using Swin Transformer backbone

of tensor sanitizing. According to Fig. 4.12, the mean distance error is 0.1469m when L2

loss is utilized in the training. The localization estimate continues to improve with the use of

MSSSIM loss and L1 loss. The MSSSIM loss reduces the mean distance error to 0.1322m,

while the L1 loss contributes to a mean distance error of 0.1267m. Moreover, we used a joint

loss function that included both MSSSIM loss and L1 loss to improve the performance of

the Swin Transformer based hologram filter network. When self-supervised learning is used,

the distance error is optimized to 0.0961m. Since the joint loss function displays outstanding

performance in improving the localization accuracy for Swin Transformer based hologram filter

network, we explore the effect of the ratio between L1 loss and MSSSIM loss on the distance

error in Fig. 4.13. It is evident that the distance error stays high when L1 loss, or the MSSSIM

loss, is deployed in the training individually, which are displayed when α is 0.0, or 1.0. With

the increment of α, MSSSIM loss is introduced into the supervised training. The distance error

drops to 0.1154mwhen α is 0.2. Even though a slight stagnation happens as α is 0.4, the lowest

distance error achieves when α rise to 0.6. After then, as the L1 loss disappears, the localization

accuracy continues to deteriorate.

However, the DCNN-based hologram filter network does not benefit from the the joint loss

function built of L1 loss and MSSSIM loss. The hourglass network, a convolutional network
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Figure 4.14: Location estimation effected by α using DCNN backbone

architecture for human pose estimation, serves as the backbone of the DCNN-based hologram

filter network. The core idea of the hourglass network is to capture the spatial interactions

associated with the key points using a repeated bottom-up, top-down covolutional structure. It

converges to our tensor filter task, in which we attempt to extract the true peaks existing in a

multiple-channel hologram tensor by using the spatial relationship between peaks in different

channels. However, the loss functions for image restoration could not match the hourglass

network perfectly. L1 loss produces the worst distance inaccuracy of 0.0911m in Fig. 4.12.

Despite the fact that MSSSIM loss leads to the best localization accuracy with a mean distance

error of 0.0558m, the joint loss function could not replicate its effect on the Swin Transformer

backbone. The distance error related to L1 loss is even higher than the error achieved by L2

loss, which are 0.0741m and 0.0688m, respectively. In Fig. 4.14, we also investigate the effect

of the ratio α between L1 loss and MSSSIM loss on the distance error. Although the distance

error drops as MSSSIM loss involves in the training, the overall localization accuracy is not

elevated by the joint loss function. When α is 0.6, the localization accuracy even gets worse.

To acquire the best localization accuracy using the DCNN-based hologram filter network,

a joint loss function which consists of L2 loss and MSSSIM loss is studied. β is the ratio

between L2 loss and MSSSIM loss, which follows the similar way in (4.10). The effect of β on
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Figure 4.15: Location estimation obtained by the joint function built of L2 loss and MSSSIM
loss

Structure #param. Distance Error (m)

(2,2,2,2)∗ 62.2M 0.0961
(2,2,4,2) 63.1M 0.0985
(2,2,6,2) 64.1M 0.1072
(2,2,8,2) 65.0M 0.1064

Table 4.3: Location estimation effected by the setup of the Swin Transformer based hologram
filter network. (* denotes the default setting)

the distance error is illustrated in Fig. 4.15. With the growth of β, MSSSIM loss is utilized to

advance the localization accuracy. As β reaches 0.4, the MSSSIM loss significantly improves

the situation, but after that the growth rate slows. Eventually, the optimized distance error is

obtained when the loss function is composed by MSSSIM loss individually.

The backbone architecture would have a considerable impact on the performance of the

hologram filter networks. To evaluate the localization accuracy resulted by the structural

changes, we conduct experiments with different number of trainable parameters using two

hologram filter networks. In Table 4.3, the number of layers in a Swin Transformer based

network is first modified. According to [110], only the layers in the stage-3 is modified, where

(2, 2, 2, 2) indicates a default layer configuration that two layers are included in each stage.
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Dimension Size #param. Distance Error (m)

12 4.07M 0.1175
24 15.7M 0.1135
48∗ 62.2M 0.0961

Table 4.4: Location estimation effected by the feature size. (* denotes the default setting)

Structure #param. Distance Error (m)

Hourglass×2 33.4M 0.0565
Hourglass×3∗ 49.9M 0.0558
Hourglass×4 66.3M 0.0523
Hourglass×5 82.7M 0.0489

Table 4.5: Location estimation effected by the setup of the DCNN based hologram filter net-
work. (* denotes the default setting)

As we can see, the number of parameters grows with the increasing number of layers. How-

ever, the distance error does not improves significantly. Despite an increase in the number of

parameters from 62.2M to 65.0M, the distance inaccuracy remains about 0.1m.

Another key parameter influencing the scale of the Swin Transformer backbone is dimen-

sion size, given as dim in Table 4.2. It determines the output dimension of the linear layer in a

transformer block. Because the dimension of the current stage is determined by the dimension

of the preceding stage, any change in the first stage would drastically alter the scale of the en-

tire network. Table 4.4 employs three different dimension sizes, 12, 24, and 48, to investigate

their impact on the number of parameters and localization accuracy. When the dimension size

is 12, the network consists of just 4.07M trainable parameters; therefore, the capability of the

network is constrained by the confined size. The distance error degrades to 0.1175m. As we

double the dimension size to 24, the number of trainable parameters inflates to 15.7M. Corre-

spondingly, the extend of the network size contributes to the enhanced localization accuracy.

The distance error drops to 0.1135m. We further increase the dimension size to 48 to inspect

the improvement in localization accuracy brought by the enlarged network. In this scenario, the

hologram network is composed of 62.2M parameters and the distance error achieves 0.0961m.

91



DCNN Swin Transformer
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
is

ta
n
ce

 E
rr

o
r 

(m
)

UPM Raflatac Frog 3D tags

SML GB4eU7

Figure 4.16: Location estimation obtained from different tags

We also study the influence of network size on the localization precision of the DCNN-

based hologram filter network. Due to the architecture of the hourglass backbone, it is conve-

nient to stack several hourglass units for network expansion. Four variations of the hourglass

backbone are deployed in Table 4.5. The number of parameters grows in direct proportion to

the number of hourglass units leveraged in the backbone. With the increment of the number

of parameters, the distance error declines gradually. The lowest distance error of 0.0489m is

obtained when five hourglass units, including 82.7M parameters, are used in the network.

To investigate the robustness of the hologram filter networks, SML GBe4U7 tags are de-

ployed in the framework to collect the hologram tensors. The tags are attached to the human

body in the same position as in the previous experiment. The newly collected tensors would

not be used to train, or fine tune, the hologram filter networks. Using previously trained net-

works, the experimental results are obtained with the newly collected tensors directly. Fig. 4.16

delineates the performance degradation resulted from different tags. Obviously, a significantly

performance drop occurs to both networks. However, the Swin Transformer based network is

more robust to the change of tags. Even though DCNN-based network reaches the distance

error of less than 6cm, its accuracy suffers when facing tags that have never participated in

training. The Swin Transformer based network leads the DCNN network by about 20cm in the
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new tag test. It potentially shows that the interpretable pattern extracted by the Swin Trans-

former based network is beneficial to tensor sanitation in different tags, whereas the DCNN

based network could possibly clean the tensors through some ”shortcuts”, which hampers its

transferability.

4.6 Conclusions

In this chapter, we provide MulTLoc, a framework that utilizes deep neural networks for RF

hologram tensor filtering in order to locate multiple RFID tags. To our knowledge, this is the

first paper to utilize hologram tensors to train deep neural networks for RFID tag-based three-

dimensional indoor localization. Two representative deep learning models are implemented

with the MulTLoc framework. First, we built a DCNN-based hologram filter network. The

network successfully recovers the cleaned hologram tensors. The centimeter-level multiple tag

localization is achieved successfully with the sanitized hologram tensor. In addition, a Swin

Transformer based network is also used to sanitize the hologram tensors for expand the com-

patibility of the proposed framework. The network architecture is not related to the number

of target tags. By adopting self-supervised training, the network is effectively trained with a

small dataset including a limited number of training tensors. We evaluate the proposed frame-

work using a task of multiple-joint location estimation. The results demonstrate the outstanding

performance of the suggested framework.
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Chapter 5

AdvLoc: Adversarial Deep Learning for Indoor Localization

5.1 Introduction

Location-based services have drawn significant attention driven by the increasing popularity of

Internet of Things (IoT) devices and applications for Global Positioning System (GPS) denied

indoor environments. Emerging indoor localization systems adopt various radio frequency (RF)

signals, such as WiFi, RFID, and Bluetooth, etc. [15, 17, 27, 28, 109, 134]. Among these, the

WiFi signal has been dominant in such systems that provide location estimation for the indoor

environment in people’s daily life, because of its omnipresence and lower cost.

Traditionally, indoor localization systems rely on signal processing techniques to estimate

the distance between a transmitter and receiver, the Angle-of-Arrival (AoA), or the Time-of-

Flight (TOF), for inferring the target location. For example, SpotFi [112] utilized a modified

MUltiple SIgnal Classification (MUSIC) algorithm to achieve decimeter-level location accu-

racy by using AoA and ToF. Chronos [145] was able to compute the sub-nanosecond ToF and

estimate the target location with decimeter-level accuracy as well. However, these techniques

are limited by the quality of the signal. In the indoor environment, WiFi signals are scattered

and reflected by walls and furniture, which result in the inevitable noisy WiFi measurements,

especially the phase readings. To alleviate the negative effect contributed by the offsets, in-

door localization systems usually employ powerful but time-consuming algorithms, such as the

super-resolution algorithm used in SpotFi, which limits their performance for realtime applica-

tions.
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Deep learning has been a hot topic since it has achieved great success in solving tasks,

such as data compression, speech recognition, and image classification. Recently, indoor local-

ization systems also benefit from the development of deep learning. Compared with traditional

systems, deep learning makes such systems more efficient in location estimation, even though it

would take more time for training the model. The first work applying deep learning to indoor lo-

calization is DeepFi [27], which leverages a stack of Restricted Boltzmann Machines (RBMs)

to build an autoencoder for extracting location features from WiFi Channel State Informa-

tion(CSI). PhaseFi [28] and BiLoc [29] further improve the the location accuracy by leveraging

different CSI data. Due to the fingerprinting method, the localization problem is transferred

to a matching problem. In the training stage, autoencoders have to be trained at each training

location for extracting fingerprints. The training process could be time-consuming and the size

of fingerprint data may restrict the deployment of the localization system in mobile devices

which usually have limited storage. To overcome the drawbacks of the autoencoder based lo-

calization systems, CiFi [109] is the first work to utilize Deep Convolutional Neural Networks

(DCNN) for indoor localization. With DCNN, location estimation is treated as a multi-class

classification problem. Thus, the localization system only needs to train one DCNN model in

the training process, and the fingerprints collected in the training stage are not essential for lo-

cation estimation once the DCNN is trained successfully. Like CiFi, Received Signal strength

(RSS) and CSI amplitude have also been utilized to train the DCNN model [61, 81, 146, 147].

ResLoc [108,123] proposed a sharing learning approach based on deep residual learning, which

uses the bimodal CSI tensor data.

Even though deep neural networks (DNN) have achieved excellent performance on clas-

sification problems, some counter-intuitive properties of DNNs have also been exposed along

with its popularity. Szegedy et al. [148] found that several machine learning models, includ-

ing state-of-the-art neural networks, are vulnerable to adversarial examples. Goodfellow [149]

verified the discovery by misleading the GoogLeNet [150] with adversarial examples. Deep

learning based indoor localization systems also face the threat of adversarial attacks. To evalu-

ate and counteract the threat of adversarial attacks to DNN-based indoor localization systems,
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we propose AdvLoc, an Adversarial deep learning for indoor Localization system. Like tradi-

tional DCNN based systems, AdvLoc operates in two stages, an offline training stage and an

online location estimation stage. We apply adversarial attacks in the online stage, where the

perturbations generated by adversarial attacks are be introduced to the existing clean inputs of

the DCNN. In the offline stage, the DCNN based localization model will be trained adversari-

ally to enhance its robustness against the adversarial examples. Unlike the image classification

models, the DCNN model in the indoor localization system process the online inputs that do

not belong to any existing class in the training dataset (i.e., the mobile device may be placed

at an arbitrary location, rather than a known training locations). Using the AdvLoc system,

we evaluate the effects of six types of mainstream adversarial attacks on DCNN based indoor

localization with respect to accuracy and location error. To defend against such attacks, adver-

sarial training is implemented in the offline training of the models. The experimental results

validate that adversarial training utilized in the proposed AdvLoc system is an effective means

to counteract the location errors cause by the first-order adversarial attacks.

The main contributions made in this chapter can be summarized in the following.

• We expose the threat of the adversarial attacks to deep learning based indoor localization

systems by visualizing the adversarial examples and evaluating the impact of the various

magnitude of the perturbation on the adversarial examples to the location estimation.

The effect of six types of representative adversarial attacks, including gradient-based,

optimization based, and spatial transformation based attacks, on the indoor localization

system, is investigated in both white-box and black-box attack scenarios.

• To the best of our knowledge, this is the first work to employ adversarial training to

enhance the robustness of WiFi CSI-based indoor localization systems. We introduce

adversarial training into the traditional DCNN based indoor localization. In the white-

box attack scenario, the modified loss function successfully alleviate the negative effect

resulted from the first-order adversarial attacks, especially Fast Gradient Sign Attack

(FGSM) [149].
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• The proposed AdvLoc system is implemented with commodity 5 GHz WiFi. We verified

its performance in two representative indoor environments with extensive experiments.

The experimental results exhibit the threat of adversarial attacks and show that adversarial

training effectively improves the robustness of the localization system when the input

examples are manipulated by first-order adversarial attacks.

The remainder of this chapter is organized as follows. Section 5.2 reviews related work.

We present the AdvLoc design in Section 5.3 and our experimental study in Section 5.4. Finally,

Section 5.5 concludes this chapter.

5.2 Related Work

With the advances in computing power, the availability of data, and the development of open-

source platforms, deep learning has been recognized as a powerful tool for many real world

problems that cannot be solved by conventional machine learning techniques. However, as

Szegedy et al. first unveiled in [148], using image classification as an example, the resilience of

deep learning has been exposed to the threat of adversarial attacks. Nowadays, most AI-based

services, such as Apple Face ID and Amazon Alexa, are highly dependent on the progress of

deep learning in image classification and Natural Language Processing (NLP). The vulnerabil-

ity of deep learning networks place user privacy and public safety at risk.

Following the discovery in [148], Finlayson et al. [151] investigated the vulnerabilities of

the medical AI systems under adversarial attacks and pointed out that the adversarial attacks

may already be in place and contribute to medical fraud. The diagnostic performance could

be affected easily by adding a small perturbation generated by the common adversarial attacks,

while the manipulated diagnostic probability could deceive the automated fraud detector eval-

uating the medical claims. Furthermore, Finlayson et al. also indicated that the adversarial

attacks are effective for extremely accurate medical classifiers even if the prospective attackers

do not have access to the deep learning model. In [152], both white-box and black-box Pro-

jected Gradient Descent (PGD) attacks were used to generate adversarial examples. The result
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showed that state-of-the-art medical models were misled in both scenarios. Furthermore, re-

searchers have applied adversarial attacks in other real-world scenarios. For example, Thys et

al. [153] proposed an approach to generate adversarial patches to hide a person from a DCNN

based human detector. Sharif et al. [154] presented an approach for generating eyeglass frames

to fool state-of-the-art Face Recognition Systems (FRSs). The experimental results showed

that their techniques were effective for black-box FRSs, as well as state-of-the-art face detec-

tion systems (FDSs).

Not only traditional DCNNs but also the Spatio-Temporal Graph Convolutional Network

(ST-GCN) is facing the threat of adversarial attacks. Unlike the medical AI systems relying

on DCNN for image classification, action recognition applications utilizing ST-GCN for pro-

cessing the skeleton data obtained from RGB-D sensors [155, 156]. Liu et al. [157] proposed

Constrained Iterative Attacks for Skeleton Actions (CIASA), which was based on FGSM and

was able to disturb the joint locations in an action sequence. Even though the features of graph

nodes and graph structure were discrete with certain predefined structures, the basic FGSM

attack was able to fool the ST-GCN in the form of non-targeted attacks.

Even though the textual data is different from image data composed of continuous pixel

values, adversarial examples affect DNN for text-based tasks as well. Three types of perturba-

tion strategies, namely insertion, modification, and removal, were introduced in TextFool [158]

based on the concept of FGSM. In [159], authors showed that the recurrent neural network

(RNN) is not immune to the adversarial attacks. The attack methods used in crafting adver-

sarial image examples could be adapted to generate sequential adversarial text by leveraging

computational graph unfolding. In a recent work [160], we investigated the problem of adver-

sarial attacks on solar power generation forecasting, which is a regression problem, and showed

that both DNN and a LASSO-based statistical model were vulnerable.

Recnetly, there has been considerable interest of applying deep learning to wireless com-

munications and networking problems [161, 162]. Because adversarial attack has been a com-

mon threat to deep learning systems, researchers have also investigated the impact of adver-

sarial attacks in wireless systems. For example, modulation recognition, is a key technology

of Cognitive Radio (CR), for which deep learning techniques have been developed. In [163],
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Sadeghi et al. demonstrated how adversarial examples degrade the model performance of radio

signal (modulation) classification. Compared with traditional attacks such as jamming, the ad-

versarial attack required much less power since only small perturbations were generated. Lin

et al. [164] evaluated four representative adversarial attacks on modulation recognition. The

results showed that, regardless of white-box or black-box, adversarial attacks could reduce the

accuracy of the target model, while the performance of iterative attacks was superior to that

of single step attacks. A thorough study of adversarial attacks on IoT device identification

(or, device fingerprinting) was reported in [165], which was to identify specific wireless trans-

mitters based on received signals. Although following the same specifications and using the

same protocols, the devices can still be distinguished by the small defects incurred during the

manufacturing process or the aging process.

5.3 The AdvLoc System

Due to the popularity of mobile devices, location information has been an essential part of IoT.

Recently, an increasing number of researchers have focused on WiFi-based indoor localization

because of the ubiquitous availability and low cost of WiFi devices. Many indoor localization

systems [27–29] rely on the fingerprinting method, which means the fingerprints of known lo-

cations need to be measured and stored in a database for online localization. To reduce the

storage requirement, some systems [61,109] treat indoor WiFi fingerprinting as a classification

problem, where DCNN becomes the best choice owing to its great success in image classi-

fication. As Szegedy et al. [148] revealed the vulnerability of DCNN models to adversarial

examples, consequently, the DCNN based localization systems would also be susceptible to

adversarial attacks. To combat such threats, we propose the AdvLoc system in this chapter,

which utilizes adversarial training in the offline stage to enhance the robustness of the network,

making it immune to adversarial examples.

5.3.1 Architecture of the AdvLoc System

Fig. 5.1 depicts the architecture of the proposed AdvLoc system. Like traditional DCNN based

indoor localization systems, AdvLoc comprises of an offline stage and an online stage. In the
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Figure 5.1: Indoor localization architecture.

offline stage, CSI tensors are constructed using the CSI data collected at the receiver for the

mobile device placed at various known training locations. The core of AdvLoc is a deep resid-

ual learning model, ResNet [9], that learns location features from WiFi CSI data. The ResNet

will be trained adversarially using CSI tensors to generate the model for online localization.

The newly received CSI data is collected from mobile devices placed at an unknown location

in the online stage. The adversarial perturbations are generated and injected in CSI tensor in the

online stage, even though the new CSI tensors are constructed in the same way as in the offline

stage. As a result, the wireless channel has no effect on the perturbations inserted into the CSI

tensors. Moreover, because adversarial attacks happen at the process of CSI tensor generation,

it is more feasible in both white-box and black-box scenarios.

Specifically, in the offline stage, the training dataset and verification dataset are collected

from identical positions. The collected observations, such as phase readings, are labeled by the

coordinates of corresponding positions. The location with the highest similarity in the output

of the DCNN model is selected as the output of the system. Therefore, we could assess how

well our model fits the training data using the verification dataset by examining the verification
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accuracy in this stage. In the online stage, the testing dataset is collected from the positions

not used in the offline stage. Obviously, the classification accuracy would not be persuasive to

demonstrate the localization performance of the system. In fact, the output of ResNet is used

as the similarity to calculate the estimated location. The estimated location, T̂ , is computed by

T̂ =
N∑

i=1

ti × pi (5.1)

where pi is the output of the ResNet that depicts the similarity between the testing location and

the training location i, and ti is the known training location i.

5.3.2 CSI Tensor Construction

The CSI tensor used in AdvLoc consists of three slices. Two of the slices are generated with the

estimated angle-of-arrival (AoA) values using the phase difference data from the three receiv-

ing antennas, while the third slice contains the measured CSI amplitude values. Considering

that the Intel WiFi Link 5300 network interface card (NIC) only supports 3 antennas and 30

subcarriers for each antenna, the size of the CSI tensor is set to 30 × 30 × 3. Fig. 5.2 depicts

CSI tensors used in our AdvLoc system when different levels of perturbations are introduced

(as indicated by the parameter ϵ). As we can see, when ϵ = 0, no perturbation is added and

the tensor is a clean input to the ResNet model. Whereas, the rest of the tensors are adversarial

examples generated using the FGSM method, where ϵ is a hyper-parameter that controls the

magnitude of the perturbation. When ϵ is less than 0.4, the perturbation added in the tensors is

negligible (i.e., visually invisible). However, the tensor will be distorted obviously, once ϵ is

larger than 0.5. We shall study the relationship between ϵ and the location estimation error in

the following sections.

5.3.3 Architecture of the ResNet Models

To investigate the effect of adversarial attacks on DCNN-based indoor localization systems, two

popular ResNet models are adopted in the AdvLoc system, including ResNet-18 and ResNet-

50 [9]. The ResNet-18 model will be leveraged as the localization model in our study of both
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Figure 5.2: Examples of CSI Tensors when different levels of pertubations are introduced, as
indicated by the hyper-parameter ϵ.

Input Block Conv Block1 Conv Block2 Conv Block3 Conv Block4 Output Block

ResNet-18

[
7× 7, 64
max pool

] [
3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 512
3× 3, 512

]
× 2




average pool
fully connected layer

softmax




ResNet-50

[
7× 7, 64
max pool

] 

1× 1, 64
3× 3, 64
1× 1, 256


× 3



1× 1, 128
3× 3, 128
1× 1, 512


× 4



1× 1, 256
3× 3, 256
1× 1, 1024


× 6



1× 1, 512
3× 3, 512
1× 1, 2048


× 3




average pooling
fully connected layer

softmax




Figure 5.3: Architecture of the two ResNet models used in AdvLoc: ResNet-18 and ResNet-
50 [9].

white-box attacks and black attacks. In the study of black-box attacks, the ResNet-50 model

will be trained as a substitute model for mimicking the localization model, i.e., the ResNet-18

model.

Fig. 5.3 exhibits the detailed structure of the localization models. The building units shown

in the brackets depict the component of each block. For example, the input block of the ResNet-

18 model includes 7x7 filters for generating 64 feature maps, then the max pooling is leveraged

to shrink the size of the feature maps. As for the Conv Block4 of the ResNet-18 model, it

is composed of two building units. In each unit, it contains two 3x3 convolution layers. The

shortcut connection exists in each building unit of Conv Block. Since the localization problem

is treated as a classification problem in the fingerprinting based localization system, the cross-

entropy loss is utilized in the training process.
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5.3.4 Adversarial Attacks

Szegedy et al. in [148] showed that adversarial examples hardly distinguishable from the orig-

inals can fool DCNN-based image classifiers such as AlexNet [166]. Since then, security has

become an important problem in AI/ML research, especially for privacy-sensitive applications

such as localization. To better evaluate the resilience of DCNN-based localization systems

against adversarial attacks and the effectiveness of defense strategies, we implement the fol-

lowing six types of adversarial attacks in this study.

Fast Gradient Sign Method (FGSM)

FGSM was proposed by Goodfellow et al. in 2015 [149]. The method obtains a perturbation,

denoted by η, by calculating the gradient of the loss function L(·) with a given input, as

η = ϵ · sign(▽xL(θ,x, y)), (5.2)

where θ represents the parameters of a well-trained model; x and y are the input and its cor-

responding label, respectively; ϵ is a hyper-parameter, which controls the magnitude of the

perturbation. Since L(·) is the loss function of the model, the perturbation η can be calculated

by using the first derivative of L(θ,x, y) through the backpropagation algorithm.

In 2017, Goodfellow et al. [167] modified FGSM by cancelling the sign(·) function in (5.2).

The new method, Fast Gradient Method (FGM), is a generalization of FGSM, where the per-

turbation is give by

η = ϵ · ▽xL(θ,x, y)

∥▽xL(θ,x, y)∥2
. (5.3)

With (5.3), the perturbation can be easily created. However, it is not safe to say that the pertur-

bation will contribute to misclassification, even though the loss value for the target label to be

misclassified is increased by introducing the perturbation.
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Projected Gradient Descent (PGD)

Based on the one-step FGM, an iterative version of FGM termed PGD, was proposed in 2017

[168]. Madry et al. created the PGD adversary to enhance the robustness of the classifier

against the first-order attacks.

With the iterative method, the adversarial examples {xadv
0 ,xadv

1 , ...,xadv
N+1} are generated

as follows.

xadv
0 = x,

xadv
N+1 = Clipx,ϵ

{
xadv
N + α · ▽xL(θ,x)

∥▽xL(θ,x, y)∥2

}
,

(5.4)

where α is a hyper-parameter for each iteration, which is usually set as ϵ/N for a given ϵ. With

this approach, the perturbation is always small and around the original input x in the Lp ball.

Also, Clipx,ϵ is used to project the perturbation back into the Lp ball if necessary. PGD has

been verified to be a stronger adversarial attack method than the one-step FGM/FGSM at the

cost of transferability.

Momentum Iterative Method (MIM)

Since PGD generates adversarial examples with a greedy approach along the direction of the

gradient in each iteration, the local maxima could be reached easily, resulting in poor trans-

ferability. To solve this problem, the momentum-based method is integrated into FGSM. In-

stead of using the gradient in one iteration to update the perturbation, the Momentum Iterative

Method (MIM) leverages the gradient of the previous iterations to guide the update of the per-

turbation [169]. The memory of previous gradients can help to avoid the local maxima, which

occur in PGD. Thus, it breaks the dilemma of choosing between the “underfitted” FGSM and

the “overfitted” PGD.
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To generate adversarial examples with MIM, we have





g0 = 0,

xadv
0 = x,





gN+1 = µ · gN +
▽xL(θ,xadv

N ,y)

∥▽xL(θ,xadv
N ,y)∥

1

,

xadv
N+1 = xadv

N + α · sign(gN+1).

(5.5)

Note that gN includes the gradients from previous (N − 1) iterations with a decay factor of

µ. Here α can also be set to ϵ/N when ϵ is given. Thus, MIM retains the transferability of

adversarial examples under increased iterations.

DeepFool Attack

In FGSM/FGM, the choice of the hyper-parameter ϵ significantly affects the performance of

adversarial attacks, since ϵ decides the magnitude of perturbation. In DeepFool [170], per-

turbations are computed by solving optimization problems. For a binary affine classifier,

f(x) = wTx+ b, the optimal perturbation is given by

η∗(x) := argmin ∥η∥2

s.t. sign(f(x0 + η)) ̸= sign(f(x0)),

(5.6)

which has the following closed-form solution

η∗(x) = −f(x0)

∥w∥22
w. (5.7)

The iterative method is adopted in DeepFool for general binary classifiers. In each iter-

ation, Deepfool assumes f is linear in the neighborhood of the current x. Hence the optimal

perturbation is calculated as

η∗(x) = argmin
ηN

∥ηN∥2

s.t. f(xN) +▽f(xN)
TηN = 0.

(5.8)
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Considering that multi-class classification can be split into multiple binary classification, Deep-

fool could also find the optimized perturbation effectively for a non-linear multi-class neural

network. Furthermore, it has been demonstrated that the adversarial examples generated by

Deepfool have 5 times smaller perturbations comparing with those from FGSM on MNIST and

CIFAR10 models.

Carlini Wagner Attack (CW)

Defensive distillation [171] is a popular defensive method, which robustifies neural networks

to counteract adversarial examples. However, Carlini and Wagner proposed a type of attacks

to make defensive distillation ineffective [172]. Among the various distance metrics used for

evaluating similarities, the Carlini Wagner attacks (CW) are designed with the L2, L∞, and L0

distance metrics. For the L2 attack, adversarial examples are generated with w, obtained by

solving

min

{∥∥∥∥
1

2
(tanh(w) + 1)− x

∥∥∥∥
2

2

+ c · f
(
1

2
(tanh(w) + 1)

)}
, (5.9)

where the loss function f(·) is defined as

f(xadv) = max{max {ζ(x′)i : i ̸= t} − ζ(xadv)t,−ψ}, (5.10)

where ζ(·)i is a logistic for class i, ψ controls the confidence with which the misclassification

occurs, and c is a hyper-parameter that tradeoffs between the magnitude of perturbation and

success rate of attack. For the L0 attack, considering that the L0 metric is non-differentiable,

the pixels in x that affect the classifier significantly are selected and attacked with the Carlini

and Wagner L2 (CWL2) attack in an iterative manner.

To create adversarial examples with the L∞ metric, the L2 term in (5.9) is replaced by a

penalty for any terms that exceed τ , i.e.,

min

{
c · f(x+ η) +

∑

i

[
(ηi − τ )+

]
}
. (5.11)
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where τ is decreased iteratively with an initial value of 1. Even though the CW attack has

been demonstrated to have defeated the defensive distillation method, the time cost in generat-

ing adversarial examples using this method is much larger than that of all the previous attack

methods.

Spatial Transformation Method (STM)

Unlike DeepFool and CW that construct adversarial examples by solving an optimization prob-

lem, the Spatial Transformation Method (STM) constructs adversarial examples with a natural

transformation of the original inputs [173]. The transformation parameters, i.e., (δu, δv, θ),

could be optimized by the grid search or the projected gradient descent method. The position

of a pixel (u, v) is updated as follows.



u′

v′


 =



cos θ − sin θ

sin θ cos θ


 ·



u

v


+



δu

δv


 . (5.12)

According to [173], STM can successfully defeat the CNN that was trained against an L∞-

bounded adversary.

5.3.5 White-box and Black-box Attacks

All the above attack methods are white-box attacks, which means that the adversary is capable

of acquiring the knowledge of the target model, or even the training dataset. This possibility

is usually slim in practice, especially for accessing the model and dataset related to personal

privacy or homeland security. To make adversarial attacks more feasible, the more challenging

black-box attacks have been investigated, where the attacker has no or limited knowledge of

the model. We will also leverage black-box attack methods to evaluate the threat of adversarial

attacks to the AdvLoc system.

A comparison of white-box and black-box attacks is shown in Fig. 5.4, where a substitute

model is utilized to mimic the black-box model with infinite queries. Since information of the

substitute model is open to the attacker, all of the attack methods designed for the white-box
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scenarios can be leveraged to fabricate adversarial examples in the black-box scenario. Due to

the transferability of the adversarial examples, the black-box model would also be misled by

the adversarial examples. However, this strategy is easy to be detected. Moreover, Papernot

et al. [174] noticed that it will be intractable for attackers to build a substitute model with a

limited number of queries. Thus, a Jacobian-based Dataset Augmentation technique (JAD) will

be used in our AdvLoc system, which ensures that the substitute model is able to approximate

the decision boundary of the black-box attack with a limited number of queries. Fig. 5.5 depicts

the procedure of JAD. First, a small dataset D0 is collected and labeled by the black-box model

O. The substitute model will be trained with the dataset (D0, Õ(D0)). Next, D0 is augmented

to generate a larger dateset D1 given by

D1 =
{
x+ β · sign(JF [Õ(x)]) : x ∈ D0

}
∪D0, (5.13)

where β is a parameter of augmentation, and JF is the Jacobian matrix of the substitute model

F . Thus, a growing augmented dataset will be generated iteratively and be leveraged to force

the substitute model to approximate the black-box model. In this chapter, we would utilize

JAD for all the previous attack methods to investigate the black-box attacks and defense for the

indoor localization systems.

5.3.6 Position of Adversarial Attack

Because of the nature of the wireless communication systems, the adversarial attack is always

launched in three targets, i.e., the receiving-side, the transmitting-side, and the channel-side.

For the indoor localization systems, such as the WiFi based localization system, the APs, that

are equipped in the indoor environment, play a role of transmitter. Since APs is an essential

part of existing communication systems that are secured by cybersecurity technologies, it is

challenging to inject perturbation through the transmitter (AP) side. On the other hand, the

adversarial attacks from the channel-side is feasible because of the openness of the wireless

channels. However, the channel effect has to be considered in the design of adversarial pertur-

bations. For the advLov, we assume that the adversarial perturbations are injected when CSI
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Figure 5.4: A comparison of white-box and black-box attack approaches.

Collecting

Substitute

Training Data

Selecting

Substitute

Architecture

Labeling

Substitute Dataset
Training

Substitue Model

Jacobian-based

Dateset 

Augmentation

 Black-box Model 

Figure 5.5: Training the substitute model.

tensor is generated, which is usually happens at the user side. Comparing with attacking trans-

mitters (APs), the receive-side (user side) attack is more feasible because it is more possible

for personal users to lack of sense in cybersecurity. Attackers could obtain the authority of

victims with common methods, like phishing and malware, to inject the adversarial perturba-

tions. Moreover, the channel effect is also eliminated when the perturbations are added in the

user-side.
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5.3.7 Adversarial Training

To make the AdvLoc system resilient to adversarial attacks, its localization model implements

adversarial training, which enhances the robustness of the neural network by training it with a

mixture of adversarial and clean examples. The basic idea of adversarial training is to augment

the original loss function with an adversarial term, so that it will be resistant to adversarial

examples. Goodfellow et al. [149] demonstrated that the adversarial loss function below

L̃(θ,x, y) = γ · L(θ,x, y) + (1− γ) · L(θ,x+ η, y) (5.14)

was effective to make the neural network immune to FGSM attacks, where η = ϵ·sign(▽xL(θ,x, y)).

In (5.14), γ is a hyper-parameter to adjust the relative importance of the loss terms of the orig-

inal and adversarial examples, which is set to 0.5 in our implementation of AdvLoc.

In the next section, we will leverage adversarial training to study the effect of defense for

indoor localization systems against adversarial attacks. The resulting localization model that

is adversarially trained will be called by the corresponding attack method used in adversarial

training. For example, if the localization model is trained with loss function (5.14) and the

disturbance η in (5.14) is generated using FGSM (or MIM and PGD), the resulting adversarially

trained model will be called FGSM-AT (or MIM-AT and PGD-AT, respectively).

5.4 Experimental Study

5.4.1 Experiment Configuration

To evaluate the performance of AdvLoc under adversarial attacks in the online stage, we deploy

the six types of adversarial attacks in both white-box and black-box scenarios. The AdvLoc

system is implemented with Intel 5300 NIC in the 5.58 GHz band. Two laptops are configured

as an access point and a mobile device, respectively. The distance between adjacent antennas

is adjusted to 2.68cm, which is a half of the wavelength. To inject adversarial attacks in the

online stage, CleverHans [175] is leveraged to generate adversarial perturbations for each new
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CSI tensor. Furthermore, both the localization model trained in the offline stage and the adver-

sarial example generation model used in the online stage are implemented with the TensorFlow

framework on a NVIDIA RTX 2080 GPU.

For the sake of diversity, we examine the AdvLoc system in two representative indoor

environments, i.e., a straight corridor and a computer laboratory.

• Straight Corridor: First, the AdvLoc system is deployed in a straight corridor in Broun

Hall in the Auburn University campus. This indoor testbed covers an area of 8× 24m2,

which includes the rooms on both sides of the corridor. As a typical indoor structure, the

straight corridor is simple. Since there is no obstacles that result in complex scattering

and reflection of WiFi signals, the Line-Of-Sight (LOS) path is the dominant component

in this environment. As is shown in Fig. 5.6, the red squares represent the training lo-

cations in the offline stage, while the green dots denote the testing location in the online

stage. The single access point is placed at the right end of the corridor in Fig. 5.6. The

distance between consecutive training locations is 1.8m.

• Computer Laboratory: Next, we assess the AdvLoc performance in a computer labo-

ratory, which is also located in Broun Hall. Compared with the corridor, the computer

laboratory is a cluttered environment. Most of the LOS paths of WiFi signals are blocked

by tables, chairs, and computer chassis. In this case, the access point is placed close to

the north center of the laboratory so that it could cover the entire area. Fig. 5.7 depicts

the selection of training positions (marked as red squares) and testing locations (marked

as green dots). The distance between adjacent training locations is also 1.8m.

To evaluate the system performance, we investigate the verification accuracy in the offline

stage (see Section 5.3.1). Because the training dataset and testing dataset are collected from

identical locations, verification accuracy is defined as

π =
Number of correct predictions
Total number of predictions

, (5.15)
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Figure 5.6: The layout of the corridor scenario.

Figure 5.7: The layout of the lab scenario.

which indicates the capability of the DCNN model in solving the multi-class classification

problem. In addition, we also evaluate the performance of the localization system by calculating

the location estimation error E , given by

E = ∥T̂ − T∥2, (5.16)

where T̂ is the estimated location given in (5.1) and T is the ground truth.

5.4.2 Verification Accuracy Under White-box Attacks

We first confirm the verification accuracy of AdvLoc under white-box attacks in both indoor

environments. For indoor localization systems, the training dataset and verification dataset are
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collected from identical positions. The verification accuracy gives us an unbiased assessment of

how well our model fits the training data. Fig. 5.8 depicts the verification accuracy of the origi-

nal localization model when not being attacked (called “Original Model”), and the verification

accuracy of the original model when attacked by adversarial examples generated using FGSM,

MIM, and PGD (called “Original Model (FGSM),” “Original Model (MIM),” and “Original

Model (PGD),” respectively) in the lab setting. It shows that all the three attack methods suc-

cessfully degrade the verification accuracy as ϵ is increased from 0.1 to 1. It is intuitive that

a larger magnitude of perturbation causes a larger decrease in verification accuracy. Fig. 5.8

shows that the effects of PGD and MIM on the original model are comparable to each other,

while FGSM is less effective than the two iterative methods.

Furthermore, adversarial training has been adopted in AdvLoc to combat adversarial at-

tacks. Since the the verification accuracy of adversarially trained localization models (i.e.,

FGSM-AT, MIM-AT, and PGD-AT) are very close when not being attacked, their average ver-

ification accuracy (called “Adversarial Trained Models” in Fig. 5.8) is very close to that of the

original model. Thus, it is safe to say that adversarial training does not degrade the performance

of the localization model when it is not attacked. With adversarial training, the verification ac-

curacy of each model is enhanced remarkably when under adversarial attacks. For FGSM-AT,

the attacked verification accuracy (the light blue line) remains above 0.74. When ϵ = 1, the

attacked verification accuracy of FGSM-AT reaches 0.8. Compared with the original model,

FGSM-AT achieves an improvement of 0.12 in verification accuracy when ϵ = 0.1, and an im-

provement of 0.44 when ϵ = 1. In addition, the FGSM-AT curve is more stable for the whole

range of ϵ, indicating that adversarial training is an effective defense against FGSM attacks.

Similarly to FGSM-AT, adversarial training also strengthens the robustness of the localization

model against MIM and PGD attacks, even though the extent of the enhancements are is not as

notable as that of FGSM-AT. Nevertheless, the average improvements in verification accuracy

achieved by MIM-AT and PGD-AT over the original model are still both greater than 0.25.

Fig. 5.9 illustrates the verification accuracy of the localization model in the corridor en-

vironment. As in Fig. 5.8, the localization model is attacked by three methods, FGSM, MIM,

and PGD. Since the corridor is a LOS dominant environment, the WiFi signals do not suffer
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Figure 5.8: Verification accuracy of the localization models in the lab environment.
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Figure 5.9: Verification accuracy of the localization models in the corridor environment.

from severe multipath effects. Therefore, the overall localization accuracy in the corridor is

higher than 0.6, which is better than the lab case. With the increment of ϵ, all three attack

methods contribute to degraded verification accuracy gradually, which is in accordance with

the results shown inFig. 5.8. In general, PGD and MIM are more effective than FGSM, even

though FGSM decreases the verification accuracy to 0.65 when ϵ = 1. Moreover, adversarial
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Figure 5.10: Verification accuracy of the localization models attacked by CWL2, Deepfool,
and STM.

training is again an effective defense strategy for FGSM. For the adversarial examples gener-

ated by FGSM, the verification accuracy of FGSM-AT reaches 0.88 when ϵ is increased to 1.

Both MIM-AT and PGD-AT also provide effective defense against the corresponding attacks,

even though the extents of gains are not comparable to that of FGSM-AT.

To better evaluate the threat of adversarial attacks to indoor localization systems, three

additional attack methods, STM, DeepFool, and CWL2, are also leveraged in the experiments.

As shown in Fig. 5.10, the verification accuracy drops severely under these attacks. In the

corridor case, all the three attacks reduce the verification accuracy to 0.13 or even worse. Sim-

ilarly, the verification accuracy decreases from 0.9 to lower than 0.065 by all the attacks in the

lab case. Thus, the optimization-based and the spatial transformation based attack methods are

also harmful to indoor localization system. In addition, according to [176], the localization

model does not acquire transferability from the adversarial training, which means the model is

still vulnerable to other types of adversarial attacks even if it is trained adversarially. Thus, fur-

ther investigation is needed on adversarial training to take various types of attacks into account

rather than a specific attack method.
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Figure 5.11: Verification accuracy of the DCNN localization models in the lab environment.
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Figure 5.12: Verification accuracy of the DCNN localization models in the corridor environ-
ment.

Besides of ResNet model, we also examine the effect of adversarial attacks and adversarial

training to the localization systems based on the vanilla DCNN. The network used for compar-

ison is composed of three convolutional layers. The kernel size for each layer is 8x8, 6x6 and

5x5, respectively. 16 feature maps are generated in each convolutional layer. ReLu is leveraged
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as the activation function following the convolutional layers. Similar with the ResNet model,

the cross-entropy loss is calculated for weight update. Fig. 5.11 and Fig. 5.12 describe the

verification accuracy of the DCNN based localization model under white-box attacks in the lab

and corridor environment. As is shown in Fig. 5.11, all attack methods successfully mislead

the verification accuracy in the lab environment. When ϵ arrives 0.4, all verification accuracy is

reduced to lower than 0.1. Because of the simpler structure of DCNN, it shows the sensitivity

to the adversarial attacks. With adversarial training, the performance of all models is recovered

in some extent. However, there is no clear performance difference among the models. The

verification accuracy in the corridor case is displayed in Fig. 5.12. Comparing with the lab

environment, the corridor case is LOS-dominant. Thus, verification accuracy of the original

model keeps at 1. However, the performance breaks down as the ϵ going up to 0.2. All three

attack methods reduce the verification accuracy to 0 with ϵ of 0.3. Adversarial training also

reveals the effectiveness in eliminating adversarial perturbations, even though the verification

accuracy is not recovered to 0.85. By examining the vanilla DCNN based localization sys-

tems, we notice that the robustness of systems is determined by the complexity and depth of

the network models. The shallow networks, such as the vanilla DCNN, are completely mislead

by the adversarial perturbations with a low ϵ, which hampers us to discuss the effect of the

magnitude of perturbation to the system performance. Furthermore, [108] and [109] exhibits

that the deeper DCNN has a better performance in the fingerprinting based indoor localization

tasks. Thus, we would investigate the effect of adversarial attacks to localization system with

the ResNet model.

5.4.3 Location Error Under White-box Attacks

Even though location estimation is treated as a multi-class classification problem in DCNN

based localization systems, a uniqueness challenge in such localization systems is that the

class of the online input to the trained model usually does not belong to an existing class in

the offline training dataset. For example, we labeled the CSI data collected from the position

between point-A and point-B with A in the testing dataset. The location prediction could be

correct only if the localization system produces the same label. However, the testing position is
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actually between point-A and point-B. Obviously, it is unfair to say that the location prediction

is wrong when the prediction from the system is B. To address this issue, the output of the

DCNN is usually used as similarity to calculate the estimated location using a Bayesian method

(see Section 5.3.1). Thus, the test accuracy in the online stage may not precisely evaluate the

performance of the localization system. In this chapter, the location error is also utilized to

measure the effect of adversarial attacks and adversarial training on the localization system.

First, we examine the performance of AdvLoc in the lab setting. Fig. 5.13 presents the

location errors of FGSM-AT when attacked by FGSM, and of the original model when attacked

by FGSM in verification and online testing. The blue dashed line is the online location error of

the original model using clean inputs in online testing, while the verification location error for

the same setup is denoted by a red dashed line. The errors are 2.28m and 0.47m, respectively.

It is obvious that the verification error rises with the increment of ϵ when the localization model

is under attack, which is consistent with the verification accuracy shown in Fig. 5.8. For the

online testing error, it also keeps going up along with the rise of ϵ. When ϵ = 0.1, the adversarial

examples increase the online testing error to 2.368m. The highest online testing error, 2.613m,

occurs when ϵ = 1. Furthermore, the performance of adversarial training is verified in Fig. 5.13

as well. Based on the FGSM-AT model, the upward trend of location errors in verification and

online testing disappears. The online testing error of FGSM-AT stays around the error of the

original model that leverages clean inputs. Even if ϵ = 1, the increment of location error is only

about 0.04m, which is negligible in a lab environment. For the verification error, FGSM-AT

guarantees that no verification error is higher than 0.81m when the model is under attack. It is

noteworthy that the verification error declines from 2.08m to 0.70m, when ϵ is fixed at 1, once

adversarial training is leveraged in the localization model.

For the corridor case, the location errors of FGSM-AT attacked by FGSM and the original

localization model attacked by FGSM are shown in Fig. 5.14. Compared with Fig. 5.13, the

upward trend of errors in the corridor case is not as obvious as that of in the lab case. For

the online testing error when the original localization model is attacked by FGSM, the error

does not increase with ϵ, even though FGSM deteriorates the localization error from 1.36m to

1.52m on average. The verification location errors reveal a similar behavior. The maximum of
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Figure 5.13: Location error of the localization models when attacked by FGSM in the lab
environment.

the verification error increment is only 0.32m when the original localization model is attacked

by FGSM with ϵ = 0.6. Adversarial training is still an effective defense strategy against FGSM

in the corridor case. The green line in Fig. 5.14 represents the online testing errors when

FGSM-AT is attacked by FGSM. As we can see, the errors of FGSM-AT is obviously lower

than that of the original model attacked by FGSM. The average error of FGSM-AT is 1.36m,

which is closed to the average error of the original model with clean inputs, i.e., 1.3504m.

The effect of MIM and the corresponding adversarial training on location error is depicted

in Fig. 5.15 and Fig. 5.16, respectively. The verification error of the original model grows sig-

nificantly when attacked by MIM, which is consistent with the results presented in Fig. 5.8.

Furthermore, MIM causes much larger errors than FGSM. In Fig. 5.15, the verification loca-

tion error reaches 2.36mwhen attacked by adversarial examples generated by MIM with ϵ = 1,

which is much higher than that of FGSM. A similar phenomenon is observed in the corridor

case. The verification error reaches 0.62m when ϵ = 1, whereas the verification error is only

0.44m when ϵ = 1 with FGSM. MIM is thus a stronger attack method than FGSM. Addition-

ally, Fig. 5.15 shows that MIM-AT does not effectively eliminate the effect of MIM. However,

119



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L
o
ca

ti
o
n
 E

rr
o
r 

(m
)

Online Error of Original Model

Verification Error of Original Model

Online Error of Original Model (Attacked by FGSM)

Verification Error of Original Model (Attacked by FGSM)

Online Error of FGSM-AT Model (Attacked by FGSM)

Verification Error of FGSM-AT Model (Attacked by FGSM)

Figure 5.14: Location error of the localization model attacked by FGSM in the corridor envi-
ronment.
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Figure 5.15: Location error of the localization models attacked by MIM in the lab environment.

adversarial training successfully removes the rising trend of the online testing error in the cor-

ridor case with MIM-AT. According to Fig. 5.16, the MIM-AT model has a commensurable

performance as the unattacked original model.
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Figure 5.16: Location error of the localization models attacked by MIM in the corridor envi-
ronment.

Fig. 5.17 and Fig. 5.18 present the location errors of PGD related experiments. First, the

location errors in the lab case are given in Fig. 5.17. Similarly to MIM, PGD, as an iterative

attack method, degrades the verification precision remarkably. The location errors climb up

with the increase of ϵ when the localization model is attacked by PGD. Nevertheless, the online

testing error is not improved by adversarial training in the lab case, which similar to the MIM

related experiments. In the corridor case, adversarial training effectively enhances the online

testing precision and verification precision.

It can be seen from Figs. 5.14, 5.16, and 5.18 that adversarial training could always reduce

both online testing errors and verification errors in the corridor case. Moreover, the adversarial

attacks, such as FGSM, MIM, and PGD, could not degrade much the performance of the local-

ization model in the corridor environment. This is because the multipath effect is not as strong

in the corridor case, and it is relatively easier for the DCNN model to distinguish the WiFi

signals from different locations. Such “easy-to-distinguish” signals contribute to the robust-

ness of the model, especially when the size of the training dataset is not large. As a result, the

effectiveness of adversarial attacks is constrained in the corridor case, and adversarial training

is also more effective. In the lab case, the received WiFi signal is a superposition of the signals
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Figure 5.17: Location error of the localization models attacked by PGD in the lab environment.
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Figure 5.18: Location error of the localization models attacked by PGD in the corridor envi-
ronment.

from multiple paths. The localization model becomes more gullible in facing with such noisy

signals. Moreover, considering the fact that the class of the new CSI tensors in the online stage

usually does not belong to any class used in offline training, such noisy signals make adversar-

ial training struggle in the online testing. Hence, even though adversarial training achieves an
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Figure 5.19: Location error of the localization models attacked by CWL2, Deepfool, and STM
in the white-box scenario.

acceptable performance in defending FGSM attacks, it is not as effective for stronger attacks,

such as MIM and PGD, in the online stage.

We also examine the effect of optimization based and spatial transformation based attack

methods, including CWL2, DeepFool, and STM, and their location errors in the lab and corridor

environments are presented in Fig. 5.19. We find the optimization based attacks, i.e., CWL2

and DeepFool, cause higher location errors in verification and online testing. Compared with

FGSM, MIM, and PGD, DeepFool poses the strongest threat to localization systems in the lab

case. Moreover, both CWL2 and DeepFool increase the testing errors in the corridor case to

over 2m, which is much higher than that caused by the traditional one-step or iterative attacks.

5.4.4 Location Error Under Black-box Attacks

The white-box attacks rely on knowledge of the target DCNN model, which may not be avail-

able to adversaries in many cases. Therefore, black-box attacks would be more practical in

the real world. To investigate the threat of black-box attacks and evaluate the corresponding

defense strategies, we implement all the previously mentioned attack methods based on the

black-box attack approach.
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Figure 5.20: The effect of black-box attacks on the location error of the localization models in
the lab environment.

First, FGSM, MIM, and PGD are deployed with the black-box approach to examine the

their impacts in the lab case. As shown in Fig. 5.20, all the three attack methods exhibit out-

standing performance in increasing the verification location error. However, the online testing

errors are not affected by the attacks severely. The maximum increase in location error is only

about 0.25m under FGSM generated perturbation with ϵ = 1. Compared with the white-box

attacks, the degradation of online testing error is negligible in Fig. 5.20.

Fig. 5.21 describes the performance of the black-box attacks in the corridor case. Because

of the robustness of the localization model, the online testing errors are not influenced much

by the black-box attacks. For the verification error, the maximum increment is only about

0.3m, even though a slightly upward trend is observed in Fig. 5.21. Thus, it is safe to say

that our localization model for the corridor case is robust enough against black-box attacks. In

other words, the adversarial examples generated by the substitute model (i.e., ResNet-50) for

black-box attack fail to mislead the original DCNN model.

We also leverage the optimization based and spacial transformation based attack methods

to evaluate the system under black-box attacks. Comparing Fig. 5.19 with Fig. 5.22, we notice
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Figure 5.21: The effect of black-box attacks on the location error of the localization models in
the corridor environment.
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Figure 5.22: Location error of the localization models attacked by CWL2, DeepFool, and STM
in the black-box scenario.

that each result in Fig. 5.22 is lower than the corresponding result in Fig. 5.19. CWL2, Deep-

Fool, and STM could not achieve similar performance when used for black-box attack. The

difference in the knowledge between the black-box model (i.e., ResNet-18) and the substitute

model (i.e., ResNet-50) limits the performance of the attacks.
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5.5 Conclusions

In this chapter, we presented AdvLoc, an Adversarial Deep Learning for Indoor Localization

system using CSI Tensors, which is resilient against the typical first-order adversarial attacks.

With the proposed AdvLoc system, we analyzed the effect of six types common adversarial

attacks in both white-box attack and black-box attack scenarios. The extensive experimental

study exposed the threat of the adversarial attacks to indoor localization systems and validated

the superior performance of the proposed AdvLoc system in defending against first-order ad-

versarial attacks.
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Chapter 6

Summary and Future Work

6.1 Summary

During my Ph.D. program, I focused on developing practical methods to alleviate the intrinsic

problems related to fingerprinting-based indoor localization. The proposed systems focus not

just on WiFi, but also on RFID systems. To begin, DeepMap uses RSS to generate precise

indoor radio maps. The nonlinear properties are reproduced using DGP to create the radio

map with a limited number of signal fingerprints. With the DGP model, we studied the un-

certainty information to optimize the localization accuracy in MapLoc. MapLoc leverages

the bimodal inputs, WiFI RSS and magnetic field intensity, to build the fingerprint dataset.

The uncertainty information describes the reliability of signal measurements in the fingerprint.

Moreover, the sequence information related to the physical constraints of the indoor environ-

ment and the motion model is also leveraged in the network training of the MapLoc system.

In the MulTLoc system, phase information is leveraged to improve the localization accuracy

for achieving centimeter-level location estimation. The hologram tensors are used to replace

traditional fingerprints, such as AoA images, to advance the transferability of the system. With

the hologram tensors, the ambiguity between fingerprints is preserved. Thus, the classification

problem could be treated as a regression problem in the MulTLoc system. And the network

design is decoupled from the hardware configuration, which enhances the compatibility of the

MulTLoc system. Besides of previous systems, AdvLoc is proposed to study the threat of

adversarial attacks to the fingerprinting based indoor localization systems using deep neural

networks. Six types of popular adversarial attacks are implemented in the system using both
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white-box and black-box methods. The experimental results show that adversarial attacks pose

a threat to deep learning-based indoor localization systems. In addition, adversarial training is

used in the system to increase the robustness of the localization system.

6.2 Future Work

Even though some preliminary attempts are conducted in this dissertation to alleviate the intrin-

sic issues related to fingerprint methods, many interesting problems are still open in the field of

indoor localization.

6.2.1 Dynamic Environment

The dynamic environment is always a challenge for the fingerprinting-based indoor localization

system. Both RSS and phase information are vulnerable to temporal and spatial variance. To

guarantee the system accuracy, an effective method of fingerprint update has to be investigated

to enhance the robustness of the localization system. On the other hand, the dynamic envi-

ronment also represents the indoor scenarios including multiple moving objects. The moving

objects would generate unpredictable multipath, which hampers the phase localization signif-

icantly. Performing additional research on self-supervised learning could be a viable method

for extracting static features from a signal acquired in a dynamic context.

6.2.2 Sensor Fusion and Multimodal Data

With the proliferation of IoT devices, it is typical for multiple types of sensors to be equipped

with the end devices. Therefore, sensor fusion would be a effective tools to bring together inputs

from multiple sensors, such as WiFi, RFID, FMCW radar, camera, microphone, IMU, and

magnetometers. Even though the associated multimodal data would provide some difficulties

for data processing, the opportunity to improve the accuracy and resilience of wireless sensing

systems would be enticing.
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6.2.3 Dataset for indoor localization

In this dissertation, several deep neural networks are deployed to complete the classification and

regression tasks. However, all the networks were evaluated with a homebrew dataset. Although

some public WiFi or RFID datasets are available online, the scale of the dataset is usually

limited. As a result, the density of the fingerprints would be a constraint for the localization

accuracy. Moreover, the signal quality is another drawback for the current open dataset. Most

datasets only provide a signal sample at a specific time, which could not represent the temporal

and spatial variance of wireless signals. Thus, we hope to build a public indoor localization

dataset that covers a large area with dense fingerprints. The signal would include but not be

limited to WiFi, RFID, and FMCW radar. And the data would be collected in more than one

time slot. It would be an ideal benchmark for researchers to evaluate their related works.
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