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Cardiovascular disease (CVD) is the leading cause of death in the United States, 

and its prevalence is increasing in all populations and age groups worldwide (71).  In 

2002 alone, more than 927,000 Americans died from heart disease-related conditions.  

Oxidative stress, or the generation of reactive oxygen species (ROS), is a contributing 

factor to the progression of many cardiovascular diseases.  One approach to combat the 

detrimental effects of oxidative stress in cardiac disease is to use the cell’s inherent 

ability to increase the expression of various stress-related proteins to eliminate the 

oxidative stress.  NF-E2 related factor 2 (Nrf2) is the transcriptional activator of the 

antioxidant response element (ARE) found in the promoter region of antioxidant and  

phase II detoxifying genes.  In this study, we examined the role of Nrf2 in protecting the 

H9c2 cardiac-like cell line against oxidative stress.  Nrf2 was induced using the known 

Nrf2 activator tert-butyl hydroquinone (tBHQ).  We measured heme oxygenase-1 (HO1) 
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and NAD(P)H:quinone oxidoreductase 1 (NQO1) gene and protein expression as markers 

of ARE-driven gene activation in response to tBHQ.  We also determined ROS 

generation using the fluorescent probe carboxy-H2DCFDA, and cell viability in response 

to the prooxidants tert-butyl hydroperoxide (tBHP) and H2O2 in the presence and absence 

of activated Nrf2.  To directly evaluate the roles of Nrf2 and its inhibitory protein Keap1, 

we utilized Nrf2 and Keap1 siRNAs to knockdown Nrf2 and Keap1 expression.  H9c2 

cells overexpressing Nrf2 tagged with either green fluorescent protein (GFP) were also 

generated to examine Nrf2 localization using fluorescent microscopy and gene expression 

of ARE-containing  genes.   

In H9c2 cells tBHQ activated Nrf2 resulting in the translocation of Nrf2 into the 

nucleus and increased the transcription and translation of the ARE-driven genes HO1 and 

NQO1.  The prooxidant, tBHP increased ROS generation and cell death in H9c2 cells and 

pretreatment with tBHQ abrogated both these effects.  Nrf2 knockdown experiments 

resulted in a blunted induction of tBHQ-induced HO1 and NQO1 expression and a loss in 

the protective effect of tBHQ on tBHP-induced ROS generation.  Cell death in response 

to tBHP and H2O2 was augmented in cells treated with Nrf2 siRNAs, but rescued by 

Keap1 knockdown.  H9c2 cells overexpressing Nrf2-GFP displayed fluorescence that 

was sequestered in the cytoplasm and translocated to the nucleus upon treatment with 

tBHQ. Along similar lines, HO1 and NQO1 gene expression remained at basal levels, 

despite Nrf2 overexpression and cytoplasmic localization.  HO1 and NQO1 gene 

expression was enhanced in Nrf2 overexpressing cells after tBHQ treatment.  From these 

studies, we conclude that Nrf2 protects the cardiac-like H9c2 cells from oxidative stress.   
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INTRODUCTION 

Cardiovascular disease is the number one killer in the United States.  Four to five 

million Americans currently have heart failure, and it is estimated that the number of 

heart failure patients will reach 10 million in 2007.  This number is expected to further 

skyrocket as the US population ages and risk factors such as obesity, smoking and 

sedentary lifestyle increase.  In 2002, more than 927,000 Americans died from heart 

disease-related conditions, such as heart attack, high blood pressure, stroke and heart 

failure.  Despite advances in cardiovascular medicine, congestive heart failure death rates 

are still on the rise (57, 106).  Attempts to improve cardiac function in the late phases of 

heart failure continue to be ineffective (1), and many believe the solution lies in 

prevention of underlying heart disease (138).  Increasing evidence suggests that the 

progression of many cardiovascular diseases including hypertension, atherosclerosis, 

congestive heart failure and diabetes-associated vascular complications are attributed to 

increases in cellular oxidative stress (94, 95, 112, 143).  Animal and human studies 

support a role for reactive oxygen species (ROS) in the onset and progression of 

cardiovascular disease  (153, 154) and, while it has been thought that antioxidant therapy 

delays the onset of heart failure (253, 285, 286), recent clinical trials have yielded mixed 

results (12, 155, 206, 254, 276). 

Oxidative stress is thought to be a contributing factor to the progression of 

complications of many cardiovascular diseases.  Oxidative stress is a general term used to
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 describe the steady state level of oxidative damage in a cell or tissue caused by reactive 

oxygen species (ROS).  ROS have been associated with the progression of cardiovascular 

disease, insulin resistance, β-cell dysfunction, impaired glucose tolerance and diabetes 

mellitus (13, 34-36, 77, 161, 240).  In fact, clinical studies confirm that the incidence of 

heart disease is much greater among diabetics and is the leading cause of death in this 

population (97).  An increasing body of literature supports the hypothesis that oxidative 

stress is a common pathogenic mechanism in these disease states and may explain why 

they often appear together or consecutively (13, 34-36, 77, 161, 240).   

Another approach to combat the deleterious effects of ROS generation in the 

progression of cardiovascular disease is to use the cell’s inherent ability to increase the 

expression of various stress-related proteins to eliminate the oxidative stress.  The 

induction of a cell’s endogenous defense mechanisms is, at least in part, due to the 

activation of the cis-acting regulatory element appropriately termed the antioxidant 

response element (ARE).  The ARE is located in the 5’ region of many genes involved in 

detoxifying the cell as well as maintaining the cellular redox potential.  The ARE is 

conserved between species and genes and is activated in response to a variety of drugs 

and antioxidants including heavy metals, flavoniods, heme complexes, phenolic 

antioxidants and xenobiotics (223).  The ARE was first discovered as an element that 

activated phase II detoxifiers and drug metabolizing enzymes and was distinguished from 

another cis-acting element, the xenobiotic response element (XRE), because it was not 

associated with a receptor mediated activation, but rather an intracellular event (257).   

In response to oxidative stress, a cluster of genes commonly known as 

antioxidants and phase II enzymes can be transcriptionally regulated through the 
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activation of the NF-E2 related factor 2 (Nrf2) transcription factor (209), a member of the 

Cap ‘N Collar (CNC) family of bZIP proteins (223). Nrf2 activation begins with 

oxidative stress, which either directly or through a signaling cascade leads to the 

activation of  Nrf2 causing it to dissociate from the inhibitor protein Kelch like-ECH-

associated protein 1 (Keap1) (120).  The disruption of the Keap1-Nrf2 complex is 

mediated by either the direct release of Keap1 from Nrf2 by reaction of the oxidant with 

cysteines on the Neh (binding) domain of the Keap1 molecule (133); or through the 

phosphorylation of Nrf2 by some unknown second messenger and phosphorylation 

cascade.  Various signaling cascades have been shown to promote the dissociation of 

Nrf2, including the MAPK kinase cascades of ERK, JNK and p38 (3, 56, 268, 304-306, 

315, 316); the PI3 kinase cascade (128, 130, 165, 175, 252) and the PKC cascade (53, 

103, 111, 163). 

Once Nrf2 is activated, it translocates to the nucleus and binds a small Maf 

protein forming a heterodimer that binds to the regulatory element appropriately termed 

the antioxidant response element (ARE) (113).  The Nrf2 protein recognizes the 

conserved core sequence TGACnnnGC on the ARE, (209).  Many genes are known to 

have an ARE element, including heme oxygenase-1 (HO1), NAD(P)H quinone 

oxidoreductase 1 (NQO1), glutathione reductase, glutathione peroxidase, glutathione S-

transferase, superoxide dismustase 2, and catalase.  These genes have been shown to be 

upregulated or have increased activity after oxidative stress in cardiac cells (28-30, 54, 

83, 108, 199, 260, 302, 303),  brain (125, 174-176, 264, 266), as well as in other tissues 

such as the lung (8, 47-49, 51, 187, 198, 232, 269, 291), liver (39), vascular endothelium 

(26) and heart (31, 217, 248).    
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Based on reports in the literature, Nrf2 appears to be a universal activator of 

antioxidant genes, however evidence directly linking Nrf2 activation to protection in 

cardiac cells against oxidative stress is lacking.  Therefore, we hypothesize that in the 

cardiac cell, oxidative preconditioning occurs through the Nrf2/ARE pathway and 

constitutive activation of this Nrf2 pathway will leave the cardiac cell in an oxidative 

stress-resistant state.  The specific aims of this study were to characterize the gene 

expression and translation of the ARE-containing genes HO1 and NQO1 in the H9c2 

cardiac-like cell line after oxidative stress and determine the effect of oxidative 

preconditioning on cell survival.  Furthermore, it was determined whether 1) activation of 

ARE-containing genes (HO1 and NQO1) in response to oxidative stress was mediated by 

NF-E2-related factor 2 (Nrf2); and 2) whether constitutively expressing ARE-containing 

genes by blocking transcription of Kelch-like-E2 associated protein (Keap1), the Nrf2 

inhibitory protein, would mimic the effect of oxidative stress preconditioning.   

These studies target an important issue relating alterations in cardiomyocyte redox 

potentials to the development of functional abnormalities in such diseases as diabetic 

cardiomyopathy and atherosclerosis.  An understanding of the pathways involved in 

oxidative stress on the heart is an important step in the development of strategies to 

reduce the incidence of heart disease and increase the overall life expectancy and quality 

of life for cardiovascular disease patients.  
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LITERATURE REVIEW 

 

The antioxidant response element (ARE) was first discovered in the 1970’s.  The 

ARE is a cis-acting regulatory element located in the 5’ region of many genes encoding 

detoxifying enzymes and antioxidants.  Transactivation by the transcription factor Nrf2 

results in increased gene expression of ARE-containing genes such as heme oxygenase 1 

(HO1), NADPH:quinone oxidoreductase 1 (NQO1), glutathione reductase, glutathione 

peroxidase, glutathione S-transferase, superoxide dismustase 2, and catalase.  Activation 

of the ARE by Nrf2 has recently been implicated as a protective mechanism in 

cardiovascular disease and has been shown to protect against oxidative stress in the brain 

after stroke and in neurological disorders such as Alzheimer’s and Parkinson’s disease.  

Due to its apparent role in protection against oxidative stressors in various organs, Nrf2 

has earned the title of the multi-organ protector (166). 

 

I.  DISCOVERY OF THE ANTIOXIDANT RESPONSE ELEMENT  

Phase I and II enzymes were originally thought to be induced by the well-

characterized ayrl-hydrocarbon receptor (AhR) mechanism.  The AhR activates enzyme 

transcription with the direct binding of a xenobiotic to the ayrl-hydrocarbon receptor 

(AhR).  The active AhR dimerizes with the AhR-nuclear translocator protein, then 

translocates into the nucleus, and binds to the xenobiotic response element (XRE), a 
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DNA enhancer sequence.  Xenobiotics can activate phase I or phase II enzyme 

transcription separately or simultaneously, depending on their chemical properties (87, 

88, 156, 195, 230).  Phenolic antioxidants, for example, are capable of selectively 

activating phase II enzymes,  whereas β-naphthoflavone is capable of activating both 

phase I and II enzymes (59, 127, 257).  The AhR was thought to be responsible for the  

activation of both phase I and II enzymes, despite the ability of different compounds to 

selectively activate phase I and II enzyme transcription. 

In 1985, a separate mechanism was proposed to be responsible for phase II 

enzyme induction based on the observation that azo dyes induce phase I and II enzymes 

differentially.  It was suggested that phase I enzymes were induced by the previously-

accepted AhR mechanism whereas phase II enzyme induction was thought to involve 

cytochrome P-450 (CP450).  It was further suggested that metabolism of azo dyes by CP450 

resulted in the generation of reactive species that were responsible for phase II enzyme 

activation (246).  Similar observations were reported in other laboratories supporting a 

role for CP450 in mediating phase II enzyme activation.  In one study, the administration 

of benzo[a]pyrene in cultured embryonic hamster cells resulted in the production of  

several redox-sensitive and toxic quinones.  These compounds initially activated phase I 

enzymes, and only after an increase in CP450 activity did the levels of the phase II 

enzymes increase (156, 193, 230).   As further support of CP450-mediated phase II 

activation, the administration of SKF 525, a CP450 inhibitor, prevented the activation of 

phase II enzymes (107).  Interestingly, a study by Denison found that the CP450 gene, CYP 

1A1, contains an XRE (60), suggesting that xenobiotics are able to increase their own 

metabolism by CP450 activating phase II enzymes.  These data suggest that CP450 could be 
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involved in  phase II enzyme induction by a different mechanism from that of phase I 

enzymes. 

To determine whether the selective activation of phase II enzymes worked though 

the AhR pathway, cell lines expressing AhRs with low affinities for xenobiotics were 

generated.  In these cells, β-naphthoflavone, a compound that activates both phase I and 

II enzymes, exhibited impaired phase II activation.  However, the phenolic antioxidant 

tert-butyl hydroquinone was able to activate expression of phase II enzymes.  These data 

suggested that phase II activation by phenolic antioxidants utilized a pathway separate 

from the AhR (257).  Therefore, compounds that could induce both phase I and II 

enzymes through an AhR-dependent mechanism were termed bifunctional inducers, 

while those that regulate the expression of only phase II enzymes in a AhR-independent 

mechanism were termed monofunctional inducers (247).   

In 1990, a novel cis-acting regulatory element was discovered in the 5’-flanking 

region of the glutathione S-Transferase Ya subunit that was responsive to the bifunctional 

inducer β-naphthoflavone (β-NF).  To analyze the nature of this element, a reporter 

construct was generated containing the chloramphenicol acetyltransferase (CAT) gene 

fused with the cloned DNA element.  Treatment with β-NF resulted in increased 

transactivation suggesting that the responsive element was activated by planar aromatic 

compounds like β-NF.  Further analysis of the promoter element revealed distinct 

sequence differences from the xenobiotic response element (XRE).  The new element 

was termed the β-naphthoflavone-response (β-NF) element (255, 283).  The same 

element located in the promoter region of the rat glutathione S-transferase Ya A2 subunit 

gene was also identified by another group and was termed the electrophile response 
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element or EpRE (86).  The two elements were later reclassified following data showing 

that phenolic antioxidants, like tert-butyl hydroquinone, increased transactivation of the 

DNA element through a CP450 and the AhR independent pathway.  The cis-acting DNA 

was renamed the antioxidant response element (ARE) (257).   

 

II.  XENOBIOTICS THAT ACTIVATE THE ANTIOXIDANT RESPONSE 

ELEMENT 

A structurally diverse group of compounds has been shown to activate 

transcription of antioxidant response element (ARE)-containing genes, including 

phenolic antioxidants, synthetic antioxidants (256), 3-hydroxycoumarin (139), 

isothiocyanates (22, 279, 280), GSH depleting agents (136), phorbol esters (111), 

flavoniods (256, 257) and 1,2-dithiole-3-thiones (157, 158)  (table 1).  These ARE-driven 

gene activators can be further subdivided into the monofunctional and bifunctional 

inducers. The monofunctional inducers, which activate gene expression through a 

mechanism separate from the AhR, have similar chemical properties in that they all react 

with sulfhydryl groups.  The bifunctional inducers must be oxidatively metabolized by 

CP450 prior to obtaining ARE-activating properties (69).  For a complete list of ARE-

inducing compounds, please see appendix A. 



Table 1:  Compounds that induce ARE-mediated transcription 
Modified from Nguyen et al., 2003. 

Class Structure Compound 
 

Nature of compound 

 
Synthetic phenolic 
antioxidant 
  

 
Butylated 
hydroxyanisole 
(BHA) 
 

 
Food preservative; 
Antioxidant in 
dermatological creams 

 
Synthetic phenolic 
antioxidant 
 
  

tert-butyl 
hydroquinone 
 

Food preservative; 
Metabolite of BHA 

 
Synthetic 
antioxidant  

 

Ethoxyquin Pesticide/insecticide; 
Pet food preservative 

 
Synthetic 
antioxidant 

 

Pyrrolidin-
edithiocarbamate 
 

Blocks NF-κB and 
activates iNOS 

 
3-hydroxycoumarin 

 

Coumarin Chemopreventative 
agent in legumes 

 
Isothiocyanate 
  

Sulforaphane 
Oxidizes cysteines 
mimics oxidative 
stress 

Chemopreventative 
agent in cruciferous 
vegetable 

 
 
GSH depleting 
agent  

 
 
Diethyl maleate 
Oxidizes cysteines 
mimicking oxidative 
stress 

 
 
Synthetic compound 
inducing agent of drug 
metabolizing enzymes 

 
 
Phorbol Ester 

 

 
 
Phorbol 12-
myristate 
(PMA) 

 
Tumor promoting 
agent; 
PKC activator; 
Increases expression 
iNOS and COX-2 

 
Flavonoid 
 

 

 
β-naphthoflavone 
 
 

Synthetic compound 
used as a model 
inducer of drug-
metabolizing enzymes 

 
1,2-dithiole-3-thione  

 
 

 
Oltipraz 

Cancer preventive 
agent 
Antischistosomal drug 
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III. DISCOVERY OF Nrf2 

As previously mentioned, the antioxidant response element was discovered by two 

separate groups simultaneously (257, 283).  The EpRE and the β-naphthoflavone-

response element cis-acting DNA elements were changed to the antioxidant response 

element (ARE) after it was reported to be responsive to phenolic antioxidants, namely 

tert-butyl hydroquinone (257).  In 1991 the consensus sequence of the ARE 5’-

TGACnnnGC-3’, was discovered through the use of  deletion mutants of the original 

ARE/CAT reporter construct.  In the same study, it was also reported that ARE/CAT 

transactivity was mediated directly through generation of reactive oxygen species (256).  

The ARE was later reported to be in the promoter regions of  the mouse glutathione S-

Bifunctional Inducers 

ARE XRE 

Monofunctional Inducers 

AhR 

cytochrome p450

REDOX sensitive 
protein activation 

AhR 

Nrf2 

Nrf2 

ROS 

Phase I enzymes 
Phase II enzymes 
(GSTA1, GSTA2, NQO1)   Maf 

Figure 1: Phase II enzyme induction distinct from the AhR pathway. 
The pathway states that bifunctional inducers activate the ARE through the generation of reactive 
oxygen species (ROS) from reactions with cytochrome p450.  These ROS then react with a redox 
sensitive protein, later discovered to be Nrf2, and its interaction with the ARE results in the 
activation of transcription phase II enzymes. Modified from Nguyen et al., 2003. 
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transferase Ya A1 subunit gene (86) and the rat and human NADPH:quinone 

oxidoreductase 1 genes (NQO1) (Figure 1) (78, 79, 184).  This supports the theory that 

increased transactivation of the ARE is responsible for phase II enzyme induction. 

The observation that reactive oxygen species resulted in the activation of this element 

gave rise to the hypothesis that a redox-sensitive transcription factor recognizes the DNA 

sequence of the ARE; furthermore, this protein-DNA interaction could be responsible for 

increased transcription of phase II enzymes (255). 

The NF-E2 related factor 2 (Nrf2) protein was discovered while looking for 

proteins closely related to erythroid transcription factor NF-E2, a dimeric protein 

involved in the regulation of the globin gene in hematopoietic cells (6, 209, 219).  

Utilizing the Activator Protein 1 (AP1)-NF-E2 sequence as a probe to screen a cDNA 

expression library, two DNA binding proteins were discovered.  One was identical to the 

recently discovered Nrf1 (NF-E2 related factor 1) and the second protein was named NF-

E2 related factor 2 (Nrf2).  Both Nrf1 and Nrf2 were also found to be ubiquitously 

expressed (38, 41).  After the Nrf2 protein was cloned, several studies analyzed its 

sequence and predicted that it would have an activation domain, a cap’N’collar region 

(CNC), a DNA binding domain and a leucine zipper domain (37, 201, 209, 210) (Figure 

2).  The structural elements of the Nrf2 protein are present in other transcription factors 

that recognize AP1-like elements as well; therefore Nrf2 was proposed to recognize an 

AP1-like element.   

 

 



 

 

Nrf2 

CNC  
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Figure 2.  The structure of Nrf2.  Nrf2 contains a hydrophilic N-terminus region followed by an acidic 
activation domain, a cap ‘n’ collar domain, a basic DNA binding domain and a leucine zipper.  Figure 
modified from Moi et al. 1994. 
 

The Nrf1 and Nrf2 proteins were identified in the context of studies aimed at 

identifying a redox-sensitive transcription factor that recognized the DNA sequence of 

the ARE.  Nrf1 and Nrf2 have very similar tissue distribution to that of the ARE-driven 

gene, NADPH:quinone oxidoreductase 1 (NQO1) (293), and the similarity of the ARE 

and Nrf1/Nrf2 binding motifs implicated them as possible regulators of the ARE.  To 

determine which protein was responsible for ARE-driven transcription, Venugopal et al. 

transfected HepG2 cells with Nrf1 or Nrf2 along with the ARE/CAT reporter construct.  

Cells transfected with Nrf1 and Nrf2, separately or combined, showed transactivation of 

the ARE/CAT reporter construct (293), implying both could be responsible for ARE-

mediated gene transcription.  Nrf1 and Nrf2 both recognized the ARE, increasing its 

transactivation and activating phase II enzyme transcription. 

 Both Nrf1 and Nrf2 were believed to be responsible for ARE-driven gene 

transcription until the Nrf2 knockout mouse was generated.  This development led to the 

identification of Nrf2 as the major activator of ARE-driven gene transcription (41).  Nrf2 

was also shown to control the transcriptional activation of human γ-glutamyl cysteine 

synthase heavy and light subunits (γ-GCSh&l)(297), mouse heme oxygenase 1 (HO1) (2), 

NH2 

Basic DNA 
Binding 

Leucine 
Zipper 

Acidic 
Transactivation Region Hydrophillic 

COOH
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and rat NQO1 and GSTA2 subunits (220).  Nrf2 was also shown to control both induced 

and basal levels of GSTA1 and NQO1 gene expression in Nrf2 knockout mice.  

Butylated hydroxyanisole (BHA), a phenolic antioxidant, was unable to stimulate ARE 

activity in the Nrf2 knockout mice (119), supporting the theory that phase II enzyme 

activation is dependent upon the Nrf2 protein.  Further experiments using Nrf2 knockout 

mice also showed decreased NQO1, GST and γ-GCS enzyme activities (42, 201).  For a 

complete list of Nrf2-regulated genes see appendix B.  Following the development of the 

Nrf2 knockout mouse, ARE transactivation and phase II enzyme induction was attributed 

to the Nrf2 transcription factor. 

  



IV.  NRF2 ACTIVATION 

Protection?? 

NQO1, HO1, GST, etc… 

Oxidative stress 

2nd messenger unknown? 

MAP Kinase 
  PI3 Kinase PKC 

Nrf2

Keap

Nrf2
Nuclear translocation 

ARE
Nrf2M

Proteosome 

E3 ligase 

Keap

Figure 3.  Nrf2 activation  The activation of Nrf2 can occur directly by oxidative stress or through a 
second messenger (MAPK, PI3 K or PKC) signaling the dissociation of Nrf2 (blue) from Keap1 (red).  
Upon separation, Nrf2 translocates into the nucleus and binds the ARE along with a co-transcription factor, 
thought to be small Maf protein (yellow).  Upon binding Nrf2-Maf results in increased transcription of 
ARE-containing genes.  Schematic is a modified version from Nguyen et al 2002 (223). 
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Transactivation of the antioxidant response element occurs when Nrf2 binds to 

the ARE.  Nrf2 mediated activation was shown by transactivation of the ARE-CAT 

reporter construct and by studies using the Nrf2 knockout mouse.   The proposed cascade 

for ARE activation (Figure 3) begins with a xenobiotic, which can activate Nrf2 directly 

through a redox reaction or indirectly through a signaling cascade (209).  Nrf2 is present 

in an inactive form bound to Keap1 in the cytoplasm.  Once activated, Nrf2 dissociates 

from Kelch like-ECH-associated protein 1 (Keap1) and translocates into the nucleus, 

where it binds to a co-transcription factor, the small Maf protein, forming a heterodimer.  

The Nrf2-Maf heterodimer recognizes and binds to  the ARE and initiates the 

transcription of phase II enzymes.   

Different signaling cascades have been reported to cause the dissociation of Nrf2, 

including the MAPK kinase cascades of ERK, JNK and p38 (3, 56, 268, 304-306, 315, 

316); the PI3 kinase cascade (128, 130, 165, 175, 252) and the PKC cascade (53, 103, 

111, 163).  Current research indicates that the signaling cascade involved in the activation 

of Nrf2 is both gene- and tissue-specific.    

 

MAPK SIGNALING PATHWAY  The mitogen-activated protein kinase (MAPK) 

signaling pathway was the first investigated in Nrf2 activation.  Extracellular signal 

regulated kinase 2 (ERK2) was shown to increase NQO1 transcription after tBHQ and 

sulforaphane treatment in mouse hepatoma cell lines.  Using a dominant negative mutant 

of ERK2, ARE induction was blocked.  These data suggest that ERK2 may be involved 

in signaling Nrf2 activation as well (305).   



 16

In contrast, the p38 MAPK pathway was shown to inactivate Nrf2.  Treatment 

with tBHQ or β-naphthoflavone activated the p38 MAPK pathway in mouse hepatoma 

cell lines, but resulted in decreased Nrf2 activation.  In addition, the p38 MAPK inhibitor 

SB 203580 and use of a dominant negative mutant of p38 resulted in Nrf2 activation and 

the increased transcription of NQO1.  Thus, the activation of the p38 pathway resulted in 

a down-regulation of both basal and inducible ARE transactivation (306).    The 

inhibitory role of p38 was later challenged when different findings resulted from 

treatment with the ARE inducer pyrrolidin-edithiocarbamate (PDTC) in human hepatoma 

cells.  PDTC was reported to activate transcription of γ-glutamylcysteine synthetase 

heavy and light subunits (γ-GCSh&l) through p38 and ERK in a synergistic manner.   

Complete inhibition of transcription of GCSh&l subunit genes was obtained only when 

both pathways were inhibited by the use of the pharmacological inhibitors DP 98059 and 

SB 202190.  In this study, p38 was implicated as an activator of ARE-driven 

transcription.  Thus, p38 MAPK has been implicated as both a negative and positive 

regulator of ARE-driven genes.  The different reports on the role of p38 can be explained 

in part by the use of different xenobiotics and different ARE-driven genes as an index of 

ARE transactivation.  Thus the role of p38 is likely to be tissue-, gene-, and inducer-

specific. 

c-Jun N-terminal kinase (JNK), has also been implicated in Nrf2 activation.  JNK 

was reported to activate Nrf2 after sodium arsenite and mercury chloride (304).  This 

activation had a positive effect on NQO1 transcription, suggesting that JNK activates 

Nrf2- and ARE-driven transcription (304).  These data support the JNK pathway as a 

possible mechanism in Nrf2 activation. 
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To date, the MAPK pathways have been reported to have both negative and 

positive effects on ARE transactivation.  These studies have utilized different xenobiotics 

to activate the three major MAPK pathways and have yielded different results.  Taken 

together, these studies show that the MAPK signaling pathway affects Nrf2 and ARE 

transactivation, but the role of p38 appears to be tissue-, gene-, and inducer-specific. 

 

PI3K SIGNALING PATHWAY  The phosphatidylinositol 3-kinase (PI3K) pathway 

has also been shown to be involved in Nrf2-ARE activation.  Studies in the IMR-32 

neuroblastoma cell line show that PI3K activates transactivation of a reporter construct 

containing the ARE from the NQO1 promoter.  Using the pharmacological inhibitor of 

PI3K, LY 294002, there was an observed decrease in the transactivation of the ARE.  In 

the same study it was also shown that ERK was not important for transactivation of the 

ARE.  The pharmacological ERK inhibitor, PD 98059, had no effect on ARE 

transactivation (165), suggesting that ERK does not play a role in activating Nrf2 in 

neuroblastoma cells.  Using microarray analysis, tBHQ was found to increase 

transcription of 63 genes in the IMR-32 cells.  Of those, the transcription of 43 was 

blocked by LY 294002.  The same group later showed that PI3K was involved in ARE-

driven gene expression in primary cortical cultures derived from human placental 

alkaline phosphatase (hPAP) ARE reporter mice.  Decreased hPAP activity was observed 

in cultures treated with LY 294002 (125, 152), supporting PI3K as an important second 

messenger in Nrf2 activation.  These studies implicate PI3K as an important signaling 

pathway of ARE transactivation in neuronal cell lines and primary cultures. 
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PKC SIGNALING PATHWAYS  In all of the studies elucidating the signaling pathway 

responsible for Nrf2 activation, PKC is the only second messenger shown to 

phosphorylate Nrf2 directly.  Nrf2 is directly activated through phosphorylation by PKC  

at Ser40 in the rat hepatoma cell line H4IIE (110, 111).  To first evaluate the role of the 

PKC pathway in Nrf2 signaling, Huang et al. made reporter constructs containing the 

ARE from both NQO1 and GSTA2 promoter regions were generated.  Decreased ARE 

transactivation was reported using broad spectrum PKC inhibitors (staurosporine and 

RO-32-0432) in response to tBHQ, TPA and β-naphthoflavone.  Phosphorylation of Nrf2 

was shown by radiolabeling experiments that indicated Nrf2 protein as being 

phosphorylated at Ser40 by PKC.  In addition, phosphorylation of Nrf2 by PKC resulted 

in Nrf2 translocation into the nucleus.  To confirm these results, Ser40 was mutated to an 

Ala and no detectable phosophorlyation was observed compared to wild-type. Keap1 

sequesters Nrf2 in the cytoplasm.  Therefore the disruption of the Nrf2/Keap1 complex 

by phosphorylation was tested.  Keap1 was labeled with 35S, co-immunoprecipitated 

(coIP) with Nrf2, followed by SDS page, and free Nrf2 was determined by 

autoradiography.  Thus, PKC phosphorylates Nrf2 at Ser40 and causes both disruption of 

the Nrf2-Keap1 complex and Nrf2 translocation into the nucleus (110, 111).  These 

experiments were the first to show a direct interaction by a signaling kinase and Nrf2, 

providing conclusive evidence that Nrf2 is activated by the second messenger PKC.   

The signaling pathways of MAPK, PI3K and PKC have all been shown to be 

involved in Nrf2 signaling.  It appears that MAPK signaling is important in hepatoma cell 

lines, whereas PI3K seems to regulate ARE-driven transcription in neuroblasoma cells 

and primary cortical astrocytes.  The only signaling molecule shown to phosphorylate 
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Nrf2 directly is PKC, providing conclusive evidence that PKC acts as a regulator of Nrf2 

activation.  It is also possible that all three pathways are involved in Nrf2 activation and 

that the second messenger is dependent upon 1) the xenobiotic, 2) the gene measured and 

3) the tissue or cell line used. 

 

NRF2 TRANSLOCATION  The import of Nrf2 into the nucleus is regulated by the 

nuclear localization signal (NLS), located in the C-terminus of the Nrf2 protein (122).  

Deletion of the NLS renders Nrf2 unable to enter the nucleus in response to the Nrf2 

activating compound tert-butyl hydroquinone (tBHQ) (122).  Once translocated into the 

nucleus, another mechanism prevents extended nuclear localization.  The Nrf2 protein 

contains a redox-insensitive nuclear export signal (NES) (122, 182), which regulates its 

export from the nucleus.  Deletion of the NES resulted in increased nuclear localization 

of Nrf2 after treatment with tBHQ (122).  Nuclear export of Nrf2 occurs by the 

phosphorylation of tyrosine568 on the Nrf2 molecule by the nuclear localized protein Fyn 

kinase, a member of the Src family.  Crm1, a nuclear factor vital in deciphering nuclear 

export signals and exporting proteins from the nucleus (84, 229, 275), then recognizes the 

phosphorylated Nrf2, binds it and facilitates Nrf2 exportation (123).    Together, the NLS 

and the NES tightly control nuclear localization of Nrf2. 

 

V.  DIFFERENTIAL REGULATION OF THE ARE 

The ARE is controlled by a number of factors that initiate or prevent ARE-driven 

transcription.  The major positive regulator of the ARE is the Nrf2 protein, however NF-

E2 related factor 1 (Nrf1) has also been shown to activate ARE-driven transcription.  
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Activating Transcription Factor 4 (ATF-4) and Nuclear Receptor-Associated Coactivator-

3 (RAC3) have also been reported to increase ARE transactivation indirectly.  Other 

proteins have been shown to negatively regulate the ARE including Keap1, Fos proteins, 

and Nrf3.  All of these factors have been shown to bind the ARE, blocking the 

transcription of ARE-containing genes.  The family of Maf proteins has also been shown 

to negatively and positively regulate the ARE depending on the dimer formed.  A dimer 

consisting of two Maf proteins negatively regulates the ARE, whereas a heterodimer of 

Maf with Nrf2 results in activation.  Maf, Fos and Jun all contain a DNA binding domain, 

but do not have a transactivation domain and, therefore, are unable to initiate 

transcription alone.  The observation that multiple proteins can differentially regulate 

ARE activation suggests that they may play a role in the observed differential expression 

of ARE-containing genes. 

 

SEQUENCE OF THE ARE  Differential regulation of ARE containing genes can also 

be explained by the differences in ARE sequences.  DNA footprinting and gel mobility 

shift assays have shown that the promoter regions differ between the rat GSTA2 and 

NQO1 genes, and these sequence differences are responsible for differential expression 

of GSTA2 and NQO1.  In this study, exogenous Nrf2 coupled to the MafK co-

transcription factor increased binding affinity for rat NQO1 when compared to GSTA2 

(220).  These data suggest that the gene-specific sequence of the ARE affects the binding 

of a specific Nrf2:Maf heterodimer. 
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SMALL MAF PROTEIN  Binding of Nrf2 to the ARE requires the formation of a Nrf2 

heterodimer with a co-transcription factor.  The structurally similar NF-E2 protein 

heterodimerizes with a small Maf protein (113); suggesting that Nrf2 could also 

dimerizes with a member of the Maf family (119).  The small Maf family consists of 

three known members: MafF, MafG and MafK.  Their structures consist of a DNA 

binding domain and a leucine zipper.  They lack a transactivation domain making them 

function strictly as co-transcription factors (214).  Within their DNA binding component, 

the small Maf proteins have a cap’N’collar (CNC) homology, facilitating the recognition 

of the AP1-like binding motif, as seen in the ARE (140).  Small Maf proteins localize in 

the nucleus, binding to various transcription factors including Bach (231), NF-E2 (21, 

113, 151, 197), AP1 (134) and Nrf2 (93, 197, 211, 220, 257, 297).   

The small Maf proteins have also been shown to bind Nrf2 and to aid in the 

transcription of ARE-driven genes, although the isotype involved appears to be gene- and 

tissue- specific (197, 220).  Studies have also shown a role for MafK (93, 211, 216, 220), 

MafG (211, 297) and MafF (211) in increased ARE transactivation.  Transcription of the 

small Maf proteins can be induced by pyrrolidinedithiocarbamate (PDTC) and 

phenylethyl isothiocyanate (PEITC), but not tBHQ, suggesting that increased 

transcription of the small Maf protein is not necessary for ARE-driven transcription 

(211).  The small Maf protein is vital for Nrf2 binding to its target (197, 220), because 

Nrf2 cannot form a homodimer to activate the ARE(209).  

The small Maf proteins appear to act as molecular switches with respect to ARE 

gene transcription.  In transfection studies using ARE/CAT fusion constructs generated 

from rat GSTA2 and NQO1 promoter regions, increased levels of MafK plasmid resulted 
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in decreased levels of transcription of Nrf2; and it appears that a concentration-dependent 

relationship between Nrf2 and MafK exists(65, 220).  On the other hand, Nrf2 co-

transfected at a 10-fold higher level than MafG resulted in an increase in transcription of 

γ-glutamylcysteine synthetase in both the heavy and light subunits.  When the levels of 

MafG were increased, transcriptional inhibition was observed (297).  The small Maf 

proteins have also been shown to form heterodimeric (134) and homodimeric 

transcriptional repressors (214) in response to increased ARE-driven transcription.   

In all, the small Maf proteins act as transcriptional activators when bound to Nrf2, 

as well as a transcriptional inhibitors when bound to itself or other proteins. It has also 

been suggested that the small Maf proteins can act as either heterodimeric partners with 

transcription factors or as homo- or heterodimeric transcriptional repressors, as they lack 

the transactivation domain but still recognize the DNA sequence of the ARE (214).   

 

OTHER PROTEINS  Nrf2 has been reported to interact with other proteins, changing 

the transactivity of Nrf2.  The cAMP Responsive Element Binding protein (CREB) binds 

to the Neh4 and Neh5 domains of Nrf2, increasing transcription of ARE-containing 

genes.  This increase in ARE-driven gene synthesis is thought to occur due to the 

attraction of DNA polymerase by CREB (135).  BTB and CNC homology 1 (Bach1) has 

been described as an negative regulator of Nrf2.  Bach1 has also been reported to form a 

heterodimer with small Maf proteins, competing with Nrf2 for the ARE binding site(63).  

Nuclear receptor-associated coactivator-3 (RAC3) has been shown to activate ARE-

driven transcription.  RAC3 increased transactivation of Nrf2 when co-transfected with 

Nrf2 (186).  Activating Transcription Factor 4 (ATF-4) has been reported to directly 
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increase HO1 transcription by dimerizing with Nrf2.  A dominant negative mutant of the 

ATF-4 gene decreased Nrf2 transactivation, suggesting that ATF-4 is a positive regulator 

of Nrf2 and the HO1 gene (102).  The Jun and Fos families of proteins have also been 

implicated as Nrf2 interacting proteins.   The Fos family of proteins has repeatedly been 

reported as a negative regulator of the ARE  (134, 140, 184, 191, 221, 293), whereas the 

Jun family of proteins has been shown to positively regulate the ARE (294).  The 

interaction of other proteins with Nrf2 and the ARE effect the expression of ARE-driven 

genes in a gene-specific manner.  These data suggest that other Nrf2 effector proteins 

differentially regulate ARE-driven genes and may be responsible for deciphering the 

intracellular signal as to which gene needs to be activated. 

 

NRF1   NF-E2 related factor 1 (Nrf1) was cloned in 1993 (37).  It activates the ARE 

through direct binding and, when overexpressed alone or in conjunction with Nrf2, 

results in increased transactivity of the ARE (293, 294).  Nrf1 is protective against 

oxidative stress in fibroblasts (160), lesioned hippocampus (104) and in liver cells against 

tert-butyl hydroperoxide-induced cell death (43). Unlike its family member Nrf2, Nrf1 

gene disruption results in anemia and embryonic lethality in mice, suggesting that it plays 

a large role in development (38).  Nrf1 has also been reported to crossover and interact 

with promoters other than the ARE.  Nrf1, along with FosB, c-Jun, JunD and ATF2, has 

been reported to interact with the AP1 site of tumor necrosis factor α (TNFα), 

stimulating its transcription (224, 245).  Nrf1 is negatively regulated through a different 

mechanism than that of Nrf2.  Nrf1 is targeted to the endoplasmic reticulum (ER) 

membrane by its N-terminus, and upon endoplasmic reticulum stress, Nrf1 nuclear 
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localization is increased (296).  These data suggest that while Nrf1 is able to modulate 

ARE-driven transcription, it may also play a role in ER stress.  

 

NRF3   Another member of the Nrf family, NF-E2 related factor 3 (Nrf3) was cloned in 

1999.  In this report, Nrf3 dimerization with MafK and binding of the heterodimer to the 

Maf recognition elements (MARE) within the β-globulin enhancer were observed (145).  

Nrf3 has been reported to negatively regulate the ARE when overexpressed in Hep-G2 

cells through the formation of a heterodimer with a small Maf protein, competing with 

Nrf2 for the ARE.  These results suggest that Nrf3 is a negative regulator of ARE-

mediated gene transcription (259).   A Nrf3 knockout mouse, generated in 2004, showed 

no apparent problems, even as a double mutant with the Nrf2 knockout.  Nrf3 was found 

to be predominantly expressed in the placenta, B cells and monocytes (61).  Upon closer 

analysis of Nrf3 in the placenta, it was determined that Nrf3 shows potent transactivation 

when forming a heterodimer with MafG on the NF-E2/Maf enhancer sequence.  Nrf3 was 

present in placental chronic villi from 12 weeks of gestation until term and, interestingly, 

Nrf3 transcription and translation was reported to be activated by TNF α (46).  These 

data suggest that Nrf3 also plays a role in placental development.  

A number of factors have been shown to influence ARE activation by Nrf2.  The 

observed interaction of various proteins on Nrf2 and the ARE may explain the 

differential regulation of ARE-driven genes.  Negative regulation is mediated not only by 

the Nrf2 inhibitory protein Keap1, but also by Nrf3 and the families of Maf and Fos 

proteins.  Positive regulators include Nrf1, ATF-4, RAC3 and the families of Maf and 

Jun proteins.  These studies suggest that differential regulation of ARE-driven synthesis 
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is due, at least in part, to the interactions of other regulatory proteins within the ARE 

system. 

 

VI.  DISCOVERY OF KEAP1 

In 1999, an inhibitory protein for Nrf2 was discovered (120).  It was reported that 

the Neh2 hydrophilic domain of Nrf2 was not involved in transactivation.  Upon deletion 

of the Neh2 domain and transfection of the mutant Nrf2 protein plus an ARE/LUC 

reporter construct, high levels of transactivation were discovered.  It was concluded that 

this portion of the protein was somehow involved in negative regulation.  In an effort to 

find an inhibitory protein, the Neh2 domain was used as bait in the yeast 2-hybrid system.  

Screening of 80 clones revealed that  the majority encoded a single novel protein.  Upon 

structural analysis of the novel protein, two  characterized interaction domains (the BTB 

domain (14) and a double glycine repeat (DGR) domain (4)) were found.  Bioinformatic 

database searches further revealed that the protein was very similar to the Drosophila 

cytoskeleton binding protein Kelch (298). The new protein was named Kelch-like 

associated protein-1 (Keap1) (120).   

Keap1 was found to be expressed in a variety of mouse cell lines, with its highest 

expression in fibroblasts.  Mutational analysis determined that the interaction between the 

Neh2 domain of Nrf2 and the DGR domain of Keap1 were responsible for Nrf2 

inhibition.  In the absence of the Neh2 domain of Nrf2, inhibition by Keap1 was lost.  It 

was also reported that administration of electrophilic agents, namely diethylmalate 

(DEM) and catechol, caused the dissociation of the Nrf2-Keap1 complex, suggesting the 

interaction between Nrf2 and Keap1 was redox-sensitive  (120).  Given that Keap1 is 
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closely related to the cytoskeleton binding protein Kelch, it was hypothesized that Keap1 

could also interact with the cytoskeleton, retaining Nrf2 in the cytoplasm.  In QT6 cells 

transfected with fluorescently-tagged Keap1-green fluorescent protein (GFP), expression 

of Keap1 was localized in the cytoplasm.  Cytoplasmic localization was confirmed in 

cells transfected with unlabelled Keap1 and fluorescently-labeled Neh2 domain of Nrf2 

(120).    Subsequently, it was shown that Keap1 binds to actin via the DGR domain, 

sequestering Nrf2 in the cytoplasm (131).  Similar results were reported by 

Dhakshinamoorthy et al. (64). These studies showed that the newly discovered Keap1 

protein is responsible for negative regulation of Nrf2 through binding of the DGR domain 

on Keap1 and the Neh domain on Nrf2.  In addition, Keap1 negative regulation of Nrf2 

was shown to occur by cytoplasmic retention through an interaction between Keap1 and 

actin filaments. 

 The cellular sensor within the Nrf2-Keap1 complex responsible for separation of 

Nrf2 from Keap1 was discovered in 2002 (68).  It was proposed that there must be a 

cellular sensor within the Nrf2-Keap1 complex, either by alkylation or oxidation, that 

induces the dissociation of Nrf2.  Nrf2 activation was shown in response to treatment 

with nine structurally-dissimilar classes of compounds, the only similarity being their 

ability to react with thiol groups.    Due to the fact that Keap1 is cysteine rich and Nrf2 

has relatively few cysteine residues, it was proposed that the thiol reaction occurs within 

the Keap1 protein.  Through competition binding studies and kinetic measurements of the 

thiol reaction on Keap1 with dipyridyl disulfides it was determined that there were four 

reactive cysteines.  Confirmation of these results with radiometric, UV spectroscopic and 

mass spectrophotometric techniques showed four especially reactive cysteines, including 
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Cys257, Cys273, Cys288 and Cys297 on Keap1 (68).  It was concluded that these cysteines 

were responsible for the dissociation of Nrf2 from Keap1 by a direct thiol reaction with 

the Nrf2 activating compounds.  Conversely, it was reported that modification of these 

cysteines by a variety of known ARE inducers was insufficient to disrupt the Nrf2/Keap1 

complex (72), although this study used lower concentrations of the ARE inducers.  

Overall, evidence supports the idea of reactive cysteines serving as redox sensors within 

the Keap1-Nrf2 complex which, upon reaction with an inducer, results in Nrf2 activation.  

This thiol reaction is dependent upon xenobiotic concentrations.   

 The first study to suggest that Nrf2 could be a substrate for proteosomal 

degradation reported that inhibition of the 26S subunit of the proteosome induced 

expression of the catalytic subunit of gamma-glutamylcysteine synthase, a Nrf2-regulated 

gene.  This report was followed by a series of studies further implicating the proteosomal 

pathway in Nrf2 degradation showing that Nrf2 is an extremely labile protein and is 

rapidly identified and degraded by the proteosomal system (277).  A month later it was 

reported that, upon activation, Nrf2 was stabilized and not degraded by the 26S 

proteosome (222).  However, Nrf2 activation by antioxidants or overexpression resulted 

in increased expression of proteosome 20, suggesting that Nrf2 might increase 

proteosome levels as a negative feedback mechanism (159).  It is thought that Nrf2 is 

constitutively ubiquitinated and degraded by the proteosome through the Nrf2:Keap1 

interaction, and that  Nrf2 is stabilized by oxidative stress through the antagonism of this 

interaction (202).  These results suggest that proteosomal degradation of Nrf2 is 

dependent upon Keap1.  The role of Keap1 as the regulator of Nrf2 translocation and 

degradation was later confirmed and found to be slowly degraded in the nucleus (121).  
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This interaction between the proteosome and Keap1 was reported to involve two cysteine 

residues on Keap1, Cys273 and Cys288.  It was also determined that these cysteines are 

required for Keap1-dependent ubiquitination of Nrf2 (308).  These studies outlined the 

proteosomal degradation of Nrf2 by the proteosome.  Proteosomal degradation of Nrf2 

requires interaction with Keap1.  Upon dissociation from Keap1, Nrf2 is stabilized and 

not targeted for degradation by the proteosome. 

 The role of cullin 3-ROC1 in mediating Nrf2 degradation was reported by two 

different groups the following year (67, 146).  Both studies reported that Keap1 functions 

as an adaptor protein for the cullin 3-ROC1 complex acting as an E3 ligase in the 

ubiquitin-dependent proteosomal system.  Ubiquitin conjugation requires the action of 

three enzymes: the ubiquitin-activating enzyme (E1), the ubiquitin conjugating enzyme 

(E2) and the ubiquitin ligase (E3).  The E3 ligases both recognize the substrate protein 

and catalyze the isopeptide bond between the substrate and the ubiquitin.  These studies 

showed that Keap1 interacts with the cullin 3-ROC1 E3 ligase facilitating the degradation 

of Nrf2 by ubiquitin-dependent proteosomal system (67, 146).  A study by Kobayashi et 

al. (147) showed that the cullin 3-Roc E3 ligase complex requires Cys273 and Cys288 on 

Keap1 in order to ubiquitinate and subsequently degrade Nrf2.  In the presence of an 

oxidant, Cys273 and Cys288 are oxidized and subsequently inactivate the cullin 3-ROC1 

E3 ligase complex resulting in the release and stabilization of Nrf2 (147).  This same 

group proposed a “fixed ends model” which suggests that a single Nrf2 protein is bound 

in two sites to two separate Keap1 monomers.  The double-binding of Nrf2 to Keap1 

facilitates an opening of the Neh domain of Nrf2 for the cullin-3-ROC1-E3 ligase 

complex to ubiquitinate Nrf2 and target it for degradation (Figure 5) (203, 287, 288).  
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These studies established the role of the proteosome in Nrf2 degradation, concluding that 

through two cysteines on the Keap1 molecule, the proteosome actively degrades Nrf2 and 

when the two cysteine residues are oxidized the proteosome is inactivated. 

 The Keap1 protein prevents Nrf2 activation by a direct binding to the Nrf2 protein 

and the actin skeleton.  This interaction was reported to occur by the binding of the DGR 

domain of the Keap1 molecule to the Neh domain of the Nrf2 protein.  The binding is 

redox sensitive, with four reactive cysteines on Keap1 that can react with known Nrf2 

activators, resulting in the dissociation of Nrf2.  Keap1 not only inactivates Nrf2, but also 

actively recruits Nrf2 for degradation by the proteosomal system.  Each Keap1 molecule 

binds two Nrf2 proteins and facilitates their degradation by the cullin 3-ROC1 E3 ligase, 

a member of the proteosome.  Taken together, These studies show that Keap1 is the 

major regulator of Nrf2 activation through direct binding action, as a redox sensor and 

recruitment of Nrf2 for proteosomal degradation. 

 

VIII.  Nrf2 as a multi-organ protector. 

 The Nrf2/ARE system has been shown to be protective in many tissues and 

disease states.  Nrf2-mediated protection is attributed to its unique ability to induce the 

transcription of phase II antioxidants and detoxifying proteins that neutralize reactive 

oxygen species and thereby balance the cells redox state.  Since the discovery of Nrf2, its 

protective effects have been demonstrated in the lung, brain, endothelium, epithelium, 

kidney, pancreas and cardiovascular system and it has been shown to protect against 

many forms of cancer.  The widespread reach of the protective effects of the Nrf2 protein 

has earned it the title of “the multi-organ protector” (166). 
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NRF2 IN THE LUNG  Nrf2 protection in the lung was at first attributed to the proteins 

controlled therein.  In 1996, a review article was published on the protective effects of the 

inducible protein heme oxygenase 1 (HO1).  The authors concluded that HO1 induction 

was caused by a wide array of chemically diverse compounds and protects against 

oxidant-mediated lung injury, thus maintaining cellular homeostasis (51).  The protective 

effects of ARE-containing genes, such as HO1, against oxidative stress was attributed to 

ARE-mediated transcription (58).  Nrf2 has been found to protect the lung against a host 

of pulmonary diseases, including pulmonary fibrosis (50), hydroxytouene-mediated 

pulmonary dysfunction (40), acute pulmonary injury (40, 198), asthma (180), hyperoxic 

lung injury (47, 234, 235) and emphysema (115, 117, 251).  Somatic mutations within the 

Keap1 molecule have been implicated in the pathogenesis of lung cancer (68, 232, 269).  

Deletion, insertion and missense mutations of Keap1 have been detected in cancer cell 

lines as well as in samples from patients with non-small cell lung cancer at frequencies of 

50% and 19%, respectively.  These mutations appear to be localized in the DGR domain 

of the Keap1 molecule, decreasing or abolishing the affinity of Keap1 for Nrf2 (232, 

269).  While Nrf2 protects the lung against many pathologies, increased free Nrf2 caused 

by non-functional Keap1 has been implicated in the development of non-small cell lung 

cancer.  Nrf2 in the lung has been extensively reviewed (48, 49, 291). 

 

NRF2 IN THE SKIN  A role for Nrf2 in skin biology was recently defined.  The skin is 

constantly bombarded with UV radiation, inducing the formation of reactive oxygen 

species (ROS).  Additionally, skin wounds attract inflammatory cells which release large 
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quantities of ROS.  The first report that Nrf2 was present in skin was its induction by 

keratinocyte growth factor, a compound released in response to injury (24).  Since then, a 

role for Nrf2 in wound healing has emerged.  Increased levels of Nrf2 have been found in 

wounded tissues (20, 237) while Nrf2 has been reported to be activated by 

lipopolysaccaride (LPS) (242, 258, 274, 284).  In addition, Nrf2 has been shown to be 

activated by the inflammatory molecule, 15-deoxy-delta (12,14)-prostaglandin J(2) 

(15dPGJ2), in epithelial cells (137).  Nrf2 induction in keratinocytes has also been 

reported using various inducers and insults.  First, treatment with Keap1 siRNAs results 

in an increase in ARE-containing gene expression (62).  ARE-driven gene induction has 

been reported in response to electrophiles, tBHQ, hyperoxia, H2O2, glucose oxidase (70), 

arsenic (238), and low to moderate doses of UV radiation (132, 238).  These studies, 

suggest that Nrf2 plays a large role in maintaining a redox balance in the skin through the 

regulation of wound healing and protection against daily attacks of reactive oxygen 

species on the skin (20).   

The role of Nrf2 in the skin is further revealed by the phenotype of the Keap1 

knockout mouse.  The Keap1 knockout is a lethal mutation and Keap1 knockout mice die 

in the first three weeks after birth from food obstruction and ulceration caused by 

hyperkeratosis in the esophagus and stomach.  Furthermore, the Keap1 knockout mouse 

also has hyperthickening of the epidermis.  Upon closer analysis, increased expression of 

keratin 1 and 6 in the keratinocytes was found (213, 295), suggesting that keratin genes in 

epithelia are hypersensitive to Nrf2.   

Nrf2 may also play a role in the prevention of skin cancer.  Nrf2 knockout mice 

exhibit skin papillomas in response to carcinogens at an earlier age and at a higher 
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quantity than that of wild-type.  Upon closer analysis of the Nrf2 knockout mouse 

papillomas, decreased levels of γ-GCS and NQO1 were observed.  Interestingly, ARE 

reporter mice treated with the same carcinogen showed no detectable increase in ARE 

induction.  This suggests that basal Nrf2-driven gene expression is responsible for the 

anti-tumorigenic properties of Nrf2 (10). 

 Nrf2 has been implicated as a regulator of the redox status of the wound and has 

been shown to be activated by electrophiles, tBHQ, hyperoxia, H2O2, glucose oxidase, 

arsenic and low to moderate doses of UV radiation.  Nrf2 appears to play a role in skin 

biology, as it responds to keratinocyte growth factor.  Excessive free Nrf2, as seen in the 

Keap1 knockout mouse, increases expression of keratins 1 and 6 and results in 

hyperkeratosis and hyperthickening of the epidermis.  Mice deficient in Nrf2 also have 

decreased expression of ARE-driven genes, causing increased skin papillomas.  In all, 

while Nrf2 is an important protective protein in skin biology, free Nrf2 levels must be 

regulated by Keap1 to prevent deleterious effects. 

 

NRF2 IN THE VASCULATURE  The significance of reactive oxygen species in the 

vasculature is very complicated in that they not only act as signaling molecules, but can 

also be harmful substances (282).  In the endothelium, shear stress stimulates ARE-driven 

gene transcription through the generation of reactive oxygen species (126), whereas the 

type of blood flow (laminar vs. oscillatory) can also affect Nrf2 activation (45, 109).  The 

activation of Nrf2 in response to shear stress in the endothelium is thought to be mediated 

by the activation of the inflammatory factors cyclooxygenase-2 (Cox-2) and 15-deoxy-

Delta-(12,14)-prostaglandin J12 (109).  Vasodilation is a mechanism to relieve shear 
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stress (76).  The vasodilator effect of dopamine in kidney endothelial cells is also 

mediated by Nrf2 (17).   

One of the major tools that the vascular system utilizes to combat atherosclerosis 

is nitric oxide (NO).  The actions of NO in the vascular system include vasodilation, 

interactions with proteins involved in prevention of platelet aggregation, inhibition of 

leukocyte adhesion, DNA synthesis, mitogenesis and proliferation of vascular smooth 

muscle cells.  NO has also been implicated in preventing thrombosis and plaque 

formation.  The role of NO in the vasculature has been extensively reviewed (85, 281, 

314)).  Activation of Nrf2 by NO has been documented in both endothelial and smooth 

muscle cells, suggesting a possible role for Nrf2 in NO signaling.  Nitric oxide (NO) has 

been reported to activate Nrf2 in endothelial cells, resulting in Nrf2 translocation and 

protection of the endothelial cell from oxidative injury and subarachnoid  hemorrhage 

(44, 90).  In smooth muscle, Nrf2 is also activated by NO and protects the cell from 

nitrosative stress (189).  Studies have shown that activation of antioxidant genes by Nrf2 

through NO (189, 217) and from the more harmful peroxynitrate ion (129, 178, 236) 

protects vascular smooth muscle against cell death.  The reports of Nrf2 activation by NO 

in both layers of the vasculature suggests that it might be acting as a signaling molecule 

between the cellular layers of blood vessels.  No evidence of a direct interaction between 

nitric oxide synthase (NOS) and Nrf2 has been reported.  Therefore, Nrf2 is likely a 

downstream target of NO.   

 Other ROS in the vasculature have been reported to activate Nrf2.  Nrf2 is both 

activated in response to, and is protective against H2O2 in both smooth muscle (25) and 

endothelium (58).  Oxidized lipids and lipoproteins have been shown to accumulate in 
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atherosclerotic lesions and contribute to the pathogenesis of atherosclerosis (18, 170, 

278) while oxidized low density lipoproteins (LDL) activate Nrf2.  These data implicate 

Nrf2 as a sensor of the redox state of oxidized lipoproteins (7, 172, 181).  The activation 

of Nrf2 by oxidized lipids has been hypothesized to occur through nitric oxide production 

(270), leaving room to speculate as to the role of Nrf2 in the pathogenesis of 

atherosclerosis.  Nrf2-mediated protection in the vasculature may be due to the unique 

ability of Nrf2 to act as a redox sensor in the vasculature.  Nrf2 activation in the 

vasculature has been reported in response reactive oxygen species such as oxidized 

lipoproteins, H2O2 and NO, but a correlation of Nrf2-mediated protection in the 

vasculature has not been made. 

 

NRF2 IN THE RETINA  The tubtub strain of mice are used as a model of adult onset 

obesity and is characterized by late-onset weight gain accompanied by progressive retinal 

and cochlear degeneration and tubtub mice (226, 227).  Treatment of these mice with 

sulforaphane, a Nrf2 activator, increases antioxidant enzyme transcription through Nrf2, 

delaying the characteristic phenotype of photoreceptor degeneration (150).  The role of 

Nrf2 in other aspects of the tubtub mouse phenotype has not been evaluated.  However, 

Nrf2 may prove to play a role as oxidative stress has been shown to exacerbate many of 

the complications of obesity (13, 34-36, 77, 161, 240). 

 

NRF2 IN THE KIDNEY  In the kidney, ischemia-reperfusion often results in renal 

failure (263).  Through microarray analysis after ischemia-reperfusion of the kidney, 

ARE-driven genes including glutathione S-transferases (GSTM5, GSTA2 and GSTP1), 
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and NAD(P)H quinone oxidoreductase (NQO1) were shown to be elevated.  Nrf2 was 

also shown to be upregulated and, upon closer analysis, reoxygenation-specific nuclear 

accumulation was observed.  These results suggest that Nrf2 might be involved in 

ischemic preconditioning through the activation of ARE-driven genes (171).  Nrf2 has 

also been shown to be protective in other conditions of renal stress.  α-lipoic acid, a 

known Nrf2 activator, has been implicated in protection against hypertension and 

nephrotoxicity after treatment with cyclosporine, a drug used after organ transplants 

(194).  These reports suggest Nrf2 is involved in renal protection against ischemia-

reperfusion and hypertension-induced nephrotoxicity through the activation of ARE-

driven genes.   

 

NRF2 IN THE LIVER   Primary hepatocytes and the HepG2 cell line are considered 

good models of intact liver (32, 148) and with these useful tools, Nrf2 activation has been 

implicated as a protective mechanism against many diseases of the liver. Treatment with 

antioxidants such as BHA and tBHQ, or oxidants like H2O2, results in increased phase II 

enzyme expression in both primary hepatocytes and the HepG2 cell line (5, 141).  Using 

the HepG2 hepatic cell model, Nrf2 was shown to mediate protection against oxidative 

stress from arachidonic acid-induced toxicity (92).  It has been also been  suggested that 

Nrf2 protects hepatocytes from the deleterious effects of alcohol.  Activation of 

cytochrome P450 2E1 (CYP2E1) and the ethanol-derived oxidative stress therein, is a 

well  characterized harmful byproduct of alcohol metabolism (185).  CYP2E1 activation 

was shown to be reduced by Nrf2 in human hepatocytes (91, 299).  These data cast Nrf2 

as a possible protective agent against cirrhosis of the liver.  In addition to protection 
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against alcohol, treatment with sulforaphane, a Nrf2 activator, results in increased 

clearance of arsenic in mouse hepatocytes (267).  In support of Nrf2 aiding in the 

clearance of toxic chemicals, the hepatocyte-specific deletion of Keap1 results in 

increased resistance in acute drug toxicity and increased expression of phase II enzymes 

(228).  In summary, activation of Nrf2 by oxidants or antioxidants protects the hepatocyte 

from oxidative stress that could occur by poisoning, drug overdose or alcoholism.  These 

data suggest that Nrf2 aids in the clearance of harmful chemicals by the liver and might 

have far-reaching implications for Nrf2 in the treatment of toxicity of the liver.   

 

NRF2 IN THE BRAIN  Research on the Nrf2/ARE pathway in the brain has been 

extensive and, for the most part, pioneered by Jeffery Johnson’s group at the University 

of Wisconsin (167, 168, 173, 175, 208, 264).  The ARE has been shown to be activated 

by tBHQ and phorbol -12-myristate-13-acetate in neurobastoma cells (167, 175, 208).  

Pretreatment of tBHQ protects these cells from H2O2 induced apoptosis (175).  Nrf2 has 

also been shown to protect primary neurons against mitochondrial complex inhibitors 

(168, 264) and human neural stem cells against H2O2-mediated cell death (173).  Nrf2 

activation by oxidants and antioxidants protects neuronal cell lines and primary cultures 

from oxidative stress. 

A role in astrocyte mediated protection of neurons has been extended to Nrf2.   

Nrf2 has been shown to protect astrocytes from H2O2 (164) and, through the Nrf2/ARE 

pathway, astrocytes have been shown to protect neurons from H2O2 and nonexcitotoxic 

glutamate toxicity (152).  Glia overexpressing Nrf2 have also been shown to protect 

neurons against glutamate toxicity associated with glutathione depletion (265).  These 
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reports suggest that Nrf2 is associated with the well-characterized protection of neurons 

by their neighbors (reviewed in (9, 15, 80, 144)).   

Nrf2 activation has also been reported to protect the brain against severe stresses 

including cerebral ischemia (266, 311) and oligemia (191).  Nrf2 may even have a role in 

protecting against Parkinson’s disease (PD).  Nrf2 knockout mice had increased 

susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; a model of PD) 

toxicity as compared to wild-type (27).  In addition, pretreatment of human 

neuroblastoma SH-SY5Y cells with apomorphine resulted in increased cell survival 

against 6-hydroxydopamine (6-OHDA) toxicity through the activation of Nrf2 and 

transcription of ARE-driven genes  (101).  Nrf2-mediated transcription of ARE-driven 

genes appear to protect against treatment with MPTP and 6-OHDA, mimicking many 

pathologies of Parkinson’s disease. 

Nrf2 protects various constituents of the brain, including neurons, astrocytes and 

glia against various oxidative stressors.  Nrf2 also protects the brain against cerebral 

ischemia, oligemia and may play a role in neuroprotection in Parkinson’s disease. 

 

NRF2 IN CANCER  The pathogenesis of cancer is often caused by exposure to 

chemical insults.  In response to these insults, the cellular defenses of antioxidant and 

detoxifying enzymes are coordinately activated by Nrf2 and aid in the clearance of these 

harmful substances.  The use of the Nrf2 knockout mouse has been very useful in the 

study of the Nrf2/ARE system in cancer.  Using the Nrf2 knockout mouse, 

chemotherapeutic agents have been shown to have decreased efficacy associated with 

decreased inducibility of antioxidant enzymes (116, 158, 250).  Oltipraz, a 
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chemotherapeutic agent and Nrf2 activator, protects wild-type mice from the carcinogen 

benzo[a]pyrene, although increased tumor formation was observed in Nrf2 knockout 

mice (249, 250).  Further, N-nitrosobutylamine caused increased lesion formation in the 

urinary tract and bladder of Nrf2 knockout mice compared to wild-type and treatment of 

wild type mice with oltipraz decreased lesion formation by 60-80% (114).  Additionally, 

exposure to the well known carcinogens polycyclic aromatic hydrocarbons (PAH), 

derived from diesel exhaust, results in increased antioxidant enzyme levels in wild-type 

mice (179).  The Nrf2 knockout mice, however, are more susceptible to DNA adduct 

formation in the lungs and increased inflammatory response in bronchial cells after 

treatment with PAHs (8).  The selected studies outlined show a role for Nrf2 in cancer 

prevention through the increased expression of ARE enzymes.  The role of the Nrf2/ARE 

pathway in cancer has been reviewed further (309). 

 

NRF2 IN THE HEART  While the role of Nrf2 in a cardiac setting has only recently 

been investigated, the protective nature of phase II antioxidants and detoxifying enzymes 

is well established (83, 108, 260, 303).  Antioxidant enzymes protect against oxidative 

stress in many disease states, including myocardial infarction (105), hyperglycemia, (81) 

hypertension (54) and ischemia-reperfusion in both normal (261) and diabetic states 

(188).  Furthermore, Nrf2 activators α-lipoic acid (30), resveratrol (29) and 1,2-dithiole-

3-thione (D3T) (28) activate transcription of antioxidant enzymes and protect the cardiac 

cell from oxidative stress.  Although the protective effects of Nrf2 inducers and the 

antioxidant enzymes controlled therein have been shown to protect against various 
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cardiac diseases, a direct link between Nrf2 and the cardiac cell was not made until 2005 

(313).   

 In 2005, Zhu et al (313) reported that Nrf2 protects Nrf2 knockout primary 

cardiac fibroblasts against reactive oxygen and reactive nitrogen species.  The Nrf2 

activator D3T was unable to protect Nrf2 knockout cardiac fibroblasts from oxidative and 

nitrosative stress as compared to wild-type.  Additionally, the Nrf2 knockout mice had 

decreased activity and protein levels of superoxide dismutase (SOD), catalase, 

glutathione reductase (GR), glutathione peroxidase (GPx), glutathione transferase (GST) 

and NADPH:quinone oxidoreductase 1 (NQO1).  In support of Nrf2-mediated protection 

in the cardiac fibroblast, xanthane oxidase and the NO-generating drug 3-

morpholinosydnonimine-N-ethylcarbamide (SIN-1) caused increased cell death in Nrf2 

knockout cardiac fibroblasts.  It was concluded that Nrf2 is involved in inducible and 

basal induction of antioxidant genes and Nrf2 is protective against reactive oxygen and 

nitrogen species (313).    

 In 2007, Purdom-Dickinson et al. isolated cardiac myocytes and fibroblasts and 

using microarray analysis, produced an extensive list of enzymes with altered expression 

after treatment with H2O2.  The list included antioxidant enzymes, metabolic enzymes, 

cytokines, endocrine factors, cell cycle regulatory proteins, cytoskeletal proteins, 

contractile proteins, and channel proteins (for a complete list see appendix B).  They 

reported that, in cardiac myocytes, the ARE is activated in a dose- and time-dependent 

manner in response to H2O2 using an ARE-luciferase reporter construct.  Cardiac 

myocytes exhibited ARE binding and increased cell survival in response to doxycycline 

when preconditioned with H2O2. The investigators next examined if the preconditioning 
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effect seen by H2O2 pretreatment was Nrf2 dependent.  They determined that transient 

transfection of cardiomyocytes with Nrf2 was unable to protect against treatment with 

doxycycline.  From this observation it was suggested that up-regulation of Nrf2 alone is 

not protective.  The authors concluded that activation of the Nrf2/ARE pathway is not 

responsible for the preconditioning effect seen by H2O2, and further hypothesized that the 

interaction of Nrf2 with other pathways was responsible for the observed preconditioning 

effect of H2O2 pretreatment. 

 The Nrf2 activators α-lipoic acid, resveratrol, and 1,2-dithiole-3-thione (D3T) are 

reported to protect the cardiac cell from oxidative stress.  Cardiac fibroblasts and 

myocytes derived from the Nrf2 knockout mouse have decreased ARE-driven enzyme 

levels and increased susceptibility to oxidative stress, suggesting that Nrf2 protects the 

cardiac cell from oxidative stress.  On the contrary, Nrf2 overexpression does not protect 

against doxycycline-induced cell death, like that of H2O2 pretreatment, suggesting that 

Nrf2 may not be involved in preconditioning the cardiac cell.  It has been hypothesized 

that Nrf2 protects the cardiac cell through crosstalk with other protective pathways like 

NF-κB.  It is unclear if the increased susceptibility to oxidative stress of Nrf2-deficient 

cardiac cells is due to direct actions of Nrf2 or a lack of crosstalk between Nrf2 and other 

pathways.  The focus of the present study was therefore to determine if the transcription 

factor Nrf2 protects the cardiac-like H9c2 cell against oxidative stress. 

In summary, Nrf2 activates phase II enzymes by recognition and direct binding to 

the ARE.  Nrf2 activation can be attained through a direct reaction with an inducer or 

through a second messenger.  MAPK, PI3K, and PKC have all been implicated in Nrf2 

activation.  Once activated, Nrf2 translocates into the nucleus where it binds to a co-
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transcription factor, thought to be a small Maf protein, forming a heterodimer.  The 

Nrf2:Maf heterodimer recognizes the ARE-initiating transcription of various antioxidants 

and detoxifying proteins.  Nrf2 activation of ARE-driven genes is inducer-, gene- and 

tissue-specific and the differential regulation of ARE-driven transcription is thought to be 

mediated by both the sequence of the ARE and the Nrf2 co-transcription factor.  Several 

negative regulators have been associated with the Nrf2/ARE system.  Several proteins 

have been shown to form hetero- and homodimeric complexes occupying the ARE and 

preventing ARE-mediated transcription.  The most important regulator of Nrf2, Keap1, 

binds directly to Nrf2, attaching it to the cytoskeleton and actively targeting it for 

proteosomal degradation (Figure 3).    Nrf2 is ubiquitously expressed and reported to be 

protective in many tissues, earning it the title of the multi-organ protector.  Protection by 

Nrf2 has been reported in tissues ranging from the skin and the lung, to the brain and the 

cardiovascular system.  Taken together, the studies summarized here suggest that Nrf2 is 

protective in many disease states; overexpression and excessive Nrf2 activity can, 

however, be deleterious, thus ARE-driven transcription is heavily regulated. 
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MATERIALS 

 

H9c2 Cell line: Rat cardiac-like H9c2 cells were obtained from the American 

Type Culture Collection (ATCC, Manassas, VA) and used as the cardiac model system. 

 Cell culture supplies:  Dulbecco’s Modified Eagle’s Medium (DMEM), fetal 

bovine serum (FBS), penicillin/streptomycin/amphotericin B reagent, Hanks Balanced 

Salt Solution with and without calcium and magnesium (HBSS), trypsin, and phosphate 

buffered saline (PBS) were purchased from Invitrogen Co. (Calsbad, CA).  Culture dishes 

including T-75, T-25, 10 cm, 6 cm, 12 well, 6 well, 96 well, as well as cryotubes were 

purchased from B.D. Falcon  Co. (Franklin Lakes, NJ).  Conical Tubes (15 and 50ml) 

were purchased from Corning, Inc. (Corning, NY). 

 Nucleic acid and siRNA supplies:  TRIzol, blue juice gel loading buffer, siRNAs 

for Nrf2, Keap1 and their corresponding nonsense control siRNA, lipofectamine and 

OptiMEM media were purchased from Invitrogen.  RNeasy mini kit was purchased from 

Qiagen, Inc. (Valencia, CA).  Taq polymerase and its corresponding 10X buffer were 

obtained from Eppendorf, Inc. (Westbury, NY).  The IQ supermix for real time PCR, 

iScript first strand synthesis kit, and the 96-well optical plates and sealing tape were 

purchased from Bio-Rad Laboratories (Hercules, CA).  Agarose, NorthernMax 

denaturing gel buffer, MOPS gel running buffer, formaldehyde sample loading dye, 

RNase and DNase-free water and DEPC-water were purchased from Ambion, Inc. 
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(Austin, TX).  The all-purpose molecular weight ladder was purchased from Bionexus 

Inc. (Oakland, CA).  Tris-Acetate-EDTA (TAE) buffer, Tris-EDTA (TE) buffer, 

chloroform were purchased from Fisher Scientific (Pittsburg, PA).  Thin-walled PCR 

tubes, 1.5 ml, and 2 ml tubes were purchased from LabScientific (Livingston, NJ).  

 Western Blotting Supplies:  DC protein assay kit, Laemmli buffer, Tris-glycine-

SDS buffer, β-mercaptoethanol, pre-stained SDS-PAGE broad range molecular weight 

marker and 12% SDS-PAGE ready-gels came from Bio-Rad laboratories (Hercules, CA).  

ECL plus western blotting detection kit and nitrocellulose membranes were purchased 

from Amersham Biosciences (Buckinghamshire, England).  Methanol was purchased  

from Fisher Scientific.  Nonfat dry milk came from Nestle (Glendale, Ca).  Rabbit anti-

goat Nuclear factor E2 like 2 (Nrf2) primary antibody, rabbit IgG anti-heme oxygenase 1 

(HO1) primary antibody and goat anti-rabbit HRP-conjugated secondary antibody were 

purchased from Stressgen (Victoria, Canada).  Keap1 primary antibody, goat IgG anti–

NADPH:quinone oxidoreductase 1 (NQO1) primary antibody and rabbit anti-goat HRP-

conjugated secondary antibody were obtained from Santa Cruz Biotechnology (Santa 

Cruz, CA). 

 CyQUANT Cell Proliferation Kit and the Image-iT live green ROS detection kit 

were purchased from Molecular Probes/Invitrogen. 

 All other chemicals not mentioned were purchased from Sigma-Aldrich-Fluka (St. 

Louis, MO).  
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METHODS 

 

1 – Effect of tBHQ on HO1 and NQO1 gene expression of in the H9c2 cell line.   

1.1 – Cell Culture: 

All cell culture techniques were performed under a sterile level 2 biosafety 

cabinet.  The H9c2 cells were thawed rapidly in a 37°C water bath until 1/8th of the total 

volume remained frozen.  Cells were then triturated gently into a 5 ml pipette containing 

low glucose (5.5 mM) DMEM supplemented with 10% fetal bovine serum, 100 mg/ml 

streptomycin, 100 U/ml penicillin F and 0.25 mg/ml amphotericin B (DMEM growth 

media).  This cell mixture was then transferred to a 15 ml conical tube, brought up to a 

total volume of 10 ml in DMEM growth medium, and centrifuged for 5 minutes at 500 x 

g at room temperature.  The supernatant was aspirated and the cell pellet was 

resuspended in DMEM growth medium.  Cells were plated into a T75 flask and grown at 

37°C in a cell culture incubator under 95% air and 5% CO2.  Medium was changed after 

24 hours. 

 After cell culture was established, medium was changed every three days and 

cells were passaged once per week at 90% confluence.  For passage, cells were washed 

once with Hank’s balanced salt solution (HBSS) without calcium and magnesium and 

trypsinized (0.05% trypsin w/v) for 5 minutes at 37°C.  Cells were then gently rocked to 

remove any incompletely dislodged cells and 8 ml of DMEM growth medium was 



added to the cells.  Cells were then transferred to a 15 ml conical tube and centrifuged at 

500 x g for 5 minutes at room temperature.  Supernatant was removed and cells were 

resuspended in 10 ml of media and counted by trypan blue exclusion using a 

hemocytometer.  Cells were plated at a density of 2.5 x 105 cells/ 75 cm2. 

The H9c2 cell line was derived from the left ventricles of neonatal rat hearts and 

can differentiate into either cardiac or skeletal muscle, depending on culture conditions 

(142, 205, 233).  To ensure that our cells displayed the  cardiac-like phenotype, 

mononucleation was verified by both 4',6-diamidino-2-phenylindole (DAPI) staining and 

hematoxylin-and-eosin (H&E) staining techniques.  

b) a) 
Nuclei 

Nuclei 

Figure 4:  H9c2 mono-nucleation verified by a) hematoxylin-and-eosin (H & E) stain (40x magnification) 
and b) 4',6-diamidino-2-phenylindole (DAPI) staining (20X magnification). 
 

1.2 –  ARE-driven gene expression. To determine the expression of Antioxidant 

Response Element (ARE) containing genes, tert-butyl hydroquinone was used to drive 

ARE gene expression.  As discussed in the literature review, tBHQ is a phenolic 

antioxidant and well known activator of Nrf2 (activators summarized in table 1, page 9 
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and appendix A, page108 (223)).  The optimum concentration of tBHQ was determined 

to be 10 μM, with the greatest increase of HO1 and NQO1 gene expression at the lowest 

concentration of tBHQ.  H9c2 cells were plated at a density of 5.0 x 105 cells per 10 cm 

dish and grown to 80% confluence.  Cells were treated with tBHQ (10 μM) or its vehicle 

(1:20,000 dilution of DMSO) for 0, 4, 8, 12, 24, 36, 48 and 72 hours at 37°C in the cell 

culture incubator.  At each time point, the medium was aspirated and 1 ml of TRIzol was 

added to each plate.  Plates were mixed on a Belly Dancer (Stovall, Greensboro, NC) for 

5 minutes, scraped into pre-labeled 1.5 ml tubes and stored at -80°C until use (see next 

section for details).  This experiment was repeated in three independent experiments. 

 

1.3 – RNA isolation from H9c2 cells: 

1.3.1 Phase Separation:  The tBHQ or vehicle treated H9c2 cell samples in TRIzol 

were removed from the -80°C freezer and allowed to equilibrate to room temperature.   

Once equilibrated, 200 μl of chloroform were added to each sample and samples were 

shaken vigorously for 15 seconds.  The samples were allowed to sit at room temperature 

for three minutes, and centrifuged at 14,000 x g for 15 minutes at 4°C.  Following 

centrifugation, the samples were separated into 3 distinct layers.  The lower fraction is the 

organic phase and is red in color, the middle fraction, or interphase, is a white fluffy layer 

containing DNA, and the top clear aqueous phase contains the RNA.  The top phase was 

carefully collected from the side, so as not to disturb the other phases.  The extracted 

aqueous phase should be clear with no white fraction.  The aqueous phase was transferred 

to a new, clean, pre-labeled 1.5 ml tube. 
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1.3.2 – Isolation of Total RNA Using the RNeasy Mini Kit:  The aqueous phase 

obtained from the phase separation was combined with 350 μl of 70% EtOH (v/v), 

vortexed, transferred into a spin column and placed into a 2 ml collection tube.  Samples 

were centrifuged at 10,000 x g for 30 seconds at room temperature and flow through was 

discarded.  Samples were washed with 700 μl of RW1 buffer, centrifuged at 10,000 x g 

for 30 seconds and the flow through was discarded.  To prevent contamination, the spin 

column was transferred to a new clean 2 ml collection tube, washed twice with 500 μl of 

RPE buffer and centrifuged at 10,000 x g for 30 seconds at room temperature.  The  

collection tube was discarded and replaced with a new pre-labeled 1.5 ml tube.  RNA was 

eluted by pipetting 50 μl of RNase- and DNase- free water directly onto the membrane of 

the silica gel column and incubating at room temperature for 5 minutes.  The tube was 

centrifuged at 10,000 x g for 2 minutes and RNA in the flow through was either stored at 

-80°C or directly used in the next step. 

1.3.3 – RNA Purity and Concentration Analysis:  Sample RNA was analyzed 

spectrophotometrically for concentration and purity.  The optical density of RNA samples 

was determined by UV spectroscopy using a SmartSpec plus spectrophotometer  (Bio-

Rad ).  Sample RNA was diluted 1:100 in TE buffer (10 mM Tris-HCl, pH 7.5, 1 mM 

EDTA), transferred into a clean cuvette and analyzed spectrophotometrically using TE 

buffer as a blank.  An absorbance at 260 nm of 1 is equivalent to 40 μg/ml total RNA.  

Sample RNA concentrations ranged from 0.1  to 1.0 μg/μl.  Purity was also assessed by 

the ratio of absorbances from 260 nm and 280 nm (A260/280).  If the A260/280 ratio was not 

greater than or equal to 1.7, the RNA purity was in question and samples were subjected 

to denaturing agarose gel electrophoresis to assess RNA integrity further. 



1.3.4 – RNA Integrity Assessment:  The purity and integrity of sample RNA was 

determined using denaturing-formaldehyde agarose gel electrophoresis (Mattheus et al. 

2003).  Total RNA (1 μg) was diluted in three volumes of formaldehyde sample loading 

dye (1X denaturing gel running buffer, 50% glycerol, 1mM EDTA, pH 8.0, 0.25% 

bromophenol blue, 0.25% xylene cyanol) and heated to 65°C for 15 minutes.     Samples 

were then removed, condensed on ice, centrifuged at 1000 x g for 5 seconds and loaded 

on to the denaturing-formaldehyde agarose gel. A 1.2% (w/v) agarose gel was prepared 

in NorthernMax denaturing gel buffer per manufacturers instructions (1x MOPS, 50% 

formamide 6% formaldehyde; 1X MOPS buffer in DEPC water; 50% formamide, 6% 

formaldehyde).  The gel was electrophoresed at 100 V for 30 minutes, removed from the 

chamber and stained for 15 minutes in 0.5 μg/ml of ethidium bromide in diethyl 

pyrocarbonate water (DEPC 0.1% w/v). The gel was destained in DEPC  water for 1 

hour, visualized via UV illumination, and an image was obtained using a FluorS 

multimager (Bio-Rad).  The integrity of each RNA sample was determined by visual 

analysis of the 28S and 18S ribosomal RNA bands.  Only samples where the 28S band 

were twice as dense as the 18S band (Figure 5) were used for further analysis.  

 

28S 

18S 
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Figure 5:   RNA Integrity Gel.  The quality of isolated RNA was assessed following formaldehyde-
denaturing agarose gel electrophoresis.  This image depicts a representative gel for control RNA sample 
isolated from H9c2 cells.  Both ribosomal RNA 28s and 18s bands are clearly visible, with the 28S band 
twice as dense as the 18S band.   
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1.4 – Analysis of Gene Expression: 

1.4.1 – First Strand cDNA Synthesis:  Total RNA was reverse transcribed to make 

cDNA using reverse transcriptase (RT).  The cDNA was generated using the iScript first 

strand synthesis kit (4 μl of 5X RT buffer, 1 μl RT enzyme brought up to a total of 20 μl 

with water) and 1 μg of total RNA in a pre-labeled thin-walled PCR tube.  The reaction 

was carried out on a Perkin Elmer model 2400 thermocycler under the following 

conditions: 25°C for 5 minutes followed by 42°C for 30 minutes then 85°C for 5 minutes 

with a final hold at 4°C. 

1.4.2 – Real-Time PCR Primer Design:  Primer design is crucial in reproducible 

and reliable gene expression analysis.  Oligonucleotide primers were designed using 

vector NTI software (Invitrogen).  General guidelines for primer design include a length 

of 18-24 base pairs, a GC content of 50-60%, a melting temperature (Tm) between 50 and 

65°C, no secondary structure, no repeats of G’s or C’s longer than 3 base pairs, no G’s or 

C’s at ends of primers, no 3’ complementarity (also known as primer dimerization; set at 

ΔG≥-4), a predicted amplicon size of 75-150 base pairs, and no secondary structure at 

binding sites.  All criteria except the secondary structure can be programmed into the 

primer design tab of Vector NTI.  Secondary structure of the gene and the amplicon were 

assessed using the mfold server provided by Dr. Michael Zuker 

(http://bioinfo.math.rpi.edu/~mfold/dna/form1.cgi).  An 800 base pairs sequence of the 

gene to be amplified was analyzed for secondary structure under the following 

conditions: folding temperature 60°C,  the ionic conditions of sodium (50 mM) and 

magnesium (3 mM).  The derived secondary structure of the DNA was then used for 

http://bioinfo.math.rpi.edu/%7Emfold/dna/form1.cgi
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further primer design (Figure 6).  Primers were designed in regions of no secondary 

structure.  If an area of 150 base pairs without secondary structure was not found, the 

folding temperature was increased, keeping in mind that this then changed the 

temperature at which the primers were designed. 



  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6:  Mfold output.  The secondary structure of the genes quantified by real-time PCR was assessed 
by the mfold server offered by Dr. M Zuker at Rensselaer Polytechnic Institute. This figure depicts the Nrf2  
(Accession # NM_031789) amplicon folded at 55°C with 5 mM Na+ and 3 mM Mg 2+. 
  

 51

The designed primer sequences were BLAST searched for gene specificity.  

BLAST is a search of all genes stored in the NCBI GenBank database and is available 

online at www.ncbi.nih.gov/Genbank.  If a match occurred for a gene other than the gene 

in which the primers were designed with an expectation number below 0.01, the primers 
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were discarded and new primers designed.  The expectation number is the number of 

times this match would be expected to occur by chance in a search of the entire database.  

Two primer sets for each gene were designed and synthesized by Sigma-Genosys (St. 

Louis, MO). 

Gene-specific primers designed for real-time PCR were: NAD(P)H quinone 

oxidoreductase 1 (NQO1), heme oxygenase-1 (HO1), NF-E2 related factor 2 (Nrf2), 

kelch-like associated protein 1 (Keap1) and the two housekeeping genes glyceraldehyde 

3-phosphate dehydrogenase (GAPDH), and acidic ribosomal phosphoprotein Po (Arbp) 

(Table 2).  

Table 2.  Gene Specific Primers for Real-Time PCR 
sense 5’-CCTTGTATTGGTTTGGGGTG NQO1 (rat) 

Accession # NM_017000 antisense 5’-GCATACGTGTAGGCGAATCCTGCT 
sense 5’-CAGGTGTCCAGGGAAGGCTTTAAGC HO1 (rat) 

Accession # NM_012580 antisense 5’-TTTCGCTCTATCTCCTCTTCCAGGG 
sense 5’-GGAGAGGGAAGAATAAAGTTGCCGC Nrf2 (rat) 

Accession # NM_031789 antisense 5’-TGGCCCAAGTCTTGCTCCAGCTCT 
sense 5’-ATTGCCTGTAAGTCCTGGTCA Nrf2 (human) 

Accession # NM_006164 antisense 5’-ACTGCTCTTTGGACATCATTTCG 
sense 5’-GCTCAACCGCTTGCTGTATGC Keap1 (rat) 

Accession # NM_057152 antisense 5’-TCATCCGCCACTCATTCCTCTC 
sense 5’-ATGATTCTACCCACGGCAAG GAPDH (rat) 

Accession # M17701 antisense 5’-CTGGAAGATGGTGATGGGTT 
sense 5’-AAGCGCGTCCTGGCATTGTCT Arbp (rat) 

Accession # NM_007475 antisense 5’-CCGCAGGGGGCAGCAGTGGT 
sense 5’-TCAGAAGAGAAGCCAACGTGA, OAS2 (mouse) 

Accession # NM_145227 antisense 5’-CGGAGACAGCGAGGGAAAT 
 

1.4.3 – Primer Specificity and Efficiency Verification:  Before primers were used 

for real time PCR, each set was tested for specificity and efficiency.  To make certain 

each primer pair had only one amplicon, a standard PCR reaction (2 μl cDNA, 5 μl 

reaction buffer, 1 μl dNTPs (0.2 M), 1 μl Taq (1.25 U) polymerase, 41 μl ddH2O) at the 

designated annealing temperature was performed (1 cycle 5 minutes @ 95°C; 40 cycles 
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15 seconds @ 95°C, then 30 seconds @ 60°C, then 15  seconds @ 72°C; and a final hold 

at 4°C) using control cDNA generated from the H9c2 cells.  The PCR product was run on 

a 1.2% agarose gel, and the number and size of the band(s) were determined.  Only 

primers with one amplicon of the correct size were used. 

Primer PCR efficiency was determined by real-time PCR using a myIQ iCycler 

real-time PCR detection system (Bio-Rad ).  A standard curve was generated using 10-

fold dilutions of control cDNA and the newly designed primers (Figure 7).  The reaction 

condition mixture consisted of 1.25 U platinum Taq polymerase, 20 mM Tris, pH 8.4, 3 

mM MgCl2, 0.2 M each of the dNTPs, 50 mM KCl, 1:75,000 dilution of the DNA 

intercalating dye SYBR green (Platinum SYBR Green Supermix, Invitrogen), and the 

conditions were as follows: an initial denaturation at 94°C for 2 min, followed by 35 

cycles of 94°C for 15 seconds, 60°C for 30 seconds and 68°C for 1 minute followed by a 

melt curve of 80 cycles starting at 55°C, increasing 0.5°C each cycle.  The cycle 

threshold (Ct) was plotted against the cDNA dilution and the slope of the line was 

derived using the formula E= (10-1/slope)-1.   E represents the efficiency of the reaction.  

Only primers with efficiencies of 80-120% were used for experimentation.  In addition, 

the dilution series provided information regarding the correlation coefficient and only 

coefficients above 0.995 were used in these experiments.   



 
 

 
 
 

 

Correlation Coefficient = 0.999   Y=-3.227+12.223 
PCR Efficiency = 104.1 Unknowns

Standards

Log (copy number)

Figure 7: Real Time PCR standard curve for rat Nrf2 PCR efficiency.  The primer efficiency was 
determined by a standard curve of serial dilutions of cDNA.  The top graph is a representative real-time 
PCR quantification graph.  The horizontal orange line is the cycle threshold (Ct), at which point the copies 
of the gene reach a threshold of fluorescence.  Each curve represents a reaction with a certain dilution of 
cDNA in duplicate.  The curves with the lowest Ct, represent the highest concentration of cDNA.  The last 
2 curves represent the blank (cDNA free) samples.  The lower graph is a standard curve with cDNA 
concentration on the X axis and Ct on the Y axis.  The PCR efficiency is 104.1% with a correlation 
coefficient of 0.999. 
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The data was further analyzed for efficient primer binding and for complete 

reaction elongation (Figure 8).  To ensure efficiency of the primers, each curve should 

start above the previous curve and should increase exponentially at the start and plateau 

at the end.  If these criteria were not met, the primers were discarded. 

 

 

Plateau 

Exponential 
Increase 

Start 

End 

Cycle

Figure 8: Primer binding and reaction elongation analysis.  This graph represents a single cycle reaction of 
primer binding, elongation and primer unbinding of the gene heme oxygenase 1.  Each trace represents a 
duplicate of a real-time PCR sample.  Starting at cycle 30, an exponential increase in fluorescence is 
observed.  This represents the primer binding to the template and the amplification of the target gene.  The 
plateau phase represents the slowing and then end of the reaction when the next cycle begins with the 95°C 
segment. 

 

To ensure that no 3’ complementarity was present (primer dimerization), a melt 

curve was also performed (Figure 9).  Each primer pair should have only one peak, 

indicative of one PCR product, and no secondary peak formation at 68-72°C (primer 

dimerization). If these criteria were not met, the primers were discarded. 
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 Temperature, Celsius 

Figure 9: Melt Curve analysis for primer dimerization.  A melt curve of a representative Nrf2 amplification 
reaction.  The single peak represents one amplicon with a distinct melting temperature Tm.  The DNA 
synthesis is detected through dsDNA intercalation of the dye SYBR green.  Little binding was present at 
68-72°C, showing no primer dimerization.  
 

1.4.4 – Primer Annealing Temperature:  The last of the optimization experiments 

was an analysis of the annealing temperature.  This consisted of running identical 

reactions using control cDNA at different temperatures and the temperature gradient 

function on the MyIQ real time unit.  This tests annealing temperatures across a 20°C 

range, 10 degrees above and 10 below the designed annealing temperatures.    As a rule 

of thumb, the temperature with the lowest Ct was chosen as the ideal temperature for the 

reaction to proceed.    

1.4.5 – Real-Time PCR:  Once primer and RNA quality was assessed, real-time 

PCR analysis of the ARE-containing genes was performed.  H9c2 cells were treated with 

tBHQ and RNA isolated at time points of  0, 4, 8, 12, 24, 36, 48 and 72 hours.  

Expression of heme oxygenase 1 (HO1) and NADPH:quinone oxidoreductase 1 (NQO1) 

as well as the two housekeeping genes, glyceraldehyde 3-phosphate dehydrogenase 
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(GAPDH) and acidic ribosomal phosphoprotein Po (Arbp) were measured in duplicate on 

the myIQ iCycler real-time PCR detection system.  No change was detected in 

housekeeping gene expression.  The reaction mixture (conditions described in section 

1.3.3) was as follows; 13 μl SYBR green supermix, 10 μl nuclease-free H2O, 1 μl of 5 

μM primer mix (both sense and antisense suspended in 1X TE buffer) and 1 μl 

experimental cDNA. The thermocycler program was as follows: an initial denaturation at 

94°C for 2 minutes, followed by 35 cycles of 94°C for 15 seconds, 60°C for 30 seconds 

and 68°C for 1 minute.  Each experiment was performed three to five times in duplicate 

and a cDNA-free sample (blank) was run with each primer to ensure contamination was  

not present. 

1.4.6 – Real-Time PCR Analysis:  Changes in gene expression of the ARE-

containing genes HO1 and NQO1 were calculated relative to the gene expression at time 

zero.  Matched-time vehicle-treated controls were checked prior to these experiments to 

verify no change in expression levels over time.  The modified  ΔΔCt method as 

described by Vandesompele et. al (292) was programmed into a Microsoft Excel macro 

(Bio-Rad ) and used for analyses of gene expression.  This method was modified from the 

ΔΔCt method described in Livak and Schmittgen in 2001 (190) and uses complex 

algorithms that allow for use of multiple housekeeping genes. 
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2 – Effects of tBHQ on protein expression of HO1 and NQO1 in the H9c2 cell line. 

2.1 – Cell Culture:   

H9c2 cells were plated in 10 cm dishes and grown to 80% confluence as 

described in section 1.1.  Cells were treated with 10 μM tBHQ or its vehicle for 12 and 

24 hours.  Experiments were repeated four times in duplicate 

 

2.2 – Preparation of Whole Cell Lysates:  

At each time point the medium was aspirated, dishes were placed on ice and 1 ml 

of ice-cold HBSS was added to each plate.  Cells were scraped into pre-chilled 1.5 ml 

centrifuge tubes, centrifuged at 500 x g for 5 minutes at 4°C, the supernatant was 

aspirated, and cell pellets were resuspended in 100 μl radioimmunoprecipitation (RIPA) 

lysis buffer (KH2PO4 10.6 mmoles/L, NaCl 1.5 moles/L, Na2HPO4.7H2O 29.7 mmoles/L, 

1% Igepal, 0.5% sodium deoxycholate, 0.1% SDS, supplemented with 100 μg/ml PMSF, 

50 KIU/ml apoprotin and 100 μl/ml of sodium orthovanadate), triturated through 100 μl 

pipette tip and centrifuged at 10,000 x g at 4oC for 15 minutes.  The pellet was discarded 

and the supernatant was stored at -20°C until further analysis. 

 

2.3 – Determination of Protein Concentration:   

Protein concentration was determined using the DC protein assay (Bio-Rad), a 

colorimetric assay modified from Bradford, 1976 (23).   A standard curve was generated 

using BSA at concentrations ranging from 0.1 to 1.5 μg/μl.  The absorbance was 

measured at 750 nm on a SpectraMax Plus microplate reader (Molecular Devices Corp., 
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Palo Alto, CA).  Sample protein concentrations were determined based on the generated 

standard curve. 

 

2.4 – Western Blot:   

Cell lysate samples were standardized to 20 μg protein and boiled in equal 

volumes of Laemmli buffer (BioRad) containing 5% β-mercaptoethanol for 5 minutes.  

Samples were separated in a 12% total monomer polyacrylamide gel in the presence of 

sodium dodecyle sulfate (SDS) polyacrylamide gel electrophoresis (SDS-PAGE).  

Following procedures for SDS-PAGE, the gel was then transferred electrophoretically to 

a nitrocellulose membrane.  Membranes were blocked at room temperature in 5% non-fat 

dry milk in 1X TBS-T (20 mM Tris, 137 mM NaCl, pH 7.6; and 0.1% Tween 20) for 1 

hour.  Membranes were incubated with rabbit IgG anti-heme oxygenase 1 (HO1) primary 

antibody or goat IgG anti–NADPH:quinone oxidoreductase 1 (NQO1) primary antibody 

(1:3000 dilution) in 5% milk overnight at 4°C.  Membranes were then washed three times 

for five minutes each with 1X TBS-T, and incubated in 5% milk containing either goat 

anti-rabbit IgG: horseradish peroxidase (HRP) conjugated secondary antibody or rabbit 

anti-goat conjugated IgG:HRP conjugated secondary antibody (1:5,000 dilution) at room 

temperature for 1 hour.  Membranes were washed five times for five minutes each with 

1X TBS-T, and immunoreactive bands were detected by chemiluminescence using the 

ECL Plus Western Blotting Detection System on a FluorS Multi Imaging System (Bio-

Rad).  Densities of the resulting bands were quantified using Quantity One software (Bio-

Rad).  Each western blot was performed twice to account for inter-assay variation. 
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3 –The effect of tBHQ on nuclear translocation of the transcription factor Nrf2. 

3.1 – Cell culture:   

H9c2 cells were plated in 10 cm dishes and grown to 80% confluence as 

described in section 1.1, and treated with t-BHQ (10 μM) or vehicle for 15 minutes. 

 

3.2 – Cytoplasmic and nuclear extractions:  

Cytoplasmic and nuclear extracts were isolated using the NE-PER Nuclear 

Extraction Kit (PIERCE Biotechnology, Rockford, IL).  Cells were scraped into 1 ml of 

HBSS and centrifuged for 5 minutes at 1000 x g at room temperature.  The cell pellet was 

then resuspended in 100 μl of cytoplasmic extraction reagent (CER) I (proprietary recipe 

supplemented with 100 μg/ml Phenylmethanesulfonyl fluoride  (PMSF), 50 KIU/ml 

apoprotin and 100 μl/ml of sodium orthovanadate), vortexed vigorously for 15 seconds 

and incubated on ice for 10 minutes.  CERII buffer (5.5 μl) was added, the sample was 

vortexed and the cytoplasmic fraction separated from the nuclear fraction by 

centrifugation at 15,000 x g for 5 minutes at 4°C.  The supernatant (cytoplasm) was 

separated from the pellet (nucleus) and transferred to a pre-chilled tube.  Nuclei were 

then lysed with the addition of 50 μl of the Nuclear Extraction Reagent (NER; 

supplemented with 100 μg/ml PMSF, 50 KIU/ml apoprotin and 100 μl/ml of sodium 

orthovanadate), followed by four repeats of vortexing and incubation on ice for 10 

minutes.  Samples were centrifuged at 16,000 x g at 4oC for 10 min and the supernatant 

was stored at -80°C until use.   
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3.3 – Western Blot for Nrf2:   

Protein concentrations were determined as described in section 2.3. Western blot 

protocol was as described in section 2.4.  Rabbit anti-goat Nuclear factor E2 like 2 (Nrf2) 

primary antibody was used at a 1:1000 dilution, and goat anti-rabbit IgG:HRP conjugated 

secondary antibody was used at 1:5000 dilution.  Each sample was also probed with 

antibodies for β-tubulin to assess contamination from the cytoplasmic fraction into the 

nuclear fraction.  

 

4 –Reactive oxygen species generation produced by the oxidant tert-butyl 

hydroperoxide. 

4.1 – Measurement of Intracellular ROS generation using microscopy:  

Intracellular reactive oxygen species (ROS) levels were determined using the 

Image-it Live Green ROS detection kit (Molecular Probes) (200).  This protocol uses the 

fluorescent probe, 5-(and 6)-carboxy-2’,7’-dichlorodihydrofluorescein diacetate 

(carboxy-H2DCFDA), a cell permeant dye that enters the cell and is cleaved by cellular 

esterases to the non-cell permeant non-fluorescent H2DCF.  H2DCF is oxidized by ROS 

to the green fluorescent compound carboxy-DCF that can be detected by fluorescent 

microscopy.   

H9c2 cells were plated on electrically charged cover slips (Fisher Scientific, 

Pittsburg, PA), and grown to 80% confluence.  Cells were then treated in duplicate with 

tBHQ (10 μM) or its vehicle for 24 hrs.  After 24 hours, tert butyl hydroperoxide (tBHP, 

100 μM), an organic peroxide, or its vehicle was added for 2 hours. The cells were 

washed with 1 ml HBSS with calcium and magnesium and labeled with 25 μM carboxy-
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H2DCFDA in HBSS with calcium and magnesium for 30 min at 37°C in the dark.  

During the last five minutes, the nuclei were stained with the blue-fluorescent cell 

permeant nucleic acid stain Hoechst 33342 (1 μM).  Cells were then washed five times 

with 1 ml HBSS with calcium and magnesium and coverslips mounted upside down on 

glass slides for ROS to be visualized in a double blind fashion using 40X magnification 

at Ex/Em 495/529 nm (green) and 350/461 (blue) on a Nikon 2000E fluorescence 

microscope.   Images were merged and saved as JPEG files.  Each experiments was 

repeated four times in duplicate. 

 

4.2 – Measurement of Intracellular ROS generation using a microplate reader:  

H9c2 cells were plated in 10 cm dishes and grown to 80% confluence as 

described in section 1.1. Cells were then treated in duplicate with tBHQ (10 μM) or its 

vehicle for 24 hrs.  After 24 hours, tBHP (100 μM) or its vehicle was added for 2 hours. 

The cells were washed with 5 ml HBSS with calcium and magnesium, trypsinized and 

centrifuged at 500 x g for 5 minutes at room temperature.  The supernatant was removed 

and cells were resuspended in 250 μl of carboxy-H2DCFDA (25 μM) in HBSS with 

calcium and magnesium for 30 minutes at 37°C in the dark.  Each sample was washed 

once with 200 μl HBSS with calcium and magnesium, centrifuged at 500 x g for 5 

minutes at room temperature, resuspended in 1 ml phenol red-free phosphate buffered 

saline (PBS) and counted (as described in section 1.1).  Cells were added to black 96 well 

plates at a density of 50,000 cells per well in a volume of 200 μl.  Plates were then read 

on a Fusion Universal microplate analyzer (Packard Instruments, Meriden, CT) at 
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excitation and emission wavelengths of 480 nm and 530 nm, respectively.  Each 

experiments was repeated four times in duplicate. 

 

5 – Effects of Nrf2 siRNA treatment on the protective effects of tBHQ. 

5.1 – RNA interference:   

 RNA interference (RNAi) is a pathway in cellular defense against viral infection 

and transposons as well as functions as a method for post-transcriptional modification 

(100, 204, 262, 290, 307).  It has recently been utilized as a unique form of post-

translational gene silencing post-transcriptionally.  The mechanism of RNAi starts with 

dsRNA that is recognized by the protein Dicer, which cleaves dsRNA into smaller (73, 

169, 215) dsRNA fragments (19, 73, 74, 98).  These fragments are then unwound and 

separated by the multi-protein RNA-Induced Silencing Complex (RISC) resulting in a 

single strand RNA-RISC complex (33, 99, 118, 225).  The RNA-RISC complex binds to 

the target mRNA using the RNA as a probe and the RNA-RISC complex cleaves the 

mRNA in a  site-specific manner.  The cleaved products are then released and degraded, 

leaving the RNA-RISC complex to seek out more copies of the target mRNA and deplete 

the remaining pool of target mRNAs, resulting in gene knockdown (Figure 10) (73).  
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Figure 10:  RNA interference.  RNAi starts in the presence of dsRNA.   dsRNA is recognized by the 
protein Dicer and cleaved into smaller (19-25nt) dsRNA fragments.  These fragments are then unwound 
and separated by the multi-protein RNA-Induced Silencing Complex (RISC) resulting in a single strand 
RNA-RISC complex.  This complex is then guided by the single strand of RNA to the target mRNA where 
it binds via complementarity and the mRNA undergoes site-specific cleavage. 

 

A successful transfection of siRNAs is vital to investigating a biological role 

associated with gene silencing.  For this reason, RNAi technology was validated using 

siTOX transfection control (Invitrogen).  SiTOX is a cytotoxic, RNA-based reagent that 

is used to optimize transfection efficiencies.  In addition, a positive control siRNA 

directed against the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase 
 64
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(GAPDH) was used determine knockdown efficiency.  To ensure that the siRNAs did not 

stimulate the antiviral interferon response, we measured the gene expression of a member 

of the antiviral response, 2’-5’-oligoadelylate synthetase (OAS2) (55), using real-time 

PCR in nonsense and siRNA transfected H9c2 cells. 

 

5.2 – siRNA transfection efficiency: 

As mentioned on the previous page, transfection efficiency of the siRNAs was 

assessed by the siTOX transfection control (Dharmacon).  Cells were grown to 25% 

confluence and treated with the proprietary siTOX RNA based cytotoxic agent.  This 

agent results in cell death within 48 hours and correlates with transfection efficiency.  

H9c2 cells were plated at 50% confluence and treated with siTOX siRNA transfection 

control or nonsense siRNA.  Cell survival after siTOX treatment was determined using 

the cell proliferation assay in duplicate (section 5.6.1) and transfection efficiency was 

found to be 42%.  This experiment was repeated 3 times.  

 

5.3 – Nrf2 siRNA treatment: 

H9c2 Cells were plated in antibiotic-free low glucose (5.5 mM) DMEM 

supplemented with 10% fetal bovine serum at a density of 3 x 105 cells per 24 well plate.  

The cells were incubated overnight in normal growth conditions.  The next day, cells 

were treated with 40 pmoles of all three non-overlapping StealthTM (Invitrogen) siRNAs 

directed against rat Nrf2 (Accession number NM_031789) or nonsense GC matched 

siRNAs (proprietary sequence) and delivered by Lipofectamine 2000 (Invitrogen) in 

OptiMEM medium (Invitrogen).  Lipofectamine transfection reagent utilizes cationic 
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lipid-mediated transfection where siRNAs interact with the cell membrane in the form of 

a lipid:siRNA complex.  This detergent-like structure is partially hydrophobic and 

hydrophilic, and enters the cell through endocytosis (11). The siRNAs (Table 3) were 

prepared in a 1:50 dilution of 20 μM in OptiMEM (6 well plate: 10 μl each siRNA into 

500 μl OptiMEM per well), and lipofectamine was prepared in a 1:100 dilution in 

OptiMEM medium (5 μl lipofectamine per 500 μl of OptiMEM per well) and incubated 

at room temperature for 5 minutes.  Equal volumes of lipofectamine and siRNA mixtures 

(500 μl of RNA mixture + 500 μl of lipofectamine mixture per well of six well plate) 

were then combined and incubated for another 20 minutes at room temperature.  The 

RNA/lipofectamine mixture was then added to the cells in addition to 1 ml of full growth 

medium (1 ml per well of six well plate) and incubated over night.  Medium was changed 

12 hours later to normal full growth medium containing antibiotic. 

 
Table 3:  siRNA sequences. 

Nrf2 siRNAs UUUAAGUGGCCCAAGUCUUGCUCCA 
 UGGAGCAAGACUUGGGCCACUUAAA 
 UACUCACUGGGAGAGUAAGGUUUCC 
 GGAAACCUUACUCUCCCAGUGAGUA 
 UGAAGGUUCGGUUACCAUCCUGCGA 
 
Keap1 siRNAs UGAAGGUUCGGUUACCAUCCUGCGA 
 UCGCAGCAUGGUAACCGAAACUUCA 
 CUGUCAAUCUGGUACAUGACUGCCC 
 GGGCAGUCAUGUACCAGAUUGACAG 
 AUUUGACCCAGUGGAUGCACGCAUG 
 CAUGAGUGCAUCGACUGGGUCAAAU 
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5.4 – siRNA knockdown verification: 

 After treatment with siRNAs, cells were incubated for a total of 64 hours and 

subsequently treated with tBHQ (10 μM) or its vehicle for 8 hours.  To verify gene 

knockdown, mRNA and protein levels for Nrf2 and Keap1 were measured and repeated 

in three independent experiments.  Immunoblots for Nrf2 protein expression were 

preformed as described in section 3.3 and repeated in three independent experiments.  

Nrf2 gene expression was determined using conventional (section 1.3.3) and real-time 

PCR (section 1.3.5) and repeated in three independent experiments.  As mentioned 

previously, siRNAs mediated activation of the interferon (antiviral response) response 

was not detected using real-time PCR of 2’–5’-oligoadenylate synthetase (OAS2) (table 

2) (55). 

 

5.5 –ROS generation in Nrf2 siRNA treated H9c2 cells in response to tBHP:  

To determine the effect of Nrf2 on ROS production in the H9c2 cell line, cells 

were treated as described above with Nrf2 siRNAs, incubated for 48 hours and 

subsequently treated with tBHQ (10 μM) or its vehicle for 24 hours.  Cells were then 

challenged with either 100 μM tBHP or 200 μM H2O2 for 2 hours.  Cells were 

trypsinised for 5 minutes, pelleted by centrifugation at 500 x g for 5 minutes at room 

temperature, and resuspended in HBSS containing carboxy-H2DCFDA (25 μM) without 

Ca++ and Mg++.  Cells were incubated in the dark for 30 minutes at 37°C.  Cells were then 

pelleted, washed in HBSS, counted using a hemocytometer (as described in section 1.1), 

and 50,000 cells were resuspended in 200 μl of PBS without phenol red, plated per well 

of a black 96 well plate and read on a Fusion universal microplate analyzer at excitation 
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and emission wavelengths of 480 nm and 530 nm, respectively.  Experiments were 

repeated three times and performed in duplicate. 

 

5.6 – Effect of oxidative stress on H9c2 cell survival following Nrf2 knockdown: 

To determine the effect of Nrf2 on cell survival in response to H2O2 and tBHP, 

cells were treated as described above with Nrf2 siRNAs, incubated for a total of 48 hours 

and subsequently treated with tBHQ (10 μM) or its vehicle for 24 hours.  Cells were 

challenged with either tBHP (100 μM) or H2O2 (200 μM) or their vehicle and incubated 

for 48 hours. Medium was aspirated and cells were immediately frozen and stored at -

80°C.  Control cells were counted, pelleted by centrifugation and stored at -80°C for the 

standard curve. 

 5.6.1 – Cell Proliferation Assay:  The CyQUANT Cell Proliferation Assay Kit 

was used to estimate cell number.  The kit utilizes CyQUANT GR, a green fluorescent 

dye, which fluoresces when bound to nucleic acids.  Fluorescence from the DNA-bound 

dye is directly proportional to cell number and a standard curve was generated using 

control cells relating fluorescence to cell number.  The standard curve is linear from 50 to 

50,000 cells.  A representative standard curve can be found in appendix D. Cell lysates 

from experimental samples and control cells for the standard curve were thawed to room 

temperature and resuspended in 500 μl lysis buffer containing the fluorescent dye 

CyQUANT GR (working lysis buffer). Control cells were also thawed and resuspended 

in the working lysis buffer.  Samples were transferred in duplicate to a black 96-well 

plate (200 μl/well) and read on a Fusion Universal Microplate Analyzer at excitation and 

emission wavelengths of 480 nm and 530 nm. 
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6 –  Effects of Keap1 siRNA treatment on the protective effects of tBHQ. 

6.1 – Keap1 siRNA treatment: 

H9c2 cells were plated in antibiotic-free low glucose (5.5 mM) DMEM 

supplemented with 10% fetal bovine serum at a density of 3 x 105 cells per plate.  The 

cells were incubated overnight in normal growth conditions.  The next day, H9c2 cells 

were treated with 40 pmoles of three non-overlapping StealthTM (Invitrogen) siRNAs 

directed against rat Keap1 (Accession number NM_057152 ) or nonsense GC matched 

siRNAs and delivered by Lipofectamine 2000 (Invitrogen) in OptiMEM medium 

(Invitrogen) (Table 3). SiRNAs were prepared in a 1:50 dilution in OptiMEM (6 well 

plate: 10 μl each siRNA into 500 μl OptiMEM per well), and lipofectamine was prepared 

in a 1:100 dilution in OptiMEM medium (5 μl lipofectamine per 500 μl of OptiMEM per 

well) and incubated at room temperature for 5 minutes.  Equal volumes of lipofectamine 

and siRNA mixtures (500 μl of RNA mixture + 500 μl of lipofectamine mixture per well 

of six well plate) were then combined and incubated for another 20 minutes at room 

temperature.  The RNA/lipofectamine mixture was then added to the cells in addition to 

1ml of full growth medium (1 ml per well of six well plate) and incubated over night.  

Medium was changed 12 hours later to normal full growth medium-containing antibiotic. 

 

6.2– siRNA knockdown verification: 

 After treatment with siRNAs, cells were incubated for 64 hours and subsequently 

treated with tBHQ (10 μM) or its vehicle for 8 hours.  In the absence of Keap1, tBHQ 

treatment should have little effect on ARE gene transcription, as Nrf2 would already be 

activated.   To verify gene knockdown of Keap1, mRNA and protein levels were 
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measured.  Immunoblots for Keap1 protein expression were preformed as described in 

section 3.3 using primary Keap1 IgG (1:250 dilution) and secondary antibody rabbit anti-

goat IgG:HRP (1:5000 dilution).  Keap1 gene expression was determined using 

conventional (section 1.3.3) and real-time PCR (section 1.3.5).  To ensure the siRNAs did 

not activate the interferon (antiviral) response, real-time PCR of 2’–5’-oligoadenylate 

synthetase (OAS2) was performed.  Experiments were repeated three times and 

performed in duplicate. 

 

6.3 – Effect of Oxidative Stress on cell survival following Keap1 Knockdown. 

After treatment with siRNAs for Keap1, H9c2 cells were then incubated for a 

total of 48 hours and subsequently treated with tBHQ (10 μM) or its vehicle for 24 hours.  

Cells were then challenged with either tBHP (100 μM) or H2O2 (200 μM) and incubated 

for an additional 48 hours. Medium was aspirated and cells were immediately frozen and 

stored at -80°C.  Control cells were counted pelleted by centrifugation and stored at -

80°C for the standard curve.  Cell proliferation was assessed using the CyQUANT Cell 

Proliferation Assay Kit to quantify cell survival as described in section 5.5.1. 

 

7 – The effect of Nrf2 overexpression in the H9c2 cell line. 

7.1 – Transfection of the H9c2 cells with Nrf2. 

The vector encoding Nrf2 tagged with green fluorescent protein (Nrf2-GFP) was 

a generous gift from Manabu Furukawa at the University of Nebraska, and was used in 

studies published by Furukawa et al. in 2005 (89).  H9c2 cells were grown to 80% 

confluence and transfected with 0.5 μg DNA containing Nrf2-GFP or empty vector 
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pcDNA 3.1 (p3.1), the same vector containing the Nrf2 construct.   DNA was diluted in 

500 μM OptiMEM and lipofectamine was prepared in a 1:100 dilution in OptiMEM 

medium 5 μl lipofectamine per 500 μl of OptiMEM) and incubated at room temperature 

for 5 minutes.  Equal volumes of lipofectamine and DNA mixtures were then combined 

and incubated for another 20 minutes at room temperature.  The DNA/lipofectamine 

mixture was then added to the cells in addition to 1ml of full growth medium and 

incubated over night.  Medium was changed 12 hours later to normal full growth medium 

containing antibiotic. 

 

7.2 – Nrf2 overexpression verification. 

 H9c2 cells were transfected with both Nrf2-GFP and p3.1 as described in section 

7.1 and RNA was isolated 48 hours later as described in section 1.3.  cDNA was 

generated and real-time PCR was performed using primers for HO1, NQO1 and Nrf2 as 

described in sections 1.4.  Protein levels of Nrf2 were verified by western blot as 

described in section 3.3. 

 

7.3 – Subcellular localization of Nrf2-GFP. 

Cells were plated and transfected as described in the previous section.  Cells were 

then passaged and grown to 80% confluence on electrically charged cover slips (Fisher 

Scientific, Pittsburg, PA).  Cells were treated with tBHQ (10 μM) or vehicle for 1 hour 

and then coverslips were placed upside down onto glass slides.  Cells were then 

visualized using a 40X magnification at Ex/Em 495/529 nm (green) and 350/461 nm 

(blue) on a Nikon 2000E fluorescence microscope.   Images were saved as JPEG files. 
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7.4 – The effect of Nrf2 overexpression on cell survival in response to H2O2 and 

tBHP. 

H9c2 cells were transfected with both Nrf2-GFP and p3.1 as described in section 

7.1 and passaged into 6 identical wells of a 24 well plate.  The next day cells were treated 

with tBHQ (10 μM) for 24 hours.  Cells were then challenged with H2O2 (200 μM) and  

tBHP (100 μM) and grown for 48 hours.  The cell medium was then removed and the cell 

culture plate was frozen at -80°C. Cell survival was assessed by the cell proliferation 

assay as described in section 5.6.1. 

 

8 – Experimental Design 

 

8.1 – Gene Expression.  H9c2 cells treated with tBHQ (10 μM) or vehicle and at each 

time point RNA was isolated. Sample quality was verified, quantified and reverse 

transcribed.  Real-time PCR was performed on each sample in duplicate.  Each 

experiment was repeated three times. 

 

8.2 – Protein Expression.  H9c2 cells were treated with vehicle and tBHQ (10 μM) for 

12 and 24 hours.  Sample protein content normalized and western Blot analysis was 

performed in duplicate.  Each experiment was repeated four times. 

 

8.3 -  Nuclear Translocation. H9c2 cells were treated for 15 minutes with tBHQ (10 

μM) and nuclear and cytoplasmic compartments separated by differential centrifugation.  
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Sample protein content was normalized and western Blot analysis was performed in 

duplicate.  Each experiment was repeated three times. 

 

8.4 -  ROS generation.  H9c2 cells were treated with vehicle, tBHP (100 μM), tBHQ (10 

μM), tBHQ (10 μM) + tBHP (10 μM) in duplicate.  ROS generation was measured using 

the green fluorescent dye carboxy-H2DCFDA and cell nuclei were marked by DAPI 

staining.  Each experiment was repeated 4 times. 

 

8.5 – ROS generation of Nrf2 transfected cells.  H9c2 cells transfected with siRNAs 

directed against Nrf2 or GC matched siRNAs.  Both sets of siRNA transfected cells were 

treated with vehicle, tBHP (100 μM), tBHQ (10 μM), tBHP (100 μM) and ROS 

generation measured using the dye carboxy-H2DCFDA on the fluorescence plate reader.  

Each experiment was repeated three times. 

 

8.6 – Cell survival of Nrf2 transfected cells.  H9c2 cells transfected with nonsense or 

Nrf2 siRNAs. Both sets of siRNA transfected cells were treated with vehicle, H2O2 (200 

μM), tBHP (100 μM), tBHQ (10 μM), tBHQ (10 μM) + tBHP (100 μM) and tBHQ (100 

μM) + H2O2 (200 μM) and cell survival was measured using cell proliferation assay.  

Each experiment was repeated six times. 

 

8.7 – Cell survival of Keap1 siRNA transfected cells.  H9c2 cells transfected with 

nonsense and Keap1 siRNAs.  Following transfection cells were treated with vehicle, 

H2O2 (200 μM), tBHP (100 μM), tBHQ (10 μM), tBHQ (10 μM) + tBHP (100 μM) and 
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tBHQ (100 μM) + H2O2 (200 μM) and cell survival was measured using cell proliferation 

assay.  Each experiment was repeated three times. 

 

8.8 – Nuclear localization of Nrf2-GFP.  H9c2 cells were transfected with p3.1 or Nrf2-

GFP.  Following transfection cells were treated with tBHQ or vehicle for 12 hour.  Cells 

were then visualized by fluorescence microscopy. 

  

8.9 – Cell survival of Nrf2 transfected cells.  H9c2 cells were transfected with p3.1 or 

Nrf2-GFP.  Following transfection, cells were treated in duplicate with vehicle, H2O2 

(200 μM), tBHP (100 μM), tBHQ (10 μM), tBHQ (10 μM) + tBHP (100 μM) and tBHQ 

(100 μM) + H2O2 (200 μM).  Cell survival was measured using cell proliferation assay 

and this experiment was repeated three times. 

 

9 – Statistical Analysis 

All statistical procedures were conducted using Minitab (State College, PA).  A 

paired t-test was used when samples were paired with a control.  For example, the 

western blots for both HO1 and NQO1 were compared to time-specific vehicle-treated 

control.  Differences between groups were assessed using a one-way ANOVA for 

multiple comparisons.  Where differences were observed, a Tukey-Kramer post-hoc test 

was used.  Statistical significance was set at p < 0.05.  In real-time PCR experiments, 

significance cannot be assessed due to the constraints of the gene expression MACRO.  

Using this MACRO the expression of the control samples is automatically set to 1, 

preventing statistical analysis.  However, the MACRO does assign a standard deviation to 
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the control samples and through comparisons of standard deviations one can assess 

significance. 
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RESULTS 

 

tBHQ- induced increase in HO1 and NQO1 gene expression: 

It has been reported that heme oxygenase 1 (HO1) and NADPH oxidoreductase 1 

(NQO1) gene expression are regulated by the transcription factor Nrf2 after oxidative 

stress (3, 64, 124).  Therefore we examined whether the expression of the antioxidant 

enzymes HO1 and NQO1 increased after treatment with the Nrf2 activator tBHQ (149, 

165).  H9c2 cells were treated with tert-butyl hydroquinone (tBHQ) (10 μM) for 0, 4, 8, 

12, 24 and 48 hours and RNA was isolated.  Basal gene expression of HO1 and NQO1 

did not change in vehicle-treated cells over a 48 hour period (data not shown).  tBHQ (10 

μM) caused a significant (p > 0.05) increase in both HO1 and NQO1 gene expression by 

4 hours and each peaked at 8 hours (Figure 11).  tBHQ caused a  7.6 +/-  0.5 fold and a 

4.4 +/-  0.5 fold increase in expression at 8 hours compared to vehicle treated cells for 

HO1 and NQO1, respectively.  By 48 hours, HO1 and NQO1 expression was not 

significantly different from the control.  These data suggest that Nrf2 activation by tBHQ 

treatment resulted in increased transcription of the ARE-containing genes HO1 and 

NQO1. 

 

 

 



 77

 

 

Figure 11.  Effect of tBHQ (10μM) on the expression of HO1 and NQO1.  Cells were treated with tBHQ 
for up to 48 hrs and HO1 and NQO1 gene expression was measured by real time RT-PCR (n=3 
independent experiments).  Solid circle and line indicates HO1 gene expression.  Open circle dotted line 
indicates NQO1 gene expression.  Each time point is normalized to 2 housekeeping genes, glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) and acidic ribophosphoprotein (Abrp). Error bars represent standard 
error.  * Indicates significantly different from vehicle treatment at indicated time-point (p<0.05). 
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tBHQ-induced increase in HO1 and NQO1 protein expression:   

To verify that HO1 and NQO1 protein levels increased after tBHQ treatment, 

HO1 and NQO1 immunoreactivity after tBHQ treatment was measured.  Cells were 

treated with tBHQ (10 μM) or vehicle for 12 and 24 hours, lysed and normalized for total 

protein.  Basal levels of HO1 and NQO1 were detected in the lysate of vehicle treated 

cells.  tBHQ significantly (p>0.05) increased the expression of HO1 1.3 ± 0.1 fold after 

12 hours and 1.9 ± 0.1 fold after 24 hours relative to vehicle-treated cells (Figure 12.B), 

whereas the increase in NQO1 expression was only significant at 24 hrs.  tBHQ increased 

NQO1 expression 1.4 ± 0.1 fold after 12 hours and 1.8 ± 0.2 fold after 24 hours relative 

to vehicle-treated cells (Figure 12.A).  These data suggest that tBHQ increases HO1 and 

NQO1 translation. 
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Figure 12.  Effect of tBHQ on protein levels of A) heme oxygenase-1 (HO1) and B) NAD(P)H:quinone 
oxidoreductase 1 (NQO1) immunoreactivity after 12 and 24 hour treatment (n=4 independent experiments). 
Protein levels were measured with specific antibodies for HO1 and NQO1 and data are expressed as fold 
increase compared to vehicle treatment for the same time point.  Inlays are a representative western blot.  
Error bars represent standard error.  * Indicates significantly different from vehicle treatment at indicated 
time-point (p<0.05). 
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Nrf2 translocation into the nucleus after treatment with tBHQ:   

The transcription factor Nrf2 is sequestered and subsequently degraded in the 

cytoplasm in non-stressed cells (89).  Upon activation, Nrf2 is released from Keap1 and 

translocates into the nucleus, increasing expression of ARE-driven genes.  To determine 

whether treatment with tBHQ activates Nrf2 and causes its translocation from the 

cytoplasm to the nucleus, cells were treated with tBHQ and cytoplasmic and nuclear 

fractions were analyzed for Nrf2 immunoreactivity.  Nrf2 immunoreactivity was detected 

in the cytoplasm at time zero of treatment and did not change after 15 minutes treatment 

with tBHQ.  Nrf2 immunoreactivity was also detected at time zero in the nuclear fraction 

and its content increased significantly after treatment with tBHQ for 15 minutes.  β-

tubulin was used as a cytosolic marker and was detected in the cytosolic fraction but not 

the nuclear fraction.  We also measured cytoplasmic and nuclear after tBHQ treatment for 

up to 8 hours.  Nrf2 levels increased in both cytoplasmic and nuclear compartments in 

response to tBHQ treatment compared to time zero with, cytoplasmic Nrf2 levels 

remaining elevated 8 hours after tBHQ treatment.  In the nuclear extract Nrf2 levels 

returned to basal levels by four hours of tBHQ treatment (Figure 13.C). These data 

suggest that tBHQ treatment activates Nrf2 and causes its translocation from the 

cytoplasm to the nucleus.   
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artments 

(n=4 i Nrf2 
munoreactivity was measured in the cytoplasmic and nuclear fractions. Protein levels were normalized 
d data are expressed as fold increase compared to vehicle treatment for the same time point.  Inlays are a 
presentative western blot.  Error bars represent standard error.  β-tubulin was used as a cytosolic marker. 

 Indicates significantly different from 0 time point (p<0.05) C)  Nrf2 levels after treatment with tBHQ (10 
M) in the cytoplasmic and nuclear extracts (Representative figure of three independent experiments).   

 

 
 
 

 

 
 
 
 

Figure 13.  Effect of tBHQ on Nrf2 protein expression in A) cytoplasmic and   B)   nuclear comp
ndependent experiments).  Cells were treated for 15 minutes with tBHQ (10 μM) and 
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 Nrf2 siRNA treatment attenuates HO1 and NQO1 expression:   

To determine the role of Nrf2 in mediating the expression of ARE-driven genes in 

response to tBHQ, a set of three StealthTM RNAi directed against rat Nrf2 to knockdown 

Nrf2 were used.  Treatment of H9c2 cells with the  Nrf2 siRNAs for 12 hours decreased 

Nrf2 mRNA expression by 80% as compared to cells treated with nonsense (NS) 

siRNAs.  In Nrf2 knockdown cells treated with tBHQ (10 μM) for 12 hours there was 

also an 80% suppression of Nrf2 mRNA expression (Figure 14.A & B).  Similarly, Nrf2 

protein levels were also reduced following Nrf2 siRNA treatment for 12 hours (Figure 

14.C).   

Next whether Nrf2 siRNA treatment altered expression of the ARE-containing 

genes HO1 and NQO1 was examined.  Basal gene expression of HO1 and NQO1 was 

decreased by 65% and 80%, respectively, in H9c2 cells treated with the Nrf2 siRNA 

compared to cells treated with nonsense siRNAs.  In addition, tBHQ-induced induction of 

HO1 and NQO1 gene expression was reduced in Nrf2 siRNA treated cells. The increase 

in HO1 and NQO1 expression in response to tBHQ was reduced by 55% and 65% 

respectively, in Nrf2 knockdown cells as compared to nonsense siRNA treated cells 

(Figure 14.D)  The increase in HO1 and NQO1 expression in response to tBHQ in 

nonsense siRNA treated cells was not different from that seen in control cells.  These data 

suggest that Nrf2 knockdown attenuates the ARE-driven gene expression of HO1 and 

NQO1 in response to tBHQ treatment. 
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to nonsense siRNA treated basal conditions; whereas the black bar represents the decrease in Nrf2 levels as 
th tBHQ. C) Representative western blot depicting protein 
nsense (NS) siRNA and Nrf2 siRNA transfected cells.  D) 

Effect of tBHQ (10 μM) on HO1 and NQO1 gene expression in cells transfected with nonsense (NS) 
siRNA and Nrf2 siRNA after tBHQ treatment.  Error bars represent standard error.   

Figure 14. Effect of Nrf2 siRNA on Nrf2 gene and protein expression (n=3 independent experiments for 
each figure). A) Representative graph of RT-PCR of Nrf2 gene expression.  B) Graphical representation of 
real-time RT-PCR of Nrf2 expression.  The white bar represents a decrease in Nrf2 mRNA levels compared 
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Activation of Nrf2 protects H9c2 c aells ag inst oxidative stress: 

To asses ether Nrf2 activation protects cells against subsequent oxidative 

stress, H9c2 cells were pretreated with tBHQ (10 μM), challenged 24 hours later with 

tBHP (100 , and reactive oxygen species (ROS) 

generation was measured.  ROS were measured using the Image-it Live Green ROS 

detection kit (Molecular Probes). This protocol was used for both the qualitative 

assessment of ROS generation using fluorescent microscopy and the quantitative 

measurement of fluorescent intensity.  Cells were treated with vehicle, tBHQ, tBHP and a 

combination of pretreatment with tBHQ (10 μM) then treatment with tBHP (100 μM).  In 

vehicle-treated cells, only blue nuclei were detected upon inspection with fluorescent 

microscopy.  The nuclei appeared rounded with little to no visible green fluorescence 

(Figure 15.A.i).  Treatment of cells for two hours with tBHP (100 μM) caused the 

generation of green fluorescence throughout the cells indicative of ROS generation 

(Figure 15.A.ii).  Pretreatment of H9c2 cells with tBHQ (10 μM) had no effect on ROS 

generation, irrespective of whether it was measured at two hours (data not shown) or 24 

hours after treatment (Figure 15.A.iii).  However, the increase in ROS generation in 

response to tBHP was completely abrogated in H9c2 cells pretreated with tBHQ (10 μM) 

ours blocked this 

increase in ROS generation in response to tBHP (100 μM).  These data can be interpreted 

s wh

μM) or its vehicle for two hours

for 24 hours (Figure 15.A.iv).  Quantitative analysis of ROS generation measured by 

fluorescence intensity in suspended cells revealed similar results (Figure 15.B).  tBHP 

(100 μM for 2 hours) increased the fluorescent intensity significantly (p>0.05) compared 

to vehicle treated cells.  Pretreatment with tBHQ (10 μM) for 24 h
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 Nrf2, is sufficient to 

decreas

to suggest that tBHQ, at a concentration demonstrated to activate

e the cellular oxidative state even in the presence of the oxidant tBHP. 
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Figure 15.  Reactive oxygen species generation.  (n=4 independent experiments).  A) ROS generation was 
visualized (40x magnification) using carboxy-H2DCFDA and the nuclei with the blue-fluorescent cell 
permeant nucleic acid stain Hoechst 33342.  ROS generation is seen as green fluorescence and the nuclei 
are seen as blue.  i-iv are representative fluorescence micrographs of four independent experiments.  i) 
Vehicle treated. ii) 100 μM tBHP for 2 hours  iii) 10 μM tBHQ for 24 hours iv) tBHQ (10 μM) 
pretreatment for 24 hours, followed by 100 μM tBHP for 2 hours. B) Quantitative measurement of ROS 
generation using fluorescence intensity in suspended cells.  For the same conditions described above, bars 
and lines represent the mean and SE of for independent experiments performed in duplicate.  * Indicates 
significant difference from tBHQ (p<0.05).  # Indicates significant difference from tBHP (p<0.05). 
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Nrf2 knockdown increases tBHP-induced ROS generation:  

To further investigate the role of Nrf2 in protecting H9c2 cells against oxidative 

stress  treated with Nrf2 siRNAs and ROS generation was measured in 

response to tBHP.  tBHP (100 μM for 2 hours) increased ROS generation in nonsense 

siRNA treated cells from 1480 ± 35 in control to 2109 ± 37 fluorescent units (FU).   The 

tBHP-induced increase in ROS were enhanced in cells pretreated with Nrf2 siRNAs.  In 

Nrf2 knockdown cells, tBHP approximately doubled the increase in fluorescence 

comp nsense siRNA treated cells.  As earlier in control cells (figure 

15) tBHQ pretreatment also decreased tBHP-induced ROS generation in nonsense siRNA 

treated cells.  However, this protective effect of tBHQ was lost in Nrf2 knockdown cells.  

ROS accumulation increased from control at 1197 ± 2 FU to 4268 ± 438 FU in Nrf2 

knockdown cells pretreated with tBHQ (10 μM) and then challenged with tBHP 

(100μM).  Therefore, the inhibitory effect of tBHQ on tBHP-induced ROS accumulation 

ked-down by treatment with Nrf2 siRNAs 

(Figure 16).  

, cells were

ared to no  described 

was decreased in cells when Nrf2 was knoc
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graph of three independent experiments).  Cells were treated with either the nonsense (NS) siRNA or the 

exposed to 100 M tBHP for 2 hours, suspended, counted and ROS measured using carboxy-H2DCFDA.  

C 

 

 

Figure 16.  Effect of Nrf2 siRNA treatment and tBHQ on intracellular ROS generation (representative 

Nrf2 siRNA followed by pretreatment with tBHQ (10 μM) or its vehicle for 24 hours.   Cells were then 
μ

Error bars represent standard deviation within one experiment.   
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Nrf2 knockdown decreased cell survival after oxidative stress:  

Data from Figure 16 suggests that Nrf2 activation protects H9c2 cells against 

ROS accumulation in response to the prooxidant tBHP.  To determine whether activation 

of Nrf2 can protect H9c2 cells from oxidant-induced cell death, cells were treated with 

Nrf2 or NS siRNAs and the effects of tBHP and H2O2 on cell survival measured.  In NS 

siRNA transfected cells, H2O2 caused a 72.8 ± 4.1 % decrease in cell number and tBHP 

caused a 62.7 ± 12.6 % decrease in cell number.  Pretreatment of NS siRNA transfected 

cells with tBHQ for 24 hours reduced the effect of tBHP to remote cell death.  In Nrf2 

siRNA   ± 9.7 % 

decrease  basal cell

umber but did not protect the cells from death in response to tBHP or H2O2 as was seen 

 

 

 

 

 

 

 

 

 

transfected cells H2O2 and tBHP caused a 66.8 ± 11.7 % and 72.8

 in cell number, respectively.  tBHQ pretreatment had no effect on  

n

in NS siRNA transfected cells.  Therefore the ability of tBHQ to protect H9c2 cells from 

death in response to tBHP or H2O2 was lost in Nrf2 knockdown cells.  
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Figure 17.  Effects of Nrf2 knockdown on cell survival.  H9c2 cells were transfected with either nonsense 

proliferation assay after the following treatments:  vehicle (C), 200 μM H2O2 (2h), 100 μM tBHP (2h), 10 

formed in duplicate.    

 
 
 

 

 

 
 
 
 

 

 
 

 

 
  
 
 

(NS siRNA) or Nrf2 siRNAs (n=6 independent experiments). Cell survival was measured by cell 

μM tBHQ (2h), 10 μM tBHQ followed by 200 μM H2O2 (24h followed by 2 h respectively), and 10 μM 
tBHQ followed by 100 μM tBHP (24h followed by 2 h respectively). For the same conditions described 
above, bars and lines represent the mean and SE of for independent experiments per
*Indicates significant difference from vehicle treated control (p<0.05). 
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eap1 knockdown increases HO1 and NQO1 expression:

 

K  

Keap1 is an inhibitory protein that sequesters and marks Nrf2 for proteosomal 

egradation.  To determine if the protective effect of Nrf2 was enhanced by decreasing 

xpression of Keap1 using siRNAs, H9c2 cells were  treated with either nonsense (NS) or 

eap1 siRNAs.  H9c2 cells treated with Keap1 siRNAs had a tendency to be reduced as 

knocked down 

4.6 ± 0.6 (SE) 

ange of 1.  In 

ddition, Nrf2 basal expression levels increased 2.2 ± 0.3 fold.  Pretreatment with tBHQ 

d

e

K

measured by real-time PCR and western blot (Figure 18.A&B). In Keap1 

cells, basal HO1 and NQO1 gene expression increased 2.6 ± 0.5 fold  and 

fold, respectively, as compared to NS siRNA transfected cells with fold ch

a

for 8 hours increased HO1 and NQO1 gene expression by 9.3 ± 0.5 and 8.32 ± 3.8 fold, 

respectively, in cells with Keap1 knockdown (Figure 18.C).   
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Figure 18.  The effect of Keap1 siRNA  on gene and protein expression.  A) Real-time PCR of Keap1 
mRNA levels after treatment with Keap1 siRNAs followed by treatment with 10 μM tBHQ or vehicle for 8 
hours as compared to nonsense (NS) siRNA treated control.  B) Western blot of Keap1 protein levels after 
treatment with Keap1 siRNAs as normalized to nonsense (NS) siRNA treated control. C) Real-time PCR of 
HO1, NQO1 and Nrf2 mRNA levels after treatment with Keap1 siRNAs and after exposure to 10 μM 
tBHQ or vehicle as compared to nonsense (NS) siRNA treated control.  Error bars represent standard error.    
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eap1 knockdown increases cell survival after oxidative stress:K   

Under basal conditions, Keap1 knockdown increases HO1 and NQO1 gene 

xpression (Figure 18).  To determine whether Keap1 knockdown enhanced cell survival 

uring oxidative stress, H9c2 cells were transfected with NS and Keap1 siRNAs, 

hallenged with tBHP or H2O2, and cell survival was measured.    In NS transfected cells, 

2O2 (200 μM) decreased cell number by 73.8 ± 3.0 %.  Pretreatment with tBHQ 24 

ours prior to exposure ath by 27.3 ± 6.8 % in NS transfected 

ells.  In contrast, cells transfected with Keap1 siRNAs H2O2 did not cause a significant 

ec ase in cell number both in the absence or present of tBHQ.  

A similar trend was observed with tBHP (100 μM) treatment.  In NS treated cells, 

tBHP reduced cell number to 49.14 ± 16.7 % as compared to control; whereas tBHQ 

treatment protected H9c2 cells from tBHP-mediated cell death (24.1 ± 15.0 %).  In 

Keap1 knockdown cells, tBHP did not significantly decrease cell number (25.2 ± 12.2) 

and tBHQ pretreatment did not further increase cell survival (20.5 ± 13.3 %).  These data 

suggest that Keap1 knockdown is sufficient to protect the H9c2 cells against oxidative 

2O2 and tBHP.  The protective effect of Keap1 is similar to that of NS 

iRNA treated control cells pretreated with tBHQ (Figure 19).  
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Figure 
nonsense (

μM tBHP (24h followed by 2 h respectively). For the same conditions described above, bars and lines 

difference from vehicle treated control (p<0.05). 

  

 * 

*

NS siRNA        +      +     +       +      +      +               -       -       -       -       -       - 

tBHQ                -       -      -       +      +      +               -        -      -      +       +      + 

tBHP                -      -      +        -      -     +              -       -     +     -        -      +

Nrf2 siRNA       -       -      -       -       -       -               +       +     +      +       +      + 

H2O2      -      +      -        -      +      -                -       +      -      -        +      - 

19.  Effects of Keap1 knockdown on cell survival.  H9c2 cells were transfected with either 
NS siRNA) or Keap1 siRNAs (n=3 independent experiments). Cell survival was measured after 

the following treatments:  vehicle (C), 200 μM H2O2 (2h), 100 μM tBHP (2h), 10 μM tBHQ (2h), 10 μM 
tBHQ followed by 200 μM H2O2 (24h followed by 2 h respectively), and 10 μM tBHQ followed by 100 

represent the mean and SE of for independent experiments performed in duplicate.    *Indicates significant 
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Nrf2 - GFP overexpression does not increase HO1 and NQO1 expression: 

Nrf2 has been shown to protect against oxidative stress, however Nrf2 overexpression 

has been reported to be unable to protect cardiac myocytes against doxorubicin toxicity 

(248).  Therefore, it was next determined whether Nrf2 overexpression could activate 

ARE driven transcription and protect the H9c2 cells from oxidative stress.  H9c2 cells 

were transiently transfected with human Nrf2 tagged with green fluorescent protein 

(Nrf2-GFP) or with empty pcDNA 3.1 vector.  Nrf2-GFP was a generous gift from Dr. 

Furukawa at the University of Nebraska (89).  Nrf2-GFP transfection increased basal 

uman Nrf2 mRNA levels as compared to empty vector transfected control (Figure 

24 hours) increased Ho1 and NQO1 gene expression similarly in both empty vector and 

Nrf2-GFP transfected cells (Figure 20). 

h

20.A).  H9c2 cells transfected with Nrf2-GFP had  and increase in Nrf2 

immunoreactivity, however  there was no difference in HO1 and NQO1 mRNA 

expression as compared to empty vector transfected cells (Figure 20.C).  tBHQ (10 μM 
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Figure 20.  Effect of Nrf2 overexpression on gene and protein expression.  H9c2 cells were transfected 
with either Nrf2 tagged with green fluorescent protein (Nrf2-GFP) or empty pcDNA 3.1 vector (p3.1).  A) 
RT-PCR of gene expression in empty vector and Nrf2-GFP transfected cells after treatment with tBHQ (10 
μM) or it vehicle for 24 hours.(n=2 independent experiments). B) Protein expression of Nrf2 in empty 
vector (p3.1) and Nrf2-GFP transfected cells  (n=3 independent experiments).  C) Real-time PCR on the 
effect of tBHQ (10 μM for 8hrs) on HO1 and NQO1 gene expression in cells transfected with Nrf2-GFP or 
empty vector (p3.1) (n=3 independent experiments).  Error bars represent standard error. 
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H9c2 cells overexpressing Nrf2 - GFP require tBHQ for nuclear translocation:

 

 

In an effort to investigate why Nrf2 erexpression did not increase transcription 

of ARE-driven genes, H9c2 cells were transfected with human Nrf2 tagged with green 

fluorescent protein (Nrf2-GFP) or empty pcDNA 3.1 vector and plated on charged 

coverslips.  Cells were treated with tBHQ (10 μM) or its vehicle for 1 hour and visualized 

via fluorescent microscopy.  Background fluorescence was detected in the H9c2 cells 

transfected with empty vector and treated with vehicle (Figure 21.i).  In H9c2 cells 

transfected with Nrf2-GFP, fluorescence was detected and appeared to be localized 

throughout the cytoplasm (Figure 21.ii).  H9c2 cells transfected with empty vector and 

treated with tBHQ showed no significant fluorescence (Figure 21.iii), whereas H9c2 cells 

transfected with Nrf2-GFP and treated with tBHQ displayed localization of fluorescence 

in the nucleus (Figure 21.iv).  These data suggest that overexpressed Nrf2-GFP remains 

predominantly in the cytoplasm until activated by tBHQ, at which point it translocates 

into the nucleus.   

 

ov
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were transfected with either Nrf2-GFP or empty pcDNA 3.1 vector.  i.   
cells transfected with pcDNA 3.1 empty vector and treated with vehicle for 1 hour.     

ii.  Fluorescence of H9c2 cells transfected with Nrf2-GFP and treated with vehicle for 1 hour.  iii.  
luorescence of H9c2 cells transfected with pcDNA 3.1 empty vector and treated with 10 μM tBHQ for 1 

hour.  iv.  Fluorescence of H9c2 cells transfected with Nrf2-GFP and treated with 10 μM tBHQ for 1 hour.  
Representative figure of four independent experiments. 

i ii 

iii iv 

Figure 21.  Cellular localization of Nrf2 tagged with green fluorescent protein (Nrf2-GFP) (40x 
magnification).  H9c2 cells 
Fluorescence of H9c2 

F
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Nrf2 overexpression is not protective: 

To address whether Nrf2 overexpression protects H9c2 cells against lethal levels 

of oxidative stress, cells were transfected with Nrf2-GFP or pcDNA 3.1, challenged with 

H2O2 or tBHP and cell survival was measured (Figure 22).  In empty vector transfected 

cells, H2O2 treatment increased cell death 59.0 ± 6.6 % and tBHP treatment increased cell 

death to 77.4 ± 6.4 % as compared to control.  A similar trend was observed in cells 

overexpressing Nrf2.  H2O2 treatment increased cell death 56.7 ± 7.11 % and tBHP 

treatment increased cell death 67.4 ± 10.7 %.  tBHQ treatment protected both Nrf2 

overexpressing and empty vector control.  In pty vector transfected cells, tBHQ 

treatment decreased cell death 16.3 ± 16.4 % in H2O2 treated and 31.4 ± 5.7 % in tBHP 

treated cells.  In Nrf2 overexpressing cells, tBHQ treatment decreased cell death 10.7 ± 

7.0 % after H2O2 treatment and 13.3 ± 8.1 % after tBHP treatment.  While Nrf2 activation 

protected against oxidative stress and cell death, Nrf2 overexpression alone did not.  

 em
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transfected with Nrf2-GFP or empty vector (pcDNA 3.1) and cell survival was measured after the 

followed by 200 μM H2O2 (24h followed by 2 h, respectively), and 10 μM tBHQ followed by 100 μM 
tBHP (24h followed by 2 h, respectively). For the same conditions described above, bars and lines 
represent the mean and SE of for independent experiments performed in duplicate.    *Indicates significant 
difference from vehicle treated control (p<0.05). 
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Figure 22. Effect of Nrf2 overexpression on cell survival (n=3 independent experiments).  H9c2 cells were 

following treatments:  vehicle (C), 200 μM H2O2 (2h), 100 μM tBHP (2h), 10 μM tBHQ (2h), 10 μM tBHQ 

*

pcDNA 3.1    +      +      +      +      +     +              -       -      -      -      -      - 

tBHQ             -       -       -      +      +     +              -       -      -      +      +     + 

tBHP             -        -      +      -     -  +            -       -   +     -       -     + 

Nrf2-GFP      -       -       -       -       -      -              +      +     +     +      +     + 

H2O2              -       +      -       -      +      -              -      +      -       -      +     - 
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DISCUSSION 

 These studies evaluated the protective nature of Nrf2 against oxidative stress in 

the H9c2 cardiac-like cell line.  We used the antioxidant tert-butyl hydroquinone (tBHQ) 

to activate Nrf2.  tBHQ treatment resulted in nuclear accumulation of Nrf2 and increased 

transcription of the ARE-driven genes, HO1 and NQO1.  tBHQ treatment also protected 

H9c2 cells from reactive oxygen species (ROS) generation and prooxidant-ind ced cell 

response to H2O2 and tBHP.  In cells with reduced Nrf2 levels, tBHQ did not protect 

against ROS or cell death.   

 Knockdown of the inhibitory protein Keap1 increased expression of HO1, NQO1, 

and Nrf2.  Keap1 knockdown was protective against prooxidant mediated cell death 

which was not further augmented by tBHQ treatment.  Overexpression of Nrf2 did not 

cause increased transcription of HO1 and NQO1.  This is likely due to  nuclear exclusion 

of Nrf2.  Only after tBHQ treatment did cells overexpressing Nrf2 exhibit increased 

enzyme transcription and nuclear localization.  Thus Nrf2 appears to protect the cardiac-

like H9c2 cells from oxidative stress when activated by Nrf2 or by the removal of Keap1.  

Nuclear exclusion of Nrf2 prevents increased gene transcription by Nrf2 overexpression 

unless Nrf2 is activated by tBHQ. 

u

death.  The protective effects of tBHQ were mediated through Nrf2, as Nrf2 knockdown 

prevented transcription of HO1 and NQO1.  Nrf2 knockdown increased ROS generation 

in response to the prooxidant tert-butyl hydroperoxide (tBHP) and increased cell death in 
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The rat cardiac-like H9c2 cells were used as the model cell system for this study.  

The H9c2 cells were developed in 1976 from the lower half of the embryonic rat heart 

consisting of mostly ventricular tissue (142).  The H9c2 cell is a mononucleated spindle 

shaped large myoblast.  At low densities, H9c2 cells retain their cardiac like phenotype 

which includes mononucleation, the ability to generate an overshooting action potential 

when stimulated, and a pattern of creatine phosphokinase CPK isoenzyme expression 

consistent with cardiac tissues.  H9c2 cells also contain sarcomeres in the same pattern, 

diameter and structure of cardiac tissue.   The H9c2 cell line can be used to represent both 

cardiac-like and skeletal muscle-like cells depending on growth conditions.  To promote 

a cardiac-like phenotype, H9c2 cells were grown in the presence of 10% FBS and 

cultures were passaged every three days.  These cells must reach confluence and grow for 

a period of three weeks before attaining the skeletal muscle phenotype (142).  The 

mononucleated cardiac phenotype of H9c2 cells was verified periodically by both DAPI 

staining and hematoxylin-and-eosin (H&E) staining (Figure 4).  To ensure that the H9c2 

cells did not differentiate during the course of experimentation, only cells within the first 

10 passages were used and gene expression analysis of HO1, NQO1, GAPDH and ABRP 

were measured to verify that the gene expression profile of H9c2 cell cultures remained 

In the present study, we used the well known Nrf2 activator tBHQ to activate 

Nrf2.  tBHQ caused an increase in mRNA expression of the genes HO1 and NQO1.  

tBHQ has been shown to activate Nrf2-mediated transcription using ARE-luciferase 

reporter constructs (149) and in ARE-hPAP reporter transgenic mice (125).  In these 

sulting in ARE binding and transcription of ARE 

consistent.   

studies, tBHQ activated Nrf2 re
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respons

response element (2).  These studies, taken together, emphasize the 

importa

ive genes.  In addition, a host of genes has been reported to be transcribed by Nrf2 

after treatment with tBHQ including γ-glutamyl transpeptidase, γ glautamylcysteine 

synthase (187) HO1 (141), NQO1 (149) and many more, as determined by microarray 

analysis (173, 176).   

The expression of protective enzymes has been shown to be controlled by Nrf2 in 

many tissues and cell lines, thereby supporting the hypothesis that Nrf2 is a multi-organ 

protector (166).  In this study we found increased expression of the classical ARE-driven 

genes HO1 and NQO1 in cardiac H9c2 cells, consistent with the idea that the observed 

protective effect is a result of the activation of Nrf2.   

Heme oxygenase-1 (HO1), the inducible form of the HO proteins, is activated in 

response to a host of oxidant and antioxidant stimuli (51).  By degrading the reactive free 

heme into the antioxidants bilirubin and the anti-inflammatory agent CO, HO1 has been 

reported to protect cells against oxidative stress (52, 301, 302).  HO1 has been shown to 

protect the heart in a variety of situations including after transplantation and against 

atherosclerotic lesion formation, while the lack of HO1 has been reported to exacerbate 

cardiac lesion formation after ischemia-reperfusion in normal and diabetic rats (188, 273, 

300-302).  Furthermore, HO1 transcription has been shown to be activated by the 

antioxidant 

nce of ARE-mediated HO1 expression in a cardiac system and make it an ideal 

reporter gene to analyze ARE activation. 

NAD(P)H:quinone oxidoreductase 1 (NQO1) is an enzyme that catalyzes a two 

electron reduction of both exogenous and endogenous quinones, and quinone containing 

compounds including the tumor drug mitomyocin C, vitamins K and E, and benzene 
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 NQO1 has the beneficial effect of chemoprotection (16, 82, 162, 

192, 21

O1 was used as an index of ARE 

activati

 section).   

quinones (218, 223, 244).  A lack of NQO1 or reduction of its activity has been linked to 

a number of cancers including leukemia and myelogenous hyperplasia as well as being 

associated with increased benzene hematoxicity and a decreased response to 

chemotherapy.  Thus,

2, 271, 272).  NQO1 is constitutively expressed in most mammalian tissues and 

its induction requires the Nrf2-ARE pathway, making it a very useful reporter gene for 

studying the Nrf2-ARE system (196). 

In the present study we did not investigate direct protective effects of HO1 or 

NQO1 induction.  Instead, expression of HO1 and NQ

on by Nrf2.  HO1 and NQO1 are ideal reporter genes of ARE activation because 

they have sequence differences within the ARE and are differentially expressed in 

response to tBHQ treatment (Figure 13).  Many other genes have been reported to contain 

AREs and to protect the cardiac cell after oxidative stress including glutathione 

reductase, glutathione peroxidase, glutathione S-transferase, superoxide dismustase, and 

catalase (28-30, 54, 83, 108, 199, 260, 302, 303).   

RNA interference (RNAi) has recently been utilized as a unique form of post-

transcriptional gene silencing.  (100, 204, 262, 290, 307).  siRNA technology works on 

the basis of creating RNA duplexes.  The double-stranded RNA is recognized by the cells 

multi-protein RNA-Induced Silencing Complex (RISC) and degraded (for more 

information see section 5.1 of the methods

RNAi has several limitations.  The cellular antiviral response is the most adverse 

side effect of siRNA technology.  The antiviral response is characterized by the 

production of cytotoxic interferons and inflammatory cytokines.  To overcome this 
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o nonspecific effects of the transfection.   

measurable Keap1 protein reduction, 

increas

ect ARE-driven gene transcription.  

The kn

limitation we measured gene expression of a member of the interferon response cascade, 

2’-5’-oligoadelylate synthetase (OAS2).  We detected no change from control, suggesting 

that our siRNA transfection protocol does not activate the antiviral interferon response.   

In addition, lipid-mediated transfection is inherently toxic to the cell and can result in off-

target or non-specific effects of the transfection.  The nonsense siRNA control was used 

in parallel to the experimental siRNA in every experiment to ensure that observed effects 

were due to gene knockdown and not t

Another limitation of RNAi is that gene expression is not completely eliminated 

and the effectiveness of different siRNAs varies.  A positive control siRNA directed 

against the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

was used to determine knockdown efficiency.  Using siRNAs generated against GAPDH, 

mRNA levels were reduced 90%, thus only 10% of the normal number of GAPDH 

transcripts were present.   We observed variation in the transfection of different siRNAs 

with relative knockdown at 80% for Nrf2 and only 40% for Keap1.  Although the level of 

knockdown of Keap1 was low, it translated to a 

ed HO1 and NQO1 transcription by free Nrf2, and increased cell survival when 

exposed to prooxidants. The insufficient knockdown of Keap1 may partially explain why 

tBHQ treatment was able to increase gene expression of ARE-driven genes in the 

presence of Keap1 siRNA (Figure 18.C).  If Keap1 knockdown was complete, all Nrf2 

would be free and tBHQ would not be likely to aff

ockdown of Keap1 was sufficient to protect cells against the effects of 

prooxidants, suggesting that the increase in expression of ARE-driven proteins was 
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terferon 

respons

the ARE, Nrf2 knockdown resulted in decreased basal and tBHQ-stimulated HO1 and 

enough to elicit a protective response.  We concluded that although Keap1 knockdown 

was low, it was sufficient to analyze the effect of reduced Keap1 levels. 

Another concern using siRNA technology is that of transfection efficiency.  

Transfection efficiency is expressed as the percentage of cells that take up the siRNA. 

Transfection efficiency was found to be 42%.  While this transfection efficiency is low, 

gene knockdown specific effects could be detected.  These data support the use of siRNA 

technology in the H9c2 cells and by addressing its inherent limitations (in

e, transfection efficiency and housekeeping gene normalization) provide us with 

reasonable assurance that we are using a reliable model with observed due specifically to 

gene knockdown.   

In this study increased gene expression and protein levels of HO1 and NQO1 

were observed in response to tBHQ treatment.  Activation of Nrf2 by tBHQ and the 

subsequent increase in expression of stress proteins have been described in numerous 

tissues (111, 125, 152, 264, 266) and other cell lines (64, 165, 183, 220, 223).   Here it is 

shown that tBHQ activates antioxidant transcription through a Nrf2-dependent 

mechanism.  After treatment with tBHQ a rapid translocation of Nrf2 from the cytoplasm 

to the nucleus was observed.  This translocation occurred within 15 minutes of tBHQ 

treatment and Nrf2 levels remained elevated in the nucleus for up to 4 hours.  This 

correlates with other studies showing elevated Nrf2 levels from 1-12 hours after 

activation (89, 173, 222, 310).  Similar results were reported in human neuroblastoma 

cells where tBHQ treatment resulted in dramatic nuclear translocation of Nrf2(167).   

Using HO1 and NQO1 mRNA levels as an index of Nrf2-mediated activation of 
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e with results of 

studies

o Nrf2 involvement in ARE-induced gene expression, Nrf2 is also 

necessa

P-

induced

NQO1 gene expression.  These data suggest that Nrf2 is involved in both basal and 

stimulated expression of ARE-induced genes.  These observations agre

 involving other tissues in which Nrf2 knockout decreased antioxidant-mediated 

induction of  antioxidant genes.  For example, in murine prenatal fibroblasts, tBHQ 

induced HO1 expression in wild-type but not Nrf2 knockout cells, suggesting that Nrf2 is 

necessary for tBHQ-induced HO1 induction (141).  It has also been reported that, in the 

absence of Nrf2, there is a marked impairment in the expression of genes encoding a 

number of detoxifying enzymes, including GSH biosynthetic enzymes, in the liver and GI 

tract (42, 119, 201). 

 In addition t

ry to facilitate the protective effects of tBHQ against cytotoxic effects of 

oxidative stress.  H2O2 was chosen because it is a commonly produced ROS in ischemia-

reperfusion injury and is more stable than its more reactive counterparts O2
- and OH- 

(289).  tBHP was chosen because of similarities to the byproducts of lipid peroxidation 

(207).  tBHP has been reported to induce apoptosis in rat hepatocytes (96), HepG2 cells 

(241) and N2A and SH-SY5Y neuronal cells (312) through opening of the mitochondrial 

permeability transition pore (96, 241).   

 In the present study, tBHP increased generation of reactive oxygen species and 

decreased cell viability of H9c2 cells.  The effect of tBHP on ROS generation was 

blocked by pretreatment with tBHQ at the concentration and time frame in which ARE-

induced genes are expressed.  Additionally, the protective effect of tBHQ on tBH

 ROS generation was lost following Nrf2 knockdown using Nrf2 siRNAs.  This 

suggests that Nrf2 activation is necessary for tBHQ-mediated protection of cardiac H9c2 
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roxic injury (47), and bleomycin-mediated pulmonary fibrosis (50) 

HQ for 24 hours protected H9c2 cells against 

2O2- 

cells.  These data agree with many studies demonstrating a relationship between Nrf2 

activation and cytoprotection from oxidative stress.  Dhakshinamoorthy and Porter (66) 

reported that siRNA-mediated knockdown of Nrf2 sensitized neuroblastoma cells to NO-

induced apoptosis.  Nrf2 knockout in primary astrocytes and neurons were more sensitive 

to oxidative damage and mitochondrial toxins than wild-type cells (164, 168) and 

overexpression of Nrf2 in astrocytes increased the survival of neurons under conditions 

associated with non-excitotoxic glutamate toxicity (152). Nrf2 has also been shown to 

protect the lung from butylated hydroxytoluene-induced acute respiratory distress 

syndrome (40), hype

through increased detoxification and antioxidant potentials.  Nrf2 knockout mice also 

show increased sensitivity to acetaminophen-induced hepatotoxicity as well as increased 

levels of lipid peroxidation and DNA damage (39, 75, 177).  These data reinforce the 

pivotal role of the Nrf2-ARE pathway in protecting multiple tissues and cells from 

oxidative stress and suggest a universal role for Nrf2 in the protective pathway.   

 Nrf2 activation is responsible for protection against oxidative stress elicited by 

tBHQ.  Normal cells are susceptible to reactive oxygen species generation caused by 

H2O2 and tBHP.  Pretreatment with tB

H and tBHP-mediated reactive oxygen species generation.  However, in Nrf2-

deficient cells oxidative stress results in an increase in ROS even when pretreated with 

tBHQ.  These data can be interpreted to suggest that the protective nature of tBHQ is due 

solely to its ability to activate Nrf2, not through the inherent antioxidative nature of 

tBHQ.   
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zed that 

 deficient cells, the oxidative stressors H2O2 and tBHP had no effect on cell 

death.  These data also suggest that protective effects seen with tBHQ can be attributed 

In normal H9c2 cells, Nrf2 activation by tBHQ protects cells against death caused 

by tBHP and H2O2.  This protective effect is due to the activation of antioxidant enzymes 

prior to an oxidative event, leaving the cell in a state predisposed for oxidative stress. 

Upon knockdown of Nrf2, pretreatment with tBHQ did not protect against H2O2 or tBHP, 

further supporting the idea that Nrf2 is a major player in this protective mechanism.  This 

suggests that Nrf2 is responsible for protection against oxidative stress mediated by both 

tBHP and H2O2.   

These data are somewhat in contrast to those of Purdom-Dickenson et al. (248).  

They showed that pretreatment with H2O2 protected the cells from subsequent 

doxorubicin-induced apoptosis, whereas Nrf2 overexpression did not.  In an effort to 

determine if the observed increased survival was mediated through the Nrf2 protein, 

these investigators overexpressed Nrf2 and treated cells with doxorubicin.  Because 

overexpression of Nrf2 was not protective, the authors concluded that the cytoprotective 

effect of H2O2 pretreatment is not dependent on Nrf2 activation.  They hypothesi

cross talk between Nrf2 and another protein, possibly nuclear factor κ β, was responsible 

for the observed cytoprotection.    

In an attempt to clarify the role of Nrf2 in the protective response against 

oxidative stress we knocked down the inhibitory protein Keap1 using siRNAs.  By 

removing Keap1 it was possible to evaluate the direct effects of Nrf2 in the absence of 

the activator tBHQ.  Keap1 knockdown resulted in low constitutive levels of ARE-

containing gene  expression, presumably through the constitutive activation of the ARE.  

In Keap1
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directly

9c2 cells were transiently transfected with human Nrf2 tagged with 

green f

er regulatory mechanism.  The observation that Nrf2 

transloc

 to Nrf2 activation.  Treatment with Keap1 siRNA mimicked the protective 

response seen with tBHQ treatment.  In the absence of Keap1, Nrf2 is free to activate the 

expression of antioxidant and detoxifying genes, thus leaving the cell in a protected state.  

These cells are resistant to the oxidative effects of H2O2 and tBHP at concentrations that 

are lethal to untreated cells.   

 To examine the effects of exogenous Nrf2 in protecting the cardiac cells against 

oxidative stress, H

luorescent protein (Nrf2-GFP).  Under basal conditions, Nrf2-GFP was localized 

exclusively in the cytoplasm indicative of nuclear exclusion of Nrf2 and suggesting a 

negative regulator was preventing nuclear translocation.  Furthermore, when Nrf2-GFP 

cells were treated with tBHQ, fluorescence was localized in the nucleus indicating 

nuclear translocation of  Nrf2.  To verify these results we measured transcription of ARE-

containing genes.  In Nrf2 overexpressing cells, HO1 and NQO1 mRNA remained at 

basal levels; whereas Nrf2 mRNA and protein levels were elevated.  tBHQ treatment 

resulted in increased HO1 and NQO1 expression, suggesting that Nrf2 is excluded from 

the cardiac cell by Keap1 or anoth

ation and gene transcription occurs only after tBHQ treatment suggests that Nrf2 

must be activated in order to protect the cell.    

   A limitation to the above described experiment is that expression of exogenous 

human Nrf2 (hNrf2) in rat H9c2 cells may result in problems with nuclear import and 

ARE-driven gene transcription due to species differences.  To evaluate this inherent 

problem, nuclear translocation of Nrf2 was measured in H9c2 cells.  hNrf2 was able to 

enter the nucleus after tBHQ treatment.  tBHQ caused translocation of hNrf2 at the same 
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described in Purdom-Dickenson et al., 2006 (248).  In our 

t of development.  Complications include 

concentration and in the same time frame as observed endogenous Nrf2 in H9c2 cells, 

suggesting that human Nrf2 is able to enter the nucleus of the rat H9c2 cells to initiate 

gene transcription. 

 These data can be interpreted to suggest that Nrf2 overexpression was not 

protective to cardiac cells as 

experiments, cells overexpressing Nrf2 did not enter the nucleus unless activated by 

tBHQ.  This could explain why Nrf2 overexpression alone was not sufficient to protect 

the cardiomyocyte against DOX treatment.  The observed nuclear exclusion of Nrf2 

could be through negative control by Keap1 and/or the nuclear export signal.   As 

indicated in the literature review, the Nrf2 protein contains a redox-insensitive nuclear 

export signal (NES) (122, 182) and deletion of the NES results in increased localization 

of Nrf2 after treatment with tBHQ (122).  While we did not investigate the contribution 

of the NES, it is a possible explanation for the observed nuclear exclusion of Nrf2.  

 Studies discussed in this dissertation are the first to look directly at the effects of 

Nrf2 in a cardiac model using siRNAs.  The use of siRNAs overcomes limitations 

associated with gene (i.e. loss of function models) knockout mouse because it involved 

temporary gene knockdown.  Knockout mice have many limitations caused by the 

absence of a gene from the genome at the star

death, chronic health problems, functional compensation by other closely related gene 

family members, and multiple copies of genes or pseudogenes in genome (239).  By 

temporarily knocking down a gene, siRNA technology reduces the risk of death due to 

the removal of a protein, reduces the likelihood of functional compensation by other 

members a protein family and does not discriminate against mRNA created by different 
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rted here are the first to examine the effects of Keap1 knockdown in a 

lethal 

copies of a gene.  In fact, development of technology facilitating the use of siRNAs in the 

whole animal is in progress to bypass the limitations of the knockout mouse (243).   

 Studies repo

cardiac cell model system.  This is especially valuable considering that the Keap1 

knockout mutation is lethal in the whole animal.  The herein data suggest that reduction 

of Keap1 actively protects the cardiac cell against lethal levels of prooxidants to an extent 

similar to that observed for Nrf2 activation by tBHQ.  These data suggest that removal of 

the inhibitory protein Keap1 results in free Nrf2 that translocates into the nucleus 

initiating gene transcription.  This study is also the first to show that overexpressing Nrf2 

does not result in nuclear translocation of Nrf2 or ARE-driven gene transcription unless 

activated by tBHQ.  The regulatory mechanism causing nuclear exclusion of Nrf2 is 

involve both Keap1 and the nuclear export signal.   

 In summary, Nrf2 was shown to protect H9c2 cells against two forms of 

oxidative stress associated to exposure to H2O2 and tBHP, through increased antioxidant 

enzyme levels when stimulated by tBHQ.  Activation of Nrf2 is necessary for Nrf2-

mediated protection against ROS generation and cell death.  Keap1 knockdown protected 

cells in a similar fashion to that observed with tBHQ treatment, supporting the hypothesis 

that effects seen after treatment with tBHQ reflect activation of Nrf2 and that Nrf2 must 

be activated in order to protect cells from oxidative stress.  Fluorescent microscopy and 

gene expression analyses showed that Nrf2 is not present in the nucleus in unstimulated 

cells overexpressing Nrf2. Thus, Nrf2 overexpression alone does not protect the cell due 

to retention of Nrf2 in the cytoplasm.  From these data it is concluded that Nrf2 protects 

H9c2 cardiac-like cells from oxidative stress when activated, or in the absence of its 
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inhibitory protein Keap1.  These studies point to Nrf2 as a protective protein that may 

have therapeutic implications in the fight against cardiovascular disease.  
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CONCLUSIONS 

The Nrf2 protein coordinately activates antioxidant enzymes in many tissues.  The 

role of Nrf2 as a multi-organ protector holds true in the H9c2 cardiac-like cell line.  

However, Nrf2 must be activated in order to exhibit its protective effects.  Removal of 

Keap1 protects the cardiac like cell from oxidative stress by freeing Nrf2; however the 

cell exhibits mechanisms that regulate the transcription of ARE-driven genes, which in 

turn, prevents the overexpression of Nrf2 from being inherently protective.  Nrf2 

activation protects H9c2 cells against oxidative stress and as such, may be valuable in 

therapeutic strategies for the treatment of cardiovascular disease. 
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APPENDICES 

Appendix A.  A list of compounds reported to activate the ARE.  
 

ARE-Inducers 
1-[2-cyano-3-1,2-dioxooleana-
1,9(11)-dien-28-oyl] imdazole carnosol lippopolysaccaride 
12346 penta O-gallo D-glucose caroteniods Low density lipoprotein 
17 beta estradiol chromium IV mercury 
2,3,7,8-tetrachlorodibenzo-p-dioxin cisplatin N-3-fatty acid  
2,7-d hlorodihydrofluoresceine 
diacetate cobalt Nickel II 

ic

3 H-1,2-dimethiole-3-thione 
cobalt 
protophorphyrin nitric oxide 

3-hydroxyanthanilic acid copper oltipraz 
3-methylcholanthrene curcumin organosulfur  
3-O-caffeoyl acid diethylnitrosamine PD98059 
4-hydroxynonenal deprenyl pentacholorphenol 
acetominophen diallyl sulfide peroxynitrate 
acetylcarnitine  diesel exhaust phenolic acid 
acrolein dithiolethiones phorbol ester 
allyl sulfide ethoxyquin phytochemicals 

alpha lipoic acid 
fibroblast growth 
factor piperine 

antirheumatic gold flavonoids polyphenols 
apomorphine garlic quercetin-glycosides 
arsenic ginkgo biloba resveratrol 
arsenite hemin sulforaphane 
bis(2-hydroxybenzylidene)acetone indole-3-carbinol tert-butyl hydroquinone 
bucillamine Insulin trans-stibene oxide 
butylated hydroxyanisol isothiocyanates triterpenoids 
cadmium kainic acid UV radiation 

cadmium chloride 
Keratinocyte growth 
factor valporic acid 

carbon monoxide lead  xanthohumol 
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Appendix B.  Genes reported to be ARE-driven.  List generated from Lee et al. 2003. (164) 
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C.  Real-time PCR standard curves for each primer set (HO1, NQO1, GAP, rat Nrf2, human 
rf2, Ke rd curves are generated using a 10 fold dilution series of cDNA with primer 

 a PCR efficiency used by the gene expression macro, and 
ted from the standard curve. 
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Rat Keap1 

 
 
 

Appendix D:  Cell proliferation assay standard ear with a correlation coefficient of no 
less than 0.95. 
 

curve.  The fit is lin

y = 0.376x + 293.99
R2 = 0.9971

0

5000

10000

15000

20000

25000

0 10000 20000 30000 40000 50000 60000

cell number

flu
or

es
ce

nc
e 

un
its

 
 



 144

 
Appendix E:  List of Abbreviations 
 
15dPGJ2 15-deoxy-delta(12,14)-prostaglandin J(2)  
6-OHDA 6-hydroxydopamine  
Abrp acidic ribophosphoprotein  
AhR ayrl-hydrocarbon receptor  
AP1 Activator Protein 1  
ARE Antioxidant Response Element 
ATF2 activating transcription factor 2 
ATF4 activating transcription factor 4 
BACH BTB and CNC homo gy 1  

Basic Local Alignment Search Tool 
β-NF b-naphthoflavone  
bp base pairs 
cAMP cyclic adenine monophosphate 
Carboxy-
H2DCFDA 5-(and 6)-carboxy-2’,7’-dichlorodihydrofluorescein diacetate  
CAT chloramphenicol acetyltransferase  
cDNA complementary DNA 
CNC CAP N Collar 
CoIP Co-immunoprecipitation 
Cox-2 cyclooxygenase 2 
CP450 cytochrome P 450 
CREB cAMP Responsive Element Binding protein  
CVD cardiovascular disease 
CYP1A1 cytochrome P 450 gene 

Cytochrome P450 2E1  
D3T 1,2-dithiole-3-thione  
ΔΔCT delta delta cycle threshold 
DEM diethylmalate 
DEPC diethyl pyrocarbonate  
DGR double glycine repeat  
DMEM Dulbecco’s Modified Eagle’s Medium  
dsRNA double stranded RNA 
EpRE electrophile response element  
ER endoplasmic reticulum 
ERK Extracellular signal regulated kinase  
EtOH ethanol 
FBS Fetal Bovine Serum 
GFP green fluorescent protein 

lo
BHA Butylated hydroxyanisole  
BLAST 

CYP2E1 
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-GCS g-glutamylcysteine synthetase 
steine synthetase heavy and light subunits  

 

atase  

tein  
  

id-derived 2) 
nce 

e 

thetase  
arbons  

on  

6s 

ing Complex  

γ
γ-GCSh&1 g-glutamylcy
GPX glutathione peroxidase 

glutathione reductase GR 
GSH glutathione 
GST glutathione transferase 
H2O2 hydrogen peroxide 
HBSS Hank's balanced salt solution 
HO1 Heme oxygenase 1 
hPAP human placental alkaline phosph
HRP horseradish peroxidase  
IgG immunoglobulin G 
JNK 

 
c-Jun N-terminal kinase  

ed protein-1  Keap1
L 

Kelch-like associat
 lipoproLD low density

MAPK mitogen-activated protein kinase
Maf recognition elements  MARE 

MOPS 
 

3-(N-morpholino)propanesulfonic acid 
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine  
NES 

 
nuclear export signal 

erythroNF-E2 nuclear factor (
NLS nuclear localization seque
NO nitric oxide 
NOS nitric oxide synthas
NQO1 NADPH quinone oxidoreductase 1 
Nrf1 NF-E2 related factor 1 
Nrf2 NF-E2 related factor 2 
Nrf3 

 
NF-E2 related factor 3 

nOAS2 2’-5’-oligoadelylate sy
PAH polycyclic aromatic hydroc

ered saline PBS phosphate buff
PCR polymerase chain reacti
PD Parkinson's disease 
PDTC pyrrolidin-edithiocarbamate  

kinase  PI3K 
 

phosphatidylinositol 3-
PEITC

 
ethyl isothiocyanate  

PKC protein kinase C 
Prot 2 proteosome 26s 

receptor-associated coactivator-3  RAC3 
 

Nuclear 
RISC RNA-Induced Silenc
ROS 
RT revers

reactive oxygen species 
e transcriptase 
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GE ylamide gel electrophoresis 

 
 

DTA 
 

one 

ol-13-acetate 

 
 

SDS PA sodium dodecyl sulfate poly acr
SIN-1 3-morpholinosydnonimine-N-ethylcarbamide  
siRNA small inhibitory RNA 
SOD superoxide dismutase 
TAE tris acetate E
tBHP tert-butyl hydroperoxide
tBHQ tert-butyl hydroquin
TBS-T Tris borate sodium tween 20 
TE Tris EDTA 
TNFα tumor necrosis factor alpha 
TPA 12-O-tetradecanoylphorb
UV ultra violet 
XRE xenobiotic response element 


